
Synthetic Literature.
Writing Science Fiction in a Co-Creative Process

Enrique Manjavacas [1, 3]
enrique.manjavacas@uantwerpen.be

Folgert Karsdorp [2]
folgert.karsdorp@meertens.knaw.nl

Ben Burtenshaw [1, 3]
benjamin.burtenshaw@uantwerpen.be

Mike Kestemont [1, 3]
mike.kestemont@uantwerpen.be

Computational Linguistics & Psycholinguistics Research Center [1]
The University of Antwerp, Lange Winkelstraat 40-42, Antwerp, Belgium

Meertens Instituut [2]
Oudezijds Achterburgwal 185, 1012 DK Amsterdam, The Netherlands

Antwerp Centre for Digital Humanities and Literary Criticism [3]
The University of Antwerp, Prinsstraat 13, Antwerp, Belgium

Abstract

This paper describes a co-creative text gener-
ation system applied within a science fiction
setting to be used by an established novelist.
The project was initiated as part of The Dutch
Book Week, and the generated text will be
published within a volume of science fiction
stories. We explore the ramifications of apply-
ing Natural Language Generation within a co-
creative process, and examine where the co-
creative setting challenges both writer and ma-
chine. We employ a character-level language
model to generate text based on a large corpus
of Dutch novels that exposes a number of tun-
able parameters to the user. The system is used
through a custom graphical user interface, that
helps the writer to elicit, modify and incor-
porate suggestions by the text generation sys-
tem. Besides a literary work, the output of the
present project also includes user-generated
meta-data that is expected to contribute to the
quantitative evaluation of the text-generation
system and the co-creative process involved.

1 Introduction

In this paper we present ongoing work towards de-
veloping a text editing application, through which an

established author of Dutch-language literary fiction
will use an AI-based text generation system with the
goal of producing a valuable piece of literature. Our
aim is to create a stimulating environment that fos-
ters co-creation: ideally, the machine should output
valuable suggestions, to which the author retains a
significant stake within the creative process.

The present project is part of a large-scale ini-
tiative by the CPNB (‘Stichting Collectieve Propa-
ganda van het Nederlandse Boek’, ‘Collective Pro-
motion for the Dutch Book’). In Fall 2017, CPNB
will launch their annual media campaign, which this
year focuses on robotics. To this end, CPNB will
distribute a re-edition of the Dutch translation of
Isaac Asimov’s I, Robot that is planned to include an
additional piece written as part of a human-machine
collaboration.

This project report is structured as follows. We
first introduce the CPNB in greater detail, with spe-
cial emphasis on their annual media campaign. We
go on to introduce this year’s ‘Robotics’ theme, and
the way it centers around Asimov’s I, Robot. Then,
we concisely survey the state of the art in text gener-
ation from the point of view of co-creation between
human and machine. Next, we describe our current



text generation system, starting with the large body
of Dutch-language fiction (4000+ novels) that is at
the basis of our experiments, as well as its prepro-
cessing. We describe our choice of architecture for
Natural Language Generation (NLG)—a character-
level Language Model (LM) based on Recurrent
Neural Networks (RNN) with attractive properties
for the present task — and discuss how author and
genre-specific voices can be implemented through
fine-tuning of pre-trained LMs. We present ample
examples to illustrate the model’s output for various
settings. We also discuss possible ways to evalu-
ate our system empirically—a common bottleneck
of text generation systems—, through the monitor-
ing of user’s behavior and selectional preferences.
Finally, we discuss the design of the interface of our
application, emphasizing various ways in which the
author will be able to interact with the software.

1.1 Trust for the Collective Promotion of the
Dutch-language Book

The CPNB1 is a trust and PR agency based in The
Netherlands that aims to promote the visibility of
books and the publishing sector in Dutch society
at large. The agency is responsible for a num-
ber of high-visibility annual initiatives, such as the
‘Boekenbal’ (‘Book ball’) and Boekenweek (‘Book
week’).

These initiatives often center around specific
themes. For the 2017 campaign Nederland
leest (‘The Netherlands reads’), the CPNB chose
‘robotics’ as the overarching theme for their cam-
paign. Thereby further exacerbating the debate as
the societal opportunities and challenges that come
with the increase of artificial intelligence in every-
day life, as well as literature. The campaign, for in-
stance, includes the distribution of promotional ma-
terial for children (see Figure 1), as well as copies
of I, Robot (1950)—the well-known science fiction
novel by Isaac Asimov—in its Dutch translation Ik,
Robot (1966) by Leo Zelders, which serves as the
focal point of the 2017 campaign. The novel is
composed of interrelated short stories, prepublished
in the journal Astounding Science Fiction between
1940 and 1950. They revolve around the fictional

1Stichting Collectieve Propaganda van het Nederlandse
Boek: https://www.cpnb.nl.

character of robot-psychologist Dr. Susan Calvin.
The novel is especially famous because of the ‘Three
Laws of Robotics’ which feature as an intriguing
ethical backdrop.

The CPNB wanted to encourage debate about the
role of AI and robotics in literature through the ad-
dition of a 10th short story co-created by an es-
tablished fiction writer and a machine. An award-
winning Dutch author, Ronald Giphart, agreed to
take part in this experiment.

Figure 1: Make-it-yourself cardboard robot. Promotional ma-

terial distributed as part of the 2017 ‘Nederland leest!’ cam-

paign by the CPNB on robotics and books.

1.2 Co-creativity

Co-creativity is a collaborative process between
multiple agents, where in this context, one agent is
a computational system. Davis sees co-creativity
as the ’blending’ of improvisational forces (Davis,
2013). This goes against the pragmatic distribu-
tional of labor that we might see in creative support



systems, or how computers are treated in everyday
life, and invites them into an indistinct and overlap-
ping process of creativitiy. Where crucially, the re-
sult of the output is greater than ’the sum of its parts’
(Davis, 2013).

Interestingly, as pointed out by existing literature
(Lubart, 2005; Davis, 2013; Jordanous, 2017), the
public are suspicious of systems that purport to be
autonomous whilst in fact involve human partici-
pation. Whilst for Lubart the opposite is the case.
Lubart reorientates the scientific perception of these
systems into one aligned with Human Computer In-
teraction, where they are examples of successful fa-
cilitators of improvisation (Lubart, 2005). Lubart
clarifies co-creativity into four distinct roles for a
computational system; ’Computer as nanny’, ‘Com-
puter as penpal’, ‘Computer as coach’, ‘Computer
as colleague’ (Lubart, 2005, p. 366). In this project
we are most interested in achieving the last, though
in practice, much of what our system does could be
considered under the second. For a more thorough
overview of co-creativity and its role within com-
putational creativity research, see the proceeding
of The International Conference on Computational
Creativity 2012 (Maher, 2012), and for a broader of
view of the term in relation to computing, look to the
work of Edmonds and Candy (Edmonds et al., 2005;
Candy and Edmonds, 2002).

Developing NLG systems within a co-creative en-
vironment allows researchers to utilize the human
agent within the system’s workflow, allowing for ap-
proaches that are potentially too experimental for
a solely computational approach. Furthermore, co-
creation adds a collaborative and challenging dimen-
sion to the process of writing, which in turn encour-
ages the human writer. That said, though collabora-
tion is commonplace in writing, it is not always wel-
come. The creative process of writing is associated
with a fluidity that can easily be hindered or broken;
Umberto Eco’s renowned ’How to write a thesis’ as-
serts that writers should nurture their process (Eco,
2015). In developing this system alongside novelist
Ronald Giphart, we sought to apply our work within
his established methodology in a way that enriches
both parties.

From a technical point of view, there is a possi-
bility to limit the collaborative NLG system to an
assistive role, solely aiding the writer. However, a

valid collaboration should provoke and challenge the
writer. It should test them, push them, and ask them
to reconsider their approach. To achieve this balance
we chose to treat the writer as a competent handler of
text, completely capable of dealing with generated
language, and unlikely to be overwhelmed. This ap-
proach certainly would not work for all applications,
but seems appropriate to a professional science fic-
tion writer.

As Natural Language Generation develops into a
useful instrument in the creation of fictional prose,
inherent questions arise around how computational
systems relate to human writers. Nowhere else are
these questions more at home than in science fiction
literature, where readers and writers are eager to ex-
plore the speculative limits of technology. This will-
ingness allowed us to consider the practical implica-
tions and qualities of co-creative writing, and how
they manifest within the interface itself (see Section
4).

2 Related Work

Natural Language Generation within a collaborative
writing environment is an active area of research.
The co-creative setting gives scope to apply exper-
imental approaches within the dynamic context of
a working process. Here we will outline two es-
tablished approaches: the structural diagramatic ap-
proach, and the auto-completion approach. Ahn,
Morbini and Gordon use causal graphs to map the
narrative steps of a story which the writer can ma-
nipulate into the eventual story structure, the sys-
tem will then use probabilistic modeling to generate
language around that skeleton. This approach gives
the system access to the abstract narrative core of a
story’s structure; arguably, in doing so the system
imposes upon the writer a far more structured ap-
proach than they are likely familiar with. A collab-
orative system should be able to fit within a writ-
ers existing working process (Ahn et al., 2016).
Roemelle and Gordon offer a more hands on ap-
proach to assistive writing. Their system acts as
a ’Narrative Auto-Completion’, where the writer is
prompted with possible sentences (Roemmele and
Gordon, 2015). Though straightforward, this ap-
proach is highly intuitive and unobtrusive; however,
the system risks fulfilling the role of tool rather than



collaborator. As such, Creative Help is a retrieval-
based system, as appose to the generative approach
presented below.

Narrative generation has been a central topic of
computational creativity for decades. One of the first
examples is Tale-Spin, a system that generates Ae-
sop’s Fables guided by a user’s keyword suggestions
(Meehan, 1977). More recently and nearer to this
project, McIntyre and Lapata developed a proba-
bilistic narrative generator that uses user-input to re-
trieve related phrases (McIntyre and Lapata, 2009).
The system here differentiates itself from those by
working on the character level. Generated text re-
produces the style and voice of its training material,
but does not directly sample quotes verbatim from
the training material.

3 Method

3.1 Collection and Preprocessing

The first step in constructing our NLG system was to
compile a sufficiently large corpus of literary works.
In the present study, we employ a large collection
of Dutch novels in epub format (Williams, 2011),
which contains a diverse set of novels in terms of
genre, and is heterogeneous in style. In total, the col-
lection consists of 4,392 novels, written by approxi-
mately 1,600 different authors. The average number
of novels written by each author is 2.5. The large
standard deviation of 6.5 is caused by the skewed
distribution in which a few authors contribute rel-
atively large oeuvres, such as detective writer Ap-
pie Baantjer. The novels were tokenized for words,
sentences and paragraphs using the Tokenizer Ucto,
which was configured for the Dutch language (Van
Gompel et al., 2012). The total number of sen-
tences, words and characters in the tokenized col-
lection (including punctuation) amounts to approxi-
mately 24.6M, 425.5M, and 2.1G, respectively. On
average, each novel consists of 3k sentences, 59k
words, and 309,531k characters.

3.2 Character-level Language Models for NLG

The aim of this project is to contribute to literary
writing in a co-creative environment, as opposed to
solely narrative generation. Therefore, we approach
NLG using character-based Language Models (LM)
which typically reason at a local level, in the order

of some few hundreds of characters. Because of this,
the LM is only implicitly aware of the global narra-
tive structure, but still powerful enough to capture
sentence semantics in a unsupervised fashion.

An LM is a probabilistic model of linguistic se-
quences that estimate a probability distribution over
a given vocabulary conditioned on the previous text
(left-to-right model). More formally, at a given step
t, an LM defines a conditional probability, express-
ing the likelihood that a certain vocabulary item
(typically a word or character) will appear next:

LM(wt) = P (wt|w1, w2, ..., wt−2, wt−1) (1)

Different LM implementations exist, which diverge
in the manner in which they model the previous text.
Given their probabilistic nature, LMs are straight-
forward to deploy for NLG. The generative process
is defined by sampling a character from the output
distribution at step t, which is then recursively fed
back into the model, potentially preceded by the pre-
vious output of the model, to condition the next gen-
eration at step t + 1. A few decoding approaches
can be implemented based on different sampling
strategies. For instance, a rather naive approach to-
wards sampling is to select each character so as to
maximize a generated sequence’s overall probabil-
ity. Nevertheless, for a large vocabulary size (e.g. in
the case of a word-level model), the search soon be-
comes infeasible; therefore, approximate decoding
methods, such as beam search, are used to find an
ideal solution. When used for generation, the naive
argmax decoding strategy has a tendency towards
relatively repetitive sentences, that are too uninspir-
ing to be of much use in a creative setting. For the
present work, we therefore decode new characters
via sampling from the multinomial distribution at
each step.

It is interesting to note that the different decoding
approaches stand in a trade-off relationship between
diversity and correctness. For example, whereas
argmax decoding will tend to generate sentences
that are very similar, general and monotonous yet
formally correct (e.g. more similar to the sen-
tences observed in the training corpus), multinomial
sampling will make the output diverge more from
the original training data, and therefore produce a
more varied output, with a tendency towards for-
mally incorrect sentences. Focusing on our chosen



approach—multinomial sampling—, the described
trade-off can be operationalized and used to our ad-
vantage by letting the author explore model param-
eters. This is implemented by exposing a parame-
ter τ , commonly referred to as “temperature”, that
controls the skewness of the model’s output distri-
bution. Given the output distribution at a given step
p = (p1, p2, ..., pV ), a vocabulary size of V , and the
temperature value τ , we can compute a transforma-
tion of pτ of the original p through Equation 2

pτi =
p

1
τ
i∑V
j p

1
τ
j

(2)

pτ will flatten the original distribution for higher val-
ues of τ— thereby ensuring more variability in the
output. Conversely, for lower values of τ it will skew
the distribution—thereby facilitating the outcome of
the originally more probable symbol. For τ values
approaching zero, we recover the simple argmax de-
coding procedure of picking the highest probability
symbol at each step, whereas for high enough τ the
LM degenerates into a random process in which at
any given step all symbols are equally probable re-
gardless of the history.

In terms of implementations there are two ma-
jor approaches to statistical language modeling—
ngram-based LMs and RNN-based LMs.

3.2.1 Ngram Language Models
Ngram-based LMs (NGLMs) go back to at least

the early 1980s in the context of Statistical Ma-
chine Translation and Speech Recognition (Rosen-
feld, 2000). An NGLM is a direct application of
the Markov assumption to the task of estimating the
next character probability distribution—e.g. it uses a
fixed-length ngram prefix to estimate the next char-
acter probability distribution. An NGLM is basi-
cally a conditional probability table for Equation 1
, that is estimated on the basis of the count data
for ngrams of a given length n. Typically, NGLMs
suffer from a data sparsity problem, because with
larger values of n possible conditioning prefixes will
not be observed in the training data and the cor-
responding probability distribution cannot be esti-
mated. To alleviate the sparsity problem, techniques
such as smoothing and back-off models (Chen and
Goodman, 1999) can be used to either reserve some

probability mass to redistribute it across unobserved
ngrams (smoothing), or resort back to a lower-order
model to provide an approximation to the condi-
tional distribution of an unobserved ngram (back-off
models).

3.2.2 RNN-based Language Models
More recently, a new class of LMs based on Re-

current Neural Networks (Elman, 1990) have been
introduced (Bengio et al., 2003; Mikolov, 2012) and
have quickly increased in popularity due to their bet-
ter theoretical properties (no Markov assumption),
expressive capabilities (information flow through
very long sequences) and performance gains. An
RNNLM processes an input sequence one step t at
a time, feeding the input symbol xt through three
affine transformations with their corresponding non-
linearities. First, the one-hot encoded input vector is
projected into an embedding space of dimensional-
ity M through wt = Wmxt, where Wm ∈ RMxV

is a embedding matrix. Secondly, the resulting char-
acter embedding wt is fed into an RNN layer that
computes a hidden activation ht as a combination of
wt with the hidden activation of the previous step
ht−1. This is shown formally in Equation 3

ht = σ(W ihwi +W hhht−1 + bh) (3)

where W ih ∈ RMxH and W hh ∈ RHxH are re-
spectively the input-to-hidden and hidden-to-hidden
projection matrices, bh is a bias vector and σ is the
sigmoid non-linear function. Finally, the hidden ac-
tivation ht is projected into the vocabulary space of
size V , followed by a softmax function that turns
the output vector into a valid probability distribu-
tion. Formally, the probability of character j at step
t is defined by

Pt,j =
eot,j∑V
k e

ot,k
(4)

where ot,j is the jth entry in the output vector ot =
W hoht and W ho ∈ RV xH is the hidden-to-output
projection.

In practice, training an RNN is difficult due to the
vanishing gradient problem (Hochreiter, 1998) that
makes it hard to apply the back-propagation learn-
ing algorithm (Rumelhart et al., 1986) for parame-
ter learning over very long sequences. Therefore,



it is common to implement the recurrent layer us-
ing an enhanced RNN version to compute ht—such
as Long Short-term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or Gated-Recurrent Unit
(GRU) (Cho et al., 2014)—, which add an explicit
gated mechanism to the traditional RNN in order to
control the preservation of information in the hidden
state over very long sequences.

3.2.3 Model
For the present study, we implement several vari-

ations of the RNNLM, varying the type of the re-
current cell (LSTM, GRU) as well as the values of
different parameters, such as the dimensionality of
the character embedding matrix Wm (24, 46, . . . )
and, more importantly, the size of the hidden layer
H (1024, 2048, . . . ). We train our models through
back-propagation using Stochastic Gradient Descent
(SGD), clipping the gradients before each batch up-
date to a maximum norm value of 5 to avoid the ex-
ploding gradient problem (Pascanu et al., 2013) and
truncating the gradient during back-propagation to
a maximum of 200 recurrent steps to ensure suffi-
ciently long dependencies in the sequence process-
ing. Finally, dropout (Srivastava et al., 2014) is ap-
plied after each recurrent layer following (Zaremba
et al., 2015) to prevent overfitting during full model
training.

3.2.4 Overfitting
After training the full model, we experiment with

further fine-tuning on different author and genre spe-
cific subsets to steer the NLG towards a particular
style. To enforce this effect, we drive the training to-
wards overfitting introducing an intended bias in the
models predictions towards sequences that are more
likely in that particular book subset. We achieve
overfitting by zeroing the dropout rate and running
numerous passes through the subset training data,
with a sufficiently small learning rate. We have al-
ready observed interesting stylistic and genre prop-
erties in the fine-tuned model’s output—see Section
4.2 for an illustration. That said, how the partic-
ular effect of this technique—differing degrees of
overfitting—affects the quality of the generated out-
put still has to be evaluated. The degree of overfit-
ting can easily be quantified and monitored by plot-
ting batched-average perplexity values achieved by

the model for both the training data and the valida-
tion split as shown in Figure 2.

Figure 2: Example of overfitting learning curves during fine-

tuning of a full model on a subset of novels by Isaac Asimov.

4 User Interface

Uncharacteristically for an NLP project, the visual
interface of the system is paramount to its success.
Though ultimately the system will be assessed on
the language it produces, such language can only
be generated if the writer is able to use the system.
Therefore, we have focused on functionalities that
give the user a clear representation of how text is
generated, and allow them to understand how their
own writing is affected by the process. This allows
them to play a defined role within the process of
writing, whilst also encouraging them to use gener-
ated text. The user is able to select which model
to generate text from, so that they can use multi-
ple voices and approaches within the same text (see
Section 3.2.4). The user can define ’temperature’
for any model using a slider bar (see Section 3.2).
The generated text itself is shown as a list of sug-
gestions, along with the model’s own probability
scores, below the main text area. This allows the
writer to choose between a set of options, and get
a broader idea of the models voice. With the help
of user edit meta-data—computed by a string diffing
algorithms—we can track user changes and present
them with a visualization of each fragment’s source
and the degree of the modification.

Figure 3 is a visual representation of how text an-
notation functions. Text annotation reveals to the
writer how generated text is affecting the final text.
As the writer works into text, they could easily lose



Figure 3: Visual feedback on the co-creation process used by

Ronald Giphart. Highlighted fragments are synthetic in origin

with the brightness indicating the amount of modification intro-

duced by the user.

track of its source; therefore, the interface is en-
hanced with visual feedback which highlights based
on edit distance between original generated text and
its current status. Generated text is initially high-
lighted in green, as the writer edits that text its color
fades into white. At the same time, whole words
swapped by the writer are underlined in purple to
differentiate lexical changes (see Figure 3).

4.1 Monitoring the Author
Our project intends to explore the co-creative pro-
cess of science-fiction literature on a quantitative
and objective basis. In line with (Roemmele and
Gordon, 2015), we acknowledge that such a co-
creative interface opens the up possibility for auto-
matic evaluation of generative systems based on user
edits of generated strings. Our interface is there-
fore designed to store all user edits along with the
source of the string (human or machine generated).
This will enable us to study individual user behavior
in relation to the particular properties of the genera-
tive system, as well as the aptness of different model
variants and their parameter settings (e.g. degree of

overfit, temperature, voice) for co-creation, taking
user edit behavior as a proxy for output quality.

4.2 Examples

As explained in the previous section, the evaluation
of a NLG system in a co-creative setting involving
both human and machine amounts to the generated
material incorporated (either explicitly or implicitly)
by the author in the final work. Suggestions about
how to formally and informally evaluate this co-
production process were given in the previous sec-
tion. Here, we provide an exploratory demonstration
of the model’s generation system, where the goal is
to highlight some typical behavior of the system un-
der different parameters settings, author-based fine-
tuning, and text seeds.

We begin with a survey of how different temper-
ature values τ impact the generated text. In Table
1 we list a number of generated sentences for dif-
ferent temperatures given the famous opening sen-
tence “Mijn vrouw is dood en al begraven” (‘My
wife is dead and already buried’) from Marcellus
Emants’ Een nagelaten bekentenis. These examples
have been generated on the basis of a model trained
on the complete collection as described in Section
3.1. Several observations can be made from these
examples. First, the examples showcase the model’s
ability to generate grammatical sentences. Interest-
ingly, the sentences become syntactically more com-
plex as the temperature increases (as explained in
Section 3.2), and also exhibit less repetitive gram-
matical structures (cf. the repetition of possessive
van constructions with τ = 0.1). Second, a simi-
lar diversifying effect can be observed on the lexical
level. Higher temperatures are more likely to gen-
erate less frequent and semantically more specific
lexical material (cf. the decrease in reusing the same
word twice, as well as the increase of names in the fi-
nal two examples). Third, depending on the reader’s
willingness to search for semantic coherence, most
generated sentences can be read as plausible contin-
uations of the input seed. Finally, with increased
temperature values the model composes sentences
with higher semantic and cognitive complexity, jux-
taposing and combining less common concepts and
thoughts. Within certain limits, we expect such in-
creased ‘creativity’ to encourage and provoke the
human writer in the process of writing.



τ
seed

Mijn vrouw is dood en al begraven. My wife is dead and already buried.

0.1 De volgende dag werd er een bericht van de politie
gevonden. De verklaring van de politie was een van
de belangrijkste verklaringen van de man die het
verhaal van de politie had gehoord.

The next day, a police message was found. The
police’s statement was one of the most important
statements of the man who heard the story by the
police.

0.3 De dokter keek op zijn horloge. Ze was er zeker
van dat hij die dag niet meer zou komen. Hij was
niet gek. Hij was niet van plan om zijn dochter te
vertellen dat hij haar een keer had gezien.

The doctor looked at his watch. She was sure he
wouldn’t come anymore that day. He wasn’t crazy.
He did not intend to tell his daughter he’d seen her
once.

0.5 De tranen weerklonken over haar gezicht en voelde
ze in haar keel. Ze was er niet. Ze was er zeker
van dat ze alleen maar een affaire had gehad met
de meisjes.

The tears resounded over her face and she felt them
in her throat. She wasn’t there. She was sure she
had only had an affair with the girls.

0.7 Ze zegt dat het weer in San Sebastian naar Cali-
fornië haar deel van de wereld is. Ze moet van de
wereld naar de hemel hebben gelopen.

She says that the weather in San Sebastian to Cal-
ifornia is her part of the world. She must have
walked from the world to heaven.

0.9 Lucas kon niet met zichzelf trouwen en toen hij
achteloos met zijn gebaren zat te praten maakte hij
deel uit van de lessen van de waarheid.

Lucas couldn’t marry himself, and when he spoke
painlessly with his gestures, he was part of the
lessons of truth.

Table 1: Example of our current NLG system with translation seeded by ”Mijn vrouw is dood en al begraven” (My wife is dead

and already buried) for different temperature τ values.

Having explored the impact of temperature on the
full model’s output, we now proceed with a brief il-
lustration and informal evaluation of the generated
output of two fine-tuned models. As explained in
Section 3.2.4, we experiment with constructing fine-
tuned models for specific styles, genres or authors by
post-training on a subset of the collection and driv-
ing the training towards overfitting. In this section,
we demonstrate the effect of overfitting two models
post-trained on novels by Isaac Asimov and Ronald
Giphart, who form the heart of the CPNB’s robotics
campaign. Using the same seed from Table 1, we
observe a clear style shift when generating sentences
using either the Asimov or Giphart model. For ex-
ample, with a temperature setting of τ = 0.4 the
Asimov model produces utterances such as: “Mijn
vrouw is dood en al begraven. ‘Het is de groot-
ste misdaad die ik ooit heb gezien.’ ‘Weet u dat
zeker?’ ‘Ja.’ ‘En als dat zo is, wat is dan wel de
waarheid?’ (My wife is dead and already buried. ‘It
is the biggest crime I’ve ever seen.’ ‘Are you sure?’
‘Yes.’ ‘And if so, what is the truth?’). By contrast,
a model overfitted on novels by Giphart generates
output such as: “Mijn vrouw is dood en al begraven.
Ik heb het over een door mij gefotografeerde vrouw,
een hoofd dat met haar borsten over mijn schouder

ligt. Ik heb de film geschreven die ik mijn leven lang
heb geleefd.” (‘My wife is dead and already buried.
I’m talking about a woman I once photographed, a
head with her breasts over my shoulder. I wrote the
movie I’ve lived my life for a long time.’) Both con-
tinuations are semantically plausible, yet written in
completely different styles, and put focus on differ-
ent concepts (e.g. ‘crime’ versus ‘erotics’), both typ-
ical of their respective training material.

5 Conclusion

In this paper we have outlined an applied text gen-
eration system and graphical user interface, that to-
gether facilitate co-creative environment in which to
write science fiction literature. We have highlighted
an existing challenge within state of the art systems,
to balance a challenging intervention into the writing
process, with the risk of becoming a solely a writing
tool. The character-level recurrent neural network
for NLG that we have used is experimental within
a solely computational approach, and therefore we
have leveraged the specific advantages of working
with a professional writer to maximize this system’s
ability to be applied. We have how to facilitate a
writer to use a language model. We have outlined



evaluation procedures for the current NLG system,
utilizing user-generated meta-data and quantifying
the extent of retained synthetic text.

Acknowledgments

We would like to thank Ronald Giphart for his time
and energy and Stichting Collectieve Propaganda
van het Nederlandse Boek for initiating the collabo-
ration.

References
Emily Ahn, Fabrizio Morbini, and Andrew S. Gordon.

2016. Improving Fluency in Narrative Text Gener-
ation With Grammatical Transformations and Prob-
abilistic Parsing. In The 9th International Natural
Language Generation conference, pages 70–74, Edin-
burgh, UK. ACL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Linda Candy and Ernest Edmonds. 2002. Modeling co-
creativity in art and technology. In Proceedings of the
4th conference on Creativity & cognition, pages 134–
141, Loughborough, UK. ACM.

Stanley F Chen and Joshua Goodman. 1999. An empir-
ical study of smoothing techniques for language mod-
eling. Computer Speech and Language, 13:359–394.

Kyunghyun Cho, Bart Van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Properties
of Neural Machine Translation : Encoder – Decoder
Approaches. Ssst-2014, pages 103–111.

Nicholas Davis. 2013. Human-computer co-creativity:
Blending human and computational creativity. In
Ninth Artificial Intelligence and Interactive Digital
Entertainment Conference. AAAI Press.

Umberto Eco. 2015. How to write a thesis. MIT Press.
Ernest A. Edmonds, Alastair Weakley, Linda Candy,

Mark Fell, Roger Knott, and Sandra Pauletto. 2005.
The studio as laboratory: Combining creative practice
and digital technology research. International Journal
of Human-Computer Studies, 63(4-5):452–481, Octo-
ber.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Sepp Hochreiter. 1998. The Vanishing Gradient
Problem During Learning Recurrent Neural Nets and

Problem Solutions. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems,
06(02):107–116.

Anna Jordanous. 2017. Co-creativity and perceptions of
computational agents in co-creativity. In Proceedings
of the Eighth International Conference on Computa-
tional Creativity, Atlanta, US. ACC.

Todd Lubart. 2005. How can computers be partners in
the creative process: Classification and commentary
on the Special Issue. International Journal of Human-
Computer Studies, 63(4-5):365–369, October.

Mary Lou Maher. 2012. Computational and Collective
Creativity: Who’s Being Creative? In Proceedings
of the 3rd International Conference on Computer Cre-
ativity, pages 67–71, Dublin, Ireland. ACC.

Neil McIntyre and Mirella Lapata. 2009. Learning to tell
tales: A data-driven approach to story generation. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP: Volume 1-Volume 1, pages 217–225, Sin-
gapore. Association for Computational Linguistics.

James R. Meehan. 1977. TALE-SPIN: An interactive
program that writes stories. In Proceedings of the 5th
International Joint Conference on Ar tificial Intelli-
gence, pages 91–98.

Tomas Mikolov. 2012. Statistical Language Models
Based on Neural Networks.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the Difficulties of Training Recurrent Neural
Networks. Icml, (2):1–9.

Melissa Roemmele and Andrew S. Gordon. 2015. Cre-
ative help: a story writing assistant. In International
Conference on Interactive Digital Storytelling, pages
81–92. Springer.

Ronald Rosenfeld. 2000. Two decades of statistical lan-
guage modeling: where do we go from here? Pro-
ceedings of the IEEE, 88(8):1270–1278.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Maarten Van Gompel, Ko Van Der Sloot, and Antal Van
den Bosch. 2012. Ucto: Unicode Tokeniser Reference
Guide. Technical report.

Greg Williams. 2011. EPUB: Primer, Preview, and Prog-
nostications. Collection Management, 36(3):182–191.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2015. Recurrent Neural Network Regularization.
ICLR, pages 1–8.


