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Abstract

We present a model for predicting word
forms based on morphological relational
reasoning with analogies. While previous
work has explored tasks such as morpho-
logical inflection and reinflection, these
models rely on an explicit enumeration
of morphological features, which may not
be available in all cases. To address the
task of predicting a word form given a
demo relation (a pair of word forms) and
a query word, we devise a character-based
recurrent neural network architecture us-
ing three separate encoders and a decoder.
We also investigate a multiclass learning
setup, where the prediction of the relation
type label is used as an auxiliary task.

Our results show that the exact form can
be predicted for English with an accuracy
of 94.7%. For Swedish, which has a more
complex morphology with more inflec-
tional patterns for nouns and verbs, the ac-
curacy is 89.3%. We also show that using
the auxiliary task of learning the relation
type speeds up convergence and improves
the prediction accuracy for the word gen-
eration task.

1 Introduction

Recently, a number of papers have been published
that use character-level neural models as a way
to address the inherent drawbacks of traditional
models that represent words as atomic symbols.
This offers a number of advantages: the vocab-
ulary in a character-based model can be much
smaller, as it only needs to represent a finite and
fairly small alphabet, and as long as the charac-
ters are in the alphabet, no words will be out-
of-vocabulary (OOV). Character-level models can

capture distributional properties, not only of fre-
quent words but also of words that occur rarely
(Luong and Manning, 2016). This type of model
needs no tokenization, freeing the system from
one source of errors. Character-level neural mod-
els have been applied in several NLP tasks, rang-
ing from relatively basic tasks such as text catego-
rization (Zhang et al., 2015) and language model-
ing (Kim et al., 2016) to complex prediction tasks
such as translation (Luong and Manning, 2016;
Sennrich et al., 2016).

In particular, character-based neural models are
attractive because they can take sub-word units,
such as the morphology, into account. Mor-
phological analysis and prediction models using
character-based recurrent neural networks have re-
cently become popular, as evidenced by their com-
plete dominance at the SIGMORPHON shared
task on morphological reinflection (Cotterell et al.,
2016). However, in these models, including the
top-performing system in the shared task (Kann
and Schütze, 2016), an explicit feature represen-
tation of the morphological inflection needs to be
provided as an input. These features represent
number, gender, case, tense, aspect, etc.

In this paper, we take a new approach to pre-
dicting word forms that bypasses the need for
an explicit representation of morphological fea-
tures. We present a model that learns morpho-
logical analogy relations between words: given a
demo relation Rdemo = (w1, w2), represented as
a pair of words w1 and w2, and a query word q,
can we apply the same relation as represented by
Rdemo to the query word, and arrive at the correct
target t? The task may be illustrated with a simple
example: see is to sees as eat is to what?

The relation in the example above is trivial on a
superficial level, as the model just needs to add
an s to the query word. However, the analogy
task is more challenging in the general case. The
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model needs to take into account that words be-
long to groups whose inflectional patterns are dif-
ferent – morphological paradigms. For instance, if
we consider the past tense instead of the present in
the example above, the relation is more complex:
see is to saw as eat is to what? The model also
needs to pick up general patterns that cut across
paradigms, including phonological processes such
as umlaut and vowel harmony, as well as ortho-
graphic quirks such as the rule in English that turns
y into ie in certain contexts.

The fact that our model does not rely on explicit
features makes it applicable in scenarios where
features are unavailable, such as when working
with under-resourced languages. However, since
the model is trained using a weaker signal than
in the traditional feature-based scenario, it needs
to learn a latent representation from the analogies
that plays the same role as the morphological fea-
tures otherwise would. This makes the task more
challenging to learn, and we compare the training
time of a purely feature-free model to one where
features are available during training as an auxil-
iary prediction task in a multi-task learning setup.

2 Recurrent neural networks

A recurrent neural network (RNN) is an artificial
neural network that can model a sequence of arbi-
trary length. The basic layout is simply a feedfor-
ward neural network with weight sharing at each
position in the sequence, making it a recursive
function on the hidden state ht. The network has
an input layer at each position t in the sequence,
and the input xt is combined with the the previ-
ous internal state ht−1. In a language setting, it is
common to model sequences of words, in which
case each input xt is the vector representation of
a word. In the basic variant (“vanilla” RNN), the
transition function is a linear transformation of the
hidden state and the input, followed by a pointwise
nonlinearity.

ht = tanh(Wxt + Uht−1 + b),

where W and U are weight matrices, and b is a
bias term.

Basic “vanilla” RNNs have some shortcomings.
One of them is that these models are unable to
capture longer dependencies in the input. Another
one is the vanishing gradient problem that affects
many neural models when many layers get stacked

after each other, making these models difficult to
train (Hochreiter, 1998; Bengio et al., 1994).

Some variants have been proposed to solve
these shortcomings. The Long Short Term Mem-
ory (LSTM) (Schmidhuber and Hochreiter, 1997)
is an RNN where the layer at each timestep is a
cell that contains three gates controlling what parts
of the internal memory will be kept (the forget
gate ft), what parts of the input that will be stored
in the internal memory (the input gate it), as well
as what will be included in the output (the output
gate ot).

The Gated Recurrent Unit (GRU) (Cho et al.,
2014a) is a simplification of this approach, hav-
ing only two gates by replacing the input and for-
get gates with an update gate ut that simply erases
memory whenever it is updating the state with new
input. The GRU is thus a network that has fewer
parameters, and has obtained similar experimental
results as the original LSTM.

Gated recurrent networks have been used
successfully for language modelling, sentiment
analysis (Tang et al., 2015), textual entail-
ment (Rocktäschel et al., 2016), and machine
translation (Sutskever et al., 2014; Cho et al.,
2014b).

3 Character RNN for morphological
word relation transfer

In this work, we present a neural approach for the
transfer of word relations. We use a deep recur-
rent neural network with GRU cells that take the
raw character-sequences as input. In the proposed
model, the demo relation Rdemo = (w1, w2) is en-
coded using one separate encoder RNN for each
of the two words w1 and w2. The outputs of
the demo encoders are fed into a fully connected
layer, “FC relation”. The query word q is en-
coded separately using a third encoder RNN. The
final output from the query encoder is concate-
nated with the output from “FC relation”, and fed
via a second fully connected layer “FC merge”
into the RNN decoder which generates the out-
put sequence. The decoder employs a standard
attention mechanism (Bahdanau et al., 2014) al-
lowing access to the outputs at all locations of the
query encoder. The whole model is similar to a
sequence-to-sequence model used for translation,
with the extra modules that encodes the demo rela-
tion. Figure 1 shows the architecture of the model.

The implementation of the model will be avail-
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Figure 1: The layout of the proposed model. The demo relation is encoded using one separate encoder
RNN for each of the two words. A fully connected layer follows the demo relation pair, with a softmax
classification output layer, to guide the training. This speeds up the training drastically. The query word
is encoded separately. the output from the fully connected relation layer is concatenated with the hidden
state from the query encoder, and fed into the RNN decoder which generates the output while using an
attention pointer to the query encoder.

able online, along with instructions on how to
download the datasets.

3.1 Learning the relation type as an auxiliary
training task

Since we are interested in how hard it is for the
model to learn morphological relations without a
signal representing the relation explicitly, we in-
vestigated a multitask learning setup where the
prediction of the type of the relation is an auxil-
iary task. The purpose of this approach is that the
auxiliary task could help the model learn a use-
ful intermediate representation that facilitates the
generation of the output string. We implemented
this as a softmax classification output layer that
was attached to the “FC relation”, and trained it
to predict a label for the type of relation. We stress
that this information is not available to the model
during evaluation.

4 Experimental setup

This section explains the setup of the empirical
study of our model. How it is designed, trained,
and evaluated.

4.1 Hyperparameters

The hyperparameters relevant to the proposed
model are presented in Table 1. The hidden size
parameter decides the dimensionality of all RNN
parts of the model, as well as the character em-
bedding size. The final configuration amounted to
hidden size: 100, depth: 2, initial learning rate:
1 × 10−3, L2 weight decay parameter 5 × 10−5,
and drop probability 0.0. In the dropout experi-

ments, dropout were applied to encoder RNN out-
puts, and to the fully connected layers.

Hyperparameter Explored Selected

Hidden size 50-350 100
Depth 1-2 2
Learning rate 1× 10−3

L2 weight decay 5× 10−5

Drop probability 0.5, 0.0 0.0

Table 1: Hyperparameters in the model.

4.2 Datasets
The model was trained and evaluated on words in
English and Swedish. In both languages, a total
of seven relations, and their corresponding inverse
relations, were considered:

• singular–plural for nouns, e.g. dog–dogs
• base form–comparative for adjectives, e.g.

high–higher
• base form–superlative for adjectives, e.g.

high–highest
• comparative–superlative for adjectives, e.g.

higher–highest
• infinitive–past for verbs, e.g. sit–sat
• infinitive–present for verbs, e.g. sit–sits
• infinitive–progressive for verbs (English),

e.g. sit–sitting
• active infinitive–passive infinitive for verbs

(Swedish), e.g. äta–ätas ‘eat–be eaten’

For English, the word list with inflected froms
from the SCOWL project was downloaded1. In the

1See http://wordlist.aspell.net/.
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Figure 2: Prediction accuracy on the English vali-
dation set during training when using the auxiliary
classification loss signal and when not using it.

Figure 3: Prediction accuracy on English test set:
(a) without attention mechanism, (b) when not us-
ing the auxiliary classification loss signal, (c) us-
ing dropout, and (d) using all standard values, (see
Section 4.1).

English data, 25,052 nouns, 1,433 adjectives, and
7,806 verbs were used for training. For each class,
200 words were used for validation, and 200 for
testing. For Swedish, words were extracted from
SALDO (Borin et al., 2013). In the Swedish data,
64,460 nouns, 12,507 adjectives, and 7,764 verbs
were used for training. The same size of validation
and test sets were used.

4.3 Training

Training was done with backpropagation through
time (BPTT) and minibatch learning with the
Adam optimizer (Kingma and Ba, 2015). Training
duration was decided using early stopping (Wang
et al., 1994).

4.4 Evaluation

To evaluate the performance of the model, the
datasets were split into training, validation, and
test sets. Where nothing else is specified, reported
numbers are prediction accuracy. This is the frac-

Size English Swedish English & Swedish

350 90.3% 81.6% 82.3%
150 93.3% 84.1% 87.4%
100 94.7% 88.3% 89.9%
50 90.9% 83.1% 88.0%

Table 2: Prediction accuracy of the proposed
model using different hidden sizes. Column la-
bels denote training set: the English & Swedish
model were simultaneously trained on both lan-
guages, and has no explicit signal about the lan-
guage it is seeing, the other columns show results
for models trained on only one language.

Size English Swedish English & Swedish

350 85.3% 79.3% 82.3%
150 88.0% 86.9% 87.4%
100 90.6% 89.3% 89.9%
50 87.9% 88.1% 88.0%

Table 3: Prediction accuracy of the proposed
model trained using both English and Swedish si-
multaneously. Column labels here denotes test
dataset: English, Swedish, and combined.

tion of predictions that were exactly matching the
target words.

5 Results

This section presents the results of the experimen-
tal evaluation of the system. Table 2 shows pre-
diction accuracy on the test set for different hid-
den sizes, and for different training sets: English,
Swedish, and English & Swedish (trained simulta-
neously in the same model). These are evaluated
on the test set in the same language as the train-
ing set. Table 3 shows prediction accuracy on the
different test sets (English, Swedish, and English
& Swedish), for the same model, trained simulta-
neously on English & Swedish. The model trained
on the combined training data (both English and
Swedish) performs slightly better on the Swedish
test-data (89.3% prediction accuracy compared to
88.3%).

Figure 2 shows the prediction accuracy on
validation during the normal training procedure
with auxiliary training (Classification), without
the auxiliary training (No classification), and us-
ing dropout with drop probability 0.5 (Dropout).
The auxiliary output drastically speeds up training,
to the point where we haven’t obtained the same
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Figure 4: Results for all relations (total), and for each specific relation. One can see the difference
between English and Swedish for plural forms of nouns, where Swedish can be more complex, and
harder to learn.

performance without it. While the dropout seems
to stabilize the performance of the model some-
what during training, we obtained the best valida-
tion performance without it. The final prediction
accuracy results for the test set can be seen in Fig-
ure 3, illustrating once again, that the performance
is best using the auxiliary training task, reaching
an accuracy of 94.7% for English.

Figure 3 also includes a comparison between
the different training architectures evaluated on
the English test set. Whereas it is surprising
that dropout does not help, both the attention
mechanism and the auxiliary training objective are
clearly helping the model learn and perform well.
However, it is a positive result that the model that
does not use the auxiliary task is still able to reach
a high accuracy, as that type of supervision might
not be available in low-resource situations.

Figure 4 separates the performance for each
relation type, showing that our model obtains
100% test set accuracy for several classes, such
as the transform from comparative to superlative
for both English and Swedish, while dropping as
low as to 64% for the singular-to-plural relation
in Swedish, a relation that shows more complex
patterns: while English nouns almost exclusively
form the plural with -s, Swedish nouns are divided
into two genders, each of which has several de-
clension patterns (e.g. -er, -ar, -or, -n), and are
also affected by processes such as umlaut (e.g.
fot–fötter) and syncope (e.g. nyckel–nycklar).

6 Related work

The benefits of character based RNNs have been
demonstrated in a number of works. (Graves,
2013) demonstrated how a character-based LSTM
network could generate Wikipedia content with
the markup. (Kim et al., 2016) presented a
character-aware language model working with
characters, but computing a distribution over
words. Some work has tried to leverage the
strengts of character-based RNNs, while combat-
ting its main weakness; that character sequences
tend to get much longer than the corresponding
word sequences. (Luong and Manning, 2016) pre-
sented a neural machine translation (NMT) sys-
tem using character RNNs only for OOV words,
dropping the RNN output into a conventional
word-based NMT system. They demonstrated
that the resulting character-based word embed-
dings showed the same properties as the embed-
dings trained on word-level, having semantically
similar words close in the embedding space. (Sen-
nrich et al., 2016) proposed an NMT system that
used the Byte-Pair Encoding (BPE), initially an al-
gorithm to compress strings and represent frequent
substrings with compacter symbols, to create a
sub-word-level vocabulary. The authors mention
that this can be seen as a compressed character-
based model. (Kann and Schütze, 2016) proposed
a character-based neural model for morphological
inflection and reinflection. Both source word and
tags were encoded using a special alphabet using
one encoder RNN. The paper was the winner in the
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SIGMORPHON 2016 shared task (Cotterell et al.,
2016). This task has a similar goal to ours, but the
input is a query word along with the source and
target tags for the morphological forms. This is a
simpler task, as their system does not need to find
out the forms from examples.

7 Discussion and conclusions

In this paper, we have presented a neural model
that can learn to do morphological relational rea-
soning on a given query word q, given a demo
relation consisting of a word in the two differ-
ent forms (source form and desired target form).
Our approach uses one character based encoder
RNN for each of the three input words, and gen-
erates the output word as a character sequence.
The model is able to generalize to unseen words
as demonstrated by good prediction accuracy on
the held-out test sets in both English and Swedish.
We note that the model learns faster, and reaches
a higher prediction accuracy using an auxiliary
training task requiring the model to output a clas-
sification of the relation observed in the demo re-
lation encoder RNN (see Figure 2 and Figure 3).
When training the model on the combined train-
ing data (both English and Swedish) we obtain
slightly better prediction accuracy on the Swedish
test-data (89.3% compared to 88.3%). This may
need more investigation, but it indicates that train-
ing the model in a multi-lingual setting is benefi-
cial at least for some languages. A similar obser-
vation was made in (Firat et al., 2017): a neural
machine translation system that obtains better re-
sults on low-resource languages when trained in a
multi-lingual setting.

7.1 Future work

Our motivation for carrying out this work is that it
would be applicable in situations where linguis-
tic resources (e.g. morphological tables) might
not be available, for instance in under-resourced
and under-described languages. The current work
has been limited to English and Swedish, two lan-
guages where morphological resources are abun-
dant, but in future work we would like to evaluate
our system with languages that are less well pro-
vided in terms of resources.

Furthermore, while our model has been able to
successfully predict the correct form in the ma-
jority of cases in our experiments, our evaluation
setup is still fairly close to a traditional reinflec-

tion scenario that relies on morphological features.
A more challenging and interesting task would be
a zero-shot scenario where the test data contains
unseen relations and possibly even unseen mor-
phemes. Such a setup could not possibly be han-
dled by a feature-based model without providing
external knowledge, but it would be interesting to
investigate how successful an analogy-based ap-
proach would be in that case.
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