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Abstract

This paper proposes a method for learning
how to generate narrative by recombining sen-
tences from a previous collection. Given a cor-
pus of story events categorised into 9 topics,
we approximate a deep reinforcement learn-
ing agent policy to recombine them in order
to satisfy narrative structure. We also propose
an evaluation of such a system. The evalua-
tion is based on coherence, interest, and topic,
in order to figure how much sense the gen-
erated stories make, how interesting they are,
and examine whether new narrative topics can
emerge.

1 Introduction

In this work reinforcement learning is used in con-
junction with a shallow generative artificial neural
network (ANN) to generate novel stories. First, a
SkipGram (Mikolov et al., 2013) based model is de-
rived that generates parts of the narrative in a local
neighbourhood (a few consecutive events at time).
An artificial agent is then used to extend its use to
the whole narrative while globally adhering to the
story structure learned by that model.

2 Previous Work

Data-driven approaches for story generation can be
found in (McIntyre and Lapata, 2009; Li et al.,
2013). In (McIntyre and Lapata, 2009), the au-
thors present an end-to-end system to generate sto-
ries by deriving models of interest and coherence
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and a generator that creates stories by consulting a
knowledge base of story elements and their possible
interactions. They improved their work in (McIn-
tyre and Lapata, 2010) by generating stories with
genetic algorithms instead of specified models for
interest. In (Li et al., 2013), the authors recombine
events found in a story corpus with a planning algo-
rithm to create novel stories which consist of events
in the form of simple sentences. Their novelty re-
lies on that they crowd-source the corpus in natu-
ral language sentences and do not need to provide
a pre-defined knowledge base. In that work, they
use paraphrase identification using weighted depen-
dencies (Lintean and Rus, 2009) in order to group
similar events which they use to construct graphs
of narration and a planning algorithm to generate
new stories. (Riedl and Harrison, 2016) use that
work together with Reinforcement Learning in or-
der to teach artificial agents human values. Deep
Reinforcement Learning has been explored in the
context of natural language generation before in the
context of text-based games. In (Narasimhan et al.,
2015) the authors introduce a recurrent neural net-
work which they call LSTM-DQN, to characterise
the states of the worlds of text-based Multi-User
Dungeon games. They then use Deep Q-learning
(Mnih and others, 2015) to learn optimal policies for
such games. In (He et al., 2016) the authors intro-
duce a novel type of ANN called Deep Reinforce-
ment Relevance Network which allows for separate
ANNs to use for the states and actions of the agents
allowing actions of arbitrary number or complexity
to be taken by the agent. In this work we use such
a network with an actor-critic method and devise a



data driven approach for story generation to learn
how to construct narratives from a collection of sto-
ries.

3 Methodology

3.1 Event Representation

We used 519 stories from the SCHEHERAZADE sys-
tem (Li et al., 2013)1 which contains simple sto-
ries pertaining to 9 topics with an average length
of 7-16 events per story per topic. These stories
consist of simple sentences, each describing a sin-
gle event. Using the Stanford NLP parser, we ex-
tract the Universal Dependencies (Chen and Man-
ning, 2014; Nivre et al., 2016) of each sentence as
a list of relations in the form rel(head,modifier)
where rel is the relation type and head, modifier
are literals. We further lemmatize each head and
modifier using WordNet (Miller, 1995) in order to
reduce the total number of literals we have to deal
with. Narratives are sequences of events which in
turn are simple sentences that describe a character
action or a stative. We use universal dependencies
and a shallow ANN in order to derive a useful and
compact representation for each event. Having de-
rived a set of all the dependencies found in the cor-
pus each event is represented as a vector vk of the
form [Hdep1 Hdep2 . . .Mdep1 Mdep2]

T where Hdep

corresponds to the head of dependency dep, Mdep

to the modifier and each of those elements can take
as values an integer that serves as the index for the
literals found in the corpus.

After we extract a vector vk for each event k in
our corpus, we use an ANN to learn a compact rep-
resentation of our events such that two similar events
have similar representations. Instead of measuring
grammatical similarity as in (Li et al., 2013) we con-
sider as similar events the ones that are used in a sim-
ilar context. For this we use a model similar to the
SkipGram (Mikolov et al., 2013). This model de-
rives a low-dimensional fixed-length representation
space that maps events that are used similarly, close
in that space thus implicitly ”grouping” them to-
gether. It also gives probabilities of each event hap-
pening, based on previous events. The SkipGram
model can be seen in Figure 1a.

1http://boyangli.co/openstory.php

Choosing such a model allows us to capture rela-
tions between neighbouring events, in a similar way
to that of the original SkipGram that captures analo-
gies of words in language. We can then use these
learned relations to generate events that satisfy them
and thus create ”coherent” narratives. It also allows
us to implicitly group events. This means that, in the
process of generating a narrative, when choosing on
an event to include, we do have a probability of in-
cluding a different, but similar, event. Finally, we
can use it with events not found in the corpus it has
been trained with. As long as we can feed it a vector
representation of the new event it will be mapped
close to similar events in the corpus. We will see
that by using the model generatively to predict the
context from a starting event we can already make
sensible narratives.

3.2 Generative Model

In Section 3.1 we introduced our SkipGram Model.
This model has been trained to give an approxima-
tion of the context of an event, given that event. The
context of an event in our case consists of the events
that immediately surround it. By starting from a ran-
dom event that can begin a narrative, the model gives
the probability of the next event. An example of a
narrative generated can be seen in Figure 2b. Gener-
ating narratives this way, while it appears adequate,
suffers from a serious limitation. Since the model is
trained on an event and its immediate surroundings,
it is not possible to capture longer distance depen-
dencies in the narrative. In other words, we cannot
interrupt a coherent sequence of events and come at
it later so the model is ”forced” to keep very close to
the corpus in order to maintain coherence.

3.3 Deep Reinforcement Learning

Reinforcement learning is the field that studies how
an abstract mathematical entity, called an agent, can
interact with an environment E in order to maximise
a numerical quantity (Sutton and Barto, 1998). We
call an instance of the environment at time t a state
st, the quantity to maximise a utility Ut. The agent
interacts with the environment by executing a series
of actions ai and receiving a series of immediate re-
wards rt. The utility Ut is related to the immedi-
ate rewards rt by the expression: Ut =

∑t
n=1 rn.

The series of actions the agent takes based on the



state of the environment is modelled by a policy π.
The policy can be seen as a probability distribution
π(at = ai|st). The problem of reinforcement learn-
ing therefore is to find a policy that maximises the
utility for the agent in a given environment. In or-
der to generate policies, RL algorithms usually ap-
proximate a value function V (st) or an action-value
function Q(st, at). V (st) gives a measure of how
beneficial is for the agent to exist at the state st and
Q(st, at) how beneficial it is for the agent to be at
state st and execute action at. Deep Reinforcement
Learning (DRL) approximates Q, V , E , or π with
a Deep Neural Network. A popular approach for
training agents works by suggesting an action at us-
ing a model called an actor and evaluates it using
a model called a critic. The method we use in this
work is called Deep Deterministic Policy Gradient
(Lillicrap et al., 2016) with the actor and critic mod-
els being the deep neural networks that appear in
Figures 1b and 1c respectively. The model of the
critic is inspired by the Deep Reinforcement Rele-
vance Network given in (He et al., 2016). The actor
approximates an event to be included in the narrative
and the critic evaluates it based on the current state
of the narrative. The state of the narrative is at ev-
ery point a simple concatenation of the embeddings
(as given by the hidden layer in 1a) of the events in-
cluded in that narrative until that point. At every step
the reward is calculated based on the distance of the
expected action-event to the selected event so that it
awards adding events to the narrative when those are
close to the ones we expect to see, and punishes by
a small amount unexpected events. Punishing unex-
pected events might appear counter-intuitive at first
glance since story generation systems are expected
to generate unexpected events. This is compensated
by the stochastic nature of policies found by actor-
critic methods which will also assign a small proba-
bility to an unexpected event happening.

4 Evaluation

In order to evaluate the system’s capability to gen-
erate interesting narratives human evaluation is nec-
essary. Towards this goal, an evaluation experiment
has been designed which is based on similar eval-
uation approaches found in data-driven story gen-
eration approaches (Li et al., 2013; McIntyre and

Lapata, 2010) and asks 20 subjects to evaluate 40
narratives from which 10 are from our corpus of
human-made narratives, 10 narratives generated by
randomly combining events from the corpus, 10 are
narratives generated by the SkipGram Model given
in Figure 1a and 10 by the DDPG agent. Each sub-
ject evaluates 8 narratives based on number of ed-
its (rearranging, deleting, or adding new events) re-
quired to make the narrative more coherent, interest
rated on a scale from 1 to 5 (1 being ”Not at all in-
teresting” and 5 being ”Very Interesting”) as well as
asked to give one word that better describes the topic
of the narrative. This last task can helps us figure
out whether new topics emerge from our system by
combining events from different topics. Since this
is work in progress, we lack experiment results. In
the absence of human evaluation results we could
do some qualitative examining of generated narra-
tives. Figures 2a and 2c show narratives found in our
original corpus and in Figures 2b and 2d narratives
generated by the generative model and the DDPG
agent respectively. We can see that the narrative in
2b tries to follow the narrative found in 2c however
it deviates in its conclusion. Instead of kneeling in
front of Sally and proposing, the narrative ends with
John kissing Sally. An important note here is that
for the most first part of the narrative, the genera-
tive model followed almost exactly the story found
in the corpus. This is a weakness of the model that
arises from learning relations only between neigh-
bouring events. A more interesting narrative is the
one found in 2d. This narrative combines events
from the narrative in Figure 2a, the one in 2c, as
well as others found in the corpus. Narratives gener-
ated by the DDPG agent tend to explore more events
while narratives generated by the generative model
tend to stick to the corpus.

5 Discussion/Future Work

We have presented a system that can learn narra-
tive structure from a collection of stories presented
in natural language. This work builds on the work
of (Li et al., 2013) and tries to improve it in sev-
eral ways. First, instead of grouping events based
on grammatical similarity we use similarity based
on context. In that work, events are also parsed into
universal dependencies and grammatical similarity



(a) SkipGram model

(b) actor

(c) critic

Figure 1: The Skipgram model, and the models for the
actor and the critic. Circles represent fully connected
neuron layers with the number of neurons being the num-
ber inside the circle. The smoothed rectangles represent
the activation functions with relu being the linear rec-
tifier and softmax a softmax output. |E| is the number
of events in our database, and D the narrative corpus as a
matrix of features. The dot symbolises the dot product. L
is the number of the events making up the narrative, π(st)
the policy at state st, Q(st, at) the state-action value for
the policy π.

between the heads and modifiers of the same depen-
dencies is used to cluster events. This requires sim-
ilar sentence structure for different events in order
for such similarity to be meaningful. We get past
this limitation by deriving a fixed length represen-
tation by using the model in Figure 1a and thus we
are able to compare sentences of variable structure.
Since our similarity is based on how events are used
in a narrative, we can interchangeably use two sen-
tences that refer to the same event but are grammat-
ically different (e.g. ”Sally agreed to marry John.”
and ”Sally said yes.”).

The second is that the use of an agent allows for
complex relations in the narrative, unknown in ad-
vance, to be captured as showcased by (Narasimhan
et al., 2015; He et al., 2016), as well as arbitrary au-
thorial goals when carefully introduced in the reward
function. One could for example augment the cor-
pus of available events with information about emo-
tions (Francisco and Hervás, 2007) and then reward

“ John loved Sally John wanted to marry Sally John bought
an engagement ring John took Sally to the park John and
Sally enjoyed a picnic John got down on one knee John
presented the ring to Sally Sally started to cry John asked
Sally to marry John Sally agreed Sally put on the ring John
and Sally hugged ”

(a) An example narrative from the corpus.

“ John entered Sally’s house. John and Sally entered the
living room. John and Sally sat on the sofa. John picked
up Sally’s hand. John kissed Sally’s hand. Sally smiled at
John. John let go of Sally’s hand. John stood up. John
kissed Sally. ”
(b) An example narrative generated by using the SkipGram
Model generatively.

“ Sally opened the door. John entered Sally’s house. John
and Sally entered the living room. John and Sally sat on
the sofa. John picked up Sally’s hand. John kissed Sally’s
hand. Sally smiled at John. John let go of Sally’s hand.
John stood up. John kneeled in front of Sally. John took a
ring box out of his pocket. Sally pressed both hands against
her cheeks. John proposed to Sally. Sally took the ring box
from John. Sally opened the ring box. Sally took the ring
out of the ring box. John took the ring from Sally. John put
the ring on Sally’s left third finger. ”

(c) An example narrative from the corpus.

“ John loved Sally. John presented the ring to Sally. John
let go of Sally’s hand. Sally and John laughed. Sally and
John kissed. John told Sally how beautiful she is. Sally
blushed. ”
(d) An example narrative generated by using the DDPG
agent.

Figure 2: Examples of narratives.

events with the desired emotional content. The use
of an agent that can also create narrative allows us-
age in a multiagent, or even interactive environment.
This is not very obvious in the current work because
experiments have not been yet conducted but an ex-
ample would be an agent that learned from narra-
tives of topic ”proposal”, another that learned from
”affairs” to work together (i.e. by alternating be-
tween the choices of the two agents after a couple
of sentences), to produce something in the lines of a
”family drama”.



The current research leaves some things to be de-
sired. While he have designed an experiment for
the evaluation of the system, we have yet to run
it through human subjects, who are the ones who
can judge if a system exhibits creativity. We can-
not therefore have a discussion about whether our
system is creative. The narrative generation capac-
ity is limited among other things by the corpus it-
self. We can only make as many novel stories as
can be made by recombining the available events.
Given that the vectors of the events (Section 3.1) in
the corpus constitute only a limited subset of values
in that vector space we should be able to generate
novel events mapped from within that space once
we had a way to map from narrative to surface text.
In (Kumagai et al., 2016), the authors present a sys-
tem that can generate language given syntactic struc-
ture as well as semantic information. Our event vec-
tor representation maintains syntactic structure data
which could be combined with that work to generate
surface text. Another issue is that learning is done
exclusively on the narrative-structure level without
taking into account any consideration any extra in-
formation in the stories. One could use character-
isation of story events and heuristics of narration
similar to the STellA system presented in (León and
Gervás, 2014). We speculate that such heuristics can
be used as rewards in the context of reinforcement
learning and thus guide learning. More technical is-
sues relate to problems that can be met both in re-
inforcement and in deep learning. Training the net-
works and the agent is sensitive to hyper-parameters
as well as network architecture. Since this is work
in progress both the architecture and the hyperpa-
rameters have been chosen intuitively by hand and
by no means we can claim these are optimal. Bet-
ter design parameters can be chosen in a robust way
through exhaustive cross validation.
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