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Introduction

The first Workshop on Speech-Centric Natural Language Processing (SCNLP 2017) took place on
Thursday, September 7, 2017 in Copenhagen, Denmark, immediately preceding the Conference on
Empirical Methods in Natural Language Processing (EMNLP).

The purpose of this workshop was to unite the automatic speech recognition (ASR) and natural language
processing (NLP) communities to discuss new frameworks for exploiting the rich information present in
the speech signal to improve the capabilities of natural language processing applications. Our community
objective is to revisit the conventional NLP problems with a focus on incorporating the richness of
spoken language, as well as to encourage research contributions that promote cross-fertilization between
statistical methods for ASR and NLP.

Our inaugural workshop was held at EMNLP to encourage participation amongst the NLP community to
consider and discuss the challenges of combining speech recognition with conventional NLP research,
as well as to appreciate the recent successes in this exciting field. The authors in these proceedings
have combined ASR and NLP in works that address part-of-speech tagging, constituency parsing and
dependency parsing on speech, information extraction and spoken term detection, dialog state tracking
and speech translation, as well as two research assessments that evaluate the fluency and adequacy of
English speakers and the role of speech silence in conversational dialogs.

The invited talk was given by Gabriel Skantze, entitled “Modelling turn-taking in spoken interaction.”

Our workshop also contained an open round-table discussion about the current state of speech-centric
NLP and some of the research and pragmatic issues that raise a barrier of entry for the larger research
community.

We would like to thank the members of the Program Committee for their reviews, as well as our panelists
who led our round-table discussion. We also would like to thank the authors for their contributions.

Nicholas Ruiz and Srinivas Bangalore
Co-organizers
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Functions of Silences towards Information Flow
in Spoken Conversation

Shammur Absar Chowdhury and Evgeny A. Stepanov and Morena Danieli
and Giuseppe Riccardi

Signals and Interactive Systems Lab
Department of Information Engineering and Computer Science

University of Trento, Italy

Abstract

Silence is an integral part of the most fre-
quent turn-taking phenomena in spoken
conversations. Silence is sized and placed
within the conversation flow and it is co-
ordinated by the speakers along with the
other speech acts. The objective of this
analytical study is twofold: to explore
the functions of silence with duration of
one second and above, towards informa-
tion flow in a dyadic conversation utilizing
the sequences of dialog acts present in the
turns surrounding the silence itself; and to
design a feature space useful for clustering
the silences using a hierarchical concept
formation algorithm. The resulting clus-
ters are manually grouped into functional
categories based on their similarities. It is
observed that the silence plays an impor-
tant role in response preparation, also can
indicate speakers’ hesitation or indecisive-
ness. It is also observed that sometimes
long silences can be used deliberately to
get a forced response from another speaker
thus making silence a multi-functional and
an important catalyst towards information
flow.

1 Introduction

Silence is a multifaceted natural phenomenon in
human conversations that carries information rich
in meaning and function. Even though “silence”
is generally defined as the absence of speech (Ja-
worski, 1993) or a break in a conversation flow,
its occurrence has the power to deliver a message,
as well as trigger human response similar to any
other conversational behavior. Silence in human
conversations provides insights into the thought
process, emotion, and attitude (Richmond et al.,

1991) among others. At the same time, silence
is used to convey power (dominance) (Saunders,
1985; Tannen, 1990), respect, and manage con-
flicts.

Along with speech, silence is an integral part of
human interaction, and the two complement and
provide information about each other. In the words
of Bruneau (Bruneau, 1973):

“Silence is to speech as the white of this paper is
to this print”

– Thomas J Bruneau.

Given that the reasons for silence are limitless,
it also has many functions. One function is “elo-
quent silences” that includes the use of silence
in the funeral, at religious ceremonies, as a le-
gal privilege, or in response to a rhetorical ques-
tion (Ephratt, 2008). Apart from this, silence can
be used to indicate topic avoidance, lack of infor-
mation to provide response, agreement, disagree-
ment, anger, frustration, uncertainty, hesitancy and
others.

Over the years, researchers have studied si-
lence with respect to, but are not limited to, the
location of silence in a conversation (Richmond
et al., 1991; Jensen, 1973) or its role in a conver-
sation (Cappella, 1980; Zimmermann and West,
1996; McLaughlin and Cody, 1982) or how its
duration changes with different emotions (Alam
et al., 2016). Silence has also been studied as a
method for non-verbal communication (Kogure,
2007; Bruneau, 2008) and its practices in different
cultures (Richmond et al., 1991), or in different
contexts. It has also been observed as a powerful
tool for conflict-management (Oduro-Frimpong,
2007), and within the context of psychotherapy
(Frankel et al., 2006; Gale and Sanchez, 2005;
Ladany et al., 2004; Ronningstam, 2006).

Unlike research on speech, the studies on si-
lence are either definitional (theoretical) or de-
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Figure 1: Framework for categorizing functions of
long silences.

scriptive. Even within speech research commu-
nities, there are very few studies that have ana-
lyzed function of silence in a methodological man-
ner. Generally, in a dialog system, silence is not
acknowledged as a form of interaction, but rather
its function in a conversation is seen as a “pause”
or a “gap”. Whereas speech is viewed as the pri-
mary carrier of information. Thus, a further study
of silence and its functions is important, as si-
lence often does serve as a message, or at least as
means that offers contextual cues to the surround-
ing speech.

Therefore, the goal of this paper is to analyze
the function of long silences1 occurring between
and within speakers in dyadic spoken conversa-
tions. Our focus is on understanding the perceived
reasons of such functions towards the information
flow in spoken conversations.

The paper is organized as follows. An overview
of the experimental methodology used in this
study is given in Section 2. We present an analysis
of our findings in Section 3 and provide conclu-
sions in Section 4.

2 Methodology

The methodology followed for grouping functions
of the long silences is shown in Figure 1. The
pipeline includes a data preparation phase, which
involves extraction and selection of the long si-
lence instances; followed by the feature design and

1In our study, we defined long silences as having the du-
ration greater and equal to 1 second.

extraction phase. The next phase in the pipeline is
unsupervised clustering of the selected silence in-
stances, which are later grouped into hierarchical
clusters for the analysis of their functions.

2.1 Data Preparation

For this study, we have used conversations from
the SISL Human-Human Conversational Dis-
course Corpus. The data is a subset of a large
Italian call-center corpus where call center agents
are engaged in conversations with real customers.
The customers are calling to solve some specific
problem or seek information. The inbound Ital-
ian phone conversations are recorded on two sepa-
rate audio channels with a quality of 16 bits, 8kHz
sample rate. The collected conversations (≈ 10K)
have an average duration of 396.6±197.9 seconds.

To analyze the role of silence in information
flow of the conversation, we have selected 10 con-
versations that contain manual dialog act anno-
tations (Chowdhury et al., 2016b) following dia-
log Act Markup Language (DiAML) (Bunt et al.,
2010, 2012) annotation scheme. The details of
the dimensions and the communicative functions
considered for the annotation are given in Table
1. The dimensions such as: Discourse Structur-
ing, Speech and Turn Management dimensions are
mapped to the tag Other, as they are very infre-
quent.

2.1.1 Extraction of Silence
Silence positions, as well as turn types, such as
speakers’ turns, overlapping turns, are extracted
using the turn segmentation and labeling system
(Chowdhury et al., 2016a). The input to the sys-
tem is the audio of the conversation, the manual
transcription and speaker information.

The forced-aligned transcription is obtained us-
ing an in-domain Automatic Speech Recognition
(ASR) (Chowdhury et al., 2014). Lexical informa-
tion from these forced-aligned transcripts is used
to extract turn-taking sequences. The pipeline uses
the time aligned output as tokens to create Inter-
Pausal Units (IPUs) for each input channel. IPUs
are defined as segments of consecutive tokens with
no less that 50 ms gaps in-between. Using the
time information of inter-IPUs and intra-IPUs, we
then define steady conversation segments where
each segment maintains a steady time-line for both
interlocutor channels. The labels of each silence
segment are then defined by a set of rules as fol-
lows:
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• Pause (P ): Gaps between the turns of the same
speaker with no less than 0.5 second. PA and
PC represent agent and customer’s pauses re-
spectively.

• Lapse between speakers (LB): Floor switches
between the speakers with a silence duration of
2 seconds or more.

• Lapse within speaker (LW ): Gaps between the
same speakers’ turns with a silence duration of
2 seconds or more.

• Switch (SS): Floor switches between the
speakers with silence duration of less than 2 sec-
onds or with overlapping frames not more than
20 ms. This category is also know as gaps.

The labeled turn sequences are then used to select
silence instances for the analysis.

2.1.2 Silence Filtering
From the 10 conversations we have extracted 433
instances of silences with the duration greater or
equal to 1 second. The instances are categorized
into two groups:

• Between-Speaker Silences (B): These in-
stances of silence include gaps between differ-
ent speaker turns that are greater or equals to 1
second. B = {Sl, LB}, where Sl stands for gaps
>= 1 second and < 2 seconds where as LB are
lapse between speakers >= 2 seconds.

• Within-Speaker Silences (W ): These instances
of silence include pauses between the same
speaker’s turns that are greater or equals to 1
second. W = {Pl, LW }, where Pl stands for
pauses >= 1 second and < 2 seconds where as
LW are lapse within speaker >= 2 seconds.

For the initial analysis, the instances of long
silences that occur after or before overlapping
speech (61 silence instances) are ignored. As a
result, the analysis is performed on 372 instances.

2.2 Feature Design and Extraction
Even though silence is an inherently valueless
phenomena that possesses no function on its own,
individual instances of silence gain its meaning
and function from the surrounding context. Con-
sequently, modeling functions of silences requires
conceptualization of the context and features that
capture it. Dialog acts carry specific communica-
tive functions such as question, answer, expression

of agreement, disagreement, etc. Since dialog acts
are assigned to the speech segments (turns) that
surround the long silences, they provide the infor-
mation that could be used to model the context of
silence instances.

Table 1: Core dimensions and communicative
functions from ISO 24617-2 standard considered
for dialog act annotation.

Dimension Comm.Function Group

General (Task)

Information Transfer Functions
Question

Information Seeking
Set Question
Choice Question
Propositional Question
Check Question

Inform

Information Providing

Answer
Confirm
Disconfirm

Agreement
Disagreement
Correction

Action Discussion Functions
Offer

Commissives

Promise
Address Request
Accept Request
Decline Request

Address Suggest
Accept Suggest
Decline Suggest
Suggest

Directives

Request
Instruct
Address Offer
Accept Offer
Decline Offer

Time Management Stalling, Pausing
Auto-Feedback Positive, Negative
Allo-Feedback Positive, Negative, Feedback Elicitation

Social Obligations
Management

Initial-Greeting, Return-Greeting
Initial-Self-Intro, Return-Self-Intro
Apology, Accept-Apology
Thanking, Accept-Thanking
Initial-Goodbye, Return-Goodbye

The dialog act dimensions and communicative
functions listed in Table 1 are used as features for
the analysis of between and within speaker silence
instances. Each turn preceding or following a si-
lence is transformed into a feature vector using
one-hot representation for dialog acts.

The vectors encode information such as the fol-
lowing. Feedback, a joined dimension of auto-
feedback and allo-feedback, (fb) = {0, 1}, where
fb=0 represent the absence of feedback dialog acts
in the turn and vice-versa. Similarly, the vec-
tor also includes other dialog act dimensions like
Time Management (tm), and Social Obligations
Management (s). The General dimension is split
into two: (a) information seeking (q) and (b) infor-
mation providing and action discussion functions
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(ac). The motivation behind such a split is to dis-
tinguish between information seeking dialog acts
which impose an expected pattern on its recipient,
i.e an obligation to provide the requested informa-
tion.

Since according to the DiaML annotation stan-
dard a turn can contain several dialog acts, the vec-
tor representation specifically encodes the last di-
alog act of the preceding turn (lact) and the first
dialog act of the turn following the long silence
(fact). Both lact and fact ∈ χ, where as χ =
{Ac, Q, F, TimeM, Ap, Thank, Int, Other, None}.
In the set, χ, Ac represents communicative func-
tions from information providing and action dis-
cussion functions; Q represents Information Seek-
ing functions; F represents Feedback (auto-
feedback and allo-feedback) functions; Apo rep-
resents apology and accept-apology functions;
Thank represents thanking and accept-thanking;
Int represents initial and return greetings, self-
introductions, and goodbyes; Other represents all
the dialog acts not used for the analysis. None, on
the other hand, indicates absence of dialog acts.

The feature vectors of preceding, pr (|pr|=6)
turn, and succeeding (following), su (|su|=6) turn,
are merged to represent a silence instance for cat-
egorization (|sil| = 6 ∗ 2 = 12).

2.3 Unsupervised Annotation of Silence
Function

The described representation of silence instances
is applied for clustering using Cobweb clustering
algorithm (Fisher, 1987) – a well-known concept
formation system designed to model human con-
cept learning. Cobweb constructs clusters using
“concept hierarchy” that optimally and incremen-
tally accounts for the observed regularities on a
set of instances. In other words, given a set of
silence instances, Cobweb discovers a classifica-
tion scheme that covers the patterns with respect
to provided feature vectors. Instead of forming
concepts at a single level of abstraction, Cobweb
groups instances into a classification tree where
leaves represent similar instances, and internal
nodes represent broad concepts. The generality of
a broader concept increases as the nodes approach
the root of the tree. Each cluster is characterized
with a probabilistic description.

The classification tree is constructed incremen-
tally inserting the instances into the tree one by
one. When adding an instance, the algorithm tra-

verses the tree top-down starting from the root of
the tree. At each node, there are four possible op-
erations: (a) insert (b) create (c) merge and (d)
split. These operations are selected with respect
to the highest category utility (CU ) metric (Gluck
and Corter, 1985). The metric is derived from the
categorization studies in cognitive psychology and
is shown in Equation 1.

Category utility, CU , attempts to maximize
both (a) the probability of the instances in the same
category to have feature values in common; and
(b) the probability of the instances in different cat-
egories to have different feature values.

CU(Cl) =
∑

i

∑
j(Pr[fi = vij |Cl]2 − Pr[fi = vij ]2) (1)

In the equation, Pr[fi = vij ] represents the
marginal probability that feature fi has value vij ,
whereas Pr[fi = vij |Cl] represents the condi-
tional probability that feature fi has value vij ,
given the instance belongs in cluster Cl. CU(Cl)
estimates the quality of individual cluster.

To measure the quality of overall clustering of
the silences, we calculate the average category
utility function CU(C1, C2, .., Ck), as shown in
Equation 2.

CU(C1, C2, .., Ck) =
1
k
(
∑

l

Pr[Cl]) (2)

In the equation, k is the total number of categories.
The overfitting is controlled by 1

k .
Therefore, for each set (B,W ), we applied Cob-

web clustering algorithm implemented in (Hall
et al., 2009) with acuityA = 1.0 and cutoff thresh-
old of C = 0.0028.

3 Analysis

3.1 Resulting Clusters
For between-speakers silences (B), we have ob-
tained 24 leave clusters, whereas for within-
speaker silences (W ), we have obtained 26 leave
clusters. The distribution of dialog act sequences
in each cluster is given in Tables 2 and 3.

3.2 Categorization of Silence Functions
Assuming that each cluster represents a specific
function of a silence, the clusters are manually
grouped with respect to their parents in the classi-
fication tree. The manual grouping of silence clus-
ters is performed considering conversation scenar-
ios surrounding the silence events. For instance,
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Table 2: Preceding (column two) and succeeding (column three) turn communicative function sequences
for each clusters and their frequency inside parenthesis for between speaker silences. The first column
of the table represents the classification tree’s leaf id of the corresponding cluster.

Id Preceding turn dialog acts Succeeding turn dialog acts

2

question(19); checkquestion(9); inform ques-
tion(2); inform checkquestion(2); inform au-
topositive question(1); choicequestion(1); au-
topositive checkquestion(1)

answer(12); confirm(11); inform(3); answer in-
form(3); disconfirm(2); confirm inform(2); dis-
confirm answer(1); answer request(1)

3

question(2); initialselfintroduction initialgreeting
returnselfintroduction question(1); initialselfin-
troduction initialgreeting initialselfintroduction
question(1); inform checkquestion(1); choice-
question(1)

other(2); autopositive(2); autopositive return-
greeting stalling inform(1); allopositive(1)

5 question(2) stalling answer(2)
6 question(1) stalling checkquestion(1)

8 initialgreeting initialselfintroduction question(2)
returngreeting returnselfintroduction answer in-
form(1); returngreeting inform(1)

9 initialselfintroduction question(1) returngreeting returnselfintroduction(1)

11

inform(20); request(6); confirm(2); answer(2);
suggest(1); stalling request(1); offer(1); ini-
tialgreeting initialselfintroduction request(1); in-
form none inform(1); answer request(1); answer
autopositive inform(1); agreement(1); addressre-
quest(1)

inform(22); acceptrequest inform(4); inform in-
form(3); confirm(3); acceptrequest(2); inform
question(1); answer request(1); agreement(1);
addressrequest(1); acceptoffer inform stalling(1)

13 autopositive(16); allopositive(1) inform(15); inform request(1); correction(1)
15 other(6) inform(5); suggest(1)
17 answer thanking(1) inform(1)
18 pausing(2); stalling(1); inform stalling(1) inform(2); confirm(1); answer(1)
19 allopositive none(1) inform inform(1)

22
inform(23); answer(2); request(1); correction(1);
confirm(1); acceptrequest inform(1)

autopositive(19); autopositive inform(4); au-
topositive question(3); autopositive checkques-
tion(2); allopositive(1)

25 allopositive(1) autopositive(1)
29 pausing(1) autopositive(1)

31
inform(10); answer(4); confirm(3); request(1);
disconfirm(1); correction(1)

question(12); checkquestion(6); question in-
form(1); question checkquestion(1)

33 autopositive(2) question(2)
34 autopositive(1) question acceptthanking(1)
37 inform(2); confirm(2); offer(1) pausing(4); stalling(1)
38 inform(1) none(1)
43 other(5) other(5)
45 other(1) returnselfintroduction(1)

46
initialgreeting initialselfintroduction question
other(1)

returngreeting(1)

47
inform(2); request(1); other inform(1); de-
clinerequest(1); answer(1); acceptrequest(1)

other(5); other stalling(1); other other ques-
tion(1)

5



Table 3: Preceding (column two) and succeeding (column three) turn communicative function sequences
for each clusters and their frequency inside parenthesis for within speakers silences. The first column of
the table represents the classification tree’s leaf id of the corresponding cluster.

Id Preceding turn dialog acts Succeeding turn dialog acts

2

inform(95); answer(6); request(3); stalling in-
form(2); inform inform(2); correction(2); ques-
tion request(1); offer(1); inform request(1); con-
firm(1)

inform(90); request(5); answer(5); inform in-
form(4); offer(2); inform stalling(2); inform
question(2); suggest(1); inform stalling inform
stalling(1); correction(1); addressrequest(1)

3 none(1) inform(1)
7 pausing(2) question(1); checkquestion(1)
8 autopositive(1) question(1)

9
question(8); checkquestion(3); inform ques-
tion(1)

question(8); checkquestion(3); question in-
form(1)

10 question(1) other(1)
11 question(1) pausing(1)
12 question(1) autopositive autopositive(1)
14 other(1) apology inform(1)
15 other(3) other(3)
16 other(1) autopositive inform(1)
19 pausing(1) pausing(1)
20 inform stalling(1) stalling(1)
21 autopositive pausing(1) pausing autopositive inform(1)
22 stalling(1) other inform(1)
23 autopositive(1) other(1)

24 autopositive(5); autopositive autopositive(1)
autopositive(4); autopositive thanking(1); au-
topositive question(1)

25 autopositive(1) stalling inform(1)
29 inform none(1) none inform(1)
33 stalling(1); pausing(1); other stalling(1) inform(3)
34 autopositive(5) inform(4); inform autopositive question(1)
36 question(4) inform(3); inform inform(1)
37 other(1) inform(1)
39 inform(9) stalling inform(7); stalling(2)

40 inform(7)
question(4); question inform(2); choiceques-
tion(1)

41 inform(2); agreement Null inform(1) autopositive(3)

in a conversation a participant may expect an an-
swer to a question or a contribution from another
speaker that might yield a long silence due to the
time required to prepare an answer. It might take
long to get the information to the query or simply
be an act of noncompliance. This long silence pe-
riod is considered as a failure to contribute to an
ongoing conversation. To repair this speakers may
use strategies such as repeating the query, chang-
ing the topic, or ask for more time to respond.

Below we give example scenarios observed in
the silence cluster groups:
The Between-Speaker Silence cluster groups are:

• A mode of response preparation (RP ): In this
group, there can be two subcategories based on
the type of response given by the speaker after
the silence. The subcategories are:

– Response to the previous turn’s question in
the form of information that includes an an-
swer to the question, a feedback, or asking for

more time to answer. This category includes
clusters RP1={2, 3, 5, 6, 8, 9}.

– A response can also be a question to the
information/feedback provided in the previ-
ous turn. This category includes clusters
RP2={31, 33, 34}.

• A mode of information flow (IF ): These si-
lences can either be a: 1) conversational silences
where both speakers are exchanging informa-
tion or feedback 2) forced silences (deliberate2),
where the current speaker is using a silence as a
tool to force the interlocutor to respond. The
member clusters of this group are IF={11, 13,
15, 17, 18, 19, 22, 25, 29, 37, 38}.
• Silences in Other categories (B − Oth): These

are the silences which are motivated by fac-
tors, such as discourse structuring, not consid-
ered in the study. This group includes clusters
2These silence instances are usually longer. For this study

the threshold for this type of silences is >= 2 seconds.
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B-Oth={43, 45, 46, 47}.
The above-mentioned categories are presented

in Examples 1 and 2. In Example 1, we observe
that the caller is asking the call center operator a
reason behind an action, and the act is followed by
a long silence of 1.41 seconds. After the interval,
the operator is passing some information regard-
ing the earlier query by the caller. From the oper-
ational point of view, the interval might have been
used to either acquire information or to structure
it. Similarly, in RP2 scenario in Example 1, af-
ter the operator informs that the ‘electric power’
will not be activated, the caller is taking a long
silence of 1.38 seconds to respond to the given in-
formation, asking another question. This silence
could have been again used for preparing the an-
swer, or it might be the time taken by the respond-
ing speaker to compose the next action. In Ex-
ample 2, we present a scenario where the silence
category IF is used deliberately to force another
speaker to reply.

The silence in both examples may play other
cognitive functions such as controlling emotional
attitudes. However, as the focus of this study is
to understand the function of long silences in the
information flow, these cognitive functions are not
considered.
Example 1. Example of silence category RP : RP1

caller: al distacco perfetto ora eh eh
su che base mi perdoni

caller: the complete interruption ... perfect! now
ehm ehm due to what reason, excuse me?
(1.14) Category - RP1

operator: ah ascolti qui ci sono una
serie di fatture malgrado

operator: Listen (please) we have here a number of
unpaied bill in spite of

Example of silence category RP : RP2

operator: la luce non gliela riprist
non viene ripristinata

operator: the electric power will not be reactiv will
not be reactivated
(1.38) Category - RP2

caller: ma cosa devo pagare se io ho
gi conguagliato tutto con
trecentoquarantacinque euro mi
perdoni cosa devo pagare la

caller: but what do I have to pay if I have already
paid 345 euros I beg you pardon but what do I
need to pay the

Example 2. Example of silence category IF

caller: [lei deve fare una cosina
lei ha un delle]

caller: [You have to do a small thing you have
some]

operator: [per e se]
operator: [but and if]

caller: belle schermate a disposizione
mi deve aprire la mia ehe il mio
fax inviato il ventitr zero otto
duemiladodici cortesemente

caller: beautiful screens available you have to open
my own and you will find my fax sent on 23rd of
August 2016
(2.12) Category - IF (deliberate
silence)

operator: vediamo subito
operator: let us see immediately

The Within-Speaker Silence cluster groups are:

• Organizational silence (CS): The long pause
used for the purpose of organizing the informa-
tion flow in the conversation This group con-
tains clusters of silences where a speaker is
providing information and the silence between
turns can either be a time taken to think, find in-
formation, or to compose and plan the next turn.
CS={2, 3, 19, 20, 21, 22, 23, 24, 25, 29, 33, 34,
39}.
• Indecision or Hesitation silence (H): In this

groups of silences, speaker is either confused
about some information, needs clarification, or
have some queries. The member clusters of this
groups are H={7, 8, 9, 10, 11, 12, 36, 40}.
• Silences in Other categories (W −Oth): These

are the silences which are motivated by other
factors, not considered for the present study.
This group includes clusters W-Oth={14, 15,
16, 37, 41}.

Example 3. Example of silence category CS and H

caller: non riesco a parl devo
parlarle ho parlato con cinque
suoi colleghi e mi hanno
chiamato due consulenti

caller: I cannot tal ... I need to talk ... I talked with
five colleagues of you and two consultants called
me
(1.16) Category - CS

caller: io oggi pomeriggio devo andare
dall avvocato per denunziarvi
per diecimila euro al giorno di
danni che mi avete arrecato da
stamattina

caller: this afternoon I will go my lawayer for
sueing you due to ten thousand euros in damage
per day due to this morning (power) interruption
(1.65) Category - CS

caller: ehe perch io ho gi pagato
tutto nel

caller: ehm because I already paid all what I due
caller: senso che tutte queste

bollette sono state conguagliate
con una di
trecentoquarantacinque euro
incluso
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caller: because all these bills were paied with
another one of 345 euros including

caller: il mese di luglio e agosto
caller: the months of July and August (as well)

(1.57) Category - CS
caller: ehe avevo gi chiarito il (.)

primo distacco l abbiamo sospeso
mi hanno richiamato perch non
trovate una vostra lettera di
risposta

caller: and I already told this when (.) there was the
first interruption (that) was suspended they
called me because you are not able to find a
reply letter from you
(1.01) Category - H

caller: ora devo (.) parlare con lei o
devo parlare con qualcuno sopra
di lei mi perdoni se sono
abbastanza

caller: now (I) have (.) to call with you or have (I)
to call with you boss? sorry but (I) am enough

In Example 3, we present dialog scenarios with
assigned categories. It is observed that the top
three long silence intervals are used either to plan
the next turn or to take the time to think. Whereas
in the last (shortest) silence of 1.01 second, before
threatening the operator, the caller either hesitates,
feels bad, or is not sure whether a threat is going
to work.

The duration distribution statistics for each cate-
gory of silence functions are presented in Tables 4
and 5. For between-speaker silence categories, in
Table 4, it is observed that median duration of si-
lence categoryRP2 along withB−Oth are longer
compared to RP1 and IF . As for within-speaker
silence categories, it is observed that median dura-
tion of H categories is longer than CS. The ob-
servation is explained as the speakers might need
more time to take the next turn when s/he is facing
indecision, hesitation, or need clarification about
something.

Table 4: Statistics of between-speaker long si-
lences categories.

Between-Speaker Silence RP1 RP2 IF B-Oth
1st Quadrant 1.21 1.33 1.27 1.36
Median 1.37 1.76 1.59 1.96
3rd Quadrant 1.62 2.67 2.13 2.93
No. Instances 47 23 107 12

Total 189

4 Conclusion

The main focus of this analytical study is to ex-
plore the functions of long silence within and be-
tween speakers towards the information flow in a
conversation. In an attempt to find such functions,
the study utilizes the sequences of dialog act tags

Table 5: Statistics of within-speaker long silences
categories.

Within-Speaker Silence CS H W-Oth
1st Quadrant 1.13 1.10 1.32
Median 1.36 1.42 1.63
3rd Quadrant 1.76 2.63 2.06
No. Instances 145 29 9

Total 183

present in the left and right context (concerning
speaker turns) surrounding the silence itself, and
designs feature vector to represent a long silence.
These designed feature vectors are later used to
cluster silences using a well-known hierarchical
concept formation system (Cobweb), which is de-
signed to model different aspects of human con-
cept learning. Following the clustering, we have
manually grouped the clusters into functional cate-
gories and have studied their significance, and du-
ration distribution.

The functions of silence we observe vary from
response preparation to hesitation to asking some
queries. It is also observed that sometimes these
long silences are used deliberately to get a forced
response from another speaker. It can also indicate
the indecisiveness of the current speaker.

Even though most of the research from speech
communities ignores the silences, our observation
shows that by considering the function of long
silences, we can better understand the informa-
tion flow in the conversation. As silences do con-
tribute to explaining the information presented by
the speech signals. Silence also has the potential to
explain long term behavioral traits and short term
states.

This study is our first attempt to analyse, under-
stand and group functions of long silence in dyadic
conversations. The observed functions, such as
hesitations, are also related to another speech phe-
nomenon – disfluencies. In future work we plan to
address the relationship between speech disfluen-
cies and long silences. This analysis will help us to
understand the factors and contexts that represent
cues of the silence function which is indeed nec-
essary to design computational models for such a
simple yet informative event of human conversa-
tion.
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Abstract

This paper presents our novel method to
encode word confusion networks, which
can represent a rich hypothesis space of
automatic speech recognition systems, via
recurrent neural networks. We demon-
strate the utility of our approach for the
task of dialog state tracking in spoken
dialog systems that relies on automatic
speech recognition output. Encoding con-
fusion networks outperforms encoding the
best hypothesis of the automatic speech
recognition in a neural system for dialog
state tracking on the well-known second
Dialog State Tracking Challenge dataset.

1 Introduction

Spoken dialog systems (SDSs) allow users to nat-
urally interact with machines through speech and
are nowadays an important research direction, es-
pecially with the great success of automatic speech
recognition (ASR) systems (Mohamed et al.,
2012; Xiong et al., 2016). SDSs can be designed
for generic purposes, e.g. smalltalk (Weizenbaum,
1966; Vinyals and Le, 2015)) or a specific task
such as finding restaurants or booking flights (Bo-
brow et al., 1977; Wen et al., 2016). Here, we fo-
cus on task-oriented dialog systems, which assist
the users to reach a certain goal.

Task-oriented dialog systems are often imple-
mented in a modular architecture to break up the
complex task of conducting dialogs into more
manageable subtasks. Williams et al. (2016) de-
scribe the following prototypical set-up of such a
modular architecture: First, an ASR system con-
verts the spoken user utterance into text. Then,
a spoken language understanding (SLU) module
extracts the user’s intent and coarse-grained se-
mantic information. Next, a dialog state tracking

(DST) component maintains a distribution over
the state of the dialog, updating it in every turn.
Given this information, the dialog policy manager
decides on the next action of the system. Finally, a
natural language generation (NLG) module forms
the system reply that is converted into an audio
signal via a text-to-speech synthesizer.

Error propagation poses a major problem in
modular architectures as later components depend
on the output of the previous steps. We show
in this paper that DST suffers from ASR errors,
which was also noted by Mrksic et al. (2017). One
solution is to avoid modularity and instead per-
form joint reasoning over several subtasks, e.g.
many DST systems directly operate on ASR out-
put and do not rely on a separate SLU mod-
ule (Henderson et al., 2014c; Mrksic et al., 2017;
Perez, 2017). End-to-end systems that can be di-
rectly trained on dialogs without intermediate an-
notations have been proposed for open-domain di-
alog systems (Vinyals and Le, 2015). This is
more difficult to realize for task-oriented systems
as they often require domain knowledge and exter-
nal databases. First steps into this direction were
taken by Wen et al. (2016) and Zhao and Eskénazi
(2016), yet these approaches do not integrate ASR
into the joint reasoning process.

We take a first step towards integrating ASR
in an end-to-end SDS by passing on a richer hy-
pothesis space to subsequent components. Specif-
ically, we investigate how the richer ASR hypoth-
esis space can improve DST. We focus on these
two components because they are at the begin-
ning of the processing pipeline and provide vital
information for the subsequent SDS components.
Typically, ASR systems output the best hypothe-
sis or an n-best list, which the majority of DST
approaches so far uses (Williams, 2014; Hender-
son et al., 2014c; Mrksic et al., 2017; Zilka and
Jurcı́cek, 2015). However, n-best lists can only
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represent a very limited amount of hypotheses. In-
ternally, the ASR system maintains a rich hypoth-
esis space in the form of speech lattices or confu-
sion networks (cnets)1.

We adapt recently proposed algorithms to
encode lattices with recurrent neural networks
(RNNs) (Ladhak et al., 2016; Su et al., 2017) to en-
code cnets via an RNN based on Gated Recurrent
Units (GRUs) to perform DST in a neural encoder-
classifier system and show that this outperforms
encoding only the best ASR hypothesis. We are
aware of two DST approaches that incorporate
posterior word-probabilities from cnets in addition
to features derived from the n-best lists (Williams,
2014; Vodolán et al., 2017), but to the best of our
knowledge, we develop the first DST system di-
rectly operating on cnets.

2 Proposed Model

Our model depicted in Figure 1 is based on an in-
cremental DST system (Zilka and Jurcı́cek, 2015).
It consists of an embedding layer for the words
in the system and user utterances, followed by a
fully connected layer composed of Rectified Lin-
ear Units (ReLUs) (Glorot et al., 2011), which
yields the input to a recurrent layer to encode the
system and user outputs in each turn with a soft-
max classifier on top. ⊕ denotes a weighted sum
cj of the system dialog act sj and the user utter-
ance uj , where Ws,Wu, and b are learned param-
eters:

cj = Wssj +Wuuj + b (1)

Independent experiments with the 1-best ASR
output showed that a weighted sum of the sys-
tem and user vector outperformed taking only the
user vector uj as in the original model of Zilka
and Jurcı́cek (2015). We chose this architecture
over other successful DST approaches that oper-
ate on the turn-level of the dialogs (Henderson
et al., 2014c; Mrksic et al., 2017) because it pro-
cesses the system and user utterances word-by-
word, which makes it easy to replace the recurrent
layer of the original version with the cnet encoder.

Our cnet encoder is inspired from two recently
proposed algorithms to encode lattices with an
RNN with standard memory (Ladhak et al., 2016)
and a GRU-based RNN (Su et al., 2017). In
contrast to lattices, every cnet state has only

1Mangu et al. (2000) show that every speech lattice can
be converted to a cnet without losing relevant hypotheses.
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Figure 1: The proposed model with GRU-based
cnet encoder for a dialog with three turns. dt are
one-hot word vectors of the system dialog acts;
wti correspond to the word hypotheses in the
timesteps of the cnets of the user utterances;
sj , uj are the cnet GRU outputs at the end of each
system or user utterance.

one predecessor and groups together the alter-
native word hypotheses of a fixed time interval
(timestep). Therefore, our cnet encoder is con-
ceptually simpler and easier to implement than
the lattice encoders: The recurrent memory only
needs to retain the hidden state of the previous
timestep, while in the lattice encoder the hid-
den states of all previously processed lattice states
must be kept in memory throughout the encod-
ing process. Following Su et al. (2017), we use
GRUs as they provide an extended memory com-
pared to plain RNNs2. The cnet encoder reads
in one timestep at a time as depicted in Fig-
ure 2. The key idea is to separately process each
of the k word hypotheses representations xti in
a timestep with the standard GRU to obtain k

2Apart from GRUs, long short-term memory (LSTM)
cells (Hochreiter and Schmidhuber, 1997) are a more tradi-
tional way to extend the recurrent memory. It is still debated
which recurrent memory architecture performs best. GRUs
are conceptually simpler and have been shown to outper-
form GRUs for speech signal sequence processing (Chung
et al., 2014) and for language modeling with recurrent lay-
ers smaller than 200 units (Irie et al., 2016). As our training
data is limited, we train models with smaller recurrent layers
and therefore use GRUs. Yet, we note that the cnet encoding
method can be realized with LSTM cells analogously.
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Figure 2: Encoding k alternative hypotheses at
timestep t of a cnet.

hidden states hti as defined in Equation (2)-(5)3

where Wz, Uz, bz,Wh, Uh, bh,Wr, Ur, and br are
the learned parameters of the GRU update, candi-
date activation and reset gate. To get the hidden
state ht of the timestep, the hypothesis-specific
hidden states hti are combined by a pooling func-
tion (Equation 6).

hti = zti · ht−1 + (1− zti) · h̃ti (2)

zti = σ(Wzxti + Uzht−1 + bz) (3)

h̃ti = tanh(Whxti + Uh(rti · ht−1) + bh) (4)

rti = σ(Wrxti + Urht−1 + br) (5)

ht = fpool(ht0 . . . htk−1
) (6)

We experiment with the two different pooling
functions fpool for the k hidden GRU states hti

of the alternative word hypotheses that were used
by Ladhak et al. (2016):

average pooling faverage =
∑k

i=1 hti
k

weighted pooling fweighted =
∑k

i=1 scorei · hti ,
where scorei is the confidence score of xti .

Instead of the system output in sentence form
we use the dialog act representations in the form
of 〈dialog-act, slot, value〉 triples, e.g. ‘inform
food Thai’, which contain the same informa-
tion in a more compact way. Following Mrk-
sic et al. (2017), we initialize the word embed-
dings with 300-dimensional semantically special-
ized PARAGRAM-SL999 embeddings (Wieting
et al., 2015). The hyper-parameters for our model
are listed in the appendix.

3Throughout the paper · denotes an element-wise product.

The cnet GRU subsumes a standard GRU-based
RNN if each token in the input is represented as a
timestep with a single hypothesis. We adopt this
method for the system dialog acts and the baseline
model that encode only the best ASR hypothesis.

3 Data

In our experiments, we use the dataset provided
for the second Dialog State Tracking Challenge
(DSTC2) (Henderson et al., 2014a) that consists
of user interactions with an SDS in the restaurant
domain. It encompasses 1612, 506, 1117 dialogs
for training, development and testing, respectively.
Every dialog turn is annotated with its dialog state
encompassing the three goals for area (7 values),
food (93 values) and price range (5 values) and
8 requestable slots, e.g. phone and address. We
train on the manual transcripts and the cnets pro-
vided with the dataset and evaluate on the cnets.

Some system dialog acts in the DSTC2 dataset
do not correspond to words and thus were not in-
cluded in the pretrained word embeddings. There-
fore, we manually constructed a mapping of dialog
acts to words contained in the embeddings, where
necessary, e.g. we mapped expl-conf to explicit
confirm.

In order to estimate the potential of improv-
ing DST by cnets, we investigated the coverage
of words from the manual transcripts for different
ASR output types. As shown in Table 1, cnets im-
prove the coverage of words from the transcripts
by more than 15 percentage points over the best
hypothesis and more than five percentage points
over the 10-best hypotheses.

However, the cnets provided with the DSTC2
dataset are quite large. The average cnet consists
of 23 timesteps with 5.5 hypotheses each, amount-
ing to about 125 tokens, while the average best
hypothesis contains four tokens. Manual inspec-
tion of the cnets revealed that they contain a lot of
noise such as interjections (uh, oh, ...) that never
appear in the 10-best lists. The appendix provides
an exemplary cnet for illustration. To reduce the
processing time and amount of noisy hypotheses,
we remove all interjections and additionally exper-
iment with pruning hypotheses with a score be-
low a certain threshold. As shown in Table 1, this
does not discard too many correct hypotheses but
markedly reduces the size of the cnet to an average
of seven timesteps with two hypotheses.
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1-best 10-best cnet pruned cnet

all words 69.3 78.6 85.7 83.1
slots/values 69.8 75.6 82.4 80.6

Table 1: Coverage of words from the manual tran-
scripts in the DSTC2 development set of differ-
ent batch ASR output types (%). In the pruned
cnet interjections and hypotheses with scores be-
low 0.001 were removed.

4 Results and Discussion

We report the joint goals and requests accuracy
(all goals or requests are correct in a turn) ac-
cording to the DSTC2 featured metric (Hender-
son et al., 2014a). We train each configuration
10 times with different random seeds and report
the average, minimum and maximum accuracy.
To study the impact of ASR errors on DST, we
trained and evaluated our model on the differ-
ent user utterance representations provided in the
DSTC2 dataset. Our baseline model uses the best
hypothesis of the batch ASR system, which has
a word error rate (WER) of 34% on the DSTC2
test set. Most DST approaches use the hypotheses
of the live ASR system, which has a lower WER
of 29%. We train our baseline on the batch ASR
outputs as the cnets were also produced by this
system. As can be seen from Table 2, the DST
accuracy slightly increases for the higher-quality
live ASR outputs. More importantly, the DST per-
formance drastically increases, when we evaluate
on the manual transcripts that reflect the true user
utterances nearly perfectly.

test data goals requests

train on transcripts + batch ASR (baseline)

batch ASR 63.6 66.6
58.7 96.8 97.1

96.5

train on transcripts + live ASR

live ASR 63.8 67.0
60.2 97.5 97.7

97.2
transcripts 78.3 82.4

74.3 98.7 99.0
98.0

Table 2: DSTC2 test set accuracy for 1-best ASR
outputs of ten runs with different random seeds in
the format average maximum

minimum .

4.1 Results of the Model with Cnet Encoder

Table 3 displays the results for our model evalu-
ated on cnets for increasingly aggressive pruning

levels (discarding only interjections, additionally
discarding hypotheses with scores below 0.001
and 0.01, respectively). As can be seen, us-
ing the full cnet except for interjections does not
improve over the baseline. We believe that the
share of noisy hypotheses in the DSTC2 cnets
is too high for our model to be able to concen-
trate on the correct hypotheses. However, when
pruning low-probability hypotheses both pooling
strategies improve over the baseline. Yet, aver-
age pooling performs worse for the lower prun-
ing threshold, which shows that the model is still
affected by noise among the hypotheses. Con-
versely, the model can exploit a rich but noisy hy-
pothesis space by weighting the information re-
tained from each hypothesis: Weighted pooling
performs better for the lower pruning threshold
of 0.001 with which we obtain the highest re-
sult overall, improving the joint goals accuracy
by 1.6 percentage points compared to the base-
line. Therefore, we conclude that is beneficial to
use information from all alternatives and not just
the highest scoring one but that it is necessary to
incorporate the scores of the hypotheses and to
prune low-probability hypotheses. Moreover, we
see that an ensemble model that averages the pre-
dictions of ten cnet models trained with different
random seeds also outperforms an ensemble of ten
baseline models.

Although it would be interesting to compare the
performance of cnets to full lattices, this is not
possible with the original DSTC2 data as there
were no lattices provided. This could be inves-
tigated in further experiments by running a new
ASR system on the DSTC2 dataset to obtain both
lattices and cnets. However, these results will not
be comparable to previous results on this dataset
due to the different ASR output.

4.2 Comparison to the State of the Art

The current state of the art on the DSTC2 dataset
in terms of joint goals accuracy is an ensemble
of neural models based on hand-crafted update
rules and RNNs (Vodolán et al., 2017). Besides,
this model uses a delexicalization mechanism that
replaces mentions of slots or values from the
DSTC2 ontology by a placeholder to learn value-
independent patterns (Henderson et al., 2014c,b).
While this approach is suitable for small domains
and languages with a simple morphology such as
English, it becomes increasingly difficult to locate
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method goals requests

1-best baseline 63.6 66.6
58.7 96.8 97.1

96.5

cnet - no pruning

weighted pooling 63.7 65.6
61.6 96.7 97.0

96.3

cnet - score threshold 0.001

average pooling 63.7 66.4
60.0 96.6 96.8

96.0
weighted pooling 65.2 68.5

59.1 97.0 97.4
96.6

cnet - score threshold 0.01

average pooling 64.6 67.9
59.7 96.9 97.2

96.5
weighted pooling 64.7 68.4

62.2 97.1? 97.3
96.9

ensemble models

baseline 69.7 96.7
cnet 71.4 97.2

results from related work

Vodolán et al. (2017) 80.0 -
Williams (2014) 78.4 98.0
Mrksic et al. (2017) 73.4 96.5

Table 3: DSTC2 test set accuracy of ten
runs with different random seeds in the format
average maximum

minimum . ? denotes a statistically signif-
icant higher result than the baseline (p < 0.05,
Wilcoxon signed-rank test with Bonferroni correc-
tion for ten repeated comparisons). The cnet en-
semble corresponds to the best cnet model with
pruning threshold 0.001 and weighted pooling.

words or phrases corresponding to slots or values
in wider domains or languages with a rich mor-
phology (Mrksic et al., 2017) and we therefore ab-
stained from delexicalization.

The best result for the joint requests was ob-
tained by a ranking model based on hand-crafted
features, which relies on separate SLU systems be-
sides ASR (Williams, 2014). SLU is often cast
as sequence labeling problem, where each word in
the utterance is annotated with its role in respect
to the user’s intent (Raymond, 2007; Vu et al.,
2016), requiring training data with fine-grained
word-level annotations in contrast to the turn-level
dialog state annotations. Furthermore, a separate
SLU component introduces an additional set of pa-
rameters to the SDS that has to be learned. There-
fore, it has been argued to jointly perform SLU and
DST in a single system (Henderson et al., 2014c),
which we follow in this work.

As a more comparable reference for our set-
up, we provide the result of the neural DST sys-
tem of Mrksic et al. (2017) that like our approach
does not use outputs of a separate SLU system nor
delexicalized features. Our ensemble models out-
perform Mrksic et al. (2017) for the joint requests
but are a bit worse for the joint goals. We stress
that our goal was not to reach for the state of the
art but show that DST can benefit from encoding
cnets.

5 Conclusion

As we show in this paper, ASR errors pose a ma-
jor obstacle to accurate DST in SDSs. To re-
duce the error propagation, we suggest to exploit
the rich ASR hypothesis space encoded in cnets
that contain more correct hypotheses than conven-
tionally used n-best lists. We develop a novel
method to encode cnets via a GRU-based RNN
and demonstrate that this leads to improved DST
performance compared to encoding the best ASR
hypothesis on the DSTC2 dataset.

In future experiments, we would like to explore
further ways to leverage the scores of the hypothe-
ses, for example by incorporating them as an inde-
pendent feature rather than a direct weight in the
model.
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A. Hyper-Parameters

parameter value
training epochs 20 (requests), 50 (area,

price range), 100 (food)
optimizer Adam
initial learning rate 0.001
training batch size 10 dialogs
λ of l2 regularization 0.001
dropout rate 0.5
embeddings pretrained

300-dimensional
PARAGRAM-SL999
embeddings

# units GRU 100
# units dense layer 300
size of the system
and user vector
combination matrix

50

user utterance type
training

transcript + cnet

user utterance type
testing

cnet
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B. Cnet from the DSTC2 Dataset

start end hypotheses with scores

1 0.0328125 0.0492188 !null (-0.0001) uh (-31.83215) ah (-32.41007) i (-34.84077) oh (-40.73034) a (-41.20651)
2 0.0492188 0.065625 !null (-0.0001) i (-36.65728) uh (-48.94583) ah (-52.79816) oh (-55.63619)
3 0.065625 0.0820312 !null (-0.0001) oh (-47.15494)
4 0.0820312 0.0984375 !null (-0.0001) and (-47.59002)
5 0.0984375 0.13125 !null (-0.0001) ah (-33.03135) uh (-39.74279) i’m (-41.90521) i (-42.4907) ok (-42.98212) and

(-43.31765) can (-45.37124)
6 0.13125 0.1476562 !null (-0.0001) um (-30.17054) i’m (-32.94894) uh (-35.07708) i (-36.82227) can (-36.89635)

and (-36.99255) ah (-43.84253)
7 0.1476562 0.1640625 !null (-0.0001) ah (-41.90521)
8 0.1640625 0.196875 !null (-0.0001) and (-31.41877) ah (-33.03021) i (-34.15576) um (-37.12041) i’m (-37.5037)

uh (-40.89799) can (-42.66815)
9 0.196875 0.2296875 !null (-0.0001) ok (-37.41767) i (-43.27491)
10 0.2296875 0.2625 !null (-0.0001) uh (-28.98055) and (-30.48886) i (-30.50464) ah (-31.02539) can (-31.49024) a

(-31.74998) um (-39.56715) i’m (-39.6478)
11 0.2625 0.2707031 !null (-0.0001) a (-48.38457)
12 0.2707031 0.2789062 !null (-0.0001) i (-45.51492)
13 0.2789062 0.2953125 !null (-0.0001) uh (-37.77175)
14 0.2953125 0.328125 !null (-0.0001) uh (-22.47343) and (-24.25971) i (-25.13368) can (-31.76437) um (-32.11736)

oh (-32.22958) is (-32.77696) ah (-36.18502)
15 0.328125 0.3445312 !null (-0.0001) ah (-25.74752) uh (-29.74647) i (-35.53291) um (-37.89059) oh (-40.87821)
16 0.3445312 0.3609375 !null (-0.0001) uh (-21.97038) oh (-31.83063) ah (-31.96235) i (-42.61901)
17 0.3609375 0.39375 !null (-0.0001) ah (-24.38169) and (-24.39148) ok (-25.08438) i (-29.82585) can (-30.21743)

i’m (-33.53017)
18 0.39375 0.525 !null (-0.0001) uh (-23.14362) i (-24.16806) can (-24.21132) um (-24.52006) it (-29.71162) ok

(-31.79314) ah (-33.52439) and (-36.14101)
19 0.525 0.590625 !null (-0.0001) ah (-52.30994)
20 0.590625 0.65625 !null (-0.0001) uh (-26.81306)
21 0.65625 0.7875 !null (-0.0001) uh (-17.00693) can (-18.18777) i (-21.7525) and (-22.92453) a (-23.86453) in

(-26.00351) ok (-32.25924) ah (-33.28463) it (-37.21361) oh (-45.34864)
22 0.7875 0.8039062 !null (-0.0001) i (-18.35259) and (-18.3801) a (-19.56405) it (-20.65148) is (-20.78921) uh

(-22.80336) ok (-23.32806) can (-24.81112) oh (-28.52324)
23 0.8039062 0.8203125 !null (-0.0001) i (-32.22319)
24 0.8203125 0.853125 !null (-0.0001) uh (-9.748239) i (-12.90367) ah (-15.49612) ok (-15.62111) can (-19.96378)

and (-23.52033)
25 0.853125 0.8859375 !null (-0.0001) and (-10.25172) uh (-10.51098) i (-14.77064) ok (-17.1938) it (-17.42765) ah

(-24.74307)
26 0.8859375 0.91875 !null (-0.0001) ok (-10.7207) and (-14.63778) i (-17.40079)
27 0.91875 0.984375 !null (-0.005078796) and (-5.305283) ok (-9.687913) can (-10.20153) is (-13.44094) uh (-

17.34175) where (-23.62194)
28 0.984375 1.05 !null (-0.009671085) ok (-5.591656) could (-5.726142) can (-5.96063) and (-9.760586) it (-

17.42122)
29 1.05 1.13 i (-0.003736897) !null (-5.591568) i’d (-14.10718) ok (-20.44036) could (-21.03084)
30 1.13 1.21 !null (-0.003736222) i (-5.59171) could (-15.09615) i’d (-15.67228) thank (-16.10791) it (-

16.47987)
31 1.21 1.34 don’t (-0.0001) !null (-14.78975) know (-24.44728) gone (-27.63221) i (-28.97229) a (-

32.95747) go (-41.58155) da (-47.35928)
32 1.34 1.405 !null (-0.0001) don’t (-14.78604) i (-23.63712) a (-24.3221) are (-25.11523) it (-27.08631) uh

(-31.06854) of (-32.07071)
33 1.405 1.4375 !null (-0.0001) of (-17.31417) a (-22.29353) ok (-25.30747) i (-30.73294) are (-31.25772)
34 1.4375 1.47 !null (-0.0001) tv (-24.90913) a (-31.64189)
35 1.47 1.5975 care (-0.0001) t (-13.25217) i (-16.79167) to (-19.88062) !null (-22.45499)
36 1.5975 1.725 !null (-0.0001) care (-15.73215)
37 1.725 1.78875 !null (-0.002474642) for (-6.446757) of (-7.396389) food (-8.225521) care (-12.98698) if (-

13.04223) and (-16.05245) i (-16.57308) kind (-16.92007) uh (-17.26407) a (-18.45659) or
(-18.46813) are (-18.88889) tv (-27.09801)

38 1.78875 1.8525 !null (-0.0001) i (-13.25853) in (-14.35854) of (-17.30617) uh (-20.08914) and (-20.30067) tv
(-21.15766) a (-25.55673)

39 1.8525 1.91625 !null (-0.0004876809) the (-7.78335) food (-9.733769) for (-11.98406) i (-12.23129) i’m (-
14.38366) of (-18.23437) and (-19.87061)

40 1.91625 1.98 !null (-0.0001) of (-11.92066) the (-11.98383) food (-12.77184) for (-14.38366)

Table 4: Cnet from the DSTC2 development set of the session with id voip-db80a9e6df-
20130328 230354. The transcript is i don’t care, which corresponds the best hypothesis of both ASR
systems. Every timestep contains the hypothesis that there is no word (!null).
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Abstract 

Written sentences can be more 

ambiguous than spoken sentences. 

We investigate this difference for two 

different types of ambiguity: 

prepositional phrase (PP) attachment 

and sentences where the addition of 

commas changes the meaning. We 

recorded a native English speaker 

saying several of each type of 

sentence both with and without 

disambiguating contextual 

information.  These sentences were 

then presented either as text or audio 

and either with or without context to 

subjects who were asked to select the 

proper interpretation of the sentence. 

Results suggest that comma-

ambiguous sentences are easier to 

disambiguate than PP-attachment-

ambiguous sentences, possibly due to 

the presence of clear prosodic 

boundaries, namely silent pauses. 

Subject performance for sentences 

with PP-attachment ambiguity 

without context was 52% for text 

only while it was 72.4% for audio 

only, suggesting that audio has more 

disambiguating information than text. 

Using an analysis of acoustic features 

of two PP-attachment sentences, a 

simple classifier was implemented to 

resolve the PP-attachment ambiguity 

being early or late closure with a 

mean accuracy of 80%. 

1 Introduction 

There are different kinds of ambiguities in 

sentence construction, which can be challenging 

for sentence processing, both in speech and in 

text. Such ambiguities include structural 

ambiguities where there can be multiple parse 

trees for the same sentence. This includes 

coordination scope ambiguity, such as: 

old men and women 

which can  be parsed as either of the following 

trees with different meanings: 

 

Another example is noun phrase ambiguity, 

such as: 

new project documents 

which can be parsed as either of the following 

trees, again with different meanings: 

 

 

In speech, prosody has been shown to resolve 

certain ambiguities when the speaker is able to 

encode this information (Snedeker and 

Trueswell, 2003). In order to ensure that the 

speaker is able to do so, listening tests sometimes 

engage professional speakers, such as radio 

announcers, to read the sentence for maximum 

clarity (Snedeker and Trueswell, 2003).  

In particular, Lehiste et al. (1976) found that 

the duration of words can resolve certain 

ambiguities reliably, specifically that syntactic 

boundaries can be perceived by listeners if the 

duration of the interstress interval at a boundary 

is increased. Price et al. (1991) found that some, 

but not all, ambiguities can be resolved on the 

basis of prosodic differences, where the 
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disambiguation is related more to the presence of 

boundaries and to some extent the prominence of 

certain words. However, when it comes to 

spontaneous everyday speech, especially by 

untrained speakers, Tree et al. (2000) found that 

although listeners can use prosody to resolve 

ambiguities, contextual information tends to 

overwhelm it when present.  Krajalic and 

Brennan (2005) point out that results prior to 

their own study provide mixed evidence for 

whether speakers spontaneously and reliably 

produce prosodic cues that resolve syntactic 

ambiguities. 

In text, punctuation can sometimes 

disambiguate the desired meaning. For example, 

the sentence: 

1: A woman without her man is nothing 

can mean: 

1a: A woman, without her man, is nothing. 

1b: A woman, without her, man is nothing. 

The insertion of commas changes the meaning 

of the sentence so that it is not ambiguous when 

it is read. When each version is spoken, speakers 

also may encode cues to guide the listeners to the 

intended meaning.  Typical automatic speech 

recognition output does not include punctuation, 

leading to transcripts that are ambiguous in this 

regard, even when the original speech might not 

be. One solution to this problem  is to integrate a 

separate system for predicting punctuation from 

speech. For example, this has been done using 

neural network giving weights to different 

prosodic cues, where it was possible to predict 

54% of the commas (Levy et al., 2012). Other 

methods include punctuation generation from 

prosodic cues to improve ASR output (Kim and 

Woodland, 2001). This is part of recovering the 

“structural meta-data” from speech, which also 

includes disfluencies and other sentence 

boundaries (Liu et al, 2006). 

One of the most important ambiguities in both 

speech and text is prepositional phrase 

attachment (PP-attachment) ambiguity. A 

famous examples of this ambiguity is: 

2: I saw the boy with the telescope. 

In this case, no punctuation can help to resolve 

this structural ambiguity of whether the speaker 

or the boy had the telescope: 

2a: I saw the boy [with the telescope] 

2b: I saw [the boy with the telescope] 

Snedeker and Trueswell (2003) have shown 

that this kind of ambiguity can be resolved by 

prosody in spoken sentences, cuing the different 

interpretations by the duration of the preposition 

itself (in this case: “with”), as well as the 

duration of the following phrase (in this case: 

“the telescope”).  

Because prosodic cues, when encoded by the 

speaker, can help guide the parsing of a 

structurally ambiguous sentence, we here 

explicitly compare the abilities of human 

listeners to disambiguate sentences in both 

written and spoken form, while starting to build a 

machine learning system that can perform the 

same task at least as well. 

2 Hypothesis 

The main hypothesis in this research is that 

when there is ambiguity in any sentence and the 

speaker is aware of the correct reading, they may 

convey their knowledge of the correct reading 

using certain prosodic cues. As Snedeker and 

Trueswell (2003) put it: “informative prosodic 

cues depend upon speaker's knowledge of the 

situation: speakers provide prosodic cues when 

needed; listeners use these prosodic cues when 

present.” 

 

Therefore, for sentences with comma 

ambiguity, given the correct punctuation, we can 

expect speakers to encode prosodic cues in their 

speech accordingly, and we can expect listeners 

to process these cues in their understanding of 

the sentence. For sentences with PP-attachment 

ambiguity, given a preceding disambiguating 

sentence,  speakers may encode prosodic cues to 

indicate the intended meaning. 

3 Goal 

The ultimate goal of this research is to use 

prosody to improve parsing of ambiguous spoken 

sentences, allowing extracting information from 

speech that is not available from text only. This 

involves analyzing human disambiguation 
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behavior for scripted sentences while building a 

machine learning system to automatically 

perform this disambiguation. 

4 Data 

Two types of sentences were investigated: 

sentences with comma ambiguities and sentences 

with PP-attachment ambiguity. We constructed 

12 pairs of sentences with comma ambiguity and 

14 pairs of sentences with PP-attachment 

ambiguity, as shown in the appendix.  

 

4.1 Comma-ambiguous 

sentences 

An example of a pair of comma-ambiguous 

sentences is: 
3a: John, said Mary, was the nicest person at the 

party. 

3b: John said Mary was the nicest person at the 

party. 

These sentences are presented individually to 

the subject along with the question: 
Who was said to be the nicest person at the party?  

A: John   

B: Mary 

The correct answer for sentence 3a is A and 

for 3b is B. 

4.2 PP-attachment sentences 

An example of a pair of PP-attachment 

ambiguous sentences is: 
4a: One of the boys got a telescope. I saw the boy 

with the telescope. 

4b:- I have a new telescope. I saw the boy with the 

telescope. 

The initial italic sentence guides the speaker to 

the intended reading and in different 

experimental conditions were included or not 

included in the presentations to listening or 

reading subjects to measure their 

informativeness. The correct parse of sentence 4a 

exhibits “late closure”: 

 
 

The correct parse of sentence 4b exhibits early 

closure: 

 

These sentences are presented individually to 

the subject along with the question: 
 

Who has the telescope? 

A: The boy 

B: The speaker  

 

The correct answer for sentence 4a is A and 

for 4b is B. 

5 Method 

5.1 Speech Data Collection 

A native speaker of English recorded the 

complete list of 26 unique sentences, through a 

custom web interface implemented using 

Javascript and Python CGI. Each sentence was 

repeated five times and the 130 sentence 

instances were randomized before presentation to 

the speaker.  PP-attachment ambiguous sentences 

were presented to the speaker with preceding 

context sentences, as in 4a and 4b.  For the below 

experiments, all of the sentences with their text 

and audio are presented to the listeners. 

5.2 Listener interface  

Listener responses were also collected via 

another custom web interface. An example 

interface page is shown below: 
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5.3 Listener tasks 

Sentences were presented to subjects either in 

written form or in recorded audio form.  PP-

attachment sentences were presented either with 

or without the preceding context sentence both 

for written and audio modalities. The tasks were 

presented in the following order, each one 

including a randomized ordering of all of the 

sentences: 

1- Comma-ambiguity - Text 

2- Comma-ambiguity - Audio 

3- PP-attachment ambiguity with context - 

Text 

4- PP-attachment ambiguity with context - 

Audio 

5- PP-attachment ambiguity without context - 

Text 

6- PP-attachment ambiguity without context - 

Audio 

 

This order aims to familiarize the listeners 

gradually with the task by showing the text 

sentences first, which also serves as benchmark 

to detect any biases or confusion regarding the 

sentence itself. It then proceeds to the 

corresponding audio. The sequence follows a 

gradual increase of difficulty, saving for last the 

most difficult task: PP-attachment 

disambiguation without context in text and then 

audio. 

6 Results 

Four listeners participated in the study.  Two 

of them were native English speakers. Their 

accuracy in identifying which of two possible 

meanings the speaker was cued is shown in the 

following table. 
 

Ambiguity Modality Accuracy 

Comma Text 99.3% 

Comma Audio 94.7% 

PP-attachment with context Text 93.1% 

PP-attachment with context Audio 97.1% 

PP-attachment without context Text 52.0% 

PP-attachment without context Audio 74.4% 

 

These results show that humans are quite good 

at interpreting comma-ambiguous sentences in 

both text and speech modalities. For PP-

attachment, they also perform well for both 

modalities when the preceding context sentence 

is provided.  Without the context sentence, they 

perform at chance for text, but much better than 

chance for speech, showing that there is, indeed, 

additional information present in the speech. 

Because performance is at ceiling for comma-

ambiguity, we focus our subsequent analysis on 

the PP-attachment sentences. 

 

The following table shows results for each of 

the PP-attachments sentences presented as 

speech without context.  All productions of each 

version of each sentence are grouped together. 
 

Sentence Accuracy N 

1:  I saw the boy with the telescope. 68.9% 29 

2:  I saw the man with the new glasses. 78.6% 28 

3: San Jose cops kill a man with a knife. 89.3% 28 

4: They discussed the mistakes in the 

second meeting. 
70.9% 31 

5: The lawyer contested the proceedings in 

the third hearing. 
63.3% 31 

6: He used the big wrench in the car. 82.1% 28 

7: I waited for the man in the red car. 68.9% 29 

 

In order to investigate the role of prosodic 

features in this disambiguation, we performed a 

preliminary semi-automatic analysis of the 

recordings of two of these sentences.  A number 

of acoustic features were measured manually in 

Praat for all of the productions of both versions 

of two of the PP-attachment sentences, numbers 
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4 and 5. Following Levy et al (2012), we 

measured the following features: 

- duration of the preposition utterance (in 

milliseconds) 

- duration of the silent pause (if any) 

preceding the preposition (in 

milliseconds) 

- duration of the noun phrase following 

the preposition (in milliseconds) 

- Intensity of the preposition (in decibels) 

By manually extracting features, we achieve 

an upper bound on the performance of an 

automatic feature extraction procedure. 

  

In order to examine the minimum level of 

acoustic cues encoded by the speaker to see if it 

is still possible to extract meaningful patterns 

that can be used for automatic systems, we 

examine the sentences that listeners were unable 

to classify correctly. 

 

As shown in the preceding table, one of the 

worst performing sentence for the PP-attachment 

disambiguation task from audio without context 

was: 
4: They discussed the mistakes in the second 

meeting. 

 

This sentence was correctly identified only 

70.9% of the time, mostly being mistaken for 

early closure when in fact it was late closure, as 

shown in the detailed results in Appendix 2. This 

was not the case for this particular sentence for 

the audio with context or text with context. 

 

The other sentence with most inaccurate 

disambiguation results (63.3% accuracy, evenly 

distributed between classes) was: 

 
5: The lawyer contested the proceedings in the 

third hearing. 

 

The following table shows the acoustic feature 

values averaged over the 20 productions of 

sentences 4 and 5.  Note that both sentences use 

the same preposition and have the same number 

of words in the noun phrase following it. 

 
 

 Late  Early 

Preposition Duration (ms) 147 143 

Preceding silent pauses (ms) 0 48 

Intensity (dB) 57.84 56.37 

Following NP duration (ms) 579 639.5 

 

Using these data, we implemented a simple 

decision tree classifier to predict the closure type. 

Using 5-fold cross validation, the mean accuracy 

was 80%. The major node in the decision tree 

was the existence of a silent pause of smaller 

duration than 20 ms.  

7 Conclusion 

Although there has been much research in 

psychology regarding the perception of 

ambiguous sentences, more still needs to be done 

to model such sentences to facilitate integration 

with ASR systems, as well as question answering 

systems and natural language understanding.  

 

The current research attempts to start 

developing this model. This is first done by 

quantifying human perception of certain 

ambiguous sentences, and analyzing these 

sentences acoustically to extract prosodic cues 

that can be used as features in a machine learning 

model for classifying sentences and deciding on 

their intended structure accordingly. 

 

We found in our experiments that humans 

were able to disambiguate sentences with comma 

ambiguity at ceiling performance levels both as 

text and speech. For sentences with PP-

attachment without context, human performance 

on text was close to chance at 52%, while for 

audio it was 74.4%, suggesting a richness of 

acoustic cues that can guide this ambiguation. 

 

The machine learning model developed 

revealed the importance of the existence of a 

silent pause before the prepositional phrase as a 

major factor in determining the type of 

attachment. This, however, shouldn’t preclude 

the possible effects of other features and 

combinations thereof. For example, the average 

duration of the following NP was shorter for 

early closure than for late closure. These 

classifier results are preliminary given the very 

small size of the dataset.  

 

Going forward, more speech samples need to 

be generated from multiple speakers. More 

listeners are needed to provide more certainty 

about the human ability to disambiguate. And 

these data can be analyzed in many more ways, 
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both in terms of human perception and automatic 

classification. 

 

As for extracting the acoustic features, a very 

important step is to use a forced alignment tool 

to measure the durations and starting and ending 

times for each word with greater accuracy and in 

a way that can be automated for a large number 

of speech files. 

 

With more of both the human disambiguation 

data and acoustic data of the corresponding 

sentences, it will be possible to allow better 

parsing of ambiguous sentences from speech and 

the output of ASR systems. 
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Appendix 1 - List of Sentences 

 

Sentence 
ID Sentance Type 

1a 
I have a new telescope. I saw the boy with 
the telescope. late closure 

1b 
One of the boys got a telescope. I saw the 
boy with the telescope. early closure 

2a 
She gave me new glasses. I saw the man 
with the new glasses. late closure 

2b 
One of the men bought new glasses. I saw 
the man with the new glasses. early closure 

3a 
Protests against knife-wielding cops. San 
Jose cops kill a man with a knife. late closure 

3b 
Another man shot by the cops. San Jose 
cops kill a man with a knife. early closure 

4a 

The project was full of mistakes. They 
discussed the mistakes in the second 
meeting. late closure 

4b 

The second meeting was full of mistakes. 
They discussed the mistakes in the second 
meeting. early closure 

5a 

The third hearing was full of problems. The 
lawyer contested the proceedings in the 
third hearing. early closure 

5b 

The lawyer keeps complaining about the 
proceedings. The lawyer contested the 
proceedings in the third hearing. late closure 

6a 
He bought a big wrench. He used the big 
wrench in the car. late closure 

6b 
He was looking for any tool. He used the 
big wrench in the car. early closure 

7a 
I rented a red car. I waited for the man in 
the red car. late closure 

7b 
She told me he has a red car. I waited for 
the man in the red car. early closure 

8a 
John, said Mary, was the nicest person at 
the party. with commas 

8b 
John said Mary was the nicest person at 
the party. without commas 

9a 
Adam, said Anna, was the smartest person 
in class. with commas 

9b 
Adam said Anna was the smartest person 
in class. without commas 

10a 
The teacher, said the student, didn’t 
understand the question. with commas 

10b 
The teacher said the student didn’t 
understand the question. without commas 

11a 
The neighbors, said my father, parked the 
car in the wrong spot. with commas 

11b 
The neighbors said my father parked the 
car in the wrong spot. without commas 

12a 
The new manager, said my colleague, is 
very lazy. with commas 

12b 
The new manager said my colleague is 
very lazy. without commas 

13a 
The author, said the journalist, didn’t 
address the main problem. with commas 

13b 
The author said the journalist didn’t 
address the main problem. without commas 
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Appendix 2- Detailed results by sentence for 

PP-attachment ambiguity 

 

 

Ambiguous

? Modality 

Sentence 

ID Mistake Total 

ambiguous audio 1a 5 14 

ambiguous txt 1a 2 8 

context audio 1a 0 14 

context txt 1a 1 10 

ambiguous audio 1b 4 15 

ambiguous txt 1b 5 9 

context audio 1b 0 15 

context txt 1b 1 12 

ambiguous audio 2a 5 15 

ambiguous txt 2a 7 9 

context audio 2a 1 16 

context txt 2a 1 13 

ambiguous audio 2b 1 13 

ambiguous txt 2b 2 8 

context audio 2b 0 13 

context txt 2b 0 9 

ambiguous audio 3a 1 14 

ambiguous txt 3a 5 6 

context audio 3a 0 14 

context txt 3a 0 12 

ambiguous audio 3b 2 14 

ambiguous txt 3b 3 11 

context audio 3b 0 15 

context txt 3b 2 11 

ambiguous audio 4a 1 15 

ambiguous txt 4a 6 10 

context audio 4a 1 15 

context txt 4a 1 13 

ambiguous audio 4b 8 16 

ambiguous txt 4b 5 9 

context audio 4b 1 16 

context txt 4b 1 12 

ambiguous audio 5a 5 14 

ambiguous txt 5a 4 6 

context audio 5a 0 14 

context txt 5a 0 10 

ambiguous audio 5b 6 16 

ambiguous txt 5b 4 12 

context audio 5b 3 16 

context txt 5b 3 12 

ambiguous audio 6a 3 13 

ambiguous txt 6a 7 8 

context audio 6a 0 13 

context txt 6a 0 10 

ambiguous audio 6b 2 15 

ambiguous txt 6b 2 9 

context audio 6b 0 16 

context txt 6b 1 12 

ambiguous audio 7a 6 15 

ambiguous txt 7a 4 8 

context audio 7a 0 15 

context txt 7a 0 11 

ambiguous audio 7b 3 14 

ambiguous txt 7b 3 10 

context audio 7b 0 15 

context txt 7b 0 12 
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Appendix 3: Detailed feature values 

Acoustic feature for productions of sentence 4: 

 

File 

# 

duration of 

preposition 

(ms) 

preceding 

silence 

(ms) 

following 

NP 

duration 

(ms) 

Preposition 

Intensity 

(dB) 

Closure 

Type 

1 160 0 690 56.6 early 

3 175 0 660 59.0 late 

26 120 0 470 56.2 late 

51 140 80 620 55.6 early 

67 145 0 600 58.7 late 

76 140 90 635 57.8 early 

78 135 0 510 61.1 late 

82 150 110 600 57.9 early 

109 130 0 620 61.0 late 

121 140 60 580 58.8 early 

 

Acoustic features for productions of sentence 5: 

 

File 

# 

duration of 

preposition 

(ms) 

preceding 

silence 

(ms) 

following 

NP 

duration 

(ms) 

Preposition 

Intensity 

(dB) 

Closure 

Type 

18 140 20 660 54.6 early 

21 170 0 580 54.8 late 

44 160 0 630 53.8 late 

46 140 0 680 50.8 early 

52 160 0 550 58.0 late 

75 140 80 680 56.1 early 

81 160 0 640 58.3 early 

83 150 0 600 59.6 late 

113 125 0 570 56.2 late 

115 120 40 610 57.2 early 
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Abstract

We present an analysis of parser perfor-
mance on speech data, comparing word
type and token frequency distributions
with written data, and evaluating parse
accuracy by length of input string. We
find that parser performance tends to de-
teriorate with increasing length of string,
more so for spoken than for written texts.
We train an alternative parsing model with
added speech data and demonstrate im-
provements in accuracy on speech-units,
with no deterioration in performance on
written text.

1 Introduction

Relatively little attention has been paid to pars-
ing spoken language compared to parsing written
language. The majority of parsers are built using
newswire training data and The Wall Street Jour-
nal section 21 of the Penn Treebank is a ubiquitous
test set. However, the parsing of speech is of no
little importance, since it’s the primary mode of
communication worldwide, and human computer
interaction through the spoken modality is increas-
ingly common.

In this paper we first describe the morpho-
syntactic characteristics of spoken language and
point out some key distributional differences with
written language, and the implications for pars-
ing. We then investigate how well a commonly-
used open source parser performs on a corpus of
spoken language and corpora of written language,
showing that performance deteriorates sooner for
speech as the length of input string increases. We
demonstrate that a new parsing model trained on
both written and spoken data brings improved per-
formance, making this model freely available1. Fi-

1https://goo.gl/iQMu9w

nally we consider a modification to deal with long
input strings in spoken language, a preprocessing
step which we plan to implement in future work.

2 Spoken language

As has been well described, speech is very dif-
ferent in nature to written language (Brazil, 1995;
Biber et al., 1999; Leech, 2000; Carter and Mc-
Carthy, 2017). Putting aside the mode of transmis-
sion for now – the phonetics and prosody of pro-
ducing speech versus the graphemics and orthog-
raphy of writing systems – we focus on morphol-
ogy, syntax and vocabulary: that is, the compo-
nents of speech we can straightforwardly analyse
in transcriptions. We also put aside pragmatics and
discourse analysis therefore, even though there is
much that is distinctive in speech, including into-
nation and co-speech gestures to convey meaning,
and turn-taking, overlap and co-construction in di-
alogic interaction.

A fundamental morpho-syntactic characteristic
of speech is the lack of the sentence unit used by
convention in writing, delimited by a capital let-
ter and full stop (period). Indeed it has been said
that, “such a unit does not realistically exist in con-
versation” (Biber et al., 1999). Instead in spoken
language we refer to ‘speech-units’ (SUs)– token
sequences which are usually coherent units from
the point of view of syntax, semantics, prosody,
or some combination of the three (Strassel, 2003).
Thus we are able to model SU boundaries prob-
abilistically, and find that, in dialogue at least,
they often coincide with turn-taking boundaries
(Shriberg et al., 2000; Lee and Glass, 2012; Moore
et al., 2016).

Other well-known characteristics of speech are
disfluencies such as hesitations, repetitions and
false starts (1)-(3).

(1) um he’s a closet yuppie is what he is (Leech,
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2000).

(2) I played, I played against um (Leech, 2000).

(3) You’re happy to – welcome to include it (Lev-
elt, 1989).

Disfluencies are pervasive in speech: of an an-
notated 767k token subset of the Switchboard Cor-
pus of telephone conversations (SWB), 17% are
disfluent tokens of some kind (Meteer et al., 1995).
Furthermore they are known to cause problems in
natural language processing, as they must be in-
corporated in the parse tree or somehow removed
(Nasr et al., 2014). Indeed an ‘edit’ transition has
been proposed specifically to deal with automat-
ically identified disfluencies, by removing them
from the parse tree constructed up to that point
along with any associated grammatical relations
(Honnibal and Johnson, 2014; Moore et al., 2015).

We compared the SWB portion of Penn Tree-
bank 3 (Marcus et al., 1999) with the three English
corpora contained in Universal Dependencies 2.0
(Nivre et al., 2017) as a representation of the writ-
ten language. These are namely:

• The ‘Universal Dependencies English Web
Treebank’ (EWT), the English Web Treebank
in dependency format (Bies et al., 2012; Sil-
veira et al., 2014);

• ‘English LinES’ (LinES), the English section
of a parallel corpus of English novels and
Swedish translations (Ahrenberg, 2015);

• The ‘Treebank of Learner English’ (TLE), a
manually annotated subset of the Cambridge
Learner Corpus First Certificate in English
dataset (Yannakoudakis et al., 2011; Berzak
et al., 2016).

We found several differences between our spo-
ken and written datasets in terms of morpholog-
ical, syntactic and lexical features. Firstly, the
most frequent tokens in writing (ignoring punctu-
ation marks) are, unsurprisingly, function words
– determiners, prepositions, conjunctions, pro-
nouns, auxiliary and copula verbs, and the like
(Table 1). These are normally considered ‘stop-
words’ in large-scale linguistic analyses, but even
if they are semantically uninteresting, their rank-
ing is indicative of differences between speech and
writing.

Speech Freq. Rank Writing Freq.
I 46,382 1 the 41,423
and 33,080 2 to 26,459
the 29,870 3 and 22,977
you 27,142 4 I 20,048
that 27,038 5 a 18,289
it 26,600 6 of 18,112
to 22,666 7 in 14,490
a 22,513 8 is 10,020
uh 20,695 9 you 10,002
’s 20,494 10 that 9952
of 17,112 11 for 8578
yeah 14,805 12 it 8238
know 14,723 13 was 8195
they 13,147 14 have 6604
in 12,548 15 on 5821
do 12,507 16 with 5621
n’t 11,100 17 be 5514
we 10,308 18 are 4815
have 9970 19 not 4716
uh-huh 9325 20 my 4478

Table 1: The most frequently occurring tokens in
selected corpora of English speech (the Switch-
board Corpus in Penn Treebank 3) and writing
(EWT, LinES, TLE), normalised to counts per mil-
lion.

In SWB the most frequent token is I followed
by and, then the albeit much less frequently than
in writing, then you, that, it at much higher rela-
tive frequencies (per million tokens) than in writ-
ing. This ranking reflects the way that (telephone)
conversations revolve around the first and second
person (I and you), and the way that speech makes
use of coordination and hence the conjunction and
much more than writing.

Furthermore clitics indicative of possession,
copula or auxiliary be, or negation (’s, n’t) and
discourse markers uh, yeah, uh-huh are all in the
twenty-five most frequent terms in SWB. The sin-
gle content word in these top-ranked tokens (as-
suming have occurs mainly as an auxiliary) is
know, 13th most frequent in SWB, but as will be-
come clear in Table 3, it’s hugely boosted by its
use in the fixed phrase, you know.

Finally we note that the normalised frequencies
for these most frequent tokens are higher in speech
than in writing, suggesting that there is greater dis-
tributional mass in fewer token types in SWB, a
suggestion borne out by sampling 394,611 tokens
(the sum total of the three written corpora) from
SWB 100 times and finding that not once does the
vocabulary size exceed even half that of the writ-
ten corpora (Table 2).

With the most frequent bigrams we note fur-
ther differences between speech and writing (Ta-
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Medium Tokens Types
speech 394,611* 11,326**
writing 394,611 27,126

Table 2: Vocabulary sizes in selected corpora
of English speech and writing (* sampled from
766,560 tokens in SWB corpus; ** mean of 100
samples, st.dev=45.5).

ble 3). The most frequent bigrams in writing tend
to be combinations of preposition and determiner,
or pronoun and auxiliary verb. In speech on the
other hand, the very frequent bigrams include the
discourse markers you know, I mean, and kind
of, pronoun plus auxiliary or copula it’s, that’s,
I’m, they’re, and I’ve, and disfluent repetition I
I, and hesitation and uh. Again frequency counts
are lower for the written corpus, symptomatic of
a smaller set of bigrams in speech. There are
163,690 unique bigrams in the written data, and
a mean of 89,787 (st.dev=151) unique bigrams in
SWB from 100 samples.

Speech Freq. Rank Writing Freq.
you know 11,165 1 of the 4313
it’s 8531 2 in the 3702
that’s 6708 3 to the 2352
don’t 5680 4 I have 1655
I do 4390 5 on the 1607
I think 4142 6 I am 1500
and I 3790 7 for the 1475
I’m 3716 8 I would 1427
I I 3000 9 and the 1389
in the 2972 10 and I 1361
and uh 2780 11 to be 1318
a lot 2714 12 I was 1140
of the 2655 13 don’t 1125
it was 2616 14 will be 1092
I mean 2518 15 it was 1057
kind of 2448 16 at the 1044
they’re 2349 17 in a 1041
I’ve 2165 18 like to 1036
going to 2135 19 is a 1021
lot of 2053 20 it is 998

Table 3: The most frequently occurring bigrams
in selected corpora of English speech (the Switch-
board Corpus in Penn Treebank 3) and writing
(EWT, LinES, TLE), normalised to counts per mil-
lion.

In Table 4 we present a short list of the most
frequent dependency types, represented as part-of-
speech tag pairs TAG1 TAG2, where TAG1 is the
head and TAG2 is the dependent. In speech we
see that several of the most frequent dependency
pairs involve a verb or root as the head, whereas
the most frequent pairs in writing involve a noun.

We are certain that in future work there are fur-

Speech Freq. Rank Writing Freq.
VBP PRP 51,845 1 NN DT 48,846
NN DT 47,469 2 NN IN 36,274
ROOT UH 39,067 3 NN NN 27,490
IN NN 26,868 4 NN JJ 21,566
VB PRP 24,321 5 VB NN 19,584
ROOT VBP 24,156 6 VB PRP 16,320

Table 4: The most frequently occurring part-of-
speech tag dependency pairs in selected corpora of
English speech (the Switchboard Corpus in Penn
Treebank 3) and writing (EWT, LinES, TLE), nor-
malised to counts per million. The first tag in the
pair is the head of the relation; the second is the
dependent (Penn Treebank tagset).

ther insights to be gleaned from comparisons of
speech and writing at higher-order n-grams and
in terms of dependency relations between tokens.
These may in turn have implications for parsing
algorithms, or at least may suggest some solutions
for more accurate parsing of speech. Other gen-
res and styles of speech and writing would also
be worthy of study – especially more recently col-
lected recordings of speech.

3 Parsing experiments

We used the Stanford CoreNLP toolkit (Manning
et al., 2014) to tokenize, tag and parse input strings
from a range of corpora. This includes the 766k
token section of the Switchboard Corpus of tele-
phone conversations (SWB) distributed as part of
Penn Treebank 3 (Godfrey et al., 1992; Marcus
et al., 1999), and English treebanks from the Uni-
versal Dependencies release 2 (Nivre et al., 2017).
All treebanks are in CoNLL format2 and we mea-
sure performance through unlabelled attachment
scores (UAS) which indicate the proportion of to-
kens with correctly identified heads in the output
of the parser, compared with gold-standard anno-
tations (Kübler et al., 2009).

In Table 5 we report UAS scores overall for each
corpus, along with corpus sizes in terms of tokens
and sentence or speech units. It is apparent that
(a) parser performance for speech units is much
poorer than for written units, and that (b) perfor-
mance across written corpora is broadly similar,
though TLE (surprisingly) has the highest UAS
score – possibly reflective of a tendency for lan-
guage learners to write in syntactically more con-

2We thank Matthew Honnibal for sharing the SWB tree-
bank converted to CoNLL-X format, arising from his TACL
paper with Mark Johnson (Honnibal and Johnson, 2014).
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servative ways [an issue we won’t explore further
here].

Corpus Medium Units Tokens UAS
SWB speech 102,900 766,560 .540
EWT writing 14,545 218,159 .744
LinES writing 3650 64,188 .758
TLE writing 5124 96,180 .845

Table 5: Corpus sizes and overall unla-
belled attachment scores using Stanford Core
NLP; SWB=Switchboard, EWT=English Web
Treebank, LinES=English section LinES,
TLE=Treebank of Learner English

Closer inspection of UAS scores by speech unit
in SWB shows that parser performance is not uni-
formly worse than it is for written language. If we
sort the input units into bins by unit length, we see
that the parser is as accurate for shorter units of
transcribed speech as it is for written units of sim-
ilar lengths (Table 6)3. Indeed for speech units of
1-10 tokens in SWB, mean UAS is similar to that
for sentence units of 1-10 tokens in EWT. How-
ever, the main difference in UAS scores over in-
creasingly long inputs is the rate of deterioration
in parser performance: for speech units the drop-
off in UAS scores is much steeper.

Even with strings up to 40 tokens in length,
mean UAS remains within 10 points of that for
the 1-10 token bin in the three written corpora.
But for SWB, mean UAS by that point is less than
50%. In fact in the 11-20 token bin we already see
a steep drop-off in parser performance compared
to the shortest class of speech unit.

It is only above 50 tokens that EWT and LinES
UAS means fall by more than 10 percentage points
compared to the 1-10 token score; for TLE this is
true above 60 tokens. By this stage we are deal-
ing with small proportions of the written corpora:
96.9% of the units in EWT and 98.1% in LinES
are of length 50 tokens or fewer, whilst 99.8% of
units in TLE are 60 tokens or shorter (Figure 1).

For SWB the problem is more acute, with
25.5% of units at least 11 tokens long and scor-
ing mean UAS 50% or less. Figure 2 illustrates
the disparity with boxplots showing UAS medi-
ans (thick line), first and third quartiles (‘hinges’ at
bottom and top of box), ±1.5 inter-quartile range
from the hinge (whiskers), and outliers beyond
this range. It is apparent that parser performance

3Units longer than 80 tokens are omitted from the analysis
as there are too few for meaningful comparison.
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Figure 1: Density plot of unit lengths in four En-
glish corpora; SWB=Switchboard, EWT=English
Web Treebank, LinES=English section LinES,
TLE=Treebank of Learner English.

deteriorates as the unit length increases, for all cor-
pora, but especially so for the speech corpus SWB.

What can be done to address this problem? One
approach is to train a new parsing model on more
appropriate training data, since general-purpose
open-source parsers are usually trained on sections
of The Wall Street Journal (WSJ) in Treebank 3
(Marcus et al., 1999). Training NLP tools with
data appropriate to the medium, genre, or domain,
is generally thought to be sensible and helpful to
the task (Caines and Buttery, 2014; Plank, 2016).
We do not claim this to be a groundbreaking pro-
posal therefore, but instead present the results of
such a step here for three reasons:

(i) To demonstrate how much improvement can
be gained with a domain-appropriate parsing
model;

(ii) To make the speech parsing model publicly
available for other researchers;

(iii) To call for greater availability of speech tran-
script treebanks.

With regard to point (iii), to the best of our
knowledge, the Switchboard portion of the Penn
Treebank (PTB) is the only substantial, readily-
available4 treebank for spoken English. We wel-
come feedback to the contrary, and efforts to pro-

4Subject to licence available from the Linguistic Data
Consortium.
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Figure 2: Unlabelled attachment scores by unit length in four English corpora.

Unit length (tokens)
Corpus 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80
SWB .753 (76232) .506 (19281) .489 (4885) .480 (1344) .480 (366) .473 (126) .460 (37) .447 (12)
EWT .759 (6011) .762 (4680) .738 (2453) .731 (944) .736 (312) .718 (96) .655 (30) .684 (12)
LinES .826 (1086) .770 (1433) .761 (720) .731 (251) .710 (89) .713 (37) .674 (24) .671 (5)
TLE .866 (887) .866 (2410) .838 (1302) .817 (380) .816 (101) .799 (34) .770 (5) .733 (4)

Table 6: Unlabelled attachment scores by unit length in four English corpora (number of units in paren-
theses).

duce new treebanks. Furthermore, if this is the sit-
uation for as well-resourced a language as English,
we assume that the need for treebanks of speech
corpora is even greater for other languages.

In point (ii) we don’t imagine we’re making a
definitive statement on the best model for parsing
speech – rather we think of it as a baseline against
which future models can be compared. We wel-
come contributions in this respect.

As for point (i), we trained two new parsing
models using the Stanford Parser (Klein and Man-
ning, 2003). These were based on the WSJ sec-
tions of PTB as is standard, with added train-
ing data from SWB setting the maximum unit
length first at 40 tokens – which appears to be
the standard length for the models distributed
with the parser – and secondly at an increased
maximum of 80 tokens. Both were probabilis-
tic context-free grammars. We refer to them as
PCFG WSJ SWB 40 and PCFG WSJ SWB 80.

In Table 7 we show overall UAS scores for our
four target English corpora, for three parsing mod-
els: the standard model distributed with CoreNLP,
and our two new models, PCFG WSJ SWB 40
and PCFG WSJ SWB 80. It is apparent that the
new models bring a large performance gain in
parsing speech, as expected, plus a small per-
formance gain in parsing writing – presumably

because they can deal better than predominantly
newswire trained models can with the less canon-
ical syntactic structures contained in the written
English obtained from the web and from learn-
ers. There is no apparent difference between
PCFG WSJ SWB 40 and PCFG WSJ SWB 80
(therefore the latter does no harm and we make
both available), presumably because there are
relatively few units greater than 40 tokens and
so any performance gain here has little bear-
ing on the overall scores. Or, CoreNLP and
PCFG WSJ SWB 40 are able to generalise to
long strings as well as the PCFG WSJ SWB 80
model which has been presented with long string
exemplars in training.

Model SWB EWT LinES TLE
CoreNLP .540 .744 .758 .845
PCFG WSJ SWB 40 .624 .748 .760 .847
PCFG WSJ SWB 80 .624 .748 .760 .847

Table 7: Overall unlabelled attachment scores for
four English corpora and three parsing models

In Figures 3 and 4 we show the difference be-
tween the CoreNLP and PCFG models in terms
of UAS delta for each input unit. These are again
binned by string length, and facetted by corpus.
It is apparent that the alteration for the smallest
units is somewhat volatile. This is understandable

31



SWB EWT LinES TLE

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

unit length (tokens)

U
A

S 
Δ

(P
CF

G
_W

SJ
_S

W
B_

40
, C

or
eN

LP
)

Figure 3: Unlabelled attachment scores by unit length in four English corpora: difference between model
PCFG WSJ SWB 40 and CoreNLP.

given that a 1-token string which was correctly or
incorrectly parsed by CoreNLP might now be in-
correctly or correctly parsed by the PCFG models,
leading to a delta of +1 or -1. Nevertheless the ma-
jority of short tokens are unaffected – shown by
the median and hinges of the 1-10 token boxplot
centring on y=0.

Where the added SWB training data seems to
help is in units longer than 10 tokens, where
the UAS delta median and hinges are consis-
tently above zero, indicating improved perfor-
mance. The boxplots tend to centre around zero
for the written corpora, except for the 71-80 bin in
LinES for which the boxplot is above zero, albeit
for a small sample size of 5 (Table 6). The pattern
for both PCFG models is broadly the same.

4 Related work

This is one among many studies examining the
parsing of non-canonical data (Lease et al., 2006;
Goldberg et al., 2014; Ragheb and Dickinson,
2014). Broadly speaking, there are two ap-
proaches to the problem (Eisenstein, 2013): (1)
train new models specifically for non-canonical
language; (2) normalise the data so that existing
NLP tools work better on it. For example, Fos-
ter and colleagues (2008) deliberately introduced
grammatical errors to copies of WSJ treebank sen-
tences in order to train a parser to deal with noisy
input. Daiber & van der Goot (2016), meanwhile,
adopted the approach of text normalisation pre-
ceding syntactic parsing in dealing with social me-
dia data.

Some have proposed ‘active learning’ or ‘self
learning’ algorithms for parser training, which

learn from sparsely annotated or completely unan-
notated data (Mirroshandel and Nasr, 2011; Rei
and Briscoe, 2013; Cahill et al., 2014). We could
explore such methods for a speech-specific parser
in future work, though they work better with large
datasets to learn from – Rei & Briscoe trained on
the 50 million token BLLIP corpus, for example.
At the time of writing there are no similarly-sized
speech corpora that we are aware of.

Relevant work on speech parsing includes
that on automated disfluency detection and re-
pair in speech transcriptions (Charniak and John-
son, 2001; Rasooli and Tetreault, 2013; Hon-
nibal and Johnson, 2014; Moore et al., 2015;
Yoshikawa et al., 2016), in which the problem
has come to be addressed with a transition-based
parser featuring an ‘edit’-like action that can re-
move incrementally-constructed parse tree sec-
tions upon detection of a disfluency. Other ap-
proaches include prosodic information to detect
disfluencies where the audio file is available along-
side the transcription (Kahn et al., 2005). A com-
bination of prosodic and morpho-syntactic fea-
tures have been used to address another problem
which affects parse quality: that of speech-unit de-
limitation, also known as ‘speech segmentation’
or ‘sentence boundary detection’ (Shriberg et al.,
2000; Moore et al., 2016). SU delimitation and
parsing were considered together as a joint prob-
lem, along with automatic speech recognition er-
ror rates, in a recent article by Kahn & Osterdorf
(2012).

Finally, we should point out that we opted to
work with Stanford CoreNLP for our parsing ex-
periments because it is well-documented and well-

32



SWB EWT LinES TLE

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

1-
10

11
-2
0

21
-3
0

31
-4
0

41
-5
0

51
-6
0

61
-7
0

71
-8
0

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

unit length (tokens)

U
A

S 
Δ

(P
CF

G
_W

SJ
_S

W
B_

80
, C

or
eN

LP
)

Figure 4: Unlabelled attachment scores by unit length in four English corpora: difference between model
PCFG WSJ SWB 80 and CoreNLP.

maintained. We do not criticise the software in
any way for deteriorating performance on long
speech-units, as this is a hard problem, and we
suspect that any other parser would suffer in sim-
ilar ways. Indeed another option for future work
is to use other publicly available parsers such as
MSTParser (McDonald et al., 2006), TurboParser
(Martins et al., 2013) and MaltParser (Nivre et al.,
2007) to compare performance and potentially
spot parsing errors through disagreement, per the
method described by Smith & Dickinson (2014).

5 Conclusion and future work

In this paper we have shown that there are many
differences between speech and writing at lexi-
cal and morphological levels. We also report how
parser performance deteriorates as the input unit
lengthens: an outcome which is perhaps unsurpris-
ing but which we showed to be especially acute for
spoken language. Finally, we trained a new pars-
ing model with added speech data and reported
improvements for UAS scores across the board
– more so for speech than writing. We make the
models publicly available for other researchers5

and welcome improved models or training data
from others.

In future work we plan to analyse samples of
speech-units with low UAS scores, to discover
whether there are systematic parsing errors which
could be solved through algorithmic changes to
the parser, extra pre-processing steps, or other-
wise. We also intend to continue comparing lex-
ical and morpho-syntactic distributions in spoken

5https://goo.gl/iQMu9w

and written corpora – dependency relations for ex-
ample – to identify differences which may have
implications for parsing. We suspect there may be
lessons to be learned from parse tree analysis of
learner text, such as the association between omis-
sion of the main verb and parse error (Ott and Ziai,
2010).

With more training data we can produce bet-
ter parsing models, and potentially pursue self-
learning algorithms in training. We might also
introduce a heuristic to deal with long speech-
units, which are particularly troublesome for ex-
isting parsers. One technique we can adopt is that
of ‘clause splitting’, or ‘chunking’, which subdi-
vides long strings for the purpose of higher qual-
ity analysis over small units (Tjong et al., 2001;
Muszyńska, 2016). We hypothesise that such a
step would play to the strength of existing parsers,
namely their robustness over short inputs.
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Djamé Seddah, Wolfgang Seeker, Mojgan Ser-
aji, Lena Shakurova, Mo Shen, Dmitry Sichinava,
Natalia Silveira, Maria Simi, Radu Simionescu,
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Abstract

Parsing speech requires a richer represen-
tation than 1-best or n-best hypotheses,
e.g. lattices. Moreover, previous work
shows that part-of-speech (POS) tags are a
valuable resource for parsing. In this pa-
per, we therefore explore a joint model-
ing approach of automatic speech recog-
nition (ASR) and POS tagging to enrich
ASR word lattices. To that end, we manip-
ulate the ASR process from the pronounc-
ing dictionary onward to use word-POS
pairs instead of words. We evaluate ASR,
POS tagging and dependency parsing (DP)
performance demonstrating a successful
lattice-based integration of ASR and POS
tagging.

1 Introduction

Parsing speech is an essential part (Chow and
Roukos, 1989; Moore et al., 1989; Su et al., 1992;
Chappelier et al., 1999; Collins et al., 2004) of
spoken language understanding (SLU) and diffi-
cult because spontaneous speech and syntax clash
(Ehrlich and Hanrieder, 1996; Charniak and John-
son, 2001; Béchet et al., 2014). Pipeline ap-
proaches concatenating a speech recognizer, a
POS tagger and a parser often rely on n-best hy-
potheses decoded from lattices. While n-best hy-
potheses cover more of the hypothesis space than
the 1-best hypothesis, they are redundant and in-
complete. Lattices on the other hand are effi-
ciently representing all hypotheses under consid-
eration and therefore allow recovery from more
ASR errors. Recent work on recurrent neural net-
work architectures with lattices as input (Ladhak
et al., 2016; Su et al., 2017) promises the use of
enriched lattices in SLU.

The main contribution of this work is estab-
lishing a joint ASR and POS tagging approach
using the Kaldi (Povey et al., 2011) toolkit. To
that end, we enrich the ASR word lattices with
POS labels for all possible hypotheses on the word
level. This enables subsequent natural language
processing (NLP) machinery to use these syntac-
tically richer lattices. We present our proposed
method in detail including Kaldi specifics and ad-
dress problems that occur when data that requires
both speech and text information is used. Our re-
sults show a slight but consistent improvement of
the joint model throughout the evaluations in ASR,
POS tagging and DP performance.

2 Resources

We need a data resource with rich annotations for
training our integrated model. Since the train-
ing process requires audio transcriptions, POS la-
bels and gold-standard syntax annotations, all of
these need to be available. Considering the gen-
eral premise in data-driven methods that more data
is better data, we choose the Switchboard-1 Re-
lease 21 (Godfrey et al., 1992) corpus with about
2400 dialogs. The Switchboard (SWBD) corpus
has more recently been furnished with the NXT
Switchboard annotations2 (Calhoun et al., 2010).
NXT provides a plethora of annotations and
most importantly for our work, an alignment of
Treebank-33 (Marcus et al., 1999) text and SWBD
transcriptions4. While the Treebank-3 corpus pro-

1LDC: https://catalog.ldc.upenn.edu/LDC97S62

(Godfrey and Holliman, 1993)
2LDC (under CC):
https://catalog.ldc.upenn.edu/LDC2009T26

(Calhoun et al., 2009)
3Treebank-3 at the LDC: https://catalog.ldc.upenn.

edu/LDC99T42
4We used the corrected Mississippi State (MS-State)
transcriptions: https://www.isip.piconepress.com/

projects/switchboard/
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vides syntax and POS tags, the transcriptions are
timestamped. The alignment of these two re-
sources offered by the NXT corpus contains all
necessary annotations.

2.1 Audio

Kaldi’s SWBD s5c recipe subsets the SWBD
(LDC97S62) corpus into various training and de-
velopment sets for acoustic model (AM) and lan-
guage model (LM) training. For ASR eval-
uation, the s5c recipe uses a separate evalu-
ation corpus LDC2002S095 of previously un-
released SWBD conversations (Linguistic Data
Consortium, 2002), which was not available to
us. Likewise unavailable were the Fisher cor-
pora LDC2004T196 (Cieri et al., 2004) and
LDC2005T197 (Cieri et al., 2005), which con-
tain transcripts of conversational telephone speech
for language modeling. We utilize the available
SWBD data (the training set in the s5c recipe)
and split it into training, development and eval-
uation set. Our results are therefore not directly
comparable to other results generated from the
Kaldi s5c recipe. We instead split our sets af-
ter the Treebank-3 splits as proposed by Charniak
and Johnson (2001). This leads to less training
data compared to the standard s5c recipe, but also
yields splits common in parsing. A data summary
of our SWBD splits is given in Table 1. The lmdev
section of the SWBD corpus serves as the LM’s
development set and was “reserved for future use”
(Charniak and Johnson, 2001, p. 121).

Set Conv. IDs # utt. # tok.

train 2xxx-3xxx 90823 677160
dev 4519-4936 5697 50148
eval 4004-4153 5822 48320
lmdev 4154-4483 5949 50017

Table 1: Summary of SWBD data splits. The columns for
utterances, tokens, average tokens per utterance and vocabu-
lary depend on the choice of the transcription. These are the
counts for our Treebank-3 transcription.

2.2 Transcription

While the NXT annotations provide a link be-
tween MS-State transcriptions and Treebank-3
text, we exploit this link only for the MS-State

5https://catalog.ldc.upenn.edu/LDC2002S09
6https://catalog.ldc.upenn.edu/LDC2004T19
7https://catalog.ldc.upenn.edu/LDC2005T19

transcription’s timestamps and base our lexicon
and LMs on the Treebank-3 text, rather than the
MS-State transcriptions. This introduces a number
of text-audio mismatches, or in other words, what
is said is not what is in the annotated text. Fig-
ure 1 illustrates contractions as one characteristic
difference in the tokenization of the two transcrip-
tions: “doesn’t” is represented as two tokens in the
Treebank-3 data, while it is expressed as one token
in the MS-State version. The second important as-

Processing at Mississippi State University ran a clean-up project which hand-

checked and corrected the transcript of the 1126 Treebank conversations. They also

produced word alignments, showing, for each transcript word, its start and end times

in the audio file; word times were determined automatically, with partial manual

corrections (see Deshmukh et al. 1998; Harkins 2003). We refer to the resulting

time-aligned transcript as the MS-State transcript.

Since both the Treebank3 and MS-State transcripts had been enriched with

distinct annotations, we included both transcripts separately in our corpus, using an

NXT pointer to link equivalent words in the two versions. Section 5.1 describes the

method used to create the alignment between the two transcriptions. We refer to the

words from the Treebank3 transcript as words and the words from the MS-State

transcript as phonwords, since the MS-State transcript words have start and end

times in the audio file and hence are slightly more phonetically grounded. The

double inclusion does result in redundancy, but has the advantage of retaining the

internal consistency of prior annotations. For the most part, the MS-State

transcription is more accurate than the Treebank3, so the other option would have

been to attach all of the annotations that were derived from the Treebank

transcription to the MS-State transcription and discard the original Treebank

transcription. However, attaching the Treebank annotations exactly as they are

would have made the resource difficult for the end-user to interpret. For instance,

where the MS-State transcription adds words to the original, the syntactic annotation

would appear inconsistent. On the other hand, creating new annotations to cover the

changed portions of the transcription would have been time-consuming for little

gain and would have greatly complicated the relationship between the NXT-format

data and the original.

Figure 1 shows our solution diagrammatically. As can be seen, where there are

differences in the representation of a word in the two transcripts (e.g. in the

treatment of contractions like doesn’t), one Treebank3 ‘word’ may link to more than

one MS-State ‘phonword’, or vice versa.

An extract of the XML representation of ‘words’ and ‘phonwords’ is given below

(doesn’t from Fig. 1). (Note that NXT has a number of graphical interfaces so that

users do not have to work directly with the XML, see Sect. 4.) Each word is an

word
does
VBZ phonword

doesn’t
47.96-48.18

phon

word
n’t
RB

phon

syl
n

word
the
DT

phonword
the

47.48-47.61

phon

Fig. 1 Representation of the MS-State and Treebank3 Switchboard transcripts in NXT. Words in the
Treebank3 transcript are represented by ‘word’ elements in one NXT layer, while those in the MS-State
transcript are represented by ‘phonword’ elements in an independent layer. Representations of the same
word in the two transcripts are linked by an NXT pointer labeled ‘phon’. In some cases, such as
contractions, words are tokenized differently in the two transcripts, so there may be multiple ‘words’
pointing at a ‘phonword’ or vice versa. Note that the star (*) shows that this structure is the expansion of
the abbreviated word/phonword structure shown in Fig. 4
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Figure 1: MS-State vs Treebank-3 transcription, from Cal-
houn et al. (2010, p. 392). Treebank-3 transcriptions (word, in
light gray) are mapped to the MS-State transcriptions (phon-
word in blue) through 1-to-n relations, where multiple words
in one transcription can be linked to one in the other. The box
colored in black with syl/n in it depicts a unstressed syllable
of a different annotation layer we do not consider here.

pect of choosing the Treebank-3 over the MS-State
transcription, is the incongruity of utterances (cf.
Calhoun et al., 2010, ch. 3.3, p. 393ff). Training
and evaluation become easier if the utterances are
congruent in the transcription and the Treebank-3
data with the syntactical parses. We decided to di-
rectly base the transcriptions on these annotations.

2.3 Syntax annotation
The linguistic structure annotated in the SWBD
Treebank-3 section is available through the NXT
Switchboard annotations and is based on the
Treebank-3 text. Choosing the Treebank-3 tran-
scription as the gold standard for the ASR system
directly yields Treebank-style tokens in the rec-
ognized speech. The POS tagset (Calhoun et al.,
2010, p. 394) consists of the 35 POS tags8 in the
Treebank-3 tagset. Disfluencies in the SWBD cor-
pus are annotated following Shriberg (1994) and
they are present in the Treebank-3 annotations.

3 Proposed method

First, we describe the ASR component based on
the default Kaldi s5c recipe that generates POS-
enriched word lattices in detail. Second, we intro-
duce the POS taggers considered for the pipeline
system. Third, we briefly characterize the depen-
dency parser in our experiments.
8It is the PTB tagset without punctuation (which is covered
by SYM and the remaining nine punctuation tags).
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3.1 ASR with POS tagging

Starting from the s5c recipe, all but the acoustic
modeling part underwent significant changes. The
pronouncing dictionary (or lexicon), LM and re-
sulting decoding graph now all contain word-POS
pairs rather than words. We are going to outline
this process step by step.

Corpus setup: Our model does not access re-
sources other than the Switchboard-1 Release 2
(LDC97S62, with updates and corrected speaker
information) data, the MS-State transcription and
the Switchboard NXT corpus as described in Sec-
tion 2. All transcription-based resources are being
lowercased as they are in the s5c recipe scripts.

Transcription generation: To get a Treebank-
style transcription, we query the NXT annota-
tion corpus for pointers from MS-State tokens
to Treebank-3 tokens. With this mapping, we
pick the POS tags for the Treebank-3 orthography
and the timestamps for the MS-State words. An
example for the POS-tagged gold standard tran-
scription is: “are|VBP you|PRP ready|JJ
now|RB”.

POS-enriched lexicon: We first append the
lexicon with some handcrafted lexical additions
for contractions of auxiliaries and adjust for tok-
enization differences between the source MS-State
format and the target Treebank-3 format. The pro-
nunciation of the resulting partial words is taken
from the respective full entries in the dictionary
supplied with the MS-State transcriptions. The
lexical unit “won’t”, for example, is mapped to the
pronunciation “w ow n t” in the MS-State version,
but is not readily merged from the existing partial
words (“wo” and “n’t”) in the MS-State lexicon
and therefore is a lexical addition. Other auxil-
iaries, like “can’t” that needs to be split as “ca n’t”
to conform with the Treebank-3 tokenization, and
partial words in general, are added in the lexicon
conversion via automated handling where all par-
tials exist.

For all gold standard occurrences of word-POS
combinations, we copy the words’ pronunciations
for all of the POS tags they occur with. Partial
words starting with a hyphen are automatically
added to the lexicon without the hyphen to account
for tokenization differences. Duplicate word-POS
pairs are excluded. Figure 2 shows part of the re-
sulting POS-enriched lexicon, where “read” oc-
curs with four different POS tags and two dis-
tinct pronunciations. We use “<unk>|XX” for

unknown tokens. Note that our scheme can over-
generate word-POS combinations, as it does not
check whether the pronunciation variation occurs
with all POS tags of a word (compare left and right
parts of Figure 2).

read|VB r eh d
read|VB r iy d
read|VBD r eh d
read|VBD r iy d
read|VBN r eh d
read|VBN r iy d
read|VBP r eh d
read|VBP r iy d

read r eh d
read r iy d

Figure 2: Pronunciation entries for “read” in the lexicon,
with (left) and without (right) POS tags.

Language modeling: LM training is performed
on the train set with the lmdev set as heldout data.
We train the LM on the POS-enriched transcrip-
tion directly. See Figure 3 for example trigrams.

-0.000432954 we|PRP ca|MD n’t|RB
-0.0004147099 ’s|BES kind|RB of|RB
-0.0003858729 they|PRP ca|MD n’t|RB
-0.0002859116 just|RB kind|RB of|RB
-0.0001056216 you|PRP ca|MD n’t|RB

Figure 3: Top 5 trigrams in the Joint-LM, based on the con-
ditional log probabilities in the first column.

Different from the s5c recipe, we compute tri-
gram and bigram LMs with SRILM9 (Stolcke,
2002) and “<unk>|XX” as unknown token. As
discussed in Section 2, we did not use SWBD-
external resources for mixing and interpolating
our LMs. We use SRILM with modified Kneser-
Ney smoothing (Chen and Goodman, 1999) with
interpolated estimates, and use only words occur-
ring in the specified vocabulary and not in the
count files. We report LM perplexity (PPL) on the
lmdev held-out data in Table 2. Note that the joint
model LM in Table 2 encounters 150 OOV tokens
(e.g. hyphenated numerals like “thirty-seven”).
The PPLs increase slightly for the joint model be-
cause the vocabulary has n entries for each word,
where n is the number of POS tags the word oc-
curs with.

Acoustic modeling: We use the original s5c
recipe and only adjust the training, development
and evaluation splits after Charniak and Johnson
(2001) (cf. Table 1). None of the other afore-
mentioned adaptations are applied and the manu-
ally corrected MS-State transcriptions are in use.
The tri4 model in the s5c recipe is a triphone

9http://www.speech.sri.com/projects/srilm/
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LM PPL

Baseline 2-gram 89.4
Baseline 3-gram 76.3
Joint 2-gram 96.4
Joint 3-gram 84.2

Table 2: PPL and OOVs on lmdev.

(with one context phone to the left and right)
model which was trained with speaker-adaptive
training (SAT, Anastasakos et al., 1996; Povey
et al., 2008) technique using feature-space maxi-
mum likelihood linear regression (fMLLR, Gales,
1998). We train this tri4 AM on the training split
in Table 1 with duplicate utterances removed.

3.2 Baseline POS tagging

We perform POS tagging with three out-of-the-
box taggers, two of them with pretrained models,
and choose the best one for our baseline pipeline
model.

NLTK’s (Bird et al., 2009) former default max-
imum entropy-based (ME) POS tagger with the
pretrained model trained on WSJ data from the
PTB (for an overview, see Taylor et al., 2003) is
the first tagger and we term it ME.pre. We also
train a ME POS tagger10 that is implemented af-
ter Ratnaparkhi (1996) on the first 70,000 sen-
tences11 of our SWBD training split, described in
Section 2, and denote our self-trained model by
ME.70k. We configure the ME classifier to use the
optimized version of MEGAM (Daumé III, 2004)
for speed.

The second tagger is NLTK’s current default
tagger, based on a greedy averaged perceptron
(AP) tagger developed by Matthew Honnibal12.
We name the AP tagger with the pretrained NLTK
model AP.pre, and the same tagger trained on the
full training split AP.

To have an NLTK-external industry-standard
POS tagger in our comparison, we also run
spaCy’s POS tagger (see https://spacy.io/, we
used spaCy in version 1.0.3) with its pretrained
English model (also trained with AP learning).

10Available in NLTK and at: https://github.com/

arne-cl/nltk-maxent-pos-tagger
11The sentences are sorted by their utterance id. The full

training set was not computationally feasible: MEGAM
threw an “out of memory” error.

12https://explosion.ai/blog/

part-of-speech-pos-tagger-in-python

3.3 Dependency parsing
In this work, we compare dependency parsing re-
sults of (a) the 1-best hypothesis of the baseline
tri4 ASR system with the self-trained AP POS
tagger and (b) the 1-best hypotheses of our joint
model. We use a greedy neural-based dependency
parser reimplemented after the greedy baseline in
Weiss et al. (2015).

The parser’s training set is the gold standard
data of the training split and identical for the tri4
and the Joint-POS model with 62728 trainable
sentences out of 63304 (= 99.09%). In this eval-
uation, we tune the parser based on development
data and use word- and POS-based features. The
parser implementation uses averaged stochastic
gradient descent proposed independently by Rup-
pert (1988) and Polyak and Juditsky (1992) with
momentum (Rumelhart et al., 1986). We do not
embed any external information.

4 Results

Our evaluation includes intermediate ASR and
POS tagging results and a DP-based evaluation.
We evaluate partially correct ASR hypotheses with
a simplistic scoring method that allows imprecise
scoring when the recognized sequence of tokens
does not match the gold standard.

4.1 ASR
We test our joint ASR and POS model against the
default tri4 model in a ASR-only evaluation of the
1-best hypotheses. As we generate the word-POS
pairs jointly and they are part of the ASR hypothe-
ses, we strip the POS tags for the word-only eval-
uation in Table 3. We evaluate the ASR step based
on word error rate (WER) and sentence error rate
(SER).

Set Default tri4 Joint-POS

dev 28.75 (65.83) 28.93 (65.28)

eval 29.41 (64.41) 29.26 (64.15)

Table 3: ASR results: numbers are WER (SER) as percent-
ages. POS tags stripped when evaluating joint model.

Recall that these results are not directly com-
parable to other ASR results on the SWBD cor-
pus, because of our data splits with less train-
ing data and use of the Treebank-3 transcription.
In the unaltered (apart from the splits, see Sec-
tion 2.1), original s5c recipe, the WER on the
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eval set with the original MS-State transcriptions
(48926 tokens, 4331 utterances) is 26.51% with a
SER of 67.91%. Compared to the baseline, the re-
sults of our Joint-POS model are slightly better for
the dev set and eval set in SER, and for the eval set
also in WER.

4.2 POS tagging

We present an evaluation of our joint model’s per-
formance up to the baseline model’s POS tagging
step. We compare against the POS tagger per-
formance on the 1-best ASR hypotheses in the
pipeline approach. As the 1-best hypotheses of
joint and pipeline model can differ, we evaluate the
POS tagging step on ASR output against the word-
POS pair Treebank-3 gold standard by means of
WER.

Tagger dev eval

ME.pre 43.29 (94.23) 44.49 (94.19)
AP.pre 45.46 (95.84) 46.18 (95.74)
spaCy.pre 39.17 (82.83) 40.42 (81.86)

ME.70k 33.24 (68.18) 36.35 (54.98)
AP 32.30 (67.67) 33.10 (66.85)
Joint-POS 32.05 (67.32) 32.52 (66.52)

Table 4: POS tagging results: numbers are WER (SER) on
the 1-best hypotheses. ME.70k is trained on the first 70,000
training set sentences. A model name ending in .pre indicates
the use of a pretrained model. Model names without dot-
ted endings are trained on the full SWBD training set. Best
scores per set are in boldface.

Table 4 shows that the Joint-POS model con-
sistently outperforms the baseline POS taggers on
both sets. The pretrained models clearly have not
been trained on speech data and unsurprisingly
perform poorly. Our self-trained ME and AP mod-
els improve at least 6% in WER and 15% in SER
over the pretrained models. The margin by which
our joint model surpasses the self-trained AP tag-
ger is small with an improvement of 0.25% WER
on the dev and 0.58% WER on the eval set. The
self-trained AP tagger performed best of the base-
line taggers and we therefore use it in for the DP-
based evaluation in the next section.

4.3 DP

We evaluate our joint ASR-POS model on the
target task by running a dependency parser on
POS-tagged 1-best hypotheses. In the competing
pipeline model, we score the output of the default

tri4 ASR 1-best hypotheses tagged by the AP tag-
ger we trained ourselves. All results in Table 5 and
Table 6 show that our joint model does profit from
the joint ASR and POS modeling in our approach.

tri4 Joint-POS

Set #utts #tokens UAS LAS UAS LAS

dev 900 4881 94.30 92.71 95.41 93.63
eval 882 4827 94.68 93.06 94.92 93.52

devP 942 5261 94.16 92.38 — —
evalP 921 5134 94.06 92.31 — —

devJ 932 5158 — — 94.65 92.88
evalJ 921 5137 — — 94.61 92.93

Table 5: Parsing results for subsets of correct tokenizations.
Labeled attachment scores (LAS) and unlabeled attachment
scores (UAS) given as percentages. Best scores on the com-
mon sets in boldface.

Table 5 features evaluations of six different de-
velopment and evaluation sets. The sets named
dev and eval are the common subsets of token-
level correct hypotheses that the pipeline and joint
model share and therefore can be directly com-
pared on. The sets indexed with a P or J are the
token-level correct hypotheses for the pipeline and
joint model respectively. As the models are not
identical with respect to their 1-best hypotheses
that match the Treebank-3 data, we also present
the results using all available correctly tokenized
ASR hypotheses. Our Joint-POS model consis-
tently outperforms the pipeline tri4 approach be-
tween 1.11% (dev, UAS) and 0.24% (eval, UAS)
on the common subsets. The results are similar
for the non-matching subsets. Note, that the re-
sults in Table 5 are for the small subset of utter-
ances with a correct token sequence, i.e. where
the (converted and filtered) Treebank-3 sentence
tokens match the ASR hypothesis words exactly.
This restriction allows an evaluation with LAS and
UAS because the tokenization is identical and we
have gold data for this correct token sequence. To
(a) have a more extensive evaluation on all the ut-
terances we have hypotheses for13 and (b) be able
to compare the pipeline and joint approach on the
hypotheses coverage and close misses of the cor-
rect tokenization, too, we present Table 6.

We cannot use the standard parsing evaluation
measures that depend on a correct word sequence
to get scores on imperfectly recognized utterances.

13There are a few empty utterances with negligible counts.
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We address this problem with a simple but im-
precise solution: (1.) Parse the development and
evaluation set using the parser models previously
trained and tuned on the common sets (see Ta-
ble 5); (2.) Evaluate the parser predictions on
the ASR hypotheses against the gold Treebank-3
data with a imprecise scoring method that allows
for a mismatch of the gold and predicted token
sequence. We introduce two simple scores, un-
labeled score (US) and labeled score (LS), with
their names derived from UAS and LAS respec-
tively (see Table 6). Recall that UAS requires a
relation’s head and dependent to match including
their position and LAS requires a matching label
(or dependency type) on that relation in addition.

The imprecision in the US and LS scoring stems
from ignoring the positions of head and dependent
in the utterance completely. We iterate over the
utterances and for every token (or dependent) look
up its head (word) and count this relation as a US
match if the lookup is successful. When there is
a US match, we also check for a matching label
and count that as an LS match. The US and LS
counts are normalized by the number of tokens
in the Treebank-3 reference. The improvement
our Joint-POS model shows over the pipeline tri4
model is small for all scores, but consistent.

Model Set UAS LAS US LS

tri4
dev 32.20 31.20 52.02 49.40
eval 31.21 30.29 50.72 48.33

Joint-POS
dev 32.41 31.43 52.21 49.71
eval 31.56 30.73 51.21 48.99

Table 6: Parsing results on full dev and eval sets. LAS, UAS,
LS and US are given as percentages. The dev set has 3994
utterances with 44760 tokens and the eval set has 3912 utter-
ances with 43277 tokens. Best scores per set in boldface.

5 DP-based analysis

We tentatively analyze in which cases the joint
model does better than the pipeline approach. We
first give absolute counts for how often this is the
case in Table 7. While the Joint-POS model re-
ceives higher counts for all scores, there are also
a considerable number of cases where the pipeline
model makes fewer mistakes. We pick all exam-
ples randomly from the instances counted in the
All column of Table 7 and focus on short sentences
for presentability.

Model UAS LAS US LS All

tri4 320 330 483 496 233
Joint-POS 332 363 540 596 267

Table 7: Utterance-based parsing evaluation. The numbers
are counts of utterances where the model in the first column
is better than the other. Column All gives the counts for when
it is better on all four measures.

In the following examples, we highlight the im-
portant differences in boldface. In Figure 4, we
see a fully correct Joint-POS model. While the
pipeline approach does also recognize the correct
word sequence, a POS tagging error causes the
parsing to be erroneous on two arcs. This error
affects all four scores (UAS, LAS, US and LS), as
the parsing model not only misclassifies the label,
but also attaches the head of “there” incorrectly.
We visualize the error’s effect in a correct vs in-
correct tree comparison.

we can start off there
PRP MD VB RP RB

root

nsubj

aux prt

advmod

we can start off there
PRP MD VB IN RB

root

nsubj

aux prep pcomp

Figure 4: Dependency graph comparison #1. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

We observe a recognition error in the pipeline
tri4 model that causes a different reading and syn-
tactical structure in Figure 5. While it is accept-
able spontaneous speech (e.g. “I like rock.. and
like some country music.”), “and” would not be
the subject of the sentence.

i like some country music
PRP VBP DT NN NN

root

nsubj

det

nn

dobj

and like some country music
CC UH DT NN NN

root

nsubj

det

nn

dobj

Figure 5: Dependency graph comparison #2. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

The third graph visualization in Figure 6 illus-
trates an ASR deletion error on the first word. The
pipeline tri4 model handles the error gracefully,
but receives lower US and LS scores because of
the token mismatch nonetheless. If we had not
allowed the imprecise evaluation, we would not
have observed this kind of error.

The example in Figure 7 also has an ASR error
in the pipeline approach at its core. In this case,
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do you like rap music
VBP PRP VB NN NN

root

aux

nsubj nn

dobj

you like rap music
PRP VB NN NN

root

nsubj nn

dobj

Figure 6: Dependency graph comparison #3. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

while the joint model is entirely correct, the recog-
nition error in the pipeline causes two POS tagging
errors resulting in an incorrect parse.

let ’s just get started
VB PRP RB VB VBN

root

nsubjpass

advmod

auxpass

ccomp

it ’s just get started
PRP BES RB VB VBN

root

nsubj

dep

advmod

auxpass

Figure 7: Dependency graph comparison #4. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

The example utterance in Table 8 contains ASR
errors in the both models’ hypotheses with sub-
sequent errors in POS tagging and parsing. We
can glean that discourse interjections like “uh..
uh..” can be misrecognized as regular words, an
error characteristic of spontaneous speech. Note,
that the joint model gets the word “families” right,
but as an object instead the subject. The pipeline
model produces four word errors in sequence and
“families” does not appear in its hypothesis.

6 Related work

Spoken language poses a variety of problems for
NLP. The recognition of spoken language can
suffer from poor recording equipment, noisy en-
vironments, unclear speech or speech patholo-
gies. It also exhibits spontaneity, ungrammati-
cality and disfluencies, e.g. repairs and restarts
(cf. Shriberg (1994)). Hence, in addition to
ASR errors, downstream tasks such as parsing
have to deal with these difficulties of conversa-
tional speech, whether the ASR output is in the
form of n-best sequences or lattices. Jørgensen
(2007) remove disfluencies prior to parsing and
find their removal improves the performance of
both a dependency and a head-driven lexicalized
statistical parser on SWBD. In a more general joint
approach of disfluency detection and DP, Honni-
bal and Johnson (2014) in contrast to Jørgensen
(2007) make use of the disfluency annotations and
report strong results for both, disfluency annota-

tion and DP. Rasooli and Tetreault (2013) extend
the arc-eager transition system (Nivre, 2008) with
actions that handle reparanda, discourse mark-
ers and interjections, thereby also explicitly using
marked disfluencies on SWBD for joint DP and
disfluency detection. Where Rasooli and Tetreault
(2013) and Honnibal and Johnson (2014) work
with SWBD text data, Yoshikawa et al. (2016) are
close to our setting and assume ASR output text
as parser input. Yoshikawa et al. (2016) create an
alignment that enables the transfer of gold tree-
bank data to ASR output texts and add three ac-
tions to manage disfluencies and ASR errors to the
arc-eager shift-reduce transition system of Zhang
and Nivre (2011). While they do not parse lat-
tices or confusion networks (lattices can be con-
verted to confusion networks, see Mangu et al.
(2000)) directly, Yoshikawa et al. (2016) use infor-
mation from word confusion networks to discover
erroneous regions in the ASR output. Charniak
and Johnson (2001) parse SWBD after removing
edited speech that they identify with a linear clas-
sifier. Additionally, Charniak and Johnson (2001)
introduce a relaxed edited parsing metric that con-
siders a simplified gold standard constituent parse
(removed edited words are added back into the
constituent parse for evaluation). Johnson and
Charniak (2004) model speech repairs in a noisy
channel model utilizing tree adjoining grammars
(TAGs). Source sentence probabilities in the noisy
channel are computed with a bigram LM and
rescored with a syntactic parser for a more global
view on the source sentence. The noisy chan-
nel is then formalized as TAG that maps source
sentences to target sentences, where repairs are
treated as the cleaned target side of the reparanda
on the source side. Besides the words themselves,
Johnson and Charniak (2004) use POS tags for
the alignment of reparandum and repair, which in-
dicates their usefulness in detecting disfluencies.
Approaching spontaneous speech issues from an-
other angle, Béchet et al. (2014) adapt a parser
trained on written text by means of an interactive
web interface (Bazillon et al., 2012) in which users
can modify POS and dependency tags writing reg-
ular expressions.

Natural speech poses specific problems, but also
comes with acoustic information that can improve
parsing speech through its incorporation (Tran
et al., 2017) or reranking (Kahn et al., 2005). Han-
dling disfluencies following Charniak and Johnson
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Treebank-3 Joint-POS tri4

ID Word POS Head Dep. Word POS Head Dep. Word POS Head Dep.

1 well UH 7 discourse well UH 7 discourse well UH 0 root
2 how WRB 3 advmod how WRB 3 advmod how WRB 3 advmod
3 many JJ 6 amod many JJ 7 nsubj many JJ 1 dep
4 uh UH 6 discourse of IN 3 dep of IN 3 dep
5 uh UH 6 discourse of IN 3 prep of IN 3 prep
6 families NNS 7 nsubj families NNS 5 pobj own NNS 5 pobj
7 own VBP 0 root own VB 0 root on IN 3 prep
8 a DT 9 det a DT 9 det a DT 9 det
9 refrigerator NN 7 dobj refrigerator NN 7 dobj refrigerator NN 7 pobj

Table 8: Example utterance. Errors in both models in boldface.

(2001), Kahn et al. (2005) rerank the n-best parses
using a set of prosodic features in the rerank-
ing framework of Collins (2000). Kahn et al.
(2005) find that combining prosodic features with
non-local syntactic features increase F -scores in
the relaxed edited metric of Charniak and John-
son (2001). Kahn and Ostendorf (2012) present
an approach that automatically recognizes speech,
segments a stream of words (e.g. a conversa-
tion side/speaker turn) into sentences and parses
these. A reranker that can take into account ASR
posteriors for n-best ASR hypotheses as well as
parse-specific features for m-best parses can then
jointly optimize towards WER (n hypotheses) or
SParseval (Roark et al., 2006) (n×m hypotheses)
metrics (Kahn and Ostendorf, 2012). Ehrlich and
Hanrieder (1996) describe an agenda-driven chart
parser that considers an acoustic word-level score
from a word lattice and can combine a sentence-
spanning analysis from partial hypotheses if a
full parse is unobtainable. Tran et al. (2017)
use speech and text domain cues for constituent
parsing in an attention-based encoder-decoder ap-
proach based on Vinyals et al. (2015). They show
that word-level acoustic-prosodic features learned
with convolutional neural networks improve per-
formance.

7 Discussion

Replacing words with word-POS pairs through-
out the ASR process, as described in Section 3.1,
increases the search space considerably. We fo-
cus on establishing the feasibility of this approach
here and do not detail techniques to address this
complexity issue. Including prior distributions
of word-POS pair occurrences could help disam-
biguation early on in lattice creation. The LM in
the joint model relies on word-POS pairs as well,

and a smoothing approach that backs off to n-
grams of words instead of n-grams of word-POS
pairs would counter the increased sparsity due to
the combination of words and their POS tags in
the LM part. We only explore instances of errors
the joint and pipeline models make in our analy-
sis. A systematic error analysis identifying advan-
tages and disadvantages of the joint model would
be interesting, especially with the errors involving
contractions and disfluencies. As a negative exam-
ple for our joint model, we observed the separation
of “didn’t” as “did” plus “n’t” as an ASR error for
“did it”. A qualitative analysis of error types could
indicate whether this a random or systematic er-
ror, and the same is true of the positive examples
in Section 5.

8 Conclusion

We have demonstrated a method to jointly perform
POS tagging and ASR on speech. The tagging and
parsing evaluations of the pipeline model vs our
joint model confirm the successful integration of
POS tags into speech lattices. While the improve-
ments over the pipeline approach are small, we en-
rich lattices with POS tags that allow for latticed-
based NLP in future work.
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Abstract

Most state-of-the-art information extrac-
tion approaches rely on token-level labels
to find the areas of interest in text. Unfor-
tunately, these labels are time-consuming
and costly to create, and consequently, not
available for many real-life IE tasks. To
make matters worse, token-level labels are
usually not the desired output, but just an
intermediary step. End-to-end (E2E) mod-
els, which take raw text as input and pro-
duce the desired output directly, need not
depend on token-level labels. We propose
an E2E model based on pointer networks,
which can be trained directly on pairs of
raw input and output text. We evaluate our
model on the ATIS data set, MIT restau-
rant corpus and the MIT movie corpus and
compare to neural baselines that do use
token-level labels. We achieve competi-
tive results, within a few percentage points
of the baselines, showing the feasibility
of E2E information extraction without the
need for token-level labels. This opens up
new possibilities, as for many tasks cur-
rently addressed by human extractors, raw
input and output data are available, but not
token-level labels.

1 Introduction
Humans spend countless hours extracting struc-
tured machine readable information from unstruc-
tured information in a multitude of domains.
Promising to automate this, information extraction
(IE) is one of the most sought-after industrial ap-
plications of natural language processing. How-
ever, despite substantial research efforts, in prac-
tice, many applications still rely on manual effort
to extract the relevant information.

One of the main bottlenecks is a shortage of
the data required to train state-of-the-art IE mod-
els, which rely on sequence tagging (Finkel et al.,
2005; Zhai et al., 2017). Such models require suf-
ficient amounts of training data that is labeled at
the token-level, i.e., with one label for each word.

The reason token-level labels are in short supply
is that they are not the intended output of human
IE tasks. Creating token-level labels thus requires
an additional effort, essentially doubling the work
required to process each item. This additional ef-
fort is expensive and infeasible for many produc-
tion systems: estimates put the average cost for
a sentence at about 3 dollars, and about half an
hour annotator time (Alonso et al., 2016). Conse-
quently, state-of-the-art IE approaches, relying on
sequence taggers, cannot be applied to many real
life IE tasks.

What is readily available in abundance and at no
additional costs, is the raw, unstructured input and
machine-readable output to a human IE task. Con-
sider the transcription of receipts, checks, or busi-
ness documents, where the input is an unstructured
PDF and the output a row in a database (due date,
payable amount, etc). Another example is flight
bookings, where the input is a natural language
request from the user, and the output a HTTP re-
quest, sent to the airline booking API.

To better exploit such existing data sources,
we propose an end-to-end (E2E) model based on
pointer networks with attention, which can be
trained end-to-end on the input/output pairs of hu-
man IE tasks, without requiring token-level anno-
tations.

We evaluate our model on three traditional IE
data sets. Note that our model and the baselines
are competing in two dimensions. The first is cost
and applicability. The baselines require token-
level labels, which are expensive and unavailable
for many real life tasks. Our model does not re-
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Figure 1: Our model based on pointer networks. The solid red lines are the attention weights. For clarity
only two decoders are drawn and only the strongest attention weight for each output is drawn.

quire such token-level labels. Given the time and
money required for these annotations, our model
clearly improves over the baselines in this dimen-
sion. The second dimension is the accuracy of the
models. Here we show that our model is compet-
itive with the baseline models on two of the data
sets and only slightly worse on the last data set, all
despite fewer available annotations.

Contributions We present an E2E IE model
with attention that does not depend on costly
token-level labels, yet performs competitively
with neural baseline models that rely on token-
level labels. By saving both time and money at
comparable performance, our model presents a vi-
able alternative for many real-life IE needs. Code
is available at github.com/rasmusbergpalm/e2e-ie-
release

2 Model
Our proposed model is based on pointer net-
works (Vinyals et al., 2015). A pointer network
is a sequence-to-sequence model with attention
in which the output is a position in the input se-
quence. The input position is ”pointed to” us-
ing the attention mechanism. See figure 1 for an
overview. Our formulation of the pointer network
is slightly different from the original: Our output
is some content from the input rather than a posi-
tion in the input.

An input sequence of N words x = x1, ..., xN

is encoded into another sequence of length N us-
ing an Encoder.

ei = Encoder(xi, ei−1) (1)

We use a single shared encoder, and k = 1..K de-
coders, one for each piece of information we wish

to extract. At each step j each decoder calculate an
unnormalized scalar attention score akji over each
input position i. The k’th decoder output at step j,
okj , is then the weighted sum of inputs, weighted
with the normalized attention scores attkji.

dkj = Decoderk(ok,j−1, dk,j−1) (2)

akji = Attentionk(dkj , ei) for i = 1..N (3)

attkji = softmax(akji) for i = 1..N (4)

okj =
N∑

i=1

attkji xi . (5)

Since each xi is a one-hot encoded word, and the
attkji sum to one over i, okj is a probability dis-
tribution over words.

The loss function is the sum of the negative
cross entropy for each of the expected outputs ykj

and decoder outputs okj .

L(x,y) = −
K∑

k=1

1
Mk

Mk∑
j=1

ykj log (okj) , (6)

where Mk is the sequence length of expected out-
put yk.

The specific architecture depends on the choice
of Encoder, Decoder and Attention. For the en-
coder, we use a Bi-LSTM with 128 hidden units
and a word embedding of 96 dimensions. We use
a separate decoder for each of the fields. Each de-
coder has a word embedding of 96 dimensions, a
LSTM with 128 units, with a learned first hidden
state and its own attention mechanism. Our atten-
tion mechanism follows Bahdanau et al. (2014)

aji = vT tanh(We enci + Wd decj) . (7)
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The attention parameters We, Wd and v for each
attention mechanism are all 128-dimensional.

During training we use teacher forcing for the
decoders (Williams and Zipser, 1989), such that
ok,j−1 = yk,j−1. During testing we use argmax
to select the most probable output for each step j
and run each decoder until the first end of sentence
(EOS) symbol.

3 Experiments

3.1 Data sets

To compare our model to baselines relying on
token-level labels we use existing data sets for
which token level-labels are available. We mea-
sure our performance on the ATIS data set (Price,
1990) (4978 training samples, 893 testing sam-
ples) and the MIT restaurant (7660 train, 1521
test) and movie corpus (9775 train, 2443 test) (Liu
et al., 2013). These data sets contains token-level
labels in the Beginning-Inside-Out format (BIO).

The ATIS data set consists of natural language
requests to a simulated airline booking system.
Each word is labeled with one of several classes,
e.g. departure city, arrival city, cost, etc. The MIT
restaurant and movie corpus are similar, except for
a restaurant and movie domain respectively. See
table 1 for samples.

MIT Restaurant MIT Movie
2 B-Rating show O
start I-Rating me O
restaurants O films O
with O elvis B-ACTOR
inside B-Amenity films O
dining I-Amenity set B-PLOT

in I-PLOT
hawaii I-PLOT

Table 1: Samples from the MIT restaurant and
movie corpus. The transcription errors are part of
the data.

Since our model does not need token-level la-
bels, we create an E2E version of each data set
without token-level labels by chunking the BIO-
labeled words and using the labels as fields to ex-
tract. If there are multiple outputs for a single
field, e.g. multiple destination cities, we join them
with a comma. For the ATIS data set, we choose
the 10 most common labels, and we use all the
labels for the movie and restaurant corpus. The
movie data set has 12 fields and the restaurant has

8. See Table 2 for an example of the E2E ATIS
data set.

Input
cheapest airfare from tacoma to st. louis and detroit

Output
fromloc tacoma
toloc st. louis , detroit
airline name -
cost relative cheapest
period of day -
time -
time relative -
day name -
day number -
month name -

Table 2: Sample from the E2E ATIS data set.

3.2 Baselines

For the baselines, we use a two layer neural net-
work model. The first layer is a Bi-directional
Long Short Term Memory network (Hochreiter
and Schmidhuber, 1997) (Bi-LSTM) and the sec-
ond layer is a forward-only LSTM. Both layers
have 128 hidden units. We use a trained word em-
bedding of size 128. The baseline is trained with
Adam (Kingma and Ba, 2014) on the BIO labels
and uses early stopping on a held out validation
set.

This baseline architecture achieves a fairly
strong F1 score of 0.9456 on the ATIS data set.
For comparison, the published state-of-the-art is
at 0.9586 (Zhai et al., 2017). These numbers are
for the traditional BIO token level measure of per-
formance using the publicly available conlleval
script. They should not be confused with the E2E
performance reported later. We present them here
so that readers familiar with the ATIS data set can
evaluate the strength of our baselines using a well-
known measure.

For the E2E performance measure we train the
baseline models using token-level BIO labels and
predict BIO labels on the test set. Given the pre-
dicted BIO labels, we create the E2E output for the
baseline models in the same way we created the
E2E data sets, i.e. by chunking and extracting la-
bels as fields. We evaluate our model and the base-
lines using the MUC-5 definitions of precision, re-
call and F1, without partial matches (Chinchor and
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Sundheim, 1993). We use bootstrap sampling to
estimate the probability that the model with the
best micro average F1 score on the entire test set
is worse for a randomly sampled subset of the test
data.

3.3 Our model

Since our decoders can only output values that are
present in the input, we prepend a single comma
to every input sequence. We optimize our model
using Adam and use early stopping on a held-out
validation set. The model quickly converges to op-
timal performance, usually after around 5000 up-
dates after which it starts overfitting.

For the restaurant data set, to increase perfor-
mance, we double the sizes of all the parameters
and use embedding and recurrent dropout follow-
ing (Gal, 2015). Further, we add a summarizer
LSTM to each decoder. The summarizer LSTM
reads the entire encoded input. The last hidden
state of the summarizer LSTM is then concate-
nated to each input to the decoder.

3.4 Results

Data set Baseline Ours p

ATIS 0.977 0.974 0.1755

Movie 0.816 0.817 0.3792

Restaurant 0.724 0.694 0.0001

Table 3: Micro average F1 scores on the E2E data
sets. Results that are significantly better (p <
0.05) are highlighted in bold.

We see in Table 3 that our model is competi-
tive with the baseline models in terms of micro-
averaged F1 for two of the three data sets. This
is a remarkable result given that the baselines are
trained on token-level labels, whereas our model
is trained end-to-end. For the restaurant data set,
our model is slightly worse than the baseline.

4 Related work
Event extraction (EE) is similar to the E2E IE task
we propose, except that it can have several event
types and multiple events per input. In our E2E IE
task, we only have a single event type and assume
there is zero or one event mentioned in the input,
which is an easier task. Recently, Nguyen et al.
(2016) achieved state of the art results on the ACE
2005 EE data set using a recurrent neural network
to jointly model event triggers and argument roles.

Other approaches have addressed the need for
token-level labels when only raw output values
are available. Mintz et al. (2009) introduced dis-
tant supervision, which heuristically generates the
token-level labels from the output values. You do
this by searching for input tokens that matches out-
put values. The matching tokens are then assigned
the labels for the matching outputs. One drawback
is that the quality of the labels crucially depend on
the search algorithm and how closely the tokens
match the output values, which makes it brittle.
Our method is trained end-to-end, thus not relying
on brittle heuristics.

Sutskever et al. (2014) opened up the sequence-
to-sequence paradigm. With the addition of at-
tention (Bahdanau et al., 2014), these models
achieved state-of-the-art results in machine trans-
lation (Wu et al., 2016). We are broadly inspired
by these results to investigate E2E models for IE.

The idea of copying words from the input to the
output have been used in machine translation to
overcome problems with out-of-vocabulary words
(Gulcehre et al., 2016; Gu et al., 2016).

5 Discussion
We present an end-to-end IE model that does not
require detailed token-level labels. Despite being
trained end-to-end, it is competitive with baseline
models relying on token-level labels. In contrast
to them, our model can be used on many real life
IE tasks where intermediate token-level labels are
not available and creating them is not feasible.

In our experiments our model and the baselines
had access to the same amount of training sam-
ples. In a real life scenario it is likely that token-
level labels only exist for a subset of all the data.
It would be interesting to investigate the quanti-
ty/quality trade-of of the labels, and a multi task
extension to the model, which could make use of
available token-level labels.

Our model is remarkably stable to hyper param-
eter changes. On the restaurant dataset we tried
several different architectures and hyper parame-
ters before settling on the reported one. The differ-
ence between the worst and the best was approxi-
mately 2 percentage points.

A major limitation of the proposed model is that
it can only output values that are present in the in-
put. This is a problem for outputs that are nor-
malized before being submitted as machine read-
able data, which is a common occurrence. For in-
stance, dates might appear as ’Jan 17 2012’ in
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the input and as ’17-01-2012’ in the machine
readable output.

While it is clear that this model does not solve
all the problems present in real-life IE tasks, we
believe it is an important step towards applicable
E2E IE systems.

In the future, we will experiment with adding
character level models on top of the pointer net-
work outputs so the model can focus on an input,
and then normalize it to fit the normalized outputs.
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Abstract

Vast amounts of speech data collected for
language documentation and research re-
main untranscribed and unsearchable, but
often a small amount of speech may have
text translations available. We present a
method for partially labeling additional
speech with translations in this scenario.
We modify an unsupervised speech-to-
translation alignment model and obtain
prototype speech segments that match the
translation words, which are in turn used
to discover terms in the unlabelled data.
We evaluate our method on a Spanish-
English speech translation corpus and on
two corpora of endangered languages,
Arapaho and Ainu, demonstrating its ap-
propriateness and applicability in an actual
very-low-resource scenario.

1 Introduction

Language documentation efforts over the last 50–
60 years have resulted in audio recordings of na-
tive speakers in a large number of languages, many
of which are available online. However, due to the
enormous effort required for transcription, much
of the data remains unannotated and unsearch-
able.1 For example, out of the 137 unrestricted
collections in the Archive of the Indigenous Lan-
guages of Latin America, about half (49%) contain
no transcriptions at all, and only 7% are fully tran-
scribed.2 As a result, some recent documentation
efforts have begun to focus instead on annotating
with translations, often with the help of bilingual

∗ Equal contribution.
1By some estimates, a trained linguist requires up to one

hour for to phonetically transcribe one minute of speech (Thi-
Ngoc-Diep Do and Castelli, 2014).

2http://ailla.utexas.org

native speakers themselves (Bird et al., 2014; Bla-
chon et al., 2016; Adda et al., 2016).

Nevertheless, even translation takes time and
language knowledge, so there may still be little
translated data relative to the amount of recorded
audio. An important goal, then, is to bootstrap lan-
guage technology from this small parallel corpus
in order to provide tools to annotate more data or
make the data more searchable.

We build on the approach of Anastasopoulos
et al. (2016), who developed a system that per-
forms joint inference to identify recurring seg-
ments of audio and cluster them while aligning
them to words in a text translation. Here, we ex-
tend the method to be able to search for new in-
stances of the latent clusters within the unlabeled
audio, effectively providing keyword translations
for some of the unlabeled speech. We evaluate our
method on a Spanish-English corpus used in pre-
vious work, and on two datasets from endangered
languages (narratives in Arapaho and Ainu). No
previous computational methods have been tested
on the latter data, to our knowledge. We show that
in all cases, our system outperforms a recent base-
line targeted at the same very low-resource setting
(Bansal et al., 2017b), also showing robustness to
audio quality and preprocessing decisions.

2 Related work

Our work joins a handful of other recent proposals
aimed at low-resource speech-to-text alignment
and translation. These include those of Duong
et al. (2016) and Anastasopoulos et al. (2016), who
performed alignment only; Bérard et al. (2016),
who used synthetic rather than real speech; and
Adams et al. (2016) and Godard et al. (2016), who
worked from phone lattices and phone sequences,
respectively; Stahlberg et al. (2013), who per-
form phone-to-translation alignment for pronunci-
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ation extraction. Weiss et al. (2017) presented a
sequence-to-sequence neural model that learned a
direct mapping from speech to translated text with
impressive results, but was trained on roughly 140
hours of parallel data—far more than is available
for most endangered languages.

The only previous system we know of to ad-
dress the same very-low-resource scenario and
provide translation terms for unlabeled audio
is that of Bansal et al. (2017b) (henceforth
UTD-align), who used an unsupervised term dis-
covery system (Jansen et al., 2010) to cluster re-
curring audio segments into pseudowords. The
pseudowords occurring in the parallel section of
the corpus were then aligned to the translation
text using IBM Model 1, and used to translate in-
stances occurring in the test (audio-only) section.

3 Method

The main difference between our method and
UTD-align is that UTD-align clusters the audio
prior to aligning with the translations, whereas we
start by performing joint alignment and clustering
using an improved version of the method proposed
by Anastasopoulos et al. (2016) (henceforth s2t).
The resulting aligned clusters are represented by
one or more prototype speech segments. We ex-
tend s2t to identify new instances of those pro-
totypes in the unlabeled speech, using a modified
version of ZRTools, the same UTD toolkit used
by UTD-align.3 (Jansen et al., 2010)

Previous work has indicated that using trans-
lation text to inform acoustic clustering pro-
vides more accurate clusters than just using UTD
(Bansal et al., 2017a), so we initially expected
that this straightforward extension of s2t would
work better than UTD-align. However, early ex-
periments indicated that the text had too much in-
fluence on clustering, yielding clusters with highly
diverse audio, and thus poor prototypes. Thus,
we modified s2t4 in order to account for this is-
sue, obtaining prototypes of higher quality (§3.1),
which we search for in the unlabeled audio (§3.2).

3.1 Aligning speech to translation
The s2t model is an extension of IBM Model
2 for word alignment (Brown et al., 1993),
combined with K-means clustering using Dy-
namic Time Warping (DTW) (Berndt and Clifford,

3https://github.com/arenjansen/ZRTools
4The code is available at

https://bitbucket.org/ndnlp/translationTermDiscovery

1994) as a distance measure. It uses expectation-
maximization (EM) to align speech segments to
words in the parallel text, while jointly clustering
the segments. Each translation word is aligned to
an acoustic segment, with overlapping alignments
and unaligned speech spans being allowed.

In the original implementation, every transla-
tion word was represented by a fixed number (2)
of acoustic sub-clusters, with a single prototype
representing each.5 The prototypes are averages of
the segments in the cluster, computed using DTW
Barycenter Averaging (Petitjean et al., 2011). At
the E-step, each segment was assigned to its clos-
est sub-cluster, and at the M-step the sub-cluster’s
prototype was re-computed. However, the orig-
inal choice of two subclusters was fairly arbi-
trary, and we found it doesn’t sufficiently account
for the wide acoustic variability due to gender or
speaker. We thus modify s2t so that, before the
M-step, each cluster’s segments are grouped into
sub-clusters using connected components cluster-
ing with a similarity threshold δ, following Park
and Glass (2008). That way, the number of sub-
clusters and prototypes for each translation word
is determined automatically based on the acoustic
similarity of the segments.

Our preliminary analysis showed that shorter
alignments tend to introduce significantly more
noise than longer ones. Therefore, in the final M-
step of s2t, we discard all segments shorter than
a length threshold t before computing the proto-
types. We use the default values for the rest of the
s2t parameters.

Another pragmatic choice we made based on
the performance of our method was to remove the
stopwords from the translations, following Bansal
et al. (2017b). The rationale is that translation
stopwords would not be particularly useful for la-
belling speech in our envisioned use cases.

3.2 Keyword Search

In the second stage, we use the approximate DTW-
based pattern matching method of ZRTools to
search for the obtained prototypes in the test data.
We require that each discovered term matches at
least k% of a prototype’s length and that its DTW
similarity score is higher than a threshold s. By
varying s we can control the number of discov-
ered terms, trading off precision and recall. Also,
we do not allow overlapping matches; in the case

5https://bitbucket.org/ndnlp/speech2translation
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of an overlap, we output the match with the higher
score.

4 Experiments

The CALLHOME Spanish Speech dataset
(LDC2014T23) with English translations (Post
et al., 2013) has been used in almost all ground-
laying previous work, treating Spanish as a
low-resource language. As a collection of tele-
phone conversations between relatives (about 20
total hours of audio), it doesn’t match our lan-
guage documentation scenario, but we use it in
order to compare our method with previous work.

We shuffle the utterances and split them into
training, dev, and test sets with 70%, 10%, and
20% of the data, respectively. We filter the ac-
tive audio regions using energy-based voice ac-
tivity detection (VAD). We obtain prototypes in
the training set and tune the values of the length
threshold t, the similarity threshold d, and the par-
tial overlap threshold k on the development set us-
ing grid search. The best parameter combination
is t = 300 ms, d = 90%, and k = 80%, while
s = 0.90 returns the highest F-score. We evaluate
our discovered translation terms on the test set us-
ing precision, recall, and F-score at the token level
over the correct bag-of-words translations.

We also evaluate our method on two low-
resource endangered languages, Arapaho and
Ainu. For these experiments, we only have a train-
ing and test set, so we use the same preprocessing
and hyperparameter settings as in CALLHOME.

Arapaho is an Algonquian language with about
1,000 native speakers, mostly in Wyoming. We
use 8 narratives published at The Arapaho Lan-
guage Project,6 which provides the narratives’ au-
dio along with English translations, among other
language learning resources.

Hokkaido Ainu is the sole surviving member of
the Ainu language family and is generally consid-
ered a language isolate. As of 2007, only ten native
speakers were alive. The Glossed Audio Corpus
of Ainu Folklore provides 10 narratives with au-
dio and translations in English.7 More information
and statistics on the Arapaho and Ainu corpora is
provided in Tables 4 and 5.

6http://www.colorado.edu/csilw/alp/index.html
7http://ainucorpus.ninjal.ac.jp/corpus/en/

Method Prec Rec F-score Coverage

UTD-align 5.1 2.1 3.0 27%

ours 4.2 3.5 3.8 59%

ours (oracle) 5.3 4.9 5.1 65%

Table 1: Results of our method and baseline work
on the CALLHOME dataset. Our method im-
proves over UTD-align whether inferring align-
ments or using oracle (silver) alignments.

4.1 Results on CALLHOME

We first evaluate the effect of our modifications
to the s2t method, by calculating alignment F-
score on links between speech frames and transla-
tion words.8 The intermediate sub-clustering step
between the E- and M-steps results in a more in-
formed selection of the number of sub-clusters that
increases the alignment F-score by 1.5%. Also,
removing translation stopwords further leads to
higher alignment precision by +4%. Alignment re-
call is lower since it’s computed over the align-
ments of both content and stopwords. Although
both improvements are small, the higher align-
ment precision leads to better prototypes.

In addition, Duong et al. (2016) created “silver”
standard speech-to-translation alignments by com-
bining the forced speech-to-transcription align-
ments and the transcription-to-translation word
alignments. These are useful for evaluating how
well the prototype creation and matching could
work, given oracle speech-to-translation align-
ments. In Table 1, we report precision, recall, and
F-score on the discovered translation terms (at the
token level) using prototypes from both “silver”
and noisy alignments. We also report the percent-
age of active audio that is labelled (coverage).
In both cases we outperform UTD-align.9 Even
though there is room for improvement, using the
translation information at the alignment stage cer-
tainly improves the clustering, as anticipated. An-
other advantage of our method over UTD-align
is its significantly improved coverage of the active
audio, as shown in the last column of Table 1. The
precision-recall curve obtained by varying the out-
put similarity threshold s is shown in Figure 1.

8See the paper by Duong et al. (2016) for a full definition.
9The code was provided by the authors of UTD-align.
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Figure 1: Average precision and recall curve for
our discovered matches in CALLHOME and the
Arapaho and Ainu test narratives (varying the out-
put threshold s between 0.90 and 0.94).

Arapaho Terms Prec Rec Oracle
narrative found (%) (%) Recall

1 29 31.0 4.7 32.3
2 65 21.5 8.0 44.3
3 91 7.7 6.4 54.5
4 158 13.9 8.4 53.4
6 1 100.0 0.7 41.4
7 104 7.7 7.1 44.6
8 10 30.0 4.5 65.2

average-ours 65 14.0 6.0
UTD-align 2 26.7 0.4

Table 2: Results on Arapaho narratives. In general,
we identify meaningful translation terms.

4.2 Results on Arapaho and Ainu

Out of the eight Arapaho narratives, we select the
longest (18 minutes of audio, 233 English word
types) for training, using the other seven (32 min-
utes total) for evaluation. The Ainu collection pro-
vides ten narratives, so we use the first two for
training (24 minutes of audio, 494 English word
types) and the rest (133 minutes total) as test data.

Treating each narrative as a bag of words, the
precision and recall results at the token level are
shown in Tables 2 and 3. The last columns of these
Tables correspond to the highest possible recall
that we could get if we discovered all the train-
ing terms that also appear in the test set. Precision-
recall curves can be seen in Figure 1.

On both corpora, UTD-align identifies hardly
any translation terms, with recall scores below
1% and average F-scores of 0.8% and 0.2% for
Arapaho and Ainu, respectively. Preprocessing
with the same VAD script as for our method,
UTD-align produced too many spurious matches

Ainu Terms Prec Rec Oracle
narrative found (%) (%) Recall

3 80 50.0 3.8 63.0
4 73 49.3 4.5 67.1
5 199 49.7 5.1 61.8
6 174 22.4 9.0 65.0
7 123 19.5 8.9 56.1
8 122 57.4 3.9 67.8
9 59 62.7 1.5 63.0

10 149 46.3 6.6 69.7

average-ours 122 42.3 4.2
UTD-align 4 24.2 0.1

Table 3: Results on the Ainu narratives. We are
able to correctly identify several terms per story,
with quite high precision.

(millions); we then used a more aggressive filter-
ing which removed more parts of the audio, but it
resulted in too few discovered matches (as shown
here). In principle, it should be possible to tailor
the preprocessing parameters for each corpus and
improve results for UTD-align.

Our method, instead, outputs several terms per
narrative without the need to readjust preprocess-
ing decisions, with F-scores of 8.4% (Arapaho)
and 7.2% (Ainu). Two exceptions are Arapaho
narratives #6 and #8, which, unlike our training
data, are narrated by a woman. Although there is
clearly room for improvement in terms of recall, as
shown by the last columns of Tables 2 and 3, we
are generally able to identify meaningful terms.

For most of the Arapaho stories we discover
named entities such as Ghost and Strong Bear,
content nouns like tipis and mountains, or verbs
such as hunting. In Ainu we discover more terms,
but the narratives are also longer. A larger domain
shift between training and test (small overlap on
named entities and other content words) leads to
lower recall compared to Arapaho. Our method
correctly identifies mostly common terms in the
Ainu narratives, like village, food, as well as verbs
used in narration such as said, went, or came.

5 Conclusion

We propose a method that modifies and ex-
tends a speech-to-translation alignment method
and can be used for identifying translation terms
in unlabeled audio, appropriate for extremely
small datasets. On CALLHOME, we show small
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improvements over a recent baseline. We also
demonstrate the applicability of our method on
language documentation scenarios, by applying it
on two endangered language datasets. Speaker dif-
ferences are still an issue, but our method is more
robust to differences in acoustic quality than the
previous method.
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ID Title
Duration Transcription Translation

(m:s) Tokens Types Tokens Types

1 Fooling the ghost 5:12 134 91 192 80
2 The Ghost by the Road 7:00 140 104 176 117
3 The Old Couple and the

Ghost
3:12 88 71 110 74

4 The Owl Man 7:14 269 157 262 125
5 Strong Bear and the Ghost 18:35 523 346 591 289
6 The Woman who turned

into Stone
3:26 140 93 152 85

7 Strong Bear and the
Boxer

3:29 125 82 112 61

8 Telescope 1:40 54 48 66 48

total 50:00 1473 849 1661 556

Table 4: Statistics on the Arapaho narratives. English type and token counts do not include stopwords.

ID Title
Duration Transcription Translation

(m:s) Types Tokens Types Tokens

1 Pananpe escapes from the
demons hands

6:12 189 849 203 519

2 The Girl who Gave the
Bad Red Dog Poison

17:48 488 2634 537 1336

3 The Young Lad Raised by
the Cat God

15:14 450 2149 437 1066

4 The Poor Man who Dug
Up the Village Chief
Wife’s Grave

10:38 306 1551 365 796

5 The Grapevines
which Warded Off the
Topattumi-night Raiders

24:41 572 3600 660 1942

6 The Woman who Became
Kemkacikappo Bird

8:59 233 699 219 431

7 The Goddess of the Fire
Fought with the Demon
God From the End of the
Earth

6:03 161 416 156 271

8 The Bridge of Mist 23:09 519 3408 591 1816
9 The Rich Man from Cen-

pak
32:59 699 4845 789 2523

10 Godly Elder Sister Gets
Rid of Bad Bear Father

12:16 400 1789 401 1043

total 157:59 1826 21940 1861 11743

Table 5: Statistics on the Ainu narratives. English type and token counts do not include stopwords.
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Abstract

This paper describes speech translation
from Amharic-to-English, particularly
Automatic Speech Recognition (ASR)
with post-editing feature and Amharic-
English Statistical Machine Translation
(SMT). ASR experiment is conducted
using morpheme language model (LM)
and phoneme acoustic model (AM).
Likewise, SMT conducted using word and
morpheme as unit.

Morpheme based translation shows a 6.29
BLEU score at a 76.4% of recognition
accuracy while word based translation
shows a 12.83 BLEU score using 77.4%
word recognition accuracy. Further, after
post-edit on Amharic ASR using corpus
based n-gram, the word recognition accu-
racy increased by 1.42%. Since post-edit
approach reduces error propagation, the
word based translation accuracy improved
by 0.25 (1.95%) BLEU score.

We are now working towards further im-
proving propagated errors through differ-
ent algorithms at each unit of speech trans-
lation cascading component.

1 Introduction

Speech is one of the most natural form of com-
munication for humankind (Honda, 2003). Com-
puter with the ability to understand natural lan-
guage promoted the development of man-machine
interface. This can be extended through different
digital platforms such as radio, mobile, TV, CD
and others. Through these, speech translation fa-
cilitates communication between the people who
speak different languages.

Speech translation is the process by which spo-
ken source phrases are translated to a target lan-

guage using a computer (Gao et al., 2006). Speech
translation research for major and technologi-
cal supported languages like English, European
languages (like French and Spanish) and Asian
languages (like Japanese and Chinese) has been
conducted since the 1983s by NEC Corporation
(Kurematsu, 1996). The advancement of speech
translation captivates the communication between
people who do not share the same language.

The state-of-the-art of speech translation sys-
tem can be seen as the integration of three major
cascading components (Gao et al., 2006; Jurafsky
and Martin, 2008); Automatic Speech Recognition
(ASR), Machine Translation (MT) and Text-To-
Speech (TTS) synthesis.

ASR is the process by which a machine infers
spoken words, by means of talking to computer,
and having it correctly understand a recorded au-
dio signal. Beside ASR, MT is the process by
which a machine is used to translate a text from
one source language to another target language.
Finally, TTS creates a spoken version from the text
of electronic document such as text file and web
document.

As one major component of speech transla-
tion, Amharic ASR started in 2001 (Melese
et al., 2016). A number of attempts have been
made for Amharic ASR using different methods
and techniques towards designing speaker inde-
pendent, large vocabulary, contineous speech and
spontaneous speech recognition.

In addition to ASR, a preliminary English-
Amharic machine translation experiments was
conducted using phonemic transcription on the
Amharic corpus (Teshome et al., 2015). The
result obtained from the experiment shows that,
it is possible to design English-Amharic machine
translation using statistical method.

As the last component of speech translation,
a number of TTS research have been attempted
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using different techniques and methods as dis-
cussed by (Anberbir and Takara, 2009). Among
these, concatenative, cepstral, formant and a sylla-
ble based speech synthesizers were the main meth-
ods and techniques applied.

All the above research works were conducted
using different methods and techniques beside
data difference and integration as a cascading
component. Moreover, dataset and tools used in
the above research are not accessible which makes
difficult to evaluate the advancement of research
in speech technology for local languages.

However, there is no attempt to integrate ASR,
SMT and TTS to come up with speech transla-
tion system for Amharic language. Thus, the main
aim of this study is to investigate the possibility
to design Amharic-English speech translation sys-
tem that controls recognition errors propagating
through cascading components.

2 Amharic Language

Amharic is a Semitic language derived from Ge’ez
with the second largest speaker in the world
next to Arabic (Simons and Fennig, 2017). The
name Amharic (€≈r{) comes from the district
of Amhara (€≈•) in northern Ethiopia, which is
thought to be the historic, classical and ecclesi-
astical language of Ethiopia. Moreover, the lan-
guage Amharic has five dialectical variations spo-
ken named as: Addis Ababa, Gojam, Gonder,
Wollo and Menz.

Amharic is the official working language of
government of Ethiopia among the 89 languages
registered in the country with up to 200 differ-
ent spoken dialects (Simons and Fennig, 2017;
Thompson, 2016). Beside these, Amharic lan-
guage is being used in governmental administra-
tion, public media and national commerce of some
regional states of the country. This includes; Addis
Ababa, Amhara, Diredawa and Southern Nations,
Nationalities and People (SNNP).

Amharic language is spoken by more than 25
million with up to 22 million native speakers. The
majority of Amharic speakers found in Ethiopia
even though there are also speakers in a number
of other countries, particularly Italy, Canada, the
USA and Sweden.

Unlike other Semitic languages, such as Ara-
bic and Hebrew, modern Amharic script has in-
herited its writing system from Ge’ez (gez) (Yi-
mam, 2000). Amharic language uses a grapheme

based writing system called fidel (âÔl) written
and read from left to right. Amharic graphemes
are represented as a sequence of consonant vowel
(CV) pairs, the basic shape determined by the con-
sonant, which is modified for the vowel.

The Amharic writing system is composed of
four distinct categories consisting of 276 different
symbols; 33 core characters with 7 orders (€, ∫,
‚, ƒ, „, … and †), 4 labiovelars with 5 orders sym-
bol (q, u, k and g), 18 labialized consonants with
1 order (wƒ) and 1 labiodental characters consist-
ing 7 orders (€, ∫, ‚, ƒ, „, … and †).

In Amharic writing system, all the 276 distinct
orthographic representation are indispensable due
to their distinct orthographic representation.

However, as part of speech translation, speech
recognition mainly deals with distinct sound.
Among those, some of the graphemes generate
same sound like (h, M, u and Ω) pronounced as
h/h/.

On the other hand, Machine translation empha-
sizes on orthographic representation which result
the same meaning in different graphemes. As a
result, normalization is required to minimize the
graphemes variation which leads to better trans-
lation while minimizing the ASR model. Table 1
presents the Amharic character set before and after
normalization.

Unnormalized Normalized Difference

Core Character 33 27 6

Labiovelar 4 4 0

Labialized 18 18 0

Labiodental 1 1 0

Total 276 234 42

Table 1: Distribution of Amharic character set
adopted and modified from (Melese et al., 2016)

As a result, graphemes that generate the same
sound are normalized in to the seven order of core
character. The normalization is based on the usage
of most characters frequency in Amharic text doc-
ument. This includes, normalization from (h, M,
u and Ω) to h, (…, e) to …, (U, s) to s and (Õ, Ý)
to Õ along with order.

3 Tourism in Ethiopia

Tourism is the activity of traveling to and stay-
ing in places outside their usual environment
for not more than one year to create a direct
contact between people and cultures (UNWTO,
2016). Ethiopia has much to offer for international

60



tourists1 ranging from the peaks of the rugged
Semien mountains to the lowest points on earth
called Danakil Depression which is more than 400
feet below sea level.

In addition, tourism become a pleasing sustain-
able economic development that serves as an alter-
native source of foreign exchange for the counties
like Ethiopia.

Moreover, The 2015 United Nations World
Tourism report (UNWTO, 2016) and the World
Bank2 report indicate that, in 2015 a total of
864,000 non-resident tourists come to Ethiopia to
visit different tourist attraction. These include;
ancient, medieval cities and world heritages reg-
istered by UNESCO as tourist attraction. Since
the year 2010 until 2015, the average number of
tourist flow increase by 13.05% per year.

According to Walta Information Center3, cit-
ing Ethiopia Ministry of Culture and Tourism,
Ethiopia has secured 872 million dollars in first
quarter of its 2016/17 fiscal year from 223,032
international tourists. The revenue was mostly
through conference tourism, research business and
other activities. Majority of the tourists were from
USA, England, Germany, France and Italy speak-
ing foreign languages. Beside this, tourists ex-
press their ideas using different languages, the ma-
jority of the tourists can speak and communicate
in English to exchange information about tourist
attractions.

Due to this, language barriers are a major prob-
lem for today’s global communication (Nakamura,
2009). As a result, they look for an alternate
option that lets them communicate with the sur-
rounding.

Thus, speech translation system is one of the
best technologies used to fill the communication
gap between the people who speak different lan-
guages (Nakamura, 2009). This is especially
true in overcoming language barriers of today’s
global communication besides supporting under-
resourced language.

However, under-resourced languages such as
Amharic, suffer from having a digital text and
speech corpus to support speech translation. So,
after collecting text and speech corpora, moving

1http://www.investethiopia.gov.et/
images/pdf/Investment_Brochure_to_
Ethiopia.pdf

2 http://data.worldbank.org/indicator/
ST.INT.ARVL?end=2015

3https://www.waltainfo.com/
FeaturedArticles/detail?cid=28751

one step further helps in solving language barriers
problem.

Therefore, this study attempts to come up with
an Amharic-English speech translation system
taking tourism as a domain.

4 Data Preparation

Nowadays, Amharic language suffers from a lack
of speech and text corpora for ASR and SMT. Be-
side these, collecting standardized and annotated
corpora is one of the most challenging and ex-
pensive tasks when working with under resourced
languages (Besacier et al., 2006; Gauthier et al.,
2016).

For Amharic speech recognition training and
development, 20 hours of read speech corpus pre-
pared by Abate et. al (2005) were used. How-
ever, due to unavailability of standardized corpora
for speech translation in tourism domain, a text
corpus is acquired from resourced and technolog-
ically supported languages particularly English.

Accordingly, a parallel English-Arabic text data
was acquired from the Basic Traveller Expres-
sion Corpus (BTEC) 2009 which is made avail-
able through International Workshop on Spoken
Language Translation (IWSLT) (Kessler, 2010).
A parallel Amharic-English corpus has been pre-
pared by translating the English BTEC data using
a bilingual speaker. This data is used for the de-
velopment of speech translation cascading compo-
nent such as, ASR and SMT.

The corpus has a total of 28,084 Amharic-
English parallel sentences. To keep the dataset
consistent, the text corpus has been further prepro-
cessed, such as typing errors are corrected, abbre-
viations have been expanded, numbers have been
textually transcribed and concatenated words have
been separated.

Amharic speech recognition is conducted using
words and morphemes as a language model with
a phoneme-based acoustic model. Similarly word
and morpheme have been used as a translation unit
for Amharic in Amharic-English machine trans-
lation. Morpheme-based segmentation of train-
ing, development, testing obtained by segment-
ing word into sub-word unit using corpus-based,
language independent and unsupervised segmen-
tation for using morfessor 2.0 (Smit et al., 2014).

Once the Amharic-English BTEC corpus is pre-
pared, it is divided into training, tuning and test-
ing set with a proportion of 69.33% (19472 sen-
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tences), 1.78%(500 sentences) and 28.88%(8112
sentences), respectively.

Then, the 8112 (28.38%) test set sentences
are recorded under a normal office environment
from eight (4 Male and 4 Female) native Amharic
speakers using LIG-Aikuma, a smartphone based
application tool (Blachon et al., 2016).

Accordingly, a total of 7.43 hours read speech
corpus ranging from 1,020 ms to 14,633 ms with
an average speech time of 3,297 ms has been col-
lected from the tourism domain.

Moreover, as suggested by Melese et al., (2016),
morphologically rich and under-resourced lan-
guage like Amharic provides a better recognition
accuracy using morpheme based language model
with phoneme based acoustic model.

Similarly, language model data for Amharic
speech recognition has been collected from differ-
ent sources. A text corpus collected for Google
project (Tachbelie and Abate, 2015) have been
used in addition to BTEC SMT training data ex-
cluding the test data. Table 2 presents the train-
ing, development and language model data used
for Amharic speech recognition.

Train Test Language Model
Word Morpheme

Sentence 10,875 8,112 261,620 261,620
Token 145,404 50,906 4,223,835 5,773,282
Type 24,653 4,035 328,615 141,851

Table 2: Distribution of Amharic data for ASR.

Like speech recognition, a total of 42,134 sen-
tences (374,153 token of 8,678 type) English lan-
guage model data have been used for Amharic-
English machine translation. The data is collected
from the same BTEC corpus excluding test data.

Consequently, corpus based and language in-
dependent segmentation have been applied on a
training, development and test set of Amharic
SMT data. Morfessor is used to segment words
to a sub word units. Table 3 presents summary
of the corpus used for Amharic-English machine
translation using word and morpheme as a unit.

Likewise, the post-edit is conducted using a cor-
pus based n-gram approach. Accordingly, a cor-
pus containing 681,910 sentences (11,514,557 to-
kens) of 582,150 type data crawled from web in-
cluding news and magazine.

Then, the data is further cleaned, preprocessed
and normalized. From this data, a total of
5,057,112 bigram, 8,341,966 trigram, 9,276,600
quadrigram and 9,242,670 pentagram word se-

Unit Train Dev Test

Amharic

Word

Sentence 19,472 500 8,172

Token 107,049 2,795 37,288

Type 18,650 1,470 4,168

Morpheme

Sentence 19,472 500 8,172

Token 145,419 3,828 50,906

Type 15,679 1,621 4,035

English Word

Sentence 19,472 500 8,172

Token 157,550 4,024 55,062

Type 10,544 1,227 3,775

Table 3: Distribution of Amharic-English SMT
data.

quences have been extracted after expanding num-
bers and abbreviation.

5 System Architecture

As discussed in Section 1, the state-of-the-art of
speech translation suggest to apply through the
integration of cascading components to translate
speech from source language (Amharic) to a tar-
get language (English).

As part of the cascading components, the output
of a speech recognizer contains more and presents
a variety of errors. These errors further propagates
to the succeeding component of speech translation
which results in low performance.

Hence, in this study we propose an Amharic
ASR post-editing module that can detect an er-
ror, identify possible suggestion and finally correct
based on the proposal. The correction is made us-
ing n-gram data store using minimum edit disatnce
and perplexity before the error heads to statistical
machine translation.

Figure 1 presents Amharic-English speech-to-
speech translation (S2ST) architecture with and
without considering ASR post-edit.

The post-edit process mainly consists of three
different phases; error detection, correction pro-
posal and finally suggest correction as depicted in
Figure 2.

The first phase of post editing is to detect the
error from ASR recognition output. Basically, to
detect an error, recognized morpheme units are
concatenated to form a word and its existence is
checked in unigram Amharic dictionary.

Thus, a morpheme-based speech recognition
output “Î+ -s¶³ …¡ -°È¶Û °sã €Ôr+ -Ý†∫
”4 concatenated to form a phrase “Îs¶³ …¡ -
°È¶Û °sã €ÔrÝ†∫ ”.

4“+” refers to morphemes followed by other morpheme
while “-” refer to leading morpheme is there.
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Figure 1: Amharic-English speech-to-speech
translation architecture (a) without post-edit (b)
with post-edit

If the word is not in the unigram Amharic dic-
tionary, then the “word” is considered as an error
and marked as error(“*”) then it is concatenated
to the remaining words. Accordingly, each to-
ken checked in unigram dictionary and the word
“-°È¶Û” is not in dictionary which is marked as
an error.

If the error is detected during the first phase,
then the correction proposal phase takes the sen-
tence with error mark and creates (w-n+1) n-grams
after adding start “<s>” and end “</s>” symbol,
where w is number of token in sentence and n
specifies n-grams. Otherwise, the sentence is con-
sidered as correct.

Consequently, three pantagram word sequences
are generated from the speech recognition of
“<s> Îs¶³ …¡ -°È¶Û °sã €ÔrÝ†∫ </s>
” sentence. These are;

1. <s> Îs¶³ …¡ * °sã

2. Îs¶³ …¡ * °sã €ÔrÝ†∫

3. …¡ * °sã €ÔrÝ†∫ </s>

Subsequently, we select the n-grams with error
marks and search in n-gram data store to select
possible candidates for correction after removing
the error mark. If there is no candidate in n-gram,
then go for (n-1)-gram order until bigram.

Once the candidate identified, the suggestion is
made taking the minimum edit distance between

Figure 2: Amharic ASR post-edit algorithm

the error detected and suggestion selected. In this
phase, the sum of maximum edit distance has been
set experimentally to 16. The maximum edit dis-
tance 16 was selected to provide at least one sug-
gestion per sentence and minimize the computa-
tion of perplexity. Table 4 depicts a sample of pos-
sible correction proposal for a sentence “Îs¶³

…¡ -°È¶Û °sã €ÔrÝ†∫”.
Finally, the suggestion is made primarly using

minimum edit distance then by calculating the per-
plexity. The minimal edit distance is computed
between the word “-°È¶Û” and the underlined n-
gram based possible suggestion from a sentence of
Table 4.
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Possible suggestion list Distance
Îs¶³ …¡ °sã €ÔrÝ†∫ b†Ål 5
Îs¶³ …¡ bÎ °sã €ÔrÝ†∫ 5
Îs¶³ …¡ €nÔ≈y °sã €ÔrÝ†∫ 5
Îs¶³ …¡ °sã €ÔrÝ†∫ y‰‡ 5
Îs¶³ …¡ °sã €ÔrÝ†∫ †àÚg³ 5
Îs¶³ …¡ bÒ °sã €ÔrÝ†∫ 5
Îs¶³ …¡ °sã €ÔrÝ†∫ býl 5
Îs¶³ …¡ °sã €ÔrÝ†∫ y‰‡m 5
≈n{wm Îs¶³ …¡ °sã €ÔrÝ†∫ 5
Îs¶³ …¡ Î√Xµ¤t °sã €ÔrÝ†∫ 6
Îs¶³ …¡ €nÔ√…n °sã €ÔrÝ†∫ 6
Îs¶³ …¡ €nÔ√°¿ °sã €ÔrÝ†∫ 6
Îs¶³ …¡ €nÔÔ�˜ °sã €ÔrÝ†∫ 6
Îs¶³ …¡ €nÔ√Â³ °sã €ÔrÝ†∫ 6
Îs¶³ …¡ €nÔ√Œ³ °sã €ÔrÝ†∫ 6
Îs¶³ …¡ €nÔ√°³ °sã €ÔrÝ†∫ 6

Table 4: Sample n-gram based suggestion for a
sentence “Îs¶³ …¡ -°È¶Û °sã €ÔrÝ†∫”.

If the edit distance is the same as a different sug-
gestion, then the decision is made by selecting the
one that result lower perplexity.

Accordingly, the phrase “Îs¶³ …¡ °sã

€ÔrÝ†∫ b†Ål” selected due to better perplex-
ity of language model.

Similarly, Table 5 presents sample Amharic
speech recognition output along with the corrected
sentence using our post-edit technique.

No Type Sentence recognized and corrected

1 Raw €•sn ½m— Ûb}t …ÚË+ ÅÝ y»�l

Edited €•sn ½m— Ûb}t ¤Ë ÅÝ y»�l

2 Raw €§kÇn °]¿√+ µ“t

Edited €§kÇn °]¿√wn µ“t

3 Raw €§Án+ Š‰ å³ ≈gxt …m‰†∫

Edited €§kÇn Š‰ å³ ≈gxt …m‰†∫

4 Raw €§kÇn [n³Çn ykà±+
Edited €§kÇn [n³Çn ykà±t

5 Raw Îs¶³ …¡ +gËt …Ñ˜b½ ¶w

Edited Îs¶³ …¡ †ŒgËt …Ñ˜b½ ¶w

6 Raw yh ÎÛÍ ‰y hŒm -ÑÝµm ym‰l

Edited yh ÎÛÍ ‰y hŒm ˆÑÝµm ym‰l

7 Raw -h §¥r Ùªr ¤snt ˜ƒt yÔr›l

Edited yh §¥r Ùªr ¤snt ˜ƒt yÔr›l

8 Raw [n³Çn ykà± -m
Edited [n³Çn ykà±

9 Raw €§kÇn °]¿√wn +µ“t

Edited €§kÇn °]¿√wn yµ“t

Table 5: Sample corrected sentences of Amharic
speech recognizer.

6 Experimental results

Speech translation experiments are conducted
through cascading components of speech transla-
tion as discussed in Section 1. In speech recog-
nition experiments, Kaldi (Povey et al., 2011),
SRILM (Stolcke et al., 2002) and Morfessor 2.0
(Smit et al., 2014) have been used for Amharic
speech recognition, language modeling and unsu-
pervised segmentation, respectively.

Morfessor based segmentation has been applied
to segment training, testing and language model
data for Amharic. In addition to this, Moses and
MGIZA++ for implementing a phrase based sta-
tistical machine translation and Python is used for
implementing the post-edit algorithm and to inte-
grate ASR and SMT under the Linux platform.

The entire ASR experiment is conducted using a
morpheme-based language model with phoneme-
based acoustic model. Accordingly, the exper-
imental result is computed using NIST Scoring
Toolkit (SCTK)5 and presented in terms of word
recognition accuracy (WRA6) and morph recogni-
tion accuracy (MRA).

Thus, the Amharic speech recognition exper-
iment shows a 76.4% for the morpheme-based.
Then, after the concatination of morphemes to
words, a 77.4% word-based recognition accuracy
have been achieved.

Consequently, Amharic-English SMT experi-
ment have been conducted with and without con-
sidering Amharic ASR result.

The first two experiments were conducted with-
out considering ASR. Accordingly, a word-word
system resulted in a BLEU score of 14.72 while
morpheme-word brings about 11.24 BLEU. Com-
bining Amharic ASR with Amharic-English SMT
as cascading component resulted in a 6.29 BLEU
score through 76.4% of recognition accuracy
for Amharic morpheme and English word based
translation.

Similarly, Amharic word with English word
based translation shows a 12.83 BLEU score using
77.4% recognition accuracy without using ASR
post-edit. The result achieved by ASR can further
be improved by applying post-edit on Amharic
speech recognition.

5evaluation toolkit available at http://my.fit.
edu/˜vkepuska/ece5527/sctk-2.3-rc1/doc/
sctk.htm

6WRA is obtained by concatenating the result obtained by
MRA
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Table 6 depicts Amaharic-English speech trans-
lation before and after Amharic ASR post-edit.

Before After
Morpheme Word Word

ASR (%) 76.4 77.4 78.5
SMT (in BLEU) 6.29 12.83 13.08

Table 6: Amharic-English Speech Translation re-
sult.

Accordingly, the morpheme based recognition
followed by post-edit resulted in a BLEU score
of 13.08 at 78.5% of word recognition accuracy
speech translation.

The result obtained from the n-gram post-edit
experiment shows an absolute advance by 1.42%
from word recognition accuracy of 77.4% ob-
tained by concatenating a 76.4% morpheme based
recognition. Similarly, BLEU score evaluation ad-
vanced by 1.95% (from 12.83 to 13.08).

7 Conclussion and Future work

Speech translation research has been studied for
more than a decade for resourced and technolog-
ical supported languages like English, European
and Asian. On the contrary, attempts for under re-
sourced languages, not yet started, particularly for
Amharic. This paper presents the first Amharic
speech to English text translation using the cas-
cading components of speech translation.

For ASR, a 20 hours of training and 7.43
hours of testing speech were used consuming a
morpheme-based language model with a phone-
mic acoustic model. Whereas for SMT, 19,472
sentence for training and 8112 sentences for test-
ing used. Similarly to apply ASR post-edit us-
ing n-gram approach, a corpus consisting 681,910
sentences were used.

Accordingly, speech translation through ASR
post-editing resulted a 0.25 (1.95%) BLEU score
enhancement from the word-based SMT. The en-
hancement seemed as a result of improving ASR
by 1.42% using a corpus based n-gram post-edit.

The current study shows the possibility of en-
hancing the performance of speech translation by
controlling speech recognition error propagation
using post-editing algorithm.

Further works need to be done to apply post-
editing both at the recognition and the translation
stages of speech translation.
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Abstract

We consider the automatic scoring of a
task for which both the content of the re-
sponse as well the pronunciation and flu-
ency are important. We combine features
from a text-only content scoring system
originally designed for written responses
with several categories of acoustic fea-
tures. Although adding any single cate-
gory of acoustic features to the text-only
system on its own does not significantly
improve performance, adding all acous-
tic features together does yield a small
but significant improvement. These re-
sults are consistent for responses to open-
ended questions and to questions focused
on some given source material.

1 Introduction

English language proficiency assessments de-
signed to evaluate speaking ability often include
tasks that require the test takers to speak for one
or two minutes on a particular topic. These re-
sponses are then evaluated by a human rater in
terms of how well the test takers addressed the
question as well as the general proficiency of their
speech. Therefore, a system designed to automat-
ically score such responses should combine NLP
components aimed at evaluating the content of the
response as well as text-based aspects of speaking
proficiency such as vocabulary and grammar, and
speech-processing components aimed at evaluat-
ing fluency and pronunciation. In this paper, we
investigate the automatic scoring of such spoken
responses collected as part of a large-scale assess-
ment of English speaking ability.

Our corpus contains responses to two types
of questions — both administered as part of the
same speaking ability task — that we will refer

to as “source-based” and “general”. For source-
based questions, test-takers are expected to use the
provided materials (e.g., a reading passage) as a
basis for their response and, therefore, good re-
sponses are likely to have similar content. In con-
trast, general questions are more open-ended such
as “What is your favorite food and why?” and,
therefore, the content of such responses can vary
greatly across test takers. In total, our corpus con-
tains over 150,000 spoken responses to 147 differ-
ent questions, both source-based and general.

We focus our system on two dimensions of pro-
ficiency: content, that is how well the test-taker
addressed the task, and delivery (pronunciation
and fluency). To evaluate the content of a spo-
ken response, we use features from an existing
content-scoring NLP system developed for written
responses that uses the textual characteristics of
the response to produce a score. We apply this sys-
tem to the 1-best ASR (automatic speech recogni-
tion) hypotheses for the spoken responses.

To evaluate the fluency and pronunciation of the
speech in the response, we use features from an ex-
isting speech-scoring system that capture informa-
tion relevant to spoken language proficiency and
cannot be obtained just from the ASR hypothe-
sis. We compare the contributions of several types
of features: speech rate, pausing patterns, pronun-
ciation measures based on acoustic model scores
and ASR confidence scores as well as more com-
plex features that capture timing patterns and other
prosodic properties of the response.

We combine the two types of features (text-
driven and speech-driven) and compare the perfor-
mance of this model to two baseline models, each
using only one type of features. All models are
evaluated by comparing the scores obtained from
that model to the scores assigned by human raters
to the same responses. We hypothesize that:
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• Given the characteristics of the two types of
questions, the model with only text-driven
features will exhibit better performance for
source-based questions as opposed to gen-
eral ones.

• Since human raters reward how well the re-
sponse addresses the question as well as
higher spoken proficiency, the combined
model that uses both text-driven features (for
content) & speech-driven features (for profi-
ciency) will perform better than the individ-
ual text-only and speech-only models.

We find that our results generally meet our ex-
pectations but interestingly the improvement in
performance by combining text-driven & speech-
driven features — while significant — is not as
large as we had expected, i.e., the combination
does not add much over the text-driven features.
We conclude by discussing possible reasons for
this observation.

2 Related work

Most systems for scoring proficiency of spoken
responses rely on ASR to obtain a transcription
of the responses. Since work on automated scor-
ing predates the availability of accurate ASR, the
majority of earlier automated scoring systems fo-
cused on tasks that elicited restricted speech such
as read-aloud or repeat-aloud. Such systems ei-
ther did not consider the content of the response at
all or relied on relatively simple string-matching
(see Eskenazi (2009) and Zechner et al. (2009)
for a detailed review). Even when the task re-
quired answering open-ended questions, e.g. in
the PhonePass test (Townshend et al., 1998; Bern-
stein et al., 2000), fluency was considered more
important than content.

Zechner et al. (2009) were one of the first to
attempt automatically scoring tasks that not only
elicited open-ended responses but where content
knowledge was also an integral part of the task.
They did not use any explicit features to measure
content because of the high ASR word error rates
(around 50%). Instead, they focused on fluency-
related features on which ASR errors had little im-
pact. They reported a correlation of 0.62 between
the system and human scores.

More recent studies have explored different ap-
proaches to evaluating the content of spoken re-
sponses. Xie et al. (2012) explored content mea-

sures based on the lexical similarity between the
response and a set of reference responses. A
content-scoring component based on word vectors
was also part of the automated scoring engine de-
scribed by Cheng et al. (2014). In both these stud-
ies, content features were developed to supple-
ment other features measuring various aspects of
speaking proficiency. Neither study reported the
relative contributions of content and speech fea-
tures to the system performance.

Although it may seem obvious that, given the
nature of the task, a model using both speech-
based and content-based features should outper-
form models using only one of them, it may not
turn out that way. Multiple studies that have devel-
oped new features measuring vocabulary, gram-
mar or content for spoken responses have reported
only limited improvements when these features
were combined with features based on fluency and
pronunciation (Bhat and Yoon, 2015; Yoon et al.,
2012; Somasundaran et al., 2015). Crossley and
McNamara (2013) used a large set of text-based
measures including Coh-Metrix (Graesser et al.,
2004) to obtain fairly accurate predictions of pro-
ficiency scores for spoken responses to general
questions similar to the ones used in this study
based on transcription only, without using any in-
formation based on acoustic analysis of speech. It
is not possible to establish from published results
how their system would compare to the one that
also evaluates pronunciation and fluency. They did
not compute any such features and their results
based on text are not directly comparable to the
other papers discussed in this section since some
of their features required a minimum length of 100
words and, therefore, required them to combine
several responses to meet this text length require-
ment.

Most recently, Loukina and Cahill (2016) com-
pared the performance of several text- and speech-
based scoring systems and found that even though
each system individually achieved reasonable ac-
curacy in predicting proficiency scores, there was
no improvement in performance from combining
the systems. They argued that the majority of
speakers who perform well along one dimension
of language proficiency are also likely to perform
well along other dimensions (cf. also Xi (2007)
who reports similar results for human analytic
scores). Consequently, the gain in performance
from combining different systems is small or non-
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existent. Their work focused on general language
proficiency features and did not consider the con-
tent of the responses.

This study has several significant differences
from previous work. We consider content-scoring
features that go well beyond word vectors and in-
stead build a textual profile of the response. Fur-
thermore, we conduct more fine-grained analyses
and report the types of speech-driven features that
add the most information to content-scoring fea-
tures. We also examine how the interactions be-
tween content and speech features vary by types
of questions. Finally, we conduct our analyses on
a very large corpus of spoken responses which, to
our knowledge, is the largest used so far in studies
on automated scoring of spoken responses. The
size of the data allows us to identify patterns that
persist across responses to multiple questions and
are more reliable.

3 Methodology

3.1 Data

The data used in this study comes from a large-
scale English proficiency assessment for non-
native speakers administered in multiple coun-
tries. Each test-taker answers up to 6 questions:
two general and four source-based. For source-
based questions, test-takers are provided with spo-
ken and/or written materials and asked to respond
to a question based on these materials while gen-
eral questions have no such materials. Test-takers
are given 45 seconds to answer general questions
and one minute to answer source-based questions.

Each response was scored by a professional hu-
man rater on a scale of 1–4. When assigning
scores, raters evaluated both how well the test
taker addressed the task in terms of content as well
as the overall intelligibility of the speech. A re-
sponse scored as a “1” would be limited in content
and/or largely intelligible due to consistent pro-
nunciation difficulties and limited use of vocabu-
lary and grammar. On the other hand, a response
scored as a “4” would fulfill the demands of the
task and be highly intelligible with clear speech
and effective use of grammar and vocabulary. The
raters are provided with the description of typical
responses at each score level and are asked to pro-
vide a holistic score without prioritizing any par-
ticular aspect.

For this study, we used responses to 147
questions (48 general questions and 99 source-

Type general source-based
N questions 48 99
N responses 50,811 102,650
Average responses 1058.6 1036.9
Median responses 902.5 936.0
Min responses 255 250
Max responses 2030 2,174
Average N words 90.8 120.3

Table 1: Total number of responses for each ques-
tion type; the average, median, min and max num-
ber of responses per question; the average number
of words in responses to each question computed
based on ASR hypotheses.

based questions) from different administrations of
the assessment. We excluded responses where the
ASR hypothesis contained fewer than 10 words
(0.2% of the original sample). The final corpus
used for model training and evaluation included
153,461 responses from 33,503 test takers.1 As
shown in Table 1, the number of responses for a
question was consistent for the two question types.

Test-takers from each administration were ran-
domly split between training and evaluation parti-
tion with about 70% of responses to each question
allocated to the training set and 30% allocated to
the evaluation set. We ensured that, across all 147
questions, responses from the same test taker were
always allocated to the same partition and that test
takers in training and evaluation sets had similar
demographic characteristics.

3.2 Automatic Speech Recognizer
All responses were processed using an automatic
speech-recognition system based on the Kaldi
toolkit (Povey et al., 2011) using the approach de-
scribed by Tao et al. (2016). The language model
was based on tri-grams. The acoustic models were
based on 5-layer DNN and 13 MFCC-based fea-
tures. Tao et al. (2016) give further detail about
the model training procedure.

The ASR system was trained on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. The speech in the ASR training

1Our sampling was done by question and some ques-
tions were repeated across administrations in combination
with other questions not included in this study. The num-
ber of speakers who answered each question varied between
250 and 2,174, with an average of 1,043 responses to each
question. For 68% of test takers, we had responses to all 6
questions.
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corpus was elicited using questions similar to the
ones considered in this study. There was no over-
lap of speakers or questions between the ASR
training corpus and the corpus used in this pa-
per. We did not additionally adapt the ASR to the
speakers or responses in this study.

While no transcriptions are available to com-
pute the WER of the ASR system on this corpus,
the WER for this system on a similar corpus is
around 30%.

3.3 Text-driven features
Scoring responses for writing quality requires
measuring whether the student can organize and
develop an argument and write fluently with no
grammatical errors or misspellings. In contrast,
scoring for content deals with responses to open-
ended questions designed to test what the stu-
dent knows, has learned, or can do in a specific
subject area (such as Computer Science, Math,
or Biology) (Sukkarieh and Stoyanchev, 2009;
Sukkarieh, 2011; Mohler et al., 2011; Dzikovska
et al., 2013; Ramachandran et al., 2015; Sakaguchi
et al., 2015; Zhu et al., 2016).2

In order to measure the content of the spoken re-
sponses in our data, we extract the following set of
features from the 1-best ASR hypotheses for each
response:

• lowercased word n-grams (n=1,2), including
punctuation

• lowercased character n-grams (n=2,3,4,5)

• syntactic dependency triples computed using
the ZPar parser (Zhang and Clark, 2011)

• length bins (specifically, whether the log of 1
plus the number of characters in the response,
rounded down to the nearest integer, equals x,
for all possible x from the training set). For
example, consider a question for which tran-
scriptions of the responses in the training data
are between 50 and 200 characters long. For
this question, we will have 3 length bins num-
bered from 5 (blog2 51c) to 7 (blog2 201c).
For a new response of length 150 characters,
length bin 7 (blog2 151c) would be the binary
feature that gets a value of 1 with the other
two bins getting the value of 0.

We refer to these features as “text-driven” fea-
tures in subsequent sections.

2See Table 3 in Burrows et al. (2015) for a detailed list.

3.4 Speech-driven features

We used five types of features that capture infor-
mation relevant to the fluency and pronunciation
of a spoken response and are extracted based on
the acoustic properties of the spoken responses.
These are primarily related to spectral quality
(how the words and sounds were pronounced) and
timing (when they were pronounced). All features
are summarized in Table 2. Each feature type is
computed as a continuous value for the whole re-
sponse and relies on the availability of both the
speech signal as well as the 1-best ASR hypothe-
sis.

The first set of features (“speech rate”) com-
putes the words spoken per minute with and with-
out trailing and leading pauses. Speech rate has
been consistently identified as one of the major co-
variates of language proficiency and the features
in this group have some of the highest correlations
with the overall human score.

Name Description Nfeat r

speech rate Speech rate 3 .42
quality Segmental quality 6 .41
pausing Location and dura-

tion of pauses
9 .34

timing Patterns of dura-
tions of individual
segments

9 .36

prosody Time intervals be-
tween stressed syl-
lables

6 .30

Table 2: The five sets of speech features used in
this study along with the number of features in
each group and the average correlations with hu-
man score across all features and questions (Pear-
son’s r).

The second set of features (“quality”) captures
how much the pronunciation of individual seg-
ments deviates from the pronunciation that would
be expected from a proficient speaker. This in-
cludes the average confidence scores and acous-
tic model scores computed by the ASR system for
the words in the 1-best ASR hypothesis. Since
the ASR is trained on a wide range of proficiency
levels, we also include features computed using
the two-pass approach (Herron et al., 1999; Chen
et al., 2009). In this approach, the acoustic model
scores for words in the ASR hypothesis are re-
computed using acoustic models trained on native
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speakers of English.
The third set of features captures pausing pat-

terns in the response such as mean duration of
pauses, mean number of words between two
pauses, and the ratio of pauses to speech. For all
features in this group the pauses were determined
based on silences in the ASR output. Only silences
longer than 0.145 seconds were included.

The fourth set of features (“prosody”) measures
patterns of variation in time intervals between
stressed syllables as well as the number of sylla-
bles between adjacent stressed syllables (Zechner
et al., 2011).

The final set of features (“timing”) captures
variation in the duration of vowels and consonants.
This category includes features such as relative
proportion of vocalic intervals or variability in ad-
jacent consonantal intervals (Lai et al., 2013; Chen
and Zechner, 2011) as well as features which com-
pare vowel duration to reference models trained on
native speakers (Chen et al., 2009).

We refer to these five feature sets as “speech-
driven” features in subsequent sections.

3.5 Scoring models
We combined the text-driven features and speech-
driven features into a single set of features and
trained a support vector regressor (SVR) model
with an RBF kernel for each of the 147 ques-
tions, using the human scores in the training par-
tition as the labels. We used the scikit-learn
(Pedregosa et al., 2011) implementation of SVRs
and the SKLL toolkit.3 The hyper-parameters of
each SVR model (γ and C) were optimized us-
ing a cross-validated search over a grid with mean
squared error (MSE) as the objective function.

In addition to the combined scoring models, we
also built the following scoring models for each
question:

• A model using only the text-driven features
(1 model)

• A model using only the speech-driven fea-
tures (1 model)

• Models using each of the individual speech-
driven feature sets (5 models)

• Combinations of the text-driven model with
each of the individual speech-driven feature
sets (5 models)

3http://github.com/
EducationalTestingService/skll

In total, we built 1,911 scoring models (13 mod-
els for each of the 147 questions).

We evaluated each of our models on a held-
out evaluation partition for each of the questions.
We used the R2 between the predicted and human
scores computed on the evaluation set as a mea-
sure of model performance:

R2 = 1−
∑

(yi − ŷi)2∑
(yi − ȳ)2

(1)

where yi are the observed values (human scores),
ŷi are the predicted values and ȳ is the mean of
observed scores.

As shown in Eq. 1, R2 standardizes the MSE
by the total variance of the observed values lead-
ing to a more interpretable metric that generally
varies from 0 to 1, where 1 corresponds to per-
fect prediction and 0 indicates that the model is no
more accurate than simply using mean value as the
prediction.

4 Results

4.1 Model performance
Table 3 shows the mean R2 for different types of
questions and models across the 147 questions in
our study.

Model general source-based
text + speech .352 .442
text-only .335 .431
speech-only .325 .394
speech rate .275 .341
pausing .259 .312
quality .303 .365
prosody .256 .309
timing .282 .329
text + speech rate .339 .433
text + pausing .340 .434
text + quality .343 .436
text + prosody .341 .434
text + timing .342 .434

Table 3: Average R2 achieved by different mod-
els on different types of questions (N=99 for gen-
eral questions and N=48 for source-based ques-
tions).

We used linear mixed-effect models (cf. Sni-
jders and Bosker (2012) for a comprehensive in-
troduction and Searle et al. (1992) who give an
extensive historical overview) to identify statis-
tically significant differences among the various
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models. The mixed-effect models were fitted us-
ing the statsmodels Python package (Seabold
and Perktold, 2010). We used model R2 as a de-
pendent variable, question as a random factor, and
model and question type (general or source-based)
as fixed effects. We include both the main effects
of model and question type as well as their inter-
action and used the text-driven model as the refer-
ence category.

We observed that for both general and source-
based questions:

1. The performance of the combined model
(text + speech) using all five types of speech-
driven features as well as the text-driven fea-
tures was significantly better than both the
text-only model as well as the speech-only
model. The effect size of the improvement
over the text-only model was small with the
averageR2 increasing only slightly from .335
to .352 for source-based questions and from
.431 to .442 for general questions (p = 0.002).

2. The performance of the text-only model was
significantly better than the performance of
each of the 5 models trained using only
one group of speech-driven features (p <
0.0001).

3. There was no significant difference between
the performance of the text-only model and
the 5 models combining the text-driven fea-
tures with each of the individual speech-
driven feature sets.

In addition, as we predicted, there was a sig-
nificant difference in model performance between
general and source-based questions. Surprisingly,
this difference was observed for all 13 models; all
models achieved higher performance for source-
based questions (p < 0.0001). We also observed
a significant interaction between model type and
question type: the difference between the speech-
only model and the text-only model was higher for
source-based questions than for general questions.
Furthermore, while there was no statistically sig-
nificant difference between the speech-only model
and text-only model for general questions (.335
vs. .325, p=0.061), the difference between these
two types of models was significant for source-
based questions with the text-only model outper-
forming the speech-only model (R2 = .431 vs.
.394, p < 0.0001).

Finally, we compared the performance of our
combined system to other published results on au-
tomated speech scoring reviewed earlier in this pa-
per. Since most previous work reports their results
using Pearson’s correlation coefficients, we com-
puted the same for our system for an easier com-
parison. Table 4 reports the correlations for our
model as well as those reported in previous stud-
ies on automatically scoring responses to similar
questions. It shows that our system performance is
either comparable or better than previous results.

Model general source-based
text + speech .60 .67
text-only .59 .66
speech-only .58 .63
Xie et al. .40 .59
Loukina & Cahill .64 (overall)

Table 4: Average Pearson’s r achieved by the three
of the models in this study and the best perform-
ing models reported in the literature; Loukina and
Cahill (2016) combine language proficiency fea-
tures from speech and text and do not report per-
formance by question type; Xie et al. (2012) use
content features based on cosine similarity but no
other language proficiency features. If a paper re-
ports results based on both ASR hypothesis and
human transcription, we only use the results based
on ASR hypothesis.

4.2 Information overlap between text and
speech: The role of disfluencies

A relatively minor improvement between the text-
only model and the combined text + speech model
suggests that text-driven features already incor-
porate some of the information captured by the
speech-driven features or that the type of of infor-
mation captured by two sets of features are highly
correlated. We use disfluencies and pauses as a
test case to explore this hypothesis further.

Our text-driven features computed on the ASR
hypothesis included all information stored in that
hypothesis including hesitation markers (“uh”,
“uhm” etc.) and silence markers. In other words,
even though our text-driven features are designed
to measure content for written responses, when ap-
plied to spoken responses they might also have
captured some information related to fluency. In
order to confirm this hypothesis, we removed hes-
itation markers and pauses from the 1-best ASR
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hypotheses and repeated our analysis with the pri-
mary models, i.e., text-only (with and without dis-
fluencies), speech-only, and text + speech (with
and without disfluencies) – a total of 5 models.

Figure 1: A plot showing the scoring performance
across the two question types for two different
conditions: including disfluencies and pauses in
the 1-best ASR hypotheses and excluding them.

The results of this analysis are presented in Fig-
ure 1. As before, we used a linear mixed-effects
model to evaluate which differences were sta-
tistically significant. Removing disfluencies and
pauses from the hypotheses led to a significant de-
crease in the performance of the text-only model
for both types of questions (R2 = .335 vs. .321
for general question and .431 vs. .419 for source-
based questions, p = 0.001).

We still observed no significant difference in
performance between the text-only model without
disfluencies and pauses and speech-only model for
general questions. However, the difference be-
tween the text-only model and speech-only mod-
els for source-based questions remained signif-
icant even after removing the disfluencies and
pauses from the ASR hypothesis (.394 vs. .419,
p < 0.001).

Finally, for the combined text + speech model,
there was no significant difference between in-
cluding and excluding disfluencies and pauses
from the ASR hypotheses.

4.3 Performance variation across questions

In Section 4.1, we presented general observations
after we controlled for the individual question as a
random effect. However, we also observed that all
of the models showed substantial variation in per-
formance across the 147 questions. TheR2 for the
best performing model (text + speech) varied be-
tween .062 and .505 for the general questions and
between .197 and .557 for the source-based ques-
tions. Given such a striking variation, we con-
ducted further exploratory analyses into factors
that may have affected model performance. We fo-
cused these analyses on the best performing model
(text + speech).

First, we considered the sample size for each
question. As shown in Table 1, the number of re-
sponses used to train and evaluate the models var-
ied across questions and, therefore, we might ex-
pect lower performance for questions with fewer
responses available for model training. A lin-
ear regression model with R2 as the dependent
variable and the sample size as the independent
variable showed that the sample size accounted
for 9.8% of variability in model performance for
source-based questions (p = 0.0016) and 19.2% of
variability in model performance for general ques-
tions (p = 0.0018). In other words, while there was
a significant effect of the sample size, it was not
the main factor.

Another possible source of variation in model
performance may be the variation in ASR word
error rate itself. Since no reference transcriptions
are available for our corpus, we cannot test this
hypothesis directly. As an indirect measurement,
however, we consider the number of words in the
ASR hypotheses across questions. If the ASR
consistently failed to produce accurate hypotheses
for some questions, this might manifest as consis-
tently shorter ASR hypothesis for such questions,
and, hence, discrepant scoring performance.

The average number of words varied between
83.6 and 100.2 for general questions and be-
tween 109.0 and 132.6 for source-based questions.
While there was a statistically significant differ-
ence in number of words between the questions,
we found that the average number of words in re-
sponses to a given question did not have a signif-
icant effect on the model performance (p = 0.09
for general questions and p = 0.03 for source-
based questions4).

4Significance threshold was adjusted for multiple compar-
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Of course, not all ASR failures necessarily re-
sult in shorter hypotheses and, therefore, further
analysis based on the actual WER is necessary to
reject or confirm any possible effect of ASR on
model performance.

There are additional factors that might have
contributed to the variation in model performance
pertaining to both the properties of the question
and the characteristics of test takers who answered
each question. We plan to further explore the con-
tribution of these factors in future work. Our re-
sults highlight the impact of the actual question in
automated scoring studies and suggest that the re-
sults based on a small set of questions may be un-
reliable due to the large variation across questions.

5 Discussion

We considered a combination of text-driven
and speech-driven features for automated scor-
ing of spoken responses to general and source-
based questions. We found that for both types of
questions a combination of the two types of fea-
tures outperforms models using only one of those
two types of features. However, a significant im-
provement could only be achieved by combining
several types of speech features. There was no
improvement in model performance when text-
driven features were combined with only one type
of speech-driven features such as speech rate or
pausing patterns.

Surprisingly we found that all models per-
formed better for source-based questions than for
general questions — a result we plan to explore
further in future work. We also found that for
general questions where the content of responses
can vary greatly, the model that uses only speech-
driven features achieves the same performance as
the one only using text-driven features. We hy-
pothesize that this is because in the absence of
“pre-defined” content both systems measure var-
ious aspects of general linguistic proficiency and
these tend to be closely related as we discussed
in Section 2. At the same time, for source-
based questions where the test-takers are expected
to cover already provided content, the perfor-
mance of the model using only text-driven features
is significantly better than the performance of the
model using only speech-driven features.

Although we do observe a significant improve-

isons performed in this section to α = 0.0125 using Bonfer-
roni correction

ment in scoring performance by combining text-
driven features (to measure content) and speech-
driven features (to measure fluency and pronuncia-
tion), the improvement is not as large as one might
have expected. This may appear counter-intuitive
considering the perceived role of fluency and pro-
nunciation for this task. There are several possible
reasons for this result.

First, it is possible that the speech-driven fea-
tures in our study do not really capture the infor-
mation present in the acoustic signal that is rele-
vant to this task. However, this is unlikely given
that the features we considered in this paper cap-
ture many aspects of spoken language proficiency
and cover all major types of features used in other
studies on automated evaluation of spoken profi-
ciency. This is further illustrated by the fact that
for general questions, the speech-only model per-
formed as well as the text-only model. We also
note that recent work by Yu et al. (2016) used neu-
ral networks to learn high-level abstractions from
frame-to-frame acoustic properties of the signal
and showed that these features provided a very
limited gain over the features considered in this
study.

Second, our results may be skewed because of
poorly performing ASR. Although we cannot re-
ject this hypothesis given the lack of human tran-
scriptions for the responses, it is unlikely to hold
because the same ASR system achieves a WER
of 30% on another corpus of responses with simi-
lar demographic and response characteristics. Fur-
thermore, previous studies compared the perfor-
mance of speech and text features computed us-
ing manual transcriptions to those computed us-
ing ASR hypotheses (with a similar WER) and re-
ported only a small drop in performance: r = 0.67
for transcriptions vs. r = 0.64 for ASR hypotheses
(Loukina and Cahill, 2016).

Another possible reason may be the way in
which the speech-driven and text-driven features
are combined. For each response, we simply con-
catenate the small, dense vector of 33 continuous
speech-driven features with the very large, sparse
vector of tens of thousands of binary text-driven
features. In such a scenario, the impact of speech-
driven features may be mitigated due to the dispro-
portionate number of sparse text-driven features.
A better combination approach might be stacked
generalization (Wolpert, 1992): building separate
models for speech-driven features and text-driven

74



features and then combining their predictions in a
third higher-level model. Sakaguchi et al. (2015)
showed that stacking only improves over straight-
forward concatenation when there are a limited
number of responses in the training data and we
have a fairly large number of training responses
available for each of our questions. However, the
idea certainly merits further exploration.

A more likely explanation is that there is only
a limited amount of information contained in the
acoustic signal that is not already present in one
way or another in the ASR hypothesis. We already
discussed earlier in this paper that different aspects
of language proficiency are highly correlated and
thus one model can often achieve good empirical
performance by measuring only one particular as-
pect. A related observation here is that many as-
pects of the spoken signal are already captured by
ASR hypothesis. For example, while ASR hypoth-
esis does not reflect the duration of pauses, it does
contain information about the presence and loca-
tion of pauses and whether they are accompanied
by the hesitation markers. Similarly, the “chop-
piness” of speech would manifest itself in both
prosody and syntax. This claim is supported by
our results which show that removing disfluencies
and pauses from the ASR hypotheses degrades the
performance of the text-only system significantly
but has no effect on the performance of the com-
bined system since the same information is also
captured by the speech-driven features.

In this study, we focused on content, fluency,
and pronunciation and did not consider any fea-
tures designed to measure other important ele-
ments of speaking proficiency such as grammar
or choice of vocabulary. It is likely that some as-
pects of these are already indirectly captured by
the content-scoring part of our system but future
research will show whether system performance
can be further improved by features that have been
specifically designed to evaluate these aspects of
spoken proficiency.

6 Conclusions

In this paper, we built automated scoring mod-
els for an English speaking task for which both
content knowledge as well as an ability to pro-
duce fluent intelligible speech are required in or-
der to obtain a high score. We applied an ex-
isting content-scoring NLP system (designed for
written responses) to the 1-best ASR hypotheses

of the spoken responses in order to extract text-
driven features that measure content. To measure
spoken fluency and pronunciation, we extracted a
set of 33 features based on the acoustic signal for
the response. Combining the two types of features
results in a significant but smaller than expected
improvement compared to using each type of fea-
tures by itself. A deeper examination of the fea-
tures yields that there is likely to be significant in-
formation overlap between the speech signal and
the ASR 1-best hypothesis especially when the
hypothesis includes pausing and silence markers.
Based on these observations, we conclude that al-
though our approach of extracting features from
the speech signal and combining them with text-
driven features extracted from the ASR hypothesis
is certainly moderately effective, further research
is warranted in order to determine whether a larger
improvement can be obtained for this task.
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Abstract

Adding manually annotated prosodic in-
formation, specifically pitch accents and
phrasing, to the typical text-based feature
set for coreference resolution has previ-
ously been shown to have a positive effect
on German data. Practical applications on
spoken language, however, would rely on
automatically predicted prosodic informa-
tion. In this paper we predict pitch ac-
cents (and phrase boundaries) using a con-
volutional neural network (CNN) model
from acoustic features extracted from the
speech signal. After an assessment of the
quality of these automatic prosodic anno-
tations, we show that they also signifi-
cantly improve coreference resolution.

1 Introduction

Noun phrase coreference resolution is the task of
grouping noun phrases (NPs) together that refer
to the same discourse entity in a text or dialogue.
In Example (1), taken from Umbach (2002), the
question for the coreference resolver, besides link-
ing the anaphoric pronoun he back to John, is to
decide whether an old cottage and the shed refer
to the same entity.

(1) {John}1 has {an old cottage}2.
Last year {he}1 reconstructed {the shed}?.

Coreference resolution is an active NLP research
area, with its own track at most NLP conferences
and several shared tasks such as the CoNLL or
SemEval shared tasks (Pradhan et al., 2012; Re-
casens et al., 2010) or the CORBON shared task
20171. Almost all work is based on text, although

*The two first authors contributed equally to this work.
1http://corbon.nlp.ipipan.waw.pl/

there exist a few systems for pronoun resolution
in transcripts of spoken text (Strube and Müller,
2003; Tetreault and Allen, 2004). It has been
shown that there are differences between written
and spoken text that lead to a drop in performance
when coreference resolution systems developed
for written text are applied on spoken text (Amoia
et al., 2012). For this reason, it may help to use
additional information available from the speech
signal, for example prosody.

In West-Germanic languages, such as English
and German, there is a tendency for coreferent
items, i.e. entities that have already been intro-
duced into the discourse (their information sta-
tus is given), to be deaccented, as the speaker as-
sumes the entity to be salient in the listener’s dis-
course model (cf. Terken and Hirschberg (1994);
Baumann and Riester (2013); Baumann and Roth
(2014)). We can make use of this fact by providing
prosodic information to the coreference resolver.
Example (2), this time marked with prominence
information, shows that prominence can help us
resolve cases where the transcription is potentially
ambiguous2.

(2) {John}1 has {an old cottage}2.
a. Last year {he}1 reconstructed {the

SHED}3.
b. Last year {he}1 reconSTRUCted the

shed}2.

The pitch accent on shed in (2a) leads to the in-
terpretation that the shed and the cottage refer to
different entities, where the shed is a part of the
cottage (they are in a bridging relation). In con-
trast, in (2b), the shed is deaccented, which sug-
gests that the shed and the cottage corefer.

A pilot study by Rösiger and Riester (2015) has

2The anaphor under consideration is typed in boldface, its
antecedent is underlined. Accented syllables are capitalised.
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shown that enhancing the text-based feature set
for a coreference resolver, consisting of e.g. auto-
matic part-of-speech (POS) tags and syntactic in-
formation, with pitch accents and prosodic phras-
ing information helps to improve coreference res-
olution of German spoken text. The prosodic la-
bels used in the experiments were annotated man-
ually, which is not only expensive but not applica-
ble in an automatic pipeline setup. In our paper,
we present an experiment in which we replicate
the main results from the pilot study by annotating
the prosodic information automatically, thus omit-
ting any manual annotations from the feature set.
We show that adding prosodic information signif-
icantly helps in all of our experiments.

2 Prosodic features for coreference
resolution

Similar to the pilot study, we make use of pitch ac-
cents and prosodic phrasing. We predict the pres-
ence of a pitch accent3 and use phrase boundaries
to derive nuclear accents, which are taken to be
the last (and perceptually most prominent) accent
in an intonation phrase. This paper tests whether
previously reported tendencies for manual labels
are also observable for automatic labels, namely:

Short NPs Since long, complex NPs almost al-
ways have at least one pitch accent, the presence
and the absence of a pitch accent is more helpful
for shorter phrases.

Long NPs For long, complex NPs, we look for
nuclear accents that indicate the phrase’s overall
prominence. If the NP contains a nuclear accent,
it is assumed to be less likely to take part in
coreference chains.

We test the following features that have proven
beneficial in the pilot study. These features are de-
rived for each NP.

Pitch accent presence focuses on the presence
of a pitch accent, disregarding its type. If one ac-
cent is present in the NP, this boolean feature gets
assigned the value true, and false otherwise.

Nuclear accent presence is a boolean feature
comparable to pitch accent presence. It gets as-
signed the value true if there is a nuclear accent
present in the NP, false otherwise.

3We do not predict the pitch accent type (e.g. fall H*L or
rise L*H) as this distinction was not helpful in the pilot study
and is generally more difficult to model.

3 Data

To ensure comparability, we use the same dataset
as in the pilot study, namely the DIRNDL cor-
pus (Eckart et al., 2012; Björkelund et al., 2014),
a German radio news corpus annotated with both
manual coreference and manual prosody labels.
We adopt the official train, test and development
split4 designed for research on coreference res-
olution. The recorded news broadcasts in the
DIRNDL-anaphora corpus were spoken by 13
male and 7 female speakers, in total roughly 5
hours of speech. The prosodic annotations follow
the GToBI(S) standard for pitch accent types and
boundary tones and are described in Björkelund
et al. (2014). In this study we make use of two
class labels of prosodic events: all accent types
(marked by the standard ToBI *) grouped into a
single class (pitch accent presence) and the same
for intonational phrase boundaries (marked by %).

4 Automatic prosodic information

In this section we describe the prosodic event de-
tector used in this work. It is a binary classifier
that is trained separately for either pitch accents
or phrase boundaries and predicts for each word,
whether it carries the respective prosodic event.

4.1 Model

We apply a convolutional neural network (CNN)
model, illustrated in Figure 1. The input to the
CNN is a matrix spanning the current word and its
right and left context word. The input matrix is
a frame-based representation of the speech signal.
The signal is divided into overlapping frames for
each 20 ms with a 10 ms shift and are represented
by a 6-dimensional feature vector for each frame.

We use acoustic features as well as position in-
dicator features following Stehwien and Vu (2017)
that are simple and fast to obtain. The acoustic
features were extracted from the speech signal us-
ing the OpenSMILE toolkit (Eyben et al., 2013).
The feature set consists of 5 features that comprise
acoustic correlates of prominence: smoothed fun-
damental frequency (f0), RMS energy, PCM loud-
ness, voicing probability and Harmonics-to-Noise
Ratio. The position indicator feature is appended
as an extra feature to the input matrices (see Fig-
ure 1) and aids the modelling of the acoustic con-

4http://www.ims.uni-stuttgart.de/
forschung/ressourcen/korpora/dirndl.
en.html
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Figure 1: CNN for prosodic event recognition with
an input window of 3 successive words and posi-
tion indicating features.

text by indicating which frames belong to the cur-
rent word or the neighbouring words.

We apply two convolution layers in order to ex-
pand the input information and then use max pool-
ing to find the most salient features. In the first
convolution layer we ensure that the filters always
span all feature dimensions. All resulting feature
maps are concatenated to one feature vector which
is fed into the two-unit softmax layer.

4.2 Predicting prosodic labels on DIRNDL

We predict prosodic events for the whole DIRNDL
subcorpus used in this paper. To simulate an ap-
plication setting, we train the CNN model on a
different dataset. Since the acoustic correlates of
prosodic events as well as the connection between
sentence prosody and information status exploited
in this paper are similar in English and German,
we train the prosodic event detector on English
data and apply the model to the German DIRNDL
corpus5. The data used to train the model is a
2.5 hour subset of the Boston University Radio

5Rosenberg et al. (2012) report good cross-language re-
sults of pitch accent detection on this dataset.

News Corpus (Ostendorf et al., 1995) that contains
speech from 3 female and 2 male speakers and that
includes manually labelled pitch accents and into-
national phrase boundary tones. Hence, both cor-
pora consist of read speech by radio news anchors.
The prediction accuracy on the DIRNDL anaphora
corpus is 81.9% for pitch accents and 85.5% for
intonational phrase boundary tones6. The speaker-
independent performance of this model on the
Boston dataset is 83.5% accuracy for pitch accent
detection and 89% for phrase boundary detection.
We conclude that the prosodic event detector gen-
eralises well to the DIRNDL dataset and the ob-
tained accuracies are appropriate for our experi-
ments.

5 Coreference resolution

In this section, we describe the coreference re-
solver used in our experiments and how it was ap-
plied to create the baseline system using only au-
tomatic annotations.

5.1 IMS HotCoref DE
The IMS HotCoref DE coreference resolver is
a state-of-the-art tool for German7 (Rösiger and
Kuhn, 2016). It is data-driven, i.e. it learns from
annotated data with the help of pre-defined fea-
tures using a structured perceptron that models
coreference within a document as a directed tree.
This way, it can exploit the tree structure to create
non-local features (features that go beyond a pair
of NPs). The standard features are text-based and
consist mainly of string matching, part of speech,
constituent parses, morphological information and
combinations thereof.

5.2 Coreference resolution using automatic
preprocessing

As we aim at coreference resolution applicable to
new texts, all annotations used to create the text-
based features are automatically predicted using
NLP tools. It is frequently observed that the per-
formance drops when the feature set is derived
in this manner compared to using features based
on manual annotations. For example, the perfor-
mance of IMS HotCoref DE drops from 63.61

6The per-class accuracy is 82.1% for pitch accents and
37.1% for phrase boundaries. Despite these low quality
phrase boundary annotations, we believe that, as a first step,
their effectiveness can still be tested. This issue will be ad-
dressed in future work.

7www.ims.uni-stuttgart.de/forschung/
ressourcen/werkzeuge/HOTCorefDe.html
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to 48.61 CoNLL score8 on the reference dataset
TüBA-9 D/Z. The system, pre-trained on TüBA,
yields a CoNLL score of 37.04 on DIRNDL with
predicted annotations. This comparatively low
score also confirms the assumption that the per-
formance of a system trained on written text drops
when applied to spoken text. The drop in perfor-
mance can also be explained by the slightly dif-
ferent domains (newspaper text and radio news).
However, if we train on the concatenation of the
train and development set of DIRNDL we achieve
a score of 46.11. This will serve as a baseline in
the following experiments.

6 Experiments

We test our prosodic features by adding them to
the feature set used in the baseline. We define
short NPs to be of length 3 or shorter9. In this
setup, we apply the feature only to short NPs. In
the all NP setting, the feature is used for all NPs.
The ratio of short vs. longer NPs in DIRNDL is
roughly 3:1. Note that we evaluate on the whole
test set in both cases. We report how the perfor-
mance of the coreference resolver is affected in
three settings:

(a) trained and tested
on manual prosodic labels (short gold),

(b) trained on manual prosodic labels, but tested
on automatic labels (this simulates an appli-
cation scenario where a pre-trained model is
applied to new texts (short gold/auto) and

(c) trained and tested on
automatic prosodic labels (short auto).

Table 1 shows the effect of the pitch accent pres-
ence feature on our data. All features perform sig-
nificantly better than the baseline10. As expected,
the numbers are higher if we limit this feature to
short NPs. We believe that this is due to the fact
that the feature contributes most when it is most
meaningful: on short NPs, a pitch accent makes
it more likely for the NP to contain new infor-
mation, whereas long NPs almost always have at

8We report the performance of the coreference system in
terms of the CoNLL score, the standard measure to assess the
quality of coreference resolution.

9In our experiments, this performed even better than
length 4 or shorter as used in Rösiger and Riester (2015).

10We compute significance using the Wilcoxon signed rank
test (Siegel and Castellan, 1988) at the 0.01 level.

Baseline 46.11
+ Accent short NPs all NPs
+ Presence gold 53.99 49.68
+ Presence gold/auto 52.63 50.08
+ Presence auto 49.13 49.01

Table 1: Pitch accent presence

Baseline 46.11
+ Nuclear accent short NPs all NPs
+ Presence gold 48.63 52.12
+ Presence gold/auto 48.46 51.45
+ Presence auto 48.01 50.64

Table 2: Nuclear accent presence

least one pitch accent, regardless of its informa-
tion status. We achieve the highest performance
with gold labels, followed by the gold/auto ver-
sion with a score that is not significantly worse
than the gold version. This is important for appli-
cations as it suggests that the loss in performance
is small when training on gold data and testing
on predicted data. As expected, the version that
is trained and tested on predicted data performs
worse, but is still significantly better than the base-
line. Hence, prosodic information is helpful in all
three settings. It also shows that the assumption
on short NPs in the pilot study is also true for au-
tomatic labels.

Table 2 shows the effect of adding nuclear ac-
cent presence as a feature to the baseline. Again,
we report results that are all significantly better
than the baseline. The improvement is largest
when we apply the feature to all NPs, i.e. also
including long, complex NPs. This is in line with
the findings in the pilot study for long NPs. If we
restrict ourselves to just nuclear accents, this fea-
ture will receive the value true for only a few of
the short NPs that would otherwise have been as-
signed true in terms of general pitch accent pres-
ence. Therefore, nuclear pitch accents do not pro-
vide sufficient information for a majority of the
short NPs. For long NPs, however, the presence
of a nuclear accent is more meaningful.

The performance of the different systems fol-
lows the pattern present for pitch accent type: gold
> gold/auto > auto. Again, automatic prosodic
information contributes to the system’s perfor-
mance. The highest score when using automatic
labels is 50.64, as compared to 53.99 with gold
labels. To the best of our knowledge, these are
the best results reported on the DIRNDL anaphora
dataset so far.
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EXPERTEN {der Großen KOALITION}1 haben sich auf [...] ein Niedriglohn-
Experts (of) the grand coalition have themselves on a low wage

Konzept VERSTÄNDIGT. Die strittigen Themen [...] sollten bei der nächsten
concept agreed. The controversial topics shall at the next

Spitzenrunde {der Koalition}1 ANGESPROCHEN werden.
meeting (of) the coalition raised be.

EN: Experts within the the grand coalition have agreed on a strategy to address [problems associated
with] low income. At the next meeting, the coalition will talk about the controversial issues.

Figure 2: Example from the DIRNDL dataset with English translation. The candidate NP (anaphor) of
the coreference chain in question is marked in boldface, the antecedent is underlined. Pitch accented
words are capitalised.

7 Analysis

In the following section, we discuss two examples
from the DIRNDL dataset that provide some in-
sight as to how the prosodic features helped coref-
erence resolution in our experiments.
The first example is shown in Figure 2. The coref-
erence chain marked in this example was not pre-
dicted by the baseline version. With prosodic
information, however, the fact that the NP “der
Koalition” is deaccented helped the resolver to
recognise that this was given information: it refers
to the recently introduced antecedent “der Großen
Koalition”. This effect clearly supports our as-
sumption that the absence of pitch accents helps
for short NPs.

An additional effect of adding prosodic infor-
mation that we observed concerns the length of
antecedents determined by the resolver. In several
cases, e.g. in Example (3), the baseline system
incorrectly chose an embedded NP (1A) as the an-
tecedent for a pronoun. The system with access
to prosodic information correctly chose the longer
NP (1B)11. Our analysis confirms that this is due to
the accent on the short NP (on Phelps). The pres-
ence or absence of a pitch accent on the adjunct
NP (on USA) does not appear to have an impact.

(3) {{Michael PHELPS}1A aus den USA}1B .
{Er}1 ...
Michael Phelps from the USA. He ...

11The TüBA-D/Z guidelines state that the maximal exten-
sion of the NP should be chosen as the markable.
http://www.sfs.uni-tuebingen.de/
fileadmin/static/ascl/resources/
tuebadz-coreference-manual-2007.pdf

8 Conclusion and future work

We show that using prosodic labels that have been
obtained automatically significantly improves the
performance of a coreference resolver. In this
work, we predict these labels using a CNN model
and use these as additional features in IMS Hot-
Coref DE, a coreference resolution system for
German. Despite the quality of the predicted la-
bels being slightly lower than the gold labels, we
are still able to replicate results observed when
using manually annotated prosodic information.
This encouraging result also confirms that not only
is prosodic information helpful to coreference res-
olution, but that it also has a positive effect even
when predicted by a system.

A brief analysis of the resolver’s output illus-
trates the effect of deaccentuation. Further work is
necessary to investigate the impact on the length
of the predicted antecedent.

One possibility to increase the quality of the
predicted prosody labels would be to include
the available lexico-syntactic information into the
prosodic event detection model, since this has
been shown to improve prosodic event recogni-
tion (Sun, 2002; Ananthakrishnan and Narayanan,
2008). To pursue coreference resolution directly
on speech, a future step would be to perform all
necessary annotations on automatic speech recog-
nition output. As a first step, our results on Ger-
man spoken text are promising and we expect
them to be generalisable to other languages with
similar prosody.
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