
CC-NLG 2017

The INLG 2017 Workshop on

Computational Creativity
in

Natural Language Generation

Proceedings of the Workshop

4th September 2017
University of Santiago Compostela

Spain

ii

Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-81-4

iii

Introduction

Welcome to the second edition of the Workshop on Computational Creativity in Natural
Language Generation (CC-NLG), collocated with INLG 2017, the International Conference
on Natural Language Generation. As a follow-up of CC-NLG 2016, this workshop builds
upon the dynamic of bringing together researchers dealing with text generation from a compu-
tational creativity perspective, and researchers in natural language generation with an interest
in creative aspects.

These two communities have been working separately for many years, as the focus in each
one of them has been different: creativity research tends to be less focused on technical issues
in natural language generation, and more on issues related to cognition, aesthetics, and nov-
elty; while NLG research tends to focus on technical and theoretical aspects of processes, the
informativeness of textual content, and readability of output. However, recent progress in both
fields is reducing many of these differences – with creativity projects moving more towards ro-
bust implementation, and NLG research including stylistics, variation and literary genres such
as poetry or narrative. We believe they are now approaching the point where they can mutually
benefit from ongoing work. By encouraging members of both communities to discuss work
in related topics with each other, we hope to move towards better joint understanding of the
problems involved.

These proceedings include a total of five papers, three focused on poetry generation and
two on story generation.

Hugo Gonçalo Oliveira, Ben Burtenshaw, Mike Kestemont, Tom De Smedt

iv

Organizers

Workshop Chairs:

Hugo Gonçalo Oliveira, University of Coimbra
Ben Burtenshaw, University of Antwerp
Mike Kestemont, University of Antwerp
Tom De Smedt, University of Antwerp

Program Committee:

Pablo Gervás, Universidad Complutense de Madrid
Matthew Purver, Queen Mary University of London
Ehud Reiter, University of Aberdeen
Cyril Labbé, Université Grenoble Alpe
François Portet, Université Grenoble Alpes
Hannu Toivonen, University of Helsinki
Alessandro Valitutti, University College Dublin
Tony Veale, University College Dublin
Rafael Pérez y Pérez, Universidad Autónoma Metropolitana at Cuajimalpa
Raquel Hervás, Universidad Complutense de Madrid
Amílcar Cardoso, University of Coimbra
Carlos León, Universidad Complutense de Madrid
Sascha Griffiths, Universität Hamburg
Folgert Karsdorp, Meertens Instituut, Royal Dutch Academy of Arts and Sciences
Florian Kunneman, Radboud University, Nijmegen

v

Table of Contents

A Feast for the Senses in 140 Characters or Less (Invited Talk)
Tony Veale . 1

Poet’s Little Helper: A methodology for computer-based poetry generation. A case study for
the Basque language

Aitzol Astigarraga, José María Martínez-Otzeta, Igor Rodriguez, Basilio Sierra and Elena
Lazkano . 2

O Poeta Artificial 2.0: Increasing Meaningfulness in a Poetry Generation Twitter bot
Hugo Gonçalo Oliveira . 11

Template-Free Construction of Poems with Thematic Cohesion and Enjambment
Pablo Gervás . 21

Synthetic Literature: Writing Science Fiction in a Co-Creative Process
Enrique Manjavacas, Folgert Karsdorp, Ben Burtenshaw and Mike Kestemont 29

Constructing narrative using a generative model and continuous action policies
Emmanouil Theofanis Chourdakis and Joshua Reiss . 38

vi

Conference Programme
Monday, 4th September

14:30–16:30 Session 1

14:30–14:40 Short introduction

14:40–15:30 A Feast for the Senses in 140 Characters or Less (Invited Talk)
Tony Veale

15:30–16:00 O Poeta Artificial 2.0: Increasing Meaningfulness in a Poetry Genera-
tion Twitter bot
Hugo Gonçalo Oliveira

16:00–16:30 Template-Free Construction of Poems with Thematic Cohesion and En-
jambment
Pablo Gervás

16:30–17:00 Coffee break

17:00–19:00 Session 2

17:00–17:30 Poet’s Little Helper: A methodology for computer-based poetry gener-
ation. A case study for the Basque language
Aitzol Astigarraga, José María Martínez-Otzeta, Igor Rodriguez,
Basilio Sierra and Elena Lazkano

17:30–17:50 If then or else: Who for whom about what in which
Manuel Portela and Ana Marques Da Silva

17:50–18:10 Constructing narrative using a generative model and continuous action
policies
Emmanouil Theofanis Chourdakis and Joshua Reiss

18:10–18:40 Synthetic Literature: Writing Science Fiction in a Co-Creative Process
Enrique Manjavacas, Folgert Karsdorp, Ben Burtenshaw and Mike
Kestemont

18:40 Close

vii

Invited Talk

A Feast for the Senses in 140 Characters or Less
Making Generation More Personal, Affective and Perceptually Grounded

By Tony Veale, School of Computer Science, University College Dublin, Ireland.

Shakespeare wrote that a rose by any other name would smell just as sweet, but would this
alternate name be just as effective as a metaphor? Perhaps, though any figurative uses would
surely depend on the exact makeup of the new name. Were we to instead refer to a rose
as a “goreweed,” a “prickbleed,” a “bloodwort” or a “turdblossom” we would surely have
to find new metaphorical uses for this familiar flower. Our metaphors do more than evoke
lexical semantics in the mind of a reader, and the very best can tap into our memories and
perceptual faculties to create a feast for the senses, one that is as rich in colour, texture and
aroma as it is in semantic meaning. So when we bend our machines to the interpretation
and generation of novel metaphors, we must ensure they are as adept with the multi-modal
connotations of words as they are with their denotative semantics. In this work I explore
the mutual grounding of linguistic metaphors in non-linguistic multi-modal stimuli – such as
colours and abstract generative art – and vice versa: I show how non-representational visual
stimuli can serve to bind together the various elements of a complex linguistic metaphor, to
squeeze more meaning and connotation from the words than an utterance alone can manage.
In each case these elements are further grounded in the social and the personal, insofar as
the machine-crafted metaphors are generated to reflect the real-time behavioral traits of real
people – the metaphor’s intended audience – on social media. I demonstrate the various strands
of this work using real Twitter “bots” such as @MetaphorMagnet, @BestOfBotWorlds and
@BotOnBotAction. These bots are autonomous AI systems that are designed to interact with
real people on Twitter and to showcase the applicability of machine-generated (but human-
targeted and human-centered) metaphors in social media. I aim to show how they can offer an
ideal vehicle for exploring the related themes of symbolic grounding, affective meaning and
multi-modal creativity in language generation.

1

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Poet’s Little Helper: A methodology for computer-based poetry generation.
A case study for the Basque language

Aitzol Astigarraga and José Marı́a Martı́nez-Otzeta
and Igor Rodriguez and Basilio Sierra and Elena Lazkano

Department of Computer Science and Artificial Intelligence
University of the Basque Country UPV/EHU

Donostia-San Sebastian 20018, Spain
aitzol.astigarraga@ehu.eus

Abstract

We present Poet’s Little Helper (PLH), a tool
that implements a methodology to generate
poetry using minimal language-dependent in-
formation. The user only needs to provide
a corpus with a set of sentences, a rhyme
checker and a syllable-counter. From these
building blocks, PLH produces: (1) an ex-
ploratory analysis of the suitability of the
given corpus for poetry generation. (2) a
novel and non-trivial poem grammatically cor-
rect under metrical and rhyming constraints.
This poem also shows content that is coher-
ent with a topic given by the user. The
process of poetry generation is a cycle with
three phases: lexical exploratory analysis, se-
mantic exploratory analysis and poem gener-
ation. The goal is twofold: on the one hand
PLH aims to be a useful open source poem-
generator for many languages with minimal
effort; on the other hand, analizes how the par-
ticularities of each corpus affect in the creation
of poems. The presented PHL tool is offered
in a public repository. The results of an exper-
iment with a corpus of Basque texts is shown.

1 Introduction

Poetry is a form of literary expression intended to
convey emotions in the audience, and in which the
expression of feelings and ideas is given intensity
by the use of style and rhythm according to pre-
defined formal rules. Poetry generation is a chal-
lenging field in the area of Natural Language Pro-
cessing. When a poem is automatically created by
computational means, usually the programmer takes
advantage of existing general semantic knowledge

from resources like WordNet for semantic valida-
tion, or of already known formalized grammars for
sentence generation. Furthermore, most of the ex-
isting poetry-generation systems are devoted to the
English language (Gonçalo Oliveira, 2015). For mi-
nority languages with low presence in the natural
language processing community the most usual sce-
nario is a lack of such computational resources.

In this paper we present a methodology to help
researchers in generating poetry automatically. This
methodology is composed of two different phases:
the first one devoted to the exploratory analysis (lex-
ical and semantic) of the corpora provided for poetry
generation, and the second one focused on the auto-
matic generation of the final poem given the results
of the previous phase. We provide a tool which im-
plements the above mentioned steps.

The rest of the paper is organized as follows: sec-
tion 2 introduces the main poetry generation systems
and the strategy implemented in the PLH tool; sec-
tion 3 aims to give a formal definition of the pre-
sented methodology; section 4 describes the source
code of the PLH tool; section 5 shows an application
of the proposed method to the Basque language; and
the final section 6 presents the conclusions and pos-
sible future lines of research.

2 Poetry Generation

Computational modeling for poetry generation has
become a topic in the artificial intelligence commu-
nity in recent years. Before the computer science
community took an interest in the area, people with
a background closer to humanities made early ef-
forts in systematic generation of poetry. We could

2

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

mention works related to generating variations over
a predetermined set of verses (Queneau, 1961), or to
select a template to produce poems from it (Oulipo,
1981).

In recent years many different computer-based
poetry generation systems have been developed.
Among the most relevant ones we could include the
well-known WASP (Gervás, 2000; Gervás, 2010),
a Spanish verse-generation system developed fol-
lowing the generate-and-test strategy; Full-FACE
(Colton et al., 2012), a corpus-based poetry gener-
ation system which introduces emotions in the gen-
eration process; PoeTryMe (Gonçalo Oliveira et al.,
2014; Gonçalo Oliveira and Cardoso, 2015), a po-
etry generation platform used for Portuguese, Span-
ish and English; DopeLearning (Malmi et al., 2016),
where the task of lyric generation is formulated as an
information retrieval task. An approach using text
mining methods, morphological analysis, and mor-
phological synthesis to produce poetry in Finnish
is presented in (Toivanen et al., 2012). Constraint
programming for poetry composition is explored in
(Toivanen et al., 2013). In (Agirrezabal et al., 2013)
an approach of poetry generation based on POS-tag
is described. Markov chains are also widely used as
a basis of poetry generation systems. Popular and re-
cent examples of N-gram generators are (Barbieri et
al., 2012; Das and Gambäck, 2014; Gervás, 2016).

For a more thorough review of systems related to
automatic generation of poetry, we point the reader
to (Gervás, 2013) and (Lamb et al., 2016).

Our poetry generator is based on the following
principles:

• Form: rhyme and metric compound the tech-
nical requirements of a verse. Thus, find-
ing rhymes and counting syllables are essential
abilities that the system must perform.

• Content: the output of the verse generator mod-
ule must be meaningful. Methods to measure
the semantic coherence of the generated text
are needed.

The verse generation procedure relies in the ex-
traction of sentences from corpora and combining
them (under rhyme and metric constraints) to form
the final poem. Semantic relatedness or internal co-
herence between poem verses is measured with an

implementation of LSA (Latent Semantic Analysis)
method (Deerwester et al., 1990). The main assump-
tion of LSA is that words that are close in meaning
will occur in similar pieces of text. A matrix con-
taining word counts per verse is constructed from
a corpus and singular value decomposition (SVD)
is used to reduce the dimensionality of the seman-
tic space. Verses are then compared by taking the
cosine distance between their two vector represen-
tations, where a higher value is associated with a
higher semantic similarity.

Thus, in a basic scenario, the user provides a topic
and the kind of poem to be composed, and the sys-
tem aims to give as output a novel poem with content
semantically related to the proposed topic.

3 Methodology

In this section the proposed methodology is de-
scribed. The process of poetry generation is a cy-
cle with three phases: lexical exploratory analysis,
semantic exploratory analysis and poem generation.
Lexical and semantic richness is largely required for
acceptable poem generation, and exploring the lexi-
cal and semantic dimensions of the data could help
the researcher to focus on improving it along their
weaknesses.

3.1 Lexical exploratory analysis

Regarding the lexical exploratory analysis, we de-
fine the following actions:

• Count the number of potential verses.

• Find the number of verses which do not adjust
to the rhyming convention, and show their end-
ings.

• Find the number of verses which rhyme with a
given word, and list them.

• Compute the number of rhyming equivalence
classes of the set of verses. A rhyming equiv-
alence class is a set of verses which share the
same rhyming pattern.

• Compute the number of rhyming equivalence
classes of the set of verses that have more el-
ements than the minimum number of rhyming
verses in a poem. This is the number of valid

3

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

equivalence classes, in the sense that elements
from the other equivalence classes cannot form
part of a poem.

• Create a list with a verse from every equiva-
lence class along with the number of elements
in such equivalence class.

• Plot the number of verses in each equivalence
class.

• Plot the logarithm of the number of verses in
each equivalence class. Useful when the distri-
bution is very skewed.

• Plot the histogram of the number of equiv-
alence classes according to the equivalence
class size. Another way of exploring the distri-
bution of equivalence classes according to their
size.

• Plot the histogram of the number of equiva-
lence classes according to the logarithm of the
equivalence class size.

3.2 Semantic analysis
The semantic exploratory analysis subtask is com-
prised of several steps:

• Build a semantic model from the set of docu-
ments Ds provided by the user.

• Find the verses more similar to a given theme
according to the semantic models.

• Find the verses more similar to a given theme
according to the semantic models and that also
rhyme with a sentence.

3.3 Poetry generation
For the poetry generation subtask the steps are the
following:

• Ignore equivalence classes with fewer elements
that the minimum needed. In this step the
equivalence classes from which a poem cannot
be created are ignored.

• Compute the best poems given a theme accord-
ing to a goodness function. Several goodness
functions are available to create poems.

3.4 Formal definition

Let us start with some terminology. N will denote
the set of natural numbers. R will denote the set of
real numbers. A document d ∈ D is a sequence of
words (w ∈ W) and punctuation marks (m ∈ M)
and spaces which follows the syntactic conventions
of the language. A verse v ∈ V is a document d
under some restrictions. The power set of a set S
will be denoted with P(S).

The elements that the user has to define before
applying this methodology are the following:

• A set of documents (Ds) which is used to infer
the semantic models used later.

• A set of documents (Dv) which is used to obtain
the verses.

• A set of (M) of punctuation marks. The el-
ements of this set will be removed when per-
forming semantic analysis.

• A natural number NV ∈ N6=0 denoting the
number of verses in a poem.

• A sequence of rhyme patterns RP ∈
{0, 1, ..., NV }NV . The rhyme patterns in the
poem have to be encoded in the following man-
ner: the rhyme pattern of the first verse corre-
sponds to the number zero; for the pattern of a
new verse, if such a rhyming pattern already ex-
ists, the number corresponding to that pattern is
written, or the first natural number not yet cho-
sen otherwise. For example, four verses with
the same rhyming pattern would be written as
0, 0, 0, 0. Six verses with rhyming patterns by
consecutive pairs will be 0, 0, 1, 1, 2, 2. The
pattern 0, 1, 1, 2, 2, 1, 1, 0 would correspond-
ing to eight verses where the last three patterns
are the same as the first three patterns, but re-
versed.

• A function (extract verses : D → P(V)) that
extracts all the potential verses from a docu-
ment.

• A lemmatizer function (lemmatize : W →
W), which returns a lemmatized word.

4

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

• A rhyming function (is rhyme : D2 →
{T, F}) that returns True if the two documents
rhyme, and False otherwise.

The system should already have other elements
defined. In the following functions, S will denote
the set of semantic models.

• A function (clean document : D ×M → D)
which returns the document without punctua-
tion marks.

• A function (semantics extractor : D × N ×
W ∗ × N × R → S) that returns a semantic
model. This function takes five parameters to
generate a semantic model (LSA). The param-
eters are: a set of documents used to build the
semantic model; the number of topics which
should be used to create the semantic model;
a list of words to be removed from the doc-
uments; a parameter indicating the minimum
document number in which a word should ap-
pear; and a parameter indicating the maximum
fraction of the total documents in which a word
could appear.

• A similarity function (sim : D2 → R), which
returns the similarity between two documents.

• A rhyme detector function
(rhyme generator : D × P(V) → P(V)),
which returns all the rhyming verses given a
document.

• Several poem generator functions
(poem generator : V ×D×N×NNV ×S→
P(V)), that given a set of verses, a document,
a number of verses, a rhyming pattern and
a semantic model, returns a poem under the
constraints imposed by the number of verses
and the rhyming pattern; the poem will be
semantically related to a document under
a semantic model. The document above
referred can be viewed as the theme of the
poem. These generator functions will differ
in their inner implementation of another two
auxiliary functions: a poem validator function
(poem validator : P(V) → {T, F}), which
returns True if the poem conforms to the poetry

rules, and False otherwise, and a poem good-
ness function (poem goodness : P(V) → R),
which returns a value for every set of verses
according to its quality.

4 Open source code

A public repository has been created with the basic
code needed to implement this methodology 1. The
code is a collection of Python modules and Jupyter
notebooks, which, after installation, allows people
with little knowledge of the Python language to per-
form the analysis on their own.

The structure of the code is the following:

4.1 Modules

• Customize. It contains the following defi-
nitions, that have to be customized accord-
ing to the needs of the researcher: the file-
names where Ds and Dv are stored, M and
RP as Python tuples, the natural number NV,
and the functions extract verses, lemmatize and
is rhyme.

• General. General functions not directly related
to natural language processing or poetry gen-
eration. For instance, list manipulation or his-
togram drawing functions are defined here.

• NLP. Functions related to natural language pro-
cessing. The construction and manipulation of
semantic models takes place here.

• Poetry. Functions related to poetry generation.
Rhyming and poem construction takes place
here.

4.2 Notebooks

• Get started. This notebook will be called from
the other two. The researcher does not need to
open it, given that it only contains some code
that is automatically executed to initialize the
system.

• Exploratory analysis. Here, the code that al-
lows exploration of the lexical and semantic
possibilities of the verses is located.

1https://github.com/rsait/PLH

5

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

• poem generation. The notebook where the last
step, the poetry generation, is performed. The
researcher, after analyzing the data with the Ex-
ploratory analysis notebook, is ready to exe-
cute this code and create automated poetry.

5 Case study

Verse improvisation (under the name of Bertsolar-
itza) is a traditional cultural expression in the Basque
Country. With ancient roots, it has undergone a re-
vival in the last times, being widely popular.

In this section we present the experiments made
with a corpus of Basque texts to produce poems un-
der the formal requirements of Basque poetry. This
corpus is the set of all the news that appeared in
the Basque newspaper Egunkaria in the years 2002-
2003, which comprises 1,277,457 sentences. The
results of the exploratory analysis are shown along
with some automatically produced poetry. The
selected poetry meter for experiments is Zortziko
Txikia, a composition of eight lines in which odd
lines have seven syllables and even ones have six.
The union of each odd line with the next even line,
forms a verse. Each verse has 13 syllables with a
caesura after the 7th syllable (7 + 6) and must rhyme
with the others2.

5.1 Building blocks

As previously said, some building blocks are needed
in order to apply the proposed methodology. In this
case those blocks were defined in the following man-
ner:

• The set of documents Ds from which the se-
mantics models are created is the Basque cor-
pus previously referenced.

• The set of documents Dv from which extract
the potential verses is equivalent to Ds.

• The set of punctuation marks is M = (, . ? ! ” ’
/ \).

• A syllable counter function that counts the
syllables of the input text.

2http://www.bertsozale.eus/en/
bertsolaritza/what-is-a-bertso

• The rhyming function is rhyme that returns
all the rhyming lines given an input line. It is
based on (Amuriza, 1981) and implemented us-
ing regular expressions.

• The natural number NV that denotes the num-
ber of verses in a poem. In Zortziko Txikia this
number is 4.

• The sequence of rhyme patterns RP . In
Zortziko Txikia this sequence is (0, 0, 0, 0). It
means that all the verses have to rhyme among
themselves.

5.2 Lexical exploratory analysis
The following actions have been performed auto-
matically with the help of our lexical exploratory
software:

• Count the number of potential verses: 41659.

• Find the number of verses which do not adjust
to the Basque rhyming conventions: 139. Per-
centage of the total: 0.33%.

• Find the last words of such verses. Analyz-
ing these words we find the sign %, mak-
ing us wonder if we should expand the set
M , filter these kind of characters or make
another decision. We also find interjections
(”eh”, ”hi”), foreign proper names (”olaf”,
”jerusalem”, ”bush”), Basque proper names
(”unanue”, ”orue”), Roman numerals (”xix”,
”xx”, ”xxi”), acronyms (”eajk”, ”ugt”, ”upn”)
and other words not easily classifiable. After
these step we could decide what to do in ev-
ery case: for example, we could modify the
rhyming function to add those Basque names,
expand acronyms or Roman numerals in the
original documents and repeat the verse ex-
traction process, or remove all the no rhyming
verses. We have chosen this last option, that is
provided by our software.

• Compute the number of equivalence classes of
the set of verses, according to the rhyme. In
this example the number of partitions is 184.

• Compute the number of equivalence classes of
the set of verses that have more elements than

6

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

the minimum number of rhyming verses in a
poem. In Zortziko Txikia the rhyme pattern
(RP) is (0, 0, 0, 0), which means any valid
partition has to contain at least four elements,
because a poem is composed by four rhyming
verses. The number of equivalence classes of
minimum size in our example is 141. If RP
would be (0, 1, 0, 1, 0, 1), the minimum equiv-
alence class size would be three, and in the case
of (0, 1, 0, 1, 2, 2), the minimum size would be
two.

• Create a list with a verse of every equivalence
class along with the number of elements in such
equivalence class. Our list is of the form [(’a
aita zenarekin joan zen bertara’, 4441), (’a ar-
rieta hartu zituzten mendean’, 4209), ... , (’zee-
landarrekin ez da ariko lomu’, 1), (’ziganda ba-
diola zalakain gaztelu’, 1)].

• Plot the number of verses in each equivalence
class (figure 1), the logarithm of the number of
verses in each equivalence class (figure 2), the
histogram of the number of equivalence classes
according to the equivalence class size (figure
3) and the histogram of the number of equiva-
lence classes according to the logarithm of the
equivalence class size (figure 4).

These four figures can help the user in the inter-
pretation of the distribution of the rhyming equiva-
lence classes and their relative size, that appears to
follow a power law (Piantadosi, 2014).

Figure 1: Number of verses in each equivalence class

5.3 Semantic exploratory analysis

The following actions have been performed auto-
matically with the help of our semantic exploratory
software:

Figure 2: Logarithm of the number of verses in each equiva-

lence class

Figure 3: Histogram of the number of equivalence classes ac-

cording to the equivalence class size

Figure 4: Histogram of the number of equivalence class ac-

cording to the logarithm of the equivalence class size

• Build a semantic model from the set of docu-
ments Ds provided by the user. The number
of topics has been assigned to 100, filtering all
the words that do not appear in at least 5 doc-
uments, and all the words that appear in more
than 20% of the documents. We have also fil-
tered the stopwords.

• Find the verses more similar to a given theme
according to the semantic models. Taking for
example the theme ”itsaso” (sea), we find sen-

7

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

tences with the word ”itsaso”, but also sen-
tences without that word, but other related
words, as ”txalupa” (small boat) or ”ur” (wa-
ter). We find sentences with the word ”ontzi”,
that could be translated as ”ship” but also as a
”generic container”, highlighting the challeng-
ing issues which polysemy implies.

• Find the verses which are more similar to a
given theme according to the semantic models
and that also rhyme with a sentence. Follow-
ing with the ”itsaso” example, the more simi-
lar verse is ’oliobideetan eta itsasoan’, with a
similarity value of 0.99833471). The three sen-
tences more similar to ”itsaso” that also ful-
fil the rhyming restrictions, along with their
similarity values, are (’zenbait otzara eta ontzi
hareatzan’, 0.91221404), (’paper eta ontzien
birziklapenean’, 0.88736451), and (’delas eta
izura oraindik ontzian’, 0.83049005).

5.4 Poetry generation
For a poem to be valid, it has to be composed of
the number of verses given by NV and follow the
rhyming pattern given by RP. No two verses are al-
lowed to share the same final word. In the following
we will refer to the document to which the poem has
to be semantically related, as the theme t. Two dif-
ferent poem generator strategies have been used to
build a poem.

1. Choose the verse v more similar to the theme t.
Then choose the NV − 1 verses more similar
to t that follow the rhyming pattern RP .

2. Choose the ten verses v more similar to the
theme t. Then, for each of the ten verses,
choose the NV − 1 verses more similar to t
that follow the rhyming pattern RP . The poem
with highest score is chosen.

For each of these two functions, two examples are
shown, using different themes t. In the first exam-
ple, the theme ”itsaso” (sea) has been chosen, and in
the other ”gurasoak” (parents) has been used. NV
is equal to four, and the RP pattern is (0, 0, 0, 0),
meaning that all the verses have to share the same
rhyming pattern.

The verse more similar to the theme is ’oliobidee-
tan eta itsasoan’ (in oil paths and in the sea). The

Table 1: Poem created with the verse more similar to the theme

”itsaso” (”sea”) (in Basque and its English translation)

B
as

qu
e oliobideetan eta itsasoan

atentatu susmoak itsaso beltzean
itsaso baretura itzuli nahian
zenbait otzara eta ontzi hareatzan

E
ng

lis
h in oil paths and in the sea

attack rumors in the sea’s darkness
trying to return to calm sea
several container and ships are going on

Table 2: Best poem in our opinion with the theme ”itsaso”

(”sea”) (in Basque and its English translation)

B
as

qu
e Kantauri itsasoa haserre zeharo

ozeano haunditan egin dugu txango
putz egitea ere tokatu ezkero
maitatu eta negar egin baitut Bilbo

E
ng

lis
h Cantabrian Sea very angry

we have made a trip to the vast stormy ocean
if we are emerged to make blow
I have loved and cried, Bilbao

poem generated choosing the three verses more sim-
ilar to to theme is shown in Table 1.

The same experiment has been performed choos-
ing the best ten verses and then computing the best
poem among the ten ones generated. The same
poem is ranked the first with this approach, but in
our opinion, the poem in Table 2 (which ranked 8th
of 10) is the best of all ten.

Table 3: Poem created with the verse more similar to the theme

”gurasoak” (”parents”) (in Basque and its English translation)

B
as

qu
e nire gurasoentzat Peret kristona zen

haiekin bi urteko alaba zeukaten
familia osoak topa zitezkeen
noizbait haur bat badator nahiz ez jakin nor den

E
ng

lis
h Peret was very good in my parents’ opinion

with these people they had a two years old daughter
for all the family to get together
sometimes a child comes and I do not know who (s)he is

In the second example the theme ”gurasoak”
(”parents”) has been chosen. With the same proce-
dure as in the first example, the verse more similar
to the theme is ’nire gurasoentzat Peret kristona zen’
(Peret3 was very good in my parents’ opinion), and
the poem generated choosing the three verses more
similar to the theme is shown in Table 3. When
performing the same experiment with the best ten
verses, another poem, shown in Table 4 is chosen.
As in the previous example, we found the poem in
Table 5 (ranked 10th of 10) the best for our liking.

3A Spanish singer

8

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Table 4: Best poem built from the ten verses more similar to

the theme ”gurasoak” (”parents”) (in Basque and its English

translation)

B
as

qu
e ikastolako haurren txanda izango da

haurtzaindegietatik haur eskoletara
haur danborradarako Easo Ederra
eta gero eta haur gehiago dira

E
ng

lis
h It will be school children turn

from nursery to school
children drum performance in San Sebastian
there are more and more kids

Table 5: Best poem in our opinion with the theme ”gurasoak”

(”parents”) (in Basque and its English translation)

B
as

qu
e ahizpa ere haurrei irakasten dabil

aitona hola dabil makur eta ixil
zuk errondak atera bai ibili trankil
Londreseko Paddington geltokitik hurbil

E
ng

lis
h (S)he is teaching to his/her sister and children

the grandfather goes on bowed and silent
you carry on calm proposing challenges
close to London’s Paddington station

Let us remember that the goal of the methodology
and the associated code is to help the user to explore
the possibilities of their data. In this example we find
that the generated poems are not of high quality, and
that even we do not agree with the relative ordering
of them given by the code. So, which conclusions
could we extract from these facts? We already have
tools to find all the verses related to a theme ordered
by relevance, so one first step could be to check if
such ordering is suitable. If that it is not the case, it
is very likely the process of the semantic model con-
struction needs some tuning. Or maybe the problem
lies in the few number of verses that rhyme with the
most promising candidates. This could be also ex-
plored with our tool. In our case, it looks as if the
verses with a haiku-like structure are better valued
by our ear. This makes us wonder if the poem good-
ness function could take into account this fact, and
weight down the poems with all the verses very re-
lated to the theme, or those with too many repeated
words between verses.

6 Conclusions and further work

In this work a methodology to guide the exploration
of the possibilities of a collection of documents to
perform automatic poetry generation has been de-
scribed. Along with it a tool and its source code
written in Python has been presented. The possibili-
ties of the system have been shown with an example

in Basque language.
As further work, we intend to add more function-

alities to the lexical and semantic exploratory sub-
systems, as well as to the poetry generation subsys-
tem. Another ways of building poems, as for ex-
ample using genetic algorithms or Markov chains,
would be of interest. The poem goodness functions
are fixed and predefined, but it would be possible
to be customizable by the researcher. Another idea
would be to get a feedback from the researcher or
a knowledgeable user about the subjective goodness
of a poem, in order to improve the goodness func-
tions that the system uses. At this moment a brute
force approach is applied in the lexical and seman-
tic exploration and in the poetry generation, which
could imply a heavy computational load with big
corpora. We plan to tackle these issues in new ver-
sions of the software.

Acknowledgements

This paper has been supported by the Spanish
Ministerio de Economı́a y Competitividad, contract
TIN2015-64395-R (MINECO/FEDER, UE), as well
as by the Basque Government, contract IT900-16.

References
Manex Agirrezabal, Bertol Arrieta, Aitzol Astigarraga,

and Mans Hulden. 2013. POS-Tag based poetry gen-
eration with WordNet. In ENLG 2013 - Proceedings
of the 14th European Workshop on Natural Language
Generation, August 8-9, 2013, Sofia, Bulgaria, pages
162–166.

Xabier Amuriza. 1981. Hiztegi Errimatua (Rhyming
Dictionary). Lanku Kultur Zerbitzuak (publisher).

Gabriele Barbieri, François Pachet, Pierre Roy, and
Mirko Degli Esposti. 2012. Markov constraints for
generating lyrics with style. In Proceedings of the 20th
European Conference on Artificial Intelligence, pages
115–120. IOS Press.

Simon Colton, Jacob Goodwin, and Tony Veale. 2012.
Full-FACE poetry generation. In Proceedings of
the Third International Conference on Computational
Creativity, pages 95–102.

Amitava Das and Björn Gambäck. 2014. Poetic ma-
chine: Computational creativity for automatic poetry
generation in bengali. In 5th International Conference
on Computational Creativity, ICCC, pages 230–238.

Scott Deerwester, Susan T Dumais, George W Furnas,
Thomas K Landauer, and Richard Harshman. 1990.

9

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 2–10,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391–
407.

Pablo Gervás. 2000. WASP: Evaluation of differ-
ent strategies for the automatic generation of Spanish
verse. In Proceedings of the AISB-00 Symposium on
Creative & Cultural Aspects of AI, pages 93–100. Cite-
seer.

Pablo Gervás. 2010. Engineering linguistic creativ-
ity: Bird flight and jet planes. In Proceedings of
the NAACL HLT 2010 Second Workshop on Computa-
tional Approaches to Linguistic Creativity, pages 23–
30. Association for Computational Linguistics.

Pablo Gervás. 2013. Computational modelling of poetry
generation. In Artificial Intelligence and Poetry Sym-
posium, AISB Convention 2013, University of Exeter,
United Kingdom. The Society for the Study of Artifi-
cial Intelligence and the Simulation of Behaviour.

Pablo Gervás. 2016. Constrained creation of poetic
forms during theme-driven exploration of a domain
defined by an N-gram model. Connection Science,
28(2):111–130.

Hugo Gonçalo Oliveira and Amı́lcar Cardoso. 2015.
Poetry generation with PoeTryMe. In Computa-
tional Creativity Research: Towards Creative Ma-
chines, pages 243–266. Springer.

Hugo Gonçalo Oliveira, Raquel Hervás, Alberto Dı́az,
and Pablo Gervás. 2014. Adapting a generic platform
for poetry generation to produce spanish poems. In
ICCC, pages 63–71.

Hugo Gonçalo Oliveira. 2015. Automatic genera-
tion of poetry inspired by twitter trends. In In-
ternational Joint Conference on Knowledge Discov-
ery, Knowledge Engineering, and Knowledge Man-
agement, pages 13–27. Springer.

Carolyn Lamb, Daniel G Brown, and Charles LA Clarke.
2016. A taxonomy of generative poetry techniques. In
Bridges Finland Conference Proceedings, pages 195–
202.

E. Malmi, P. Takala, H. Toivonen, T. Raiko, and A. Gio-
nis. 2016. Dopelearning: a computational approach
to rap lyrics generation. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 195–204.

Association Oulipo. 1981. Atlas de litterature poten-
tielle. Collection Idees. Gallimard.

Steven T Piantadosi. 2014. Zipf’s word frequency law
in natural language: A critical review and future di-
rections. Psychonomic bulletin & review, 21(5):1112–
1130.

Raymond Queneau. 1961. 100.000.000.000.000 de po-
emes. Gallimard Series. Schoenhof’s Foreign Books.

Jukka Toivanen, Hannu Toivonen, Alessandro Valitutti,
Oskar Gross, et al. 2012. Corpus-based generation
of content and form in poetry. In Proceedings of
the Third International Conference on Computational
Creativity, pages 175–179.

Jukka Toivanen, Matti Järvisalo, Hannu Toivonen, et al.
2013. Harnessing constraint programming for poetry
composition. In Proceedings of the Fourth Interna-
tional Conference on Computational Creativity, pages
160–167.

10

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

O Poeta Artificial 2.0:
Increasing Meaningfulness in a Poetry Generation Twitter bot

Hugo Gonçalo Oliveira
CISUC, Department of Informatics Engineering

University of Coimbra, Portugal
hroliv@dei.uc.pt

Abstract

O Poeta Artificial is a bot that tweets poems, in Por-
tuguese, inspired by the latest Twitter trends. Built on
top of PoeTryMe, a poetry generation platform, so far
it had only produced poems based on a set of keywords
in tweets about a trend. This paper presents recently im-
plemented features for increasing the connection between
the produced text and the target trend through the reuti-
lisation and production of new text fragments, for high-
lighting the trend, paraphrasing text by Twitter users, or
based on extracted or inferred semantic relations.

1 Introduction

Poetry generation is a popular task at the intersection
of Computational Creativity and Natural Language
Generation. It aims at producing text that exhibits
poetic features at formal and content level, while, to
some extent, syntactic rules should still be followed
and a meaningful message should be transmitted, of-
ten through figurative language. Instead of generat-
ing a poem that uses a set of user-given keywords
or around an abstract concept, several poetry gener-
ators produce poetry inspired by a given prose docu-
ment. Besides the potential application to entertain-
ment, this provides a specific and tighter context for
assessing the poem’s interpretability.

This paper presents new features of O Poeta Arti-
ficial (Portuguese for “The Artificial Poet”), a com-
putational system that produces poems written in
Portuguese, inspired by the latest trends on the so-
cial network Twitter and, similarly to other creative
systems, posts them in the same network, through
the @poetartificial account. O Poeta Artificial is
built on top of PoeTryMe (Gonçalo Oliveira, 2012),

a poetry generation platform, and originally used
the latter for producing poetry from a set of fre-
quent keywords in tweets that mentioned the target
trend. O Poeta Artificial 2.0, hereafter shortened
to Poeta 2.0, resulted from recent developments on
the original version, aimed at increasing the inter-
pretability of its results through a higher connection
with the trend. The new features enable the reutilisa-
tion of fragments of human-produced tweets, possi-
bly with a word replaced by its synonym, as well as
the inclusion of fragments that highlight the trend,
or fragments obtained from relations extracted from
tweets about the trend, or even inferred from the lat-
ter. Produced poems may include some new frag-
ments and others produced by the original proce-
dure (hereafter, the classic way), based on the ex-
tracted keywords, while keeping a regular metre and
favouring the presence of rhymes.

The remainder of this paper starts with a brief
overview on poetry generation systems and creative
Twitter bots, followed by a short introduction to
PoeTryMe and how it is used by the Twitter bot. Af-
ter this, the new features of Poeta 2.0 are described,
with a strong focus on new kinds of fragments pro-
duced by this system. Before concluding, the results
of Poeta 2.0 are illustrated with some poems pro-
duced, using different kinds of fragments.

2 Related Work

Automatic poetry generators are a specific kind of
Natural Language Generation (NLG) systems where
the produced text exhibits poetic features, such
as a pre-defined metre and rhymes, together with
some level of abstraction and figurative language.

11

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Many poetry generators have been developed and
described in the literature (see Gonçalo Oliveira
(2017b)), especially in the domain of Computational
Creativity. They are typically knowledge-intensive
intelligent systems that deal with several levels of
language, from lexical choice to semantics.

Several systems produce poetry based on given
stimuli, which can be a set of semantic predi-
cates (Manurung, 2003), one (Charnley et al., 2014)
or more seed words (Gonçalo Oliveira, 2012), a
prose description of a message (Gervás, 2001), or
a longer piece of text, such as blog posts (Misztal
and Indurkhya, 2014) or newspaper articles (Colton
et al., 2012; Rashel and Manurung, 2014; Toiva-
nen et al., 2014; Tobing and Manurung, 2015;
Gonçalo Oliveira and Alves, 2016). Longer docu-
ments used as inspiration can be reflected in the po-
ems through the use of keywords (Rashel and Ma-
nurung, 2014), associations (Toivanen et al., 2014),
phrases (Charnley et al., 2014), similes (Colton
et al., 2012), dependency (Tobing and Manurung,
2015) or semantic relations (Gonçalo Oliveira and
Alves, 2016) extracted from them, and may also
transmit the same sentiment (Colton et al., 2012) or
emotions (Misztal and Indurkhya, 2014). Poems are
typically built from templates, either handcrafted or
extracted from human-produced poems, then filled
with information from the inspiration document.

Twitter has become a popular platform for bots,
mostly because of its nature – many users posting
short messages (tweets), available on real time –
and its friendly API, which exposes much informa-
tion, easily used by computational systems. This is
also true for creative bots. Some use Twitter merely
as a showcase for exhibiting their results, possibly
enabling some kind of user interaction, liking or
retweeting. Those include, for instance, bots for
producing riddles (Guerrero et al., 2015) or Inter-
net Memes (Gonçalo Oliveira et al., 2016). Other
bots also exploit information on Twitter for pro-
ducing their contents. This happens, for instance,
for @poetartificial (Gonçalo Oliveira, 2016), which
produces poetry, in Portuguese, roughly inspired
by current trends, and is the focus of the follow-
ing sections. It is also the case of @Metaphor-
Magnet (Veale et al., 2015) and its “brother” bots,
who produce novel metaphors, through the same
generating mechanisms as a poetry generation sys-

tem (Veale, 2013), more focused on content and not
so much on form.

Despite the growing number of intelligent bots,
Twitter has many other bots, some of which
performing tasks that are typically in the do-
main of creativity, but through not so intelli-
gent and knowledge-poor processes. Those in-
clude @MetaphorMinute, which generates random
metaphors, or @pentametron, which retweets pair-
ings of random rhyming tweets, both with ten met-
rical syllables.

Besides bots, other creative systems produce con-
tent inspired by information circulating on Twitter,
including poetry. FloWr (Charnley et al., 2014) is a
platform for implementing creative systems, which
has been used for producing poetry by selecting
phrases from human-produced tweets, based on sen-
timent and theme, and organising them according
to a target metre and rhyme. TwitSonnet (Lamb et
al., 2017) builds poems with tweets retrieved with a
given keyword in a time interval, scored according
to the poetic criteria of: reaction (presence of words
that transmit a desired emotion), meaning (pres-
ence of given keywords and frequent tri-grams), and
craft (metre and rhyme, plus words with strong im-
agery). Several poems by TwitSonnet were posted
on Tumblr, another micro-blogging social network.
Instead of templates, the previous systems reuse
complete text fragments extracted from Twitter.

3 PoeTryMe and O Poeta Artificial

O Poeta Artificial (Gonçalo Oliveira, 2016) is
a Twitter bot that tweets poems written in Por-
tuguese and inspired by recent trends in the Por-
tuguese Twitter community. It is built on top of
PoeTryMe (Gonçalo Oliveira, 2012), a poetry gen-
eration platform with a modular architecture, so far
adapted to produce poetry in different languages and
from different stimuli.

PoeTryMe’s architecture, explained in detail else-
where (Gonçalo Oliveira et al., 2017), is based on
two core modules – a Generation Strategy and the
Lines Generator – and some complementary ones.
To some extent, a parallelism can be made between
this architecture and the traditional ‘strategy’ and
‘tactical’ components of a NLG system (Thompson,
1977). The Generation Strategy implements a plan

12

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

for producing poems according to user-given param-
eters. It may have different implementations and
interact with the Syllable Utils for metre scansion
and rhyme identification. The Lines Generator in-
teracts with a semantic network and a context-free
grammar for producing semantically-coherent frag-
ments of text, to be used as lines of a poem. Each
of those lines will generally use two words that, in
the semantic network, are connected by some rela-
tion R. Those words fill a line template, provided by
the grammar, which is generalised to suit all pairs of
words related by R. For instance, the line template
you’re the X of my Y can be used for render-
ing partOf relations, such as:
• estuary partOf river
→ you’re the estuary of my river

• periscope partOf submarine
→ you’re the periscope of my submarine

• fiber partOf personality
→ you’re the fiber of my personality

In most instantiations of PoeTryMe, a set of seed
words is provided as input for setting the poem do-
main. This constrains the semantic network to re-
lations that involve one of the seeds, with a proba-
bility of selecting also relations with indirectly re-
lated words (known as the ‘surprise factor’). There
is also a module for expanding the set of seeds with
structurally-relevant words, possibly constrained by
a target polarity (positive or negative). Though orig-
inally developed for Portuguese, poetry may also be
generated in Spanish or English, depending on the
underlying linguistic resources, namely the seman-
tic network, the lexicons and the grammars (Gonçalo
Oliveira et al., 2017).

O Poeta Artificial adds an initial layer for select-
ing the seed words to use. Before generation, it:
(i) Selects one of the top trends in the Portuguese
Twitter (the highest not used in the last three po-
ems); (ii) Retrieves recent tweets (currently, up to
200), written in Portuguese and mentioning the tar-
get trend; (iii) Processes each tweet and extracts
every content word used; (iv) Selects top frequent
content words (currently, 4) to be used as seeds;
(v) May expand the seeds, either according to the
main sentiment of the tweets (based on the pres-
ence of emoticons) or, if there is a Wikipedia article
about the trend, with content words from its abstract.
PoeTryMe is then used for producing 25 poems from

the seeds, following a generate-and-test strategy at
the line level. The poem with the highest score for
metre and presence of rhymes is tweeted.

In the original version of O Poeta Artificial, the re-
sult was always a block of four lines, generally with
10 syllables each, and with occasional rhymes. Due
to their generation process, lines were syntactically-
correct and semantically coherent, but the connec-
tion with the trend was often too shallow. For in-
stance, as the trend is typically a hashtag or a named
entity, it is not in the semantic network and thus
never used in the poem. The following section de-
scribes recent developments towards a higher con-
nection with the trend, thus contributing to an im-
proved meaningfulness.

4 Poeta Artificial 2.0: beyond seed words

Poeta 2.0 aims at improving the meaningfulness of
the original bot by increasing the connection of the
produced poems with the target trend and with what
people are saying about it.

A minor improvement occurs in the seed selection
process. Instead of relying exclusively on the fre-
quency of each content word in the tweets, Poeta 2.0
divides it by its frequency in a large Portuguese cor-
pus (Santos and Bick, 2000). This aims to use more
relevant words, and can be seen as an application of
the tf.idf weighting scheme.

Yet, the main feature of Poeta 2.0 is that, besides
seed words, it also provides a set of pre-generated
text fragments to PoeTryMe, somehow connected to
the target trend and that may be used as poem lines.
For every line of the poem to fill, there is a probabil-
ity of using one of the generated fragments instead
of a line produced in the classic way, based on the se-
mantic network and generation grammar. This prob-
ability is proportional to the number of fragments of
this kind available for the target number of syllables.
One of the previous fragments is also used if it has
exactly the target number of syllables and rhymes
with one of the previously used lines.

Another new feature is that, based on the pro-
duced fragments, Poeta 2.0 sets the target length of
the poem lines, though having in mind the maximum
of 140 characters a tweet can contain. More pre-
cisely, it counts the number of syllables of each text
fragment produced and selects a number, between 5

13

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

and 10, for which there are more fragments avail-
able. Poems by Poeta 2.0 are still blocks of four
lines, but each line will have the selected number of
syllables or close.

The remainder of this section describes the differ-
ent types of text fragments that Poeta 2.0 produces,
namely fragments that highlight the trend, fragments
of the processed tweets, paraphrases of the former,
and fragments based on semantic relations. All are
put together in a set of usable fragments. PoeTryMe
will have no idea of how they were produced.

4.1 Fragments Highlighting the Trend

The first kind of fragments is based on a small set
of templates with a placeholder for the target trend,
each highlighting the latter by referring to it as a re-
cent topic that many people are talking about. Some
of those templates are shown in table 1, where T is
the trend placeholder.

andam a escrever/falar sobre T
(they are writing/talking about T)
hoje fala-se de T
(today, people are talking about T)
sobre T vim escrever
(about T I came to write)
interesse por T é global?
(interest for T is global)
T é tendência social
(T is a social trend)
T é um assunto recente
(T is a recent topic)
fala de T muita gente!
(many people chatting about T)
T , porque falam de ti?
(T , why do they chat about you?)
T , T , e T
(T , T , and T)

Table 1: Examples of trend-highlighting templates.

4.2 Fragments of Tweets

Similarly to other systems (Charnley et al., 2014;
Lamb et al., 2017), Poeta 2.0 may reuse text from
human-produced tweets. Recall that, in order to
select the most relevant words for the target trend,
200 tweets written in Portuguese and mentioning
this trend are used as an inspiration set. Among
the processing steps, those tweets are broken into
smaller units, when possible, following simple rules,
such as line breaks or punctuation signs. Each of
the obtained units is added to the set of fragments

Original fragment:
Salvador com dúvidas em aceitar
(Salvador with doubts whether to accept)
Synonyms:
dúvidas = {indecisões, hesitações, incertezas}
(doubts = {indecisions, hesitations, uncertainties}))
aceitar = {aprovar, acatar, adoptar}
(accept = {aprove, obey, adopt})
Paraphrases:
Salvador com indecisões em aceitar
Salvador com hesitações em aceitar
Salvador com incertezas em aceitar
Salvador com dúvidas em aprovar
Salvador com dúvidas em acatar
Salvador com dúvidas em adoptar

Table 2: Tweet and some generated paraphrases.

provided to PoeTryMe. The main difference be-
tween Poeta 2.0 and other poetry generators that use
human-written tweets is that Poeta 2.0 mixes them
with the other kinds of fragments it produces.

4.3 Paraphrases of Tweets
Besides human-written tweets, Poeta 2.0 produces
variations of them. More precisely, it retrieves syn-
onyms of the content words in the previous frag-
ments from PoeTryMe’s semantic network, and pro-
duces new fragments by replacing each content word
with one of its synonyms. Poeta 2.0 may thus find
alternative ways of expressing the same messages
humans did, possibly also covering a wider range of
metres. This has similarities with Tobing and Ma-
nurung (2015), though Poeta 2.0 does not perform
word sense disambiguation because PoeTryMe’s se-
mantic network is not organised in word senses. Al-
though some issues may result from ambiguity, we
prefer to think that, though not completely inten-
tional, using synonyms that only apply for other
senses may create interesting domain shifts. Table 2
illustrates this procedure for a specific fragment.

In order to avoid poems where all lines paraphrase
each other, a maximum of 5 paraphrases are gener-
ated for each content word in a fragment. If a word
has more than 5 synonyms, 5 are randomly selected.

4.4 Semantic Relation-based Fragments
In order to keep the philosophy behind PoeTryMe,
the natural way of increasing interpretability would
be to extract semantic relations from the tweets men-
tioning the trend and adding them to the set of rela-
tions to use. To some extent, we kept this philoso-

14

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

phy, but we also wanted Poeta 2.0 to be independent
from the core of PoeTryMe. This enables the extrac-
tion of relations of different types, more focused on
Twitter text, on the trends, and possibly not so well-
defined, which can be managed without changing
PoeTryMe. The same happens for a new set of line
templates based on the extracted relations, smaller
but more controlled than the line templates covered
by PoeTryMe’s grammars, most of which acquired
automatically from collections of poetry.

Another important reason for this decision is that,
in Portuguese, determiners, adjectives and other
words are declined according to gender and num-
ber. In PoeTryMe, this is handled by a morphology
lexicon and different grammar productions are still
required, depending on the gender and number of the
related words. Yet, while the same lexicon could be
used for acquiring the gender and number of nouns
or adjectives extracted from Twitter, it would not
cover all the trends, which are typically named en-
tities, or hashtags. Therefore, the templates for the
Twitter relations are, as much as possible, gender
and number independent, and only consider these at-
tributes when they can be obtained from PoeTryMe.

In order to produce text fragments based on se-
mantic relations involving the trend, Poeta 2.0 re-
lies primarily on a small set of line templates com-
patible with each of the covered semantic relations.
Yet, it goes further and combines the extracted re-
lations with the relations in PoeTryMe’s semantic
network for inferring new relations and increasing,
once again, the set of available fragments. The fol-
lowing sections describe the three steps involved in
the production of relation-based fragments: extrac-
tion, inference, and text generation.

4.4.1 Relation Extraction
Since Hearst (1992) proposed a set of lexical-

syntactic patterns for the automatic acquisition of
hyponym-hypernym pairs from text, much work has
targeted the automatic extraction of semantic rela-
tions from text, sometimes with much more sophis-
ticated approaches. Yet, when recall is not critical,
one of the arguments is fixed (the trend), and we are
focused on a closed set of relation types, relying on
a small set of lexical-syntactical patterns is proba-
bly the fastest way for achieving this goal. More-
over, it avoids the need for large quantities of en-

coded knowledge and provides higher control on the
results than for machine learning approaches.

Currently, four different relation types are ex-
tracted from the inspiration tweets. This is per-
formed with the help of a small set of patterns, re-
vealed in table 3 and with possible results illustrated
in table 4. In both tables, T stands for the trend, and
a rough translation of the patterns, from Portuguese
to English, is provided.

The extracted relations – isA, hasProperty, has,
can – are tied to the extraction patterns but are not
as semantically well-defined as relations in a word-
net or ontology. Yet, as long as we are aware of this
in the following steps, it is not a critical issue.

4.4.2 Relation Inference
Based on the extracted relations, implicit in the

text, other relations are inferred, when combined
with relations in PoeTryMe’s semantic network. For
Portuguese, the network currently used includes
all the relations in at least two out of nine Por-
tuguese lexical-semantic knowledge bases, includ-
ing wordnets and dictionaries (Gonçalo Oliveira,
2017a). Therefore, it covers a rich set of rela-
tion types including not only synonymy, hyper-
nymy and partOf, but also others, such as isSaid-
OfWhatDoes (in Portuguese, dizSeDoQue), isSaid-
About (dizSeSobre), hasQuality (temQualidade), has-
State (temEstado), antonymyOf (antonimoDe), is-
Part/Member/MaterialOf (parte/membro/materialDe),
and isPartOfWhatIs (parteDeAlgoComPropriedade),
which are exploited by Poeta 2.0

A set of rules was handcrafted for inferring new
relations from a combination of one relation ex-
tracted from the tweets and another in PoeTryMe’s
semantic network. Although more inference rules
may be defined in the future, possibly exploiting ad-
ditional relations, the current rules are in figure 1.
Again, the inferred relations are not as well-defined
as those in a wordnet. Some are of the same types as
the relations originally extracted, but new types are
introduced (e.g. isLike, isNot, withQuality, with-
State, mayCause), some of which may result in
metaphors or less obvious connections, and are thus
useful for poetry generation. Table 5 illustrates some
of the previous rules with examples of relations ex-
tracted, known (i.e. in PoeTryMe’s semantic net-
work), and inferred.

15

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Pattern Relation
... <T> (é|parece) (o|a|um|uma) <N> ... T isA N
(T is a/the N)
... <T> (é|parece) <ADV> <ADJ> ... T hasProperty ADJ
(T is/seems ADJ)
... tão <ADJ> (como|quanto) (o|a|um|uma)? <T> ... T hasProperty ADJ
(as ADJ as a/the? T)
... <T> está <ADJ> ... T hasProperty ADJ
(T is ADJ)
... <T> tem <N> ... T has N
(T has N)
... <T> (está)? a <V> ... T can V
(T is V-ing)
... <V> como (o|a|um|uma)? <T> ... T can V
(V like/as a/the? T)

Table 3: Patterns considered and extracted relations.

Text Relation
Bruno Mars é o rei do pop. Bruno Mars isA rei
(Bruno Mars is the king of pop.) (Bruno Mars isA king)
O Centeno é mesmo brilhante... Centeno hasProperty brilhante
(Centeno is really brilliant...) (Centeno hasProperty brilliant)
Wagner Moura foi tão sincero quanto Lula. Lula hasProperty sincero
(Wagner Moura was as sincere as Lula.) (Lula hasProperty sincere)
O António Costa está feliz da vida! António Costa hasProperty feliz
(António Costa is happy of his life!) (António Costa hasProperty happy)
Lorde tem talento demais. Lorde has talento
(Lorde has too much talent.) (Lorde has talent)
Manuel Serrão a pensar exatamente o mesmo que eu. Manuel Serrão can pensar
(Manuel Serrão is thinking exactly the same as I.) (Manuel Serrão can think)
Cantar como a Adele é dificı́limo! Adele can cantar
(To sing like Adele is so hard!) (Adele can sing)

Table 4: Examples of extracted relations.
Extracted Known Inferred
T isA rei (king) real (royal) isSaidAbout rei T hasProperty real
T hasProperty brilhante brilhante isSaidAbout luminosidade (light) T isLike luminosidade
(brilliant) brilhante hasQuality brilhantismo (brilliance) T isLike brilhantismo
T hasProperty sincero sincero hasQuality sinceridade (sincerity) T withQuality sinceridade
(sincere) sincero antonymOf hipócrita (hipocrit) T isNot hipócrita
T has talento capaz (capable) saidAbout talento T is capaz
(talent) talento isPartOfWhatIs talentoso (talented) T is talentoso
T can pensar pensante (thinker) saidOfWhatDoes pensar T is pensante
(think) pensar causes pensamento (thought) T mayCause pensamento

Table 5: Examples of inferred relations.

4.4.3 Semantic Relations as Text

Both extracted and inferred relations are used for
producing text fragments by filling, with the rela-
tion arguments, a small set of handcrafted templates,
compatible with each relation type. Table 6 illus-
trates this with examples of fragments produced for
a set of relations. Some fragments use both relation
arguments, while others only use the second argu-
ment, and not the trend, to avoid much repetition.

5 Examples

This section presents some poems produced by
Poeta 2.0, their rough English translations, and a
short discussion on the fragments used. Despite
the new features introduced, sometimes, poems still
have all of their lines generated in the classic way.
This happens especially when no tweets are reused,
possibly due to their long size, and when no relations
are extracted. The following poem is of this kind:

16

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Relation Example fragments
Bruno Mars isA rei ser rei como Bruno Mars (being a king like Bruno Mars)

por ser rei (for being a king)
Centeno hasProperty brilhante quero ser brilhante como Centeno (I want to be brilliant like Centeno)

dizem que é brilhante (people say he’s brilliant)
Lorde has talento Lorde tem talento (Lorde has talent)

tem mesmo talento! (she really has talent!)
Adele can cantar a cantar como Adele (singing like Adele)

dizem que sabe cantar! (people say she knows how to sing!)
Centeno isLike luminosidade Centeno lembra a luminosidade (Centeno resembles brightness)

com uma luminosidade tal (with such a brightness)
Lula withQuality sinceridade a sinceridade do Lula (Lula’s sincerity)

a demonstrar sinceridade (showing sincerity)
Lula isNot hipócrita Lula não será hipócrita (Lula is probably not a hipocrit)

nada hipócrita (not a hipocrit)
Manuel Serrão is pensante Manuel Serrão parece pensante (Manuel Serrão seems to be a thinker)

também quero ser pensante (I also want to be a thinker)
Manuel Serrão mayCause pensamento como o pensamento de Manuel Serrão? (Iike Manuel Serrão’s thought?)

a gerar pensamento (generating a thought)

Table 6: Relations and examples of produced fragments.

• If (T isA X) ∧
X isSaidOfWhatDoes Y → T can Y
Y saidAbout X → T is Y
X hasQuality Y → T withQuality Y
X hasState Y → T withState Y
X antonymOf Y → T isNot Y
Y isPart/Member/MaterialOf X → T has Y

• If (T hasProperty X) ∧
X isSaidOfWhatDoes Y → T can Y
X isSaidAbout Y → T isLike Y
X hasQuality Y → T withQuality Y
X hasState Y → T withState Y
X antonymOf Y → T isNot Y
Y hasQuality X → T isLike Y
Y hasState X → T isLike Y

• If (T has X) ∧
Y isSaidAbout X → T is Y
Y hasQuality X → T is Y
Y hasState X → T is Y
X isPartOfWhatIs Y → T is Y

• If (T can X) ∧
Y isSaidOfWhatDoes X → T is Y
X causes Y → T mayCause Y

Figure 1: Rules for relation inference

delatar sempre causa delação
delação negra sem acusação
acusação em meia delação
sem achar cita, nem citação

To denounce always causes denunciation
Black denunciation without accusation
Accusation in half denunciation
Without quotation or citation

It was generated for the trend Carlos Alexandre,
the name of a Portuguese judge in charge of sev-

eral cases with great public impact. All lines rhyme
and all have 10 syllables, except the last, which
has only 9. The seeds collected from the tweets
were delação (denunciation), advogada (lawyer),
telefónica (of telephone), cita (citation). The first
line was produced from the semantic relation ‘de-
latar causes delação’, the second and third from
‘acusação synonymOf delação’, and the fourth from
‘citação synonymOf cita’.

The following example was produced on the
morning of 4th of June 2017, after the attacks at
London Bridge, when there was a trending hashtag
#LondonBridge:

fala de #LondonBridge muita gente!
O universo é mesmo doente
Polı́cia procura suspeitosos
Polı́cia procura duvidosos

Many people talking about
#LondonBridge!

The universe is really sick
Police searching for suspects
Police searching for dubious

All the lines have 10 syllables, except the first,
because the syllable division tool considered the #
as a syllable. Every line ends in rhyme: the first pair
of lines ends in -ente and the second in -osos. The
first line highlights the trend and the remaining are
paraphrases of the following fragments from human-
written tweets:

O mundo é mesmo doente (The world is really sick)

Polı́cia procura suspeitos (Police looking for suspects)

The next example was produced for the trend
Rui Santos, a Portuguese football commentator, two
days after Benfica won the Portuguese Football

17

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Cup (30th May 2017). It uses three lines based on
relations extracted from the processed tweets:

Rui Santos consegue falar
também posso ser miliar?
também quero ser miliar
seboso a par, par a par

Rui Santos can speak
can I be very small as well?
I also want to be very small
greasy at hand, parwise

All of its lines have 8 syllables and all have the
same termination. The first line was produced from
the relation ‘Rui Santos can falar’ (talk), extracted
from more than one tweet, including the following:
No lugar do Rui Vitória deixava o seboso do Rui Santos a falar
sozinho com o seu troféu.
(If I were Rui Vitória, I would leave greasy Rui Santos talking alone
with his trophy)

Another relation is ‘Rui Santos has dimensão’ (di-
mension), extracted from:
Rui Santos tem dimensão para o Sporting. É pequenino.
(Rui Santos has dimension for Sporting. He is little.)

The second and third lines of the poem were pro-
duced from the relation ‘Rui Santos is miliar’ (very
small), inferred from the previous, due to the rela-
tion ‘dimensão isPartOfWhatIs miliar’.

The final example was produced for the trend
Ronaldo, one day after the football player Cris-
tiano Ronaldo won the fourth European Champions
League of his career (5th June 2017). It mixes dif-
ferent kinds of fragments:
Ronaldo é muito falado
arte e dança amor calado
num estado de felicidade
Ronaldo mostra simplicidade

Ronaldo is widely spoken
art and dance silent love
in a state of happiness
Ronaldo shows simplicity

All lines have 9 syllables, with two rhymes: the
first pair ends in -ado and the second in -ade.
The first line highlights the trend. Due to a
video of Ronaldo dancing, one of the seeds ex-
tracted was dança (dance), which originated the
second line, based on the relation ‘arte hyperny-
mOf dança’. The remaining lines result from two
relations: ‘Ronaldo withQuality simplicidade’ (in-
ferred from ‘Ronaldo hasProperty feliz’ and ‘fe-
liz hasState felicidade’), and ‘Ronaldo withQuality
simples’ (inferred from ‘Ronaldo hasProperty sim-
ples’ and ‘simples hasQuality simplicidade’).

6 Concluding Remarks

In order to increase the connection between poems
by a Twitter bot and a recent trend, more meaning-
ful text fragments are now produced and, when pos-

sible, used in the poems. This paper described the
production of those fragments.

The first impression of the poems now generated
is positive, which is also shown by the examples in-
cluded in this paper. Some poems are still produced
in the classic way, where the only connection be-
tween lines and trend is the presence of associated
words in semantically-coherent sentences. Yet, sev-
eral have now lines that highlight the trend, lines that
are built from relations involving the trend, or lines
that reuse text by other users about the trend, thus
making them more meaningful. Each kind of frag-
ments may be further augmented, for instance, by
exploiting additional patterns and semantic relations
in the tweets, but the manual labour involved is a
practical issue, as it may become quite complex to
manage all the patterns and inference rules.

Another limitation is that the semantic relation-
based fragments have to be gender and number in-
dependent. This may be minimised in the future,
if the determiners frequently used before the trends
are considered for identifying the previous proper-
ties. Yet, as there are other kinds of fragments, other
relations, and poems only have four lines, this is cur-
rently not critical.

Most limitations of PoeTryMe (Gonçalo Oliveira
et al., 2017) are also present. For instance, despite
targeting the same semantic domain, lines are gener-
ated independently of each other, not always result-
ing in the most logical sequence. This could be min-
imised if a reordering procedure was applied, similar
to the one by Lamb et al. (2017), where abstraction
and imagery are considered.

The extraction of long-term information on the
trend may also be improved. Currently, if the trend
has a Wikipedia article, associations are extracted
from its abstract. In the future, relations may be ex-
tracted directly from DBPedia.

A final issue, not yet discussed, is that the sys-
tem may reuse fragments that contain typos, thus de-
creasing the quality of the poems. Of course, every
word could be spellchecked and words with typos
could be corrected, possibly to a different word than
it should be, or their fragments could be discarded,
possibly with many false positives.

As it happened for the original bot, every
two hours, Poeta 2.0 tweets through the account
@poetartificial, which has about 260 followers.

18

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

References
John Charnley, Simon Colton, and Maria Teresa Llano.

2014. The FloWr framework: Automated flowchart
construction, optimisation and alteration for creative
systems. In 5th International Conference on Compu-
tational Creativity, ICCC 2014, Ljubljana, Slovenia.

Simon Colton, Jacob Goodwin, and Tony Veale. 2012.
Full FACE poetry generation. In Proceedings of
3rd International Conference on Computational Cre-
ativity, Dublin, Ireland, ICCC 2012, pages 95–102,
Dublin, Ireland.

Pablo Gervás. 2001. An expert system for the composi-
tion of formal Spanish poetry. Journal of Knowledge-
Based Systems, 14:200–1.

Hugo Gonçalo Oliveira, Tiago Mendes, and Ana
Boavida. 2017. Towards finer-grained interac-
tion with a Poetry Generator. In Proceedings of
ProSocrates 2017: Symposium on Problem-solving,
Creativity and Spatial Reasoning in Cognitive Sys-
tems, Delmenhorst, Germany, July. CEUR-WS.org.

Hugo Gonçalo Oliveira. 2012. PoeTryMe: a versa-
tile platform for poetry generation. In Proceedings
of ECAI 2012 Workshop on Computational Creativity,
Concept Invention, and General Intelligence, Mont-
pellier, France, C3GI 2012, Montpellier, France, Au-
gust.

Hugo Gonçalo Oliveira and Ana Oliveira Alves. 2016.
Poetry from concept maps – yet another adaptation of
PoeTryMe’s flexible architecture. In Proceedings of
7th International Conference on Computational Cre-
ativity, ICCC 2016, Paris, France.

Hugo Gonçalo Oliveira, Diogo Costa, and Alexandre
Pinto. 2016. One does not simply produce funny
memes! – explorations on the automatic generation
of internet humor. In Proceedings of 7th International
Conference on Computational Creativity, ICCC 2016,
Paris, France.

Hugo Gonçalo Oliveira, Raquel Hervás, Alberto Dı́az,
and Pablo Gervás. 2017. Multilanguage extension and
evaluation of a poetry generator. Natural Language
Engineering, page (in press).

Hugo Gonçalo Oliveira. 2016. Automatic generation of
poetry inspired by Twitter trends. In Knowledge Dis-
covery, Knowledge Engineering and Knowledge Man-
agement (Post-conference Proceedings of IC3K — Re-
vised Selected Papers), volume 631 of CCIS, pages
13–27. Springer.

Hugo Gonçalo Oliveira. 2017a. Comparing and combin-
ing Portuguese lexical-semantic knowledge bases. In
Proceedings of the 6th Symposium on Languages, Ap-
plications and Technologies (SLATE 2017), OASICS,
page (in press). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

Hugo Gonçalo Oliveira. 2017b. A survey on intelligent
poetry generation: Languages, features, techniques,
reutilisation and evaluation. In Proceedings of 10th In-
ternational Conference on Natural Language Genera-
tion, INLG 2017, page (in press), Santiago de Com-
postela, Spain. ACL Press.

Ivan Guerrero, Ben Verhoeven, Francesco Barbieri, Pe-
dro Martins, and Rafael Perez y Perez. 2015. TheRid-
dlerBot: A next step on the ladder towards creative
Twitter bots. In Proceedings of 6th International
Conference on Computational Creativity, ICCC 2015,
pages 315–322, Park City, Utah. Brigham Young Uni-
versity.

Marti A. Hearst. 1992. Automatic acquisition
of hyponyms from large text corpora. In Procs.
of 14th Conference on Computational Linguistics,
COLING’92, pages 539–545. ACL Press.

Carolyn Lamb, Daniel Brown, and Charles Clarke. 2017.
Incorporating novelty, meaning, reaction and craft into
computational poetry: a negative experimental result.
In Proceedings of 8th International Conference on
Computational Creativity, ICCC 2017, Atlanta, Geor-
gia, USA.

Hisar Manurung. 2003. An evolutionary algorithm ap-
proach to poetry generation. Ph.D. thesis, University
of Edinburgh.

Joanna Misztal and Bipin Indurkhya. 2014. Poetry gen-
eration system with an emotional personality. In Pro-
ceedings of 5th International Conference on Compu-
tational Creativity, Ljubljana, Slovenia, ICCC 2014,
Ljubljana, Slovenia, June.

Fam Rashel and Ruli Manurung. 2014. Pemuisi: A
constraint satisfaction-based generator of topical in-
donesian poetry. In Proceedings of 5th International
Conference on Computational Creativity, ICCC 2014,
Ljubljana, Slovenia, June.

Diana Santos and Eckhard Bick. 2000. Providing Inter-
net access to Portuguese corpora: the AC/DC project.
In Proceedings of 2nd International Conference on
Language Resources and Evaluation, LREC 2000,
pages 205–210.

Henry Thompson. 1977. Strategy and tactics: a model
for language production. In Papers from the Regional
Meeting of the Chicago Linguistic Society, volume 13,
pages 651–668, Chicago, IL, USA. Chicago Linguistic
Society.

Berty Chrismartin Lumban Tobing and Ruli Manurung.
2015. A chart generation system for topical metrical
poetry. In Proceedings of the 6th International Con-
ference on Computational Creativity, Park City, Utah,
USA, ICCC 2015, Park City, Utah, USA, Jun.

Jukka M. Toivanen, Oskar Gross, and Hannu Toivonen.
2014. The officer is taller than you, who race your-
self! Using document specific word associations in

19

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 11–20,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

poetry generation. In Proceedings of 5th International
Conference on Computational Creativity, ICCC 2014,
Ljubljana, Slovenia, June.

Tony Veale, Alessandro Valitutti, and Guofu Li. 2015.
Twitter: The best of bot worlds for automated wit. In
Proceedings of 3rd International Conference on Dis-
tributed, Ambient, and Pervasive Interactions, DAPI
2015, pages 689–699, Los Angeles, CA, USA, Au-
gust.

Tony Veale. 2013. Less rhyme, more reason:
Knowledge-based poetry generation with feeling, in-
sight and wit. In Proceedings of the 4th International
Conference on Computational Creativity, pages 152–
159, Sydney, Australia.

20

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Template-Free Construction of Poems
with Thematic Cohesion and Enjambment

Pablo Gervás
Instituto de Tecnologı́a del Conocimiento

Universidad Complutense de Madrid
Ciudad Universitaria, 28040 Madrid, Spain

pgervas@ucm.es

Abstract

Existing poetry generation systems usually fo-
cus on particular features of poetry (such as
rhythm, rhyme, metaphor) and specific tech-
niques to achieve them. They often resort to
template-base solutions, in which it is not al-
ways clear how many of the alleged features
of the outputs were already present in the tem-
plate employed. The present paper considers
two specific features – thematic consistency,
and enjambment – and presents an ngram
based construction method that achieves these
features without the use of templates. The
construction procedure is not intended to pro-
duce poetry of high quality, only to achieve
the features considered specifically in its de-
sign. A set of metrics is defined to capture
these features in quantitative terms, and the
metrics are applied to system outputs and to
samples of both human and computer gener-
ated poetry. The results of these tests are dis-
cussed in terms of the danger of to ignoring
certain features when designing construction
procedures but valuing them during evaluation
even if they arise from hard-wiring in the re-
sources or serendipitous emergence, and the
fundamental need for poets to develop a per-
sonal voice – fundamental for human poets
and inconsistent with the application of Tur-
ing tests.

1 Introduction

Computer poetry generation has existed for some
years now. Yet existing work in this field has very
rarely applied existing techniques from natural lan-
guage generation such as content planning, referring

expression generation, lexical choice or surface real-
ization. With the sole exception of Manurung’s pio-
neering work (Manurung, 2003), attempts at compu-
tational poetry generation in the past have resorted to
more generic artificial intelligence techniques, such
as case-based reasoning, evolutionary programming
or statistical language modelling rather than tradi-
tional natural language generation methods. At a
lower level of granularity, these attempts operate
more in terms of string manipulation than linguis-
tic representation, and most of the solutions can be
seen as template based generation. This is partly
due to the properties of poetry, which, in contrast
with prose, allows for evocative use of language that
need not build complete sentences, but rather can get
away with simple phrases concatenated into verse.
Whereas this sort of tolerance is acceptable in the
early stages of exploration of the field – when a po-
etry generator that could string simple phrases into
verse was better than nothing –, at some point re-
searchers interested in computer poetry generation
need to consider the possibility of advancing beyond
this.

The present paper considers a subset of the de-
sired features of poetry as a text – thematic con-
sistency, and enjambment – that are a (maybe op-
tional) characteristic of human generated poetry but
are often overlooked by computer generated poetry.
A set of metrics is defined to capture these features
in quantitative terms, and these metrics are tested
on samples of both human and computer generated
poetry. The results of these tests are discussed in
terms of whether the features are indeed optional
or whether they can help to distinguish instances

21

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

of simpler poetry from more elaborate examples.
A new poetry generation system is proposed that
specifically addresses some of the new proposed fea-
tures and produces poems that score reasonably well
on the proposed metrics.

2 Previous Work

The goal of this paper involves consideration of a
number of poetic concepts establishing the subset
of poetry-specific features that are being considered
in the present paper (section 2.1), and a subset of
the existing poetry generators that consider some of
these features (section 2.2).

2.1 Definitions of the Poetic Features
Considered

The idea that a given stanza should observe a the-
matic unity has been a classic consideration in tra-
ditional disciplines (Korpel and de Moor, 1998). In
Arabic poetry, the lack of unity among the verses
of a poem is denounced as a severe defect (Moreh,
1988). The formulation employed to justify this
as a defect is that “In such poems it is possible to
transfer a verse of one poem to another poem of the
same meter and rhyme, or to change the order of the
verses in the same poem without affecting the mean-
ing or the subject”. Consideration of this as a defect
may be too strict even for most human poets. But it
clearly establishes a criterion that may allow distinc-
tion of different degrees of elaboration for computer
generated poetry.

Enjambment is a term used in poetry to describe
cases where the meaning runs over from one po-
etic line to the next, without terminal punctuation
(Baldick, 2008). Lines without enjambment, in
which the syntactic unit (phrase, clause, or sentence)
corresponds in length to the line, are called end-
stopped. Enjambment has been identified as a sign
of maturity in Shakespeare’s poetry, with his later
works distinguished by more frequent use of en-
jambment (McDonald, 2006). Although the corre-
spondence between metric unit and syntactic units
can be considered a positive feature, it seems reason-
able to explore the possibility of establishing quanti-
tative measures to identify the use of enjambment as
an elaborate feature that requires skill and that many
poets have considered an extremely positive feature

which helps tie different lines together.

2.2 How Existing Poetry Generators Address
the Features under Consideration

Explicit consideration of content as well as form in
poetry was a distinguising feature of (Toivanen et al.,
2012), developed to generate poetry in Finnish. This
approach relied on corpus-based solutions for its
generation task, and used separate corpora for form
and content. Form was determined by a grammar
corpus that provided instances of existing poetry
that were adapted to create new poems by replacing
some of their words with desired content. Content
was determined by a background corpus from which
a word association network for a user provided topic
is mined based on word co-occurrences. The net-
work is then used to provide candidate replacements
for the words in the template selected from the gram-
mar corpus, which leads to a certain thematic consis-
tency. Because the templates are defined in terms of
complete stanzas, the resulting poems do show in-
stances of enjambment (as present in the grammar
corpus). The reported version of the system does
not consider rhythm or rhyme but mention is made
of future work that would do so.

A different approach with potential impact on the-
matic consistency is the use of mood and sentiment
in (Colton et al., 2012), which generated poetry in
English. Here, a mood for the day is chosen at the
start, then an article from the Guardian newspaper is
chosen from which to mine keyphrase that will be
combined with a template-based solution for com-
plete stanzas over which rhythm and rhyme controls
are imposed. The mood and the newspaper article
provide thematic consistency, the template provides
syntactic structure that sometimes involves enjamb-
ment.

PoeTryMe (Gonçalo Oliveira, 2012) generates
poems in Portuguese inspired by a set of seed words
by identifying semantic relations that the seed words
might be involved in and building verses with spans
of text that feature the two words involved in the se-
mantic relation. Because all the verses in a poem
are built from the same set of seed words, the result-
ing poems show a certain thematic consistency. It
enforces conformance to a chosen metric. Its con-
struction process is line-based, so it does not in prin-
ciple allow for one line to syntactically connect to

22

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

the following one.
The work of (Veale, 2013) argues that prior poetry

generators focus too much on rhyme and too little
on having coherent content. To address this prob-
lem it uses a rich knowledge base of semantic rela-
tions between words mined from the Web. The re-
sulting system produces poems in English that show
thematic consistency and apparently insightful use
of rhetorical figures such as similes, analogies and
metaphor. Due to its specific choice of focus, this
approach does not enforce conformance with metri-
cal form either in terms of rhythm or rhyme, and it
does not address enjambment.

A recent version of the WASP system (Gervás,
2016) addressed the interplay between theme and
metric form in generated poems in Spanish over
the conceptual space defined by an ngram language
model extracted from a corpus of both poetry and
prose texts. Generic guidelines were established to
recognise regularity in rhythm and rhyme as valu-
able, but the system was allowed to explore the con-
struction of stanzas of novel form as determined by
the language model. Theme was very broadly stated
and established by the choice of texts included in
the corpus. The construction procedure is line-based
with no mechanisms provided for identifying links
between lines, so any enjambment in the resulting
poems would be serendipitous.

The importance of evaluating thematic consis-
tency in poetry generation has recently been em-
phasised by (Gonçalo Oliveira et al., 2017), which
present a multilingual system capable of generat-
ing in Portuguese, Spanish and English. This work
based on the PoeTryMe system evaluates – among
other features – the semantic similarity between the
generated poems and the seeds used to inspire them
using PointWise Mutual Information (Church and
Hanks, 1990). It also discusses the difficulties as-
sociated with applying metrics on poetic features
across outputs in different languages, arising from
the need of language-specific resources – lexicons,
corpora, semantic knowledge bases . . . – to inform
any automated evaluation processes.

There has recently been a significant effort to ad-
dress the task of poetry generation using solutions
based on neural networks. Some of these initiatives
consider explicitly the issue of thematic consistency.

The work of (Zhang and Lapata, 2014) presents a

generator of Chinese classical poetry based on Re-
current Neural Networks. This system operates in-
crementally generating one line at a time, but at each
point considers all previously generated lines as a
context.

A different system (Yan, 2016) also uses RNN
in an Encoder-Decoder with an iterative polishing
schema to generate Chinese quatrains. This refines
the poem in several passes by regarding the RNN’s
hidden state of the last line as the gist of the overall
semantic representation of the poem.

In a more elaborate approach (Wang et al., 2016)
address the problem in two stages, with an initial
stage generating a plan for the poem – also in Chi-
nese –, in which a particular subtopic specified as a
chosen keyword is assigned to each line in the poem.
The system then generates each line of the poem se-
quentially using a RNN Encoder-Decoder.

3 Poem Construction Aimed at Thematic
Cohesion and Enjambment

From an engineering point of view, the existing work
on automated poetry generation tends to select one
particular feature of the desired inspiring set of po-
ems and focus on developing a system capable of
achieving results that satisfy that particular feature.
This is usually done implicitly – with no explicit
declaration of a decision to specialise on particular
features. This approach allows the reader to imagine
that the complete problem of poetry generation has
been addressed – which may increase the perceived
merit of the solution – but usually leads to disap-
pointment and failed expectations when the outputs
are considered. In this paper, the process being pro-
posed focuses on the construction of rhyming po-
ems with a certain degree of thematic cohesion and
an ability to join up consecutive verses into syntac-
tically acceptable phrases, which results in enjamb-
ment. This does not mean that any other features of
poetry are ignored, but it does mean that any that
appear in the results do so strictly by serendipity.
It also means that the lack of any such additional
features in the final results cannot be interpreted as
a shortcoming of the system, because it is not de-
signed to achieve those. If and when the engineer-
ing challenge of achieving the selected features is
solved, the integration with techniques for achiev-

23

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

ing other features may be addressed. This is stan-
dard procedure in engineering and yet often ignored
in the context of automated poetry generation. For
the sake of methodological clarity, our contribution
starts by defining a set of metrics intended to cap-
ture the features that we want our system to exhibit.
A method for achieving results with those features
is described, followed by a discussion of how well
the proposed method fares under the metrics and in
comparison with previous work.

3.1 Metrics for the Selected Features

The features that we intend to address are thematic
cohesion and enjambment, as defined in section 2.1.
The poetry under consideration should also address
conformance to a given poetical tradition – which
usually includes both rhythm and rhyme according
to a classic stanza –, but this is not a feature under
study in this paper. Conformance to poetical tradi-
tion has already been the goal of several research
efforts, and it is not the main focus of this paper.
Past efforts in the field have shown that such con-
formance is achievable algorithmically (see systems
reviewed in section 2.2).

The features that we are considering could be
measured automatically in different ways. How-
ever, the procedures for automating them would very
likely be language dependent, as they usually need
to rely heavily on linguistic resources. Even pro-
cedures based on corpora rather than explicitly de-
clared knowledge are associated with specific cor-
pora in the given language, which makes compari-
son across languages subjective even if an objective
method has been followed (Gonçalo Oliveira et al.,
2017). We will consider here metrics that rely on a
human judge establishing the extent to which a given
poem satisfies a given definition. This is less objec-
tive than any automated measure might have been,
but it allows a measure of comparison across lan-
guages.

Thematic cohesion is a reasonably vague concept
that everybody understands intuitively but which is
difficult to pin down. For the purposes of this paper
we will consider thematic cohesion in terms of co-
occurrence within the poem of a number of words
which can be considered to be semantically related
in some way. To ensure that this broad sense of “re-
lated to theme” is captured, we have decided here

to rely on a subjective definition of the relation as
captured by the intuitions of a human evaluator. The
metric is defined as:

TC = 10 ∗RN/TN

where TC is thematic consistency RN is the num-
ber of related nouns and TN is the total number of
nouns.

Enjambment is a feature associated directly to the
border between one verse and the next. A line transi-
tion is defined as the border between one line in the
poem and the next. A line transition is considered
open if the line after the transition can be considered
a valid syntactic continuation of the line before the
transition. These definitions allow the computation
of the following metric:

EP = 10 ∗OLT/TLT

where EP is enjambment percentage, OLT is the
number of open line transitions in the poem and
TLTV is the total number of line transitions.

3.2 A Generation Procedure Addressing the
Features

In order to explore the level of difficulty involved
in achieving poems that satisfy the proposed fea-
tures, we have implemented a poetry generation
module that targets these features specifically during
construction. The SPAR (Small Poem Automatic
Rhymer) system is based on observation of how hu-
man poets carry out their task. Namely with a strong
base in the set of texts read by the poet before sitting
down to write.

3.2.1 The Reference Corpus
SPAR generates based on a corpus of adventure

novels that includes (Spanish versions of) Tarzan
of the Apes by Edgar R. Burroughs, Sandokan by
Emilio Salgari, The Jungle Book and The Second
Jungle Book by Rudyard Kipling, Peter Pan by J.M.
Barrie, Alice in Wonderland and Through the Look-
ing Glass by Lewis Carrol, The Prince and the Pau-
per by Mark Twain, The Hound of the Baskervilles
and Study in Scarlet by Conan Doyle. The choice
of texts for the corpus was affected by two main
reasons, one historical and one strategical. The his-
torical reason is that the corpus had been compiled

24

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

previously to inform a poetry generation exercise in
which primary school students were invited to in-
teract with a poetry generator. For this purpose a
set of texts considered classical readings for Span-
ish children had been chosen. The strategical reason
is that it was decided that this set of prior readings
should not include any poetry, so that the system al-
low testing of the ability of the system to generate
verse inspired by a set of prose texts, and to avoid
the risk that any poetic quality appearing in the re-
sulting poems be directly attributed to a loan from
poems appearing in the reference texts used as seed.

3.2.2 The Poetry Generation Process
SPAR carries out the poetry generation task in

five separate stages. First, it builds from the refer-
ence corpus a series of models of which words in
the available vocabulary appear next to others in the
reference texts, and which words rhyme with one an-
other. These models are used to inform later stages.
Second, starting from a word provided by the user
– which is intended to set the theme for the result-
ing poem – the system build a set of words related
to the seed word. Relation in this context is defined
in terms of simple cosine distance in a vector model
representation of the reference texts (Salton et al.,
1975). This set of words represent the concepts that
the system considers might be mentioned in a poem
that had the given word as a title. Third, it searches
for connections between these words and potential
rhyming words. A connection is understood to ex-
ist between words if they co-occur within the same
window of N words in at least one of the sentence
in the set of reference texts. Fourth, by exploring
the search space determined by these connections
the system builds phrases that might be included in
a poem. These phrases are defined as spans of text
that either connect target words to one another or a
rhyming word to a target word. Each span is built
by exploiting an n-gram language model of the ref-
erence texts to search for valid sequences of words
that connect the desired words. Finally, for a given
stanza, it searches for combinations of the resulting
verses that satisfy the restrictions on rhyme and can
be joined together with a minimum of cohesion. In
this context, a minimum of cohesion is understood
as having at least one ngram that overlaps the end of
the first verse and the beginning of the second one.

3.3 The Resulting Poems

The SPAR system was used to generate a collection
of 18 poems in Spanish. The poems were commis-
sioned for the Festival Poetas poetry festival, cel-
ebrated in Matadero Madrid on 27-29 May 2017.
The 18 poems were classical sonnets (14 verses of
11 syllables with rhyme schemes either ABBAAB-
BACDCDCD or ABBAABBACDECDE). The de-
sign of the construction process ensures strict en-
forcement of this form. An example poem is pre-
sented in Table 1.

3.4 Applying the Metrics

In terms of the metrics defined in section 3.1, the
SPAR system fares reasonably well. The current ap-
proach to publication of poetry generation research
does not allow for collections of poems so built to
be made available widely. This makes it difficult
to carry out quantitative comparison between ap-
proaches, as only the data made available in each
paper can be used. For comparison purposes, the
proposed metrics have been applied to the sample
poems published for some of the referenced poetry
generators. Results for the SPAR collection in com-
parison with the poems published for some of the
systems reviewed in Section 2.2 are presented in Ta-
ble 2. For reference, results of applying the metrics
to two different sets of Spanish poems are also in-
cluded at the start of the table. These correspond to
sets of four sonnets for classical 16th century poets
(16C) and for 20th century poet Miguel Hernández
(20C). The size of the sample has been selected to
match that of available samples for computer gener-
ated poems.

As the various systems considered here were not
originally design to address the issues on which they
are currently being tested, it is important to qual-
ify these numbers with some comments. The out-
put of the system by (Colton et al., 2012) presents
two types of poem, one based on a stanza-sized tem-
plate and another based on loose chaining of inde-
pendent lines. The results for enjambment in this
case are not as meaningful as in other cases, because
for one type the enjambment is inherent in the start-
ing template and for the others it is non-existent. The
system by (Toivanen et al., 2012) relies on stanza-
sized templates for construction, so data on enjamb-

25

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Por una mujer a la maldición. For a woman to the curse.
De un hombre es un ser que les seguı́a. Of a man is a being that followed them.
Miedo por la ley que no comprendı́a. Fear for the law he did not understand.
Los celos hacia el mono y la expresión. Jealousy toward the monkey and its expression.

Miedo por el hombre a una habitación Fear for the man to a room
y el dios de la ley que no corrı́a and the god of the law that did not run
por un mono y el pueblo y que podı́a. for a monkey and the people and who could.
Amo a esa mujer es su profesión. I love that woman it is her job.

Quien amo y su mujer en mi carrera Whom I love and his wife in my race
llega a ser que el hombre de no mostrar. gets to be the man not to be shown.
Por un mono y la ley y el sonido For a monkey and the law and the sound

que el dueño y el cachorro no tuviera. that the owner and the cub would not have.
Sospecha que el cerebro y a juzgar. She suspects that the brain and to judge.
Profundidades hasta que debido. Depths until it is owed.

Table 1: Example of sonnet generated by the SPAR system for the seed word “Celos” (Jealousy).

TC EP
16C 7.2 8.8
20C 3.7 6.2
SPAR 5.2 4.8
(Colton et al., 2012) 2.9 1.3
(Toivanen et al., 2012) 3.0 2.0
(Veale, 2013) 8.1 0.0
(Gonçalo Oliveira et al., 2017) 3.7 0.0

Table 2: Results for samples of human (16C and 20C) and com-

puter generated poems on the proposed metrics. In each case,

average over the available set of poems in the sample is given.

ment refer directly to the chosen set of templates
rather than the construction method. The system by
(Veale, 2013) focuses explicitly on thematic consis-
tency, and achieves very high scores on that, but has
no concern about enjambment. The results on the-
matic consistency for (Gonçalo Oliveira et al., 2017)
are heavily penalised by the fact that the metric only
considers nouns, and should not be considered sig-
nificant, as the poems do show additional indications
of consistency in terms of verbs and adjectives.

4 Discussion

The application of the metrics to computer and hu-
man generated poems gives rise to some insights.

Thematic consistency is very difficult to evaluate.
Simple perusal of the various poems gives a human
reader a very solid intuition of whether a particu-
lar theme is being pursued, but this intuition is ex-
tremely difficult to quantify. Approaches that rely on

automated means for extracting word associations
from statistical analysis of corpora – such as (Toiva-
nen et al., 2012) or the SPAR system itself– some-
times come up with word associations for which
the rationale is very difficult to follow. This makes
them score less well under human evaluation for
consistency than they should, as they generally have
followed strict construction procedures to achieve
significant presence in their output of the desired
words. System based on knowledge bases capturing
semantic relations between words – such as (Colton
et al., 2012), (Veale, 2013) and (Gonçalo Oliveira
et al., 2017) – fare irregularly, with (Veale, 2013)
– which focus specifically on thematic cohesion –
achieving the highest score.

The proposed metrics relies exclusively on nouns,
and should be extended to consider other types of
words.

In comparison with the results provided for hu-
man generated poems, it might seem that modern
poetry departs from the degree of thematic consis-
tency shown by earlier poems. The problem that has
been observed during application of the metrics is
that the use of figurative language can significantly
cloud the issue of consistency. Where the poet is
working on one or more metaphors to illustrate his
theme, a literal understanding of “is related to” will
undermine his score even where a human reader will
find obvious connections. In this sense, the set of
poems used to represent 20th century poetry make
heavier use of metaphorical associations. Further

26

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

work should address the role of metaphor in the ap-
plication of metrics of this type.

The size of the samples is also problematic, both
with respect to this particular measure and in gen-
eral. For this type of quantitative metrics, applica-
tion to a much larger sample would be desirable.
This suggests that some means should be found in
the field to associate with particular publications
data sets of the resulting poems, so that this kind of
empirical testing might be applied.

Concerning enjambment, the results on the met-
rics illustrate that the feature has been generally ig-
nored by poetry generation systems in the past. It is
also clear that the comparison between human and
computer generated poems shows a significant gap
with respect to this feature. Researchers working on
poetry generation would do well to address this as-
pect specifically in future work.

Finally, the metrics as applied to the different sys-
tems considered here show that the use of templates,
in spite of working considerably well regarding the
quality of the outputs, is actually obscuring the fact
that many significant issues underlying the task of
poetry generation are being side-stepped. Enjamb-
ment as considered here is a case in point, but there
may be multiple others in similar circumstances. In
view of this, we advocate for a progressive transi-
tion from template-based solutions to more elabo-
rate techniques for generating text. This may involve
discovery of new methods of text generation, but it
may also be achieved by more informed consider-
ation of existing natural language generation tech-
niques in the cause of poetry generation.

With respect to the SPAR system itself, a number
of issues require comments.

Because the search spaces involved are so large,
each of the stages described in section 3.2.2 can
take between one and three hours of computing time.
With smaller search spaces, the system might fin-
ish in shorter times, but the probabilities of finding
valid combinations decrease in proportion. The den-
sity of correct verses that can be generated from a
given (non-poetry) corpus is very low. This is what
makes poetry generation so difficult. For these rea-
sons, this particular approach to the automatic gen-
eration of poetry is not yet in a position to be used
interactively.

The nature of the corpus – a set of adventure nov-

els popular among young adults – has a strong in-
fluence in the results that can easily be perceived by
anyone reading the poems. In contrast with poetry
originating from other sources, the poems include
frequent references to bears and wolves – Baloo and
the Seeonee pack from the Jungle Book –, monkeys
and lions – from Tarzan of the Apes –, a small bot-
tle – as used by Alice – or to children’s bedtime –
the Darling children in Peter Pan. This peculiarity
of the generated poems may make it less likely for
readers to find connections between the poems and
their own personal feelings, but it helps create an il-
lusion of a joint general background and, in some
sense, a particular voice for the automated poet.

Human poets dedicate a significant amount of en-
ergy to find a personal voice. This implies being
able to produce poems that are significantly differ-
ent from any others that had been produced before,
and which can be attributed to that poet by someone
familiar with their prior work. For a human poet, to
have a part of their work declared indistinguishable
from that of their peers, or – even worse – indistin-
guishable from the classics would be a radical sign
of failure. This is an important issue for computer
generated poetry, related to the expectation of orig-
inality traditionally associated with creativity. This
is an important argument against the recent trend in
the consideration of potentially creative outputs gen-
erated by computers to apply Turing test style eval-
uations, where success is associated with machine
results being indistinguishable from human efforts.
In the field of poetry, results indistinguishable from
prior efforts are a sign of failure, not success.

The poems generated by the SPAR system can-
not be confused with poems generated by a human.
There is a clear tendency in them towards the sur-
real, an occasional warping of the rules of gram-
mar to achieve metric correction, and a fixation with
wild animals that arises from its background read-
ings. That is in a way, the voice of the system.
Maybe a relatively inmature voice at this stage, but
clearly personal, different from what came before
and recognisable once a number of poems have been
read. To devote efforts to eliminate the small quirks
that constitute at this stage the voice of the system
would be detrimental to its perception as a poet with
no significant advancement in terms of having mod-
elled significant human abilities.

27

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 21–28,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Possible improvements would be getting the sys-
tem to become aware of more features of poetic texts
to take into account – such as metaphor or aliteration
– and to start operating with more elaborate defini-
tions of purpose or intended message.

5 Conclusions

The use of templates in poetry generation leads to
output poems of considerable quality, but clouds the
actual capability of the systems in question to emu-
late fundamental abilities of human poets. Work in
this field should progress away from the use of tem-
plates and make better use of existing natural lan-
guage generation techniques.

Thematic consistency is very difficult to identify
even for human judges, and it is therefore extremely
difficult to automate. Any attempt to do so would
need to find a solution for figurative use of language
and the role of metaphorical connections in poetry.

Enjambment is a relevant and popular feature of
human poetry that has not been addressed by poetry
generation systems in the past. Metrics on enjamb-
ment can currently act as discriminators for human
vs. computer generated poetry.

The use of Turing test evaluations for poetry gen-
eration is inconsistent with the basic tennets that de-
fine success and failure for human poets. Further ef-
fort should be made to evaluate computer generated
poetry in ways that allow the attribution of quality
independently of the ability to distinguish it from
human poetry.

Acknowledgments

This project has been partially supported by project
IDiLyCo (MINECO/FEDER TIN2015-66655-R),
funded by the Spanish Ministry of Economy and the
European Regional Development Fund.

References

C. Baldick. 2008. The Oxford Dictionary of Literary
Terms. Oxford Paperbacks. Oxford University Press.

K. W Church and P. Hanks. 1990. Word association
norms, mutual information, and lexicography. Com-
putational Linguistics, 16(1):22–29, mar.

S. Colton, J. Goodwin, and T. Veale. 2012. Full-
FACE poetry generation. In Proc. of 3rd International

Conference on Computational Creativity, ICCC 2012,
pages 95–102.

P. Gervás. 2016. Constrained creation of poetic forms
during theme-driven exploration of a domain defined
by an n-gram model. Connection Science.

H. Gonçalo Oliveira, R. Hervás, A. Dı́az, and P. Gervás.
2017. Multilingual extension and evaluation of a po-
etry generator. Natural Language Engineering, page
1–39.

H. Gonçalo Oliveira. 2012. PoeTryMe: a versatile plat-
form for poetry generation. In Proc. of the ECAI 2012
Workshop on Computational Creativity, Concept In-
vention, and General Intelligence.

M.C.A. Korpel and J.C. de Moor. 1998. The Structure
of Classical Hebrew Poetry: Isaiah 40-55. Oudtesta-
mentische Studiën. Brill.

H. M. Manurung. 2003. An evolutionary algorithm ap-
proach to poetry generation. Ph.D. thesis, University
of Edimburgh, Edimburgh, UK.

R. McDonald. 2006. Shakespeare’s Late Style. Cam-
bridge University Press.

S. Moreh. 1988. Studies in Modern Arabic Prose and
Poetry. E.J. Brill.

G. Salton, A. Wong, and C. S. Yang. 1975. A vector
space model for automatic indexing. Commun. ACM,
18(11):613–620, November.

J. M. Toivanen, H. Toivonen, A. Valitutti, and O. Gross.
2012. Corpus-based generation of content and form
in poetry. In Proc. of 3rd International Conference
on Computational Creativity, ICCC 2012, pages 175–
179.

T. Veale. 2013. Less rhyme, more reason: Knowledge-
based poetry generation with feeling, insight and wit.
In Proc. of 4th International Conference on Computa-
tional Creativity, ICCC 2013, pages 152–159.

Zhe Wang, Wei He, Hua Wu, Haiyang Wu, Wei Li,
Haifeng Wang, and Enhong Chen. 2016. Chinese
poetry generation with planning based neural net-
work. In Proceedings of 26th International Confer-
ence on Computational Linguistics, COLING 2016,
pages 1051–1060. ACL.

Rui Yan. 2016. I, poet: Automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In Proc. of the 25th International Joint
Conference on Artificial Intelligence, IJCAI’16, pages
2238–2244. AAAI Press.

Xingxing Zhang and M. Lapata. 2014. Chinese poetry
generation with recurrent neural networks. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2014,
pages 670–680. ACL.

28

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Synthetic Literature.
Writing Science Fiction in a Co-Creative Process

Enrique Manjavacas [1, 3]
enrique.manjavacas@uantwerpen.be

Folgert Karsdorp [2]
folgert.karsdorp@meertens.knaw.nl

Ben Burtenshaw [1, 3]
benjamin.burtenshaw@uantwerpen.be

Mike Kestemont [1, 3]
mike.kestemont@uantwerpen.be

Computational Linguistics & Psycholinguistics Research Center [1]
The University of Antwerp, Lange Winkelstraat 40-42, Antwerp, Belgium

Meertens Instituut [2]
Oudezijds Achterburgwal 185, 1012 DK Amsterdam, The Netherlands

Antwerp Centre for Digital Humanities and Literary Criticism [3]
The University of Antwerp, Prinsstraat 13, Antwerp, Belgium

Abstract

This paper describes a co-creative text gener-
ation system applied within a science fiction
setting to be used by an established novelist.
The project was initiated as part of The Dutch
Book Week, and the generated text will be
published within a volume of science fiction
stories. We explore the ramifications of apply-
ing Natural Language Generation within a co-
creative process, and examine where the co-
creative setting challenges both writer and ma-
chine. We employ a character-level language
model to generate text based on a large corpus
of Dutch novels that exposes a number of tun-
able parameters to the user. The system is used
through a custom graphical user interface, that
helps the writer to elicit, modify and incor-
porate suggestions by the text generation sys-
tem. Besides a literary work, the output of the
present project also includes user-generated
meta-data that is expected to contribute to the
quantitative evaluation of the text-generation
system and the co-creative process involved.

1 Introduction

In this paper we present ongoing work towards de-
veloping a text editing application, through which an

established author of Dutch-language literary fiction
will use an AI-based text generation system with the
goal of producing a valuable piece of literature. Our
aim is to create a stimulating environment that fos-
ters co-creation: ideally, the machine should output
valuable suggestions, to which the author retains a
significant stake within the creative process.

The present project is part of a large-scale ini-
tiative by the CPNB (‘Stichting Collectieve Propa-
ganda van het Nederlandse Boek’, ‘Collective Pro-
motion for the Dutch Book’). In Fall 2017, CPNB
will launch their annual media campaign, which this
year focuses on robotics. To this end, CPNB will
distribute a re-edition of the Dutch translation of
Isaac Asimov’s I, Robot that is planned to include an
additional piece written as part of a human-machine
collaboration.

This project report is structured as follows. We
first introduce the CPNB in greater detail, with spe-
cial emphasis on their annual media campaign. We
go on to introduce this year’s ‘Robotics’ theme, and
the way it centers around Asimov’s I, Robot. Then,
we concisely survey the state of the art in text gener-
ation from the point of view of co-creation between
human and machine. Next, we describe our current

29

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

text generation system, starting with the large body
of Dutch-language fiction (4000+ novels) that is at
the basis of our experiments, as well as its prepro-
cessing. We describe our choice of architecture for
Natural Language Generation (NLG)—a character-
level Language Model (LM) based on Recurrent
Neural Networks (RNN) with attractive properties
for the present task — and discuss how author and
genre-specific voices can be implemented through
fine-tuning of pre-trained LMs. We present ample
examples to illustrate the model’s output for various
settings. We also discuss possible ways to evalu-
ate our system empirically—a common bottleneck
of text generation systems—, through the monitor-
ing of user’s behavior and selectional preferences.
Finally, we discuss the design of the interface of our
application, emphasizing various ways in which the
author will be able to interact with the software.

1.1 Trust for the Collective Promotion of the
Dutch-language Book

The CPNB1 is a trust and PR agency based in The
Netherlands that aims to promote the visibility of
books and the publishing sector in Dutch society
at large. The agency is responsible for a num-
ber of high-visibility annual initiatives, such as the
‘Boekenbal’ (‘Book ball’) and Boekenweek (‘Book
week’).

These initiatives often center around specific
themes. For the 2017 campaign Nederland
leest (‘The Netherlands reads’), the CPNB chose
‘robotics’ as the overarching theme for their cam-
paign. Thereby further exacerbating the debate as
the societal opportunities and challenges that come
with the increase of artificial intelligence in every-
day life, as well as literature. The campaign, for in-
stance, includes the distribution of promotional ma-
terial for children (see Figure 1), as well as copies
of I, Robot (1950)—the well-known science fiction
novel by Isaac Asimov—in its Dutch translation Ik,
Robot (1966) by Leo Zelders, which serves as the
focal point of the 2017 campaign. The novel is
composed of interrelated short stories, prepublished
in the journal Astounding Science Fiction between
1940 and 1950. They revolve around the fictional

1Stichting Collectieve Propaganda van het Nederlandse
Boek: https://www.cpnb.nl.

character of robot-psychologist Dr. Susan Calvin.
The novel is especially famous because of the ‘Three
Laws of Robotics’ which feature as an intriguing
ethical backdrop.

The CPNB wanted to encourage debate about the
role of AI and robotics in literature through the ad-
dition of a 10th short story co-created by an es-
tablished fiction writer and a machine. An award-
winning Dutch author, Ronald Giphart, agreed to
take part in this experiment.

Figure 1: Make-it-yourself cardboard robot. Promotional ma-

terial distributed as part of the 2017 ‘Nederland leest!’ cam-

paign by the CPNB on robotics and books.

1.2 Co-creativity

Co-creativity is a collaborative process between
multiple agents, where in this context, one agent is
a computational system. Davis sees co-creativity
as the ’blending’ of improvisational forces (Davis,
2013). This goes against the pragmatic distribu-
tional of labor that we might see in creative support

30

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

systems, or how computers are treated in everyday
life, and invites them into an indistinct and overlap-
ping process of creativitiy. Where crucially, the re-
sult of the output is greater than ’the sum of its parts’
(Davis, 2013).

Interestingly, as pointed out by existing literature
(Lubart, 2005; Davis, 2013; Jordanous, 2017), the
public are suspicious of systems that purport to be
autonomous whilst in fact involve human partici-
pation. Whilst for Lubart the opposite is the case.
Lubart reorientates the scientific perception of these
systems into one aligned with Human Computer In-
teraction, where they are examples of successful fa-
cilitators of improvisation (Lubart, 2005). Lubart
clarifies co-creativity into four distinct roles for a
computational system; ’Computer as nanny’, ‘Com-
puter as penpal’, ‘Computer as coach’, ‘Computer
as colleague’ (Lubart, 2005, p. 366). In this project
we are most interested in achieving the last, though
in practice, much of what our system does could be
considered under the second. For a more thorough
overview of co-creativity and its role within com-
putational creativity research, see the proceeding
of The International Conference on Computational
Creativity 2012 (Maher, 2012), and for a broader of
view of the term in relation to computing, look to the
work of Edmonds and Candy (Edmonds et al., 2005;
Candy and Edmonds, 2002).

Developing NLG systems within a co-creative en-
vironment allows researchers to utilize the human
agent within the system’s workflow, allowing for ap-
proaches that are potentially too experimental for
a solely computational approach. Furthermore, co-
creation adds a collaborative and challenging dimen-
sion to the process of writing, which in turn encour-
ages the human writer. That said, though collabora-
tion is commonplace in writing, it is not always wel-
come. The creative process of writing is associated
with a fluidity that can easily be hindered or broken;
Umberto Eco’s renowned ’How to write a thesis’ as-
serts that writers should nurture their process (Eco,
2015). In developing this system alongside novelist
Ronald Giphart, we sought to apply our work within
his established methodology in a way that enriches
both parties.

From a technical point of view, there is a possi-
bility to limit the collaborative NLG system to an
assistive role, solely aiding the writer. However, a

valid collaboration should provoke and challenge the
writer. It should test them, push them, and ask them
to reconsider their approach. To achieve this balance
we chose to treat the writer as a competent handler of
text, completely capable of dealing with generated
language, and unlikely to be overwhelmed. This ap-
proach certainly would not work for all applications,
but seems appropriate to a professional science fic-
tion writer.

As Natural Language Generation develops into a
useful instrument in the creation of fictional prose,
inherent questions arise around how computational
systems relate to human writers. Nowhere else are
these questions more at home than in science fiction
literature, where readers and writers are eager to ex-
plore the speculative limits of technology. This will-
ingness allowed us to consider the practical implica-
tions and qualities of co-creative writing, and how
they manifest within the interface itself (see Section
4).

2 Related Work

Natural Language Generation within a collaborative
writing environment is an active area of research.
The co-creative setting gives scope to apply exper-
imental approaches within the dynamic context of
a working process. Here we will outline two es-
tablished approaches: the structural diagramatic ap-
proach, and the auto-completion approach. Ahn,
Morbini and Gordon use causal graphs to map the
narrative steps of a story which the writer can ma-
nipulate into the eventual story structure, the sys-
tem will then use probabilistic modeling to generate
language around that skeleton. This approach gives
the system access to the abstract narrative core of a
story’s structure; arguably, in doing so the system
imposes upon the writer a far more structured ap-
proach than they are likely familiar with. A collab-
orative system should be able to fit within a writ-
ers existing working process (Ahn et al., 2016).
Roemelle and Gordon offer a more hands on ap-
proach to assistive writing. Their system acts as
a ’Narrative Auto-Completion’, where the writer is
prompted with possible sentences (Roemmele and
Gordon, 2015). Though straightforward, this ap-
proach is highly intuitive and unobtrusive; however,
the system risks fulfilling the role of tool rather than

31

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

collaborator. As such, Creative Help is a retrieval-
based system, as appose to the generative approach
presented below.

Narrative generation has been a central topic of
computational creativity for decades. One of the first
examples is Tale-Spin, a system that generates Ae-
sop’s Fables guided by a user’s keyword suggestions
(Meehan, 1977). More recently and nearer to this
project, McIntyre and Lapata developed a proba-
bilistic narrative generator that uses user-input to re-
trieve related phrases (McIntyre and Lapata, 2009).
The system here differentiates itself from those by
working on the character level. Generated text re-
produces the style and voice of its training material,
but does not directly sample quotes verbatim from
the training material.

3 Method

3.1 Collection and Preprocessing

The first step in constructing our NLG system was to
compile a sufficiently large corpus of literary works.
In the present study, we employ a large collection
of Dutch novels in epub format (Williams, 2011),
which contains a diverse set of novels in terms of
genre, and is heterogeneous in style. In total, the col-
lection consists of 4,392 novels, written by approxi-
mately 1,600 different authors. The average number
of novels written by each author is 2.5. The large
standard deviation of 6.5 is caused by the skewed
distribution in which a few authors contribute rel-
atively large oeuvres, such as detective writer Ap-
pie Baantjer. The novels were tokenized for words,
sentences and paragraphs using the Tokenizer Ucto,
which was configured for the Dutch language (Van
Gompel et al., 2012). The total number of sen-
tences, words and characters in the tokenized col-
lection (including punctuation) amounts to approxi-
mately 24.6M, 425.5M, and 2.1G, respectively. On
average, each novel consists of 3k sentences, 59k
words, and 309,531k characters.

3.2 Character-level Language Models for NLG

The aim of this project is to contribute to literary
writing in a co-creative environment, as opposed to
solely narrative generation. Therefore, we approach
NLG using character-based Language Models (LM)
which typically reason at a local level, in the order

of some few hundreds of characters. Because of this,
the LM is only implicitly aware of the global narra-
tive structure, but still powerful enough to capture
sentence semantics in a unsupervised fashion.

An LM is a probabilistic model of linguistic se-
quences that estimate a probability distribution over
a given vocabulary conditioned on the previous text
(left-to-right model). More formally, at a given step
t, an LM defines a conditional probability, express-
ing the likelihood that a certain vocabulary item
(typically a word or character) will appear next:

LM(wt) = P (wt|w1, w2, ..., wt−2, wt−1) (1)

Different LM implementations exist, which diverge
in the manner in which they model the previous text.
Given their probabilistic nature, LMs are straight-
forward to deploy for NLG. The generative process
is defined by sampling a character from the output
distribution at step t, which is then recursively fed
back into the model, potentially preceded by the pre-
vious output of the model, to condition the next gen-
eration at step t + 1. A few decoding approaches
can be implemented based on different sampling
strategies. For instance, a rather naive approach to-
wards sampling is to select each character so as to
maximize a generated sequence’s overall probabil-
ity. Nevertheless, for a large vocabulary size (e.g. in
the case of a word-level model), the search soon be-
comes infeasible; therefore, approximate decoding
methods, such as beam search, are used to find an
ideal solution. When used for generation, the naive
argmax decoding strategy has a tendency towards
relatively repetitive sentences, that are too uninspir-
ing to be of much use in a creative setting. For the
present work, we therefore decode new characters
via sampling from the multinomial distribution at
each step.

It is interesting to note that the different decoding
approaches stand in a trade-off relationship between
diversity and correctness. For example, whereas
argmax decoding will tend to generate sentences
that are very similar, general and monotonous yet
formally correct (e.g. more similar to the sen-
tences observed in the training corpus), multinomial
sampling will make the output diverge more from
the original training data, and therefore produce a
more varied output, with a tendency towards for-
mally incorrect sentences. Focusing on our chosen

32

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

approach—multinomial sampling—, the described
trade-off can be operationalized and used to our ad-
vantage by letting the author explore model param-
eters. This is implemented by exposing a parame-
ter τ , commonly referred to as “temperature”, that
controls the skewness of the model’s output distri-
bution. Given the output distribution at a given step
p = (p1, p2, ..., pV), a vocabulary size of V , and the
temperature value τ , we can compute a transforma-
tion of pτ of the original p through Equation 2

pτi =
p

1
τ
i

∑V
j p

1
τ
j

(2)

pτ will flatten the original distribution for higher val-
ues of τ— thereby ensuring more variability in the
output. Conversely, for lower values of τ it will skew
the distribution—thereby facilitating the outcome of
the originally more probable symbol. For τ values
approaching zero, we recover the simple argmax de-
coding procedure of picking the highest probability
symbol at each step, whereas for high enough τ the
LM degenerates into a random process in which at
any given step all symbols are equally probable re-
gardless of the history.

In terms of implementations there are two ma-
jor approaches to statistical language modeling—
ngram-based LMs and RNN-based LMs.

3.2.1 Ngram Language Models
Ngram-based LMs (NGLMs) go back to at least

the early 1980s in the context of Statistical Ma-
chine Translation and Speech Recognition (Rosen-
feld, 2000). An NGLM is a direct application of
the Markov assumption to the task of estimating the
next character probability distribution—e.g. it uses a
fixed-length ngram prefix to estimate the next char-
acter probability distribution. An NGLM is basi-
cally a conditional probability table for Equation 1
, that is estimated on the basis of the count data
for ngrams of a given length n. Typically, NGLMs
suffer from a data sparsity problem, because with
larger values of n possible conditioning prefixes will
not be observed in the training data and the cor-
responding probability distribution cannot be esti-
mated. To alleviate the sparsity problem, techniques
such as smoothing and back-off models (Chen and
Goodman, 1999) can be used to either reserve some

probability mass to redistribute it across unobserved
ngrams (smoothing), or resort back to a lower-order
model to provide an approximation to the condi-
tional distribution of an unobserved ngram (back-off
models).

3.2.2 RNN-based Language Models
More recently, a new class of LMs based on Re-

current Neural Networks (Elman, 1990) have been
introduced (Bengio et al., 2003; Mikolov, 2012) and
have quickly increased in popularity due to their bet-
ter theoretical properties (no Markov assumption),
expressive capabilities (information flow through
very long sequences) and performance gains. An
RNNLM processes an input sequence one step t at
a time, feeding the input symbol xt through three
affine transformations with their corresponding non-
linearities. First, the one-hot encoded input vector is
projected into an embedding space of dimensional-
ity M through wt = Wmxt, where Wm ∈ RMxV

is a embedding matrix. Secondly, the resulting char-
acter embedding wt is fed into an RNN layer that
computes a hidden activation ht as a combination of
wt with the hidden activation of the previous step
ht−1. This is shown formally in Equation 3

ht = σ(W ihwi +W hhht−1 + bh) (3)

where W ih ∈ RMxH and W hh ∈ RHxH are re-
spectively the input-to-hidden and hidden-to-hidden
projection matrices, bh is a bias vector and σ is the
sigmoid non-linear function. Finally, the hidden ac-
tivation ht is projected into the vocabulary space of
size V , followed by a softmax function that turns
the output vector into a valid probability distribu-
tion. Formally, the probability of character j at step
t is defined by

Pt,j =
eot,j

∑V
k e

ot,k
(4)

where ot,j is the jth entry in the output vector ot =
W hoht and W ho ∈ RV xH is the hidden-to-output
projection.

In practice, training an RNN is difficult due to the
vanishing gradient problem (Hochreiter, 1998) that
makes it hard to apply the back-propagation learn-
ing algorithm (Rumelhart et al., 1986) for parame-
ter learning over very long sequences. Therefore,

33

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

it is common to implement the recurrent layer us-
ing an enhanced RNN version to compute ht—such
as Long Short-term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or Gated-Recurrent Unit
(GRU) (Cho et al., 2014)—, which add an explicit
gated mechanism to the traditional RNN in order to
control the preservation of information in the hidden
state over very long sequences.

3.2.3 Model
For the present study, we implement several vari-

ations of the RNNLM, varying the type of the re-
current cell (LSTM, GRU) as well as the values of
different parameters, such as the dimensionality of
the character embedding matrix Wm (24, 46, . . .)
and, more importantly, the size of the hidden layer
H (1024, 2048, . . .). We train our models through
back-propagation using Stochastic Gradient Descent
(SGD), clipping the gradients before each batch up-
date to a maximum norm value of 5 to avoid the ex-
ploding gradient problem (Pascanu et al., 2013) and
truncating the gradient during back-propagation to
a maximum of 200 recurrent steps to ensure suffi-
ciently long dependencies in the sequence process-
ing. Finally, dropout (Srivastava et al., 2014) is ap-
plied after each recurrent layer following (Zaremba
et al., 2015) to prevent overfitting during full model
training.

3.2.4 Overfitting
After training the full model, we experiment with

further fine-tuning on different author and genre spe-
cific subsets to steer the NLG towards a particular
style. To enforce this effect, we drive the training to-
wards overfitting introducing an intended bias in the
models predictions towards sequences that are more
likely in that particular book subset. We achieve
overfitting by zeroing the dropout rate and running
numerous passes through the subset training data,
with a sufficiently small learning rate. We have al-
ready observed interesting stylistic and genre prop-
erties in the fine-tuned model’s output—see Section
4.2 for an illustration. That said, how the partic-
ular effect of this technique—differing degrees of
overfitting—affects the quality of the generated out-
put still has to be evaluated. The degree of overfit-
ting can easily be quantified and monitored by plot-
ting batched-average perplexity values achieved by

the model for both the training data and the valida-
tion split as shown in Figure 2.

Figure 2: Example of overfitting learning curves during fine-

tuning of a full model on a subset of novels by Isaac Asimov.

4 User Interface

Uncharacteristically for an NLP project, the visual
interface of the system is paramount to its success.
Though ultimately the system will be assessed on
the language it produces, such language can only
be generated if the writer is able to use the system.
Therefore, we have focused on functionalities that
give the user a clear representation of how text is
generated, and allow them to understand how their
own writing is affected by the process. This allows
them to play a defined role within the process of
writing, whilst also encouraging them to use gener-
ated text. The user is able to select which model
to generate text from, so that they can use multi-
ple voices and approaches within the same text (see
Section 3.2.4). The user can define ’temperature’
for any model using a slider bar (see Section 3.2).
The generated text itself is shown as a list of sug-
gestions, along with the model’s own probability
scores, below the main text area. This allows the
writer to choose between a set of options, and get
a broader idea of the models voice. With the help
of user edit meta-data—computed by a string diffing
algorithms—we can track user changes and present
them with a visualization of each fragment’s source
and the degree of the modification.

Figure 3 is a visual representation of how text an-
notation functions. Text annotation reveals to the
writer how generated text is affecting the final text.
As the writer works into text, they could easily lose

34

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Figure 3: Visual feedback on the co-creation process used by

Ronald Giphart. Highlighted fragments are synthetic in origin

with the brightness indicating the amount of modification intro-

duced by the user.

track of its source; therefore, the interface is en-
hanced with visual feedback which highlights based
on edit distance between original generated text and
its current status. Generated text is initially high-
lighted in green, as the writer edits that text its color
fades into white. At the same time, whole words
swapped by the writer are underlined in purple to
differentiate lexical changes (see Figure 3).

4.1 Monitoring the Author
Our project intends to explore the co-creative pro-
cess of science-fiction literature on a quantitative
and objective basis. In line with (Roemmele and
Gordon, 2015), we acknowledge that such a co-
creative interface opens the up possibility for auto-
matic evaluation of generative systems based on user
edits of generated strings. Our interface is there-
fore designed to store all user edits along with the
source of the string (human or machine generated).
This will enable us to study individual user behavior
in relation to the particular properties of the genera-
tive system, as well as the aptness of different model
variants and their parameter settings (e.g. degree of

overfit, temperature, voice) for co-creation, taking
user edit behavior as a proxy for output quality.

4.2 Examples

As explained in the previous section, the evaluation
of a NLG system in a co-creative setting involving
both human and machine amounts to the generated
material incorporated (either explicitly or implicitly)
by the author in the final work. Suggestions about
how to formally and informally evaluate this co-
production process were given in the previous sec-
tion. Here, we provide an exploratory demonstration
of the model’s generation system, where the goal is
to highlight some typical behavior of the system un-
der different parameters settings, author-based fine-
tuning, and text seeds.

We begin with a survey of how different temper-
ature values τ impact the generated text. In Table
1 we list a number of generated sentences for dif-
ferent temperatures given the famous opening sen-
tence “Mijn vrouw is dood en al begraven” (‘My
wife is dead and already buried’) from Marcellus
Emants’ Een nagelaten bekentenis. These examples
have been generated on the basis of a model trained
on the complete collection as described in Section
3.1. Several observations can be made from these
examples. First, the examples showcase the model’s
ability to generate grammatical sentences. Interest-
ingly, the sentences become syntactically more com-
plex as the temperature increases (as explained in
Section 3.2), and also exhibit less repetitive gram-
matical structures (cf. the repetition of possessive
van constructions with τ = 0.1). Second, a simi-
lar diversifying effect can be observed on the lexical
level. Higher temperatures are more likely to gen-
erate less frequent and semantically more specific
lexical material (cf. the decrease in reusing the same
word twice, as well as the increase of names in the fi-
nal two examples). Third, depending on the reader’s
willingness to search for semantic coherence, most
generated sentences can be read as plausible contin-
uations of the input seed. Finally, with increased
temperature values the model composes sentences
with higher semantic and cognitive complexity, jux-
taposing and combining less common concepts and
thoughts. Within certain limits, we expect such in-
creased ‘creativity’ to encourage and provoke the
human writer in the process of writing.

35

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

τ
seed

Mijn vrouw is dood en al begraven. My wife is dead and already buried.

0.1 De volgende dag werd er een bericht van de politie
gevonden. De verklaring van de politie was een van
de belangrijkste verklaringen van de man die het
verhaal van de politie had gehoord.

The next day, a police message was found. The
police’s statement was one of the most important
statements of the man who heard the story by the
police.

0.3 De dokter keek op zijn horloge. Ze was er zeker
van dat hij die dag niet meer zou komen. Hij was
niet gek. Hij was niet van plan om zijn dochter te
vertellen dat hij haar een keer had gezien.

The doctor looked at his watch. She was sure he
wouldn’t come anymore that day. He wasn’t crazy.
He did not intend to tell his daughter he’d seen her
once.

0.5 De tranen weerklonken over haar gezicht en voelde
ze in haar keel. Ze was er niet. Ze was er zeker
van dat ze alleen maar een affaire had gehad met
de meisjes.

The tears resounded over her face and she felt them
in her throat. She wasn’t there. She was sure she
had only had an affair with the girls.

0.7 Ze zegt dat het weer in San Sebastian naar Cali-
fornië haar deel van de wereld is. Ze moet van de
wereld naar de hemel hebben gelopen.

She says that the weather in San Sebastian to Cal-
ifornia is her part of the world. She must have
walked from the world to heaven.

0.9 Lucas kon niet met zichzelf trouwen en toen hij
achteloos met zijn gebaren zat te praten maakte hij
deel uit van de lessen van de waarheid.

Lucas couldn’t marry himself, and when he spoke
painlessly with his gestures, he was part of the
lessons of truth.

Table 1: Example of our current NLG system with translation seeded by ”Mijn vrouw is dood en al begraven” (My wife is dead

and already buried) for different temperature τ values.

Having explored the impact of temperature on the
full model’s output, we now proceed with a brief il-
lustration and informal evaluation of the generated
output of two fine-tuned models. As explained in
Section 3.2.4, we experiment with constructing fine-
tuned models for specific styles, genres or authors by
post-training on a subset of the collection and driv-
ing the training towards overfitting. In this section,
we demonstrate the effect of overfitting two models
post-trained on novels by Isaac Asimov and Ronald
Giphart, who form the heart of the CPNB’s robotics
campaign. Using the same seed from Table 1, we
observe a clear style shift when generating sentences
using either the Asimov or Giphart model. For ex-
ample, with a temperature setting of τ = 0.4 the
Asimov model produces utterances such as: “Mijn
vrouw is dood en al begraven. ‘Het is de groot-
ste misdaad die ik ooit heb gezien.’ ‘Weet u dat
zeker?’ ‘Ja.’ ‘En als dat zo is, wat is dan wel de
waarheid?’ (My wife is dead and already buried. ‘It
is the biggest crime I’ve ever seen.’ ‘Are you sure?’
‘Yes.’ ‘And if so, what is the truth?’). By contrast,
a model overfitted on novels by Giphart generates
output such as: “Mijn vrouw is dood en al begraven.
Ik heb het over een door mij gefotografeerde vrouw,
een hoofd dat met haar borsten over mijn schouder

ligt. Ik heb de film geschreven die ik mijn leven lang
heb geleefd.” (‘My wife is dead and already buried.
I’m talking about a woman I once photographed, a
head with her breasts over my shoulder. I wrote the
movie I’ve lived my life for a long time.’) Both con-
tinuations are semantically plausible, yet written in
completely different styles, and put focus on differ-
ent concepts (e.g. ‘crime’ versus ‘erotics’), both typ-
ical of their respective training material.

5 Conclusion

In this paper we have outlined an applied text gen-
eration system and graphical user interface, that to-
gether facilitate co-creative environment in which to
write science fiction literature. We have highlighted
an existing challenge within state of the art systems,
to balance a challenging intervention into the writing
process, with the risk of becoming a solely a writing
tool. The character-level recurrent neural network
for NLG that we have used is experimental within
a solely computational approach, and therefore we
have leveraged the specific advantages of working
with a professional writer to maximize this system’s
ability to be applied. We have how to facilitate a
writer to use a language model. We have outlined

36

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 29–37,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

evaluation procedures for the current NLG system,
utilizing user-generated meta-data and quantifying
the extent of retained synthetic text.

Acknowledgments

We would like to thank Ronald Giphart for his time
and energy and Stichting Collectieve Propaganda
van het Nederlandse Boek for initiating the collabo-
ration.

References
Emily Ahn, Fabrizio Morbini, and Andrew S. Gordon.

2016. Improving Fluency in Narrative Text Gener-
ation With Grammatical Transformations and Prob-
abilistic Parsing. In The 9th International Natural
Language Generation conference, pages 70–74, Edin-
burgh, UK. ACL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Linda Candy and Ernest Edmonds. 2002. Modeling co-
creativity in art and technology. In Proceedings of the
4th conference on Creativity & cognition, pages 134–
141, Loughborough, UK. ACM.

Stanley F Chen and Joshua Goodman. 1999. An empir-
ical study of smoothing techniques for language mod-
eling. Computer Speech and Language, 13:359–394.

Kyunghyun Cho, Bart Van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Properties
of Neural Machine Translation : Encoder – Decoder
Approaches. Ssst-2014, pages 103–111.

Nicholas Davis. 2013. Human-computer co-creativity:
Blending human and computational creativity. In
Ninth Artificial Intelligence and Interactive Digital
Entertainment Conference. AAAI Press.

Umberto Eco. 2015. How to write a thesis. MIT Press.
Ernest A. Edmonds, Alastair Weakley, Linda Candy,

Mark Fell, Roger Knott, and Sandra Pauletto. 2005.
The studio as laboratory: Combining creative practice
and digital technology research. International Journal
of Human-Computer Studies, 63(4-5):452–481, Octo-
ber.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Sepp Hochreiter. 1998. The Vanishing Gradient
Problem During Learning Recurrent Neural Nets and

Problem Solutions. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems,
06(02):107–116.

Anna Jordanous. 2017. Co-creativity and perceptions of
computational agents in co-creativity. In Proceedings
of the Eighth International Conference on Computa-
tional Creativity, Atlanta, US. ACC.

Todd Lubart. 2005. How can computers be partners in
the creative process: Classification and commentary
on the Special Issue. International Journal of Human-
Computer Studies, 63(4-5):365–369, October.

Mary Lou Maher. 2012. Computational and Collective
Creativity: Who’s Being Creative? In Proceedings
of the 3rd International Conference on Computer Cre-
ativity, pages 67–71, Dublin, Ireland. ACC.

Neil McIntyre and Mirella Lapata. 2009. Learning to tell
tales: A data-driven approach to story generation. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP: Volume 1-Volume 1, pages 217–225, Sin-
gapore. Association for Computational Linguistics.

James R. Meehan. 1977. TALE-SPIN: An interactive
program that writes stories. In Proceedings of the 5th
International Joint Conference on Ar tificial Intelli-
gence, pages 91–98.

Tomas Mikolov. 2012. Statistical Language Models
Based on Neural Networks.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the Difficulties of Training Recurrent Neural
Networks. Icml, (2):1–9.

Melissa Roemmele and Andrew S. Gordon. 2015. Cre-
ative help: a story writing assistant. In International
Conference on Interactive Digital Storytelling, pages
81–92. Springer.

Ronald Rosenfeld. 2000. Two decades of statistical lan-
guage modeling: where do we go from here? Pro-
ceedings of the IEEE, 88(8):1270–1278.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Maarten Van Gompel, Ko Van Der Sloot, and Antal Van
den Bosch. 2012. Ucto: Unicode Tokeniser Reference
Guide. Technical report.

Greg Williams. 2011. EPUB: Primer, Preview, and Prog-
nostications. Collection Management, 36(3):182–191.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2015. Recurrent Neural Network Regularization.
ICLR, pages 1–8.

37

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 38–43,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Constructing narrative using a generative model
and continuous action policies

Emmanouil Theofanis Chourdakis and Joshua D. Reiss∗
Queen Mary University of London

Mile End Road, E1 4NS
London, UK

{e.t.chourdakis,joshua.reiss}@qmul.ac.uk

Abstract

This paper proposes a method for learning
how to generate narrative by recombining sen-
tences from a previous collection. Given a cor-
pus of story events categorised into 9 topics,
we approximate a deep reinforcement learn-
ing agent policy to recombine them in order
to satisfy narrative structure. We also propose
an evaluation of such a system. The evalua-
tion is based on coherence, interest, and topic,
in order to figure how much sense the gen-
erated stories make, how interesting they are,
and examine whether new narrative topics can
emerge.

1 Introduction

In this work reinforcement learning is used in con-
junction with a shallow generative artificial neural
network (ANN) to generate novel stories. First, a
SkipGram (Mikolov et al., 2013) based model is de-
rived that generates parts of the narrative in a local
neighbourhood (a few consecutive events at time).
An artificial agent is then used to extend its use to
the whole narrative while globally adhering to the
story structure learned by that model.

2 Previous Work

Data-driven approaches for story generation can be
found in (McIntyre and Lapata, 2009; Li et al.,
2013). In (McIntyre and Lapata, 2009), the au-
thors present an end-to-end system to generate sto-
ries by deriving models of interest and coherence

∗Correspondence should be sent to the first author. This
paper has been sponsored by RPPtv Ltd.

and a generator that creates stories by consulting a
knowledge base of story elements and their possible
interactions. They improved their work in (McIn-
tyre and Lapata, 2010) by generating stories with
genetic algorithms instead of specified models for
interest. In (Li et al., 2013), the authors recombine
events found in a story corpus with a planning algo-
rithm to create novel stories which consist of events
in the form of simple sentences. Their novelty re-
lies on that they crowd-source the corpus in natu-
ral language sentences and do not need to provide
a pre-defined knowledge base. In that work, they
use paraphrase identification using weighted depen-
dencies (Lintean and Rus, 2009) in order to group
similar events which they use to construct graphs
of narration and a planning algorithm to generate
new stories. (Riedl and Harrison, 2016) use that
work together with Reinforcement Learning in or-
der to teach artificial agents human values. Deep
Reinforcement Learning has been explored in the
context of natural language generation before in the
context of text-based games. In (Narasimhan et al.,
2015) the authors introduce a recurrent neural net-
work which they call LSTM-DQN, to characterise
the states of the worlds of text-based Multi-User
Dungeon games. They then use Deep Q-learning
(Mnih and others, 2015) to learn optimal policies for
such games. In (He et al., 2016) the authors intro-
duce a novel type of ANN called Deep Reinforce-
ment Relevance Network which allows for separate
ANNs to use for the states and actions of the agents
allowing actions of arbitrary number or complexity
to be taken by the agent. In this work we use such
a network with an actor-critic method and devise a

38

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 38–43,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

data driven approach for story generation to learn
how to construct narratives from a collection of sto-
ries.

3 Methodology

3.1 Event Representation

We used 519 stories from the SCHEHERAZADE sys-
tem (Li et al., 2013)1 which contains simple sto-
ries pertaining to 9 topics with an average length
of 7-16 events per story per topic. These stories
consist of simple sentences, each describing a sin-
gle event. Using the Stanford NLP parser, we ex-
tract the Universal Dependencies (Chen and Man-
ning, 2014; Nivre et al., 2016) of each sentence as
a list of relations in the form rel(head,modifier)
where rel is the relation type and head, modifier
are literals. We further lemmatize each head and
modifier using WordNet (Miller, 1995) in order to
reduce the total number of literals we have to deal
with. Narratives are sequences of events which in
turn are simple sentences that describe a character
action or a stative. We use universal dependencies
and a shallow ANN in order to derive a useful and
compact representation for each event. Having de-
rived a set of all the dependencies found in the cor-
pus each event is represented as a vector vk of the
form [Hdep1 Hdep2 . . .Mdep1 Mdep2]

T where Hdep

corresponds to the head of dependency dep, Mdep

to the modifier and each of those elements can take
as values an integer that serves as the index for the
literals found in the corpus.

After we extract a vector vk for each event k in
our corpus, we use an ANN to learn a compact rep-
resentation of our events such that two similar events
have similar representations. Instead of measuring
grammatical similarity as in (Li et al., 2013) we con-
sider as similar events the ones that are used in a sim-
ilar context. For this we use a model similar to the
SkipGram (Mikolov et al., 2013). This model de-
rives a low-dimensional fixed-length representation
space that maps events that are used similarly, close
in that space thus implicitly ”grouping” them to-
gether. It also gives probabilities of each event hap-
pening, based on previous events. The SkipGram
model can be seen in Figure 1a.

1http://boyangli.co/openstory.php

Choosing such a model allows us to capture rela-
tions between neighbouring events, in a similar way
to that of the original SkipGram that captures analo-
gies of words in language. We can then use these
learned relations to generate events that satisfy them
and thus create ”coherent” narratives. It also allows
us to implicitly group events. This means that, in the
process of generating a narrative, when choosing on
an event to include, we do have a probability of in-
cluding a different, but similar, event. Finally, we
can use it with events not found in the corpus it has
been trained with. As long as we can feed it a vector
representation of the new event it will be mapped
close to similar events in the corpus. We will see
that by using the model generatively to predict the
context from a starting event we can already make
sensible narratives.

3.2 Generative Model

In Section 3.1 we introduced our SkipGram Model.
This model has been trained to give an approxima-
tion of the context of an event, given that event. The
context of an event in our case consists of the events
that immediately surround it. By starting from a ran-
dom event that can begin a narrative, the model gives
the probability of the next event. An example of a
narrative generated can be seen in Figure 2b. Gener-
ating narratives this way, while it appears adequate,
suffers from a serious limitation. Since the model is
trained on an event and its immediate surroundings,
it is not possible to capture longer distance depen-
dencies in the narrative. In other words, we cannot
interrupt a coherent sequence of events and come at
it later so the model is ”forced” to keep very close to
the corpus in order to maintain coherence.

3.3 Deep Reinforcement Learning

Reinforcement learning is the field that studies how
an abstract mathematical entity, called an agent, can
interact with an environment E in order to maximise
a numerical quantity (Sutton and Barto, 1998). We
call an instance of the environment at time t a state
st, the quantity to maximise a utility Ut. The agent
interacts with the environment by executing a series
of actions ai and receiving a series of immediate re-
wards rt. The utility Ut is related to the immedi-
ate rewards rt by the expression: Ut =

∑t
n=1 rn.

The series of actions the agent takes based on the
39

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 38–43,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

state of the environment is modelled by a policy π.
The policy can be seen as a probability distribution
π(at = ai|st). The problem of reinforcement learn-
ing therefore is to find a policy that maximises the
utility for the agent in a given environment. In or-
der to generate policies, RL algorithms usually ap-
proximate a value function V (st) or an action-value
function Q(st, at). V (st) gives a measure of how
beneficial is for the agent to exist at the state st and
Q(st, at) how beneficial it is for the agent to be at
state st and execute action at. Deep Reinforcement
Learning (DRL) approximates Q, V , E , or π with
a Deep Neural Network. A popular approach for
training agents works by suggesting an action at us-
ing a model called an actor and evaluates it using
a model called a critic. The method we use in this
work is called Deep Deterministic Policy Gradient
(Lillicrap et al., 2016) with the actor and critic mod-
els being the deep neural networks that appear in
Figures 1b and 1c respectively. The model of the
critic is inspired by the Deep Reinforcement Rele-
vance Network given in (He et al., 2016). The actor
approximates an event to be included in the narrative
and the critic evaluates it based on the current state
of the narrative. The state of the narrative is at ev-
ery point a simple concatenation of the embeddings
(as given by the hidden layer in 1a) of the events in-
cluded in that narrative until that point. At every step
the reward is calculated based on the distance of the
expected action-event to the selected event so that it
awards adding events to the narrative when those are
close to the ones we expect to see, and punishes by
a small amount unexpected events. Punishing unex-
pected events might appear counter-intuitive at first
glance since story generation systems are expected
to generate unexpected events. This is compensated
by the stochastic nature of policies found by actor-
critic methods which will also assign a small proba-
bility to an unexpected event happening.

4 Evaluation

In order to evaluate the system’s capability to gen-
erate interesting narratives human evaluation is nec-
essary. Towards this goal, an evaluation experiment
has been designed which is based on similar eval-
uation approaches found in data-driven story gen-
eration approaches (Li et al., 2013; McIntyre and

Lapata, 2010) and asks 20 subjects to evaluate 40
narratives from which 10 are from our corpus of
human-made narratives, 10 narratives generated by
randomly combining events from the corpus, 10 are
narratives generated by the SkipGram Model given
in Figure 1a and 10 by the DDPG agent. Each sub-
ject evaluates 8 narratives based on number of ed-
its (rearranging, deleting, or adding new events) re-
quired to make the narrative more coherent, interest
rated on a scale from 1 to 5 (1 being ”Not at all in-
teresting” and 5 being ”Very Interesting”) as well as
asked to give one word that better describes the topic
of the narrative. This last task can helps us figure
out whether new topics emerge from our system by
combining events from different topics. Since this
is work in progress, we lack experiment results. In
the absence of human evaluation results we could
do some qualitative examining of generated narra-
tives. Figures 2a and 2c show narratives found in our
original corpus and in Figures 2b and 2d narratives
generated by the generative model and the DDPG
agent respectively. We can see that the narrative in
2b tries to follow the narrative found in 2c however
it deviates in its conclusion. Instead of kneeling in
front of Sally and proposing, the narrative ends with
John kissing Sally. An important note here is that
for the most first part of the narrative, the genera-
tive model followed almost exactly the story found
in the corpus. This is a weakness of the model that
arises from learning relations only between neigh-
bouring events. A more interesting narrative is the
one found in 2d. This narrative combines events
from the narrative in Figure 2a, the one in 2c, as
well as others found in the corpus. Narratives gener-
ated by the DDPG agent tend to explore more events
while narratives generated by the generative model
tend to stick to the corpus.

5 Discussion/Future Work

We have presented a system that can learn narra-
tive structure from a collection of stories presented
in natural language. This work builds on the work
of (Li et al., 2013) and tries to improve it in sev-
eral ways. First, instead of grouping events based
on grammatical similarity we use similarity based
on context. In that work, events are also parsed into
universal dependencies and grammatical similarity

40

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 38–43,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

(a) SkipGram model

(b) actor

(c) critic

Figure 1: The Skipgram model, and the models for the
actor and the critic. Circles represent fully connected
neuron layers with the number of neurons being the num-
ber inside the circle. The smoothed rectangles represent
the activation functions with relu being the linear rec-
tifier and softmax a softmax output. |E| is the number
of events in our database, and D the narrative corpus as a
matrix of features. The dot symbolises the dot product. L
is the number of the events making up the narrative, π(st)
the policy at state st, Q(st, at) the state-action value for
the policy π.

between the heads and modifiers of the same depen-
dencies is used to cluster events. This requires sim-
ilar sentence structure for different events in order
for such similarity to be meaningful. We get past
this limitation by deriving a fixed length represen-
tation by using the model in Figure 1a and thus we
are able to compare sentences of variable structure.
Since our similarity is based on how events are used
in a narrative, we can interchangeably use two sen-
tences that refer to the same event but are grammat-
ically different (e.g. ”Sally agreed to marry John.”
and ”Sally said yes.”).

The second is that the use of an agent allows for
complex relations in the narrative, unknown in ad-
vance, to be captured as showcased by (Narasimhan
et al., 2015; He et al., 2016), as well as arbitrary au-
thorial goals when carefully introduced in the reward
function. One could for example augment the cor-
pus of available events with information about emo-
tions (Francisco and Hervás, 2007) and then reward

“ John loved Sally John wanted to marry Sally John bought
an engagement ring John took Sally to the park John and
Sally enjoyed a picnic John got down on one knee John
presented the ring to Sally Sally started to cry John asked
Sally to marry John Sally agreed Sally put on the ring John
and Sally hugged ”

(a) An example narrative from the corpus.

“ John entered Sally’s house. John and Sally entered the
living room. John and Sally sat on the sofa. John picked
up Sally’s hand. John kissed Sally’s hand. Sally smiled at
John. John let go of Sally’s hand. John stood up. John
kissed Sally. ”
(b) An example narrative generated by using the SkipGram
Model generatively.

“ Sally opened the door. John entered Sally’s house. John
and Sally entered the living room. John and Sally sat on
the sofa. John picked up Sally’s hand. John kissed Sally’s
hand. Sally smiled at John. John let go of Sally’s hand.
John stood up. John kneeled in front of Sally. John took a
ring box out of his pocket. Sally pressed both hands against
her cheeks. John proposed to Sally. Sally took the ring box
from John. Sally opened the ring box. Sally took the ring
out of the ring box. John took the ring from Sally. John put
the ring on Sally’s left third finger. ”

(c) An example narrative from the corpus.

“ John loved Sally. John presented the ring to Sally. John
let go of Sally’s hand. Sally and John laughed. Sally and
John kissed. John told Sally how beautiful she is. Sally
blushed. ”
(d) An example narrative generated by using the DDPG
agent.

Figure 2: Examples of narratives.

events with the desired emotional content. The use
of an agent that can also create narrative allows us-
age in a multiagent, or even interactive environment.
This is not very obvious in the current work because
experiments have not been yet conducted but an ex-
ample would be an agent that learned from narra-
tives of topic ”proposal”, another that learned from
”affairs” to work together (i.e. by alternating be-
tween the choices of the two agents after a couple
of sentences), to produce something in the lines of a
”family drama”.

41

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 38–43,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

The current research leaves some things to be de-
sired. While he have designed an experiment for
the evaluation of the system, we have yet to run
it through human subjects, who are the ones who
can judge if a system exhibits creativity. We can-
not therefore have a discussion about whether our
system is creative. The narrative generation capac-
ity is limited among other things by the corpus it-
self. We can only make as many novel stories as
can be made by recombining the available events.
Given that the vectors of the events (Section 3.1) in
the corpus constitute only a limited subset of values
in that vector space we should be able to generate
novel events mapped from within that space once
we had a way to map from narrative to surface text.
In (Kumagai et al., 2016), the authors present a sys-
tem that can generate language given syntactic struc-
ture as well as semantic information. Our event vec-
tor representation maintains syntactic structure data
which could be combined with that work to generate
surface text. Another issue is that learning is done
exclusively on the narrative-structure level without
taking into account any consideration any extra in-
formation in the stories. One could use character-
isation of story events and heuristics of narration
similar to the STellA system presented in (León and
Gervás, 2014). We speculate that such heuristics can
be used as rewards in the context of reinforcement
learning and thus guide learning. More technical is-
sues relate to problems that can be met both in re-
inforcement and in deep learning. Training the net-
works and the agent is sensitive to hyper-parameters
as well as network architecture. Since this is work
in progress both the architecture and the hyperpa-
rameters have been chosen intuitively by hand and
by no means we can claim these are optimal. Bet-
ter design parameters can be chosen in a robust way
through exhaustive cross validation.

References

Danqi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2014, pages 740–750. ACL.

Virginia Francisco and Raquel Hervás. 2007. Emotag:
Automated mark up of affective information in texts.

In Proceedings of Doctoral Consortium at the 8th EU-
ROLAN summer school, pages 5–12.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong
Li, Li Deng, and Mari Ostendorf. 2016. Deep Rein-
forcement Learning with a Natural Language Action
Space. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, pages
1621–1630. ACL.

Kaori Kumagai, Ichiro Kobayashi, Daichi Mochihashi,
Hideki Asoh, Tomoaki Nakamura, and Takayuki Na-
gai. 2016. Human-like Natural Language Genera-
tion Using Monte Carlo Tree Search. In The INLG
2016 Workshop on Computational Creativity in Natu-
ral Language Generation, pages 11–18. ACL.

Carlos León and Pablo Gervás. 2014. Creativity in story
generation from the ground up: Nondeterministic sim-
ulation driven by narrative. In Proceedings of the 5th
International Conference on Computational Creativ-
ity, ICCC 2014.

B. Li, , S. Lee-Urban, , G. Johnston, and M. O. Riedl.
2013. Story Generation with Crowdsourced Plot
Graphs. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, pages 598–604.
AAAI Press.

Timothy Paul Lillicrap, Jonathan James Hunt, Alexander
Pritzel, Nicolas Manfred Otto Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daniel Pieter Wierstra.
2016. Continuous control with deep reinforcement
learning. In Proceedings of 4th International Confer-
ence on Learning Representations, ICLR 2016.

Mihai Lintean and Vasile Rus. 2009. Paraphrase iden-
tification using weighted dependencies and word se-
mantics. In Proceedings of the Twenty-Second Inter-
national Florida Artificial Intelligence Research Soci-
ety Conference, FLAIRS 2009. AAAI Press.

Neil McIntyre and Mirella Lapata. 2009. Learning to tell
tales: A data-driven approach to story generation. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP, pages 217–225. ACL.

Neil McIntyre and Mirella Lapata. 2010. Plot induction
and evolutionary search for story generation. In Pro-
ceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1562–1572.
ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ArXiv e-prints, volume
abs/1301.3781.

G. A. Miller. 1995. WordNet: A Lexical Database for
English. Communications of the ACM, 38(11).

42

Proceedings of the INLG 2017 Workshop on Computational Creativity and Natural Language Generation, pages 38–43,
Santiago de Compostela, September 2017. c©2017 Association for Computational Linguistics

Volodymyr Mnih and others. 2015. Human-level con-
trol through deep reinforcement learning. Nature,
518(7540):529–533.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1–11. ACL.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter,
Yoav Goldberg, Jan Hajic, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Na-
talia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016.
Universal dependencies v1: A multilingual treebank
collection. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation,
LREC 2016. ELRA.

Mark O Riedl and Brent Harrison. 2016. Using stories to
teach human values to artificial agents. In Papers from
the 2016 AAAI Workshop on AI, Ethics, and Society.
AAAI Press.

Richard S. Sutton and Andrew G. Barto. 1998. Intro-
duction to Reinforcement Learning, volume 135. MIT
Press, 1st edition.

43

