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Abstract

We consider the automatic scoring of a
task for which both the content of the re-
sponse as well the pronunciation and flu-
ency are important. We combine features
from a text-only content scoring system
originally designed for written responses
with several categories of acoustic fea-
tures. Although adding any single cate-
gory of acoustic features to the text-only
system on its own does not significantly
improve performance, adding all acous-
tic features together does yield a small
but significant improvement. These re-
sults are consistent for responses to open-
ended questions and to questions focused
on some given source material.

1 Introduction

English language proficiency assessments de-
signed to evaluate speaking ability often include
tasks that require the test takers to speak for one
or two minutes on a particular topic. These re-
sponses are then evaluated by a human rater in
terms of how well the test takers addressed the
question as well as the general proficiency of their
speech. Therefore, a system designed to automat-
ically score such responses should combine NLP
components aimed at evaluating the content of the
response as well as text-based aspects of speaking
proficiency such as vocabulary and grammar, and
speech-processing components aimed at evaluat-
ing fluency and pronunciation. In this paper, we
investigate the automatic scoring of such spoken
responses collected as part of a large-scale assess-
ment of English speaking ability.

Our corpus contains responses to two types
of questions — both administered as part of the
same speaking ability task — that we will refer

to as “source-based” and “general”. For source-
based questions, test-takers are expected to use the
provided materials (e.g., a reading passage) as a
basis for their response and, therefore, good re-
sponses are likely to have similar content. In con-
trast, general questions are more open-ended such
as “What is your favorite food and why?” and,
therefore, the content of such responses can vary
greatly across test takers. In total, our corpus con-
tains over 150,000 spoken responses to 147 differ-
ent questions, both source-based and general.

We focus our system on two dimensions of pro-
ficiency: content, that is how well the test-taker
addressed the task, and delivery (pronunciation
and fluency). To evaluate the content of a spo-
ken response, we use features from an existing
content-scoring NLP system developed for written
responses that uses the textual characteristics of
the response to produce a score. We apply this sys-
tem to the 1-best ASR (automatic speech recogni-
tion) hypotheses for the spoken responses.

To evaluate the fluency and pronunciation of the
speech in the response, we use features from an ex-
isting speech-scoring system that capture informa-
tion relevant to spoken language proficiency and
cannot be obtained just from the ASR hypothe-
sis. We compare the contributions of several types
of features: speech rate, pausing patterns, pronun-
ciation measures based on acoustic model scores
and ASR confidence scores as well as more com-
plex features that capture timing patterns and other
prosodic properties of the response.

We combine the two types of features (text-
driven and speech-driven) and compare the perfor-
mance of this model to two baseline models, each
using only one type of features. All models are
evaluated by comparing the scores obtained from
that model to the scores assigned by human raters
to the same responses. We hypothesize that:
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• Given the characteristics of the two types of
questions, the model with only text-driven
features will exhibit better performance for
source-based questions as opposed to gen-
eral ones.

• Since human raters reward how well the re-
sponse addresses the question as well as
higher spoken proficiency, the combined
model that uses both text-driven features (for
content) & speech-driven features (for profi-
ciency) will perform better than the individ-
ual text-only and speech-only models.

We find that our results generally meet our ex-
pectations but interestingly the improvement in
performance by combining text-driven & speech-
driven features — while significant — is not as
large as we had expected, i.e., the combination
does not add much over the text-driven features.
We conclude by discussing possible reasons for
this observation.

2 Related work

Most systems for scoring proficiency of spoken
responses rely on ASR to obtain a transcription
of the responses. Since work on automated scor-
ing predates the availability of accurate ASR, the
majority of earlier automated scoring systems fo-
cused on tasks that elicited restricted speech such
as read-aloud or repeat-aloud. Such systems ei-
ther did not consider the content of the response at
all or relied on relatively simple string-matching
(see Eskenazi (2009) and Zechner et al. (2009)
for a detailed review). Even when the task re-
quired answering open-ended questions, e.g. in
the PhonePass test (Townshend et al., 1998; Bern-
stein et al., 2000), fluency was considered more
important than content.

Zechner et al. (2009) were one of the first to
attempt automatically scoring tasks that not only
elicited open-ended responses but where content
knowledge was also an integral part of the task.
They did not use any explicit features to measure
content because of the high ASR word error rates
(around 50%). Instead, they focused on fluency-
related features on which ASR errors had little im-
pact. They reported a correlation of 0.62 between
the system and human scores.

More recent studies have explored different ap-
proaches to evaluating the content of spoken re-
sponses. Xie et al. (2012) explored content mea-

sures based on the lexical similarity between the
response and a set of reference responses. A
content-scoring component based on word vectors
was also part of the automated scoring engine de-
scribed by Cheng et al. (2014). In both these stud-
ies, content features were developed to supple-
ment other features measuring various aspects of
speaking proficiency. Neither study reported the
relative contributions of content and speech fea-
tures to the system performance.

Although it may seem obvious that, given the
nature of the task, a model using both speech-
based and content-based features should outper-
form models using only one of them, it may not
turn out that way. Multiple studies that have devel-
oped new features measuring vocabulary, gram-
mar or content for spoken responses have reported
only limited improvements when these features
were combined with features based on fluency and
pronunciation (Bhat and Yoon, 2015; Yoon et al.,
2012; Somasundaran et al., 2015). Crossley and
McNamara (2013) used a large set of text-based
measures including Coh-Metrix (Graesser et al.,
2004) to obtain fairly accurate predictions of pro-
ficiency scores for spoken responses to general
questions similar to the ones used in this study
based on transcription only, without using any in-
formation based on acoustic analysis of speech. It
is not possible to establish from published results
how their system would compare to the one that
also evaluates pronunciation and fluency. They did
not compute any such features and their results
based on text are not directly comparable to the
other papers discussed in this section since some
of their features required a minimum length of 100
words and, therefore, required them to combine
several responses to meet this text length require-
ment.

Most recently, Loukina and Cahill (2016) com-
pared the performance of several text- and speech-
based scoring systems and found that even though
each system individually achieved reasonable ac-
curacy in predicting proficiency scores, there was
no improvement in performance from combining
the systems. They argued that the majority of
speakers who perform well along one dimension
of language proficiency are also likely to perform
well along other dimensions (cf. also Xi (2007)
who reports similar results for human analytic
scores). Consequently, the gain in performance
from combining different systems is small or non-
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existent. Their work focused on general language
proficiency features and did not consider the con-
tent of the responses.

This study has several significant differences
from previous work. We consider content-scoring
features that go well beyond word vectors and in-
stead build a textual profile of the response. Fur-
thermore, we conduct more fine-grained analyses
and report the types of speech-driven features that
add the most information to content-scoring fea-
tures. We also examine how the interactions be-
tween content and speech features vary by types
of questions. Finally, we conduct our analyses on
a very large corpus of spoken responses which, to
our knowledge, is the largest used so far in studies
on automated scoring of spoken responses. The
size of the data allows us to identify patterns that
persist across responses to multiple questions and
are more reliable.

3 Methodology

3.1 Data

The data used in this study comes from a large-
scale English proficiency assessment for non-
native speakers administered in multiple coun-
tries. Each test-taker answers up to 6 questions:
two general and four source-based. For source-
based questions, test-takers are provided with spo-
ken and/or written materials and asked to respond
to a question based on these materials while gen-
eral questions have no such materials. Test-takers
are given 45 seconds to answer general questions
and one minute to answer source-based questions.

Each response was scored by a professional hu-
man rater on a scale of 1–4. When assigning
scores, raters evaluated both how well the test
taker addressed the task in terms of content as well
as the overall intelligibility of the speech. A re-
sponse scored as a “1” would be limited in content
and/or largely intelligible due to consistent pro-
nunciation difficulties and limited use of vocabu-
lary and grammar. On the other hand, a response
scored as a “4” would fulfill the demands of the
task and be highly intelligible with clear speech
and effective use of grammar and vocabulary. The
raters are provided with the description of typical
responses at each score level and are asked to pro-
vide a holistic score without prioritizing any par-
ticular aspect.

For this study, we used responses to 147
questions (48 general questions and 99 source-

Type general source-based
N questions 48 99
N responses 50,811 102,650
Average responses 1058.6 1036.9
Median responses 902.5 936.0
Min responses 255 250
Max responses 2030 2,174
Average N words 90.8 120.3

Table 1: Total number of responses for each ques-
tion type; the average, median, min and max num-
ber of responses per question; the average number
of words in responses to each question computed
based on ASR hypotheses.

based questions) from different administrations of
the assessment. We excluded responses where the
ASR hypothesis contained fewer than 10 words
(0.2% of the original sample). The final corpus
used for model training and evaluation included
153,461 responses from 33,503 test takers.1 As
shown in Table 1, the number of responses for a
question was consistent for the two question types.

Test-takers from each administration were ran-
domly split between training and evaluation parti-
tion with about 70% of responses to each question
allocated to the training set and 30% allocated to
the evaluation set. We ensured that, across all 147
questions, responses from the same test taker were
always allocated to the same partition and that test
takers in training and evaluation sets had similar
demographic characteristics.

3.2 Automatic Speech Recognizer
All responses were processed using an automatic
speech-recognition system based on the Kaldi
toolkit (Povey et al., 2011) using the approach de-
scribed by Tao et al. (2016). The language model
was based on tri-grams. The acoustic models were
based on 5-layer DNN and 13 MFCC-based fea-
tures. Tao et al. (2016) give further detail about
the model training procedure.

The ASR system was trained on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. The speech in the ASR training

1Our sampling was done by question and some ques-
tions were repeated across administrations in combination
with other questions not included in this study. The num-
ber of speakers who answered each question varied between
250 and 2,174, with an average of 1,043 responses to each
question. For 68% of test takers, we had responses to all 6
questions.
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corpus was elicited using questions similar to the
ones considered in this study. There was no over-
lap of speakers or questions between the ASR
training corpus and the corpus used in this pa-
per. We did not additionally adapt the ASR to the
speakers or responses in this study.

While no transcriptions are available to com-
pute the WER of the ASR system on this corpus,
the WER for this system on a similar corpus is
around 30%.

3.3 Text-driven features
Scoring responses for writing quality requires
measuring whether the student can organize and
develop an argument and write fluently with no
grammatical errors or misspellings. In contrast,
scoring for content deals with responses to open-
ended questions designed to test what the stu-
dent knows, has learned, or can do in a specific
subject area (such as Computer Science, Math,
or Biology) (Sukkarieh and Stoyanchev, 2009;
Sukkarieh, 2011; Mohler et al., 2011; Dzikovska
et al., 2013; Ramachandran et al., 2015; Sakaguchi
et al., 2015; Zhu et al., 2016).2

In order to measure the content of the spoken re-
sponses in our data, we extract the following set of
features from the 1-best ASR hypotheses for each
response:

• lowercased word n-grams (n=1,2), including
punctuation

• lowercased character n-grams (n=2,3,4,5)

• syntactic dependency triples computed using
the ZPar parser (Zhang and Clark, 2011)

• length bins (specifically, whether the log of 1
plus the number of characters in the response,
rounded down to the nearest integer, equals x,
for all possible x from the training set). For
example, consider a question for which tran-
scriptions of the responses in the training data
are between 50 and 200 characters long. For
this question, we will have 3 length bins num-
bered from 5 (blog2 51c) to 7 (blog2 201c).
For a new response of length 150 characters,
length bin 7 (blog2 151c) would be the binary
feature that gets a value of 1 with the other
two bins getting the value of 0.

We refer to these features as “text-driven” fea-
tures in subsequent sections.

2See Table 3 in Burrows et al. (2015) for a detailed list.

3.4 Speech-driven features

We used five types of features that capture infor-
mation relevant to the fluency and pronunciation
of a spoken response and are extracted based on
the acoustic properties of the spoken responses.
These are primarily related to spectral quality
(how the words and sounds were pronounced) and
timing (when they were pronounced). All features
are summarized in Table 2. Each feature type is
computed as a continuous value for the whole re-
sponse and relies on the availability of both the
speech signal as well as the 1-best ASR hypothe-
sis.

The first set of features (“speech rate”) com-
putes the words spoken per minute with and with-
out trailing and leading pauses. Speech rate has
been consistently identified as one of the major co-
variates of language proficiency and the features
in this group have some of the highest correlations
with the overall human score.

Name Description Nfeat r

speech rate Speech rate 3 .42
quality Segmental quality 6 .41
pausing Location and dura-

tion of pauses
9 .34

timing Patterns of dura-
tions of individual
segments

9 .36

prosody Time intervals be-
tween stressed syl-
lables

6 .30

Table 2: The five sets of speech features used in
this study along with the number of features in
each group and the average correlations with hu-
man score across all features and questions (Pear-
son’s r).

The second set of features (“quality”) captures
how much the pronunciation of individual seg-
ments deviates from the pronunciation that would
be expected from a proficient speaker. This in-
cludes the average confidence scores and acous-
tic model scores computed by the ASR system for
the words in the 1-best ASR hypothesis. Since
the ASR is trained on a wide range of proficiency
levels, we also include features computed using
the two-pass approach (Herron et al., 1999; Chen
et al., 2009). In this approach, the acoustic model
scores for words in the ASR hypothesis are re-
computed using acoustic models trained on native

70



speakers of English.
The third set of features captures pausing pat-

terns in the response such as mean duration of
pauses, mean number of words between two
pauses, and the ratio of pauses to speech. For all
features in this group the pauses were determined
based on silences in the ASR output. Only silences
longer than 0.145 seconds were included.

The fourth set of features (“prosody”) measures
patterns of variation in time intervals between
stressed syllables as well as the number of sylla-
bles between adjacent stressed syllables (Zechner
et al., 2011).

The final set of features (“timing”) captures
variation in the duration of vowels and consonants.
This category includes features such as relative
proportion of vocalic intervals or variability in ad-
jacent consonantal intervals (Lai et al., 2013; Chen
and Zechner, 2011) as well as features which com-
pare vowel duration to reference models trained on
native speakers (Chen et al., 2009).

We refer to these five feature sets as “speech-
driven” features in subsequent sections.

3.5 Scoring models
We combined the text-driven features and speech-
driven features into a single set of features and
trained a support vector regressor (SVR) model
with an RBF kernel for each of the 147 ques-
tions, using the human scores in the training par-
tition as the labels. We used the scikit-learn
(Pedregosa et al., 2011) implementation of SVRs
and the SKLL toolkit.3 The hyper-parameters of
each SVR model (γ and C) were optimized us-
ing a cross-validated search over a grid with mean
squared error (MSE) as the objective function.

In addition to the combined scoring models, we
also built the following scoring models for each
question:

• A model using only the text-driven features
(1 model)

• A model using only the speech-driven fea-
tures (1 model)

• Models using each of the individual speech-
driven feature sets (5 models)

• Combinations of the text-driven model with
each of the individual speech-driven feature
sets (5 models)

3http://github.com/
EducationalTestingService/skll

In total, we built 1,911 scoring models (13 mod-
els for each of the 147 questions).

We evaluated each of our models on a held-
out evaluation partition for each of the questions.
We used the R2 between the predicted and human
scores computed on the evaluation set as a mea-
sure of model performance:

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(1)

where yi are the observed values (human scores),
ŷi are the predicted values and ȳ is the mean of
observed scores.

As shown in Eq. 1, R2 standardizes the MSE
by the total variance of the observed values lead-
ing to a more interpretable metric that generally
varies from 0 to 1, where 1 corresponds to per-
fect prediction and 0 indicates that the model is no
more accurate than simply using mean value as the
prediction.

4 Results

4.1 Model performance
Table 3 shows the mean R2 for different types of
questions and models across the 147 questions in
our study.

Model general source-based
text + speech .352 .442
text-only .335 .431
speech-only .325 .394
speech rate .275 .341
pausing .259 .312
quality .303 .365
prosody .256 .309
timing .282 .329
text + speech rate .339 .433
text + pausing .340 .434
text + quality .343 .436
text + prosody .341 .434
text + timing .342 .434

Table 3: Average R2 achieved by different mod-
els on different types of questions (N=99 for gen-
eral questions and N=48 for source-based ques-
tions).

We used linear mixed-effect models (cf. Sni-
jders and Bosker (2012) for a comprehensive in-
troduction and Searle et al. (1992) who give an
extensive historical overview) to identify statis-
tically significant differences among the various
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models. The mixed-effect models were fitted us-
ing the statsmodels Python package (Seabold
and Perktold, 2010). We used model R2 as a de-
pendent variable, question as a random factor, and
model and question type (general or source-based)
as fixed effects. We include both the main effects
of model and question type as well as their inter-
action and used the text-driven model as the refer-
ence category.

We observed that for both general and source-
based questions:

1. The performance of the combined model
(text + speech) using all five types of speech-
driven features as well as the text-driven fea-
tures was significantly better than both the
text-only model as well as the speech-only
model. The effect size of the improvement
over the text-only model was small with the
averageR2 increasing only slightly from .335
to .352 for source-based questions and from
.431 to .442 for general questions (p = 0.002).

2. The performance of the text-only model was
significantly better than the performance of
each of the 5 models trained using only
one group of speech-driven features (p <
0.0001).

3. There was no significant difference between
the performance of the text-only model and
the 5 models combining the text-driven fea-
tures with each of the individual speech-
driven feature sets.

In addition, as we predicted, there was a sig-
nificant difference in model performance between
general and source-based questions. Surprisingly,
this difference was observed for all 13 models; all
models achieved higher performance for source-
based questions (p < 0.0001). We also observed
a significant interaction between model type and
question type: the difference between the speech-
only model and the text-only model was higher for
source-based questions than for general questions.
Furthermore, while there was no statistically sig-
nificant difference between the speech-only model
and text-only model for general questions (.335
vs. .325, p=0.061), the difference between these
two types of models was significant for source-
based questions with the text-only model outper-
forming the speech-only model (R2 = .431 vs.
.394, p < 0.0001).

Finally, we compared the performance of our
combined system to other published results on au-
tomated speech scoring reviewed earlier in this pa-
per. Since most previous work reports their results
using Pearson’s correlation coefficients, we com-
puted the same for our system for an easier com-
parison. Table 4 reports the correlations for our
model as well as those reported in previous stud-
ies on automatically scoring responses to similar
questions. It shows that our system performance is
either comparable or better than previous results.

Model general source-based
text + speech .60 .67
text-only .59 .66
speech-only .58 .63
Xie et al. .40 .59
Loukina & Cahill .64 (overall)

Table 4: Average Pearson’s r achieved by the three
of the models in this study and the best perform-
ing models reported in the literature; Loukina and
Cahill (2016) combine language proficiency fea-
tures from speech and text and do not report per-
formance by question type; Xie et al. (2012) use
content features based on cosine similarity but no
other language proficiency features. If a paper re-
ports results based on both ASR hypothesis and
human transcription, we only use the results based
on ASR hypothesis.

4.2 Information overlap between text and
speech: The role of disfluencies

A relatively minor improvement between the text-
only model and the combined text + speech model
suggests that text-driven features already incor-
porate some of the information captured by the
speech-driven features or that the type of of infor-
mation captured by two sets of features are highly
correlated. We use disfluencies and pauses as a
test case to explore this hypothesis further.

Our text-driven features computed on the ASR
hypothesis included all information stored in that
hypothesis including hesitation markers (“uh”,
“uhm” etc.) and silence markers. In other words,
even though our text-driven features are designed
to measure content for written responses, when ap-
plied to spoken responses they might also have
captured some information related to fluency. In
order to confirm this hypothesis, we removed hes-
itation markers and pauses from the 1-best ASR
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hypotheses and repeated our analysis with the pri-
mary models, i.e., text-only (with and without dis-
fluencies), speech-only, and text + speech (with
and without disfluencies) – a total of 5 models.

Figure 1: A plot showing the scoring performance
across the two question types for two different
conditions: including disfluencies and pauses in
the 1-best ASR hypotheses and excluding them.

The results of this analysis are presented in Fig-
ure 1. As before, we used a linear mixed-effects
model to evaluate which differences were sta-
tistically significant. Removing disfluencies and
pauses from the hypotheses led to a significant de-
crease in the performance of the text-only model
for both types of questions (R2 = .335 vs. .321
for general question and .431 vs. .419 for source-
based questions, p = 0.001).

We still observed no significant difference in
performance between the text-only model without
disfluencies and pauses and speech-only model for
general questions. However, the difference be-
tween the text-only model and speech-only mod-
els for source-based questions remained signif-
icant even after removing the disfluencies and
pauses from the ASR hypothesis (.394 vs. .419,
p < 0.001).

Finally, for the combined text + speech model,
there was no significant difference between in-
cluding and excluding disfluencies and pauses
from the ASR hypotheses.

4.3 Performance variation across questions

In Section 4.1, we presented general observations
after we controlled for the individual question as a
random effect. However, we also observed that all
of the models showed substantial variation in per-
formance across the 147 questions. TheR2 for the
best performing model (text + speech) varied be-
tween .062 and .505 for the general questions and
between .197 and .557 for the source-based ques-
tions. Given such a striking variation, we con-
ducted further exploratory analyses into factors
that may have affected model performance. We fo-
cused these analyses on the best performing model
(text + speech).

First, we considered the sample size for each
question. As shown in Table 1, the number of re-
sponses used to train and evaluate the models var-
ied across questions and, therefore, we might ex-
pect lower performance for questions with fewer
responses available for model training. A lin-
ear regression model with R2 as the dependent
variable and the sample size as the independent
variable showed that the sample size accounted
for 9.8% of variability in model performance for
source-based questions (p = 0.0016) and 19.2% of
variability in model performance for general ques-
tions (p = 0.0018). In other words, while there was
a significant effect of the sample size, it was not
the main factor.

Another possible source of variation in model
performance may be the variation in ASR word
error rate itself. Since no reference transcriptions
are available for our corpus, we cannot test this
hypothesis directly. As an indirect measurement,
however, we consider the number of words in the
ASR hypotheses across questions. If the ASR
consistently failed to produce accurate hypotheses
for some questions, this might manifest as consis-
tently shorter ASR hypothesis for such questions,
and, hence, discrepant scoring performance.

The average number of words varied between
83.6 and 100.2 for general questions and be-
tween 109.0 and 132.6 for source-based questions.
While there was a statistically significant differ-
ence in number of words between the questions,
we found that the average number of words in re-
sponses to a given question did not have a signif-
icant effect on the model performance (p = 0.09
for general questions and p = 0.03 for source-
based questions4).

4Significance threshold was adjusted for multiple compar-
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Of course, not all ASR failures necessarily re-
sult in shorter hypotheses and, therefore, further
analysis based on the actual WER is necessary to
reject or confirm any possible effect of ASR on
model performance.

There are additional factors that might have
contributed to the variation in model performance
pertaining to both the properties of the question
and the characteristics of test takers who answered
each question. We plan to further explore the con-
tribution of these factors in future work. Our re-
sults highlight the impact of the actual question in
automated scoring studies and suggest that the re-
sults based on a small set of questions may be un-
reliable due to the large variation across questions.

5 Discussion

We considered a combination of text-driven
and speech-driven features for automated scor-
ing of spoken responses to general and source-
based questions. We found that for both types of
questions a combination of the two types of fea-
tures outperforms models using only one of those
two types of features. However, a significant im-
provement could only be achieved by combining
several types of speech features. There was no
improvement in model performance when text-
driven features were combined with only one type
of speech-driven features such as speech rate or
pausing patterns.

Surprisingly we found that all models per-
formed better for source-based questions than for
general questions — a result we plan to explore
further in future work. We also found that for
general questions where the content of responses
can vary greatly, the model that uses only speech-
driven features achieves the same performance as
the one only using text-driven features. We hy-
pothesize that this is because in the absence of
“pre-defined” content both systems measure var-
ious aspects of general linguistic proficiency and
these tend to be closely related as we discussed
in Section 2. At the same time, for source-
based questions where the test-takers are expected
to cover already provided content, the perfor-
mance of the model using only text-driven features
is significantly better than the performance of the
model using only speech-driven features.

Although we do observe a significant improve-

isons performed in this section to α = 0.0125 using Bonfer-
roni correction

ment in scoring performance by combining text-
driven features (to measure content) and speech-
driven features (to measure fluency and pronuncia-
tion), the improvement is not as large as one might
have expected. This may appear counter-intuitive
considering the perceived role of fluency and pro-
nunciation for this task. There are several possible
reasons for this result.

First, it is possible that the speech-driven fea-
tures in our study do not really capture the infor-
mation present in the acoustic signal that is rele-
vant to this task. However, this is unlikely given
that the features we considered in this paper cap-
ture many aspects of spoken language proficiency
and cover all major types of features used in other
studies on automated evaluation of spoken profi-
ciency. This is further illustrated by the fact that
for general questions, the speech-only model per-
formed as well as the text-only model. We also
note that recent work by Yu et al. (2016) used neu-
ral networks to learn high-level abstractions from
frame-to-frame acoustic properties of the signal
and showed that these features provided a very
limited gain over the features considered in this
study.

Second, our results may be skewed because of
poorly performing ASR. Although we cannot re-
ject this hypothesis given the lack of human tran-
scriptions for the responses, it is unlikely to hold
because the same ASR system achieves a WER
of 30% on another corpus of responses with simi-
lar demographic and response characteristics. Fur-
thermore, previous studies compared the perfor-
mance of speech and text features computed us-
ing manual transcriptions to those computed us-
ing ASR hypotheses (with a similar WER) and re-
ported only a small drop in performance: r = 0.67
for transcriptions vs. r = 0.64 for ASR hypotheses
(Loukina and Cahill, 2016).

Another possible reason may be the way in
which the speech-driven and text-driven features
are combined. For each response, we simply con-
catenate the small, dense vector of 33 continuous
speech-driven features with the very large, sparse
vector of tens of thousands of binary text-driven
features. In such a scenario, the impact of speech-
driven features may be mitigated due to the dispro-
portionate number of sparse text-driven features.
A better combination approach might be stacked
generalization (Wolpert, 1992): building separate
models for speech-driven features and text-driven

74



features and then combining their predictions in a
third higher-level model. Sakaguchi et al. (2015)
showed that stacking only improves over straight-
forward concatenation when there are a limited
number of responses in the training data and we
have a fairly large number of training responses
available for each of our questions. However, the
idea certainly merits further exploration.

A more likely explanation is that there is only
a limited amount of information contained in the
acoustic signal that is not already present in one
way or another in the ASR hypothesis. We already
discussed earlier in this paper that different aspects
of language proficiency are highly correlated and
thus one model can often achieve good empirical
performance by measuring only one particular as-
pect. A related observation here is that many as-
pects of the spoken signal are already captured by
ASR hypothesis. For example, while ASR hypoth-
esis does not reflect the duration of pauses, it does
contain information about the presence and loca-
tion of pauses and whether they are accompanied
by the hesitation markers. Similarly, the “chop-
piness” of speech would manifest itself in both
prosody and syntax. This claim is supported by
our results which show that removing disfluencies
and pauses from the ASR hypotheses degrades the
performance of the text-only system significantly
but has no effect on the performance of the com-
bined system since the same information is also
captured by the speech-driven features.

In this study, we focused on content, fluency,
and pronunciation and did not consider any fea-
tures designed to measure other important ele-
ments of speaking proficiency such as grammar
or choice of vocabulary. It is likely that some as-
pects of these are already indirectly captured by
the content-scoring part of our system but future
research will show whether system performance
can be further improved by features that have been
specifically designed to evaluate these aspects of
spoken proficiency.

6 Conclusions

In this paper, we built automated scoring mod-
els for an English speaking task for which both
content knowledge as well as an ability to pro-
duce fluent intelligible speech are required in or-
der to obtain a high score. We applied an ex-
isting content-scoring NLP system (designed for
written responses) to the 1-best ASR hypotheses

of the spoken responses in order to extract text-
driven features that measure content. To measure
spoken fluency and pronunciation, we extracted a
set of 33 features based on the acoustic signal for
the response. Combining the two types of features
results in a significant but smaller than expected
improvement compared to using each type of fea-
tures by itself. A deeper examination of the fea-
tures yields that there is likely to be significant in-
formation overlap between the speech signal and
the ASR 1-best hypothesis especially when the
hypothesis includes pausing and silence markers.
Based on these observations, we conclude that al-
though our approach of extracting features from
the speech signal and combining them with text-
driven features extracted from the ASR hypothesis
is certainly moderately effective, further research
is warranted in order to determine whether a larger
improvement can be obtained for this task.
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