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Abstract

Although coherence is an important aspect
of any text generation system, it has re-
ceived little attention in the context of ma-
chine translation (MT) so far. We hypo-
thesize that the quality of document-level
translation can be improved if MT mod-
els take into account the semantic rela-
tions among sentences during translation.
We integrate the graph-based coherence
model proposed by Mesgar and Strube
(2016) with Docent1 (Hardmeier et al.,
2012; Hardmeier, 2014) a document-level
machine translation system. The applica-
tion of this graph-based coherence mod-
eling approach is novel in the context of
machine translation. We evaluate the co-
herence model and its effects on the qual-
ity of the machine translation. The result
of our experiments shows that our coher-
ence model slightly improves the quality
of translation in terms of the average Me-
teor score.

1 Introduction

Coherence represents semantic connectivity of
texts with regard to grammatical and lexical rela-
tions between sentences. It is an essential part of
natural texts and important in establishing struc-
ture and meaning of documents as a whole.

It is crucial for any text generation system to
generate coherent texts. For instance in real ma-
chine translation systems, we desire to translate
a document, which consists of several sentences,
from a source language to a target language. Cur-
rent machine translation systems (as an instance
of text generation systems) mostly focus on the

1https://github.com/chardmeier/docent

sentence-level translation. Indeed, the state-of-
the-art machine translation models perform well
on sentence-level translation (Bahdanau et al.,
2015; Sennrich et al., 2017). However, it is insuffi-
cient to just sequentially and independently trans-
late sentences of the source document and con-
catenate them as the translated version. The trans-
lated sentences should be coherently connected to
each other in the target document as well.

From a linguistic point of view also the
discourse-wide context must be taken into account
to have a high-quality translation (Hatim and Ma-
son, 1990; Hardmeier et al., 2012). The current
paradigm of machine translation needs to be im-
proved as it does not consider any discourse coher-
ence phenomena that establish a text’s connected-
ness (Sim Smith et al., 2015).

One of the active research topics in modeling
coherence focuses on entity connections over sen-
tences based on Centering Theory (Grosz et al.,
1995). Previous research on coherence model-
ing shows its application mainly in readability as-
sessment (Barzilay and Lapata, 2008; Pitler and
Nenkova, 2008). Recently, Parveen et al. (2016)
showed that the graph-based coherence model can
be utilized to generate more coherent summaries
of scientific articles.

The main goal of this paper is to integrate co-
herence features with a statistical machine trans-
lation system to improve the quality of the output
translation. To achieve this goal, we combine the
graph-based coherence representation by Guin-
audeau and Strube (2013) and its extensions (Mes-
gar and Strube, 2015, 2016) into the document-
level machine translation decoder Docent (Hard-
meier et al., 2012, 2013).

Docent defines an initial translation of the
source document and modifies the translation of
sentences aiming to maximize an objective func-
tion. This function measures the quality of the
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S1: But the noise didn’t disappear.

S2: The mysterious noise that Penzias and Wilson were
listening to turned out to be the oldest and most significant
sound that anyone had ever heard.

S3: It was cosmic radiation left over from the very birth of
the universe.

S4: This was the first experimental evidence that the Big
Bang existed and the universe was born at a precise moment
some 14.7 billion years ago.

S5: So our story ends at the beginning – the beginning of all
things, the Big Bang.

Table 1: Excerpt of a TED talk (ID: 1177) from
the DiscoMT 2015 training data.

translated document after each modification. We
propose to update the objective function of Do-
cent such that it takes into account the coherence
of the translated document too. We quantify the
coherence level of the translated document using
graph-based coherence features. We show that in-
tegrating coherence features improves the quality
of the translation in terms of the Meteor score.

We start with the relevant background literature
(Section 2). We then describe the graph-based co-
herence model and how we integrate its coherence
features with Docent (Section 3). Section 4 out-
lines the datasets and the experimental setup. We
discuss results in Section 5. Conclusions and pos-
sible future work are in Section 6.

2 Related Work

2.1 Entity Graph

Guinaudeau and Strube (2013) present a graph-
based version of the entity grid (Barzilay and Lap-
ata, 2008). It models the interaction between enti-
ties and sentences as a bipartite graph. In this rep-
resentation, one set of nodes corresponds to sen-
tences, whereas the other set of nodes corresponds
to entities in a document. Table 1 shows a sample
text from our training data and Figure 1 the bipar-
tite entity-graph representation of it.

Coherence is measured over the one-mode pro-
jection on sentence nodes. The one-mode projec-
tion is the graph in which the sentence nodes are
connected to each other if and only if they have at
least one entity in common (see Figure 2). The
coherence of a text T can then be measured by
computing the average outdegree of the projection
graph. Outdegree of a node is the number of edges
that leave the node. The average outdegree is the
sum of outdegree of all nodes in the one-mode pro-

jection graph divided by the number of sentences.

Mesgar and Strube (2015) evaluate this model
for readability assessment. They show that the av-
erage outdegree is not the best choice for quanti-
fying the coherence. They propose to encode co-
herence as the connectivity structure of sentence
nodes in a projection graph. So they represent the
connections among sentences of each document
in the corpus with its projection graph; then they
mine all possible subgraphs of these graphs. These
subgraphs resemble what the linguistic literature
terms thematic progression (Daneš, 1974) as sub-
graphs represent connections between sentences
following a certain pattern. Mesgar and Strube
(2015) call these subgraphs coherence patterns.
The connectivity structure of a projection graph
can be modeled by the frequency of subgraphs in
each graph. These frequencies are called coher-
ence features. Mesgar and Strube (2015) show
that these coherence features, obtained from fre-
quency of subgraphs of projection graphs of the
entity graphs, can assess readability better. Fig-
ure 3 illustrates four possible subgraphs with three
nodes. The pool of possible subgraphs can be
expanded to encompass any arbitrary number of
nodes, so-called k-node subgraphs.

Mesgar and Strube (2016) extend the entity
graph to the lexical graph: two sentences may
be semantically connected because at least two
words of them are semantically associated to each
other. They compute semantic relatedness be-
tween all content word pairs using GloVe word
embeddings (Pennington et al., 2014). If there is
a word pair whose word vectors have a cosine re-
latedness greater than a threshold, two sentences
are considered to be connected. They quantify the
coherence of texts via frequency of subgraphs of
the lexical graphs. It outperforms the entity graph
coherence model on readability assessment.

Parveen et al. (2016) show that coherence pat-
terns can be mined from a corpus and those can
get weighted based on their frequencies in the cor-
pus. They use the extracted coherence patterns and
their weights to generate a coherent summary from
scientific documents. Using a human evaluation,
they show that coherence patterns are more pow-
erful than average outdegree to encode coherence
for automatic summarization.

Here we check if these coherence features
(i.e., average outdegree and frequency of coher-
ence patterns) of graph-based models can assist
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Figure 1: The entity graph representation of the text in Table 1. Dark entities are shared by the sentences.

s1 s2 s3 s4 s5

Figure 2: Unweighted projection graph of the en-
tity graph in Figure 1. The nodes are connected
based on whether sentences share an entity or not,
whereas the edge direction follows sentence order.
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Figure 3: All possible directed 3-node subgraphs.
The edge directions indicate the order of sentences
in the text.

document-level machine translation as another,
and more difficult, text generation system. We can
also evaluate which feature is more beneficial for
machine translation.

2.2 Coherence in Machine Translation

Coherence modeling in machine translation is an
(almost) desideratum . To the best of our knowl-
edge, there are only a handful of publications in
this direction. The one relevant to our approach is
the work by Lin et al. (2015) as it constitutes an
application of a coherence model in the context of
machine translation, as opposed to more theoret-
ical papers on the state of coherence in machine
translation (Sim Smith et al., 2016).

Lin et al. (2015) develop a sentence-level
Recurrent Neural Network Language Model
(RNNLM) that takes a sentence as input and tries
to predict the next one based on the sentence his-
tory vector. By modeling sequences of sentences,
the vector is able to model local coherence within
RNNLM.2 Given the 10-best results of all sen-

2They consider the “log probability of a given document
as its coherence score” (Lin et al., 2015).

tences from the decoder, their system then selects
the best translation for the first sentence. Given
that translation, they score all translation candi-
dates of the second sentence based on coherence
and select the best one. They repeat this for all
sentences in the document.

This approach, however, can be considered lin-
guistically weak as it only measures coherence af-
ter the translation and does not consider it as a part
of the text generation process. As coherence, how-
ever, is a fundamental need for any text generation
system (Barzilay and Lapata, 2008), this motivates
us to go beyond a simple re-ranking approach and
integrate the coherence measure directly into the
decoding process of machine translation.

3 Method

3.1 Docent

We use Docent (Hardmeier et al., 2012, 2013) as
the baseline. It explicitly has no notion of coher-
ence. Docent is a document-level decoder that
treats a translation not as a bag of sentences but
instead has a translation hypothesis for the whole
document at each step. The initial hypothesis can
either be generated randomly from the translation
table or it can be initialized with the result of any
standard sentence-level decoder such as Moses
(Koehn et al., 2007).

Docent first independently translates all sen-
tences of the input document. Then it starts to
modify the translation of sentences with respect to
the other translated sentences. Three basic opera-
tions modify the translation of sentences: change-
phrase-translation, swap-phrases, and resegment.
Change-phrase-translations replaces the transla-
tion of a single phrase with a random translation
for the same source phrase. Swap-phrases changes
the word order without affecting the phrase trans-
lations by exchanging two phrases in a sentence.
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The third operation, resegment, is able to generate
from a number of phrases a new set of phrases cov-
ering the same span. Docent checks the quality of
the modified translation by an objective function
that takes the modified translation of the document
(the so-called state of the translated document) as
its input and maps it to a real number. If the value
of the objective function increases then Docent ac-
cepts the applied operation.

The main advantage of Docent is that the objec-
tive function can be defined over the whole docu-
ment (Hardmeier et al., 2012). This allows us to
integrate our new document-level coherence fea-
tures with Docent. More formally, the overall doc-
ument state S is modeled as a sequence of sentence
states:

S = S1S2...SN , (1)

where N is the number of sentences and Si is the
translation (hypothesis) of the ith source sentence.
A scoring function f(S) maps a state to a real num-
ber. The scoring function can be further decom-
posed into a linear combination of K feature func-
tions hk(S), each with a constant weight λk, such
that

f(S) =
K∑

k=1

λkhk(S). (2)

Docent uses simulated annealing, a stochastic
variant of the hill climbing algorithm (Khachatu-
ryan et al., 1981), for either accepting or rejecting
operations for maximizing its objective function
(Hardmeier, 2012) .

Docent already implements some sentence-
local feature models that are similar to those found
in traditional sentence-level decoders. These in-
clude phrase translation scores provided by the
phrase table (Koehn et al., 2003), n-gram lan-
guage model scores implemented with KenLM
(Heafield, 2011), a word penalty score, and an un-
lexicalised distortion cost model with geometric
decay (Koehn et al., 2003).

Our idea is to add a new document-level co-
herence function hcoh(S), namely a graph-based
coherence model to the objective function repre-
sented in Equation. 2. In the next subsection, we
describe this model in more detail.

3.2 Graph-based Coherence Model
Our coherence model is based on the lexical graph
representation (Mesgar and Strube, 2016). For any
given document, we first filter out stop words us-
ing the provided stop word list by Salton (1971).

Then, we calculate the cosine relatedness of all
remaining word pairs of all sentence pairs using
the 840 billion token pre-trained word embeddings
of GloVe (Pennington et al., 2014). For every
out-of-vocabulary word, we assign a random 300-
dimensional vector that is memorized for its next
occurrence. Based on this, we represent the lexical
relations among sentences via graphs. If at least
two words in the sentences are related, we choose
the relation between those two words whose em-
beddings have the maximum cosine value. In or-
der to make the graph not too dense, we filter out
those edges whose strengths are below a certain
threshold.

However, in contrast to Mesgar and Strube
(2016), we use a different threshold for graph con-
struction. They use a threshold of 0.9, but we find
this too strict on allowing the graph structure to
change in the direction of more coherent texts. We
choose a lower threshold, 0.85, to let the model
consider more connections and more lexical vari-
ations (i.e., synonyms) in the translation.

We encode coherence by frequency of coher-
ence patterns in these graphs.

3.3 Integrating the Coherence Model With
Docent

For extracting coherence patterns we use the tar-
get documents3 of the training set of the Dis-
coMT dataset. We extract all k-node subgraphs
for k ∈ {3, 4, 5}. We limit the size of subgraphs
to 3-, 4-, and 5-node as Mesgar and Strube (2016)
report declining results for subgraphs with k > 5.

We also calculate a respective weight for each
pattern from lexical graph representations of Dis-
coMT training target documents.

We base our coherence patterns on the charac-
teristics of the target language as there is a theory
within Translation Studies that “textual relations
obtaining in the original are often modified [...] in
favour of (more) habitual options offered by a tar-
get culture” (Toury, 1995). Toury (1995) calls this
the law of growing standardization which seeks to
describe and explain the acceptability of the trans-
lation in the receiving culture (Venuti, 2004). This
law seems suitable in the context of subgraph min-
ing as it is also already reflected in the language
model of any MT system (Lembersky et al., 2012).

For computing the weights of subgraphs, we di-
vide the count of each k-node subgraph by the to-

3We experiment on translation from French to English.
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tal counts of subgraphs for that k. For each k, this
gives the following vector:

ϕ(sgk,G) = (w(sgk
1,G), ...,w(sgk

m,G)), (3)

where formally

w(sgk
i ,G) =

count(sgk
i ,G)∑

sgk
j∈(sgk

1,...,sgk
m) count(sgk

j ,G)
. (4)

These weights are then used as weights of
coherence features in the coherence function,
hcoh(S), that quantifies the connectivity structure
of sentences of an intermediate state of the trans-
lated document in Docent during evaluation on the
test set of DiscoMT.

So, given the coherence graph representation
of an intermediate state of the translated docu-
ment (during the test phase), GS , and the set of
all extracted subgraphs of the training documents,
FSG = {sgk

1, sgk
2, ..., sgk

m} where k ∈ {3, 4, 5},
and their weights, hcoh(S) is defined as follow:

hcoh(S) =
∑

sgk
i∈FSG

count(sgk
i , GS) · w(sgk

i ). (5)

We use this score – which multiplies the frequency
of each subgraph in each state (coherence feature)
of the translated document with its weight accord-
ing to its frequency in the training documents and
sums this up for all subgraphs – as our feature
model score of our coherence model.

4 Experiments

4.1 Datasets
We use the WMT 2015 (Bojar et al., 2015) dataset
for training and development of the sentence-level
translation and language models4, and the Dis-
coMT 2015 Shared Task (Hardmeier et al., 2015)
dataset for mining subgraphs (coherence patterns)
and as our test data (Table 2). We run experi-
ments on the language pair French-English. Co-
herence patterns are extracted from the 1551 Dis-
coMT training documents using GloVe word em-
beddings. We extract all k-node subgraphs for
k ∈ {3, 4, 5} using GASTON5 (Nijssen and Kok,
2004, 2005).

4We use Moses to translate sentences independently and
initialize the translation state in Docent.

5http://liacs.leidenuniv.nl/
˜nijssensgr/gaston/iccs.html.

We use the twelve test documents of DiscoMT
as the test data because these are much longer, on
the document level, than the WMT test data. The
average number of sentences of the WMT test data
is 20, whereas for DiscoMT it is 174 sentences.
Thus it is a more difficult test set for our experi-
ments.

train dev test
# of docs - - 12
# of sent. 200,239 3,003 2,093
avg. # of sent.
per doc

- - 174

# of tokens 4,458,256 63,778 48,122

Table 2: Statistics on the datasets used. train is
the news commentary v10 corpus, dev is the 2012
newstest development data, and test is the Dis-
coMT 2015 test data. The number (#) of tokens
corresponds to the English (target) side.

4.2 Experimental Setup

We train our systems using the Moses decoder
(Koehn et al., 2007). After standard prepro-
cessing of the data, we train a 3-gram language
model using KenLM (Heafield, 2011). We use the
MGIZA++ (Gao and Vogel, 2008) word aligner
and employ standard grow-diag-fast-and sym-
metrization. Tuning is done on the development
data via minimum error rate training (Och, 2003).

After training the language model and creating
the phrase table with Moses, we use these to ini-
tialize our translation systems. We use the lcurve-
docent binary of Docent, which outputs Docent’s
learning curve, i.e., files for the intermediate de-
coding states. This additionally allows us to in-
vestigate the learning curves with regard to how
our coherence feature behaves over time.

We prune the translation table by only retaining
all phrase translations with a probability greater
than 0.0001 during training. In our configura-
tion file for Docent, we set to use the simulated
annealing algorithm with a maximum number of
16,384 steps6 and the following features: geo-
metric distortion model, word penalty cost, OOV-
penalty cost, phrase table, and the 3-gram lan-
guage model.

6We choose this threshold to make a balance between pro-
cessing time and translation performance.
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4.3 Evaluation Metrics
We follow the standard machine translation pro-
cedure of evaluation, measuring BLEU (Papineni
et al., 2002) for every system. BLEU is an n-
gram based co-occurrence metric that operates
with modified n-gram precision scores. The doc-
ument n-gram precision scores are averaged using
the geometric mean of these scores with n-grams
up to length N and positive weights summing to
one. The result is multiplied by an exponential
brevity penalty factor that penalizes a translation
if it does not match the reference translations in
length, word choice, and word order.

We also calculate Meteor (Lavie et al., 2004;
Denkowski and Lavie, 2014) as it is a widely used
evaluation metric as well. In contrast to BLEU,
Meteor is a word-based metric that takes recall
into account as well. Meteor creates a word align-
ment between a pair of strings that is incremen-
tally produced using a sequence of various word-
mapping modules, including the exact module, the
Porter stem module, and the WordNet synonymy
module (Lavie and Agarwal, 2007).

Because Meteor has been shown to have a
higher correlation with human judgements than
BLEU (Lavie et al., 2004), it is a useful alterna-
tive evaluation metric for our purposes. As it also
considers stemmed words and information from
WordNet to determine synonymous words be-
tween a candidate and a reference translation, the
metric is interesting with regard to surface varia-
tion with the same semantic content and how this
affects the evaluation of our coherence model (as
its graph construction is semantically grounded).

5 Results

5.1 Mined Coherence Patterns Analysis
We represent each English document of the train-
ing set of the DiscoMT dataset by a graph (as de-
scribed in Section 3.2). As a result, instead of a
set of documents we have a set of graphs. Then
we extract all occurring subgraphs in these graphs
as coherence patterns. We mine subgraphs with
3, 4, 5 nodes.

All 3-node subgraphs exist in the graph repre-
sentation of the training documents. It is because
these subgraph are small and it is very likely that
they occur in the graph representation of the large
DiscoMT documents.

The mined 4-node subgraphs are shown in Fig-
ure 4. Although the frequency of these patterns
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Figure 4: The mined 4-node subgraphs.
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Figure 5: The mined 5-node subgraphs.

encode coherence in our model, the existence of
these patterns can be linguistically interpreted too.
For example, sg10 models the smooth shift in
the topic of a sequence of sentences (Mesgar and
Strube, 2015). The rest of the patterns have a com-
mon property: a sentence introduces some topic
and the following sentences are about this topic.
For instance, in sg6, topics in the first sentence are
developed by the rest of the sentences.

The mined 5-node subgraphs are shown in Fig-
ure 5. The expansion of a topic is much clearer
here in sg11. The subgraph sg13 is very similar to
sg10 following the notion of the topic shift. This
is somehow expected because the DiscoMT doc-
uments are obtained from TED talks. These talks
are mostly given by professional speakers. They
have to move smoothly from one topic to the next
topic in a short sequence of sentences. This con-
firms the existence of the linear chain pattern in
the 4-node and 5-node patterns.

We analyze the change of the frequencies of the
subgraphs during the MT decoding phase. For ex-
ample, on document 9 the subgraph sg1 of the 3-
node subgraphs occurs one more time in the CM
model. It is worthwhile to note that the increase of
the frequency of sg1 is compatible with its positive
correlation with readability scores of documents
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Document ID BLEU (BL) BLEU (CM) Meteor (BL) Meteor (CM)
(#1) 1756 21.87 21.93 61.47 61.52
(#2) 1819 16.49 16.49 62.25 62.25
(#3) 1825 24.86 24.86 66.34 66.32
(#4) 1894 17.08 17.08 57.20 57.20
(#5) 1935 20.11 20.11 62.83 62.83
(#6) 1938 20.43 20.41 63.53 63.48
(#7) 1950 23.27 23.26 63.48 63.46
(#8) 1953 20.78 20.66 61.65 61.64
(#9) 1979 15.25 15.26 55.68 55.69
(#10) 2043 18.27 18.27 56.42 56.47
(#11) 2053 30.65 30.65 69.13 69.13
(#12) 205 13.79 13.79 52.68 52.68
Average 20.24 20.23 61.01 61.06

Table 3: Results of the coherence model (CM) compared to the baseline (BL) on the DiscoMT test set
(highest values are marked in bold). The scores of the entity graph model using average outdegree as
coherence feature are identical to the baseline model. The differences are not statistically significant
(p = 0.05) using Student’s t-test (Student, 1908).

in the readability assessment experiment done by
Mesgar and Strube (2015). For the documents 1
and 10 the frequency of subgraphs are constant
during decoding. It might be because the con-
nectivity of sentences is already compatible with
the training documents and our coherence features
push the Docent model to reject operations that
might disturb the structure. The decrease in the
number of accepted operations for these two doc-
uments by the CM model (represented in Table 4)
supports this.

5.2 Machine Translation Metrics Analysis

We evaluate the model on the test set of the
DiscoMT dataset. As the baseline, we use the
coherence-blind Docent and compare it against a
system with the additional document-level coher-
ence features.

First we try the entity graph model with the
average outdegree as the coherence feature. The
BLEU and Meteor scores of this model are iden-
tical to the baseline. This means that the average
outdegree is not a good representative of coher-
ence. That was also shown by Mesgar and Strube
(2015) for the readability assessment task.

Next, we try the lexical graph representation of
documents and frequency of coherence patterns as
the coherence features.

The results of the baseline (BL) and our coher-
ence model (CM) in terms of BLEU and Meteor
scores are shown in Table 3.

Compared to the baseline, results for about
half of the documents do not change in terms of
BLEU. For two documents, the coherence model
improves the BLEU score, whereas for three doc-
uments it diminishes. Overall, the average BLEU
score of the coherence model is slightly lower than
that of the baseline.

The Meteor score of the coherence model is
better on three documents. The coherence model
achieves the best overall result in terms of the av-
eraged Meteor score. The coherence model does
not improve the Meteor score on four documents.

We interpret these observations as follows:
First, the coherence patterns can model the coher-
ence property of texts better than average outde-
gree. This is compatible with the reported results
by Mesgar and Strube (2015) and Parveen et al.
(2016) that, respectively, show that coherence pat-
terns are more informative for readability assess-
ment and multi-document summarization. How-
ever, our results also indicate that they are not that
powerful for a more difficult task like machine
translation (Sim Smith et al., 2016).

Second, the obtained improvement of our co-
herence model, which is augmented with some
document-level features, especially on the Meteor
score confirms this hypothesis that the quality of
the machine translation can be improved if the MT
model is informed by the document-level context.

The third interpretation is about the validity
of these traditional metrics that were constructed
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in the context of sentence-level decoding. This
means that these MT scores might not be that
much appropriate to measure the global translation
quality, especially with regard to discourse coher-
ence. As a future work, we are going to do a hu-
man evaluation on this.

Table 4 indicates the number of accepted
change-phrase-translation operations by Docent
in a comparison between the baseline and the co-
herence model. For both models, the number of
accepted operations is very close.

Document 1 is one of the documents where the
coherence model outperforms the baseline and it is
tempting to assume that the score difference stems
from the one operation not accepted by the coher-
ence model. Indeed, the only detectable differ-
ence in the two translations is in one sentence only
(see its output translations in Table 5). The coher-
ence features might prevent the translation model
to change the translation of thought for, which is
identical with the reference translation.

Similarly, for document 10 the CM model ac-
cepts one less operation than the baseline model
and it, again, helps the model to obtain a higher
Meteor score. Interestingly, the BLEU score on
these two documents remains the same, so the
score difference is likely a result of a more seman-
tic change in translation. For the document 9 the
CM model improves the MT scores by accepting
more operations than the baseline model. For doc-
uments 3, 6 and 8 the accepted operations by the
CM model reduce the MT scores.

Finally, supported operations in Docent seem

Document ID # of accepted operations
BL CM

(#1) 1756 22 21
(#2) 1819 18 18
(#3) 1825 22 21
(#4) 1894 25 25
(#5) 1935 21 21
(#6) 1938 30 33
(#7) 1950 59 59
(#8) 1953 29 32
(#9) 1979 25 26
(#10) 2043 9 8
(#11) 2053 12 12
(#12) 205 4 4

Table 4: Comparison of the number of accepted
change-phrase-translation operations.

Baseline
I demanderais qu’ what he thought to this qu’ it was do-
ing? Sue has watched the soil, has ponder a minute. It
has watched of new and said, ”I demanderais I forgive d’
have been his mother and n’ have ever known what was
happening in its head”.

Coherence Model
I demanderais qu’ what he thought to this qu’ it was do-
ing? Sue has watched the soil, has thought for a minute.
It has watched of new and said, ”I demanderais I forgive
d’ have been his mother and n’ have ever known what was
happening in its head”.

Reference
I’d want to ask him what the hell he thought he was do-
ing.” And Sue looked at the floor, and she thought for a
minute. And then she looked back up and said, ”I would
ask him to forgive me for being his mother and never
knowing what was going on inside his head.”

Table 5: Comparison of the baseline (BL), coher-
ence model (CM), and reference (REF) transla-
tions for document 1 (ID: 1756) for one differing
sentence between BL and CM (marked in bold).

insufficient to change the structure of graphs.
From the three basic operations Docent uses, the
two operations swap-phrases and resegment may
not change the graph structure. Change-phrase-
translation, however, has the potential to actually
change the graph structure by either choosing an
alternative translation of a word that is either not
connected to any other words anymore or that con-
versely connects to another word within the text.

6 Conclusions

In this paper, we employed the graph-based repre-
sentation of local coherence by Mesgar and Strube
(2016) for the machine translation task by inte-
grating the graph-based coherence features with
the document-level MT decoder Docent (Hard-
meier et al., 2012, 2013). The usage of these
coherence features has been shown for readabil-
ity assessment and multi-document summariza-
tion (Parveen et al., 2016; Mesgar and Strube,
2016). We are the first who utilize these coher-
ence features for document-level translation. Our
coherence model using subgraph frequencies as
coherence features improves the performance of
Docent as a document-level MT decoder. For fu-
ture work, we are going to check if the connectiv-
ity structure of the source document can help the
translation system to improve the translation qual-
ity of each sentence. This idea is inspired from
the application of topic-based coherence modeling
in machine translation before (Xiong and Zhang,
2013).
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