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Abstract

We present our experiments in the scope of
the news translation task in WMT 2017,
in three directions: German→English,
English→German and English→Latvian.
The core of our systems is the encoder-
decoder based neural machine translation
models , enhanced with various modeling
features, additional source side augmen-
tation and output rescoring. We also ex-
periment various methods in data selection
and adaptation.

1 Introduction

We participate in the WMT 17 shared task on news
translation with three directions: English-German,
German-English and English-Latvian. The core of
our submissions is the neural attentional encoder-
decoder model, which we enhanced with different
features such as context gates for more efficient
attention and the coverage vector for maintaining
attentional information during translation. Sev-
eral techniques to integrated additional informa-
tion into the source text have be investigated: Pre-
translation with statistical systems, mono-lingual
data and phrase-table entries. Finally, we com-
bined different models using n-best lists reranking.

2 Data

This section describes the preprocessing steps for
the parallel and monolingual corpora for the lan-
guage pairs involved in the systems as well as the
data selection methods investigated.

2.1 German↔English
As parallel data for our German↔English sys-
tems, we used Europarl v7 (EPPS), News Com-
mentary v12 (NC), Rapid corpus of EU press
releases, Common Crawl corpus, and simulated

data. Except for the common crawl corpus, no
special preprocessing was applied, but only tok-
enization and true-casing. For the common crawl
corpus, we applied noise filtering using SVM as
shown in Mediani et al. (2011). Around 900K sen-
tence pairs are filtered out using this technique.

Synthetic data is motivated by Sennrich et al.
(2015a). In order to exploit the monolingual data,
we used the back-translation technique. We ran-
domly select sentences from the data as much as
our parallel data, and translate them with an in-
verse NMT system from the target to the source
language. We use this synthetic data as an ad-
ditional parallel training data. Summing all cor-
pora, the preprocessed and noise-filtered parallel
data reaches 8.3M sentences for each language.

For German monolingual data, we use News
Crawl data. For English, we use News Crawl
and News Discussions corpus. Same as for paral-
lel data, only tokenization and true-casing are ap-
plied.

Once the data is preprocessed, we applied byte-
pair encoding (BPE) (Sennrich et al., 2015b) on
the corpus. In this work, we deploy two different
operation sizes, 40K and 80K.

2.1.1 Monolingual data selection
We experimented with using domain adaptation
techniques to select monolingual data for back-
translation. In particular, we concatenated all
news-test data sets up until 2013 to form our in-
domain corpus, and used news-shuffle as back-
ground data. We used the method by Axelrod
et al. (2015), a class-based extension of the widely
used cross-entropy difference based data selection
method by Moore and Lewis (2010). For word
clustering, we used Clustercat (Dehdari et al.,
2016) with 20 classes. We selected an amount of
data equal to the available bilingual training data.
Backtranslation was done as in (Sennrich et al.,
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2015a). We attempted this approach for both sys-
tems with English and German as target language.
However, we did not observe any improvements
over selecting monolingual data at random, and
did not employ this method for our final system.

2.1.2 Parallel data selection
From previous MT evaluation campaigns (Cho
et al., 2016), we notice that NMT systems work
well when we do fine tuning on in-domain data
after training our models on out-of-domain data.
Since a clear in-domain corpus is not available in
this task, we conducted parallel data selection ex-
periments to build an in-domain corpus.

We followed the approach described in (Peris
et al., 2016) to extract an in-domain data set from
News Commentary corpus. More specifically, an
LSTM-based neural network was utilized to clas-
sify every sentence in the general corpus whether
we should include it into the in-domain corpus or
not. The network is trained using a “golden” cor-
pus as the in-domain one. We took the WMT de-
velopment sets from 2008 to 2013, c.a. 16K sen-
tence pairs, to be the golden corpus for this train-
ing. The outcome is the merge of the development
sets and the selected sentences from News Com-
mentary, resulting in c.a. 100K sentence-pair in-
domain corpus.

2.2 English→Latvian

The parallel corpus English-Latvian contains 2.9
million sentences which are proprocessed by
TILDE1 with language specific tokenizers. The
Latvian text is only true-cased on the first letter
of the sentence. We also further clean the data by
using the language detection library Shuyo (2010)
and remove the lines that the target sentences can-
not be recognized as Latvian by the tool, resulting
in about 25K sentences removed. Aside from the
main data provided by the organizer, we exploit
the synthetically translated monolingual data (only
the news2016 part), which is provided by Univer-
sity of Edinburgh with a Moses phrase-based sys-
tem. The training data used for the final system
consists of 5 million sentences in total. For vali-
dation, we use the the first 2, 000 sentences of the
Leta corpus (the rest included in the training data)
and use the newsdev2017 set (2, 003 sentences) for
testing. We train a BPE (Sennrich et al., 2015b)
model on the training data (including the back-

1www.tilde.com

translated part) with 40K operations, which is po-
tentially helpful for a morphologically rich target
language.

3 NMT Frameworks

Our systems consist of multiple neural encoder-
decoder models trained using two different toolk-
its.

3.1 Nematus
We initially used the nematus2 toolkit, in which
we used the hyperparameters following previous
works (Sennrich et al., 2017): minibatch size of
80, maximum sentence length of 50, word em-
bedding size of 650, a one layer GRU with size
1,024 in the encoder and a conditional GRU de-
coder with hidden layer size 1,024. The gradi-
ents are scaled with norm of 1.0 and the gradi-
ent update method being used is Adam (Kingma
and Ba, 2014) with learning rate 0.0001. Models
are trained until the BLEU score on the validation
set stops increasing. Checkpoints are saved every
20K iterations.

3.2 OpenNMT
We also employed the Torch-based (Collobert
et al., 2011) toolkit OpenNMT (Klein et al.,
2017) 3. All models trained with this toolkit have
two LSTM layers of 1,024 units each, and we also
use the input-feeding method as described in (Lu-
ong et al., 2015). For optimization, the gradi-
ents are scaled at 5, and we experimentally use
Adam with a high learning rate of 0.001 and then
reduce it to 0.0005 when the perplexity of the
model does not decrease anymore. Checkpoints
are saved every epoch (all of the sentences are
seen). We also enhanced the toolkits with differ-
ent features, namely the Context Gate for atten-
tional model (Tu et al., 2016a) and using coverage
information during learning to translate (Tu et al.,
2016b; Sankaran et al., 2016).

3.2.1 Context gates for machine translation
In conditional language models such as neural ma-
chine translation, the decoder makes prediction
based on two sources of input: the decoder in-
put at the current time step and the context vec-
tor queried by the attentional model. As analysed
by (Tu et al., 2016a), it could be beneficial for the

2https://github.com/rsennrich/nematus
3Our implementation for the WMT project can be found

at https://github.com/isl-mt/OpenNMT
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translation model to be able to control the influ-
ence of each prediction source. Concretely, inad-
equate translation can happen due to the bias over
the current decoder input. We followed the au-
thors to integrate a soft gating mechanism to al-
leviate this problem. Specifically, in our neural
translation model, given the target hidden state ht
and the source context vector ct, an attentional hid-
den state is formed by concatenation (Luong et al.,
2015).

Alternatively, we use ht and ct to learn a soft
context mask that prevents the activation of both
states. The mentioned states are then masked with
learned gates, and concatenated before being fed
into the final linear regression layer.

Note that the authors (Tu et al., 2016a) built
their model on top of the conditional GRU based
network from Bahdanau et al. (2014), while ours
are essentially an multi-layer LSTM decoder with
an additional attention layer. Such difference leads
to the minor change in terms of implementation,
which may not replicate the same improvement as
the original work.

3.2.2 Coverage mechanism for attention
model

Various works have pointed out that the attention
neural machine translation model can be benefit by
constraining the attentional process to adequately
cover the source words (Sankaran et al., 2016; Tu
et al., 2016b; Mi et al., 2016; Luong et al., 2015).
Different proposals share similar ideas which is to
incorporate alignment information from the pre-
vious time steps into the attentional neural net-
work. Our experiment inherits the neural fertility
model from (Tu et al., 2016b) which uses an ex-
plicit vector to keep track of the alignment infor-
mation. At every time step, the network makes an
attentional decision with the help of the coverage
vector, which is in turn updated using the align-
ment vector and the source context with a simple
Gated Recurrent Unit (GRU).

4 Integration of Additional Resources

In this section, we show several techniques we ap-
plied in order to integrate additional resources into
the translation. First, we integrate monolingual
information using a multi-lingual NMT approach.
In addition, we extracted information from PBMT
systems.

4.1 Monolingual Data

When the encoder of an NMT system of a well-
chosen architecture considers words across differ-
ent languages, the model is expected to learn a
good representation of the source words in a joint
embedding space, in which words carrying sim-
ilar meaning would have a close distance from
each other. In turn, the shared information across
source languages could help improve the choice
of words in the target side. For example, the word
Flussufer in German and the word bank in English
should be projected in the joint embedding space
in close proximity. This information might help to
choose the French word rive over banque.

To make an attention NMT for single language
pair translation to support a multilingual NMT that
shared the common semantic space, (Ha et al.,
2016b) suggested language-specific coding. Basi-
cally, language codes are appended to every word
in source and target sentences and indicate the
original language of the word. This information
will be then passed to the training process of the
NMT system. For example, an English-German
sentence pair excuse me and entschuldigen Sie
become en excuse en me and de entschuldigen
de Sie. By doing so, they can train a single

multilingual system that translates from several
source languages to one or several target lan-
guages. When we have n English-German sen-
tence pairs and m French-German sentence pairs,
for example, we can train a single NMT system
with a parallel corpus of n + m sentence pairs.
Then we can use the trained model to either trans-
late from English or from French to German.

The aforementioned multilingual NMT can be
used wisely as a novel way to utilize the mono-
lingual data, which is not a trivial task in NMT
systems. Particularly, if we want to translate from
English to German, we can use a corpus in Ger-
man as an additional German-German data similar
to the way we utilize the French-German parallel
corpus. Thus, the encoder is shared between the
source and the target languages (English and Ger-
man), and the attention is also shared across lan-
guages to help the decoder selects better German
words in the target side. The system implemented
this idea is referred as a mix-source system.

For this evaluation, we apply the idea of
that multilingual NMT approach in the English-
German direction in order to make use of the Ger-
man monolingual corpus and gain additional im-
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provements.

4.2 Pre-translation
One of the main problems of current NMT
system is its limited vocabulary (Luong et al.,
2014), generating difficulties when translating rare
words. While the overall performance of NMT
is significantly better on many tasks compared to
SMT (Bojar et al., 2016), the translation of words
seen only a few times is often not correct. In
contrast, PBMT is able to memorize a transla-
tion it has observed only once in the training data.
Therefore, we tried to combine the advantages
of NMT and PBMT using pre-translation as de-
scribed in (Niehues et al., 2016).

In the first step, we translate the source sentence
f using the PBMT system generating a translation
eSMT . Then we use the NMT system to find the
most probable translation e∗ given the source sen-
tence f and the PBMT translation eSMT . Thus,
we create a mixed input for the NMT system con-
sisting of both sentences by concatenating them.
This scheme, however, may lead to errors when
the source and target languages have a same word
in surface, but with different meanings, e.g. die in
English is a verb, while it is an article in German.
In order to prevent such errors, we use a separate
vocabulary for each language. Using the BPE of
the input (Sennrich et al., 2015b), we are able to
encode any input words as well as any translation
of the PBMT system. Thereby, the NMT is able
to learn to copy translations of the PBMT system
to the target side. The pre-translation method is
applied on the German→ English direction.

4.3 Integration of Selected Phrase Pairs
One main drawback of the aforementioned ap-
proach is that all training data as well as the test
data has to be translated using a phrase-based MT
system. Therefore, this is a time-consuming ap-
proach.

In a second approach to integrate information
for rare words from the phrase-based MT system,
we relied only on the phrase table. Using this tech-
nique, we annotate rare words with their possible
translation according to the phrase table. In the
first step, we need to identify the words for which
we want to provide a possible translation. Then
we need to select a translation from the phrase ta-
ble and, finally, we need a method to provide the
translation of the word optional to the NMT sys-
tem.

In our approach, we consider all words that
were split into several words by the byte pair en-
coding as rare words. For these words, we search
their possible translations in the phrase table. We
took the phrase pair with the longest source phrase
that covers the word. If there are several transla-
tion options for this source phrase, we select the
one where the log-sum of all fours probabilities in
the phrase table is the highest.

We integrate this information into the source
sentence, by appending the source phrase and the
translation from the phrase table. We also annotate
the beginning and end of the phrase with a spe-
cial character. When we have the source sentence
Obama empfän@@ gt Netanyahu and a phrase
pair empfän@@ gt ‖‖‖ receives in the phrase ta-
ble, we will generate the following input for the
NMT system: Obama # empfän@@ gt ## receives
# Netanyahu

5 System Combination

Combination of different neural networks often
leads to better performance, as shown in vari-
ous applications of neural networks and previous
NMT submissions in evaluation campaigns (Bo-
jar et al., 2016). A successful technique is to en-
semble different checkpoints of a model or models
with different random initialization. While this is a
very helpful technique, it has a potential drawback
that it can only be performed easily for models us-
ing the same input and output representations.

In order to further extend the variety of models,
we combine the output of several ensemble mod-
els by an n-best list combination. A first approach
is to generate an n-best list from all or several of
the models. Afterwards, we combine the n-best
lists into a single one by creating the union of the
n-best lists. Since every model only generated a
subset of the joint list, we rescored the joint list by
each model. Finally, we used a combination of all
the scores to select the best entry for every source
sentence. In previous work (Cho et al., 2017), it
was shown that it is often sufficient to use the n-
best list of the best model and rescore this n-best
list with the different models. In our experiments,
we used n = 50 for the n-best list size.

For systems to be combined, we use the NMT
system generated by different frameworks (de-
scribed in Section 3), as well as the pre-translation
and multi-lingual systems (described in Section
4). We also combine systems using different BPE

369



sizes. In addition, we use a system that generates
the target sentence in the reversed order (Sennrich
et al., 2015a; Liu et al., 2016; Huck et al., 2016).

After joining the n-best lists and rescoring it us-
ing the different systems, we have k scores for ev-
ery entry in the n-best lists. In our experiments,
we use two different techniques to combine the
scores. The first method is to use the sum of all
scores. Especially, if the performance of the differ-
ent models is similar, we do not need to weigh the
different models. Similar to the ensemble methods
we can reach a good performance by using equal
weights. In a second approach, we use the List-
Net algorithms (Cao et al., 2007; Niehues et al.,
2015) to find the optimial weights for the individ-
ual models.

5.1 ListNet-based Rescoring

In order to find the optimal weights for the dif-
ferent models, we use the ListNet algorithm (Cao
et al., 2007; Niehues et al., 2015). This technique
defines a probability distribution on the permuta-
tions of the list based on the scores of the indi-
vidual models and another one based on a refer-
ence metric. In this set of experiments, we use the
BLEU+1 score introduced by (Liang et al., 2006).
Then we measure the cross entropy between both
distributions as the loss function for our training.
We trained the weights for the different models
on the validation set also used during training the
NMT systems.

Using this loss function, we can compute the
gradient and use stochastic gradient descent. We
use batch updates with ten samples and tune the
learning rate on the development data.

The range of the scores of the different toolk-
its may greatly differ. Therefore, we rescaled all
scores observed on the development data to the
range of [−1, 1] prior to rescoring.

6 Results

In this section, we describe the systems used
to generate the final hypothesis for official test
set. We participated in German→English, En-
glish→German, and English→Latvian translation
tasks.

6.1 German→English

All German to English translation system are
trained on the parallel data as well as back-
translated data (Sennrich et al., 2015a) randomly

selected from the monolingual news data. We
use newstest2013 as validation data. Using this
data, we train our initial system with the Nema-
tus toolkit and a byte pair encoding size of 40K
operations (Nematus 40K). The translation for all
Nematus based systems are generated with ensem-
bled system of different checkpoints. Although
we also attempted to select the data for backtrans-
lation as described in Section 2.1, initial experi-
ments did not show improvements on the transla-
tion quality. Therefore, we use the randomly se-
lected data for the remaining experiments.

In addition, we build a system with a reverse
target order (R2L) (Liu et al., 2016) and the pre-
translation. The pre-translation was generated by
the PBMT system used in WMT 2016 (Ha et al.,
2016a). Both performed slightly better than the
baseline system.

When increasing the size of BPE operation to
80K, we observe the improvements on the transla-
tion quality, by 1.4 BLEU points.

In addition to Nematus, we also used the Open-
NMT framework to build a network. For this
language pair, we used the context gate, but not
the coverage model. In contrast to the Nema-
tus based systems, we did not ensemble different
checkpoints. When using OpenNMT this tech-
nique did not yield an improvement in translation
performance. When OpenNMT is trained using
40K BPE units (single system), we reach a BLEU
score of 38.39. The default architecture of Open-
NMT - utilizing two hidden layers - is deemed to
be one reason for its outstanding performance.

In addition, we build a system using rare words
annotated with their translations. In contrast to the
baseline OpenNMT system, this configuration uti-
lizes only half the hidden size. For comparison, a
baseline system using this hidden size achieved a
BLEU score of 36.91 on newstest2016. Although
we did not improve the performance over the base-
line, it was beneficial to use the system in the com-
bination.

Finally, we generated an n-best list using the
best performing system OpenNMT 40K. Then we
used all the other models to rescore this n-best
lists. The scores are combined linearly. The
weights were optimized using the ListNet algo-
rithm on newtest 2015. This resulted to the best
performance of 39.10. The combination of all
models improve the translation performance by
another 0.7 BLEU points.
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System News2015 News2016
Nematus 40K 29.64 35.96
R2L 36.67
PreMT 36.86
Nematus 80K 37.38
OpenNMT 40K 31.48 38.39
RareWords 29.73 36.50
ListNet 32.33 39.10

Table 1: Experiments for German→English

6.2 English→German
Table 2 shows the results of the English→German
translation task. The scores are reported in BLEU
scores and evaluated on test2016. We used Open-
NMT framework on the preprocessed data (paral-
lel, sampled, back-translated as in Section 2.1).
For all experiments, we used BPE operation at
40K.

The systems differ in the training method and
the architectures. In the first series of experiments
Forward, training sentences are seen in their nat-
ural direction (left-to-right in this case). For this
type of experiments, we trained with two archi-
tectures: normal and with context gates. The Con-
text Gate system got a small improvement over the
normal one. The two architectures share the same
vocabularies and ensembling them helped us to get
more improvements. In the second series of ex-
periments R2L the target sentences were reversed
in order (right-to-left). And the third type is the
mix-source systems described in Section 4.1 and
in (Ha et al., 2016b). In addition, we also used a
pre-translation system. The systems have different
vocabularies and they were eventually combined
using our ListNet-based rescoring (Section 5.1).

For each type of experiments, we conducted fine
tuning on the small in-domain corpus mentioned
in Section 2.1.2, and the best adapted model based
on its BLEU score on test2015 was picked for the
ensembling andor rescoring. In all systems except
for pre-translation, we observed considerable im-
provements, around 1 BLEU point, when applying
fine tuning (c.f. Adapted column).

Finally, we rescored and combined four adapted
systems (Forward Ensembled, R2L, Mix-source
and Pre-translation) to get our submission system
to the campaign. It achieved 33.17 BLEU points
on test2016, 0.9 BLEU points better than the For-
ward Ensembled system and 1.6 BLEU points bet-
ter than our best single system (R2L).

System Baseline Adapted
Forward Normal 30.20 31.27
Forward Context Gate 30.44 31.36
Forward Ensembled 30.68 32.22
R2L 30.54 31.56
Mix-source 30.11 31.11
Pre-translation 30.67 -
Rescoring - 33.17

Table 2: Experiments for English→German

6.3 English→Latvian

The result of the English→Latvian translation task
is illustrated in table 3. Our baseline models are
trained with both frameworks using the concatena-
tion of the actual parallel and back-translated data.
We use dropout of 0.2 for both frameworks. For
Nematus, the convergence was seen after about
540K iterations (about 9 epochs), with the best
validation and test BLEU score achieved of 19.92
and 22.95 respectively. With OpenNMT, we ob-
tained 20.62 and 24.11 BLEU points for the val-
idation and test set, after training for 8 epochs (4
with high learning rate of 0.001, 2 with 0.0005 and
last 2 with 0.00025.

Regarding the two enhancement features men-
tioned above, the simple Context Gate improved
the scores by 0.2 and 0.6 on the two sets respec-
tively, while integrating the coverage mechanism
in the attention model yields a further 1.1 and
0.5 BLEU scores. The decoder recurrent network
has always received previous context information
through input-feeding. Surprisingly, the coverage
vector still manages to improve the model perfor-
mance. We assume that the gain comes from a
stronger attention network, which has more pa-
rameters than the cosine similarity between the
hidden state and the context, and the fact that the
coverage vector can maintain a longer past atten-
tional information compared to input-feeding.

It is notable that even though the improvement
has been observed, it is not consistent throughout
the sets. One possible explanation is the difference
between the development (from Leta) and the test
set (from news) in terms of domain and difficulty.

Regarding the consistency between BLEU
score and perplexity, the model with higher BLEU
score does not necessarily have lower perplexity
(across different settings, for example baseline vs.
coverage) even though we choose the model with
the best perplexity for reporting BLEU scores.
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This is the case even when these models share the
same vocabulary. We can see that perplexity is
a good measure to choose models within a single
run, even though it is not informative to compare
models with different network topologies.

By ensembling the three models, we man-
aged improving the translation performance by 1.3
BLEU points. Our final submission is done by
using another model trained with reversed target
sentences to rescore the n-best list (n = 20) gen-
erated by the ensembled system, which improves
about 0.4 BLEU.

System LetaDev News2016
Nematus 40K 19.92 22.95
OpenNMT 40K 20.62 24.11
+ Context Gate 20.88 24.71
+ Coverage Mode 21.91 25.20
Ensemble (3 models) - 26.54
+ Reranking R2L - 26.96

Table 3: Experiments for English→Latvian

7 Conclusion

In conclusion, we described our experiments in the
news translation task in WMT 2016, in which we
attempted to try out several techniques across dif-
ferent language pairs. The model-wise modifica-
tions such as context gate and coverage provided
slight improvement, while we find out that NMT
models can benefit greatly from adaptation and
pre-translation. As observed in previous works,
the most consistent gain mostly comes from sys-
tem ensembling/combination and reranking.
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