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Introduction

Welcome to the Second workshop on structured prediction for NLP!

Many prediction tasks in NLP involve assigning values to mutually dependent variables. For example,
when designing a model to automatically perform linguistic analysis of a sentence or a document
(e.g., parsing, semantic role labeling, or discourse analysis), it is crucial to model the correlations
between labels. Many other NLP tasks, such as machine translation, textual entailment, and information
extraction, can be also modeled as structured prediction problems.

In order to tackle such problems, various structured prediction approaches have been proposed, and their
effectiveness has been demonstrated. Studying structured prediction is interesting from both NLP and
machine learning (ML) perspectives. From the NLP perspective, syntax and semantics of the natural
language are clearly structured and advances in this area will enable researchers to understand the
linguistic structure of data. From the ML perspective, a large amount of available text data and complex
linguistic structures bring challenges to the learning community. Designing expressive yet tractable
models and studying efficient learning and inference algorithms become important issues.

Recently, there has been significant interest in non-standard structured prediction approaches that take
advantage of non-linearity, latent components, and/or approximate inference in both the NLP and
ML communities. Researchers have also been discussing the intersection between deep learning and
structured prediction through the DeepStructure reading group. This workshop intends to bring together
NLP and ML researchers working on diverse aspects of structured prediction and expose the participants
to recent progress in this area.

This year we have eight papers covering various aspects of structured prediction, including neural
networks, deep structured prediction, and imitation learning. We also invited four fantastic speakers.
We hope you all enjoy the program!

Finally, we would like to thank all programming committee members, speakers, and authors. We are
looking forward to seeing you in Copenhagen.
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Dependency Parsing with Dilated Iterated Graph CNNs

Emma Strubell Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{strubell, mccallum}@cs.umass.edu

Abstract

Dependency parses are an effective way
to inject linguistic knowledge into many
downstream tasks, and many practitioners
wish to efficiently parse sentences at scale.
Recent advances in GPU hardware have
enabled neural networks to achieve signif-
icant gains over the previous best models,
these models still fail to leverage GPUs’
capability for massive parallelism due to
their requirement of sequential process-
ing of the sentence. In response, we pro-
pose Dilated Iterated Graph Convolutional
Neural Networks (DIG-CNNs) for graph-
based dependency parsing, a graph con-
volutional architecture that allows for ef-
ficient end-to-end GPU parsing. In ex-
periments on the English Penn TreeBank
benchmark, we show that DIG-CNNs per-
form on par with some of the best neural
network parsers.

1 Introduction

By vastly accelerating and parallelizing the core
numeric operations for performing inference and
computing gradients in neural networks, recent de-
velopments in GPU hardware have facilitated the
emergence of deep neural networks as state-of-
the-art models for many NLP tasks, such as syn-
tactic dependency parsing. The best neural de-
pendency parsers generally consist of two stages:
First, they employ a recurrent neural network such
as a bidirectional LSTM to encode each token in
context; next, they compose these token represen-
tations into a parse tree. Transition based depen-
dency parsers (Nivre, 2009; Chen and Manning,
2014; Andor et al., 2016) produce a well-formed
tree by predicting and executing a series of shift-
reduce actions, whereas graph-based parsers (Mc-
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Figure 1: Receptive field for predicting the head-
dependent relationship between likes and eating.
Darker cell indicates more layers include that
cell’s representation. Heads and labels corre-
sponding to gold tree are indicated.

Donald et al., 2005; Kiperwasser and Goldberg,
2016; Dozat and Manning, 2017) generally em-
ploy attention to produce marginals over each pos-
sible edge in the graph, followed by a dynamic
programming algorithm to find the most likely tree
given those marginals.

Because of their dependency on sequential pro-
cessing of the sentence, none of these architectures
fully exploit the massive parallel processing ca-
pability that GPUs possess. If we wish to max-
imize GPU resources, graph-based dependency
parsers are more desirable than their transition-
based counterparts since attention over the edge-
factored graph can be parallelized across the entire
sentence, unlike the transition-based parser which
must sequentially predict and perform each transi-
tion. By encoding token-level representations with
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an Iterated Dilated CNN (ID-CNN) (Strubell et al.,
2017), we can also remove the sequential depen-
dencies of the RNN layers. Unlike Strubell et al.
(2017) who use 1-dimensional convolutions over
the sentence to produce token representations, our
network employs 2-dimensional convolutions over
the adjacency matrix of the sentence’s parse tree,
modeling attention from the bottom up. By train-
ing with an objective that encourages our model
to predict trees using only simple matrix opera-
tions, we additionally remove the additional com-
putational cost of dynamic programming infer-
ence. Combining all of these ideas, we present
Dilated Iterated Graph CNNs (DIG-CNNs): a
combined convolutional neural network architec-
ture and training objective for efficient, end-to-end
GPU graph-based dependency parsing.

We demonstrate the efficacy of these models in
experiments on English Penn TreeBank, in which
our models perform similarly to the state-of-the-
art.

2 Dilated Convolutions

Though common in other areas such as computer
vision, 2-dimensional convolutions are rarely used
in NLP since it is usually unclear how to pro-
cess text as a 2-dimensional grid. However, 2-
dimensional convolutional layers are a natural
model for embedding the adjacency matrix of a
sentence’s parse.

A 2-dimensional convolutional neural network
layer transforms each input element, in our case
an edge in the dependency graph, as a linear func-
tion of the width rw and height rh window of sur-
rounding input elements (other possible edges in
the dependency graph). In this work we assume
square convolutional windows: rh = rw.

Dilated convolutions perform the same opera-
tion, except rather than transforming directly adja-
cent inputs, the convolution is defined over a wider
input window by skipping over δ inputs at a time,
where δ is the dilation width. A dilated convo-
lution of width 1 is equivalent to a simple con-
volution. Using the same number of parameters
as a simple convolution with the same radius, the
δ > 1 dilated convolution incorporates broader
context into the representation of a token than a
simple convolution.

2.1 Iterated Dilated CNNs
Stacking many dilated CNN layers can easily in-
corporate information from a whole sentence. For
example, with a radius of 1 and 4 layers of dilated
convolutions, the effective input window size for
each token is width 31, which exceeds the average
sentence length (23) in the Penn TreeBank corpus.
However, simply increasing the depth of the CNN
can cause considerable over-fitting when data is
sparse relative to the growth in model parameters.
To address this, we employ Iterated Dilated CNNs
(ID-CNNs) (Strubell et al., 2017), which instead
apply the same small stack of dilated convolutions
repeatedly, each time taking the result of the last
stack as input to the current iteration. Applying
the parameters recurrently in this way increases
the size of the window of context incorporated
into each token representation while allowing the
model to generalize well. Their training objec-
tive additionally computes a loss for the output of
each application, encouraging parameters that al-
low subsequent stacks to resolve dependency vio-
lations from their predecessors.

3 Dilated Iterated Graph CNNs

We describe how to extend ID-CNNs (Strubell
et al., 2017) to 2-dimensional convolutions over
the adjacency matrix of a sentence’s parse tree,
allowing us to model the parse tree through
the whole network, incorporating evidence about
nearby head-dependent relationships in every
layer of the network, rather than modeling at
the token level followed by a single layer of at-
tention to produce head-dependent compatibilities
between tokens. ID-CNNs allow us to efficiently
incorporate evidence from the entire tree without
sacrificing generalizability.

3.1 Model architecture
Let x = [x1, . . . , xT ] be our input text1 Let
y = [y1, . . . , yT ] be labels with domain size D for
the edge between each token xi and its head xj .
We predict the most likely y, given a conditional
model P (y|x) where the tags are conditionally in-
dependent given some features for x:

P (y|x) =
T∏
t=1

P (yt|F (x)), (1)

1In practice, we include a dummy root token at the begin-
ning of the sentence which serves as the head of the root. We
do not predict a head for this dummy token.
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The local conditional distributions of Eqn. (1)
come from a straightforward extension of ID-
CNNs (Strubell et al., 2017) to 2-dimensional con-
volutions. This network takes as input a sequence
of T vectors xt, and outputs a T × T matrix of
per-class scores hij for each pair of tokens in the
sentence.

We denote the kth dilated convolutional layer of
dilation width δ as D(k)

δ . The first layer in the net-
work transforms the input to a graph by concate-
nating all pairs of vectors in the sequence xi,xj

and applying a 2-dimensional dilation-1 convolu-
tion D

(0)
1 to form an initial edge representation

c(0)
ij for each token pair:

cij
(0) = D

(0)
1 [xi;xj] (2)

We denote vector concatenation with [·; ·]. Next,
Lc layers of dilated convolutions of exponentially
increasing dilation width are applied to cij

(0),
folding in increasingly broader context into the
embedded representation of eij at each layer. Let
r() denote the ReLU activation function (Glorot
et al., 2011). Beginning with ct

(0) = it we define
the stack of layers with the following recurrence:

cij
(k) = r

(
D

(k−1)

2Lc−1ct
(k−1)

)
(3)

and add a final dilation-1 layer to the stack:

cij
(Lc+1) = r

(
D

(Lc)
1 ct

(Lc)
)

(4)

We refer to this stack of dilated convolutions as a
block B(·), which has output resolution equal to
its input resolution. To incorporate even broader
context without over-fitting, we avoid making B
deeper, and instead iteratively apply B Lb times,
introducing no extra parameters. Starting with
bt

(1) = B (it), we define the output of block m:

bij
(m) = B

(
bt

(m−1)
)

(5)

We apply a simple affine transformationWo to this
final representation to obtain label scores for each
edge eij:

hij
(Lb) = Wobt

(Lb) (6)

We can obtain the most likely head (and its la-
bel) for each dependent by computing the argmax
over all labels for all heads for each dependent:

ht = arg max
j

hij
(Lb) (7)

3.2 Training
Our main focus is to apply the DIG-CNN as fea-
ture extraction for the conditional model described
in Sec. 3.1, where tags are conditionally indepen-
dent given deep features, since this will enable
prediction that is parallelizable across all possi-
ble edges. Here, maximum likelihood training is
straightforward because the likelihood decouples
into the sum of the likelihoods of independent lo-
gistic regression problems for every edge, with
natural parameters given by Eqn. (6):

1
T

T∑
t=1

logP (yt | ht) (8)

We could also use the DIG-CNN as input fea-
tures for an MST parser, where the partition func-
tion and its gradient are computed using Kirch-
hoffs Matrix-Tree Theorem (Tutte, 1984), but
our aim is to approximate inference in a tree-
structured graphical model using greedy inference
and expressive features over the input in order to
perform inference as efficiently as possible on a
GPU.

To help bridge the gap between these two tech-
niques, we use the training technique described in
(Strubell et al., 2017). The tree-structured graph-
ical model has preferable sample complexity and
accuracy since prediction directly reasons in the
space of structured outputs. Instead, we com-
pile some of this reasoning in output space into
DIG-CNN feature extraction. Instead of explicit
reasoning over output labels during inference, we
train the network such that each block is predictive
of output labels. Subsequent blocks learn to cor-
rect dependency violations of their predecessors,
refining the final sequence prediction.

To do so, we first define predictions of the
model after each of the Lb applications of the
block. Let ht

(m) be the result of applying the ma-
trix Wo from (6) to bt

(m), the output of block m.
We minimize the average of the losses for each ap-
plication of the block:

1
Lb

Lb∑
k=1

1
T

T∑
t=1

logP (yt | ht
(m)). (9)

By rewarding accurate predictions after each
application of the block, we learn a model where
later blocks are used to refine initial predictions.
The loss also helps reduce the vanishing gradient
problem (Hochreiter, 1998) for deep architectures.
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We apply dropout (Srivastava et al., 2014) to the
raw inputs xij and to each block’s output bt

(m) to
help prevent overfitting.

4 Related work

Currently, the most accurate parser in terms of
labeled and unlabeled attachment scores is the
neural network graph-based dependency parser of
Dozat and Manning (2017). Their parser builds
token representations with a bidirectional LSTM
over word embeddings, followed by head and de-
pendent MLPs. Compatibility between heads and
dependents is then scored using a biaffine model,
and the highest scoring head for each dependent is
selected.

Previously, (Chen and Manning, 2014) pio-
neered neural network paring with a transition-
based dependency parser which used features from
a fast feed-forward neural network over word, to-
ken and label embeddings. Many improved upon
this work by increasing the size of the network
and using a structured training objective (Weiss
et al., 2015; Andor et al., 2016). (Kiperwasser
and Goldberg, 2016) were the first to present a
graph-based neural network parser, employing an
MLP with bidirectional LSTM inputs to score
arcs and labels. (Cheng et al., 2016) propose a
similar network, except with additional forward
and backward encoders to allow for conditioning
on previous predictions. (Kuncoro et al., 2016)
take a different approach, distilling a consensus of
many LSTM-based transition-based parsers into
one graph-based parser. (Ma and Hovy, 2017) em-
ploy a similar model, but add a CNN over char-
acters as an additional word representation and
perform structured training using the Matrix-Tree
Theorem. Hashimoto et al. (2017) train a large
network which performs many NLP tasks includ-
ing part-of-speech tagging, chunking, graph-based
parsing, and entailment, observing benefits from
multitasking with these tasks.

Despite their success in the area of computer
vision, in NLP convolutional neural networks
have mainly been relegated to tasks such as sen-
tence classification, where each input sequence
is mapped to a single label (rather than a la-
bel for each token) Kim (2014); Kalchbrenner
et al. (2014); Zhang et al. (2015); Toutanova et al.
(2015). As described above, CNNs have also
been used to encode token representations from
embeddings of their characters, which similarly

perform a pooling operation over characters. Lei
et al. (2015) present a CNN variant where convo-
lutions adaptively skip neighboring words. While
the flexibility of this model is powerful, its adap-
tive behavior is not well-suited to GPU accelera-
tion.

More recently, inspired by the success of deep
dilated CNNs for image segmentation in com-
puter vision (Yu and Koltun, 2016; Chen et al.,
2015), convolutional neural networks have been
employed as fast models for tagging, speech gen-
eration and machine translation. (van den Oord
et al., 2016) use dilated CNNs to efficiently gen-
erate speech, and Kalchbrenner et al. (2016) de-
scribes an encoder-decoder model for machine
translation which uses dilated CNNs over bytes
in both the encoder and decoder. Strubell et al.
(2017) first described the one-dimensional ID-
CNN architecture which is the basis for this work,
demonstrating its success as a fast and accurate
NER tagger. Gehring et al. (2017) report state-of-
the-art results and much faster training from using
many CNN layers with gated activations as en-
coders and decoders for a sequence-to-sequence
model. While our architecture is similar to the
encoder architecture of these models, ours is dif-
ferentiated by (1) being tailored to smaller-data
regimes such as parsing via our iterated architec-
ture and loss, and (2) employing two-dimensional
convolutions to model the adjacency matrix of the
parse tree. We are the first to our knowledge to
use dilated convolutions for parsing, or to use two-
dimensional dilated convolutions for NLP.

5 Experimental Results

5.1 Data and Evaluation

We train our parser on the English Penn Tree-
Bank on the typical data split: training on sec-
tions 2–21, testing on section 23 and using sec-
tion 22 for development. We convert constituency
trees to dependencies using the Stanford depen-
dency framework v3.5 (de Marneffe and Man-
ning, 2008), and use part-of-speech tags from the
Stanford left3words part-of-speech tagger. As is
the norm for this dataset, our evaluation excludes
punctuation. Hyperparameters that resulted in the
best performance on the validation set were se-
lected via grid search. A more detailed descrip-
tion of optimization and data pre-processing can
be found in the Appendix.
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Model UAS LAS
Kiperwasser and Goldberg (2016) 93.9 91.9
Cheng et al. (2016) 94.10 91.49
Kuncoro et al. (2016) 94.3 92.1
Hashimoto et al. (2017) 94.67 92.90
Ma and Hovy (2017) 94.9 93.0
Dozat and Manning (2017) 95.74 94.08
DIG-CNN 93.70 91.72
DIG-CNN + Eisner 94.03 92.00

Table 1: Labeled and unlabeled attachment scores
of our model compared to state-of-the-art graph-
based parsers

5.2 English PTB Results

We compare our models labeled and unlabeled at-
tachment scores to the neural network graph-based
dependency parsers described in Sec. 4. Without
enforcing trees at test time, our model performs
just under the LSTM-based parser of Kiperwasser
and Goldberg (2016), and a few points lower than
the state-of-the-art. When we post-process our
model’s outputs into trees, like all the other mod-
els in our table, our results increase to perform
slightly above Kiperwasser and Goldberg (2016).

We believe our model’s relatively poor perfor-
mance compared to existing models is due to its
limited incorporation of context from the entire
sentence. While each bidirectional LSTM token
representation observes all tokens in the sentence,
our reported model observes a relatively small
window, only 9 tokens. We hypothesize that this
window is not sufficient for producing accurate
parses. Still, we believe this is a promising archi-
tecture for graph-based parsing, and with further
experimentation could meet or exceed the state-
of-the-art while running faster by better leveraging
GPU architecture.

6 Conclusion

We present DIG-CNNs, a fast, end-to-end convo-
lutional architecture for graph-based dependency
parsing. Future work will experiment with deeper
CNN architectures which incorporate broader sen-
tence context in order to increase accuracy without
sacrificing speed.
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Abstract

Standard approaches in entity identifica-
tion hard-code boundary detection and
type prediction into labels and perform
Viterbi. This has two disadvantages: 1. the
runtime complexity grows quadratically in
the number of types, and 2. there is no nat-
ural segment-level representation. In this
paper, we propose a neural architecture
that addresses these disadvantages. We
frame the problem as multitasking, sep-
arating boundary detection and type pre-
diction but optimizing them jointly. De-
spite its simplicity, this architecture per-
forms competitively with fully structured
models such as BiLSTM-CRFs while scal-
ing linearly in the number of types. Fur-
thermore, by construction, the model in-
duces type-disambiguating embeddings of
predicted mentions.

1 Introduction

A popular convention in segmentation tasks such
as named-entity recognition (NER) and chunk-
ing is the so-called “BIO”-label scheme. It
hard-codes boundary detection and type predic-
tion into labels using the indicators “B” (Begin-
ning), “I” (Inside), and “O” (Outside). For in-
stance, the sentence Where is John Smith
is tagged as Where/O is/O John/B-PER
Smith/I-PER. In this way, we can treat the
problem as sequence labeling and apply standard
structured models such as CRFs.

But this approach has certain disadvantages.
First, the runtime complexity grows quadratically

∗Part of the work was done while the author was at
Bloomberg L. P.

in the number of types (assuming exact decoding
with first-order label dependency). We empha-
size that the asymptotic runtime remains quadratic
even if we heuristically prune previous labels
based on the BIO scheme. This is not an issue
when the number of types is small but quickly be-
comes problematic as the number grows. Second,
there is no segment-level prediction: every predic-
tion happens at the word-level. As a consequence,
models do not induce representations correspond-
ing to multi-word mentions, which can be useful
for downstream tasks such as named-entity disam-
biguation (NED).

In this paper, we propose a neural architecture
that addresses these disadvantages. Given a sen-
tence, the model uses bidirectional LSTMs (BiL-
STMs) to induce features and separately predicts:

1. Boundaries of mentions in the sentence.

2. Entity types of the boundaries.

Crucially, during training, the errors of these two
predictions are minimized jointly.

One might suspect that the separation could de-
grade performance; neither prediction accounts
for the correlation between entity types. But we
find that this is not the case due to joint optimiza-
tion. In fact, our model performs competitively
with fully structured models such as BiLSTM-
CRFs (Lample et al., 2016), implying that the
model is able to capture the entity correlation in-
directly by multitasking. On the other hand, the
model scales linearly in the number of types and
induces segment-level embeddings of predicted
mentions that are type-disambiguating by con-
struction.
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2 Related Work

Our work is directly inspired by Lample et al.
(2016) who demonstrate that a simple neural ar-
chitecture based on BiLSTMs achieves state-of-
the-art performance on NER with no external
features. They propose two models. The first
makes structured prediction of NER labels with
a CRF loss (LSTM-CRF) using the conventional
BIO-label scheme. The second, which performs
slightly worse, uses a shift-reduce framework mir-
roring tansition-based dependency parsing (Ya-
mada and Matsumoto, 2003). While the latter also
scales linearly in the number of types and pro-
duces embeddings of predicted mentions, our ap-
proach is quite different. We frame the problem
as multitasking and do not need the stack/buffer
data structure. Semi-Markov models (Kong et al.,
2015; Sarawagi et al., 2004) explicitly incorporate
the segment structure but are computationally in-
tensive (quadratic in the sentence length).

Multitasking has been shown to be effective in
numerous previous works (Collobert et al., 2011;
Yang et al., 2016; Kiperwasser and Goldberg,
2016). This is especially true with neural networks
which greatly simplify joint optimization across
multiple objectives. Most of these works con-
sider multitasking across different problems. In
contrast, we decompose a single problem (NER)
into two natural subtasks and perform them jointly.
Particularly relevant in this regard is the parsing
model of Kiperwasser and Goldberg (2016) which
multitasks edge prediction and classification.

LSTMs (Hochreiter and Schmidhuber, 1997),
and other variants of recurrent neural networks
such as GRUs (Chung et al., 2014), have recently
been wildly successful in various NLP tasks (Lam-
ple et al., 2016; Kiperwasser and Goldberg, 2016;
Chung et al., 2014). Since there are many detailed
descriptions of LSTMs available, we omit a pre-
cise definition. For our purposes, it is sufficient to
treat an LSTM as a mapping φ : Rd × Rd′ → Rd′

that takes an input vector x and a state vector h to
output a new state vector h′ = φ(x, h).

3 Model

Let C denote the set of character types, W the
set of word types, and E the set of entity types.
Let ⊕ denote the vector concatenation operation.
Our model first constructs a network over a sen-
tence closely following Lample et al. (2016); we

describe it here for completeness. The model pa-
rameters Θ associated with this base network are

• Character embedding ec ∈ R25 for c ∈ C
• Character LSTMs φCf , φ

C
b : R25×R25 → R25

• Word embedding ew ∈ R100 for w ∈ W
• Word LSTMs φWf , φ

W
b : R150×R100 → R100

Letw1 . . . wn ∈ W denote a word sequence where
word wi has character wi(j) ∈ C at position j.
First, the model computes a character-sensitive
word representation vi ∈ R150 as

fCj = φCf
(
ewi(j), f

C
j−1

) ∀j = 1 . . . |wi|
bCj = φCb

(
ewi(j), b

C
j+1

) ∀j = |wi| . . . 1
vi = fC|wi| ⊕ bC1 ⊕ ewi

for each i = 1 . . . n.1 Next, the model computes

fWi = φWf
(
vi, f

W
i−1

) ∀i = 1 . . . n

bWi = φWb
(
vi, b

W
i+1

) ∀i = n . . . 1

and induces a character- and context-sensitive
word representation hi ∈ R200 as

hi = fWi ⊕ bWi (1)

for each i = 1 . . . n. These vectors are used to de-
fine the boundary detection loss and the type clas-
sification loss described below.

Boundary detection loss We frame boundary
detection as predicting BIO tags without types.
A natural approach is to optimize the condi-
tional probability of the correct tags y1 . . . yn ∈
{B,I,O}:
p(y1 . . .yn|h1 . . . hn)

∝ exp

(
n∑
i=1

Tyi−1,yi × gyi(hi)

)
(2)

where g : R200 → R3 is a function that ad-
justs the length of the LSTM output to the num-
ber of targets. We use a feedforward network
g(h) = W 2relu(W 1h + b1) + b2. We write Θ1

to refer to T ∈ R3×3 and the parameters in g. The
boundary detection loss is given by the negative
log likelihood:

L1 (Θ,Θ1) = −
∑
l

log p
(
y(l)|h(l)

)
1For simplicity, we assume some random initial state vec-

tors such as fC0 and bC|wi|+1 when we describe LSTMs.
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where l iterates over tagged sentences in the data.
The global normalizer for (2) can be com-

puted using dynamic programming; see Collobert
et al. (2011). Note that the runtime complexity
of boundary detection is constant despite dynamic
programming since the number of tags is fixed
(three).

Type classification loss Given a mention bound-
ary 1 ≤ s ≤ t ≤ n, we predict its type using
(1) as follows. We introduce an additional pair
of LSTMs φEf , φ

E
b : R200 × R200 → R200 and

compute a corresponding mention representation
µ ∈ R|E| as

fEj = φEf
(
hj , f

E
j−1

) ∀j = s . . . t

bEj = φEb
(
hj , b

E
j+1

) ∀j = t . . . s

µ = q
(
fEt ⊕ bEs

)
(3)

where q : R400 → R|E| is again a feedforward
network that adjusts the vector length to |E|.2 We
write Θ2 to refer to the parameters in φEf , φ

E
b , q.

Now we can optimize the conditional probability
of the correct type τ :

p(τ |hs . . . ht) ∝ exp (µτ ) (4)

The type classification loss is given by the negative
log likelihood:

L2 (Θ,Θ2) = −
∑
l

log p
(
τ (l)|h(l)

s . . . h
(l)
t

)
where l iterates over typed mentions in the data.

Joint loss The final training objective is to min-
imize the sum of the boundary detection loss and
the type classification loss:

L(Θ,Θ1,Θ2) = L1 (Θ,Θ1) + L2 (Θ,Θ2) (5)

In stochastic gradient descent (SGD), this amounts
to computing the tagging loss l1 and the classifi-
cation loss l2 (summed over all mentions) at each
annotated sentence, and then taking a gradient step
on l1 + l2. Observe that the base network Θ
is optimized to handle both tasks. During train-
ing, we use gold boundaries and types to optimize
L2 (Θ,Θ2). At test time, we predict boundaries
from the tagging layer (2) and classify them using
the classification layer (4).

2Clearly, one can consider different networks over the
boundary, for instance simple bag-of-words or convolutional
neural networks. We leave the exploration as future work.

CoNLL 2003 (4 types) F1 # words/sec
BiLSTM-CRF 90.22 3889
Mention2Vec 90.90 4825
OntoNotes (18 types) F1 # words/sec
BiLSTM-CRF 90.77 495
Mention2Vec 89.37 4949

Table 1: Test F1 scores on CoNLL 2003 and
OntoNotes newswire portion.

Model F1
McCallum and Li (2003) 84.04
Collobert et al. (2011) 89.59
Lample et al. (2016)–Greedy 89.15
Lample et al. (2016)–Stack 90.33
Lample et al. (2016)–CRF 90.94
Mention2Vec 90.90

Table 2: Test F1 scores on CoNLL 2003.

4 Experiments

Data We use two NER datasets: CoNLL 2003
which has four entity types PER, LOC, ORG and
MISC (Tjong Kim Sang and De Meulder, 2003),
and the newswire portion of OntoNotes Release
5.0 which has 18 entity types (Weischedel et al.,
2013).

Implementation and baseline We denote our
model Mention2Vec and implement it using the
DyNet library.3 We use the same pre-trained word
embeddings in Lample et al. (2016). We use the
Adam optimizer (Kingma and Ba, 2014) and ap-
ply dropout at all LSTM layers (Hinton et al.,
2012). We perform minimal tuning over devel-
opment data. Specifically, we perform a 5 × 5
grid search over learning rates 0.0001 . . . 0.0005
and dropout rates 0.1 . . . 0.5 and choose the con-
figuration that gives the best performance on the
dev set.

We also re-implement the BiLSTM-CRF model
of Lample et al. (2016); this is equivalent to opti-
mizing just L1(Θ,Θ1) but using typed BIO tags.
Lample et al. (2016) use different details in opti-
mization (SGD with gradient clipping), data pre-
processing (replacing every digit with a zero), and
the dropout scheme (droptout at BiLSTM input
(1)). As a result, our re-implementation is not di-
rectly comparable and obtains different (slightly
lower) results. But we emphasize that the main
goal of this paper is to demonstrate the utility the

3https://github.com/karlstratos/
mention2vec
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PER In another letter dated January 1865, a well-to-do Washington matron wrote to Lincoln to plead for . . .
Chang and Washington were the only men’s seeds in action on a day that saw two seeded women’s . . .
“Just one of those things, I was just trying to make contact,” said Bragg.
Washington’s win was not comfortable, either.

LOC Lauck, from Lincoln, Nebraska, yelled a tirade of abuse at the court after his conviction for inciting . . .
. . . warring factions, with the PUK aming to break through to KDP’s headquarters in Saladhuddin.
. . . is not expected to travel to the West Bank before Monday,” Nabil Abu Rdainah told Reuters.
. . . off a bus near his family home in the village of Donje Ljupce in the municipality of Podujevo.

ORG English division three - Swansea v Lincoln.
SOCCER - OUT-OF-SORTS NEWCASTLE CRASH 2 1 AT HOME.
Moura, who appeared to have elbowed Cyprien in the final minutes of the 3 0 win by Neuchatel, was . . .
In Sofia: Leviski Sofia (Bulgaria) 1 Olimpija (Slovenia) 0

WORK OF ART . . . Bond novels, and “Treasure Island,” produced by Charlton Heston who also stars in the movie.
. . . probably started in 1962 with the publication of Rachel Carson’s book “Silent Spring.”
. . . Victoria Petrovich) spout philosophic bon mots with the self-concious rat-a-tat pacing of “Laugh In.”
Dennis Farney’s Oct. 13 page - one article “River of Despair,” about the poverty along the . . .

GPE . . . from a naval station at Treasure Island near the Bay Bridge to San Francisco to help fight fires.
. . . lived in an expensive home on Lido Isle, an island in Newport’s harbor, according to investigators.
. . . Doris Moreno, 37, of Bell Gardens; and Ana L. Azucena, 27, of Huntington Park.
One group of middle-aged manufacturing men from the company’s Zama plant outside Tokyo was . . .

ORG . . . initiative will spur members of the General Agreement on Tariffs and Trade to reach . . .
. . . question of Taiwan’s membership in the General Agreement on Tariffs and Trade should . . .
”He doesn’t know himself,” Kathy Stanwick of the Abortion Rights League says of . . .
. . . administrative costs, management and research, the Office of Technology Assessment just reported.

Table 3: Nearest neighbors of detected mentions in CoNLL 2003 and OntoNotes using (3).

proposed approach rather than obtaining a new
state-of-the-art result on NER.

4.1 NER Performance

Table 1 compares the NER performance and de-
coding speed between BiLSTM-CRF and Men-
tion2Vec. The F1 scores are obtained on test data.
The speed is measured by the average number of
words decoded per second.

On CoNLL 2003 in which the number of types
is small, our model achieves 90.50 compared to
90.22 of BiLSTM-CRF with minor speed im-
provement. This shows that despite the separation
between boundary detection and type classifica-
tion, we can achieve good performance through
joint optimization. On OntoNotes in which the
number of types is much larger, our model still
performs well with an F1 score of 89.37 but is
behind BiLSTM-CRF which achieves 90.77. We
suspect that this is due to strong correlation be-
tween mention types that fully structured models
can exploit more effectively. However, our model
is also an order of magnitude faster: 4949 com-
pared to 495 words/second.

Finally, Table 2 compares our model with other
works in the literature on CoNLL 2003. McCal-
lum and Li (2003) use CRFs with manually crafted
features; Collobert et al. (2011) use convolutional
neural networks; Lample et al. (2016) use BiL-
STMs in a greedy tagger (Greedy), a stack-based
model (Stack), and a global tagger using a CRF

output layer (CRF). Mention2Vec performs com-
petitively.

4.2 Mention Embeddings

Table 3 shows nearest neighbors of detected
mentions using the mention representations µ in
(3). Since µτ represents the score of type τ ,
the mention embeddings are clustered by en-
tity types by construction. The model induces
completely different representations even when
the mention has the same lexical form. For
instance, based on its context Lincoln re-
ceives a person, location, or organization repre-
sentation; Treasure Island receives a book
or location representation. The model also
learns representations for long multi-word expres-
sions such as the General Agreement on
Tariffs and Trade.

5 Conclusion

We have presented a neural architecture for en-
tity identification that multitasks boundary detec-
tion and type classification. Joint optimization en-
ables the base BiLSTM network to capture the
correlation between entities indirectly via multi-
tasking. As a result, the model is competitive
with fully structured models such as BiLSTM-
CRFs on CoNLL 2003 while being more scal-
able and also inducing context-sensitive mention
embeddings clustered by entity types. There are
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many interesting future directions, such as apply-
ing this framework to NED in which type classi-
fication is much more fine-grained and finding a
better method for optimizing the multitasking ob-
jective (e.g., instead of using gold boundaries for
training, dynamically use predicted boundaries in
a reinforcement learning framework).
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Abstract

Building models that take advantage of the
hierarchical structure of language without
a priori annotation is a longstanding goal
in natural language processing. We intro-
duce such a model for the task of machine
translation, pairing a recurrent neural net-
work grammar encoder with a novel atten-
tional RNNG decoder and applying pol-
icy gradient reinforcement learning to in-
duce unsupervised tree structures on both
the source and target. When trained
on character-level datasets with no ex-
plicit segmentation or parse annotation,
the model learns a plausible segmentation
and shallow parse, obtaining performance
close to an attentional baseline.

1 Introduction

Many efforts to exploit linguistic hierarchy in NLP
tasks make use of the output of a self-contained
parser system trained from a human-annotated
treebank (Huang et al., 2006). An alternative ap-
proach aims to jointly learn the task at hand and
relevant aspects of linguistic hierarchy, inducing
from an unannotated training dataset parse trees
that may or may not correspond to treebank anno-
tation practices (Wu, 1997; Chiang, 2005).

Most deep learning models for NLP that aim to
make use of linguistic hierarchy integrate an exter-
nal parser, either to prescribe the recursive struc-
ture of the neural network (Pollack, 1990; Goller
and Küchler, 1996; Socher et al., 2013) or to pro-
vide a supervision signal or training data for a net-
work that predicts its own structure (Socher et al.,
2010; Bowman et al., 2016; Dyer et al., 2016b).
But some recently described neural network mod-
els take the second approach and treat hierarchi-
cal structure as a latent variable, applying infer-

ence over graph-based conditional random fields
(Kim et al., 2017), the straight-through estimator
(Chung et al., 2017), or policy gradient reinforce-
ment learning (Yogatama et al., 2017) to work
around the inapplicability of gradient-based learn-
ing to problems with discrete latent states.

For the task of machine translation,
syntactically-informed models have shown
promise both inside and outside the deep learn-
ing context, with hierarchical phrase-based
models frequently outperforming traditional
ones (Chiang, 2005) and neural MT models
augmented with morphosyntactic input features
(Sennrich and Haddow, 2016; Nadejde et al.,
2017), a tree-structured encoder (Eriguchi et al.,
2016; Hashimoto and Tsuruoka, 2017), and a
jointly trained parser (Eriguchi et al., 2017) each
outperforming purely-sequential baselines.

Drawing on many of these precedents, we in-
troduce an attentional neural machine translation
model whose encoder and decoder components
are both tree-structured neural networks that pre-
dict their own constituency structure as they con-
sume or emit text. The encoder and decoder net-
works are variants of the RNNG model introduced
by Dyer et al. (2016b), allowing tree structures of
unconstrained arity, while text is ingested at the
character level, allowing the model to discover and
make use of structure within words.

The parsing decisions of the encoder and de-
coder RNNGs are parameterized by a stochastic
policy trained using a weighted sum of two ob-
jectives: a language model loss term that rewards
predicting the next character with high likelihood,
and a tree attention term that rewards one-to-one
attentional correspondence between constituents
in the encoder and decoder.

We evaluate this model on the German-English
language pair of the flickr30k dataset, where it
obtains similar performance to a strong character-
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level baseline. Analysis of the latent trees pro-
duced by the encoder and decoder shows that
the model learns a reasonable segmentation and
shallow parse, and most phrase-level constituents
constructed while ingesting the German input
sentence correspond meaningfully to constituents
built while generating the English output.

2 Model

2.1 Encoder/Decoder Architecture

The model consists of a coupled encoder and de-
coder, where the encoder is a modified stack-
only recurrent neural network grammar (Kuncoro
et al., 2017) and the decoder is a stack-only RNNG
augmented with constituent-level attention. An
RNNG is a top-down transition-based model that
jointly builds a sentence representation and parse
tree, representing the parser state with a StackL-
STM and using a bidirectional LSTM as a con-
stituent composition function. Our implemen-
tation is detailed in Figure 1, and differs from
Dyer et al. (2016b) in that it lacks separate new-
nonterminal tokens for different phrase types, and
thus does not include the phrase type as an input to
the composition function. Instead, the values of xi
for the encoder are fixed to a constant xenc while
the values of xj for the decoder are determined
through an attention procedure (Section 2.2).

As originally described, the RNNG predicts
parser transitions using a one-layer tanh percep-
tron with three concatenated inputs: the last state
of a unidirectional LSTM over the stack contents
(s), the last state of a unidirectional LSTM over
the reversed buffer of unparsed tokens (b), and the
result of an LSTM over the past transitions (a). All
three of these states can be computed with at most
one LSTM step per parser transition using the
StackLSTM algorithm (Dyer et al., 2016a). But
such a baseline RNNG is actually outperformed
by one which conditions the parser transitions only
on the stack representation (Kuncoro et al., 2017).
Restricting our model to this stack-only case al-
lows both the encoder and decoder to be super-
vised using a language model loss, while allowing
the model access to b would give it a trivial way
to predict the next character and obtain zero loss.

2.2 Attention

With the exception of the attention mechanism, the
encoder and decoder are identical. While the en-
coder uses a single token to represent a new non-
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Figure 1: At a given timestep during either encoding or

decoding there are three possible transitions (although one

or more may be forbidden): begin a new nonterminal con-

stituent (NT), predict and ingest a terminal (GEN), or end the

current nonterminal (REDUCE). If the chosen transition is NT,

the RNNG adds a new-nonterminal token xi+1 to the active

constituent and begins a new nonterminal constituent (1a).

If the transition is GEN, the RNNG predicts the next token

(Section 2.3) and adds the ground-truth next token e from the

context buffer at the cursor location (1b). If the transition is

REDUCE, the contents of the active nonterminal are passed to

the composition function, the new-nonterminal token xi is re-

placed with the result of the composition hi, and the StackL-

STM rolls back to the previously active constituent (1c). In

all three cases, the StackLSTM then advances one step with

the newly added token as input (xi+1, e, or hi).

terminal, the decoder represents a new nontermi-
nal on the stack as a sum weighted by structural
attention of the phrase representations of all non-
terminal tree nodes produced by the encoder. In
particular, we use the normalized dot products be-
tween the decoder stack representation sdec

j and
the stack representation at each encoder node sienc

(that is, the hidden state of the StackLSTM up to
and including xenc

j but not henc
j ) as coefficients

in a weighted sum of the phrase embeddings hienc

corresponding to the encoder nodes:

αij = softmax
all i

(senc
i · sdec

j )

xdec
j =

∑
i

αijhenc
i .

(1)
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Since the dot products between encoder and de-
coder stack representations are a measure of struc-
tural similarity between the (left context of) the
current decoder state and the encoder state. Within
a particular decoder nonterminal, the model re-
duces to ordinary sequence-to-sequence transduc-
tion. Starting from the encoder’s representation of
the corresponding nonterminal or a weighted com-
bination of such representations, the decoder will
emit a translated sequence of child constituents
(both nonterminal and terminal) one by one—
applying attention only when emitting nontermi-
nal children.

2.3 Training
We formulate our model as a stochastic compu-
tation graph (Schulman et al., 2015), leading to a
training paradigm that combines backpropagation
(which provides the exact gradient through deter-
ministic nodes) and vanilla policy gradient (which
provides a Monte Carlo estimator for the gradient
through stochastic nodes).

There are several kinds of training signals in our
model. First, when the encoder or decoder chooses
the GEN action it passes the current stack state s
through a one-layer softmax perceptron, giving the
probability that the next token is each of the char-
acters in the vocabulary. The language model loss
Lk for each generated token is the negative log
probability assigned to the ground-truth next to-
ken. The other differentiable training signal is the
coverage loss Lc, which is a measure of how much
the attention weights diverge from the ideal of a
one-to-one mapping. This penalty is computed as
a sum of three MSE terms:

Lc = mean
all i

(1−
∑
all j

αij)2

+ mean
all i

(1−max
all j

αij)2

+ mean
all j

(1−max
all i

αij)2

(2)

Backpropagation using the differentiable losses
affects only the weights of the output softmax
perceptron. The overall loss function for these
weights is a weighted sum of all Lk terms and Lc:

L = 100Lc + 10
∑
all k

Lk (3)

There are additionally nondifferentiable rewards
r that bias the model towards or away from cer-
tain kinds of tree structures. Here, negative num-

bers correspond to penalties. We assign a tree re-
ward of −1 when the model predicts a REDUCE

with only one child constituent (REDUCE with
zero child constituents is forbidden) or predicts
two REDUCE or NT transitions in a row. This bi-
ases the model against unary branching and re-
duces its likelihood of producing an exclusively
left- or right-branching tree structure. In addition,
for all constituents except the root, we assign a tree
reward based on the size and type of its children.
If n and t are the number of nonterminal and ter-
minal children, this reward is 4t if all children are
terminal and 9

√
n otherwise. A reward structure

like this biases the model against freely mixing
terminals and nonterminals within the same con-
stituent and provides incentive to build substantial
tree structures early on in training so the model
doesn’t get stuck in trivial local minima.

Within both the encoder and decoder, each
stochastic action node has a corresponding tree
reward rk if the action was REDUCE (otherwise
zero) and a corresponding language model loss Lk
if the action was GEN (otherwise zero). We sub-
tract an exponential moving average baseline from
each tree reward and additional exponential mov-
ing average baselines—computed independently
for each character z in the vocabulary, because we
want to reduce the effect of character frequency—
from the language model losses. If GEN(k) is
the number of GEN transitions among actions one
through k, and γ is a decay constant, the final re-
wardRmk for action k with m ∈ {enc, dec} is:

r̂k = rk − rbaseline

L̂k = Lk − Lbaseline(zk)

R̂k =
Km∑
κ=k

γGEN(κ)−GEN(k)(r̂κ − L̂mκ )

Renc
k = R̂k − Lc − (m = enc)

Kdec∑
κ=1

Ldec
k .

(4)

These rewards define the gradient that each
stochastic node (with normalized action probabil-
ities pak and chosen action ak) produces during
backpropagation according to the standard multi-
nomial score function estimator (REINFORCE):

∇θpak = mean
ak=a

Rk∇θ log pak
k = mean

ak=a

−Rk
pak
k

(5)

3 Results

We evaluated our model on the German-English
language pair of the flickr30k data, the tex-
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Figure 2: Attention visualizations for two sentences from

the development set. Attention between two constituents is

represented by a shaded rectangle whose projections on the

x and y axes cover the encoder and decoder constituents re-

spectively.

tual component of the WMT Multimodal Trans-
lation shared task (Specia et al., 2016). An at-
tentional sequence-to-sequence model with two
layers and 384 hidden units from the OpenNMT
project (Klein et al., 2017) was run at the character
level as a baseline, obtaining 32.0 test BLEU with
greedy inference. Our model with the same hid-
den size and greedy inference achieves test BLEU
of 28.5 after removing repeated bigrams.

We implemented the model in PyTorch, ben-
efiting from its strong support for dynamic and
stochastic computation graphs, and trained with
batch size 10 and the Adam optimizer (Kingma
and Ba, 2015) with early stopping after 12
epochs. Character embeddings and the encoder’s
xenc embedding were initialized to random 384-
dimensional vectors. The value of γ and the de-
cay constant for the baselines’ exponential moving
average were both set to 0.95. A random selec-

tion of translations is included in the supplemen-
tal material, while two attention plots are shown
in Figure 2. Figure 2b demonstrates a common
pathology of the model, where a phrasal encoder
constituent would be attended to during decod-
ing of the head word of the corresponding de-
coder constituent, while the head word of the en-
coder constituent would be attended to during de-
coding of the decoder constituent corresponding
to the whole phrase. Another common pathology
is repeated sentence fragments in the translation,
which are likely generated because the model can-
not condition future attention directly on past at-
tention weights (the “input feeding” approach in-
troduced by Luong et al. (2015)).

Translation quality also suffers because of our
use of a stack-only RNNG, which we chose be-
cause an RNNG with both stack and buffer inputs
is incompatible with a language model loss. Dur-
ing encoding, the model must decide at the very
beginning of the sentence how deeply to embed
the first character. But with a stack-only RNNG,
it must make this decision randomly, since it isn’t
able to use the buffer representation—which con-
tains the entire sentence.

4 Conclusion

We introduce a new approach to leveraging unsu-
pervised tree structures in NLP tasks like machine
translation. Our experiments demonstrate that a
small-scale MT dataset contains sufficient train-
ing signal to infer latent linguistic structure, and
we are excited to learn what models like the one
presented here can discover in full-size translation
corpora. One particularly promising avenue of re-
search is to leverage the inherently compositional
phrase representations henc

i produced by the en-
coder for other NLP tasks.

There are also many possible directions for im-
proving the model itself and the training process.
Value function baselines can replace exponential
moving averages, pure reinforcement learning can
replace teacher forcing, and beam search can be
used in place of greedy inference. Solutions to the
translation pathologies presented in Section 3 are
likely more complex, although one possible ap-
proach would leverage variational inference using
a teacher model that can see the buffer and helps
train a stack-only student model.
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Abstract

We present an algorithm for structured
prediction under online bandit feedback.
The learner repeatedly predicts a sequence
of actions, generating a structured output.
It then observes feedback for that output
and no others. We consider two cases: a
pure bandit setting in which it only ob-
serves a loss, and more fine-grained feed-
back in which it observes a loss for every
action. We find that the fine-grained feed-
back is necessary for strong empirical per-
formance, because it allows for a robust
variance-reduction strategy. We empiri-
cally compare a number of different algo-
rithms and exploration methods and show
the efficacy of BLS on sequence labeling
and dependency parsing tasks.

1 Introduction

In structured prediction the goal is to jointly pre-
dict the values of a collection of variables that in-
teract. In the usual “supervised” setting, at train-
ing time, you have access to ground truth outputs
(e.g., dependency trees) on which to build a pre-
dictor. We consider the substantially harder case
of online bandit structured prediction, in which
the system never sees supervised training data, but
instead must make predictions and then only re-
ceives feedback about the quality of that single
prediction. The model we simulate (Figure 1) is:

1. the world reveals an input (e.g., a sentence)
2. the algorithm produces a single structured

prediction (e.g., full parse tree);
3. the world provides a loss (e.g., overall quality

rating) and possibly a small amount of addi-
tional feedback;

4. the algorithm updates itself

Input Output

Pre-Trained POS 
Tagging Model 

π

Total Loss for predicted structure

Update Policy

Empirical/NN 
Methods/NN in/IN  

Natural/NNP 
Language/NNP 
Processing/NNP

Empirical 
Methods in 

Natural 
Language 
Processing 

hamming_loss(input, output) = 1

Figure 1: BLS for learning POS tagging. We learn
a policy π, whose output a user sees. The user
views predicted tags and provides a loss (and pos-
sibly additional feedback, such as which words are
labeled incorrectly). This is used to update π.

The goal of the system is to minimize it’s cumula-
tive loss over time, using the feedback to improve
itself. This introduces a fundamental exploration-
versus-exploitation trade-off, in which the system
must try new things in hopes that it will learn
something useful, but also in which it is penalized
(by high cumulative loss) for exploring too much.1

One natural question we explore in this paper
is: in addition to the loss, what forms of feed-
back are both easy for a user to provide and use-
ful for a system to utilize? At one extreme, one
can solicit no additional feedback, which makes
the learning problem very difficult. We describe
Bandit Learning to Search, BLS2, an approach
for improving joint predictors from different types
of bandit feedback. The algorithm predicts out-
puts and observes the loss of the predicted struc-

1Unlike active learning—in which the system chooses
which examples it wants feedback on—in our setting the sys-
tem is beholden to the human’s choice in inputs.

2Our implementation will be made freely available.
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ture; but then it uses a regression strategy to es-
timate counterfactual costs of (some) other struc-
tures that it did not predict. This variance reduc-
tion technique (§2.2) is akin to doubly-robust esti-
mation in contextual bandits. The trade-off is that
in order to accurately train these regressors, BLS
requires per-action feedback from the user (e.g.,
which words were labeled incorrectly). It appears
that this feedback is necessary; with out it, accu-
racy degrades over time. Additionally, we con-
sider several forms of exploration beyond a sim-
ple ε-greedy strategy, including Boltzmann explo-
ration and Thompson sampling (§2.4). We demon-
strate the efficacy of these developments on POS
tagging, syntactic chunking and dependency pars-
ing (§ 3), in which we show improvements over
both LOLS (Chang et al., 2015) and Policy Gradi-
ent (Sutton et al., 1999).

2 Learning with Bandit Feedback

We operate in the learning to search framework,
a family of algorithms for solving structured pre-
diction problems, which essentially train a policy
to make sequence of decisions that are stitched to-
gether into a final structured output. Such algo-
rithms decompose a joint prediction task into a se-
quence of action predictions, such as predicting
the label of the next word in sequence labeling
or predicting a shift/reduce action in dependency
parsing3; these predictions are tied by features
and/or internal state. Algorithms in this family
have recently met with success in neural networks
(Bengio et al., 2015; Wiseman and Rush, 2016),
though date back to models typically based on lin-
ear policies (Collins and Roark, 2004; Daumé III
and Marcu, 2005; Xu et al., 2007; Daumé III et al.,
2009; Ross et al., 2010; Ross and Bagnell, 2014;
Doppa et al., 2014; Chang et al., 2015).

Most learning to search algorithms operate by
considering a search space like that shown in Fig-
ure 2. The learning algorithm first rolls-in for a
few steps using a roll-in policy πin to some state
R, then considers all possible actions available at
state R, and then rolls out using a roll-out policy
πout until the end of the sequence. In the fully
supervised case, the learning algorithm can then
compute a loss for all possible outputs, and use
this loss to drive learning at state R, by encourag-

3Although the decomposition is into a sequence of predic-
tions, such approaches are not limited to “left-to-right” style
prediction tasks (Ross et al., 2010; Stoyanov et al., 2011).

in/ 
IN

Natural/ 
NNP

Empirical/
JJ

Methods/
NN

Processing/ 
NNP

Language/ 
NNP

VB NNP NNP

NN VB NNP
S R E

loss = 1

{

Roll-in

on
e-

st
ep

 
de

vi
at

io
n {

Roll-out

loss = 0

loss = 2

Figure 2: A search space for part of speech tag-
ging, explored by a policy that chooses to “ex-
plore” at state R.

ing the learner to take the action with lowest cost,
updating the learned policy from π̂i to π̂i+1.

In the bandit setting, this is not possible: we can
only evaluate one loss; nevertheless, we can follow
a similar algorithmic structure. Our specific algo-
rithm, BLS, is summarized in algorithm 1. We
start with a pre-trained reference policy πref and
seek to improve it with bandit feedback. On each
example, an exploration algorithm (§2.4) chooses
whether to explore or exploit. If it chooses to ex-
ploit, a random learned policy is used to make a
prediction and no updates are made. If, instead, it
chooses to explore, it executes a roll-in as usual,
a single deviation at time t according to the ex-
ploration policy, and then a roll-out. Upon com-
pletion it suffers a bandit loss for the entire com-
plete trajectory. It then uses a cost estimator ρ to
guess the costs of the un-taken actions. From this
it forms a complete cost vector, and updates the
underlying policy based on this cost vector. Fi-
nally, it updates the cost estimator ρ.

2.1 Cost Estimation by Importance Sampling

The simplest possible method of cost estimation
is importance sampling (Horvitz and Thompson,
1952; Chang et al., 2015). If the third action is
the one explored with probability p3 and a cost ĉ3
is observed, then the cost vector for all actions is
set to 〈0, 0, ĉ3/p3, 0, . . . , 0〉. This yields an unbi-
ased estimate of the true cost vector because in ex-
pectation over all possible actions, the cost vector
equals 〈ĉ1, ĉ2, . . . , ĉK〉.

Unfortunately, this type of cost estimate suffers
from huge variance (see experiments in §3). If ac-
tions are explored uniformly at random, then all
cost vectors look like 〈0, 0,Kĉ3, 0, . . . 0〉, which
varies quite far from its expectation when K is
large. To better understand the variance reduction
issue, consider the part of speech tagging exam-

18



Input: examples {xi}Ni=1, reference policy
πref, exploration algorithm explorer,
and rollout-parameter β ≥ 0

π0 ← initial policy
I ← ∅
ρ← initial cost estimator
for each xi in training examples do

if explorer chooses not to explore then
π ← Unif(I) // pick policy
yi ← predict using π
c← bandit loss of yi

else
t← Unif(0, T − 1) // deviation time
τ ← roll-in with π̂i for t rounds
st ← final state in τ
at = explorer(st) // deviation action
πout ← πref with prob β, else π̂i
yi ← roll-out with πout from τ + at
c← bandit loss of yi
ĉ← est cost(st, τ, ρ, A(st), at, c)
π̂i+1 ← update(π̂i, (Φ(xi, st), ĉ))
I ← I ∪ {π̂i+1}
update cost estimator ρ

end
end

Algorithm 1: Bandit Learning to Search (BLS)

ple from Figure 2. As in the figure, suppose that
the deviation occurs at time step 3 and that during
roll-in, the first two words are tagged correctly by
the roll-in policy. At t = 3, there are 45 possible
actions (each possible part of speech) to take from
the deviation state, of which three are shown; each
action (under uniform exploration) will be taken
with probability 1/45. If the first is taken, a loss of
one will be observed, if the second, a loss of zero,
and if the third, a loss of two. When a fair coin is
flipped, perhaps the third choice is selected, which
will induce a cost vector of ~c = 〈0, 0, 90, 0, . . . 〉.
In expectation over this random choice, we have
Ea[c] is correct, implying unbiasedness, but the
variance is very large: O((Kcmax)2).

This problem is exacerbated by the fact that
many learning to search algorithms define the cost
of an action a to be the difference between the
cost of a and the minimum cost. This is desirable
because when the policy is predicting greedily, it
should choose the action that adds the least cost;
it should not need to account for already-incurred
cost. For example, suppose the first two words in

Input: current state: st; roll-in trajectory: τ ;
K regression functions (one for every
action): ρ; set of allowed actions:
A(st); roll-out policy: πout; explored
action: at; bandit loss: c

t← |τ |
Initialize ĉ: a vector of size |A(st)|
ĉ0 ← 0
for (a, s) ∈ τ do

ĉ0 ← ĉ0 + ρa(Φ(s))
end
for a ∈ A(st) do

if a = at then
ĉ(a)← c

else
ĉ(a)← ĉ0
y ← roll-out with πout from τ + a
for (a′, s′) in y do

ĉ(a)← ĉ(a) + ρa′(Φ(s′))
end

end
return ĉ: a vector of size |A(st)|, where ĉ(a)
is the estimated cost for action a at state st.

Algorithm 2: est cost

Figure 2 were tagged incorrectly. This would add
a loss of 2 to any of the estimated costs, but could
be very difficult to fit because this loss was based
on past actions, not the current action.

2.2 Doubly Robust Cost Estimation

To address the challenge of high variance cost es-
timates, we adopt a strategy similar to the doubly-
robust estimation used in the (non-structured) con-
textual bandit setting (Dudik et al., 2011). In par-
ticular, we train a separate set of regressors to esti-
mate the total costs of any action, which we use to
impute a counterfactual cost for untaken actions.

Algorithm 2 spells this out, taking advantage of
an action-to-cost regressor, ρ. To estimate the cost
of an un-taken action a′ at a deviation, we simulate
the execution of a′, followed by the execution of
the current policy through the end. The cost of
that entire trajectory is estimated by summing ρ
over all states along the path. For example, in the
part of speech tagging example above, we learn
45 regressors: one for each part of speech. The
cost of a roll-out is estimated as the sum of these
regressors over the entire predicted sequence.

Using this doubly-robust estimate strategy ad-
dresses both of the problems mentioned in § 2.1.
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First, this is able to provide a cost estimate for all
actions. Second, because ρ is deterministic, it will
give the same cost to the common prefix of all tra-
jectories, thus resolving credit assignment.

The remaining challenge is: how to estimate
these regressors. Unfortunately, this currently
comes at an additional cost to the user: we must
observe per-action feedback. In particular, when
the user views a predicted output (e.g., part of
speech sequence), we ask for a binary signal for
each action whether the predicted action was right
or wrong. Thus, for a sentence of length T , we
generate T training examples for every time step
1 ≤ t ≤ T . Each training example has the form:
(at, ct), where at is the predicted action at time t,
and ct is a binary cost, either 1 if the predicted ac-
tion was correct, or zero otherwise. This amounts
to a user “crossing out” errors, which hopefully
incurs low overhead. Using these T training ex-
amples, we can effectively train the K regressors
for estimating the cost of unobserved actions.

2.3 Theoretical Analysis

In order to analyze the variance of the BLS es-
timator (in particular to demonstrate that it has
lower variance than importance sampling), we
provide a reduction to contextual bandits in an i.i.d
setting. Dudı́k et al. (2014) studied the contextual
bandit setting, which is similar to out setting but
without the complexity of sequences of actions.
(In particular, if T = 1 then our setting is ex-
actly the contextual bandit setting.) They studied
the task of off-policy evaluation and optimization
for a target policy ν using doubly robust estima-
tion given historic data from an exploration pol-
icy µ consisting of contexts, actions, and received
rewards. They prove that this approach yields ac-
curate value estimates when there is either a good
(but not necessarily consistent) model of rewards
or a good (but not necessarily consistent) model of
past policy. In particular, they show:

Theorem. Let ∆(x, a) and ρk(x, a) denote, re-
spectively, the additive error of the reward esti-
mator r̂ and the multiplicative error of the action
probability estimator µ̂k. If exploration policy µ
and the estimator µ̂k are stationary, and the target
policy ν is deterministic, then the variance of the
doubly robust estimator Vµ[V̂DR] is:

1

n
(V(x,a)∼ν [r∗(x, a) + (1− ρ1(x, a))∆(x, a)])

+E(x,a)∼ν
[ 1

µ̂1(a|x)
ρ1(x, a)Vr∼D(·|x,a)[r]

]
+E(x,a)∼ν

[1− µ1(a|x)

µ̂1(a|x)
ρ1(x, a)∆(x, a)2

]
]

The theorem show that the variance can be de-
composed into three terms. The first term ac-
counts for the randomness in the context features.
The second term accounts for randomness in re-
wards and disappears when rewards are determin-
istic functions of the context and actions. The last
term accounts for the disagreement between ac-
tions taken by the exploration policy µ and the
target policy ν. This decomposition shows that
doubly robust estimation yields accurate value es-
timates when there is either a good model of re-
wards or a good model of the exploration policy.

We can build on this result for BLS to show an
identical result under the following reduction. The
exploration policy µ in our setting is defined as fol-
lows: for every exploration round, a randomly se-
lected time-step is assigned a randomly chosen ac-
tion, and a deterministic reference policy is used to
generate the roll-in and roll-out trajectories. Our
goal is to evaluate and optimize a better target pol-
icy ν. Under this setting, and assuming that the
structures are generated i.i.d from a fixed but un-
known distribution, the structured prediction prob-
lem will be equivalent to a contextual bandit prob-
lem were we consider the roll-in trajectory as part
of the context.

2.4 Options for Exploration Strategies
In addition to the ε-greedy exploration algorithm,
we consider the following exploration strategies:

Boltzmann (Softmax) Exploration. Boltz-
mann exploration varies the action probabilities
as a graded function of estimated value. The
greedy action is still given the highest selection
probability, but all the others are ranked and
weighted according to their cost estimates; ac-
tion a is chosen with probability proportional
to exp

[
1

tempc(a)
]
, where “temp” is a positive

parameter called the temperature, and c(a) is the
current predicted cost of taking action a. High
temperatures cause the actions to be all (nearly)
equiprobable. Low temperatures cause a greater
difference in selection probability for actions that
differ in their value estimates.
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Thompson Sampling estimates the following
elements: a set Θ of parameters µ; a prior distribu-
tion P (µ) on these parameters; past observations
D consisting of observed contexts and rewards;
a likelihood function P (r|b, µ), which gives the
probability of reward given a context b and a pa-
rameter µ; In each round, Thompson Sampling
selects an action according to its posterior prob-
ability of having the best parameter µ. This is
achieved by taking a sample of parameter for each
action, using the posterior distributions, and se-
lecting that action that produces the best sam-
ple (Agrawal and Goyal, 2013; Komiyama et al.,
2015). We use Gaussian likelihood function and
Gaussian prior for the Thompson Sampling algo-
rithm. In addition, we make a linear payoff as-
sumption similar to (Agrawal and Goyal, 2013),
where we assume that there is an unknown under-
lying parameter µa ∈ Rd such that the expected
cost for each action a, given the state st and con-
text xi is Φ(xi, st)Tµa.

3 Experimental Results

The evaluation framework we consider is the fully
online setup described in the introduction, mea-
suring the degree to which various algorithms can
effectively improve upon a reference policy by ob-
serving only a partial feedback signal, and effec-
tively balancing exploration and exploitation. We
learn from one structured example at every time
step, and we do a single pass over the available
examples. We measure loss as the average cumu-
lative loss over time, thus algorithms are appropri-
ately “penalized” for unnecessary exploration.

3.1 Tasks, Policy Classes and Data Sets

We experiment with the following three tasks. For
each, we briefly define the problem, describe the
policy class that we use for solving that problem
in a learning to search framework (we adopt a sim-
ilar setting to that of (Chang et al., 2016), who de-
scribes the policies in more detail), and describe
the data sets that we use. The regression problems
are solved using squared error regression, and the
classification problems (policy learning) is solved
via cost-sensitive one-against-all.

Part-Of-Speech Tagging over the 45 Penn
Treebank (Marcus et al., 1993) tags. To simu-
late a domain adaptation setting, we train a ref-
erence policy on the TweetNLP dataset (Owoputi
et al., 2013), which achieves good accuracy in do-

main, but does poorly out of domain. We sim-
ulate bandit feedback over the entire Penn Tree-
bank Wall Street Journal (sections 02–21 and 23),
comprising 42k sentences and about one million
words. (Adapting from tweets to WSJ is nonstan-
dard; we do it here because we need a large dataset
on which to simulate bandit feedback.) The mea-
sure of performance is average per-word accuracy
(one minus Hamming loss).

Noun Phrase Chunking is a sequence segmen-
tation task, in which sentences are divided into
base noun phrases.We solve this problem using
a sequence span identification predictor based on
Begin-In-Out encoding, following (Ratinov and
Roth, 2009), though applied to chunking rather
than named-entity recognition. We used the
CoNLL-2000 datasetfor training and testing. We
used the smaller test split (2, 012 sentences) for
training a reference policy, and used the training
split (8, 500 sentences) for online evaluation. Per-
formance was measured by F-score over predicted
noun phrases (for which one has to predict the en-
tire noun phrase correctly to get any points).

Dependency Parsing is a syntactic analysis
task, in which each word in a sentence gets as-
signed a grammatical head (or “parent”). The ex-
perimental setup is similar to part-of-speech tag-
ging. We train an arc-eager dependency parser
(Nivre, 2003), which chooses among (at most)
four actions at each state: Shift, Reduce, Left or
Right. As in part of speech tagging, the reference
policy is trained on the TweetNLP dataset (us-
ing an oracle due to (Goldberg and Nivre, 2013)),
and evaluated on the Penn Treebank corpus (again,
sections 02 − 21 and section 23). The loss is un-
labeled attachment score (UAS), which measures
the fraction of words that pick the correct parent.

3.2 Main Results

Here, we describe experimental results (Table 1)
comparing several algorithms: (line B) The ban-
dit variant of the LOLS algorithm, which uses
importance sampling and ε-greedy exploration;
(lines C-F) BLS, with bandit feedback and per-
word error correction, with variance reduction and
four exploration strategies: ε-greedy, Boltzmann,
Thompson, and “oracle” exploration in which case
the oracle action is always chosen during explo-
ration; (line G) The Policy Gradient reinforcement
learning algorithm, with ε-greedy exploration on
one-step deviations; and (line H) A fully super-
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POS DepPar Chunk
Algorithm Variant Acc UAS F-Scr

A. Reference - 47.24 44.15 74.73
B. LOLS ε-greedy 2.29 18.55 31.76

C. BLS ε-greedy 86.55 56.04 90.03
D. Boltz. 89.62 57.20 90.91
E. Thomp. 89.37 56.60 90.06
F. Oracle 89.23 56.60 90.58

G. Policy∇ ε-greedy 75.10 - 90.07

H. DAgger Full Sup 96.51 90.64 95.29

Table 1: Total progressive accuracies for the dif-
ferent algorithms on the three natural language
processing tasks. LOLS uniformly decreases per-
formance over the Reference baseline. BLS,
which integrates cost regressors, uniformly im-
proves, often quite dramatically. The overall ef-
fect of the exploration mechanism is small, but
in all cases Boltzmann exploration is statistically
significantly better than the other options at the
p < 0.05 level (because the sample size is so
large). Policy Gradient for dependency parsing is
missing because after processing 1

4 of the data, it
was substantially subpar.

vised “upper bound” trained with DAgger.
From these results, we draw the following con-

clusions (the rest of this section elaborates on
these conclusions in more detail):

1. The original LOLS algorithm is ineffective at
improving the accuracy of a poor reference
policy (A vs B);

2. Collecting additional per-word feedback in
BLS allows the algorithm to drastically im-
prove on the reference (A vs C) and on LOLS
(B vs C); we show in §3.3 that this happens
because of variance reduction;

3. Additional leverage can be gained by varying
the exploration strategy, and in general Boltz-
mann exploration is effective (C,D,E), but the
Oracle exploration strategy is not optimal (F
vs D); see §3.4;

4. For large action spaces like POS tagging,
the BLS-type updates outperform Policy
Gradient-type updates, when the exploration
strategy is held constant (G vs D), see §3.5.

5. Bandit feedback is less effective than full
feedback (H vs D) (§3.6).

3.3 Effect of Variance Reduction

Table 1 shows the progressive validation accura-
cies for all three tasks for a variety of algorith-
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Figure 3: Analyzing the variance of the the cost
estimates from LOLS and BLS over a run of the
algorithm for POS; the x-axis is number of sen-
tences processed, y-axis is empirical variance.

mic settings. To understand the effect of vari-
ance, it is enough to compare the performance
of the Reference policy (the policy learned from
the out of domain data) with that of LOLS. In
all of these cases, running LOLS substantially de-
creases performance. Accuracy drops by 45% for
POS tagging, 26% for dependency parsing and
43% for noun phrase chunking. For POS tagging,
the LOLS accuracy falls below the accuracy one
would get for random guessing (which is approxi-
mately 14% on this dataset for NN)!

When the underlying algorithm changes from
LOLS to BLS, the overall accuracies go up signif-
icantly. Part of speech tagging accuracy increases
from 47% to 86%; dependency parsing accuracy
from 44% to 57%; and chunking F-score from
74% to 90%. These numbers naturally fall be-
low state of the art for fully supervised learning
on these data sets, precisely because these results
are based only on bandit feedback (see §3.6).

3.4 Effect of Exploration Strategy

Figure 4 shows the effect of the choice of ε for
ε-greedy exploration in BLS. Overall, best results
are achieved with remarkably high epsilon, which
is possibly counter-intuitive. The reason this hap-
pens is because BLS only explores on one out of T
time steps, of which there are approximately 30 in
each of these experiments (the sentence lengths).
This means that even with ε = 1, we only take
a random action roughly 3.3% of the time. It is
therefore not surprising that large ε is the most ef-
fective strategy. Overall, although the differences
are small, the best choice of ε across these differ-
ent tasks is ≈ 0.6.
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Figure 4: Analyzing the effect of ε in exploration/exploitation trade-off. Overall, large values of ε are
strongly preferred.

Returning to Table 1, we can consider the effect
of different exploration mechanisms: ε-greedy,
Boltzmann (or softmax) exploration, and Thomp-
son sampling. Overall, Boltzmann exploration
was the most effective strategy, gaining about 3%
accuracy in POS tagging, just over 1% in depen-
dency parsing, and just shy of 1% in noun phrase
chunking. Although the latter two effects are
small, they are statistically significant, which is
measurable due to the fact that the evaluation sets
are very large. In general, Thompson sampling is
also effective, though worse than Boltzmann.

Finally, we consider a variant in which when-
ever BLS requests exploration, the algorithm
“cheats” and chooses the gold standard decision
at that point. This is the “oracle exploration” line
in Table 1. We see that this does not improve
overall quality, which suggests that a good explo-
ration strategy is not one that always does the right
thing, but one that also explored bad—but useful-
to-learn-from—options.

3.5 Policy Gradient Updates

A natural question is: how does bandit structured
prediction compare to more standard approaches
to reinforcement learning (we revisit the question
of how these problems differ in § 4). We chose
Policy Gradient (Sutton et al., 1999) as a point of
comparison. The main question we seek to ad-
dress is how the BLS update rule compares to the
Policy Gradient update rule. In order to perform
this comparison, we hold the exploration strategy
fixed, and implement the Policy Gradient update
rule inside our system.

More formally, the policy gradient optimiza-
tion is similar to that used in BLS. PG maintains
a policy πθ, which is parameterized by a set of
parameters θ. Features are extracted from each
state st to construct the feature vectors φ(st), and

linear function approximation models the proba-
bility of selecting action at at state st under πθ:
πθ(at|st) ∝ exp(θTatφ(st)), where K is the total
number of actions. PG maximizes the total ex-
pected return under the distribution of trajectories
sampled from the policy πθ.

To balance the exploration / exploitation trade-
off, we use exactly the same epsilon greedy tech-
nique used in BLS (Algorithm 1). For each tra-
jectory τ sampled from πθ, a state is selected uni-
formly at random, and an action is selected greed-
ily with probability ε. The policy πθ is used to con-
struct the roll-in and roll-out trajectories. For ev-
ery trajectory τ , we collect the same binary grades
from the user as in BLS, and use them to train a re-
gression function to estimate the per-step reward.
These estimates are then be summed up to com-
pute the total return Gt from time step t onwards
(Algorithm 2).

We use standard policy gradient update for opti-
mizing the policy θ based on the observed rewards:

θ ← θ + α∇θ log(πθ(st, at))Gt (1)

The results of this experiment are shown in line
G of Table 1. Here, we see that on POS tagging,
where the number of actions is very large, PG sig-
nificantly underperforms BLS. Our initial experi-
ments in dependency parsing showed the PG sig-
nificantly underperformed BLS after processing 1

4
of the data. The difference is substantially smaller
in chunking, where PG is on part with BLS with
ε-greedy exploration. Figure 4 shows the effect
of ε on PG, where we see that it also prefers large
values of ε, but its performance saturates as ε→ 1.

3.6 Bandit Feedback vs Full Feedback

Finally, we consider the trade-off between ban-
dit feedback in BLS and full feedback. To make
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this comparison, we run the fully supervised al-
gorithm DAgger (Ross et al., 2010) which is ef-
fectively the same algorithm as LOLS and BLS
under full supervision. In Table 1, we can see
that full supervision dramatically improves perfor-
mance from around 90% to 97% in POS tagging,
57% to 91% in dependency parsing, and 91% to
95% in chunking. Of course, achieving this im-
proved performance comes at a high labeling cost:
a human has to provide exact labels for each deci-
sion, not just binary “yes/no” labels.

4 Discussion & Conclusion

The most similar algorithm to ours is the bandit
version of LOLS (Chang et al., 2015) (which is an-
alyzed theoretically but not empirically); the key
differences between BLS and LOLS are: (a) BLS
employs a doubly-robust estimator for “guessing”
the costs of counterfactual actions; (b) BLS em-
ploys alternative exploration strategies; (c) BLS is
effective in practice at improving the performance
of an initial policy.

In the NLP community, Sokolov et al. (2016a)
and Sokolov et al. (2016b) have proposed a pol-
icy gradient-like method for optimizing log-linear
models like conditional random fields (Lafferty
et al., 2001) under bandit feedback. Their eval-
uation is most impressive on the problem of do-
main adaptation of a machine translation system,
in which they show that their approach is able to
learn solely from bandit-style feedback, though re-
quiring a large number of samples.

In the learning-to-search setting, the difference
between structured prediction under bandit feed-
back and reinforcement learning gets blurry. A
distinction in the problem definition is that the
world is typically assumed to be fixed and stochas-
tic in RL, while the world is both deterministic
and known (conditioned on the input, which is ran-
dom) in bandit structured prediction: given a state
and action, the algorithm always knows what the
next state will be. A difference in solution is that
there has been relatively little work in reinforce-
ment learning that explicitly begins with a refer-
ence policy to improve and often assumes an ab
initio training regime. In practice, in large state
spaces, this makes the problem almost impossi-
ble, and practical settings like AlphaGo (Silver
et al., 2016) require imitation learning to initialize
a good policy, after which reinforcement learning
is used to improve that policy.

Learning from partial feedback has generated a
vast amount of work in the literature, dating back
to the seminal introduction of multi-armed bandits
by (Robbins, 1985). However, the vast number of
papers on this topic does not consider joint pre-
diction tasks; see (Auer et al., 2002; Auer, 2003;
Langford and Zhang, 2008; Srinivas et al., 2009;
Li et al., 2010; Beygelzimer et al., 2010; Dudik
et al., 2011; Chapelle and Li, 2011; Valko et al.,
2013) and references inter alia. There, the system
observes (bandit) feedback for every decision.

Other forms of contextual bandits on structured
problems have been considered recently. Kalai
and Vempala (2005) studied the structured prob-
lem of online shortest paths, where one has a di-
rected graph and a fixed pair of nodes (s, t). Each
period, one has to pick a path from s to t, and then
the times on all the edges are revealed. The goal
of the learner is to improve it’s path predictions
over time. Relatedly, Krishnamurthy et al. (2015)
studied a variant of the contextual bandit problem,
where on each round, the learner plays a sequence
of actions, receives a score for each individual ac-
tion, and obtains a final reward that is a linear com-
bination to those scores.

In this paper, we presented a computationally
efficient algorithm for structured contextual ban-
dits, BLS, by combining: locally optimal learning
to search (to control the structure of exploration)
and doubly robust cost estimation (to control the
variance of the cost estimation). This provides the
first practically applicable learning to search algo-
rithm for learning from bandit feedback. Unfortu-
nately, this comes at a cost to the user: they must
make more fine-grained judgments of correctness
than in a full bandit setting. In particular, they
must mark each decision as correct or incorrect:it
is an open question whether this feedback can be
removed without incurring a substantially larger
sample complexity. A second large open question
is whether the time step at which to deviate can
be chosen more intelligently, similar to selective
sampling (Shi et al., 2015), using active learning.

Acknowledgements

We thank the anonymous reviewers for many help-
ful comments. This work was supported by NSF
grant IIS-1618193 and LTS grant DO-0032. Opin-
ions, findings, conclusions, or recommendations
expressed here are those of the authors and do not
necessarily reflect the view of the sponsor(s).

24



References
Shipra Agrawal and Navin Goyal. 2013. Thompson

sampling for contextual bandits with linear payoffs.
In ICML (3). pages 127–135.

Peter Auer. 2003. Using confidence bounds for
exploitation-exploration trade-offs. The Journal of
Machine Learning Research 3:397–422.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. 2002. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing
32(1):48–77.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems. pages 1171–1179.

Alina Beygelzimer, John Langford, Lihong Li, Lev
Reyzin, and Robert E Schapire. 2010. Contextual
bandit algorithms with supervised learning guaran-
tees. arXiv preprint arXiv:1002.4058 .

Kai-Wei Chang, He He, Hal Daumé III, John Langford,
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Abstract

In Semantic Role Labeling (SRL) task, the
tree structured dependency relation is rich
in syntax information, but it is not well
handled by existing models. In this pa-
per, we propose Syntax Aware Long Short
Time Memory (SA-LSTM). The structure
of SA-LSTM changes according to de-
pendency structure of each sentence, so
that SA-LSTM can model the whole tree
structure of dependency relation in an ar-
chitecture engineering way. Experiments
demonstrate that on Chinese Proposition
Bank (CPB) 1.0, SA-LSTM improves F1

by 2.06% than ordinary bi-LSTM with
feature engineered dependency relation in-
formation, and gives state-of-the-art F1 of
79.92%. On English CoNLL 2005 dataset,
SA-LSTM brings improvement (2.1%) to
bi-LSTM model and also brings slight im-
provement (0.3%) when added to the state-
of-the-art model.

1 Introduction

The task of Semantic Role Labeling (SRL) is to
recognize arguments of a given predicate in a sen-
tence and assign semantic role labels. Many NLP
works such as machine translation (Xiong et al.,
2012; Aziz et al., 2011) benefit from SRL because
of the semantic structure it provides. Figure 1
shows a sentence with semantic role label.

Dependency relation is considered important
for SRL task (Xue, 2008; Punyakanok et al., 2008;
Pradhan et al., 2005), since it can provide rich
structure and syntax information for SRL. At the
bottom of Figure 1 shows dependency of the sen-
tence.
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Figure 1: A sentence from Chinese Proposition
Bank 1.0 (CPB 1.0) (Xue and Palmer, 2003) with
semantic role labels and dependency.

Traditional methods (Sun and Jurafsky, 2004;
Xue, 2008; Ding and Chang, 2008, 2009; Sun,
2010) do classification according to manually de-
signed features. Feature engineering requires ex-
pertise and is labor intensive. Recent works based
on Recurrent Neural Network (RNN) (Zhou and
Xu, 2015; Wang et al., 2015; He et al., 2017) ex-
tract features automatically, and significantly out-
perform traditional methods. However, because
RNN methods treat language as sequential data,
they fail to integrate the tree structured depen-
dency into RNN.

We propose Syntax Aware Long Short Time
Memory (SA-LSTM) to directly model complex
tree structure of dependency relation in an ar-
chitecture engineering way. Architecture of SA-
LSTM is shown in Figure 2. SA-LSTM is based
on bidirectional LSTM (bi-LSTM). In order to
model the whole dependency tree, we add addi-
tional directed connections between dependency
related words in bi-LSTM. SA-LSTM integrates
the whole dependency tree directly into the model
in an architecture engineering way. Also, to take
dependency relation type into account, we intro-
duce trainable weights for different types of de-
pendency relation. The weights can be trained to
indicate importance of a dependency type.

SA-LSTM is able to directly model the whole
tree structure of dependency relation in an archi-
tecture engineering way. Experiments show that
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SA-LSTM can model dependency relation bet-
ter than traditional feature engineering way. SA-
LSTM gives state of the art F1 on CPB 1.0 and
also shows improvement on English CoNLL 2005
dataset.

2 Syntax Aware LSTM

In this section, we first introduce ordinary bi-
LSTM. Based on bi-LSTM, we then introduce the
proposed SA-LSTM. Finally, we introduce how to
do optimization for SA-LSTM.

2.1 Conventional bi-LSTM Model for SRL
In a corpus sentence, each word wt has a feature
representation xt which is generated automatically
as (Wang et al., 2015) did. zt is feature embedding
for wt, calculated as followed:

zt = f(W1xt) (1)

where W1 ∈ Rn1×n0 . n0 is the dimension of word
feature representation.

In a corpus sentence, each word wt has six in-
ternal vectors, C̃, gi, gf , go, Ct, and ht, shown in
Equation 2:

C̃ = f(Wczt + Ucht−1 + bc)
gj = σ(Wjzt + Ujht−1 + bj) j ∈ {i, f, o}
Ct = gi � C̃ + gf � Ct−1

ht = go � f(Ct)

(2)

where C̃ is the candidate value of the current cell
state. g are gates used to control the flow of infor-
mation. Ct is the current cell state. ht is hidden
state of wt. Wx and Ux are matrixes used in linear
transformation:

Wx, x ∈ {c, i, f, o} ∈ Rnh×n1

Ux, x ∈ {c, i, f, o} ∈ Rnh×nh
(3)

As convention, f stands for tanh and σ stands for
sigmoid. � means the element-wise multiplica-
tion.

In order to make use of bidirectional informa-
tion, the forward

−→
ht

T
and backward

←−
ht

T
are con-

catenated together, as shown in Equation 4:

at = [
−→
ht

T
,
←−
ht

T
] (4)

Finally, ot is the result vector with each dimension
corresponding to the score of each semantic role
tag, and are calculated as shown in Equation 5:

ot = W3f(W2at) (5)
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Figure 2: Structure of Syntax Aware LSTM. The
purple square is the current cell that is calculating.
The green square is a dependency related cell.

where W2 ∈ Rn3×n2 , n2 is 2 × ht, W3 ∈
Rn4×n3 and n4 is the number of tags in IOBES
tagging schema.

2.2 Syntax Aware LSTM Model for SRL

This section introduces the proposed SA-LSTM
model. Figure 2 shows the structure of SA-LSTM.
SA-LSTM is based on bidirectional LSTM. By ar-
chitecture engineering, SA-LSTM can model the
whole tree structure of dependency relation.
St is the key component of SA-LSTM. It stands

for information from other dependency related
words, and is calculated as shown in Equation 6:

St = f(
t−1∑
i=0

α× hi) (6)

α =


1 If there exists dependency

relation from wi to wt

0 Otherwise

(7)

St is the weighted sum of all hidden state vectors
hi which come from previous words wi . Note
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that, α ∈ {0, 1} indicates whether there is a de-
pendency relation pointed from wi to wt.

We add a gate gs to constrain information from
St, as shown in Equation 8:

gs = σ(Wszt + Usht−1 + bs) (8)

To protect the original word information from be-
ing diluted (Wu et al., 2016) by St, we add St to
hidden layer vector ht instead of adding to cell
state Ct. So ht in SA-LSTM cell is calculated as:

ht = go � f(Ct) + gs � St (9)

For example, in Figure 2, there is a dependency
relation “advmod” from green square to purple
square. By Equation 7, only the hidden state of
green square is selected, then transformed by gs

in Equation 8, finally added to hidden layer of the
purple cell.

SA-LSTM changes structure by adding differ-
ent connections according to dependency relation.
In this way, SA-LSTM integrates the whole tree
structure of dependency.

However, by using α in Equation 7, we do not
take dependency type into account, so we further
improve the way α is calculated from Equation 7
to Equation 10. Each typem of dependency rela-
tion is assigned a trainable weight αm. In this way,
SA-LSTM can model differences between types of
dependency relation.

α =


αm exists typem dependency

relation from wi to wt

0 Otherwise

(10)

2.3 Optimization
This section introduces optimization methods for
SA-LSTM. We use maximum likelihood criterion
to train SA-LSTM. We choose stochastic gradient
descent algorithm to optimize parameters.

Given a training pair T = (x, y) where T is
the current training pair, x denotes current train-
ing sentence, and y is the corresponding correct
answer path. yt = k means that the t-th word has
the k-th semantic role label.

The score of ot is calculated as:

s(x, y, θ) =
Ni∑
t=1

otyt (11)

where Ni is the word number of the current sen-
tence and θ stands for all parameters. So the log

Method F1%
Xue(2008) 71.90
Sun et al.(2009) 74.12
Yand and Zong(2014) 75.31
Wang et al.(Bi-LSTM)(2015) 77.09
Sha et al.(2016) 77.69
Path LSTM, Roth et al. (2016)3 79.01
BiLSTM+feature engineering depen-
dency

77.75

SA-LSTM(Random Initialized) 79.81
SA-LSTM(Pre-trained Embedding) 79.92

Table 1: Results comparison on CPB 1.0

likelihood of a single sentence is:

log p(y|x, θ) = log
exp(s(x, y, θ))∑
y′ exp(s(x, y′, θ))

= s(x, y, θ)− log
∑

y′
exp(s(x, y′, θ))

(12)

where y′ ranges from all valid paths of answers.
We use Viterbi algorithm to calculate the global
normalization. Besides, we collected those impos-
sible transitions from corpus beforehand. When
calculating global normalization, we prevent cal-
culating impossible paths which contains impossi-
ble transitions.

3 Experiment

3.1 Experiment setting
In order to compare with previous Chinese SRL
works, we choose to do experiment on CPB 1.0.
We also follow the same data setting as previous
Chinese SRL work (Xue, 2008; Sun et al., 2009)
did. Pre-trained1 word embeddings are tested on
SA-LSTM and shows improvement.

For English SRL, we test on CoNLL 2005
dataset.

We use Stanford Parser (Chen and Manning,
2014) to get dependency relation. The training
set of Chinese parser overlaps a part of CPB 1.0
test set, so we retrained the parser. Dimension
of hyper parameters are tuned according to devel-
opment set. n1 = 200, nh = 100, n2 = 200,
n3 = 100, learning rate = 0.001.

3.2 Syntax Aware LSTM Performance
To prove that SA-LSTM models dependency
relation better than simple feature engineering

1Trained by word2vec on Chinese Gigaword Corpus
2All experiment code and related files are available on re-

quest
3We test the model on CPB 1.0
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Figure 3: Visualization of trained weight αm. X axis is Universal Dependency type, Y axis is the weight.

Method F1%
Bi-LSTM(2 layers) 74.52
Bi-LSTM + SA-LSTM(2 layers) 76.63
He(2017)(Single Model, state of the art) 81.62
He(Single Model, 8 layers) + SA-LSTM 81.90

Table 2: Results on English CoNLL 2005

method, we design an experiment in which depen-
dency relation is added to bi-LSTM in a traditional
feature engineering way.

Given a word wt, Ft is the average of all depen-
dency related xi of previous words wi, as shown
in Equation 13:

Ft =
1
T

t−1∑
i=0

α× xi (13)

where T is the number of dependency related
words and α is a 0, 1 variable calculated as in
Equation 7.

Then Ft is concatenated to xt to form a new fea-
ture representation. Then these representations are
fed into bi-LSTM.

As shown in Table 1, on CPB 1.0, SA-LSTM
reaches 79.81%F1 score with random initializa-
tion and 79.92%F1 score with pre-trained word
embedding. Both of them are the best F1 score
ever published on CPB 1.0 dataset.

In contrast to the “bi-LSTM+feature engi-
neering dependency” model, it is clear that
architecture method of SA-LSTM gains more
improvement(77.09% to 79.81%) than simple
feature engineering method(77.09% to 77.75%).
Path-LSTM (Roth and Lapata, 2016) embeds de-
pendency path between predicate and argument
for each word using LSTM, then does classifica-
tion according to such path embedding and some
other features. SA-LSTM (79.81%F1) outper-
forms Path-LSTM (79.01%F1) on CPB 1.0.

Both “bi-LSTM + feature engineering depen-
dency” and Path-LSTM only model dependency
parsing information for each single word, which
can not model the whole dependency tree struc-

ture. However, by building the dependency rela-
tion directly into the structure of SA-LSTM and
changing the way information flows, SA-LSTM is
able to model the whole tree structure of depen-
dency relation.

We also test our SA-LSTM on English CoNLL
2005 dataset. Replacing conventional bi-LSTM
by SA-LSTM brings 1.7%F1 improvement. Re-
placing bi-LSTM layers of the state of the art
model (He et al., 2017) by SA-LSTM 1 brings
0.3%F1 improvement.

3.3 Visualization of Trained Weights

According to Equation 10, influence from a sin-
gle type of dependency relation will be multiplied
with type weight αm. When αm is 0, the influence
from this type of dependency relation will be ig-
nored totally. When the weight is bigger, the type
of dependency relation will have more influence
on the whole system.

As shown in Figure 3, dependency relation type
dobj receives the highest weight after training,
as shown by the red bar. According to grammar
knowledge, dobj should be an informative rela-
tion for SRL task, and SA-LSTM gives dobj the
most influence automatically. This further demon-
strate that the result of SA-LSTM is highly in ac-
cordance with grammar knowledge.

4 Related works

Semantic role labeling (SRL) was first de-
fined by (Gildea and Jurafsky, 2002). Early
works (Gildea and Jurafsky, 2002; Sun and Ju-
rafsky, 2004) on SRL got promising result with-
out large annotated SRL corpus. Xue and Palmer
(2003) built the Chinese Proposition Bank to stan-
dardize Chinese SRL research.

Traditional works such as (Xue and Palmer,
2005; Xue, 2008; Ding and Chang, 2009; Sun
et al., 2009; Chen et al., 2006; Yang et al., 2014)

1We add syntax-aware connections to every bi-LSTM
layer in the 8-layer model of (He et al., 2017)
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use feature engineering methods. Their methods
can take dependency relation into account in fea-
ture engineering way, such as syntactic path fea-
ture. It is obvious that feature engineering method
can not fully capture the tree structure of depen-
dency relation.

More recent SRL works often use neural net-
work based methods. Collobert and Weston
(2008) proposed a Convolutional Neural Network
(CNN) method for SRL. Zhou and Xu (2015) pro-
posed bidirectional RNN-LSTM method for En-
glish SRL, and Wang et al. (2015) proposed a bi-
RNN-LSTM method for Chinese SRL on which
SA-LSTM is based. He et al. (2017) further ex-
tends the work of Zhou and Xu (2015). NN based
methods extract features automatically and sig-
nificantly outperforms traditional methods. How-
ever, most NN based methods can not utilize de-
pendency relation which is considered important
for semantic related NLP tasks (Xue, 2008; Pun-
yakanok et al., 2008; Pradhan et al., 2005).

The work of Roth and Lapata (2016) and Sha
et al. (2016) have the same motivation as SA-
LSTM, but in different ways. Sha et al. (2016)
uses dependency relation as feature to do argu-
ment relations classification. Roth and Lapata
(2016) embeds dependency path into feature rep-
resentation for each word using LSTM. In con-
trast, SA-LSTM utilizes dependency relation in an
architecture engineering way, by integrating the
whole dependency tree structure directly into SA-
LSTM structure.

5 Conclusion

We propose Syntax Aware LSTM model for Se-
mantic Role Labeling (SRL). SA-LSTM is able
to directly model the whole tree structure of de-
pendency relation in an architecture engineering
way. Experiments show that SA-LSTM can model
dependency relation better than traditional feature
engineering way. SA-LSTM gives state of the art
F1 on CPB 1.0 and also shows improvement on
English CoNLL 2005 dataset.
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Abstract

This work is on a previously formalized
semantic evaluation task of spatial role la-
beling (SpRL) that aims at extraction of
formal spatial meaning from text. Here,
we report the results of initial efforts to-
wards exploiting visual information in the
form of images to help spatial language
understanding. We discuss the way of de-
signing new models in the framework of
declarative learning-based programming
(DeLBP). The DeLBP framework facili-
tates combining modalities and represent-
ing various data in a unified graph. The
learning and inference models exploit the
structure of the unified graph as well as
the global first order domain constraints
beyond the data to predict the semantics
which forms a structured meaning repre-
sentation of the spatial context. Continu-
ous representations are used to relate the
various elements of the graph originating
from different modalities. We improved
over the state-of-the-art results on SpRL.

1 Introduction

Spatial language understanding is important in
many real-world applications such as geograph-
ical information systems, robotics, and naviga-
tion when the robot has a camera on the head
and receives instructions about grabbing objects
and finding their locations, etc. One approach to-
wards spatial language understanding is to map
the natural language to a formal spatial repre-
sentation appropriate for spatial reasoning. The
previous research on spatial role labeling (Ko-
rdjamshidi et al., 2010, 2017b, 2012) and ISO-
Space (Pustejovsky et al., 2011, 2015) aimed at
formalizing such a problem and providing ma-

chine learning solutions to find such a mapping
in a data-driven way (Kordjamshidi and Moens,
2015; Kordjamshidi et al., 2011). Such extrac-
tions are made from available textual resources.
However, spatial semantics are the most relevant
and useful information for visualization of the lan-
guage and, consequently, accompanying visual in-
formation could help disambiguation and extrac-
tion of the spatial meaning from text. Recently,
there has been a large community effort to prepare
new resources for combining vision and language
data (Krishna et al., 2017) though not explicitly fo-
cused on formal spatial semantic representations.
The current tasks are mostly image centered such
as image captioning, that is, generating image de-
scriptions (Kiros et al., 2014; Karpathy and Li,
2014), image retrieval using textual descriptions,
or visual question answering (Antol et al., 2015).
In this work, we consider a different problem,
that is, how images can help in the extraction of
a structured spatial meaning representation from
text. This task has been recently proposed as a
CLEF pilot task1, the data is publicly available and
the task overview will be published (Kordjamshidi
et al., 2017a). Our interest in formal meaning rep-
resentation distinguishes our work from other vi-
sion and language tasks and the choice of the data
since our future goal is to integrate explicit qual-
itative spatial reasoning models into learning and
spatial language understanding.

The contribution of this paper is a) we report
results on combining vision and language that ex-
tend and improve the spatial role labeling state-of-
the-art models, b) we model the task in the frame-
work of declarative learning based programming
and show its expressiveness in representing such
complex structured output tasks. DeLBP provides
the possibility of seamless integration of heteroge-

1http://www.cs.tulane.edu/˜pkordjam/
mSpRL_CLEF_lab.htm
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Figure 1: Given spatial ontology (Kordjamshidi
and Moens, 2015)

neous data in addition to considering domain on-
tological and linguistic knowledge in learning and
inference. To improve the state-of-the-art results
in SpRL and exploiting the visual information we
rely on existing techniques for continuous repre-
sentations of image segments and text phrases, and
measuring similarity to find the best alignments.

The challenging aspect of this work is that the
formal representation of the textual spatial seman-
tics is very different from the raw spatial infor-
mation extracted from image segments using their
geometrical relationships. To alleviate this prob-
lem the embeddings of phrases as well as the em-
beddings of the relations helped connecting the
two modalities. This approach helped improv-
ing the state of the art results on spatial role la-
beling (Kordjamshidi et al., 2012) for recognizing
spatial roles.

2 Problem Description

The goal is to extract spatial information from text
while exploiting accompanying visual resources,
that is, images. We briefly define the task which
is based on a previous formalization of spatial role
labeling (SpRL) (Kordjamshidi et al., 2011; Ko-
rdjamshidi and Moens, 2015). Given a piece of
text, S, here a sentence, which is segmented into
a number of phrases, the goal is to identify the
phrases that carry spatial roles and classify them
according to a given set of spatial concepts; iden-
tify the links between the roles and form spatial
relations (triplets) and finally classify the spatial
relations given a set of relation types. A more for-
mal definition of the problem is given in Section 5,
where we describe our computational model. The
spatial concepts and relation types are depicted in
Figure 1 which shows a light-weight spatial ontol-
ogy. Figure 2 shows an example of an image and
the related textual description. The first level of

this task is to extract spatial roles including,

(a) Spatial indicators (sp): these are triggers in-
dicating the existence of spatial information
in a sentence;

(b) Trajectors (tr): these are the entities whose
location are described;

(c) Landmarks (lm): these are the reference ob-
jects for describing the location of the trajec-
tors.

In the textual description of Figure 2, the loca-
tion of kids (trajector) has been described with re-
spect to the stairs (landmark) using the preposition
on (spatial indicator). This is example of some
spatial roles that we aim to extract from the whole
text. The second level of this task is to extract spa-
tial relations.

(d) Spatial relations (sr): these indicate a link
between the three above mentioned roles
(sp.tr.lm), forming spatial triplets.

(e) Relation types: these indicate the type of re-
lations in terms of spatial calculi formalisms.
Each relation can have multiple types.

For the above example we have the triplet
spatial relation(kids, on, stairs). Recognizing
the spatial relations is very challenging because
there could be several spatial roles in the sentence
and the model should be able to recognize the right
links. The formal type of this relation could be
EC that is externally connected. The previous
research (Kordjamshidi and Moens, 2015) shows
the extraction of triplets is the most challenging
part of the task for this dataset, therefore we fo-
cus on (a)-(d) tasks in this paper. The hypothe-
sis of this paper is that knowing the objects and
their geometrical relationships in the companion
image might help the inference for the extraction
of roles as well as the relations from sentences.
In our training dataset, the alignment between the
text and image is very coarse-grained and merely
the whole text is associated with the image, that
is, no sentence alignment, no phrase alignment for
segments, etc is available.

Each companion image I contains a number of
segments each of which is related to an object and
the objects spatial relationships can be described
qualitatively based on their geometrical structure
of the image. In this paper, we assume the image
segments are given and the image object annota-
tions are based on a given object ontology. More-
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Figure 2: Image textual description:“About 20
kids in traditional clothing and hats waiting on
stairs. A house and a green wall with gate in the
background. A sign saying that plants can’t be
picked up on the right.”

over, the relationships between objects in the im-
ages are assumed to be given. The spatial relation-
ships are obtained by parsing the images and com-
puting a number of relations based on geometrical
relationships between the objects boundaries. This
implies the spatial representation of the objects in
the image is very different from the spatial ontol-
ogy that we use to describe the spatial meaning
from text; this issue makes combining information
from images very challenging.

3 Declarative Modeling

To extend the SpRL task to a multimodal setting,
we firstly, replicated the state-of-the-art models
using the framework of declarative learning based
programming (DeLBP) Saul (Kordjamshidi et al.,
2015, 2016). The goal was to extend the pre-
viously designed configurations easily and facil-
itate the integration of various resources of data
and knowledge into learning models. In DeLBP
framework, we need to define the following build-
ing blocks for an application program,

(a) DataModel: Declaring a graph schema to
represent the domain’s concepts and their re-
lationships. This is a first order graph called
a data-model and can be populated with the
actual data instances.

(b) Learners: Declaring basic learning models
in terms of their inputs and outputs; where the
inputs and outputs are properties of the data-
model’s nodes.

(c) Constraints: Declaring constraints among
output labels using first order logical expres-
sions.

(d) Application program: Specifying the final
end-to-end program that starts with reading
the raw data into the declared data-model
graph referred to as data population and then
calls the learners and constrained learners for
training, prediction and evaluation.

Each application program defines the configura-
tion of an end-to-end model based on the above-
mentioned components. In the following sections
we describe these components and the way they
are defined for multimodal spatial role labeling.

3.1 Data Model

A graph is used to explicitly represent the structure
of the data. This graph is called the data-model
and contains typed nodes, edges and properties.
The node types are domain’s basic data structures,
called base types. The base types are mostly pre-
established in Saul (Kordjamshidi et al., 2016),
including base types for representing documents,
sentences, phrases, etc, referred to as linguistic
units. In this work, we also have added a set of
preliminary image base types in Saul that could
be extended to facilitate working on visual data
task-independently in the future. The below code
shows a data model schema including nodes of lin-
guistic units and image segments. The typed nodes
are declared as follows:

val documents = node[Document]
val sentences = node[Sentence]
val tokens = node[Token]
val phrases = node[Phrase]
val pairs = node[Relation]
val images = node[Image]
val segments = node[Segement]
val segmentPairs = node[SegmentRelation]

(‘val‘ is a Scala keyword to define variables; documents, sen-

tences, etc, are the programmer-defined variables; ‘node‘ is a

Saul keyword to define typed graph nodes; Document, Sen-

tence, etc, are the NLP and other base types built-in for Saul.)

Given the base types, domain sensors can be used
to populate raw data into the data-model. Sensors
are black box functions that operate on base types
and can generate instances of nodes, properties
and edges. An edge that connects documents to
sentences using a sensor called ‘documentToSen-
tenceMatching‘ is defined as:

val documentTosentence = edge(documents,
sentences)

documentTosentence.addSensor(
documentToSentenceMatching_)

(‘edge‘ is a Saul keyword, addSensor is a Saul function)
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The properties are assigned to the graph nodes
only and defined based on the existing domain
property sensors. The following example receives
a phrase and returns the dependency relation label
of its head:

val headDependencyRelation = property(
phrases){x => getDependencyRelation
(getHeadword(x))}

(‘property‘ is a keyword in Saul, getDependencyRelation and
getHeadword are two NLP sensors applied on words and
phrases respectively.)

3.2 Learners

The learners are basically a set of classic classi-
fiers each of which is related to a target variable
in the output space. The output variables are a
subset of elements represented in the ontology of
Figure 1. The previous work shows the challeng-
ing element of the ontology is the extraction of
spatial triplets. Therefore, in this work our goal
is to improve the extraction of the roles and spa-
tial triplets. Each classifier/learner is applied on
a typed node which is defined in the data-model.
For example, a trajector role classifier is applied
on the phrase nodes and defined as follows:

object TrajectorRoleClassifier extends
Learnable(phrases) {
def label = trajectorRole
override lazy val classifier = new
SparseNetworkLearner
override def feature = using(
headDependencyRelation,...)}

(‘label‘ is a Saul function to define the output of the classifier,

‘trajectorRole‘ is a name of a property in the datamodel to be

predicted. ‘feature‘ is a Saul function to define the list of

properties of the datamodel to be used as input features.)

All other learners are defined similarly and they
can use different types of data-model properties
as ‘feature‘s or as ‘label‘. In our proposed model,
only the role and pair classifiers are used and
triplets of relations are generated based on the re-
sults of the pair classifiers afterwards.

3.2.1 Role and Relation Properties
Spatial Roles are applied on phrases and most
of the features are used based on the previous
works (Kordjamshidi and Moens, 2015), however
the previous work on this data is mostly token-
based; we have extended the features to phrase-
based and added some more features. We use lin-
guistically motivated features such as lexical form
of the words in the phrases, lemmas, pos-tags, de-
pendency relations, subcategorization, etc. These

features are used sometimes based on the head-
word of the phrases and sometimes by concatena-
tion of the same features for all the tokens in a
phrase. The relations are, in-fact, a pair of phrases
and the pair features are based on the features of
the phrases. The relational features between two
phrases include their path, distance, before/after
information. In addition to the previously used
features, here, we add phrase and image embed-
dings described in the next section. The details of
the linguistic features are omitted due to the lack
of space and since the code is publicly available.

3.2.2 Image and Text Embeddings

Using continuous representations has several ad-
vantages in our models. One important aspect is
compensating for the lack of lexical information
due to the lack of training data for this problem.
Another aspect is the mapping between image seg-
ments and the phrases occurring in the textual de-
scriptions and establishing a connection between
the two modalities. The experiments show these
components improve the generalization capabil-
ity of our trained models. Since our dataset is
very small, our best embeddings were the com-
monly used word2vec (Pennington et al., 2014)
model trained over google’s gigaword+wikipedia
corpora.

Text Embeddings. We generate the embeddings
for candidate roles. More specifically, for each
phrase we find its syntactic head and then we use
the vector representation of the syntactic head as a
feature of the phrase. This is added to the rest of
linguistically motivated features.

Image Embeddings. For the image side we rely
on a number of assumptions given the type of
image corpora available for our task. As men-
tioned in Section 1, the input images are assumed
to be segmented and the segments have been la-
beled according to a given ontology of concepts.
For example, the ontology for a specific object
like Bush can be entity->landscape-nature->

vegetation->trees->bush. Given the image
segments, the spatial relations between segments
are automatically extracted in a pairwise exhaus-
tive manner using the geometrical properties of the
segments (Escalante et al., 2010). These relations
are limited to relationships such as besides, dis-
joint, below, above, x-aligned, and y-aligned. In
this work, we employed the pre-processed images
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that were publicly available2. Since the segment
label ontology is independent from the textual de-
scriptions, finding the alignment between the seg-
ments and the words/phrases in the text is very
challenging. To alleviate this problem, we exploit
the embeddings of the image segment labels us-
ing the same representations that is used for words
in the text. We measure the similarity between
the segment label embeddings and word embed-
dings to help the fine-grained alignments between
the image segments and text phrases. To clar-
ify, we tried the following variations: we compute
the word embeddings of image segment labels and
words in the text candidate phrases, then we find
the most similar object in the image to each can-
didate phrase. We use the embedding of the most
similar object as a feature of the phrase. Another
variation that we tried is to exploit the embeddings
of the image segment ontologies. The vector rep-
resentation of each segment label is computed by
averaging over the representation of all the onto-
logical concepts related to that segment.

3.3 Global Constraints

The key point of considering global correlations
in our extraction model is formalizing a number
of global constraints and exploiting those in learn-
ing and inference. The constraints are declared us-
ing first order logical expressions, for example, the
constraint, ”if there exists a trajector or a landmark
in the sentence then an indicator should also exist
in the sentence” , we call it integrity constraint and
it is expressed as follows:

((sentences(s)∼>phraseEdge)._exists{x:
Phrase=>(TrajectorRoleClassifier on
x is "Trajector") or (
LandmarkRoleClassifier on x is "
Landmark"}))==>((sentences(s)∼>
phraseEdge)._exists{y:Phrase=>
IndicatorRoleClassifier on y is "
Indicator"})

The domain knowledge is inspired from this
work (Kordjamshidi and Moens, 2015).3 The
first order constraints are automatically converted
to linear algebraic constraints for our underlying
computational models.

4 Application program

Using the building blocks of a DeLBP includ-
ing a data-model, learners and constraints, we

2http://www.imageclef.org/photodata
3constraints code is available on GitHub.

are able to design various end-to-end configura-
tions for learning and inference. The first step
for an application program is to populate the an-
notated corpus in the graph schema, that is, our
declared data-model. To simplify the procedure
of populating the graph with linguistic annota-
tions, we have established a generic XML reader
that is able to read the annotated corpora from
XML into the Saul data-model and provide us a
populated graph. The nodes related to the lin-
guistic units (i.e. sentence, phrase, etc) are pop-
ulated with the annotations as their properties.
The population can be done in various ways, for
example, SpRLDatamodel.documents.populate

(xmlReader.documentList()) reads the content
of DOCUMENT tag or its pre-defined4 equivalent
into documents nodes in the data-model. Popu-
lating documents can lead to populating all other
types of nodes such as sentences, tokens, etc if the
necessary sensors and edges are specified before-
hand. Saul functions and data-model primitives
can be used to make graph traversal queries to ac-
cess any information that we need from either im-
age or text for candidate selection, feature extrac-
tion.

The feature extraction includes segmentation of
the text and candidate generation for roles and pair
relations. Not all tokens are candidates for playing
trajector roles, most certainly verbs will not play
this role. After populating the data into the graph
we program the training strategy. We have the pos-
sibility of training for each concept independently,
that is, each declared classifier can call the learn

, for example, trajectorClassifier.learn().
However, the independently trained classifiers can
exploit the global constraints like the one we de-
fined in Section 3.3 and be involved in a global
inference jointly with other role and relation clas-
sifiers. Such a model is referred to as L+I (Pun-
yakanok et al., 2008). Moreover, the parameters of
the declared classifiers can be trained jointly and
for this purpose we need to call joinTrain and
pass the list of classifiers and the constraints to be
used together. We use L+I models in this paper
due to the efficiency of the training.

5 Computational Model

The problem we address in this paper is formu-
lated as a structured prediction problem as the out-

4The programmer is able to specify the tags that are re-
lated to the base types before reading the xml.
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put contains a number of spatial roles and relation-
ships that obey some global constraints. In learn-
ing models for structured output prediction, given
a set of N input-output pairs of training examples
E = {(xi, yi) ∈ X × Y : i = 1..N}, we learn
an objective function g(x, y;W ) which is a linear
discriminant function defined over the combined
feature representation of the inputs and outputs de-
noted by f(x, y) (Ioannis Tsochantaridis and Al-
tun, 2006):

g(x, y;W ) = 〈W, f(x, y)〉. (1)

W denotes a weight vector and 〈, 〉 denotes a dot
product between two vectors. A popular discrimi-
native training approach is to minimize the follow-
ing convex upper bound of the loss function over
the training data:

l(W ) =
N∑
i=1

max
y∈Y

(g(xi, y;W )− g(xi, yi;W ) +∆(yi, y)),

the inner maximization is called loss-augmented
inference and finds the so called most violated
constraints/outputs (y) per training example. This
is the base of inference-based-training models
(IBT). However, the inference over structures can
be limited to the prediction time which is known
as learning plus inference (L+I) models. L+I uses
the independently trained models (this is known
as piece-wise training as well (Sutton and McCal-
lum, 2009)) and has shown to be very efficient and
competitive compared to IBT models in various
tasks (Punyakanok et al., 2005). Given this gen-
eral formalization of the problem we can easily
consider both configurations of L+I and IBT using
a declarative representation of our inference prob-
lem as briefly discussed in Section 4. We define
our structured model in terms of first order con-
straints and classifiers.

Here in Saul’s generic setting, inputs x and out-
puts y are sub-graphs of the data-model and each
learning model can use parts and substructures of
this graph. In other words, x is a set of nodes
{x1, . . . , xK} and each node has a type p. Each
xk ∈ x is described by a set of properties; this set
of properties will be converted to a feature vector
φp. Given the multimodal setting of our problem,
xi ’s can represent segments of an image or various
linguistic units of a text, such as a phrase (atomic
node) or a pair of phrases (composed node), and
each type is described by its own properties (e.g. a

phrase by its headword, the pair by the distance of
the two headwords, an image segment by the vec-
tor representation of its concept). We refer to the
text-related nodes and image-related nodes differ-
ently as xT and xI , respectively. The goal is to
map this pair to a set of spatial objects and spatial
relationships, that is f : (xT , xI) 7→ y.

The output y is represented by a set of la-
bels l = {l1, . . . , lP } each of which is a prop-
erty of a node. The labels can have semantic
relationships. In our model the set of labels is
l = {tr, lm, sp, sp.tr, sp.lm, sp.tr.lm}. Note that
these labels are applied merely to the parts of the
text, tr, lm and sp are applied on the phrase of
a sentence, sp.tr and sp.lm are applied on pairs
of phrases in the sentence, and finally sp.tr.lm is
applied on triplets of phrases. According to the
terminology used in (Kordjamshidi and Moens,
2015), the labels of atomic components of the text
(here phrases) are referred to as single-labels and
the labels that are applied to composed compo-
nents of the input such as pairs or triplets are re-
ferred to as linked-labels. These labels help to rep-
resent y with a set of indicator functions that indi-
cate which segments of the sentence play a specific
spatial role and which are involved in relations.
The labels are defined with a graph query that ex-
tracts a property from the data-model. The lp(xk)
or shorter lpk denotes an indicator function indi-
cating whether component xk has the label lp. For
example, sp(on) shows whether on plays a spa-
tial role and sp.tr(on, kids) shows whether kids
is a trajector of on. As expected, the form of the
output is dependent on the input since we are deal-
ing with a structured output prediction problem. In
our problem setting the spatial roles and relations
are still assigned to the components of the text and
the connections, similarities and embeddings from
image are used as additional information for im-
proving the extractions from text.
The main objective g is written in terms of the
instantiations of the feature functions, labels and
their related blocks of weights wp in w =
[w1,w2, . . . ,wP ],

g(x,y;w) =
∑
lp∈l

∑
xk∈Clp

〈wp, fp(xk, lp)〉 (2)

=
∑
lp∈l

∑
xk∈Clp

〈wp, φp(xk)〉 lpk

=
∑
lp∈l

〈
wp,

∑
xk∈Clp

(φp(xk)lpk)

〉
,
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where fp(xk, lp) are the local joint feature vector
for each candidate xk. This feature vector is com-
puted by scalar multiplication of the input feature
vector of xk (i.e. φp(xk)), and the output label lpk.

Given this objective, we can view the inference
task as a combinatorial constrained optimization
given the polynomial g which is written in terms
of labels, subject to the constraints that describe
the relationships between the labels (either single
or linked labels). For example, the is-a relation-
ships can be defined as the following constraint,
(l(xc) is 1) ⇒ (l′(xc) is 1), where l and l′ are
two distinct labels that are applicable on the node
with the same type of xc. These constraints are
added as a part of Saul’s objective, so we have the
following objective form, which is in fact a con-
strained conditional model (Chang et al., 2012),
g = 〈w, f(x,y)〉 − 〈ρ, c(x,y)〉, where c is the
constraint function and ρ is the vector of penalties
for violating each constraint. This representation
corresponds to an integer linear program, and thus
can be used to encode any MAP problem. Specif-
ically, the g function is written as the sum of local
joint feature functions which are the counterparts
of the probabilistic factors:

g(x,y;w) =
∑
lp∈l

∑
xk∈{τ}

〈wp, fp(xk, lpk)〉

+

|C|∑
m=1

ρmcm(x,y),

(3)

where C is a set of global constraints that can
hold among various types of nodes. g can repre-
sent a general scoring function rather than the one
corresponding to the likelihood of an assignment.
Note that this objective is automatically generated
based on the high level specifications of learners
and constraints as described in Section 3.

6 Experimental Results

In this section, we experimentally show the in-
fluence of our new features, constraints, phrase
embeddings and image embeddings and compare
them with the previous research.
Data. We use the SemEval-2012 shared tasks
data (Kordjamshidi et al., 2012) that consists of
textual descriptions of 613 images originally se-
lected from the IAPR TC-12 dataset (Grubinger
et al., 2006), provided by the CLEF organiza-
tion. In the previous works only the text part
of this data has been used in various shared

task settings (Kordjamshidi et al., 2012; Olek-
sandr Kolomiyets and Bethard, 2013; Pustejovsky
et al., 2015) and with a variation in the annota-
tion schemes. This data includes about 1213 sen-
tence containing 20,095 words with 1706 anno-
tated relations. We preferred this data compared
to more recent related corpora (Pustejovsky et al.,
2015; Oleksandr Kolomiyets and Bethard, 2013)
for two main reasons. First is the availability of
the aligned images and the second is the static na-
ture of the most spatial descriptions.
Implementation. As mentioned before, we used
Saul (Kordjamshidi et al., 2015, 2016) framework
that allows flexible relational feature extraction as
well as declarative formulation of the global infer-
ence. We extend Saul’s basic data structures and
sensors to be able to work with multimodal data
and to populate raw as well as annotated text eas-
ily into a Saul multimodal data-model. The code
is available in Github.5 We face the following
challenges when solving this problem: the training
data is very small; the annotation schemes for the
text and images are very different and they have
been annotated independently; the image annota-
tions regarding the spatial relations include very
naively generated exhaustively pairwise relations
which are not very relevant to what human de-
scribes by viewing the images. We try to address
these challenges by feature engineering, exploit-
ing global constraints and using continuous repre-
sentations for text and image segments. We report
the results of the following models in Table 1.

BM: This is our baseline model built with
extensive feature engineering as described in
Section 3.2.1. We train independent classi-
fiers for the roles and relations classification
in this model;

BM+C: This is the BM that uses global con-
straints to impose, for example, the integrity
and consistency of the assignments of the
roles and relation labels at the sentence level.

BM+C+E: To deal with the lack of lexical in-
formation, the features of roles and relations
are augmented by w2vec word embeddings,
the results of this model without using con-
straints (BM+E) are reported too;

BM+E+I+C: In this model in addition to text
embeddings, we augment the text phrase fea-

5https://github.com/HetML/SpRL
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Trajector Landmark Spatial indicator Spatial triplet
Pr R F1 Pr R F1 Pr R F1 Pr R F1

BM 56.72 69.57 62.49 72.97 86.21 79.05 94.76 97.74 96.22 75.18 45.47 56.67
BM+C 65.56 69.91 67.66 77.74 87.78 82.46 94.83 96.86 95.83 75.21 48.46 58.94
BM+E 55.87 77.35 64.88 71.47 89.18 79.35 94.76 97.74 96.22 66.50 57.30 61.56
BM+E+C 64.40 76.77 70.04 76.99 89.35 82.71 94.85 97.48 96.15 68.34 57.93 62.71
BM+E+I 56.53 79.29 66.00 71.78 87.44 78.84 94.76 97.74 96.22 64.12 57.08 60.39
BM+E+I+C 64.49 77.92 70.57 77.66 89.18 83.02 94.87 97.61 96.22 66.46 57.61 61.72
BM+E+C-10f 78.49 77.67 78.03 86.43 88.93 87.62 91.70 94.71 93.17 80.85 60.23 68.95
SOP2015-10f - - - - - - 90.5 84 86.9 67.3 57.3 61.7
SemEval-2012 78.2 64.6 70.7 89.4 68.0 77.2 94.0 73.2 82.3 61.0 54.0 57.3

Table 1: Experimental results on SemEval-2012 data including images. BM: Baseline Model, C: Con-
straints, E: Text Embeddings, I: Image Embeddings.

tures with the embeddings of the most similar
image segments. The version without con-
straints is denoted as BM+E+I.
SemEval-2012: This model is the best per-
forming model of SemEval-2012 (Roberts
and Harabagiu, 2012). It generates the candi-
date triplets and classifies them as spatial/not-
spatial. It does an extensive feature extraction
for the triplets. The roles then are simply in-
ferred from the relations. The results are re-
ported with the same train/test split.
SOP2015-10f: This model is an structured
output prediction model that does a global in-
ference on the whole ontology including the
prediction of relations and relation types (Ko-
rdjamshidi and Moens, 2015).

The experimental results in Table 1 show that
adding constraints to our baseline and other model
variations consistently improves the classifica-
tion of trajectors and landmarks dramatically al-
though it slightly decreases the F1 of spatial in-
dicators in some cases. Adding word embed-
dings (BM+C+E) shows a significant improve-
ment on roles and spatial relations. The re-
sults on BM+E+I+C show that image embeddings
improves trajectors and landmarks compared to
BM+E+C, though the results of triples are slightly
dropped (62.71→ 61.72).

Our results exceed the state of the art models
reported in SemEval-2012 (Kordjamshidi et al.,
2012). The SemEval-2012 best model uses same
train/test split as ours (Roberts and Harabagiu,
2012). The results of the best performing model
in (Kordjamshidi and Moens, 2015), SOP2015-
10f, are lower than our best model in this work.
Although that model uses structured training but
here the embeddings make a significant improve-
ment. While SOP2015-10f performance results
on triples, spatial indicators, pairs of trajector

and landmarks with indicators have been reported,
there is no reports on trajecotrs and landmarks pre-
diction accuracy as designated independent roles
–those are left empty in the table. There are
some differences in our evaluation and the previ-
ous systems evaluations.The SOP2015-10f is eval-
uated by 10-fold cross validation rather than the
train/test split. To be able to compare, we re-
port the 10-fold cross validation results of our
best model BM+E+C and refer to it as BM+E+C-
10f in Table 1 which is outperforming other mod-
els. Note that the folds are chosen randomly and
might be different from the previous evaluation
setting. Another difference is that our evaluation
is done phrase-based and overlapping phrases are
counted as true predictions. The SemEval-2012
and SOP2015-10f models operate on classifying
tokens/words which are the headwords of the an-
notated roles. However, our identified phrases
cover the headwords of role (trajectors and land-
marks) phrases with 100% and for spatial indica-
tors 98% which keeps the comparisons fair yet.

Our results exceed the stat-of-the-art models
significantly. Both word and image embeddings
help expanding our semantic dimensions for spa-
tial objects but interestingly the spatial indicators
can not be improved using embeddings. Since the
indicators are mostly prepositions, it seems cap-
turing the semantic dimensions of prepositions us-
ing continuous vectors is harder than other lexical
categories such as nouns and verbs. This is even
worse when we use images since the terminology
of the relations in the images is very different from
the way the relations are expressed in the language
using prepositions. Though the improvement on
objects can improve the relations but it will be in-
teresting to investigate how the semantics of the
relations can be captured using richer representa-
tions for spatial prepositions. A possible direction
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for our work could have been to train deep models
that map the images to the formal semantic repre-
sentations of the text’s content, however for train-
ing such models using only 2013 sentences related
to about 600 images will not be feasible. The ex-
isting large corpora which contain image and text,
do not contain formal semantic annotation with the
textual description. Dealing with this problems re-
mains as our future work.

7 Related Research

This work can be related to many research works
from various perspectives. However, for the sake
of both clarity and conciseness, we limit our ex-
ploration in this section to two research directions.
First body of related work is about the specific
SpRL task that we are solving. This direction is
aiming at obtaining a generic formal spatial mean-
ing representation from text. The second body
of the work is about combining vision and lan-
guage which itself has a large research community
around it recently and has turned to a hot topic.

Several research efforts in the past few years
aimed at defining a framework for the extrac-
tion of spatial information form natural language.
These efforts start from defining linguistic an-
notation schemes (Pustejovsky and Moszkowicz,
2008; Kordjamshidi et al., 2010; Pustejovsky and
Moszkowicz, 2012; jeet Mani, 2009), annotating
data and defining tasks (Kordjamshidi et al., 2012;
Oleksandr Kolomiyets and Bethard, 2013; Puste-
jovsky et al., 2015) to operate on the annotated
corpora and learn extraction models. However,
there exists, yet, a large gap between the current
models and the ones that can perform reasonably
well in practice for real world applications in vari-
ous domains. Though we follow that line of work,
we aim at exploiting the visual data in improving
spatial extraction models. We exploit the visual in-
formation accompanying the text which is mostly
available nowadays. We aim at text understanding
while assuming that the text highlights the most
important information that might be confirmed by
the image. Our goal is to use the image to rec-
ognize and disambiguate the spatial information
from text.

Our work is very related to the research done
by computer vision community and in the inter-
section of vision and language. There are many
progressive research works on generating image
captions (Karpathy and Li, 2014), retrieving im-

ages and visual question answering (Antol et al.,
2015). However the center of attention has been
understanding images. Here, our aim is to exploit
the images for text understanding.This task is as
challenging as the former ones or even more chal-
lenging because among the many possible objects
and relationships in the image a very small subset
of those are important and have been expressed in
the text. Therefore the available visual corpora are
not exactly the type of the data that can be used
to train supervised models for our task though it
could provide some indirect supervision particu-
larly for having a unified semantic representation
of spatial objects (Ludwig et al., 2016).

This work can be improved by exploiting exter-
nal models and corpora (Pustejovsky and Yocum,
2014) but this will remain for our future investiga-
tion. Our task can benefit from the research per-
formed on reference resolution that targets identi-
fying the objects in the image that are mentioned
in the text (Schlangen et al., 2016). Having a high-
quality alignment by training explicit models for
resolving references should help recognizing the
spatial objects mentioned in the text and the type
of spatial relations according to the image. Ex-
plicit reference resolution between modalities in
dialogue systems are also inspiring (Fang et al.,
2014). In the mentioned reference a graph repre-
sentation of the scene is gradually made by ma-
chine based on the grasped static visual informa-
tion and the representation is corrected and com-
pleted dynamically as the dialogue between the
machine and human is going on. However, in this
work there is no learning component and there
is no spatially annotated data to be used for our
goal of formal spatial meaning representation for
a generic text.

In this work we take a small step and investi-
gate the ways to integrate information from both
modalities for our textual extraction target. Our
results are compared to the previous work (Kord-
jamshidi and Moens, 2015) that exploit the text
part of the same spatially annotated corpora and
improve the results when exploiting the accompa-
nying images.

8 Conclusion

In this paper, we deal with the problem of spa-
tial role labeling which targets at mapping natural
language text to a formal spatial meaning repre-
sentation. We use the information from accom-
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panying segmented images to improve the spatial
role extractions. Although, there are many recent
research on combining vision and language, none
of them consider obtaining a formal spatial mean-
ing representation as a target while we do and our
approach will be helpful for adding explicit rea-
soning component to the learning models in the
future. We manifest the expressivity of declarative
learning based programming paradigm for design-
ing global models for this task. We put both the
image and text related to a scene in a unified data-
model graph and use them as structured learning
examples. We extract features by traversing the
graph and using the continuous representations to
connect the image segment nodes to the nodes re-
lated to the text phrases. We exploit the continu-
ous representation to align the similar concepts in
the two modalities. We exploit global first order
constraints for global inference over roles and re-
lations. Our models improve the state of the art
results on previous spatial role labeling models.
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Abstract

We present an architecture to boost the
precision of existing information extrac-
tion systems. This is achieved by aug-
menting the existing parser, which may
be constraint-based or hybrid statistical,
with a character-level neural network.
Our architecture combines the ability of
constraint-based or hybrid extraction sys-
tems to easily incorporate domain knowl-
edge with the ability of deep neural net-
works to leverage large amounts of data
to learn complex features. The network
is trained using a measure of consis-
tency between extracted data and existing
databases as a form of cheap, noisy super-
vision. Our architecture does not require
large scale manual annotation or a system
rewrite. It has led to large precision im-
provements over an existing, highly-tuned
production information extraction system
used at Bloomberg LP for financial lan-
guage text.

1 Introduction

1.1 Information extraction in finance
Unstructured textual data is abundant in the finan-
cial domain (see Figure 1). This type of text is
usually not in a format that lends itself to imme-
diate processing. Hence, information extraction
is an essential step in many business applications
that wish to use the financial text data. Examples
of such business applications include creating time
series databases for macroeconomic forecasting,
or real-time extraction of time series data to in-
form algorithmic trading strategies. For example,
consider extracting data from Figure 1 into numer-
ical relations of the form
ts tick abs (TS symbol, numerical value),

Figure 1: Tweet containing financial data.

e.g. ts tick abs (US Unemployment, 4.9%), or
ts tick rel (TS symbol, change in num. value),

e.g. ts tick abs (US Hourly Earnings, 2.8%).
For these business applications, the extraction
needs to be fast, accurate, and low-cost.

There are several challenges to extracting infor-
mation from financial language text.

• Financial text can be very ambiguous. Lan-
guage in the financial domain often trades
grammatical correctness for brevity. A mul-
titude of numeric tokens need to be disam-
biguated into entities such as prices, rates,
percentage changes, quantities, dates, times,
and others. Finally, many words could be
company names, stock symbols, domain-
specific terms, or have entirely different
meanings.

• Large-scale annotated data with ground
truths is typically not available. Domain ex-
pert manual annotations are expensive and
limited in scale. This is especially a prob-
lem because the size of the problem domain
is large, with many types of financial instru-
ments, language conventions, and text for-
mats.

These two challenges lead to a high risk of extract-
ing false positives.

Bloomberg has mature information extraction
systems for financial language text, that are the re-
sult of nearly a decade of efforts. When improving
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upon such large industrial extraction systems, it is
invaluable if the proposed improvement does not
require a complete system rewrite.

The existing extraction systems leverage
both constraint-based and statistical methods.
Constraint-based methods can effectively incor-
porate domain knowledge (e.g. unemployment
numbers cannot be negative numbers, while
changes in unemployment numbers can be neg-
ative). These constraints can be complex, and
may involve multiple entities within an extraction
candidate. Adding a single constraint can in many
cases vastly improve the system’s accuracy. In a
purely statistical system, achieving the equivalent
behavior would require large amounts of labeled
training data.

This existing systems generate extractions with
high recall, and in this work, we propose to boost
the precision of the existing systems using a deep
neural network.

1.2 Our contribution

We present an information extraction architecture
that boosts the precision of an existing parser using
a deep neural network. The architecture gains the
neural network’s ability to leverage large amounts
of data to learn complex features specific to the
application at hand. At the same time, the existing
parser may leverage constraints to easily incorpo-
rate domain knowledge. Our method uses poten-
tially noisy but cheaply available source of super-
vision, e.g. via consistency checks of extracted
data against existing databases (e.g. an extrac-
tion ts tick abs (US Unemployment, 49%) would
be implausible given recent US employment his-
tory), or via human interaction (e.g., clicks on on-
line advertisements).

Our extraction system has two main advantages

• We improve the existing extraction systems
cheaply using large amounts of free noisy
labels, without the need for manual annota-
tion. This is particularly valuable in large
application domains, where manual annota-
tions covering the entire domain would be
prohibitively expensive.

• Our method leverages existing codebases
fully, and requires no system rewrite. This
is critical in large industrial extraction sys-
tems, where a rewrite would take many man-
years. Even for new systems, the decou-

pling of candidate-generation and the neu-
ral network offers advantages: the candidate-
generating parser can easily enforce con-
straints that would be difficult to incorporate
in a system relying entirely on neural net-
works.

We are not aware of alternative approaches that
achieve the above: purely neural network or purely
statistical approaches require substantial amounts
of human annotation, while our method does not.
Constraint-based or hybrid statistical approaches
are competitors to the existing extraction systems
rather than our work; our work could also be used
to boost the precision of other state-of-the-art con-
straint or hybrid methods. We believe that our ap-
proach, with small modifications, can be applied
to extraction systems in many other applications.

Compared to the existing, client-serving extrac-
tion engine, our system reduced the number of
false positive extractions by > 90%. Our system
constituted a substantial improvement and is being
deployed to production.

We review some related work in Section 1.3.
Section 2 details the design, training, and method
supervision of our system. We present results in
Section 3 and conclude with some discussions in
Section 4.

1.3 Related Work

Deep neural networks have been applied to several
problems in natural language processing recently.
Mikolov introduced the recurrent network lan-
guage model (Kombrink et al., 2011), which can
for instance consume the beginning of a sentence
word by word, encoding the sentence in its state
vector, and predict a likely continuation of the sen-
tence. Long Short Term Memory (LSTM) archi-
tectures (Gehrs, 2001; Hochreiter and Schmidhu-
ber, 1997) have resulted in large improvements in
machine translation (Sutskever et al., 2014). There
is a growing literature of LSTMs and deep convo-
lutional architectures being used for text classifi-
cation (e.g. (Zhang et al., 2015; Kim, 2014; dos
Santos and Gatti, 2014)) and language modeling
problems (Kim et al., 2016; Karpathy, 2015).

Several studies have considered using deep neu-
ral networks for information extraction problems.
Socher et al introduce compositional vector gram-
mars, which combine probabilistic context free
grammars with a recursive neural network (2013).
Nguyen et al use convolutional neural networks

45



(CNN) and recurrent neural networks with word-
and entity-position-embeddings for relation ex-
traction and event detection (Nguyen et al., 2016;
Nguyen and Grishman, 2015). Zhou and Xu use
a bidirectional (Schuster and Paliwal, 1997) word-
level LSTM combined with a conditional random
field (CRF) (Lafferty et al., 2001) for semantic
role labeling (2015). In some cases, providing a
neural network character-level rather than word-
level input can be beneficial. Chiu and Nichols
use a bidirectional LSTM-CNN with character
embeddings for named entity recognition (2015),
and Ballesteros et al found that character-level
LSTM improve dependency parsing accuracy in
many languages, relative to word-level approaches
(2015). Recently, Miwa and Bansal presented
an end-to-end LSTM-based architecture for rela-
tion extraction, achieving state-of-the-art results
on SemEval-2010 Task 8 (2016).

While much of the recent work on informa-
tion extraction focuses on statistical methods and
neural networks, constraint-based information ex-
traction systems are still commonly used in in-
dustry applications. Chiticariu et al suggest that
this might be because constraint-based systems
can easily incorporate domain knowledge (2013).
The need to incorporate constraints into informa-
tion extraction systems, as well as the difficulty
of doing this efficiently, have been recognized for
some time.

Several hybrid approaches combine constraint-
based and statistical methods. Toutanova et al
model dependencies between semantic frame ar-
guments with a CRF (2008). Chang et al in-
corporate declarative constraints into statistical
sequence-based models to obtain constrained con-
ditional models (2012). When making a predic-
tion (inference step), their model solves an inte-
ger linear program. This typically involves maxi-
mizing a scoring function, based e.g. on a CRF,
over all outputs that satisfy the constraints, re-
sulting in high computational costs. Täckström
et al recently proposed a more computationally
efficient approach to semantic role labeling with
constraints, introducing a dynamic programming
approach for inference for log-linear models with
constraints (2015).

There are several purely statistical approaches,
such as those using hidden Markov models (Baum
and Petrie, 1966), CRFs (Lafferty et al., 2001)
or structured support vector machines (Tsochan-

taridis et al., 2004).
Our approach is fundamentally different from

all of the above. We propose to boost the precision
of an existing information extraction system using
a neural network trained with free noisy supervi-
sion. Our method does not require large amounts
of human annotations as purely statistical or neu-
ral network-based approaches would. Our work
could also be used to boost the precision of other
state-of-the-art constraint or hybrid methods.

2 Design

2.1 Overview
The information extraction pipeline we developed
consists of four stages (see right pane “execution”
in Figure 2).

1. Generate candidate extractions: The docu-
ment is parsed using a potentially constraint-
based or hybrid statistical parser, which out-
puts a set of candidate extractions. Each can-
didate extraction consists of the character off-
sets of all extracted constituent entities, and
a representation of the extracted relation. It
may additionally contain auxiliary informa-
tion that the parser may have generated, such
as part-of-speech tags.

2. Score extractions using trained neural net-
work: Each candidate extraction generated,
together with the section of the document it
was found in, is encoded into feature data X .
A deep neural network is used to compute a
neural network correctness score s̃ for each
extraction candidate. We detail the input and
architecture of the neural network in Section
2.2 and its training in Section 2.3.

3. Score extractions based on cheap, noisy su-
pervision: We compute a consistency score s
for the candidate extraction, measuring if the
extracted relation is consistent with cheaply
available, but potentially noisy supervision
from e.g. an existing database. We discuss
how s is computed in Section 2.4.

4. Classify extractions as correct or incor-
rect: A linear classifier classifies extraction
candidates as correct and incorrect extrac-
tions, based on neural network correctness
score s̃, database consistency score s, and po-
tentially other features. Candidates classified
as incorrect are discarded.
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Figure 2: Training (left) and execution (right) set-up. Blocks marked “L” are neural network LSTM cells,
while blocks marked “F” are fully-connected layers.
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Figure 3: We use a neural network comprised of (i) an LSTM processing encoded parser output and
document text character-by-character (labeled LSTM, green), (ii) a fully-connected layer (FC, blue) that
takes document-level features as input, and (iii) a fully-connected layer (FC, grey) that takes the output
vectors of the layers (i) and (ii) as input to generate a correctness estimate for the extraction candidate.
Layer (iii) uses a sigmoid activation function to generate a correctness estimate ỹ ∈ (0, 1), from which
we compute the network correctness score as s̃ := σ−1(ỹ).

2.2 Neural network input and architecture

The neural network processes each candidate ex-
traction independently. To estimate the correct-

ness of an extracted candidate, the network is pro-
vided with two pieces of input (see Figure 3 for
the full structure of the neural network). First, the
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network is provided with a vector g (right box in
Figure 3) containing document- or extraction-level
features, such as attributes of the document’s au-
thor, or word-level n-gram features. The second
piece of input consists of a sequence of vectors
fi (left box in Figure 3), encoding the document
text and the parser’s output at the character level.
There is one vector fi for each character ci of the
document section where the extraction candidate
is found.

The vectors fi are a concatenation of (i) a one-
hot encoding of the character, and (ii) information
about entities the parser identified at the position
of ci. For (i) we use a restricted character set
of size 94, including [a-zA-Z0-9] and several
whitespace, special characters, and an indicator to
represent characters not present in our character
set. For (ii), we include in fi a vector of indica-
tors specifying whether or not any of the entities
appearing in the relations supported by the parser
were found in the position of character ci.

The input vectors fi feed into an LSTM, which
accumulates state until the input sequence has
been exhausted. The global feature vector g feeds
into a fully-connected layer, which is then con-
catenated with the output of the LSTM, and passed
through another fully-connected layer with sig-
moid activation σ to produce a network correct-
ness estimate ỹ. We subsequently compute the
network correctness score s̃ for the candidate ex-
traction via s̃ = σ−1(ỹ).

We regularize the LSTM weight matrices and
state vector using dropout (see (Srivastava et al.,
2014) and (Zaremba et al., 2015)). Similar to
(Sutskever et al., 2014), we found that reversing
the LSTM’s input resulted in a substantial increase
in accuracy.

2.3 Neural network training

We train the neural network by referencing can-
didates extracted by the high-recall candidate-
generating parser against a potentially noisy ref-
erence source (see Figure 2, left panel on “train-
ing”). In our application, this reference is
Bloomberg’s proprietary database of historical
time series data, which enables us to check how
well the extracted numerical data fits into time se-
ries in the database. Concretely, we compute a
consistency score s ∈ (−∞,∞) that measures the
degree of consistency with the database. Depend-
ing on the application, the score may for instance

be a squared relative error, an absolute error, or
a more complex error function. In many applica-
tions, the score s will be noisy (see Section 2.4
for further discussion). We threshold s to obtain
binary correctness labels y ∈ {0, 1}. We then
use the binary correctness labels y for supervised
neural network training, with binary cross-entropy
loss as the loss function. This allows us to train
a network that can compute a pseudo-likelihood
ỹ ∈ (0, 1) of a given extraction candidate to agree
with the database. Thus, ỹ estimates how likely
the extraction candidate is correct.

The neural network’s training data consists of
candidates generated by the candidate-generating
parser, and noisy binary consistency labels y.

In our application, the database labeled a large
majority of candidates as correct. To obtain bal-
anced training data, we generated 6 sets of training
data, each containing the same set of around 1 mil-
lion negative cases and disjoint sets of 1 million
positive cases each. Correspondingly, we trained
an ensemble of 6 networks, and averaged their net-
work scores s̃. We found this to work much better
than oversampling the smaller class.

2.4 Noisy supervision

We assume that the noise in the source of super-
vision is limited in magnitude, e.g. < 5%. We
moreover assume that there are no strong patterns
in the distribution of the noise: if the noise cor-
relates with certain attributes of the candidate ex-
traction, the pseudo-likelihoods ỹ might no longer
be a good estimate of the candidate extraction’s
probability of being a correct extraction.

There are two sources of noise in our applica-
tion’s database supervision. First, there is a high
rate of false positives. It is not rare for the parser
to generate an extraction candidate ts tick abs (TS
symbol, numerical value) in which the numerical
value fits into the time series of the time series
symbol, but the extraction is nonetheless incor-
rect. False negatives are also a problem: many
financial time series are sparse and are rarely ob-
served. As a result, it is common for differences
between reference numerical values and extracted
numerical values to be large even for correct ex-
tractions. Limits for acceptable differences be-
tween extracted data and reference data are incor-
porated into the computation of the database con-
sistency score s. The formula for computing s is
application dependent, and may involve auxiliary
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data related to the extracted entities.

3 Results

Compared to using the existing, highly-tuned,
client-facing extraction systems, this work re-
duced the number of false positive extractions
by more than 90%, while the drop in recall was
smaller than 1%. Our character-level neural net-
work considerably boosted the precision of the ex-
isting information extraction systems, and is being
deployed to production.

We are not aware of alternative approaches that
can improve an existing extraction engine in a way
that is directly comparable to ours. Purely neural
network-based or purely statistical approaches re-
quire large amounts of human annotation, while
our method does not. Constraint-based or hybrid
statistical approaches are competitors to the exist-
ing extraction system rather than our work; in-
deed, our work could also be used to boost the
precision of state-of-the-art constraint or hybrid
methods.

When trained with 256 LSTM hidden units, and
2 million samples for 150 epochs, the neural net-
work alone achieved a training accuracy of 95.8%
and a test accuracy of 94.9%, relative to the noisy
database supervision. Note that since the supervi-
sion provided by the databases is imperfect, it is
not unexpected that the network’s accuracy is sub-
stantially below 100%. We examined the errors
in the training set, and found that they are primar-
ily due to the network generalizing correctly, with
the network being correct almost always when
strongly disagreeing with the database’s label.

We include in Figure 4 how data size and net-
work size affect network accuracy. Note that the
network’s accuracy decreases substantially if the
network size (number of LSTM units) is reduced.
Accuracy also decreases if smaller quantities of
training data are available. To achieve accept-
ably small latencies in client-serving scenarios, we
limit the network size to 256 LSTM hidden units,
even though larger networks could achieve slightly
greater accuracies. We moreover limited the docu-
ment input text provided to the LSTM neural net-
work to the lines on which the extraction candidate
was found.

Besides the neural network architecture de-
scribed in this paper, we also considered an ap-
proach based on character-level n-grams (see Fig-
ure 5). In this approach, we replaced the LSTM
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Figure 4: Neural network accuracies for different
network and training data sizes.

unit of the neural network with a single fully-
connected layer. At the same time, we replaced
the character-level input sequence f0, . . . , fk with
a single binary vector representing a bag-of-
words of n-grams. More precisely, we computed
character-level feature vectors f ′0, . . . , f ′k analo-
gously to the fi, except that the f ′i contain en-
codings of character classes (upper case letter,
lower case letter, digit, and the same list of special
characters used in the fi) rather than of charac-
ters themselves. Each binary vector f ′i was then
mapped to a string f̃ ′i containing the same se-
quence of 0s and 1s as f ′i . Finally, we computed
n-grams over the sequence of strings f̃ ′i. All n-
gram features were tf-idf normalized. We cross-
validated on a validation set to tune various hy-
perparameters, and found that using 2-grams up
to 12-grams worked best. The resulting classi-
fier achieve an accuracy of 96.9% on the training
set, and 90.4% on the test set. This constitutes
a big gap to the 94.9% test accuracy achieved by
the neural network, especially since we estimate
the accuracy of the database supervision to be
around 95%. This suggests that the recurrent neu-
ral network was able to internally compute higher-
quality features than the bag-of-words n-gram fea-
tures.

4 Discussion

In this work, we presented an architecture for in-
formation extraction from text using a combina-
tion of an existing parser and a deep neural net-
work. The deep neural network can boost the pre-
cision of an existing high-recall parser. To train the
neural network, we use measures of consistency
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Figure 5: Extraction candidate correctness estimation with an n-gram-based classifier. It differs from
Figure 3 only in the green fully connected layer labeled FC, and its input.

between extracted data and existing databases as
a form of noisy supervision. The architecture re-
sulted in substantial improvements over mature
and highly-tuned information extraction systems
for financial language text at Bloomberg. While
we used time series databases to derive measures
of consistency for candidate extractions, our set-
up can easily be applied to a variety of other infor-
mation extraction tasks for which potentially noisy
reference data is cheaply available.

We believe our encoding of document text
and parser output makes learning particularly
easy for the neural network. We encode the
candidate-generating parser’s document annota-
tions character-by-character into vectors fi that
also include a one-hot encoding of the charac-
ter itself. We believe that this encoding makes
it easier for the network to learn character-level
characteristics of the entities that are part of the
semantic frame. As an additional benefit, our
encoding lends itself well to processing both by
recurrent architectures (processing character-by-
character input vectors fi) and convolutional ar-
chitectures (performing 1D convolutions over an
input matrix whose columns are vectors fi).

Our architecture can easily incorporate global
attributes of the document. In our application, we
found it useful to add one-hot encoded n-gram and
word shape features of the document, allowing the
neural network to consider information that might

be located far from where the extraction candidate
was found. Other potentially useful features could
be based on document length, document embed-
dings, document creator features, and more.

We experimented with other neural network ar-
chitectures. A slight variation would be to use a
bidirectional LSTM instead of a simple LSTM.
In addition to LSTM architectures, we experi-
mented with character-level convolutional neural
networks. In this setting, we concatenated the vec-
tors fi into a single matrix for all character indices,
and performed 1D convolutions and pooling oper-
ations 3 times, and pass the result through a fully-
connected layer. We found the performance of this
approach to be very similar to that of the LSTM
we used. Finally, a hybrid approach, stacking an
LSTM on a single convolutional layer, gave very
similar results as the LSTM and convolutional ar-
chitectures.

One could use a variety of sources of informa-
tion as distant and cheap supervision. While we
used existing databases, other applications may
use supervision e.g. from user interactions with
the extracted data, say if the extracted data is pre-
sented to a user who can accept, modify, or reject
the extraction. In such a system, the linear clas-
sifier classifying candidate extractions would have
only a single feature, i.e. the neural network score.
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Abstract
Advances in neural variational inference
have facilitated the learning of power-
ful directed graphical models with con-
tinuous latent variables, such as varia-
tional autoencoders. The hope is that
such models will learn to represent rich,
multi-modal latent factors in real-world
data, such as natural language text. How-
ever, current models often assume simplis-
tic priors on the latent variables — such
as the uni-modal Gaussian distribution —
which are incapable of representing com-
plex latent factors efficiently. To over-
come this restriction, we propose the sim-
ple, but highly flexible, piecewise constant
distribution. This distribution has the ca-
pacity to represent an exponential num-
ber of modes of a latent target distribution,
while remaining mathematically tractable.
Our results demonstrate that incorporating
this new latent distribution into different
models yields substantial improvements in
natural language processing tasks such as
document modeling and natural language
generation for dialogue.

1 Introduction

The development of the variational autoencoder
framework (Kingma and Welling, 2014; Rezende
et al., 2014) has paved the way for learning large-
scale, directed latent variable models. This has led
to significant progress in a diverse set of machine
learning applications, ranging from computer vi-
sion (Gregor et al., 2015; Larsen et al., 2016) to
natural language processing tasks (Mnih and Gre-
gor, 2014; Miao et al., 2016; Bowman et al., 2015;

∗The first two authors contributed equally.

Serban et al., 2017b). It is hoped that this frame-
work will enable the learning of generative pro-
cesses of real-world data — including text, audio
and images — by disentangling and representing
the underlying latent factors in the data. How-
ever, latent factors in real-world data are often
highly complex. For example, topics in newswire
text and responses in conversational dialogue of-
ten posses latent factors that follow non-linear
(non-smooth), multi-modal distributions (i.e. dis-
tributions with multiple local maxima).

Nevertheless, the majority of current models as-
sume a simple prior in the form of a multivariate
Gaussian distribution in order to maintain mathe-
matical and computational tractability. This is of-
ten a highly restrictive and unrealistic assumption
to impose on the structure of the latent variables.
First, it imposes a strong uni-modal structure on
the latent variable space; latent variable samples
from the generating model (prior distribution) all
cluster around a single mean. Second, it forces
the latent variables to follow a perfectly symmet-
ric distribution with constant kurtosis; this makes
it difficult to represent asymmetric or rarely occur-
ring factors. Such constraints on the latent vari-
ables increase pressure on the down-stream gen-
erative model, which in turn is forced to carefully
partition the probability mass for each latent factor
throughout its intermediate layers. For complex,
multi-modal distributions — such as the distribu-
tion over topics in a text corpus, or natural lan-
guage responses in a dialogue system — the uni-
modal Gaussian prior inhibits the model’s ability
to extract and represent important latent structure
in the data. In order to learn more expressive latent
variable models, we therefore need more flexible,
yet tractable, priors.

In this paper, we introduce a simple, flexible
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prior distribution based on the piecewise constant
distribution. We derive an analytical, tractable
form that is applicable to the variational autoen-
coder framework and propose a differentiable
parametrization for it. We then evaluate the ef-
fectiveness of the distribution when utilized both
as a prior and as approximate posterior across
variational architectures in two natural language
processing tasks: document modeling and natu-
ral language generation for dialogue. We show
that the piecewise constant distribution is able to
capture elements of a target distribution that can-
not be captured by simpler priors — such as the
uni-modal Gaussian. We demonstrate state-of-
the-art results on three document modeling tasks,
and show improvements on a dialogue natural lan-
guage generation. Finally, we illustrate qualita-
tively how the piecewise constant distribution rep-
resents multi-modal latent structure in the data.

2 Related Work

The idea of using an artificial neural network to
approximate an inference model dates back to the
early work of Hinton and colleagues (Hinton and
Zemel, 1994; Hinton et al., 1995; Dayan and Hin-
ton, 1996). Researchers later proposed Markov
chain Monte Carlo methods (MCMC) (Neal,
1992), which do not scale well and mix slowly,
as well as variational approaches which require
a tractable, factored distribution to approximate
the true posterior distribution (Jordan et al., 1999).
Others have since proposed using feed-forward in-
ference models to initialize the mean-field infer-
ence algorithm for training Boltzmann architec-
tures (Salakhutdinov and Larochelle, 2010; Oror-
bia II et al., 2015). Recently, the variational
autoencoder framework (VAE) was proposed by
Kingma and Welling (2014) and Rezende et al.
(2014), closely related to the method proposed by
Mnih and Gregor (2014). This framework allows
the joint training of an inference network and a di-
rected generative model, maximizing a variational
lower-bound on the data log-likelihood and facil-
itating exact sampling of the variational posterior.
Our work extends this framework.

With respect to document modeling, neural ar-
chitectures have been shown to outperform well-
established topic models such as Latent Dirich-
let Allocation (LDA) (Hofmann, 1999; Blei et al.,
2003). Researchers have successfully proposed
several models involving discrete latent vari-

ables (Salakhutdinov and Hinton, 2009; Hinton
and Salakhutdinov, 2009; Srivastava et al., 2013;
Larochelle and Lauly, 2012; Uria et al., 2014;
Lauly et al., 2016; Bornschein and Bengio, 2015;
Mnih and Gregor, 2014). The success of such dis-
crete latent variable models — which are able to
partition probability mass into separate regions —
serves as one of our main motivations for investi-
gating models with more flexible continuous latent
variables for document modeling. More recently,
Miao et al. (2016) proposed to use continuous la-
tent variables for document modeling.

Researchers have also investigated latent vari-
able models for dialogue modeling and dialogue
natural language generation (Bangalore et al.,
2008; Crook et al., 2009; Zhai and Williams,
2014). The success of discrete latent variable
models in this task also motivates our investi-
gation of more flexible continuous latent vari-
ables. Closely related to our proposed ap-
proach is the Variational Hierarchical Recur-
rent Encoder-Decoder (VHRED, described below)
(Serban et al., 2017b), a neural architecture with
latent multivariate Gaussian variables.

Researchers have explored more flexible dis-
tributions for the latent variables in VAEs, such
as autoregressive distributions, hierarchical prob-
abilistic models and approximations based on
MCMC sampling (Rezende et al., 2014; Rezende
and Mohamed, 2015; Kingma et al., 2016; Ran-
ganath et al., 2016; Maaløe et al., 2016; Salimans
et al., 2015; Burda et al., 2016; Chen et al., 2017;
Ruiz et al., 2016). These are all complimentary
to our approach; it is possible to combine them
with the piecewise constant latent variables. In
parallel to our work, multiple research groups have
also proposed VAEs with discrete latent variables
(Maddison et al., 2017; Jang et al., 2017; Rolfe,
2017; Johnson et al., 2016). This is a promising
line of research, however these approaches often
require approximations which may be inaccurate
when applied to larger scale tasks, such as docu-
ment modeling or natural language generation. Fi-
nally, discrete latent variables may be inappropri-
ate for certain natural language processing tasks.

3 Neural Variational Models

We start by introducing the neural variational
learning framework. We focus on modeling dis-
crete output variables (e.g. words) in the context
of natural language processing applications. How-
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ever, the framework can easily be adapted to han-
dle continuous output variables.

3.1 Neural Variational Learning

Let w1, . . . , wN be a sequence of N tokens
(words) conditioned on a continuous latent vari-
able z. Further, let c be an additional observed
variable which conditions both z and w1, . . . , wN .
Then, the distribution over words is:

Pθ(w1, . . . , wN |c) =
� N�

n=1

Pθ(wn|w<n, z, c)Pθ(z|c)dz,

where θ are the model parameters. The model first
generates the higher-level, continuous latent vari-
able z conditioned on c. Given z and c, it then gen-
erates the word sequence w1, . . . , wN . For unsu-
pervised modeling of documents, the c is excluded
and the words are assumed to be independent of
each other, when conditioned on z:

Pθ(w1, . . . , wN ) =
� N�

n=1

Pθ(wn|z)Pθ(z)dz.

Model parameters can be learned using the varia-
tional lower-bound (Kingma and Welling, 2014):

log Pθ(w1, . . . , wN |c)
≥ Ez∼Qψ(z|w1,...,wN ,c)[log Pθ(wn|w<n, z, c)]

− KL [Qψ(z|w1, . . . , wN , c)||Pθ(z|c)] , (1)

where we note that Qψ(z|w1, . . . , wN , c) is the
approximation to the intractable, true posterior
Pθ(z|w1, . . . , wN , c). Q is called the encoder,
or sometimes the recognition model or inference
model, and it is parametrized by ψ. The distri-
bution Pθ(z|c) is the prior model for z, where
the only available information is c. The VAE
framework further employs the re-parametrization
trick, which allows one to move the derivative of
the lower-bound inside the expectation. To ac-
complish this, z is parametrized as a transforma-
tion of a fixed, parameter-free random distribu-
tion z = fθ(�), where � is drawn from a ran-
dom distribution. Here, f is a transformation of
�, parametrized by θ, such that fθ(�) ∼ Pθ(z|c).
For example, � might be drawn from a standard
Gaussian distribution and f might be defined as
fθ(�) = µ + σ�, where µ and σ are in the param-
eter set θ. In this case, z is able to represent any
Gaussian with mean µ and variance σ2.

Model parameters are learned by maximizing
the variational lower-bound in eq. (1) using gra-
dient descent, where the expectation is computed
using samples from the approximate posterior.

The majority of work on VAEs propose to
parametrize z as multivariate Gaussian distrib-
tions. However, this unrealistic assumption may
critically hurt the expressiveness of the latent vari-
able model. See Appendix A for a detailed dis-
cussion. This motivates the proposed piecewise
constant latent variable distribution.

3.2 Piecewise Constant Distribution
We propose to learn latent variables by parametriz-
ing z using a piecewise constant probability den-
sity function (PDF). This should allow z to rep-
resent complex aspects of the data distribution in
latent variable space, such as non-smooth regions
of probability mass and multiple modes.

Let n ∈ N be the number of piecewise constant
components. We assume z is drawn from PDF:

P (z) =
1
K

n�
i=1

1� i− 1
n

≤z≤
i

n

�ai, (2)

where 1(x) is the indicator function, which is one
when x is true and otherwise zero. The distribu-
tion parameters are ai > 0, for i = 1, . . . , n. The
normalization constant is:

K =
n�

i=1

Ki, where K0 = 0, Ki =
ai

n
, for i = 1, . . . , n.

It is straightforward to show that a piecewise con-
stant distribution with more than n > 2 pieces
is capable of representing a bi-modal distribution.
When n > 2, a vector z of piecewise constant
variables can represent a probability density with
2|z| modes. Figure 1 illustrates how these variables
help model complex, multi-modal distributions.

In order to compute the variational bound, we
need to draw samples from the piecewise constant
distribution using its inverse cumulative distribu-
tion function (CDF). Further, we need to compute
the KL divergence between the prior and posterior.
The inverse CDF and KL divergence quantities are
both derived in Appendix B. During training we
must compute derivatives of the variational bound
in eq. (1). These expressions involve derivatives
of indicator functions, which have derivatives zero
everywhere except for the changing points where
the derivative is undefined. However, the proba-
bility of sampling the value exactly at its changing
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Figure 1: Joint density plot of a pair of Gaussian
and piecewise constant variables. The horizontal
axis corresponds to z1, which is a univariate Gaus-
sian variable. The vertical axis corresponds to z2,
which is a piecewise constant variable.

point is effectively zero. Thus, we fix these deriva-
tives to zero. Similar approximations are used in
training networks with rectified linear units.

4 Latent Variable Parametrizations

In this section, we develop the parametrization
of both the Gaussian variable and our proposed
piecewise constant latent variable.

Let x be the current output sequence, which the
model must generate (e.g. w1, . . . , wN ). Let c be
the observed conditioning information. If the task
contains additional conditioning information this
will be embedded by c. For example, for dialogue
natural language generation c represents an em-
bedding of the dialogue history, while for docu-
ment modeling c = ∅.
4.1 Gaussian Parametrization
Let µprior and σ2,prior be the prior mean and vari-
ance, and let µpost and σ2,post be the approximate
posterior mean and variance. For Gaussian la-
tent variables, the prior distribution mean and vari-
ances are encoded using linear transformations of
a hidden state. In particular, the prior distribu-
tion covariance is encoded as a diagonal covari-
ance matrix using a softplus function:

µprior = Hprior
µ Enc(c) + bprior

µ ,

σ2,prior = diag(log(1 + exp(Hprior
σ Enc(c) + bprior

σ ))),

where Enc(c) is an embedding of the conditioning
information c (e.g. for dialogue natural language
generation this might, for example, be produced
by an LSTM encoder applied to the dialogue his-
tory), which is shared across all latent variable

dimensions. The matrices H
prior
µ , H

prior
σ and vec-

tors b
prior
µ , b

prior
σ are learnable parameters. For the

posterior distribution, previous work has shown it
is better to parametrize the posterior distribution
as a linear interpolation of the prior distribution
mean and variance and a new estimate of the mean
and variance based on the observation x (Fraccaro
et al., 2016). The interpolation is controlled by
a gating mechanism, allowing the model to turn
on/off latent dimensions:

µpost =(1− αµ)µprior + αµ

�
Hpost

µ Enc(c, x) + bpost
µ

�
,

σ2,post =(1− ασ)σ2,prior

+ ασdiag(log(1 + exp(Hpost
σ Enc(c, x) + bpost

σ ))),

where Enc(c, x) is an embedding of both c and
x. The matrices H

post
µ , H

post
σ and the vectors

b
post
µ , b

post
σ , αµ, ασ are parameters to be learned.

The interpolation mechanism is controlled by αµ

and ασ, which are initialized to zero (i.e. initial-
ized such that the posterior is equal to the prior).

4.2 Piecewise Constant Parametrization
We parametrize the piecewise prior parameters us-
ing an exponential function applied to a linear
transformation of the conditioning information:

a
prior
i = exp(Hprior

a,i Enc(c) + b
prior
a,i ), i = 1, . . . , n,

where matrix H
prior
a and vector b

prior
a are learnable.

As before, we define the posterior parameters as a
function of both c and x:

apost
i = exp(Hpost

a,i Enc(c, x) + bpost
a,i ), i = 1, . . . , n,

where H
post
a and b

post
a are parameters.

5 Variational Text Modeling

We now introduce two classes of VAEs. The mod-
els are extended by incorporating the Gaussian and
piecewise latent variable parametrizations.

5.1 Document Model
The neural variational document model (NVDM)
model has previously been proposed for document
modeling (Mnih and Gregor, 2014; Miao et al.,
2016), where the latent variables are Gaussian.
Since the original NVDM uses Gaussian latent
variables, we will refer to it as G-NVDM. We pro-
pose two novel models building on G-NVDM. The
first model we propose uses piecewise constant la-
tent variables instead of Gaussian latent variables.
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We refer to this model as P-NVDM. The second
model we propose uses a combination of Gaus-
sian and piecewise constant latent variables. The
models sample the Gaussian and piecewise con-
stant latent variables independently and then con-
catenates them together into one vector. We refer
to this model as H-NVDM.

Let V be the vocabulary of document words.
Let W represent a document matrix, where row wi

is the 1-of-|V | binary encoding of the i’th word in
the document. Each model has an encoder com-
ponent Enc(W ), which compresses a document
vector into a continuous distributed representa-
tion upon which the approximate posterior is built.
For document modeling, word order information
is not taken into account and no additional condi-
tioning information is available. Therefore, each
model uses a bag-of-words encoder, defined as a
multi-layer perceptron (MLP) Enc(c = ∅, x) =
Enc(x). Based on preliminary experiments, we
choose the encoder to be a two-layered MLP with
parametrized rectified linear activation functions
(we omit these parameters for simplicity). For the
approximate posterior, each model has the param-
eter matrix W

post
a and vector b

post
a for the piece-

wise latent variables, and the parameter matrices
W

post
µ , W

post
σ and vectors b

post
µ , b

post
σ for the Gaus-

sian means and variances. For the prior, each
model has parameter vector b

prior
a for the piece-

wise latent variables, and vectors b
prior
µ , b

prior
σ for

the Gaussian means and variances. We initialize
the bias parameters to zero in order to start with
centered Gaussian and piecewise constant priors.
The encoder will adapt these priors as learning
progresses, using the gating mechanism to turn
on/off latent dimensions.

Let z be the vector of latent variables sampled
according to the approximate posterior distribu-
tion. Given z, the decoder Dec(w, z) outputs a
distribution over words in the document:

Dec(w, z) =
exp (−wTRz + bw)�
w� exp (−wTRz + bw�)

,

where R is a parameter matrix and b is a parameter
vector corresponding to the bias for each word to
be learned. This output probability distribution is
combined with the KL divergences to compute the
lower-bound in eq. (1). See Appendix C.

Our baseline model G-NVDM is an improve-
ment over the original NVDM proposed by Mnih
and Gregor (2014) and Miao et al. (2016). We
learn the prior mean and variance, while these

were fixed to a standard Gaussian in previous
work. This increases the flexibility of the model
and makes optimization easier. In addition, we
use a gating mechanism for the approximate pos-
terior of the Gaussian variables. This gating mech-
anism allows the model to turn off latent vari-
able (i.e. fix the approximate posterior to equal the
prior for specific latent variables) when computing
the final posterior parameters. Furthermore, Miao
et al. (2016) alternated between optimizing the ap-
proximate posterior parameters and the generative
model parameters, while we optimize all parame-
ters simultaneously.

5.2 Dialogue Model
The variational hierarchical recurrent encoder-
decoder (VHRED) model has previously been pro-
posed for dialogue modeling and natural language
generation (Serban et al., 2017b, 2016a). The
model decomposes dialogues using a two-level hi-
erarchy: sequences of utterances (e.g. sentences),
and sub-sequences of tokens (e.g. words). Let wn

be the n’th utterance in a dialogue with N utter-
ances. Let wn,m be the m’th word in the n’th utter-
ance from vocabulary V given as a 1-of-|V | binary
encoding. Let Mn be the number of words in the
n’th utterance. For each utterance n = 1, . . . , N ,
the model generates a latent variable zn. Condi-
tioned on this latent variable, the model then gen-
erates the next utterance:

Pθ(w1, z1, . . . ,wN , zN ) =
N�

n=1

Pθ(zn|w<n)

×
Mn�
m=1

Pθ(wn,m|wn,<m,w<n, zn),

where θ are the model parameters. VHRED con-
sists of three RNN modules: an encoder RNN,
a context RNN and a decoder RNN. The en-
coder RNN computes an embedding for each ut-
terance. This embedding is fed into the context
RNN, which computes a hidden state summariz-
ing the dialogue context before utterance n: hcon

n−1.
This state represents the additional conditioning
information, which is used to compute the prior
distribution over zn:

Pθ(zn | w<n) = f
prior
θ (zn; hcon

n−1),

where fprior is a PDF parametrized by both θ and
hcon

n−1. A sample is drawn from this distribution:
zn ∼ Pθ(zn|w<n). This sample is given as input
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to the decoder RNN, which then computes the out-
put probabilities of the words in the next utterance.
The model is trained by maximizing the varia-
tional lower-bound, which factorizes into indepen-
dent terms for each sub-sequence (utterance):

log Pθ(w1, . . . ,wN )

≥
N�

n=1

− KL [Qψ(zn | w1, . . . ,wn)||Pθ(zn | w<n)]

+ EQψ(zn|w1,...,wn) [log Pθ(wn | zn,w<n)] ,

where distribution Qψ is the approximate posterior
distribution with parameters ψ, computed simi-
larly as the prior distribution but further condi-
tioned on the encoder RNN hidden state of the
next utterance.

The original VHRED model (Serban et al.,
2017b) used Gaussian latent variables. We re-
fer to this model as G-VHRED. The first model
we propose uses piecewise constant latent vari-
ables instead of Gaussian latent variables. We re-
fer to this model as P-VHRED. The second model
we propose takes advantage of the representation
power of both Gaussian and piecewise constant la-
tent variables. This model samples both a Gaus-
sian latent variable z

gaussian
n and a piecewise la-

tent variable z
piecewise
n independently conditioned

on the context RNN hidden state:

Pθ(zgaussian
n | w<n) = f

prior, gaussian
θ (zgaussian

n ; hcon
n−1),

Pθ(zpiecewise
n | w<n) = f

prior, piecewise
θ (zpiecewise

n ; hcon
n−1),

where fprior, gaussian and fprior, piecewise are PDFs
parametrized by independent subsets of parame-
ters θ. We refer to this model as H-VHRED.

6 Experiments

We evaluate the proposed models on two types
of natural language processing tasks: document
modeling and dialogue natural language genera-
tion. All models are trained with back-propagation
using the variational lower-bound on the log-
likelihood or the exact log-likelihood. We use
the first-order gradient descent optimizer Adam
(Kingma and Ba, 2015) with gradient clipping
(Pascanu et al., 2012)1

Model 20-NG RCV1 CADE

LDA 1058 −− −−
docNADE 896 −− −−
NVDM 836 −− −−
G-NVDM 651 905 339
H-NVDM-3 607 865 258
H-NVDM-5 566 833 294

Table 1: Test perplexities on three document mod-
eling tasks: 20-NewGroup (20-NG), Reuters cor-
pus (RCV1) and CADE12 (CADE). Perplexities
were calculated using 10 samples to estimate the
variational lower-bound. The H-NVDM models
perform best across all three datasets.

6.1 Document Modeling

Tasks We use three different datasets for docu-
ment modeling experiments. First, we use the
20 News-Groups (20-NG) dataset (Hinton and
Salakhutdinov, 2009). Second, we use the Reuters
corpus (RCV1-V2), using a version that con-
tained a selected 5,000 term vocabulary. As
in previous work (Hinton and Salakhutdinov,
2009; Larochelle and Lauly, 2012), we transform
the original word frequencies using the equation
log(1 + TF), where TF is the original word fre-
quency. Third, to test our document models on text
from a non-English language, we use the Brazilian
Portuguese CADE12 dataset (Cardoso-Cachopo,
2007). For all datasets, we track the validation
bound on a subset of 100 vectors randomly drawn
from each training corpus.

Training All models were trained using mini-
batches with 100 examples each. A learning rate
of 0.002 was used. Model selection and early stop-
ping were conducted using the validation lower-
bound, estimated using five stochastic samples per
validation example. Inference networks used 100
units in each hidden layer for 20-NG and CADE,
and 100 for RCV1. We experimented with both
50 and 100 latent random variables for each class
of models, and found that 50 latent variables per-
formed best on the validation set. For H-NVDM
we vary the number of components used in the
PDF, investigating the effect that 3 and 5 pieces
had on the final quality of the model. The number

1Code and scripts are available at https://github.
com/ago109/piecewise-nvdm-emnlp-2017
and https://github.com/julianser/
hred-latent-piecewise.

57



G-NVDM H-NVDM-3 H-NVDM-5
environment project science
project gov built
flight major high
lab based technology
mission earth world
launch include form
field science scale
working nasa sun
build systems special
gov technical area

Table 2: Word query similarity test on 20 News-
Groups: for the query ‘space”, we retrieve the
top 10 nearest words in word embedding space
based on Euclidean distance. H-NVDM-5 asso-
ciates multiple meanings to the query, while G-
NVDM only associates the most frequent meaning.

of hidden units was chosen via preliminary exper-
imentation with smaller models. On 20-NG, we
use the same set-up as (Hinton and Salakhutdi-
nov, 2009) and therefore report the perplexities of
a topic model (LDA, (Hinton and Salakhutdinov,
2009)), the document neural auto-regressive esti-
mator (docNADE, (Larochelle and Lauly, 2012)),
and a neural variational document model with a
fixed standard Gaussian prior (NVDM, lowest re-
ported perplexity, (Miao et al., 2016)).

Results In Table 1, we report the test docu-
ment perplexity: exp(− 1

D

�
n

1
Ln

log Pθ(xn). We
use the variational lower-bound as an approxima-
tion based on 10 samples, as was done in (Mnih
and Gregor, 2014). First, we note that the best
baseline model (i.e. the NVDM) is more competi-
tive when both the prior and posterior models are
learnt together (i.e. the G-NVDM), as opposed to
the fixed prior of (Miao et al., 2016). Next, we
observe that integrating our proposed piecewise
variables yields even better results in our docu-
ment modeling experiments, substantially improv-
ing over the baselines. More importantly, in the
20-NG and Reuters datasets, increasing the num-
ber of pieces from 3 to 5 further reduces perplex-
ity. Thus, we have achieved a new state-of-the-
art perplexity on 20 News-Groups task and — to
the best of our knowledge – better perplexities on
the CADE12 and RCV1 tasks compared to us-
ing a state-of-the-art model like the G-NVDM. We
also evaluated the converged models using an non-
parametric inference procedure, where a separate

Figure 2: Latent variable approximate poste-
rior means t-SNE visualization on 20-NG for G-
NVDM and H-NVDM-5. Colors correspond to the
topic labels assigned to each document.

approximate posterior is learned for each test ex-
ample in order to tighten the variational lower-
bound. H-NVDM also performed best in this eval-
uation across all three datasets, which confirms
that the performance improvement is due to the
piecewise components. See appendix for details.

In Table 2, we examine the top ten highest
ranked words given the query term “space”, using
the decoder parameter matrix. The piecewise vari-
ables appear to have a significant effect on what is
uncovered by the model.In the case of “space”, the
hybrid with 5 pieces seems to value two senses of
the word–one related to “outer space” (e.g., “sun”,
“world”, etc.) and another related to the dimen-
sions of depth, height, and width within which
things may exist and move (e.g., “area”, “form”,
“scale”, etc.). On the other hand, G-NVDM ap-
pears to only capture the “outer space” sense of
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Model Activity Entity

HRED 4.77 2.43
G-VHRED 9.24 2.49
P-VHRED 5 2.49
H-VHRED 8.41 3.72

Table 3: Ubuntu evaluation using F1 metrics w.r.t.
activities and entities. G-VHRED, P-VHRED and
H-VHRED all outperform the baseline HRED.
G-VHRED performs best w.r.t. activities and H-
VHRED performs best w.r.t. entities.

the word. More examples are in the appendix.
Finally, we visualized the means of the approx-

imate posterior latent variables on 20-NG through
a t-SNE projection. As shown in Figure 2, both
G-NVDM and H-NVDM-5 learn representations
which disentangle the topic clusters on 20-NG.
However, G-NVDM appears to have more dis-
persed clusters and more outliers (i.e. data points
in the periphery) compared to H-NVDM-5. Al-
though it is difficult to draw conclusions based on
these plots, these findings could potentially be ex-
plained by the Gaussian latent variables fitting the
latent factors poorly.

6.2 Dialogue Modeling

Task We evaluate VHRED on a natural language
generation task, where the goal is to generate re-
sponses in a dialogue. This is a difficult prob-
lem, which has been extensively studied in the
recent literature (Ritter et al., 2011; Lowe et al.,
2015; Sordoni et al., 2015; Li et al., 2016; Ser-
ban et al., 2016a,b). Dialogue response generation
has recently gained a significant amount of atten-
tion from industry, with high-profile projects such
as Google SmartReply (Kannan et al., 2016) and
Microsoft Xiaoice (Markoff and Mozur, 2015).
Even more recently, Amazon has announced the
Alexa Prize Challenge for the research community
with the goal of developing a natural and engaging
chatbot system (Farber, 2016).

We evaluate on the technical support response
generation task for the Ubuntu operating system.
We use the well-known Ubuntu Dialogue Corpus
(Lowe et al., 2015, 2017), which consists of about
1/2 million natural language dialogues extracted
from the #Ubuntu Internet Relayed Chat (IRC)
channel. The technical problems discussed span
a wide range of software-related and hardware-
related issues. Given a dialogue history — such

as a conversation between a user and a technical
support assistant — the model must generate the
next appropriate response in the dialogue. For ex-
ample, when it is the turn of the technical support
assistant, the model must generate an appropriate
response helping the user resolve their problem.

We evaluate the models using the activity- and
entity-based metrics designed specifically for the
Ubuntu domain (Serban et al., 2017a). These
metrics compare the activities and entities in the
model generated responses with those of the ref-
erence responses; activities are verbs referring to
high-level actions (e.g. download, install, unzip)
and entities are nouns referring to technical ob-
jects (e.g. Firefox, GNOME). The more activities
and entities a model response overlaps with the
reference response (e.g. expert response) the more
likely the response will lead to a solution.

Training The models were trained to maxi-
mize the log-likelihood of training examples us-
ing a learning rate of 0.0002 and mini-batches
of size 80. We use a variant of truncated back-
propagation. We terminate the training procedure
for each model using early stopping, estimated
using one stochastic sample per validation exam-
ple. We evaluate the models by generating dia-
logue responses: conditioned on a dialogue con-
text, we fix the model latent variables to their me-
dian values and then generate the response using a
beam search with size 5. We select model hyper-
parameters based on the validation set using the F1
activity metric, as described earlier.

It is often difficult to train generative models
for language with stochastic latent variables (Bow-
man et al., 2015; Serban et al., 2017b). For the
latent variable models, we therefore experiment
with reweighing the KL divergence terms in the
variational lower-bound with values 0.25, 0.50,
0.75 and 1.0. In addition to this, we linearly in-
crease the KL divergence weights starting from
zero to their final value over the first 75000 train-
ing batches. Finally, we weaken the decoder RNN
by randomly replacing words inputted to the de-
coder RNN with the unknown token with 25%
probability. These steps are important for effec-
tively training the models, and the latter two have
been used in previous work by Bowman et al.
(2015) and Serban et al. (2017b).

HRED (Baseline): We compare to the HRED
model (Serban et al., 2016a): a sequence-to-
sequence model, shown to outperform other es-
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tablished models on this task, such as the LSTM
RNN language model (Serban et al., 2017a). The
HRED model’s encoder RNN uses a bidirectional
GRU RNN encoder, where the forward and back-
ward RNNs each have 1000 hidden units. The
context RNN is a GRU encoder with 1000 hidden
units, and the decoder RNN is an LSTM decoder
with 2000 hidden units.2 The encoder and con-
text RNNs both use layer normalization (Ba et al.,
2016).3 We also experiment with an additional
rectified linear layer applied on the inputs to the
decoder RNN. As with other hyper-parameters,
we choose whether to include this additional layer
based on the validation set performance. HRED,
as well as all other models, use a word embedding
dimensionality of size 400.

G-HRED: We compare to G-VHRED, which
is VHRED with Gaussian latent variables (Serban
et al., 2017b). G-VHRED uses the same hyper-
parameters for the encoder, context and decoder
RNNs as the HRED model. The model has 100
Gaussian latent variables per utterance.

P-HRED: The first model we propose is P-
VHRED, which is VHRED model with piecewise
constant latent variables. We use n = 3 number
of pieces for each latent variable. P-VHRED also
uses the same hyper parameters for the encoder,
context and decoder RNNs as the HRED model.
Similar to G-VHRED, P-VHRED has 100 piece-
wise constant latent variables per utterance.

H-HRED: The second model we propose is H-
VHRED, which has 100 piecewise constant (with
n = 3 pieces per variable) and 100 Gaussian la-
tent variables per utterance. H-VHRED also uses
the same hyper-parameters for the encoder, con-
text and decoder RNNs as HRED.

Results: The results are given in Table 3.
All latent variable models outperform HRED w.r.t.
both activities and entities. This strongly suggests
that the high-level concepts represented by the
latent variables help generate meaningful, goal-
directed responses. Furthermore, each type of
latent variable appears to help with a different
aspects of the generation task. G-VHRED per-
forms best w.r.t. activities (e.g. download, install
and so on), which occur frequently in the dataset.

2Since training lasted between 1-3 weeks for each model,
we had to fix the number of hidden units during preliminary
experiments on the training and validation datasets.

3We did not apply layer normalization to the decoder
RNN, because several of our colleagues have found that this
may hurt the performance of generative language models.

This suggests that the Gaussian latent variables
learn useful latent representations for frequent ac-
tions. On the other hand, H-VHRED performs
best w.r.t. entities (e.g. Firefox, GNOME), which
are often much rarer and mutually exclusive in
the dataset. This suggests that the combination of
Gaussian and piecewise latent variables help learn
useful representations for entities, which could
not be learned by Gaussian latent variables alone.
We further conducted a qualitative analysis of the
model responses, which supports these conclu-
sions. See Appendix G.4

7 Conclusions

In this paper, we have sought to learn rich and
flexible multi-modal representations of latent vari-
ables for complex natural language processing
tasks. We have proposed the piecewise constant
distribution for the variational autoencoder frame-
work. We have derived closed-form expressions
for the necessary quantities required for in the au-
toencoder framework, and proposed an efficient,
differentiable implementation of it. We have in-
corporated the proposed piecewise constant dis-
tribution into two model classes — NVDM and
VHRED — and evaluated the proposed models on
document modeling and dialogue modeling tasks.
We have achieved state-of-the-art results on three
document modeling tasks, and have demonstrated
substantial improvements on a dialogue modeling
task. Overall, the results highlight the benefits
of incorporating the flexible, multi-modal piece-
wise constant distribution into variational autoen-
coders. Future work should explore other natural
language processing tasks, where the data is likely
to arise from complex, multi-modal latent factors.
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