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Abstract

Native Language Identification (NLI) is
the task of automatically identifying the
native language (L1) of an individual
based on their language production in a
learned language. It is typically framed
as a classification task where the set of
L1s is known a priori. Two previous
shared tasks on NLI have been organized
where the aim was to identify the L1 of
learners of English based on essays (2013)
and spoken responses (2016) they pro-
vided during a standardized assessment of
academic English proficiency. The 2017
shared task combines the inputs from the
two prior tasks for the first time. There are
three tracks: NLI on the essay only, NLI
on the spoken response only (based on a
transcription of the response and i-vector
acoustic features), and NLI using both re-
sponses. We believe this makes for a more
interesting shared task while building on
the methods and results from the previous
two shared tasks. In this paper, we report
the results of the shared task. A total of
19 teams competed across the three dif-
ferent sub-tasks. The fusion track showed
that combining the written and spoken
responses provides a large boost in pre-
diction accuracy. Multiple classifier sys-
tems (e.g. ensembles and meta-classifiers)
were the most effective in all tasks, with
most based on traditional classifiers (e.g.
SVMs) with lexical/syntactic features.
Visit the website for more info about the task:

https://sites.google.com/site/nlisharedtask/

1 Introduction

Native Language Identification (NLI) is the task of
automatically identifying the native language (L1)
of an individual based on their writing or speech
in another language (L2). NLI works by identify-
ing language use patterns that are common to cer-
tain groups of speakers that share the same native
language. This process is underpinned by the pre-
supposition that an author’s linguistic background
will dispose them towards particular language pro-
duction patterns in their learned languages, as in-
fluenced by their mother tongue.

Predicting the native language of a writer has
applications in different fields. It can be used
for authorship identification (Estival et al., 2007),
forensic analysis (Gibbons, 2003), tracing lin-
guistic influence in potentially multi-author texts
(Malmasi et al., 2017), and naturally to support
Second Language Acquisition research (Malmasi
and Dras, 2014). It can also be used in educational
applications such as developing grammatical er-
ror correction systems which can personalize their
feedback and model performance to the native lan-
guage of the user (Rozovskaya and Roth, 2011).

Most work in NLI focused on predicting the na-
tive language of an ESL (English as a Second Lan-
guage) writer based on a sample essay, although
NLI has also been shown to work on other lan-
guages (Malmasi and Dras, 2015). Work by Kop-
pel et al. (2005), Tsur and Rappoport (2007) Wong
and Dras (2009), and Tetreault et al. (2012) set
the stage for much of the recent research efforts.
However, it was the 2013 Native Language Iden-
tification Shared Task (Tetreault et al., 2013) that
led to an explosion of interest in this area by mak-
ing public a large dataset developed specifically
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for this task called the TOEFL11 (Blanchard et al.,
2013). In that shared task, 29 teams participated,
making it one of the largest NLP competitions that
year alone.

In addition to analyzing the written responses, a
recent trend in NLP research has been the use of
speech transcripts (generated manually or via Au-
tomatic Speech Recognition) and audio features
for dialect identification (Malmasi et al., 2016), a
task that involves identifying specific dialects of
pluricentric languages, such as Spanish or Ara-
bic.1 The combination of transcripts and acoustic
features has also provided good results for dialect
identification (Zampieri et al., 2017b), demon-
strating that it is possible to improve performance
by combining this information.

While there has been growing interest in using
such features, the use of speech transcripts for NLI
is not entirely new. In fact, the very first NLI
study by Tomokiyo and Jones (2001) was based
on applying a Naive Bayes classifier to transcrip-
tions of speech from native and non-native speak-
ers, albeit using limited data. However, this strand
of NLI research has not received much attention,
most likely due to the costly and laborious nature
of collecting and transcribing non-native speech.
Following this trend, the 2016 Computational Par-
alinguistics Challenge (Schuller et al., 2016) also
included an NLI task based on the spoken response
using the raw audio.

The NLI Shared Task 2017 attempts to combine
these approaches by including a written response
(essay) and a spoken response (speech transcript
and i-vector acoustic features) for each candidate.
The competition also allows for the fusion of all
features, a novel task that has not been previously
tried. Another motivation for this task was the
rapid growth of deep learning methods for natu-
ral language processing tasks (Manning, 2015). In
prior shared tasks, there were several barriers to
using deep learning for NLP. However, deep learn-
ing has now had a positive impact on many tasks
across NLP and it is an area of investigation on
whether the same successes can be found in NLI.

In the following section, we provide a summary
of the prior work in Native Language Identifica-
tion, for both text and speech based tracks. Next,
in §3, we describe the data used for training, de-

1NLI could also be framed as a dialect identification task
if we assume that each L1 group has their own interlan-
guage/dialect which is influenced by their L1.

velopment, and testing in this shared task. In §4
we describe the results of each sub-task, with a
short description of each team’s submission. Then
in §5, we discuss the commonalities and trends in
and across the three sub-tasks, and present an en-
semble analysis of all submissions. Finally, in §6,
we offer conclusions and ideas for avenues of re-
search in this growing field.

2 Related Work

NLI is most commonly framed as a supervised
classification task, where features are extracted
from a linguistic response produced by non-native
speakers, and used to train a classification model.
NLI is a recent, but rapidly growing, area of re-
search. While some early research was conducted
in the early 2000s, most work has only appeared
in the last few years.

2.1 Text-based NLI

Most NLI research has focused on English texts
where both lexical and syntactic features (often
based on n-gram frequency profiles) have been
used. Popular lexical features include character,
word and lemma n-grams, while syntactic fea-
tures are based on constituent parse trees, depen-
dency parse features and part-of-speech tags. Sup-
port Vector Machine (SVM) models have been
the most prevalent classification approach. Re-
searchers have mainly focused on experimenting
with different features and methods of combining
them. While a detailed analysis of previous work
is beyond the scope of this report, a comprehen-
sive exposition of NLI research from 2001-2015,
including all of the systems from the first shared
task, can be found in Malmasi (2016, Section 2.3).

The winning entry for the 2013 shared task
was that of Jarvis et al. (2013), achieving 83.6%
in terms of accuracy (the official metric). The
features used in the system include n-grams of
words, parts-of-speech, and lemmas. A log-
entropy weighting schema was used to normalize
the frequencies. An L2-regularized SVM classi-
fier was used to create a single-model system.

A notable trend in NLI has been the success of
multiple classifier systems, such as ensemble clas-
sifiers (Tetreault et al., 2012). In fact, such ap-
proaches have consistently achieved state-of-the-
art performance on the NLI Shared Task 2013
dataset. Bykh and Meurers (2014) applied a tuned
and optimized ensemble, reporting an accuracy of
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84.82% on this data. Ionescu et al. (2014) used
string kernels to perform NLI. They create several
string kernels which are then combined through
multiple kernel learning. They report an accuracy
of 85.3% on the 2013 Test set, 1.7% higher than
the winning shared task system. More recently,
Malmasi and Dras (2017) presented a thorough ex-
amination of meta-classification models for NLI,
achieving state-of-the-art results on three datasets
from different languages, including an accuracy
of 87.1% on the 2013 data.

2.2 Speech-based NLI

The task of speech-based NLI is closely related
to the tasks of language identification and dialect
identification, for which substantially more re-
search has been conducted. For those tasks, the
two main types of approach are based on acous-
tic features (Dehak et al., 2011) and phonotac-
tic features (Zissman, 1996). For further details
we refer the reader to Rao and Nandi (2015) and
Etman and Beex (2015) which provide compre-
hensive overviews of the different approaches that
have been taken for speech-based language and di-
alect identification.

The 2016 Computational Paralinguistic Chal-
lenge on NLI was designed to explore the related
task of speech-based NLI in more detail. The
data set for that task contained 64 hours of speech
from 5,132 non-native speakers of English (ap-
proximately 45 seconds per speaker) representing
the same 11 L1 backgrounds as the 2013 NLI
Shared Task corpus. Each language was repre-
sented by recordings ranging from 458 to 485 dif-
ferent speakers representing a range of English
speaking proficiencies. The best performing sys-
tem in the challenge was that of Abad et al. (2011):
their system used i-vector features that were based
on Phone Log-Likelihood Ratios and achieved a
performance of 81.3% (in terms of Unweighted
Average Recall, which was the evaluation metric
for the challenge) on the test set.

3 Task Description and Data

There were three tracks in the NLI Shared Task
2017: essay-only, speech-only, and fusion. The
corpus consists of both written essays and ortho-
graphic transcriptions of spoken responses. These
were provided by test takers in the context of a
standardized assessment of a non-native speaker’s
ability to use and understand English for academic

purposes at the university level, TOEFL R© iBT.
There were 11,000 test takers included in the train-
ing data (1,000 per L1) and 1,100 each for devel-
opment and test (100 per L1). The 11 L1 back-
grounds included in the NLI Shared Task 2017
were identical to the 2013 and 2016 shared tasks:
Arabic, Chinese, French, German, Hindi, Italian,
Japanese, Korean, Spanish, Telugu, and Turkish.
These L1s and their language families are shown
in Figure 1.

The test takers’ essays and spoken responses
were elicited by test questions (hereafter referred
to as prompts) asking about an opinion (e.g.,
which of two choices the test taker would pre-
fer) or a personal experience. A total of 8 essay
prompts were included in the training and devel-
opment partitions and 7 of these were represented
in the test partition; a total of 9 different speaking
prompts were included in the training and devel-
opment partitions and 7 of these were represented
in the test partition. Prompt IDs for both the es-
says and the spoken responses were provided with
the corpus. We tried to ensure the the data was as
balanced as possible by prompt (in addition to by
L1), though we did not always have enough data
for all L1s for some prompts.

In the essay-only track, the task was to predict
the L1 of a candidate based only on an essay writ-
ten in English. The essay training data consisted
of the training plus development data used in the
NLI Shared Task 2013, while the development es-
say data consisted of the test data from the 2013
task. The test data for this track was new, previ-
ously unreleased data. The average length of the
essays across all three partitions was 316.2 words
(SD: 77.6, Min.: 2, Max.: 796).

In the speech-only track, the task was to pre-
dict the L1 of a candidate based only on a 45-
second-long spoken response in English. The
main source of data was a manually-created or-
thographic transcription of the spoken response.
The average length of the speech transcriptions
across all three partitions was 89.5 words (SD:
25.7, Min.: 0, Max.: 202). Unfortunately, it was
not possible to distribute the raw audio for the re-
sponses. To provide a more realistic sense of the
performance of a speech-based NLI system, a fea-
ture file of i-vectors was provided to participants
who requested it. An i-vector is a fixed-length,
low-dimensional representation of the sequence of
frame-level acoustic measurements extracted from
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Figure 1: Language families in the task. The languages were selected to represent different families, but
to also have several from within the same families. Diagram reproduced from Blanchard et al. (2013).

the speech signal (Dehak et al., 2011; Martınez
et al., 2011). The dimensions of the i-vectors (800)
and number of Gaussian components (1024) were
tuned on the development set by using the Kaldi
toolkit.2 In order to be able to distinguish the ef-
fects of new features or approaches, participants
were encouraged to clearly describe the relative
contribution of their features on the task both with
and without the i-vector features.

In the fusion track, the task was to predict the
L1 of a candidate using the combination of their
written essay and spoken response.

The training and development data were re-
leased in two phases. The first phase consisted
of only the essays, while the second phase con-
sisted of the spoken transcriptions and optionally
i-vectors. Simple baseline scripts that used uni-
gram features and an SVM learner were also pro-
vided for each track.

There were both open and closed competitions
for each track. In the closed competition, only the
data provided could be used for training (though
features based on external data sources such as
language models or parsers could be included). In
the open competition, additional NLI training data
could be used to help improve predictions. There
were no submissions to the open competition.

The test period for each track lasted 3 days, and
teams could submit up to 12 systems per track.
The essay-only and speech-only test phases ran
concurrently. The IDs for the essay data and tran-
scription data were generated by separate random
processes for this test period. For the fusion test
period, an updated package providing linked IDs
between the essay and spoken transcription data
was released.

2http://kaldi-asr.org

3.1 Evaluation and Ranking

The majority of NLI research to date has reported
results using accuracy as the main metric. For
this task, however, we decided to use the macro-
averaged F1-score as the official evaluation met-
ric. The macro-averaged F1-score is calculated by
first computing the F1-score for each class, and
then taking the average across all classes (Yang
and Liu, 1999). This metric favors more consis-
tent performance across classes rather than simply
measuring global performance across all samples.
Accuracy was still reported for completeness.

We also used statistical significance testing for
ranking purposes. McNemar’s test3 (with an alpha
value of 0.05) was applied to the ordered results
to identify groups of teams where the highest and
lowest results were not significantly different, and
they were therefore assigned the same rank.

For comparison, we compare to two types of
baselines: a random baseline and one that use a
linear SVM classifier. There were three random
baselines, one for each task, and five simple SVM
baselines in total across the three tasks. For the
essay-only task there was one baseline based on
raw unigram frequencies from the essay texts. For
the speech-only task there were two baselines: one
an SVM based on raw unigram frequencies from
the orthographic transcriptions alone, and a sec-
ond SVM that combined the unigram features with
the i-vectors using horizontal concatenation. For
the fusion task there were two baselines: one, an
SVM combining the unigrams from the essays and
the transcriptions, and a second SVM combining
the unigrams from the essays and the transcrip-
tions with the i-vectors.

3For more details see §7.3 of Malmasi and Dras (2017)
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4 Results

A total of 19 teams participated in the task, 17
of which submitted system description papers.
Participation across the three tracks varied, with
17 participants in the essay-only track, 9 in the
speech-only track, and 10 in the fusion track. The
results for each track are described in the follow-
ing sections. For every track we briefly outline
each team’s best system. Interested readers can
refer to the team’s paper for more details.

4.1 Essay-only Track

The best essay-only submission for each team,
along with rankings and other details, are listed
in Table 4.1. Each team’s best system is briefly
described below, ordered by rankings.

ItaliaNLP Lab (Cimino and Dell’Orletta, 2017)
utilize a novel classifier stacking approach based
on a sentence-level classifier whose predictions
are used by a second document-level classifier.
The sentence classifier is based on a Logistic Re-
gression model trained on standard lexical, stylis-
tic, and syntactic NLI features. The document-
classifier is an SVM, trained using the same fea-
tures, as well as the sentence prediction labels.
Their experiments indicate that inclusion of the
sentence prediction features provides a small in-
crease in performance.

CIC-FBK (Markov et al., 2017) build an SVM
with multiple lexical and syntactic features. They
introduce two new feature types – typed charac-
ter n-grams and syntactic n-grams – and combine
them with word, lemma, and POS n-grams, func-
tion words, and spelling error character n-grams.
Features are weighted using log-entropy.

Groningen (Kulmizev et al., 2017) achieve their
best results using a very simple system based on
character 1-9 grams. Features are counted in a bi-
nary fashion and normalized via tf-idf. They also
conducted experiments omitting data from some
prompts during training and observe that perfor-
mance can drop considerably, depending on which
prompt is left out.

NRC (Goutte and Léger, 2017) explored various
ways of building ensemble models to make the
final prediction. Relatively simple features were
used (character, word, and POS n-grams). Their
best run for this track was a voting ensemble with
10 SVM models.

tubasfs (Rama and Çöltekin, 2017) used a sin-
gle SVM classifier trained on word bigrams and
character 7-grams. They tried a variety of n-gram
combinations and found this to work best on the
development data.

UnibucKernel (Ionescu and Popescu, 2017) use
different types of character-level string kernels
which are combined with multiple kernel learning.

WLZ (Li and Zou, 2017) build an ensemble of
single-feature SVMs fed into a multi-layer percep-
tron (MLP), which is a meta-classifier trained on
the outputs of the base SVM classifiers. The sin-
gle features are based on lexical and syntactic in-
formation and the best submission includes char-
acter, word, stem, and function word n-grams as
well as syntactic dependencies.

Uvic-NLP (Chan et al., 2017) trained a single
SVM model on word n-grams (1–3) and character
n-grams (4-5). They also conducted several post-
evaluation experiments, improving their results to
0.8730 using an LDA meta-classifier trained on in-
dividual SVM classifiers.

ETRI-SLP (Oh et al., 2017) designed a system
that was based on word n-gram features (with n
ranging from 1 to 3) and character n-gram fea-
tures (with n ranging from 4 to 6). The normalized
count vectors based on these features were used to
extract LSA features, which were then reduced us-
ing LDA. The count and LSA-LDA features were
used to train SVM and DNN classifiers whose out-
puts were subsequently combined via late fusion
in a DNN-based ensemble classifier.

CEMI (Ircing et al., 2017) use a Logistic Re-
gression meta-classifier to achieve their best
essay-only results. The meta-classifier is trained
on the outputs of several base classifiers, which are
trained on TF-IDF weighted word unigrams, word
bigrams, character n-grams and POS n-grams.

RUG-SU (Bjerva et al., 2017) primarily focus
on applying neural network models to NLI. Sev-
eral systems are trained: A deep residual network
based on word unigrams and character n-grams; a
sentence-level LSTM based on POS-tagged sen-
tences; a Logistic Regression model based on
spelling error features; and a CBOW model based
on document embeddings. Their best result is
achieved by an ensemble combining these systems
together with an SVM meta-classifier. Spelling er-
ror features did not improve overall performance.
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Rank Team F1 Acc. Approach
1 ItaliaNLP Lab 0.8818 0.8818 Stacked classifier w/ lexical and syntactic features
1 CIC-FBK 0.8808 0.8809 SVM with log-entropy weighted n-gram and syntactic features
1 Groningen 0.8756 0.8755 Linear SVM with character n-grams (1-9)
1 NRC 0.8740 0.8736 Voting ensemble w/ SVM models using lexical/syntactic features
1 tubasfs 0.8716 0.8718 SVM trained on word bigrams and char 7-grams
1 UnibucKernel 0.8695 0.8691 Character-level string kernels combined w/ multiple kernel learning
1 WLZ 0.8654 0.8655 MLP meta-classifier trained on SVMs w/ lexical/syntactic features

2 Uvic-NLP 0.8633 0.8636 SVM trained on word and character n-grams
2 ETRI-SLP 0.8601 0.8600 Ensemble of SVMs & DNNs using LSA-LDA features
2 CEMI 0.8536 0.8536 LogReg meta-classifier trained on word/char/POS base models

3 RUG-SU 0.8323 0.8318 Ensemble of resnets, LSTM and document embeddings
3 NLI-ISU 0.8264 0.8264 Logistic Regression model with word n-grams (1-3)
3 IUCL 0.8262 0.8264 Phonetic features combined in an SVM
3 GadjahMada 0.8107 0.8110 Char embeddings w/ a feed-forward NN classifier

4 superliuxz 0.7896 0.7900 No paper submitted.
4 ltl 0.7676 0.7673 No paper submitted.

5 ut.dsp 0.7609 0.7636 n-gram language models over characters (3-4) and words (1-2)

Word Unigram Baseline 0.7104 0.7109 Linear SVM trained on word unigrams

Random Baseline 0.0910 0.0910 Randomly select an L1

Table 1: Official results in the essay-only track. The official metric is the macro-averaged F1-score.
Accuracy (Acc.) is also reported. Rankings are determined by statistical significance testing (see §3.1).

NLI-ISU (Vajjala and Banerjee, 2017) explored
the use of n-grams and embeddings in their sub-
missions. Their best run was a Logistic Regres-
sion model trained on word 1-3 grams. They also
report that spell checking features, as well as word
and document embeddings did not work well on
the development data.

IUCL (Smiley and Kübler, 2017) investigated
the use of phonetic features for the essay classi-
fication task based on the hypothesis that speak-
ers from different L1 backgrounds may tend to
use English words that match sounds in their own
L1 more frequently than speakers from other L1
backgrounds. They explored three sets of phonetic
features based on algorithms for fuzzy text match-
ing (Soundex, Double Metaphone, and NYSIIS)
as well as a set of features based on representa-
tions of the words using the CMU Pronouncing
Dictionary. While none of these feature sets indi-
vidually outperformed a system based on charac-
ter n-grams, the addition of the Double Metaphone
features to the character n-gram features led to a
small performance improvement.

GadjahMada (Sari et al., 2017) apply a charac-
ter embedding model with a feed-forward neural
network classifier in the essay track. This is based
on the relatively high performance of character n-
grams in previous research. An embedding size of
25 was used with n-grams of length 2–5.

ut.dsp (Mohammadi et al., 2017) utilize n-gram
language models over words and characters. For
each L1, a language model over character 3- and
4-grams as well as word unigrams and bigrams is
calculated and smoothing is applied. For each text
in the test set, the probably of the whole text for
all language models in each class is calculated and
the class with the maximum probability is chosen
as the predicted label. This approach does not in-
volve any supervised learning.

4.2 Speech-only Track

The best speech-only submission for each team,
along with rankings and other details, are listed
in Table 4.2. Each team’s best system is briefly
described below, ordered by rankings.
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Rank Team F1 Acc. Approach
1 UnibucKernel 0.8755 0.8755 Character-level string kernels and i-vector features
1 ETRI-SLP 0.8664 0.8664 DNN ensemble with early fusion using LSA-LDA features
1 CEMI 0.8607 0.8609 Ensemble of transcript & i-vector features w/ softmax fusion

2 NRC 0.8448 0.8445 Single models trained on transcript char 6-grams and i-vectors
2 tubasfs 0.8333 0.8336 LDA classifier using only i-vector features

Baseline: transcript + i-vector 0.7980 0.7982 Linear SVM trained on word unigrams (transcripts) + i-vectors

Baseline: transcript only 0.5435 0.5464 Linear SVM trained on word unigrams (transcripts)

3 GadjahMada 0.5084 0.5073 FFNN classifier trained on character embeddings (transcripts)

4 ut.dsp 0.4530 0.4536 n-gram language models over transcript characters & words
4 NLI-ISU 0.4259 0.4282 Logistic Regression model w/ word n-grams (1-3) on transcripts

5 ltl 0.3714 0.3718 No paper submitted.
Random Baseline 0.0910 0.0910 Randomly select an L1

Table 2: Official results in the speech-only track. The official metric is the macro-averaged F1-score.
Accuracy (Acc.) is also reported. Rankings are determined by statistical significance testing (see §3.1).

UnibucKernel (Ionescu and Popescu, 2017) ex-
tend their essay-only system based on character-
level string kernels to include the transcription
data, as well as an additional kernel for the i-vector
features. The various models are combined using
multiple kernel learning.

ETRI-SLP (Oh et al., 2017) submitted a sys-
tem for the Speech task that was similar to their
submission for the Essay task, although the SVM
classifiers and one of the DNN classifiers were
not used in the ensemble classifier. They exper-
imented with both late fusion and early fusion
for combining the text-based features with the i-
vectors and obtained the best results with an early-
fusion ensemble classifier.

CEMI (Ircing et al., 2017) attained their best re-
sult with an ensemble consisting of a SGD classi-
fier trained on transcript word features and a feed-
forward neural network trained on the i-vector fea-
tures. The final prediction is selected via softmax
combination.

NRC (Goutte and Léger, 2017) use a single
classifier trained on transcript character 6-grams
and the i-vector features to achieve their best
speech-only results.

tubasfs (Rama and Çöltekin, 2017) used an
LDA classifier using only the i-vector features, a
simple approach that yielded good results.

GadjahMada (Sari et al., 2017) did not use the i-
vector features for the speech track, applying their
character embedding model from the essay track
to the transcripts.

ut.dsp (Mohammadi et al., 2017) apply their n-
gram language model from the essay-only track to
the transcripts.

NLI-ISU (Vajjala and Banerjee, 2017) did not
use the i-vector features for the speech track, in-
stead applying their n-gram based model from the
essay track. They report that the essay features do
not work very well for transcripts, hypothesizing
that this may be due to the shorter texts.

4.3 Fusion Track
The best fusion submission for each team, along
with rankings and other details, are listed in Ta-
ble 4.3. Each team’s best system is briefly de-
scribed below, ordered by rankings.

UnibucKernel (Ionescu and Popescu, 2017) ex-
tend their speech system to also include essays, in
addition to the transcripts and i-vectors. The mod-
els are combined via multiple kernel learning.

CEMI (Ircing et al., 2017) obtain their best re-
sults using a neural network based meta-classifier.
They use several isolated feed-forward neural net-
work models, each trained on one feature type.
Features include word, character, and POS n-
grams (from transcripts/essays) plus i-vectors.
The outputs from the networks are fused using
softmax combination to predict the final label.
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Rank Team F1 Acc. Approach
1 UnibucKernel 0.9319 0.9318 Character-level string kernels and i-vector features
1 CEMI 0.9257 0.9255 NN meta-classifier over lexical/syntactic/i-vector features
1 ETRI-SLP 0.9220 0.9218 DNN ensemble with early fusion using LSA-LDA features
1 NRC 0.9193 0.9191 Voting ensemble w/ half sampling to choose the SVM models

2 tubasfs 0.9175 0.9173 Ensemble w/ word/char n-grams (essay/transcript) & i-vectors

3 GadjahMada 0.8414 0.8409 FFNN trained on essay character embeddings and i-vectors
3 L2F 0.8377 0.8391 BPE n-grams, NN fusion, i-vector post-processing
3 ZCD 0.8358 0.8355 Ensemble of word/char. n-gram and i-vector SVM classifiers

Baseline: essay/transcript/i-vector 0.7901 0.7909 SVM trained on word unigrams (essay/transcript) + i-vectors

Baseline: Essay + Transcript 0.7786 0.7791 Linear SVM trained on word unigrams (essays + transcripts)

4 ut.dsp 0.7748 0.7764 n-gram language models over chars/words (essay+transcript)

5 ltl 0.7346 0.7345 No paper submitted.
Random Baseline 0.0910 0.0910 Randomly select an L1

Table 3: Official results in the fusion track. The official metric is the macro-averaged F1-score. Accuracy
(Acc.) is also reported. Team rankings are determined by statistical significance testing (see §3.1).

ETRI-SLP (Oh et al., 2017) submitted a system
for the Fusion task that was similar to their sub-
missions for the Essay and Speech tasks, although
the SVM and DNN classifiers were not used in the
ensemble classifier; their ensemble classifier for
the fusion task only combined the LSA-LDA fea-
tures and the i-vectors. As with the Speech task,
they experimented with both late fusion and early
fusion for combining the text-based features with
the i-vectors and obtained the best results with an
early-fusion ensemble classifier.

NRC (Goutte and Léger, 2017) explored various
ways of building ensemble models to make the
final prediction. Relatively simple features were
used (character, word, and POS n-grams). For the
fusion track, their best submission used half sam-
pling which uses one half of the data to estimate
the best number of models to include in the fi-
nal voting ensemble, and the other half to estimate
which models to include.

tubasfs (Rama and Çöltekin, 2017) obtain their
best result with an ensemble model based on mean
probability combination. The ensemble includes
individual SVM models trained on word and char-
acter n-grams from essays and transcripts, and an
LDA classifier trained on the i-vector features.

GadjahMada (Sari et al., 2017) extended their
essay-based character embedding model to in-
clude i-vectors for the fusion track. They did not
use the speech transcript data.

L2F (Kepler et al., 2017) designed a system that
combined three types of text-based classifiers (an
RNN with a bidirectional GRU layer, a Naive
Bayes classifier with byte n-grams, and a Naive
Bayes classifier with n-grams based on representa-
tions of the words using Byte Pair Encoding) with
versions of the i-vector features that were post-
processed using centering and whitening in an at-
tempt to reduce channel variability. These classi-
fiers were combined together in a Neural Network
fusion approach and the authors demonstrated that
the i-vector features were the main driver of per-
formance.

ZCD (Zampieri et al., 2017a) used an approach
based on ensembles of multiple SVM classifiers.
Separate SVM classifiers were trained using char-
acter n-grams (with n ranging from 1 to 10) and
word n-grams (with n ranging from 1 to 2). In-
dividual classifiers with cross-validation perfor-
mance lower than 0.8 were retained in the ensem-
ble; the classifiers that were retained were based
on character n-grams with n in 6, 7, 8. These n-
gram-based classifiers were then combined into an
ensemble with a classifier based on the i-vector
features and the majority vote from the ensemble
was taken as the final prediction.

ut.dsp (Mohammadi et al., 2017) apply their n-
gram language model from the essay-only track to
the combination of essays and transcripts.
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5 Discussion and Analysis

In this section we synthesize the overarching find-
ings from this edition of the NLI shared task.

5.1 Primary Trends

Multiple Classifier Systems are very effective.
Almost all of the top ranked teams employed some
type of multiple classifier system, including meta-
classifiers (classifier stacking), ensemble combi-
nation methods (voting and probability based fu-
sion), and multiple kernel learning. Their use has
become much more prevalent compared to the pre-
vious shared task.

Lexical n-grams are the best single feature type.
Surface form features such as word and character
n-grams continue to be the powerhouse feature for
the text classification tasks. Evidence from vari-
ous participants suggests that high-order character
n-grams (as high as n = 10) are extremely useful
for this task. This is likely because when extracted
across word boundaries, these features capture not
only sub-word (e.g. morphological) information,
but also dependencies between words. However,
it should also be noted that the top systems in all
tracks made use of syntactic features which can
give them a slight performance boost. This is not
surprising as it has been shown that lexical and
syntactic features each capture diverse types of in-
formation that are complementary (Malmasi and
Cahill, 2015).

Feature weighting schemes are important.
Similar to past results, many of the top teams ap-
ply a form of feature weighting (such as TF-IDF
or log-entropy) to their data.

Acoustic features are highly informative for
speech-based NLI. Using only text-based fea-
tures over the transcripts did not work well, and
teams that did not utilize the i-vector features per-
formed much worse in the speech-only track. The
top-ranked teams combined the transcripts and i-
vectors.

Speech transcript features did not perform
well. Teams that used only the transcript features
did not fare well in the speech track. This could be
due to the different types of linguistic phenomena
that are present in spontaneous speech, which may
be less informative than those found in the essays.

Various teams also hypothesize that this may po-
tentially be due to their relatively shorter lengths
compared to the essays (see §3 for stats).

Fusion of writing and speech features provides
the best results. The substantial performance in-
crease between the essay/speech tracks and the fu-
sion track indicates that the acoustic features are
complementary and lead to much more reliable re-
sults.

Traditional classifier models continue to domi-
nate text classification tasks. It has been noted
that traditional supervised learning models out-
perform newer deep learning approaches on high-
dimensional text classification tasks (Malmasi
et al., 2016, §6.2). The results from this NLI task
do not provide any evidence to suggest otherwise;
almost all of the top teams in the essay-only track
used an SVM or similar linear model. Uvic-NLP
(Chan et al., 2017) compared SVMs and neural
network models, finding that SVM models achieve
better results with shorter training times.

Average performance is much higher than
2013. Although much of the training data remains
the same, the submissions were much more com-
petitive than the first NLI shared tasks. This
is likely due to NLI being a much more estab-
lished task, as well as the aforementioned preva-
lence of more sophisticated models such as meta-
classifiers.

A number of open questions remain. For ex-
ample, it is not clear if any one approach is dom-
inant across all tracks as most of the top-ranked
teams in the essay track did not participate in the
other tracks. It is hard to say how well their sys-
tems would have done in the other tracks, but the
trends from the teams who did participate in all
tracks suggest that their approaches could have
done well.

It is also clear that ensemble-based systems at-
tain some of the best results, but while we note
that meta-classifiers were particularly popular, it
is difficult to draw conclusions about the best ap-
proach as most teams used different configurations
(e.g. different base classifiers and meta-classifier
models). A comprehensive and detailed study is
needed to provide an empirical comparison of the
different methods.
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2013 2017
Essay Speech Fusion

# Systems 29 17 9 10

Shared Task Best 0.8359 0.8818 0.8755 0.9319

Oracle 0.9791 0.9628 0.9572 0.9809
Accuracy@3 0.9555 0.9592 0.9508 0.9764
Accuracy@2 0.9218 0.9501 0.9290 0.9700

Plurality Vote 0.8425 0.8793 0.8508 0.9319

Table 4: Oracle results on the NLI 2013 and 2017 shared task systems. The ensemble includes each
team’s best system in each track. Results are reported as the macro-averaged F1-score.

5.2 Ensemble Analysis
One interesting research question is to measure the
upper-bound on accuracy for this year’s task. This
can be measured by treating each team’s best sub-
mission as an independent system, and combining
the results using ensemble methods such as a plu-
rality vote or an oracle. This type of analysis has
previously been applied to the NLI 2013 task and
shown to be helpful in other work (Malmasi et al.,
2015). Following the approach of Malmasi et al.
(2015), we apply the following combination meth-
ods to the 2017 data.

Plurality Voting: This is the standard combina-
tion strategy that selects the label with the highest
number of votes, regardless of the overall percent-
age of votes it received (Polikar, 2006). This dif-
fers from a majority vote combiner where a label
must obtain over 50% of the votes.

Oracle: An oracle is a type of fusion method that
assigns the correct class label for an instance if
any of the classifiers in the ensemble produces the
correct label for that data point. This method has
previously been used to analyze the limits of ma-
jority vote classifier combination (Kuncheva et al.,
2001). It can help quantify the potential upper
limit of an ensemble’s performance on the given
data and how this performance varies with differ-
ent ensemble configurations and combinations.

Accuracy@N : To account for the possibility that
a classifier may randomly predict the correct la-
bel (with a probability determined by the random
baseline) and thus exaggerate the oracle score, an
Accuracy@N combiner has been proposed (Mal-
masi et al., 2015). This method is inspired by the
“Precision at k” metric from Information Retrieval
(Manning et al., 2008) which measures precision
at fixed low levels of results (e.g. the top 10 re-

sults). Here, it is an extension of the Plurality vote
combiner where instead of selecting the label with
the highest votes, the labels are ranked by their
vote counts and a sample is correctly classified if
the true label is in the top N ranked candidates.4

Another way to view it is as a more restricted ver-
sion of the Oracle combiner that is limited to the
top N ranked candidates in order to minimize the
influence of a single classifier having chosen the
correct label by chance. In this study we experi-
ment with N = 2 and 3. We also note that setting
N = 1 is the same as the Plurality voting method.

We applied the above combiners to all three
tracks in the NLI 2017 task. The results are pre-
sented in Table 4. The results for each track are
compared against the best system in the shared
task. The equivalent results from the NLI 2013
shared task are also included for comparison.

We note that the 2017 oracle performance is
similar to that of 2013, despite having fewer sys-
tems. The Accuracy@2 results are also substan-
tially higher. Another difference in 2017 is that the
voting ensemble did not outperform the single best
system in any track, which was the case in 2013.
Taken together, these trends seem to suggest that
the 2017 entries were more accurate, rather than
the test set being easier to classify (in which case
we would have expected higher oracle results).

Results from the Accuracy@2 combiner show
that a great majority of the texts are close to be-
ing correctly classified: this value is significantly
higher than the plurality combiner and not much
lower than the oracle itself. This shows that the
correct label receives a significant portion of the
votes, and when not the winning label, it is often
the runner-up.

4In case of ties we choose randomly from the labels with
the highest number of votes.

71



0.880
0.890
0.900
0.910
0.920
0.930
0.940
0.950
0.960
0.970

Oracle

Voting Ensemble

0 2 4 6 8 10 12 14 16 18

Number of Systems in Ensemble

0.880

0.885

0.890

Different Ensemble Sizes (Essay Track)

Figure 2: Results (macro-F1) for ensembles of dif-
ferent sizes using each team’s best system in the
Essay track. Systems are added according to their
absolute rank. Oracle combination (top) and plu-
rality voting (bottom) are shown.
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Figure 3: Results (macro-F1) for creating ensem-
bles of different sizes using each team’s best sub-
mission in the Fusion track. Systems are added
according to their absolute rank. Oracle combina-
tion (top) and plurality voting (bottom) are shown.
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Figure 4: Results (macro-F1) for ensembles of
different sizes using each team’s best system in
the NLI Shared Task 2013 (test set). Systems are
added in order of their rank. Oracle combination
(top) and plurality voting (bottom) are shown.

It is also evident that the results for the fusion
track are much higher, again highlighting the util-
ity of combining multiple modalities for NLI.

In addition to using each team’s best system, We
also experimented with creating ensembles of dif-
ferent sizes. For each track we created N ensem-
bles E1 . . . EN , with N being the number of sys-
tems in that track. Each ensemble En contains the
top n systems in the given track, so that the first
ensemble contains only the top system, the second
contains the top two systems, and so on, with the
final ensemble containing every team’s system.

This analysis enables us to assess the ensemble
performance as more predictions are added. The
results for the Oracle and Plurality Vote ensem-
bles in the essay and fusion tracks are shown in
Figure 2 and Figure 3. For comparison we also in-
clude the ensemble combinations generated from
the 2013 test set, as shown in Figure 4.

For both tracks we observe that oracle accuracy
increases as more systems are added, which is to
be expected. For voting combination, performance
increases as the top systems are added, but then
begins to drop off as errors are introduced from
the less accurate systems. This suggests that it
might be possible to develop a system that per-
forms slightly better than the top-ranked system.

On balance, the analysis presented in this sec-
tion suggests that it will be challenging to de-
velop NLI systems that attain statistically signif-
icant gains on this data.

6 Conclusion and Future Work

We presented the results of the NLI Shared Task
2017. This edition of the task introduced the use
of transcriptions and i-vector features for speech-
based NLI, as well the as the fusion task which
jointly uses the spoken and written responses.

The task attracted strong participation with 19
entrants, many of whom developed systems that
built on recent research in the field. The fu-
sion track demonstrated that the combination of
the written and spoken response can provide a
substantial boost in classification accuracy. Mul-
tiple classifier systems (such as ensembles and
meta-classifiers) were the most effective across all
tracks. Mainly using lexical and syntactic features,
models were mostly based on traditional classifi-
cation methods (e.g. SVMs) which were not out-
performed by deep learning approaches. Taken to-
gether, their results have generated a number of
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new insights for this task, and serve as a building
block for future work. The results obtained here
will also provide an important benchmark for as-
sessing future results.

There are a number of avenues for future NLI
research. Although we were not able to include
the raw audio data in this task, its inclusion in the
speech and fusion tasks could be an interesting ad-
dition. The expansion of the L1 classes to include
a larger number of linguistically diverse languages
can also be insightful. Most NLI research to date
has been limited to approximately a dozen lan-
guages, so it is not clear how these systems will
fare as the number of classes increases.

The relatively low performance of transcription-
based features also merits further investigation. A
first step would be to assess whether the primary
issue is related to the shorter lengths of the texts.
This hypothesis can be tested by obtaining tran-
scripts of longer spoken responses, or even arti-
ficially creating longer texts by concatenating the
existing data.

Finally, the essay-based NLI results obtained on
English L2 data have been replicated on a range
of other languages (Malmasi and Dras, 2015). It
would be interesting to see to what degree the
speech-based NLI methodologies would work on
other languages. The paucity of spoken responses
from learners of languages other than English
makes this a challenging research question.
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Scherrer, and Noëmi Aepli. 2017b. Findings of the
VarDial Evaluation Campaign 2017. In Proceedings
of the Fourth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial). Valencia,
Spain, pages 1–15.

Marc Zissman. 1996. Comparison of four approaches
to automatic language identification of telephone
speech. IEEE Transactions on Speech and Audio
Processing 4(1):31–44.

75


