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Introduction

This is the proceedings of the 15th Meeting on the Mathematics of Language (MOL 2017), held at Queen
Mary University of London, on July 13–14, 2017.

The volume contains eleven regular papers and two invited papers. It also includes an abstract of a
third invited talk. The regular papers were selected from a total of 23 submissions, using the EasyChair
conference management system.

The conference benefited from the financial support of the British Logic Colloquium (http://www.
blc-logic.org) and of AYLIEN (http://aylien.com), which we gratefully acknowledge.

Last but not least, we would like to express our sincere gratitude to all the reviewers for MOL 2017 and
to all the people who helped with the local organization.

Makoto Kanazawa, Philippe de Groote, and Mehrnoosh Sadrzadeh (editors)

iii





Program Chairs:

Makoto Kanazawa, National Institute of Informatics (Japan)
Philippe de Groote, INRIA Nancy (France)

Local Chair:

Mehrnoosh Sadrzadeh, Queen Mary University of London (UK)

Local Organization:

Sophie Chesney, Queen Mary University of London (UK)
Maximilian Droog-Hayes, Queen Mary University of London (UK)
Dimitri Kartsaklis, University of Cambridge (UK)
Shalom Lappin, University of Gothenburg (Sweden)
Stephen McGregor, Queen Mary University of London (UK)
Graham White, Queen Mary University of London (UK)
Sue White, Queen Mary University of London (UK)
Gijs Jasper Wijnholds, Queen Mary University of London (UK)

Program Committee:

Henrik Björklund, Umeå University (Sweden)
David Chiang, University of Notre Dame (USA)
Alexander Clark, King’s College London (UK)
Carlos Gómez-Rodríguez, University of A Coruña (Spain)
Jeffrey Heinz, University of Delaware (USA)
Gerhard Jäger, University of Tübingen (Germany)
Greg Kobele, University of Chicago (USA)
Marco Kuhlmann, Linköping University (Sweden)
Giorgio Magri, CNRS (France)
Andreas Maletti, Universität Leipzig (Germany)
Jens Michaelis, Bielefeld University (Germany)
Larry Moss, Indiana University, Bloomington (USA)
Valeria de Paiva, Nuance Communications (USA)
Gerald Penn, University of Toronto (Canada)
Carl Pollard, The Ohio State University (USA)
Jim Rogers, Earlham College (USA)
Ed Stabler, Nuance Communications (USA)
Mark Steedman, Edinburgh University (UK)
Anssi Yli-Jyrä, University of Helsinki (Finland)

Additional Reviewer:

Justin Debenedetto, University of Notre Dame (USA)

Invited Speakers:

Stephen Clark, University of Cambridge (UK)
Shay Cohen, University of Edinburgh (UK)
Frank Drewes, Umeå University (Sweden)

v





Table of Contents

BE Is Not the Unique Homomorphism That Makes the Partee Triangle Commute
Junri Shimada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

How Many Stemmata with Root Degree k?
Armin Hoenen, Steffen Eger and Ralf Gehrke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

On the Logical Complexity of Autosegmental Representations
Adam Jardine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Extracting Forbidden Factors from Regular Stringsets
James Rogers and Dakotah Lambert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Latent-Variable PCFGs: Background and Applications
Shay Cohen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A Proof-Theoretic Semantics for Transitive Verbs with an Implicit Object
Nissim Francez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Why We Speak
Rohit Parikh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Monotonicity Calculus and Its Completeness
Thomas Icard, Lawrence Moss and William Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

DAG Automata for Meaning Representation
Frank Drewes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

(Re)introducing Regular Graph Languages
Sorcha Gilroy, Adam Lopez, Sebastian Maneth and Pijus Simonaitis . . . . . . . . . . . . . . . . . . . . . . . . 100

Graph Transductions and Typological Gaps in Morphological Paradigms
Thomas Graf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Introducing Structure into Neural Network-Based Semantic Models
Stephen Clark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Count-Invariance Including Exponentials
Stepan Kuznetsov, Glyn Morrill and Oriol Valentín . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Conjunctive Categorial Grammars
Stepan Kuznetsov and Alexander Okhotin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vii





Conference Program

Thursday, July 13

09:00-09:30 Registration and Opening

Session 1

09:30-10:10 BE Is Not the Unique Homomorphism That Makes the Partee Triangle Commute
Junri Shimada

10:10-10:50 How Many Stemmata with Root Degree k?
Armin Hoenen, Steffen Eger and Ralf Gehrke

10:50-11:05 Coffee Break

Session 2

11:05-11:45 On the Logical Complexity of Autosegmental Representations
Adam Jardine

11:45-12:25 Extracting Forbidden Factors from Regular Stringsets
James Rogers and Dakotah Lambert

12:25-14:10 Lunch

14:10-14:30 S.-Y. Kuroda Prize Ceremony

14:30-14:35 Break

ix



Thursday, July 13 (continued)

Session 3: Invited Talk

14:35-15:35 Latent-Variable PCFGs: Background and Applications
Shay Cohen

15:35-15:50 Coffee Break

Session 4

15:50-16:30 A Proof-Theoretic Semantics for Transitive Verbs with an Implicit Object
Nissim Francez

16:30-17:10 Why We Speak
Rohit Parikh

17:10-17:50 A Monotonicity Calculus and Its Completeness
Thomas Icard, Lawrence Moss and William Tune

19:00- Conference Dinner at QMUL Octagon

Friday, July 14

x



Friday, July 14 (continued)

Session 5: Invited Talk

09:30-10:30 DAG Automata for Meaning Representation
Frank Drewes

10:30-10:45 Coffee Break

Session 6

10:45-11:25 (Re)introducing Regular Graph Languages
Sorcha Gilroy, Adam Lopez, Sebastian Maneth and Pijus Simonaitis

11:25-12:05 Graph Transductions and Typological Gaps in Morphological Paradigms
Thomas Graf

12:05-13:50 Lunch

13:50-14:30 Business Meeting

14:30-14:35 Break

xi



Friday, July 14 (continued)

Session 7: Invited Talk

14:35-15:35 Introducing Structure into Neural Network-Based Semantic Models
Stephen Clark

15:35-15:50 Coffee Break

Session 8

15:50-16:30 Count-Invariance Including Exponentials
Stepan Kuznetsov, Glyn Morrill and Oriol Valentín

16:30-17:10 Conjunctive Categorial Grammars
Stepan Kuznetsov and Alexander Okhotin

17:10 Closing

xii



Proceedings of the 15th Meeting on the Mathematics of Language, pages 1–10,
London, UK, July 13–14, 2017. c©2017 Association for Computational Linguistics

BE Is Not the Unique Homomorphism
That Makes the Partee Triangle Commute

Junri Shimada
Tokyo Keizai Univeristy, Tokyo, Japan
Meiji Gakuin University, Tokyo, Japan

Keio University, Tokyo, Japan
junrishimada@gmail.com

Abstract

Partee (1986) claimed without proof that
the function BE is the only homomor-
phism that makes the Partee triangle com-
mute. This paper shows that this claim is
incorrect unless “homomorphism” is un-
derstood as “complete homomorphism.” It
also shows that BE and A are the inverses
of each other on certain natural assump-
tions.

1 Introduction

In a famous and influential paper, Partee (1986)
discussed type-shifting operators for NP interpre-
tations, including lift, ident and BE:

lift = λxλP. P (x),

ident = λxλy. [y = x],

BE = λPλx.P(λy. [y = x]).

She pointed out that these operators satisfy the
equality BE ◦ lift = ident, so the following dia-
gram, now often referred to as the Partee triangle,
commutes.

De D〈〈e,t〉,t〉

D〈e,t〉

lift

ident

BE

Diagram 1: The Partee triangle

Partee declared that BE is “natural” because of the
following two “facts.”

Fact 1. BE is a homomorphism from 〈〈e, t〉, t〉 to
〈e, t〉 viewed as Boolean structures, i.e.,

BE(P1 uP2) = BE(P1) u BE(P2),

BE(P1 tP2) = BE(P1) t BE(P2),

BE(¬P1) = ¬BE(P1).

Fact 2. BE is the unique homomorphism that
makes the diagram commute.

While Fact 1 is immediate, Fact 2 is not ob-
vious. Partee (1986) nevertheless did not give a
proof of Fact 2, but only a note saying, “Thanks to
Johan van Benthem for the fact, which he knows
how to prove but I don’t.” Meanwhile, van Ben-
them (1986) referred to Partee’s work and stated
Fact 2 on p. 68, but gave no proof either. Despite
this quite obscure exposition, because of the clas-
sic status of Partee’s and van Benthem’s work, I
suspect that many linguists take Fact 2 for granted
while unable to explain it. Not only is this unfortu-
nate, but it is actually as expected, because Fact 2
turns out to be not quite correct unless “homomor-
phism” is read as “complete homomorphism.” The
main purpose of this paper is to rectify this detri-
mental situation.

Van Benthem (1986) took the domain of entities
to be finite, writing, “Our general feeling is that
natural language requires the use of finite models
only” (p. 7). Fact 2 is indeed correct on this as-
sumption. However, natural language has pred-
icates like natural number whose extensions are
obviously infinite. Also, if we take the domain of
portions of matter in the sense of Link (1983) to be
a nonatomic join-semilattice, then the domain of
entities will surely be infinite, whether countable
or uncountable. It is a fact that a single sentence
of natural language, albeit only finitely long, can
talk about an infinite number of entities, as exem-
plified in (1).

(1) a. Every natural number is odd or even.
b. All water is wet. (Link, 1983)

Given this, it is linguistically unjustified to assume
the domain of entities to be finite. Since Partee
(1986) herself discussed Link (1983), she was cer-
tainly aware that the domain of entities might very
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well be infinite, so it is unlikely that Partee fol-
lowed van Benthem about the size of the domain
of entities.

What difference does it make if the domain De

of entities is infinite, then? Fact 2 would be cor-
rect if “homomorphism” were read as “complete
homomorphism.” A complete Boolean homomor-
phism is a Boolean homomorphism that in addi-
tion preserves infinite joins and meets. It is clear
from the equalities given in Partee’s Fact 1 that
she did not mean complete homomorphism by the
word “homomorphism.” When De is finite, this
does not matter since in that case, D〈〈e,t〉,t〉 is also
finite, and consequently, every Boolean homo-
morphism from D〈〈e,t〉,t〉 is necessarily complete.
However, when De is infinite, so is D〈〈e,t〉,t〉,
and in that case, a Boolean homomorphism from
D〈〈e,t〉,t〉 can be incomplete, and “Fact” 2 turns out
to be false.

This paper essentially consists of extended
notes on Partee (1986). Section 2 shows that BE
is the unique complete homomorphism that makes
the Partee triangle commute and also that it is not
the unique homomorphism that does so if De is
infinite. Section 3 discusses why it is important
that BE is complete by examining its interaction
with A. Finally, Section 4 shows that A is special
among the many inverses of BE. The paper as-
sumes the reader’s basic familiarity with Boolean
algebras and does not provide definitions or ex-
planations of the technical terms that are used.
I would suggest Givant and Halmos (2009) as a
good general reference.

2 Uniqueness and Nonuniqueness Proofs

Since it is cumbersome to work with functions,
let’s adopt set talk. The operators lift, ident and
BE and the Partee triangle can be rendered as fol-
lows, where D = De is a nonempty set of entities
and ℘ denotes power set.1

lift = λx. {P ∈ ℘(D) | x ∈ P},
ident = λx. {x},
BE = λP. {x ∈ D | {x} ∈P}.

1Here and below, λ’s are used merely to describe func-
tions; they are not meant to be symbols in a logical language
that are to be interpreted.

D ℘(℘(D))

℘(D)

lift

ident

BE

Diagram 2: The Partee triangle
(set talk rendition)

Theorem 1. BE is a complete homomorphism
from ℘(℘(D)) to ℘(D).

Proof. It suffices to show that BE preserves arbi-
trary unions and complements (denoted by c). If
{Pi}i∈I is an arbitrary family in ℘(℘(D)),

BE
(⋃

i∈I
Pi

)
=
{
x ∈ D

∣∣ {x} ∈
⋃

i∈I
Pi

}

=
⋃

i∈I
{x ∈ D | {x} ∈Pi}

=
⋃

i∈I
BE(Pi).

For all P ∈ ℘(℘(D)),

BE(Pc) = {x ∈ D | {x} ∈Pc}
= {x ∈ D | {x} /∈P}
= {x ∈ D | {x} ∈P}c

= BE(P)c.

Lemma 2. Let h be a homomorphism from
℘(℘(D)) to ℘(D). The following conditions are
equivalent.

(i) h = BE.

(ii) For all x ∈ D and all P ∈ ℘(℘(D)), if
x ∈ h(P) then {x} ∈P .

Proof. (i) ⇒ (ii). Obvious since x ∈ BE(P) iff
{x} ∈P .

(ii)⇒ (i). We show the contrapositive. Suppose
h 6= BE, so there exists some P ∈ ℘(℘(D)) such
that

h(P) 6= BE(P) = {x ∈ D | {x} ∈P}.

Then, either there is some a ∈ D such that a ∈
h(P) and {a} /∈ P or there is some a ∈ D such
that a /∈ h(P) and {a} ∈ P . In the latter case,
we have a ∈ h(P)c = h(Pc) and {a} /∈ Pc.
Thus, in either case, (ii) does not hold.

Lemma 3. Let h be a homomorphism from
℘(℘(D)) to ℘(D) such that h ◦ lift = ident. For
any nonsingleton set P ∈ ℘(D), h({P}) = ∅.
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Proof. We first show that h({∅}) = ∅. As-
sume that there exists some a ∈ h({∅}). Since
∅ /∈ lift(a), we have {∅} ⊆ lift(a)c. Since h is a
homomorphism and hence preserves order,

h({∅}) ⊆ h(lift(a)c)
= h(lift(a))c

= (h ◦ lift)(a)c

= ident(a)c

= {a}c,

so a /∈ h({∅}), a contradiction.
Next, we show that h({P}) = ∅ if |P | ≥ 2.

Assume that for some P with |P | ≥ 2, there exists
some a ∈ h({P}). Since |P | ≥ 2, there is some
b ∈ P with b 6= a. Since P ∈ lift(b) and hence
{P} ⊆ lift(b), we have

h({P}) ⊆ h(lift(b))
= (h ◦ lift)(b)
= ident(b)

= {b}.

Since a ∈ h({P}), we obtain b = a, a contradic-
tion.

Theorem 4. BE is the unique complete homomor-
phism that makes the Partee triangle commute.

Proof. To see that BE makes the Partee triangle
commute, observe that for any a ∈ D,

BE(lift(a))

= {x ∈ D | {x} ∈ lift(a)}
= {x ∈ D | {x} ∈ {P ∈ ℘(D) | a ∈ P}}
= {x ∈ D | a ∈ {x}}
= {x ∈ D | x = a}
= {a}
= ident(a).

Now, let h be a complete homomorphism from
℘(℘(D)) to ℘(D) such that h ◦ lift = ident. We
show that h = BE. Let a ∈ D and P ∈ ℘(℘(D))
satisfy a ∈ h(P). By Lemma 2, it is sufficient
to show that {a} ∈ P . Since h is a complete

homomorphism,

⋃
P∈P ∩ lift(a)

h({P}) = h
(⋃

P∈P ∩ lift(a)
{P}

)

= h(P ∩ lift(a))

= h(P) ∩ h(lift(a))
= h(P) ∩ ident(a)

= h(P) ∩ {a}
= {a}.

It follows that for some P ∈P ∩ lift(a),

h({P}) = {a}.

By Lemma 3, P must be a singleton set. Since the
only singleton set contained in lift(a) is {a}, we
have {a} = P ∈P ∩ lift(a), so {a} ∈P .

Note that Theorem 4 immediately follows from
Keenan and Faltz’s (1985) Justification Theorem
(p. 92) as well. Individuals in Keenan and Faltz’s
theory can be identified with the elements of the
set {Ix | x ∈ D}, where Ix = lift(x). Given a
function f from the set of individuals into ℘(D)
such that f(Ix) = ident(x) for all x ∈ D, the Jus-
tification Theorem says that there exists a unique
complete homomorphism from ℘(℘(D)) to ℘(D)
that extends f .

When D is finite, a homomorphism from
℘(℘(D)) to ℘(D) is necessarily a complete ho-
momorphism, so by Theorem 4, BE is automat-
ically the unique homomorphism that makes the
Partee triangle commute. This is not the case,
however, when D is infinite. To consider such
cases, the following lemma plays an important
role of giving (unique) representations of homo-
morphisms that make the Partee triangle commute.

Lemma 5. Let h be a function from ℘(℘(D)) into
℘(D). The following conditions are equivalent.

(i) h is a homomorphism from ℘(℘(D)) to
℘(D) and h ◦ lift = ident.

(ii) There is a family {Ux}x∈D of subsets of
℘(℘(D)) such that each Ux is an ultrafilter
in the Boolean algebra ℘(lift(x)) satisfying
lift(x) ∩ lift(y) /∈ Ux for all y 6= x, and

h = λP. {x ∈ D |P ∩ lift(x) ∈ Ux}.

Proof. (i)⇒ (ii). Assume (i). For each x ∈ D, let

Ux = {P ∈ ℘(lift(x)) | x ∈ h(P)}.
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To begin with, we show that Ux is an ultrafil-
ter in the Boolean algebra ℘(lift(x)). First, since
x ∈ {x} = ident(x) = h(lift(x)), the top ele-
ment lift(x) of ℘(lift(x)) belongs to Ux. Second,
if P,Q ∈ Ux, then x ∈ h(P) and x ∈ h(Q)
and hence x ∈ h(P) ∩ h(Q) = h(P ∩ Q),
so P ∩ Q ∈ Ux. Third, if P ∈ Ux and Q ∈
℘(lift(x)) satisfy P ⊆ Q, then x ∈ h(P) ⊆
h(Q), so Q ∈ Ux. This establishes that Ux is
a filter in ℘(lift(x)). To see that Ux is an ultra-
filter, suppose P ∈ ℘(lift(x)) and P /∈ Ux.
Since x ∈ h(lift(x)) = h(P ∪ (Pc ∩ lift(x))) =
h(P) ∪ h(Pc ∩ lift(x)) and x /∈ h(P), we have
x ∈ h(Pc ∩ lift(x)), so Pc ∩ lift(x) ∈ Ux. Thus,
the complement of P in ℘(lift(x)) belongs to Ux.

Next, observe that if lift(x) ∩ lift(y) ∈ Ux, then
x ∈ h(lift(x) ∩ lift(y)) = h(lift(x)) ∩ h(lift(y)),
so x ∈ h(lift(y)) = ident(y) = {y} and therefore
x = y. It follows that lift(x) ∩ lift(y) /∈ Ux for all
y 6= x. This establishes that the family {Ux}x∈D
has the desired properties.

Now, for all P ∈ ℘(℘(D)), we have

h(P ∩ lift(x)c) ⊆ h(lift(x)c)
= h(lift(x))c

= ident(x)c

= {x}c,
so x /∈ h(P ∩ lift(x)c). It follows that

x ∈ h(P)

iff x ∈ h((P ∩ lift(x)) ∪ (P ∩ lift(x)c))

iff x ∈ h(P ∩ lift(x)) ∪ h(P ∩ lift(x)c)

iff x ∈ h(P ∩ lift(x))

iff P ∩ lift(x) ∈ Ux.

Thus h(P) = {x ∈ D |P ∩ lift(x) ∈ Ux}.
(ii) ⇒ (i). Assume (ii). To show that h is a

homomorphism, it suffices to check that it pre-
serves finite union and complement. Being an ul-
trafilter, Ux is a prime filter. Therefore, for all
P,Q ∈ ℘(℘(D)),

x ∈ h(P ∪Q)

iff (P ∪Q) ∩ lift(x) ∈ Ux

iff (P ∩ lift(x)) ∪ (Q ∩ lift(x)) ∈ Ux

iff P ∩ lift(x) ∈ Ux or Q ∩ lift(x) ∈ Ux

iff x ∈ h(P) or x ∈ h(Q)

iff x ∈ h(P) ∪ h(Q),

so h(P ∪ Q) = h(P) ∪ h(Q). Also, for all
P ∈ ℘(℘(D)), since P∩ lift(x) and Pc∩ lift(x)

are complements of each other in ℘(lift(x)) and
since Ux is an ultrafilter in ℘(lift(x)),

x ∈ h(Pc) iff Pc ∩ lift(x) ∈ Ux

iff P ∩ lift(x) /∈ Ux

iff x /∈ h(P)

iff x ∈ h(P)c,

so h(Pc) = h(P)c.
It remains to show that h ◦ lift = ident. While

lift(x) ∩ lift(y) /∈ Ux for every y 6= x, we have
lift(x) ∩ lift(x) = lift(x) ∈ Ux since an ul-
trafilter in ℘(lift(x)) contains the top element of
℘(lift(x)). Consequently,

h(lift(x)) = {y ∈ D | lift(x) ∩ lift(y) ∈ Uy}
= {x}
= ident(x).

Lemma 6. Let Ux be a principal ultrafilter in
℘(lift(x)). The following conditions are equiva-
lent.

(i) lift(x) ∩ lift(y) /∈ Ux for all y 6= x.

(ii) Ux is generated by {{x}}.

Proof. (i) ⇒ (ii). Assume (i). Since Ux is a
principal filter in ℘(lift(x)), there is some Q ∈
℘(lift(x)) that generates it, i.e.,

Ux = ↑Q = {P ∈ ℘(lift(x)) | Q ⊆P}.

We show that Q = {{x}}. For every y 6= x,
we have lift(x) ∩ lift(y) /∈ Ux, and because Ux
is an ultrafilter, this implies that its complement
lift(x) ∩ lift(y)c in ℘(lift(x)) belongs to Ux, so
Q ⊆ lift(x) ∩ lift(y)c. It follows that

Q ⊆
⋂

y 6=x
(lift(x) ∩ lift(y)c)

= lift(x) ∩
(⋂

y 6=x
lift(y)c

)

= {P ∈ ℘(D) | x ∈ P}
∩
(⋂

y 6=x
{P ∈ ℘(D) | y ∈ P}c

)

= {P ∈ ℘(D) | x ∈ P}
∩
(⋂

y 6=x
{P ∈ ℘(D) | y /∈ P}

)

= {P ∈ ℘(D) | x ∈ P and y /∈ P for all y 6= x}
= {{x}}.

Since Ux = ↑Q is an ultrafilter, Q 6= ∅. Hence
Q = {{x}}.
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(ii)⇒ (i). Assume Ux = ↑{{x}}, i.e.,

Ux = {P ∈ ℘(lift(x)) | {{x}} ⊆P}
= {P ∈ ℘(lift(x)) | {x} ∈P}.

Since

lift(x) ∩ lift(y)

= {P ∈ ℘(D) | x ∈ P} ∩ {P ∈ ℘(D) | y ∈ P}
= {P ∈ ℘(D) | {x, y} ⊆ P},

if y 6= x, then {x} /∈ lift(x) ∩ lift(y), so lift(x) ∩
lift(y) /∈ Ux.

Lemma 7. Let D be infinite. For every x ∈
D, there exists a nonprincipal ultrafilter Ux in
℘(lift(x)) such that lift(x) ∩ lift(y) /∈ Ux for all
y 6= x.

Proof. For x ∈ D, let Ex be the following subset
of ℘(lift(x)):

Ex = {{{x}}} ∪
{lift(x) ∩ lift(y) | y ∈ D and y 6= x}.

If F is a finite subset of Ex, then sinceD is infinite,
there is some y ∈ D such that lift(x)∩ lift(y) /∈ F,
so in particular {x, y} /∈ ⋃F and thus

⋃
F can-

not equal lift(x), the top element of ℘(lift(x)).
Ex thus has the finite join property, so the ideal
Ix generated by Ex in ℘(lift(x)) is proper. By
the Boolean prime ideal theorem, Ix can be ex-
tended to a prime ideal, i.e., a maximal ideal Mx

in ℘(lift(x)).2 Let Ux be the dual ultrafilter of Mx

in ℘(lift(x)):

Ux = {Pc ∩ lift(x) |P ∈Mx}.

For all y 6= x, since lift(x) ∩ lift(y) ∈ Ex ⊆ Mx,
we have lift(x) ∩ lift(y) /∈ Ux. Since {{x}} ∈
Ex ⊆ Mx, we also have {{x}} /∈ Ux. Lemma 6
then implies that Ux is not a principal filter.

Theorem 8. IfD is infinite, there are uncountably
many homomorphisms h from ℘(℘(D)) to ℘(D)
such that h ◦ lift = ident.

Proof. Let D be infinite. By Lemma 5, a ho-
momorphism h from ℘(℘(D)) to ℘(D) such that
h ◦ lift = ident is written

h = λP. {x ∈ D |P ∩ lift(x) ∈ Ux},
2 Thus Lemma 7 (and hence also Theorem 8) uses the

Boolean prime ideal theorem, a weaker form of the axiom of
choice.

where Ux is an ultrafilter in ℘(lift(x)) such that
lift(x)∩ lift(y) /∈ Ux for all y 6= x. By Lemmata 6
and 7, there are at least two such ultrafilters Ux for
each x ∈ D: a principal one and a nonprincipal
one. For each x, different choices for Ux clearly
give rise to different homomorphisms. It follows
that the cardinality of the set of homomorphisms
h such that h ◦ lift = ident is at least 2|D|.

Observe that since

{x} ∈P iff {{x}} ⊆P

iff {{x}} ⊆P ∩ lift(x)

iff P ∩ lift(x) ∈ ↑{{x}},
we can write

BE = λP. {x ∈ D | {x} ∈P}
= λP. {x ∈ D |P ∩ lift(x) ∈ ↑{{x}}}.

Thus, in Lemma 5’s representation of BE, each Ux
is a principal filter in ℘(lift(x)). This also explains
why BE has to be the unique homomorphism that
makes the Partee triangle commute when D is fi-
nite, because in that case, each ℘(lift(x)) is finite,
and every filter in a finite Boolean algebra is nec-
essarily principal.

Now supposeD is infinite. By Theorem 8, there
is a homomorphism h 6= BE that makes the Par-
tee triangle commute. By Theorem 4, we know
that h is not a complete homomorphism. It may
be illuminating to confirm this fact directly. The
observation in the previous paragraph implies that
in Lemma 5’s representation of h, there is some
a ∈ D such that Ua is a nonprincipal ultrafilter in
℘(lift(a)). We have {{a}}∩lift(a) = {{a}} /∈ Ua
because {{a}} ∈ Ua would imply Ua = ↑{{a}}
but Ua is nonprincipal. Also, for all x 6= a, we
have {{a}} ∩ lift(x) = ∅ /∈ Ux because an ultra-
filter does not contain the bottom element. Thus

h({{a}}) = {x ∈ D | {{a}}∩ lift(x) ∈ Ux} = ∅.

Since {{a}} is the only singleton set in lift(a), for
every P ∈ lift(a) such that P 6= {{a}}, we have
h({P}) = ∅ by Lemma 3. It follows that

⋃
P∈lift(a)

h({P}) =
⋃

P∈lift(a)
∅ = ∅.

On the other hand,

h
(⋃

P∈lift(a)
{P}

)
= h(lift(a)) = ident(a) = {a}.

Thus

h
(⋃

P∈lift(a)
{P}

)
6=
⋃

P∈lift(a)
h({P}).

So h does not generally preserve an infinite union.
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3 Why do we need a complete
homomorphism?

Partee (1986) proposes that BE is a type-shifting
operator naturally employed in natural language
semantics on the grounds that it is a Boolean
homomorphism and it makes the Partee triangle
commute. As we have seen, however, when D is
infinite, there are infinitely many such homomor-
phisms. Couldn’t they then perhaps be employed
as type-shifting operators in place of BE? What
distinguishes BE from all the rest is the fact that
it is the only complete one. So the question boils
down to this: how should being a complete homo-
morphism matter?

To answer this question, let’s recall Partee’s
(1986) discussion of the functions THE and A
from D〈e,t〉 into D〈〈e,t〉,t〉, which in set talk can
be rendered as the following functions from ℘(D)
into ℘(℘(D)).

THE = λP. {Q ∈ ℘(D) | |P | = 1 and P ⊆ Q},
A = λP. {Q ∈ ℘(D) | P ∩Q 6= ∅}.

Partee argues that THE and A are “natural” since
they are inverses of BE in the sense that for all
P ∈ ℘(D),

BE(THE(P )) =

{
P if P is a singleton,
∅ otherwise,

BE(A(P )) = P.

One should then wonder whether analogous equal-
ities hold with other homomorphisms that make
the Partee triangle commute.

It is immediate that an analogous equality holds
with THE.

Theorem 9. Let h be a homomorphism from
℘(℘(D)) to ℘(D) such that h ◦ lift = ident. For
all P ∈ ℘(D),

h(THE(P )) =

{
P if P is a singleton,
∅ otherwise.

Proof. For any x ∈ D, THE({x}) = lift(x), so
h(THE({x})) = h(lift(x)) = ident(x) = {x}. If
P ∈ ℘(D) is not a singleton, then THE(P ) = ∅,
so h(THE(P )) = h(∅) = ∅.

With A, by contrast, an analogous equal-
ity does not generally hold, and this is where
(in)completeness becomes crucial.

Theorem 10. Let h be a homomorphism from
℘(℘(D)) to ℘(D) such that h ◦ lift = ident. For
all P ∈ ℘(D),

h(A(P )) ⊇ P.

In particular, if P is finite,

h(A(P )) = P.

Proof. Let P ∈ ℘(D). We have

A(P ) = {Q ∈ ℘(D) | P ∩Q 6= ∅}
=
⋃

x∈P
{Q ∈ ℘(D) | x ∈ Q}

=
⋃

x∈P
lift(x).

Thus, for every x ∈ P , lift(x) ⊆ A(P ) and hence
{x} = ident(x) = h(lift(x)) ⊆ h(A(P )). Thus

P =
⋃

x∈P
{x} ⊆ h(A(P )).

If P is finite, then the homomorphism properties
of h ensure that

h(A(P )) = h
(⋃

x∈P
lift(x)

)

=
⋃

x∈P
h(lift(x))

=
⋃

x∈P
ident(x)

=
⋃

x∈P
{x}

= P.

Theorem 10 suggests that homomorphisms
other than BE are undesirable as a type-shifting
operator to replace BE, even if they make the Par-
tee triangle commute. To see this point, imagine
that some such homomorphism h 6= BE were ac-
tually employed as a type-shifter.

First, consider the following example.

(2) André is a girl.

Following Partee (1986), let’s assume that the verb
be is semantically vacuous and a type-shifter is in-
serted to convert a quantifier into a predicate. (2)
would then be analyzed as

(3) André ∈ h(Ja girlK) = h(A(JgirlK)).

Now suppose JgirlK is finite, as would be the case,
say JgirlK = {Mari,Meiko,Hana}. Then by The-
orem 10,

h(A(JgirlK)) = JgirlK = {Mari,Meiko,Hana},

so (3) is equivalent to

6



(4) André ∈ {Mari,Meiko,Hana},

or what amounts to the same thing,

(5) André = Mari or
André = Meiko or
André = Hana.

These are indeed the desired truth conditions for
(2), so no problem arises in this case.

Now consider the examples in (6).

(6) a. π is a natural number.
b. This is some water.

These would be analyzed as in (7), assuming that
this denotes an entity and that JsomeK = JaK = A.

(7) a. π ∈ h(A(Jnatural numberK))
b. JthisK ∈ h(A(JwaterK)).

In contrast to the previous case, Jnatural numberK
and JwaterK ought to be infinite sets. According to
Theorem 10, what we can know is then only that

h(A(Jnatural numberK)) ⊇ Jnatural numberK ,
h(A(JwaterK)) ⊇ JwaterK .

What these inequalities imply is that even though
π /∈ Jnatural numberK, (7-a) might hold and hence
(6-a) come out true, and similarly, even if JthisK /∈
JwaterK, (7-b) might hold and so (6-b) come out
true. Such states of affairs would be clearly unde-
sirable. This suggests that h should not be used as
a type-shifter in natural language semantics.

The above argument does not show, however,
that undesirable states of affairs necessarily ensue,
as the inequality h(A(P )) ⊇ P in Theorem 10 is
not necessarily a proper inclusion. Then, even in a
case where D is infinite, might there perhaps be a
homomorphism h 6= BE such that h(A(P )) = P
for all P ∈ ℘(D)? The following theorem tells
us that this possibility never obtains. Note that it
also characterizes BE without directly mentioning
completeness or the property of making the Partee
triangle commute.

Theorem 11. BE is the unique homomorphism h
from ℘(℘(D)) to ℘(D) such that h◦A is the iden-
tity map on ℘(D).

Proof. Since BE is a complete homomorphism,
by substituting BE for h in the last set of equal-
ities in the proof of Theorem 10, we can see that
BE(A(P )) = P for all P ∈ ℘(D).

To show the uniqueness, assume to the contrary
that there is a homomorphism h 6= BE such that
h ◦ A is the identity map. By Lemma 2, for some
a ∈ D and some P ∈ ℘(℘(D)), we have a ∈
h(P) and {a} /∈P . Since

A(D\{a}) = {Q ∈ ℘(D) | (D\{a}) ∩Q 6= ∅}
= {Q ∈ ℘(D) | Q\{a} 6= ∅}
= {Q ∈ ℘(D) | Q 6= {a},∅}
= ℘(D)\{{a},∅}

and since {a} /∈P , we have

P ⊆ ℘(D)\{{a}} = A(D\{a}) ∪ {∅}.
Since h ◦ A is the identity map, it follows that

h(P) ⊆ h(A(D\{a}) ∪ {∅})
= h(A(D\{a})) ∪ h({∅})
= (D\{a}) ∪ h({∅})
= (D\{a}) ∪∅ (by Lemma 3)

= D\{a}.
This contradicts a ∈ h(P).

It follows from Theorems 10 and 11 that if
h 6= BE is a homomorphism from ℘(℘(D)) to
℘(D) and h ◦ lift = ident, then there exists some
infinite set P ∈ ℘(D) such that h(A(P )) ) P .
Indeed, we can find a concrete example. Since
h 6= BE, in Lemma 5’s representation, there is
some a ∈ D such that Ua is a nonprincipal ultra-
filter in ℘(lift(a)). We have {{a}} /∈ Ua since Ua
is nonprincipal. Since

A(D\{a}) ∩ lift(a) = (℘(D)\{{a},∅}) ∩ lift(a)

= {{a}}c ∩ lift(a)

is the complement of {{a}} in ℘(lift(a)) and since
Ua is an ultrafilter in ℘(lift(a)), we have

A(D\{a}) ∩ lift(a) ∈ Ua.

According to Lemma 5, this implies that

a ∈ h(A(D\{a})).
Combining with Theorem 10, we conclude that

h(A(D\{a})) = D ) D\{a}.
The discussion in this section is just another ex-

ample demonstrating the significance of the no-
tion of completeness of the Boolean structures and
homomorphisms between them that are employed
in natural language semantics, which was exten-
sively argued for by Keenan and Faltz (1985).
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4 Inverses of BE

Having discussed the naturalness of BE, Partee
(1986) asks what possible determiners δ are in-
verses of BE, i.e., BE(δ(P )) = P for all P ∈
℘(D). It is immediate that a necessary and suffi-
cient condition for δ to be an inverse of BE is that

(8) for all P ∈ ℘(D),
{x ∈ D | {x} ∈ δ(P )} = P ,

so there exist many inverses of BE. A is one but
so is Jexactly oneK. Partee suggests that “nice”
formal properties such as being increasing (in
both arguments) and being symmetric might dis-
tinguish A from the others. Contrary to her claim,
though, symmetry fails to distinguish A from
Jexactly oneK, as both of these are symmetric. On
the other hand, the property of being increasing
certainly distinguishes A from Jexactly oneK since
A is increasing and Jexactly oneK is not. Still,
there are many inverses of BE other than A that are
increasing, as the reader can easily check. Then,
how might formal properties single A out?

At this point, we shall recall Keenan and Stavi’s
(1986) view that all possible determiners are ex-
pressible as Boolean combinations of “basic” de-
terminers, which are all increasing and weakly
conservative.3 These two properties are defined
as follows, where δ is an arbitrary function from
℘(D) into ℘(℘(D)).

(9) δ is increasing
⇔ for all P,Q1, Q2 ∈ ℘(D), ifQ1 ∈ δ(P )
and Q1 ⊆ Q2, then Q2 ∈ δ(P ).

(10) δ is weakly conservative
⇔ for all P,Q ∈ ℘(D), ifQ ∈ δ(P ) then
P ∩Q ∈ δ(P ).

Keenan and Stavi (1986) proved that the functions
obtained as Boolean combinations of basic deter-
miners are exactly those functions from ℘(D) into
℘(℘(D)) that are conservative:

(11) δ is conservative
⇔ for all P,Q ∈ ℘(D), Q ∈ δ(P ) iff
P ∩Q ∈ δ(P ).

Keenan and Stavi proposed that this accounts for
3 In Keenan and Stavi’s (1986) theory, the determiner no,

which is not increasing, is not a basic determiner. Keenan and
Stavi suggest that increasingness may be a universal prop-
erty of monomorphemic determiners, if negative determiners
like no are analyzed as bimorphemic, consisting of a negative
morpheme N- and a stem.

the apparent fact that all determiners are conserva-
tive.4 Now, if we restrict our attention to inverses
of BE that are increasing and weakly conservative,
it turns out that there remain only two.

Lemma 12. Let δ be an increasing, weakly con-
servative function from ℘(D) into ℘(℘(D)) such
that BE ◦ δ is the identity map on ℘(D). Then
either

(i) δ = A or

(ii) δ(P ) =

{
A(P ) if P 6= D,
℘(D) if P = D.

Proof. Let P ∈ ℘(D) and x ∈ P . By (8), {x} ∈
δ(P ). Since δ is increasing, for every Q ∈ ℘(D)
such that {x} ⊆ Q, we have Q ∈ δ(P ), so
lift(x) ⊆ δ(P ). Hence

(12) A(P ) =
⋃

x∈P
lift(x) ⊆ δ(P ).

We now show that δ(P ) = A(P ) if P 6= D.
Suppose δ(P ) 6= A(P ). (12) implies δ(P ) 6⊆
A(P ), so there exists some Q ∈ δ(P ) such that
Q /∈ A(P ), which means P ∩ Q = ∅ by the def-
inition of A. Since δ is weakly conservative and
Q ∈ δ(P ), we have ∅ = P ∩ Q ∈ δ(P ). Be-
cause δ is increasing, for every x ∈ D, we have
{x} ∈ δ(P ) since ∅ ∈ δ(P ) and ∅ ⊆ {x}. (8)
then implies P = D.

Finally, observe that by (12),

δ(D) ⊇ A(D)

= {Q ∈ ℘(D) | D ∩Q 6= ∅}
= {Q ∈ ℘(D) | Q 6= ∅}
= ℘(D)/{∅},

so either δ(D) = A(D) = ℘(D)/{∅} or δ(D) =
℘(D). It follows that either (i) or (ii) holds.

How can we distinguish A from the other in-
creasing, weakly conservative inverse of BE de-
scribed in Case (ii) of the above lemma? One pos-
sibility might be to note that while A(D) is a sieve,
δ(D) in Case (ii) is not a sieve, in the sense of Bar-
wise and Cooper (1981):

(13) P ∈ ℘(℘(D)) is a sieve
⇔P 6= ℘(D) and P 6= ∅.

4 Conservativity coincides with Barwise and Cooper’s
(1981) ‘lives-on-its-argument’ property, which Barwise and
Cooper propose to be a universal property of determiners.
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A non-sieve is either true of every predicate or
false of every predicate, and therefore would be
pointless to use in normal conversation. Van Ben-
them (1986) suggests that a determiner δ is gener-
ally expected to be such that δ(P ) is a sieve for all
P 6= ∅ (Variety, p. 9).

Another, presumably more appealing way is to
invoke the notion of logicality, for which I refer to
Westerståhl (1985). So far, we have fixed a model,
whose domain of entities is D, and have not
strictly distinguished linguistic expressions and
their model-theoretic interpretations. We should
now get rigorous about this distinction because
logicality is a property of an object language sym-
bol, and not of its interpretation in a particular
model. Henceforth, let’s take BE and A to be ob-
ject language symbols such that for every model
M = 〈D, J KM〉,

JBEKM = λP. {x ∈ D | {x} ∈P},
JAKM = λP. {Q ∈ ℘(D) | P ∩Q 6= ∅}.

Now according to Westerståhl (1985), an object
language symbol is logical if and only if it has
the two properties called constancy and topic-
neutrality.5 It turns out that constancy alone is suf-
ficient to single A out. Here is the relevant defini-
tion (Westerståhl, 1985, p. 393, with slight adap-
tation).

(14) A determiner δ is constant
⇔ for all models M1 = 〈D1, J KM1〉
and M2 = 〈D2, J KM2〉, if D1 ⊆ D2,
then for all P,Q ⊆ D1, we have
Q ∈ JδKM1 (P ) iff Q ∈ JδKM2 (P ).

A can now be characterized as in the theorem be-
low. So long as we assume all determiners to be
conservative, this theorem tells us that A is the
only increasing, logical determiner that is an in-
verse of BE.

Theorem 13. A is the unique increasing, weakly
conservative, constant inverse of BE.6

Proof. What this theorem asserts precisely is that

5 Constancy corresponds to (invariance for) Extension (of
the context) in van Benthem’s (1986) terminology. Topic-
neutrality is a generalized notion of permutation invariance
(cf. Keenan and Stavi, 1986; van Benthem, 1986).

6 Being both conservative and constant is equivalent to
being conservative* in Westerståhl’s (1985) terminology. So
we could alternatively say that A is the unique increasing and
conservative* inverse of BE.

(i) A is constant and for every model M =
〈D, J KM〉, JAKM is increasing and weakly
conservative and JBEKM ◦ JAKM is the iden-
tity map on ℘(D),

and that

(ii) if δ is constant and for every model M =
〈D, J KM〉, JδKM is increasing and weakly
conservative and JBEKM ◦ JδKM is the iden-
tity map on ℘(D), then for every modelM,
JδKM = JAKM.

Showing (i) is straightforward. Here, let’s
just verify the constancy of A. Let M1 =
〈D1, J KM1〉 and M2 = 〈D2, J KM2〉 be models
such that D1 ⊆ D2. For all P,Q ⊆ D1,

Q ∈ JAKM1 (P )

iff Q ∈ {R ∈ ℘(D1) | P ∩R 6= ∅}
iff Q ∈ {R ∈ ℘(D2) | P ∩R 6= ∅}
iff Q ∈ JAKM2 (P ).

Thus A is constant.
To show (ii), assume for a contradiction that δ

has the described properties but there exists some
model M1 = 〈D1, J KM1〉 such that JδKM1 6=
JAKM1 . By Lemma 12, JδKM1 (D1) = ℘(D1), so
in particular,

∅ ∈ JδKM1 (D1).

Now let M2 = 〈D2, J KM2〉 be a model with
D2 ) D1. By Lemma 12, JδKM2 (D1) =
JAKM2 (D1) = {Q ∈ ℘(D2) | D1 ∩ Q 6= ∅},
so

∅ /∈ JδKM2 (D1).

This contradicts the constancy of δ.

5 Conclusion

Given that the domain of entities of a model for
natural language semantics should generally be in-
finite, BE is characterized not as the unique homo-
morphism that makes the Partee triangle commute
(Theorem 8), but as the unique complete homo-
morphism that makes it commute (Theorem 4). In
light of Keenan and Faltz (1985), who have shown
the importance of considering complete (rather
than plain) homomorphisms in natural language
semantics, this is a welcome result. BE can al-
ternatively be characterized as the unique homo-
morphism that is an inverse of A (Theorem 11),
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while A can be characterized as the unique in-
creasing, (weakly) conservative, constant/logical
inverse of BE (Theorem 13). From this viewpoint,
the naturalness of BE and that of A complement
each other. On the other hand, despite Partee’s
(1986) conjecture that A and THE are the most
“natural” determiners, it is not clear whether THE
may be mathematically viewed as equally natu-
ral as A is. I hope that this paper has elucidated
some finer mathematical points of the Partee trian-
gle that have gone unnoticed and will help rid the
linguistic community of any misunderstandings or
confusion regarding Partee’s (1986) Fact 2. Par-
tee’s statement in Fact 2 was not precise, but after
all, the results of this paper reinforce her intuition
that BE is nice and natural.
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Abstract

We are investigating parts of the mathe-
matical foundations of stemmatology, the
science reconstructing the copying history
of manuscripts. After Joseph Bédier in
1928 got suspicious about large amounts
of root bifurcations he found in recon-
structed stemmata, Paul Maas replied in
1937 using a mathematical argument that
the proportion of root bifurcating stem-
mata among all possible stemmata is so
large that one should not become sus-
picious to find them abundant. While
Maas’ argument was based on one ex-
ample with a tradition of three surviving
manuscripts, we show in this paper that
for the whole class of trees corresponding
to Maasian reconstructed stemmata and
likewise for the class of trees correspond-
ing to complete historical manuscript ge-
nealogies, root bifurcations are apriori the
most expectable root degree type. We
do this by providing a combinatorial for-
mula for the numbers of possible so-called
Greg trees according to their root degree
(Flight, 1990). Additionally, for complete
historical manuscript trees (regardless of
loss), which coincide mathematically with
rooted labeled trees, we provide formulas
for root degrees and derive the asymptotic
degree distribution. We find that root bi-
furcations are extremely numerous in both
kinds of trees. Therefore, while previously
other studies have shown that root bifurca-
tions are expectable for true stemmata, we
enhance this finding to all three philolog-
ically relevant types of trees discussed in
breadth until today.

1 Introduction

Stemmatology is the science trying to reestablish
the copy history of a text surviving in a number of
versions. One of the editors’ objectives in stem-
matology can be approaching the original autho-
rial wording, which itself is most probably lost,
given the body of extant text variants (Cameron,
1987).

In order to do so, the philologist may recon-
struct the copy history of the manuscripts so as to
better understand which variants are most likely
original. Usually, the visual reconstruction is a
graph or more precisely a tree where the nodes
symbolize manuscripts and the copy processes are
depicted by the edges. Such a visual reconstruc-
tion is then called a stemma. For an example of a
stemma, see Figure 1.

Maybe the biggest and surely most famous
problem in philology is an observation that the
French philologist Joseph Bédier made editing the
medieval French text “Le lai de l’ombre” in 1890,
1913 and 1928 (Bédier, 1890, 1913, 1928). Bédier
observed that 105 out of 110 stemmata, the vast
majority, in a collection he had made without con-
trolling for root degree patterns had a bifurcation
immediately below their root, an observation re-
peated multiple times thereafter on different col-
lections, compare Table 1.

This observation was worrisome. If there are
exactly two texts (nodes) directly below the as-
sumed authorial original (root),1 the implications
for text reconstruction of the urtext are the follow-
ing. An editor may choose one of the two texts as
his/her preferred base text at will and reconstruct
the ancestral text from this base text eliciting only
in special cases the second or yet another variant.

1More precisely, in most cases, a root of such a tree repre-
sents a hypothetical intermediary: the latest common ances-
tor of all survivors. It corresponds to the oldest objectively
reconstructible text and is called archetype.
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Collection root bifurcations root tri- or multifurcations
Bédier (1928) 95.5% 4.5%

Castellani (1957) 82.5% 17.5%

Haugen (2015) Bibliotheca A. 85.5% 14.5%

Haugen (2015) Editiones A. 80.5% 19.5%

Table 1: Percentages of root bifurcative stemmata in four collections, reported in (Haugen, 2015). Note
that extending his collection through stemmata which are not yet viewed as conclusive by the composer,
Castellani (1957, p.24) reports only 75 − 76% root bifurcating trees.

Figure 1: First modern stemma by Schlyter, 1827,
from O’Hara (1996).

Bédier was worried about editors consciously or
subconsciously choosing a base manuscript for the
urtext after their taste and justifying this by pos-
tulating root bifurcations in their stemmata. As a
second explanation for a large incidence of root bi-
furcations in reconstructed stemmata he suspected
a methodology-inherent tendency for oversepara-
tion since editors always look for the one authorial
in opposition to all other variants (a fallacy of the
stemmatic method).

One can easily imagine that the subsequent de-
bate had far-reaching consequences for textual
criticism and editing. The community divided into
best text editors (or Bédierists) which abandoned
stemmatic approaches altogether and based their
editions on a good available manuscript and those
which continued and continue to produce stem-
mata (or Lachmannians). More realistically, any
modern editor may choose among one of those
approaches depending on his/her material and cir-
cumstances. Nevertheless, the argument has ever
since stimulated much research repeatedly includ-
ing mathematical argumentation, see for instance,
Greg (1931), Maas (1937), Fourquet (1946),
Whitehead (1951), Pasquali (1952), Castellani

(1957), Hering (1967), Kleinlogel (1968), Weitz-
man (1982), Weitzman (1987), Grier (1989), Hau-
gen (2002), Timpanaro (2005), Haugen (2010),
Haugen (2015), Hoenen (2016). Maas argued
that the number of stemmata with a root bifur-
cation among all possible stemmata which can
be reconstructed (thus regarding stemma genera-
tion apriori as a random process) would be nat-
urally high. One should thus rather not be too
surprised of large proportions in real reconstructed
stemmata: those were no good reason to abandon
the stemmatic method. Maas numerically based
this counter argument on the example of traditions
with three surviving manuscripts.2 Bédierists
could have reacted to this and could have tried
to seek a generalization of his argument. How-
ever, neither Bédierists nor Lachmannians have
ever come up with such a generalization. What if
Maas’ argument would only hold for three surviv-
ing manuscripts, but witness completely different
proportions for 4, 5, or 60 survivors? Would those
numbers reveal justification for being suspicious
of the real-world reconstructions?

In fact, Maas himself estimated numbers of
possible stemmata for a number of surviving
manuscripts of up to 5 according to Flight (1990),
who decades later generalized the type of graphs
Maas had considered for the modeling of stem-
mata. Flight (1990) provided a formula to count
numbers of these so-called Greg trees, given a
certain number of survivors. However, the ques-
tion of the proportion of root bifurcating stem-

2Maas distinguishes two kinds of traditions of medieval
texts: texts read by many and texts read by few. He assumes
that strict stemmatics fails for texts read by many, which
should be characterized by a larger number of survivors. Yet,
not all philologists follow this distinction. Pasquali and Pier-
accioni (1952) distinguish open and closed traditions, where
the latter are such which are largely free of flaws complicat-
ing stemmatic assessment. Closed traditions are not straigh-
forwardly connected with the number of survivors, compare
also West (1973), which is why there is no reason to limit the
range of surviving manuscripts to very small numbers and
surely not to just one or two examples.
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mata and how this proportion develops—thus ulti-
mately the generalization of Maas’ argument—has
not yet been answered. In this paper, we fill this
gap and provide a formula for the numbers of pos-
sible root k-furcating stemmata given m surviving
manuscripts and compute the proportion of root
bifurcating stemmata among all stemmata given m
survivors.

Our work connects to a tradition both in lin-
guistics and biology to count certain subclasses
of graphs. In our case these graphs are trees,
whereas other works have counted alignments be-
tween two or multiple sequences, that is, certain
bi- or multi-partite graphs (Griggs et al., 1990;
Covington, 2004; Eger, 2015).

2 Counting Manuscript Trees:
Prerequisites

The theoretical entity used to model manuscript
genealogy is a tree. A tree, as a concept from
graph theory, is a set of nodes V together with a set
of (unordered) edges E, with E ⊆ {{u, v} | u, v ∈
V }. The two defining properties of trees is
that they must be free of cycles (including self-
cycles) and connected. General works on count-
ing different types of trees appear early on (Cay-
ley, 1889), and research on trees is comprehen-
sive, compare Moon (1970). The similarity of
the three disciplines of historical linguistics, phy-
logeny and stemmatology has likewise been no-
ticed early and led to various transfers and adap-
tations between methods of those fields, compare
O’Hara (1996). Especially in the domain of phy-
logeny the understanding of trees is a central is-
sue and consequently much research has focussed
on phylogenetic trees, see for instance Felsenstein
(1978); Swofford (1990); Huson (1998); Felsen-
stein (2004). One characteristic of phylogenetic
trees is that they are apriori exclusively bifurcat-
ing. Thus, the question for a proportion of root bi-
furcating trees becomes meaningless. Apart from
this, the manual reconstruction of a consistent and
complete genome or characterome of ancestors is
by no means as central an issue as in stemmatics
(Platnick and Cameron, 1977; Cameron, 1987).

In the context of manuscript trees, although
a number of the above enumerated philological
studies count stemmatic trees under certain con-
ditions or elaborate on specific phenomena, Flight
(1990) is apparently the first to provide a general-
ized definition for stemmas. He aims at solving the

question, which he attributes to Maas (1958), how
many different stemmas may exist for some given
number of surviving manuscripts (Flight, 1990,
p.122).

To solve this, he counts so called Greg trees.3

Based on Flight (1990), we define a rooted di-
rected Greg tree (which Flight names after the tex-
tual critic W. W. Greg) as a tree with a distin-
guished root, m labeled nodes standing for surviv-
ing manuscripts and n unlabeled nodes symbol-
izing hypothetical manuscripts. The latter must
have an outdegree of at least two. There can be
neither chains of hypothetical manuscripts (unla-
beled nodes) with indegree one and outdegree one
nor unlabeled leafs. This restriction corresponds
to philological practice (Maas, 1937). A rooted
Greg tree therefore symbolizes a reconstructed
stemma. With this definition, Flight (1990) re-
covers the numbers of possible trees for three sur-
viving manuscripts as postulated by Maas (1937),
see Figure 2. Flight (1990) gives a recursive for-
mula for the enumeration of unrooted and rooted
Greg trees, building on all (four) generalized con-
ditions on how to add a new labeled node and
tabulates all possible Greg trees for up to 12 la-
beled nodes. Thus, he extends values mentioned
by Maas as well as corrects Maas’ numbers. From
the 22 rooted Greg trees for 3 survivors, there are
12 root bifurcating ones, compare again Figure 2.
The recursive formula Flight gives for rooted Greg
trees g(m,n) on m labeled and n unlabeled nodes
is:4

g(m,n) = (m + n − 2) · g(m − 1, n − 1)

+ (2m + 2n − 2) · g(m − 1, n)

+ (n + 1) · g(m − 1, n + 1).

If we fix m, the number of unlabeled nodes n can
vary in the range of {0, 1, . . . , m−1} and the sum,
over n, of all such (m,n)-trees for a fixed m is
the number g(m) of possible rooted Greg trees for
m survivors (Flight, 1990). This gives the num-
ber of possible stemmata one can reconstruct for
m surviving manuscripts adhering to philological
principles.5

3According to Josuat-Vergès (2015), a similar problem
in phylogeny has been described and tackled by Felsenstein
(1978) as recognized by Knuth (2005).

4Flight refers to these as g∗, but for brevity and since we
do not deal with unrooted Greg trees, we denote them simply
as g.

5The number sequence g(m) is listed as integer sequence
A005264 in the On-Line Encyclopedia of Integer Sequences
(OEIS), published electronically at https://oeis.org .
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Figure 2: The unlabeled rooted (root topmost
node) topologies of possible stemmata for three
surviving manuscripts as thought of by Maas
(1937). White nodes symbolize reconstructed lost
manuscripts (unlabeled) whereas black nodes are
survivors (labeled). The number in brackets refers
to the number of possible distinct labeled trees (la-
bel permutations) for each topology.

While Flight (1990) does not compute numbers of
Greg trees according to their root degree, Hering
(1967), referring to a colleague of his,6 tabulates
the numbers of root k-furcating Greg trees (and
the numbers of rooted Greg trees being the sum
over all k) up to m = 6. The sums for all k at
a fixed m coincides exactly with g(m) calculated
by Flight (1990). Alas, there is no formula pro-
vided by Hering (1967). Furthermore, he states
that a calculation for more than 6 survivors would
be difficult. This is demoralizing insofar as surely
numbers (much) larger than m = 6 are relevant to
the philological debate. For instance, according to
Weitzman (1987), numbers of survivors in Greek
and Latin traditions can range from 1 to “well over
100”.

3 Counting Manuscript Trees: New
Formulas

3.1 A Meta Formula
First, we present a general formula for counting
trees with fixed root degree and two different types
of nodes (e.g., black and white), which we use
later on to derive our main results. We write T
for a class of trees and T for |T |.

If the root of a rooted tree has degree k and the
tree has µ black nodes and ν white nodes, it means
that the tree has k subtrees, which we also per-
ceive as rooted. The root node, r, is either black
or white. We connect r to the root of each sub-
tree. Each of these subtrees can have some size
s1 + p1, . . . , sk + pk, where si is the number of
black nodes in branch i and pi is the number of
white nodes in the same branch. The sum of the
si must equal µ − δB and the sum of the pi must
equal ν−δW , since there are in total µ black nodes
and ν white nodes. Here, δB is a binary variable
indicating whether r is a black node and analo-
gously for δW , where δB = 1 iff δW = 0. If the
black nodes are distinguishable, we can choose the
subsets of nodes of sizes s1, . . . , sk from a total
of µ − δB nodes, and analogously for the white
nodes. There are

(
µ−δB

s1,...,sk

)
possibilities to do so,

where
(

m
k1,...,kℓ

)
= m!

k1!···kℓ!
are the multinomial co-

efficients.
Now, we specialize. We assume that the black

nodes are distinguishable and the white nodes are
indistinguishable. Then, for any class of rooted
trees Tµ,ν with µ such black nodes and ν such

6Prof. Dr. Wolfgang Engel, a mathematician from Ros-
tock University.
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white nodes, the number Tµ,ν,k of rooted labeled
trees from Tµ,ν in which the root has degree k has
the form

µ
∑

(s,p)∈C((µ−1,ν),k)

(
µ − 1

s

)
F (s,p)

+
∑

(s,p)∈C((µ,ν−1),k)

(
µ

s

)
F (s,p).

Here, C((a, b), ℓ) denotes the number of vector
compositions (Eger, 2017) of the ‘vector’ (a, b) ∈
N2 with ℓ parts; that is,

C((a, b), ℓ) = {(s1, . . . , sℓ), (p1, . . . , pℓ) |
s1 + · · · + sℓ = a, p1 + · · · + pk = b}.

Moreover, by s and p, we denote tuples
(s1, . . . , sk) and (p1, . . . , pk), respectively. The
above sum formula arises because the root node
can either be black or white. If it is black, we have
the additional factor µ because the black nodes are
distinguishable and each of them can be the root.

Finally, F is a function of the sizes
s1, . . . , sk, p1, . . . , pk which will be specified
in any particular case.

Now, we have overcounted Tµ,ν,k since we have
counted subtrees as if they were ordered, while in
reality different orders of the subtrees do not con-
stitute a distinct tree t ∈ Tµ,ν,k. Thus, we have to
divide by k! to finally arrive at:

Tµ,ν,k =
µ

k!

∑

(s,p)∈C((µ−1,ν),k)

(
µ − 1

s

)
F (s,p)

+
1

k!

∑

(s,p)∈C((µ,ν−1),k)

(
µ

s

)
F (s,p).

(1)

It is possible that Tµ,ν,k can be expressed
simpler—e.g., as a linear combination of the
terms Tµ+τ,ν+ρ,k+κ for integers τ, ρ, κ—for spe-
cific choices of F .

3.2 Root k-furcating Greg Trees

We are now ready to derive the general formula
for the number gk(m,n) of root k-furcating Greg
trees for m survivors (labeled nodes) and n hypo-
thetical (unlabeled) nodes.

The only question remaining from above is how
we have to specify the function F (s,p) on the k
subtrees. This is very simple, however. Since all

branches i are independent of each other, F (s,p)
takes the form of a product of individual factors:

F (s,p) =

k∏

i=1

g(si, pi)

where g is the function of Flight (1990). The num-
ber gk(m,n) of root k-furcating Greg trees for m
survivors and n hypothetical nodes is hence given
by (1) with this specification of F .

We make three additional remarks. The si sat-
isfy si ≥ 1, since the specification of Greg trees
disallows to have only unlabeled nodes (i.e., si =
0) in a branch. In contrast, the pi may take on the
value zero and therefore satisfy pi ≥ 0. Moreover,
the pi actually satisfy 0 ≤ pi < si because of the
link restrictions on unlabeled nodes in Greg trees.
While the constraint on the pi’s is automatically
taken care of by the function g of Flight (1990),
explicitly accounting for it can speed up computa-
tions.7 Finally, when k = 1, we have to exclude
the second term in (1) from consideration because,
by definition, the root of a Greg tree cannot have
degree one when it is unlabeled.

The numbers gk(m) of root k-furcating Greg
trees for m survivors and an arbitrary number of
hypothetical manuscripts n is the sum over n of
root k-furcating (m, n)-trees. In other words,

gk(m) =
∑

n≥0

gk(m,n).

Table 2 shows the growth of gk(m) until m, k =
15.

We are now interested in the proportions of root
bifurcating Greg trees among all Greg trees since
this was aluded to in Bédier (1928). That is, we
investigate the ratio

R2(m) =
g2(m)∑

k≥1 gk(m)
.

7In order to more efficiently compute the numbers, we
also used further simplified formulas for specific k where
possible. Root unifurcating Greg trees (here g1) are espe-
cially easily computed. The root can only be labeled, since an
unlabeled node as root must have degree at least two. Then,
the number of possible root unifurcating Greg trees corre-
sponds to m ·g(m−1). Root-(m−1)-furcating rooted Greg
trees for all m ̸= 2 coincide with the pentagonal numbers
(sequence A000326 in the OEIS), whose number is given by
3m2−m

2
. This is so because there are only three principle ar-

chitectures of root-(m − 1)-furcating rooted Greg trees, the
individual formulas for the enumeration of which sum to the
same as the pentagonal numbers: m + m(m − 1) +

(
m
2

)
.

Finally, for a root m-furcation, there is always only one Greg
tree.
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At m = 2, the proportion is one third, at m = 3,
Maas’ famous example, we witness a proportion
of R2 = 0.54545. For m = 10, R2 is already
0.59958 with the increase slowing down. For
m = 20, we have R2 = 0.60351 and at m = 100
survivors the proportion is R2 = 0.60599. Growth
is further slowing down and at m = 200 the pro-
portion is R2 = 0.60626. While we are not able
to prove it, we think it is a very safe conjecture
that R2(m) converges to below 0.607, as m tends
toward infinity. Figure 3 plots the proportions of
trees with root degree k = 1, k = 2 and k > 2, as
m becomes larger. Figure 4 plots the root degree
distribution for fixed m.

Root bifurcations thus outweigh all other root
degree patterns by far. Maas’ argument was there-
fore generally true as what regards a large ex-
pectability of root bifurcations in reconstructible
stemmata. Nevertheless, the observed proportions
are considerably lower than Bédier’s ones. How-
ever, a better fit occurs when we exclude all trees
with root degree one from consideration. A root
degree of one requires root to be labeled and thus
surviving, a case which is empirically probably
quite rare, although not impossible. In Bédier’s
collection presumably, there simply had not been
any root unifurcating stemma with a surviving root
and he does not comprehensively discuss this gen-
eral possibility. In Castellani’s (1957) and Hau-
gen’s (2010) collections there have been no counts
of root unifurcations. At m = 200, the fraction of
unifurcating trees is about 21.467%, which means
that the fraction of trees with root degree two is

R̃2(m) =
0.60626

1 − 0.21467
= 0.7719

at m = 200, when trees with root degree one
are discarded. Comparing this number to those in
Table 1, we observe that the empirically reported
numbers for actual collections of stemmata are just
slightly above this reference point. This would in-
dicate that there seems to be a bias for root bifur-
cations, but that this bias is rather low.

While Bédier had looked at R2(m) or R̃2(m)
(coinciding in his collection), Maas explicitly
looked at

Rk>2(m) =

∑
k>2 gk(m)∑
k≥1 gk(m)

for m = 3, and based his counter argument to
Bédier’s conclusions on that. This has been crit-
icized variously because R2(3) corresponds to 12

in 22, the complement of which is not Maas’ 1
but 10 in 22, a ratio probably too small to base
a counter argument on it. Neither Bédier nor
Maas discuss root unifurcating cases extensively,
but they could make a crucial difference in the
ratios of interest since including root unifurcat-
ing trees, non-root-bifurcating would no longer
be equivalent to root multifurcating in meaning.
Thus, Maas’ shift of focus from root bifurcating
to root multifurcating introduces ambiguity. Re-
sponding to such ambiguity, we demonstrated a
mathematically sound way of looking both at pro-
portions of root degree patterns with (R2(m)) and
without root unifurcations (R̃2(m)).

Hering (1967), probably aware that root degrees
of k = 1 appear to be somewhat unrealistic in ac-
tually observed stemmas, stated that instead of fol-
lowing Maas’ focus, one should rather look at

RHE(m) =

∑
k>2 gk(m)

g2(m)

which Hering (1967) investigated until m = 6
and for which he speculated that it would proba-
bly never surpass 0.33 or lie even lower. Looking
at the plot of the proportions, see Figure 3, we can
see that Hering was right, the asymptote is how-
ever rather 0.3. The extraordinary role of root uni-
furcations is immediately visible, since they are
the only k witnessing a decline. This naturally
follows from their restrictions—for instance their
root can only be labeled, meaning that only the
first term in (1) will be relevant, while for all other
root degree patterns both add up.
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Figure 3: Proportions of root unifurcating and
root bifurcating rooted Greg trees among all pos-
sible rooted Greg trees for a fixed m as well as
Rk>2(m) and RHE(m). Note that the first three
proportions add to 1.
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Figure 4: Root degree distribution for trees
counted by gk(m) for fixed m = 3, 5, 15, 25.

In order to gain a deeper insight, we are now look-
ing at another type of tree which plays an impor-
tant role in stemmatology.

4 The Second Type of Manuscript Tree

While Maas had looked at possible trees a philol-
ogist can reconstruct, other studies looked at true
historical trees and their proportionalities. The un-
derlying process reflected in stemmatological trees
is the generation of manuscripts and their copying.
There is (in many cases) one original—which we
can understand as a root node to a rooted tree—
which gets copied a certain number of times (chil-
dren in first generation). Each manuscript (includ-
ing root) can be copied a certain number of times
again (always including 0 times) and so forth.
We assume each node to represent a unique text
symbolized through a distinct label. In this way,
the copy history can be understood/displayed as
a rooted labeled tree. Since copying is a process
from a vorlage8 to a copy, the edges can be under-
stood as directed.

Such a tree depicts the complete copy history
of a text—and not as a stemma does, the re-
constructible portion of it. It ignores loss of
manuscripts (does not assume or know any unla-
beled node) and extends to the entire copying his-
tory of a text. In order to avoid terminological
confusion, the class of trees depicting this com-
plete copy history of a tradition has been called
an arbre réel in philology, a term coined by Four-
quet (1946)—for convenience referred to as ar-
bre in the rest of the paper.9 Arbres were usually

8Vorlage is a loaned term for original of a copy, not of a
tradition deriving from German used in philology.

9Although in French terminology the same term is used

used as hypothetical units of argumentation for
outlining general scenarios of copying and prolif-
eration in philological discourse, see for instance
Castellani (1957). However, recently, they have
gained actuality through artificial traditions, that
is, complete copied sets with known ground truth
(Spencer et al., 2004; Baret et al., 2006; Roos and
Heikkilä, 2009; Hoenen, 2015), where arbres are
used for evaluation, comparing them to computa-
tionally reconstructed stemmata.

In the following, we are looking at arbres them-
selves and provide an answer to the question how
prevalent root bifurcation is in arbres. This may
be useful for future research on the general effects
of loss induced tree transformations (turning an ar-
bre into a stemma), as has been exemplarily done
for a restricted set of topologies by Trovato and
Guidi (2004). Greg (1927) had already hypoth-
esized that deformations arbres undergo through
historical manuscript loss may be a reason for ex-
pectable root bifurcations in stemmata.10

We note that the following is a special case
of our already derived results. In other words,
we now evaluate gk(m, 0), in our above nota-
tion. However, this special case admits simpler
closed-form formulas as well as a derivation of the
asymptotic degree distribution.

5 Rooted Labeled Trees

By Cayley’s formula (Cayley, 1889), the number
T ′

m of labeled trees on m nodes is given by mm−2.
The number Tm of rooted labeled trees is then
given by mm−1 since each of the m nodes can be
the root. Now, let’s assume that the root has de-
gree k = 1, . . . , m − 1. How many such trees are
there, Tm,k?

To answer this, we invoke our meta formula,
Formula (1), with the following specification of
F (s,p):

F (s,p) = g(s1, 0) · · · g(sk, 0)

since p = (0, . . . , 0), as we have no unlabeled
nodes in this case. We have g(s, 0) = Ts since
g(s, 0) retrieves the number of rooted labeled trees
with s nodes.

for so-called R-trees, there is no conceptual overlap whatso-
ever.

10The kind of stemma we are talking about here is not a re-
constructed stemma for any number of surviving manuscripts
but rather the one single “true” stemma or stemma reale as
termed by Timpanaro (2005).
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Thus, combining this insight with the formula
of Cayley, we find that there are exactly

m

k!

∑

s∈C(m−1,k)

(
m − 1

s

)
ss1−1
1 · · · ssk−1

k (2)

rooted labeled trees on m nodes with root degree
k, where we let C(m − 1, k) stand for C((m −
1, 0), k). An alternative, simpler formula for Tm,k

is given by:

Tm,k = m ·
(

m − 2

k − 1

)
· (m − 1)m−1−k. (3)

For k = 1 this formula is not difficult to show. For
k = 2 it has the following combinatorial interpre-
tation. A rooted labeled tree has a root, for which
we may choose any of the m nodes. Then there are
(m − 1) vertices left. There are (m − 1)m−3 pos-
sible labeled trees on them. Since the (m−1) ver-
tices form a tree, there are (m− 2) edges connect-
ing them. We may take any of these, and replace it
by connections of their endpoints to the root. This
yields all the rooted labeled trees in which the root
node has degree 2. For k > 2 a similar, but more
involved argument applies (Moon, 1970, Theorem
3.2).

Next, we ask for the probability Pm[k] that a
randomly chosen rooted labeled tree from Tm has
root degree k = 1, 2, . . .. We find

Pm[k] =
Tm,k

Tm
=

(
m−2
k−1

)

(m − 1)k−1
·
(m − 1

m

)m−2
.

(4)

The second factor in this product equals (1 −
1
m)m−2 and thus converges to exp(−1) as m →
∞. For the first factor A =

(m−2
k−1)

(m−1)k−1 , we find

• for k = 1: A = 1 −→ 1,

• for k = 2: A = (m−2)
(m−1) −→ 1,

• for k = 3: A = (m−2)(m−3)
2

1
(m−1)(m−1) −→

1
2

as m → ∞. In general, we have for A:

A =
(m − 2)(m − 3) · · · (m − k)

(m − 1)(m − 1) · · · (m − 1)

1

(k − 1)!

When k is fixed and m → ∞, then this converges
to 1

(k−1)! . Hence, the asymptotic distribution P [k]

of Pm[k] is

P [k] =
exp(−1)

(k − 1)!

which is a Poisson distribution with parameter λ =
1, denoted as Poisson(λ).

Figure 5 compares the asymptotic Poisson P [k]
distribution to the actual finite distributions Pm[k].
We see that convergence is rapid. For m =
40, Pm[k] is visually already extremely close to
Poisson(λ = 1).
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Figure 5: Asymptotic distribution Poisson(λ =
1) and finite distributions Pm[k] for m =
5, 10, 20, 40.

From P [k], we infer that root bifurcations are
asymptotically twice as likely as trifurcations but
exactly as likely as unifurcations, and have a prob-
ability of roughly 0.37. Moreover, the larger k
gets, the smaller the probability of root k-furcating
trees—and this probability is rapidly decaying in
k. As a side note, we emphasize that the asymp-
totic probability for bifurcations has a particularly
beautiful mathematical form, namely, the inverse
of Leonhard Euler’s constant e.

These mathematical derivations, if they are
based on a plausible description of reality, sug-
gest that in history many original manuscripts may
have been copied only once, the same number has
been copied twice, half as many three times and
a third of that number four times, a fourth of that
number (for four) five times and so on. That is,
if indeed a random process that selects each arbre
for a fixed number of trees on m nodes with equal
likelihood is a good model of true copy history. On
this, any more sophisticated model can operate.

If root bifurcations are already very numerous,
then an immediately related question would be
what consequences this could have for a stemma
when thinking about the transformations an arbre
undergoes through historical loss. To this end,
Weitzman (1982; 1987) has shown, and Trovato
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and Guidi (2004) come to a similar conclusion,
that historically realistic scenarios of loss would
imply a large quantity of bifurcations and root bi-
furcations in stemmata based on transformed ar-
bres. Those do exceed 1

e and thus a possible ef-
fect of historical loss is to increase the percentage
of root bifurcations, in which case 1

e would rather
operate as a lower bound.

6 Conclusion

We have counted root k-furcating rooted labeled
trees and root k-furcating rooted Greg trees. For
the former, the asymptotic root degree distribution
has been derived mathematically. For the latter,
we have provided exact formulas that allow to ap-
proximate the asymptotic root degree distribution.
From this, we (very strongly) conjecture that root
bifurcating Greg trees have an asymptotic proba-
bility of above (and close to) 0.606.

In both cases, relating to a model of repre-
sentation of arbres (true and complete histori-
cal manuscript genealogies) and stemmata (recon-
structed genealogies from surviving nodes), the
proportions of root bifurcating trees for histori-
cally relevant tradition sizes is the largest in re-
spect to the other root degrees. Therefore, while
previously other studies have shown that root bi-
furcations are expectable for true stemmata, we
enhance this finding to reconstructible stemmata
and arbres so that this statement now covers the
three philologically relevant general types of trees
discussed until today. Concerning stemmata, we
have argued that the proportions of root bifurcat-
ing stemmata observed in real collections of ge-
nealogies is close to what is mathematically pre-
dicted, with a seemingly small bias for root bifur-
cations.

In the philological debate, where numerical ar-
guments have been pursued since the very begin-
ning, the formulas presented here contribute to
clarify the basic combinatorial nature of the en-
tities involved in the modeling of manuscript evo-
lution. We believe that in an ever more computa-
tional stemmatological endeavour cultivating the
mathematical foundations can only have positive
effects.

While our findings with respect to root degrees
of rooted labeled trees are certainly far from novel
to the mathematics community, our formulas for
Greg trees, which generalize rooted labeled trees,
are, to our best knowledge, original.
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Abstract

Autosegmental mapping from disjoint
strings of tones and tone-bearing units, a
commonly used mechanism in phonologi-
cal analyses of tone patterns, is shown to
not be definable in monadic second-order
logic. This is abnormally complex in com-
parison to other phonological mappings,
which have been shown to be monadic
second-order definable. In contrast, gen-
eration of autosegmental structures from
strings is demonstrated to be first-order de-
finable.

1 Introduction

This paper applies logical transductions as in-
troduced by Courcelle (1994) to study the cog-
nitive complexity of non-string representations
and transformations in phonology. Generative
phonology studies phonological patterns both in
terms of transformations, or relations between in-
put underlying representations (URs) and output
surface representations (SRs), and phonotactics,
or generalizations about the well-formedness of
SRs. Studies of the computational complexity of
these patterns have established clear bounds on
the expressivity needed to describe them. For
example, Johnson (1972) and Kaplan and Kay
(1994) showed that the ordered rewrite-rule gram-
mars of Chomsky and Halle (1968) describe ex-
actly Regular string relations, and more recent
cross-linguistic studies have shown that phonolog-
ical transformations fall into more restrictive sub-
classes of the Regular class (Chandlee and Heinz,
2012; Chandlee, 2014; Heinz and Lai, 2013;
Payne, 2014; Jardine, 2016a). Similarly, phono-
tactic patterns have been shown to fall into sub-
Regular classes of formal languages (Heinz, 2009,
2010; Rogers et al., 2013). This has led to a

hypothesis that there is a sub-Regular bound on
phonology (see, e.g., Heinz and Idsardi, 2013),
which has clear connections to cognitive complex-
ity (Rogers and Pullum, 2011; Rogers et al., 2013)
and how humans learn sound patterns (Heinz,
2009, 2010; Lai, 2015).

However, these complexity classes are defined
in terms of strings, and since the advent of au-
tosegmental phonology (Goldsmith, 1976), gener-
ative phonology has commonly employed the use
of non-string structures. Perhaps the most com-
monly used of these has been autosegmental rep-
resentations (ARs), which represent words with
graph structures in which disjoint strings are as-
sociated to one another in some fashion. For ex-
ample, Fig. 1 shows an autosegmental derivation
for the Mende word [félàmà] ‘junction’, which
is comprised of a high-toned syllable followed
by two low-toned syllables (following convention
syllables are represented with σ).

H L

σ σ σ
(UR)

→
H L

❅❅
σ σ σ
(SR)

Figure 1: AR derivation for [félàmà] ‘junction’

In the AR, the tone pattern of [félàmà] is rep-
resented as a HL (high-low) string associated to
three syllables as depicted on the right-hand side
of Fig. 1 (with association depicted by straight
lines). While finite-state models of ARs and AR
transformations exist, much of this work has found
the need to use enriched automata with additional
tapes (Kay, 1987; Wiebe, 1992; Kornai, 1995) or
synchronized states (Bird and Ellison, 1994).

Instead, this paper takes a logical approach
to studying the complexity of autosegmental
representations (thus following the work of
Bird and Klein, 1990; Jardine, 2014), as it allows
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for more flexibility with respect to the structures
we can describe. This builds on a few key results.
First, the Regular sets of strings are exactly those
definable by monadic second-order (MSO) logic
(Büchi, 1960; Elgot, 1961; Trakhtenbrot, 1961).
Second, Courcelle (1994) introduced MSO trans-
ductions for graph structures, in which the out-
put structure is determined as an MSO interpre-
tation of the input structure. As MSO-definable
string transductions subsume Regular functions
(Filiot and Reynier, 2016), we can then recast the
Regular hypothesis for phonology in logical terms:
phonology is at most MSO-definable.

This leads to the two results of this paper, one
negative and one positive. First, tone mapping
transformations, in which an unassociated AR is
mapped to a fully associated one—exemplified in
Fig. 1—are not MSO-definable. Second, (at least
some) ARs are first-order (FO) definable from
strings; i.e., we can write a FO transduction from
a string representing a sequence of toned syllables
to its corresponding AR. Because this transduc-
tion is defined in the terms of the FO language
of the input, this means that any FO formula we
write over these ARs can be translated into the FO
logic of their corresponding strings. This means
that any FO constraint written over these ARs still
describes a Regular set of strings—i.e., that ARs
are not significantly more expressive than strings.

This paper is structured as follows. §2 intro-
duces string models and logic, and §3 details how
this relates to the study of phonology. §4 dis-
cusses the non-definability of tone mapping in
MSO, and §5 discusses the FO-definability of ARs
from strings. §6 concludes.

2 Preliminaries

2.1 String models and logics

Let an alphabet Σ be a finite set of symbols and
a string w be a sequence of symbols in Σ; let |w|
denote the length of w. Let Σ∗ represent all possi-
ble strings over Σ, including the empty string λ
(|λ| = 0). A stringset (or formal language) is
some subset of Σ∗. For some σ ∈ Σ, σn denotes
the string consisting of n repetitions of σ.

A relational model 〈U,R1, R2, ..., Rn〉 is a rep-
resentation of some structure with a universe U of
elements and n relations Ri ⊆ Uk for some fi-
nite k. We can represent a string w ∈ Σ∗ with
a finite relational model Mw = 〈U,≺, (Pσ)σ∈Σ〉
where U = {1, 2, ..., |w|} is an initial segment of

the natural numbers representing the positions in
the string, ≺ is a binary relation representing the
natural order over the positions in the string, and
each Pσ is a unary relation representing the set of
positions containing the symbol σ. For example,
for Σ = {a, b} the model for the string aba is

Maba =
〈
{1, 2, 3}U , {(1, 2), (1, 3), (2, 3)}≺ ,

{1, 3}Pa
, {2}Pb

〉
.

We can use these models of this form to define
a first order (FO) predicate logic over strings in
Σ∗. Let x, y, ... denote variables that range over
positions in a string. For variables x and y, we can
then use x ≺ y and σ(x) for each σ ∈ Σ as atomic
predicates which are true when x and y are inter-
preted as positions related by ≺ in a string model
and when x is interpreted as a position in the unary
relation Pσ of a model, respectively. We also as-
sume an additional atomic predicate x = y which
is true when x and y are interpreted as the same
position. A FO logic is then the set of formulas
built recursively out of these atomic predicates and
the logical connectives ¬,∧,∨,→ and the quan-
tifiers ∃,∀ in the usual way. A free variable is
a variable not bound by a quantifier; we write
ϕ(x1, x2, ..., xn) to indicate that x1, x2, ..., xn is
the exhaustive set of free variables in a FO for-
mula ϕ. For example, we can define the following
useful formulas with one free variable:

first(x)
def
= (∀y)[¬y ≺ x]

last(x)
def
= (∀y)[¬x ≺ y]

We also define a two-variable formula for the suc-
cessor relation (using infix notation).

x ⊳ y
def
= x ≺ y ∧ (∀z)[¬(x ≺ z ∧ z ≺ y)]

A formula ϕ with no free variables is called a
sentence. Let satisfaction of a model M of ϕ,
written M |= ϕ, be defined in the usual way. The
set of strings L(ϕ) described by ϕ is the set of
strings {w ∈ Σ∗|Mw |= ϕ}. For example, if

lasta
def
= (∀x)[last(x) → a(x)]

then L(lasta) is the set of strings that end in a.
A monadic second order (MSO) logic is a FO

logic extended with the ability to quantify over ar-
bitrary sets in the string. Let set variables X,Y, ...
which range over sets of positions in a string. A
MSO logic is thus FO logic to which we add the

23



atomic formulas X(x), Y (x), etc., which are true
when x is interpreted as a position in the set as-
signed to X, Y , etc., and in which ∃ and ∀ can
also bind set variables.

It is well-known that FO sentences over
string models with ≺ describe exactly the Star-
Free stringsets (McNaughton and Papert, 1971)
whereas MSO sentences describe exactly the
Regular stringsets (Büchi, 1960; Elgot, 1961;
Trakhtenbrot, 1961).

2.2 Logically definable transductions
We can also use logic to define a transduc-
tion from an input structure to an output struc-
ture, as first introduced by Courcelle (1994)
for graphs and later related to string transduc-
tions and their automata-theoretic characteriza-
tions (Engelfriet and Hoogeboom, 2001; Filiot,
2015). (For an overview of related work see
Filiot and Reynier 2016.)

In such a logical transduction, the output struc-
ture is defined by an interpretation over a finite
number of copies of the input structure (where ‘in-
terpretation’ is used in the sense of a translation
from the logical language of one structure into that
of another; see, e.g. Hodges 1997). MSO and FO
transductions are defined as follows.

Definition 1 (MSO/FO transduction) Given
some natural number k, an input alphabet Σ
and an output alphabet Γ, an MSO (resp. FO)
transduction is defined by

• ϕdom, a domain formula, or sentence in the
MSO (FO) logic of the input that defines the
domain of the transduction,

• For each 1 ≤ n ≤ k and γ ∈ Γ, a formula
ϕn

γ (x) in the MSO (FO) logic of the input
with exactly one free variable, and

• For each 1 ≤ n,m ≤ k, a formula
ϕn,m

≺Γ
(x, y) in the MSO (FO) logic of the in-

put with exactly two free variables

To restrict our domain to strings in Σ∗, we
include in our domain formula the sentence
stringΣ as defined by

stringΣ
def
= (∀x)[

∨
σ∈Σ σ(x)]∧

(∀x)[
∧

σ 6=σ′∈Σ σ(x) → ¬σ′(x)]∧
(∀x, y, z)[x ⊳ y ∧ x ⊳ z → y = z]∧
(∀x, y)[first(x) ∧ first(y) →

x = y]

The output of such a transduction is defined as
follows. For each position x in the input and for
each n for which exactly one ϕn

γ (x) is true, a copy
of x labeled γ appears in the output. For each pair
of positions x, y and for each pair n,m for which
ϕn,m

≺Γ
is true, the nth copy of x precedes the mth

copy of y with respect to the output ordering ≺Γ

on positions in the output. For example, to rewrite
strings over the alphabet Σ = Γ = {a, b} such
that each b immediately following another b in the
input is written out as an a then we set k = 1 and

ϕdom
def
= stringΣ

ϕ1
a(x)

def
= a(x) ∨ (b(x) ∧ (∃y)[y ⊳ x ∧ b(y)])

ϕ1
b(x)

def
= b(x) ∧ ¬(∃y)[y ⊳ x ∧ b(y)]

ϕ1,1
≺Γ

(x, y)
def
= x ≺ y

This transduction is illustrated in Fig. 2 for an in-
put string abba.

First, ϕ1
a(x) is defined to be true in the output

for all positions x in the input that are either la-
beled a or are labeled b but also succeed some in-
put b. Thus, the copies corresponding to each a in
the input are labeled as in the output, as well as
the copy for the second input b in the input. Like-
wise, ϕ1

b(x) is defined to be true in the output for
all positions x in the input that are labeled b and
do not succeed another b. In Fig. 2, this is true for
the first b in the input, so its copy is also labeled
b. As the output order ϕ1,1

≺Γ
(x, y) is defined to be

true when the input order x ≺ y is true, the order
is preserved exactly in the output.

Input: a b b a

Output: a b a a

Figure 2: Replacing b with a following an input b

Note as there is only one interpretation
per input, these transductions are functional.
(For non-functional MSO transductions, see
Engelfriet and Hoogeboom 2001.)

To give one more example, we can define a
transduction that ‘doubles’ a string, i.e. given
an input w ∈ Σ∗ outputs ww. We set k = 2,
ϕdom

def
= stringΣ, and

ϕ1
a(x)

def
= ϕ2

a(x)
def
= a(x) ϕ1,2

≺Γ
(x, y)

def
= x < yTrue

ϕ1
b(x)

def
= ϕ2

b(x)
def
= b(x) ϕ2,1

≺Γ
(x, y)

def
= False

ϕ1,1
≺Γ

(x, y)
def
= ϕ2,2

≺Γ
(x, y)

def
= x ≺ y
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(True and False indicate a formula is evaluated
to true or false for any input positions.)

This is interpreted as follows. Each a and b
in the input is given two identical copies in the
output. As both ϕ1,1

≺Γ
(x, y) and ϕ2,2

≺Γ
(x, y) are set

equal to x ≺ y, the first set of copies has the
same order as the input, as does the second. That
ϕ1,2

≺Γ
(x, y) is set to True states that all copies in

the first set precede all copies in the second set;
this establishes an order between the two sets of
copies. Finally, setting ϕ2,1

≺Γ
(x, y) to False en-

sures that second copies never precede first copies.
An example with abba in the input is depicted in
Fig. 3.

Input: a b b a

Output: a b b a

a b b a

Figure 3: Doubling abba

This second example shows that we can freely
manipulate the order of elements in the output; in-
deed, the output need not be a string. In fact, we
can define the output structure to have a new bi-
nary relation R not present in the input structure
by definining a predicate ϕm,n

R (x, y) in terms of
the MSO logic of the input structure. We make use
of this in §4.2. Importantly, as they are defined in
terms of interpretations, both MSO and FO trans-
ductions are closed under composition for graph
structures in general (Courcelle, 1994).

3 Logic and phonology

Because of its well-known connections to com-
putational complexity, we can apply logic to the
study of the complexity of phonological patterns.
This section reviews relevant results from the
study of phonotactic (phonological surface well-
formedness) patterns as stringsets and phono-
logical transformations (mappings from URs to
SRs) as transductions. Both show that MSO-
definability is a clear, if loose, bound on the com-
plexity of phonology.

3.1 Stringsets

Phonotactics are language-specific well-
formedness constraints on how sounds can
be combined to create words. An example from
Kagoshima Japanese is given in Table 1: all words

have a high tone either on the final or penultimate
mora (Kubozono, 2012). (The high tone is marked
with an acute accent [á] on the vowel.)

hána ‘nose’ HL
sakúra ‘cherry blossom’ LHL
kagarı́bi ‘watch fire’ LLHL
... ...
haná ‘flower’ LH
usagı́ ‘rabbit’ LLH
kakimonó ‘document’ LLLH
... ...

Table 1: Kagoshima Japanese tone well-
formedness

Such constraints can be modeled as
stringsets. For example, given the al-
phabet {H, L}, the Kagoshima pattern
can be modeled as the set of strings
{HL, LHL, LLHL, ..., LH, LLH, LLLH, ...},
where Ls and Hs represent low- and high-toned
moras, respectively.

All previous work on natural language phono-
tactics as stringsets has found these patterns to be
at most Regular stringsets, with all but a few ex-
ceptions being sub-Star Free (Heinz, 2007, 2009,
2010; Heinz et al., 2011; Rogers et al., 2013). In
logical terms, this means that definability in MSO
is a clear bound on the complexity of phonotac-
tics, with most patterns being FO-definable. To il-
lustrate, the stringset representing the Kagoshima
tone pattern can be defined with the FO sentence

(lastH ∨ penultH)∧
(∀x, y)[(H(x) ∧ H(y)) → x = y],

where lastH is defined as lasta above and
penultH is defined as (∀x,∃y)[(x ⊳ y ∧
last(y)) → H(x)]. This sentence describes the
set of strings that has exactly one H either in final
or penultimate position.

These results are important for a theory
of phonology because they allow for the hy-
pothesis that phonotactics are at most MSO-
definable, a hypothesis which can be in-
terpreted in terms of cognitive complexity
(Rogers and Pullum, 2011; Rogers et al., 2013)
and how humans learn phonotactics (Heinz, 2010;
Lai, 2015; McMullin and Hansson, 2015). More
restrictive characterizations exist, based on sub-
classes of the Star-Free stringsets (see, e.g., Heinz,
2010), but for the present purposes it is enough to
consider FO- and MSO-definability.

25



3.2 Transductions

We can also fruitfully apply logical transduc-
tions to phonological theory (Heinz, forthcoming),
as mainstream theories of generative phonol-
ogy aim to explain linguistic sound patterns
through a transformation from an input UR
to an output SR (Chomsky and Halle, 1968;
Prince and Smolensky, 2004). Indeed, these trans-
formations have been studied from an automata-
theoretic perspective, leading to restrictive char-
acterizations of phonology. Johnson (1972) and
Kaplan and Kay (1994) show that the phonologi-
cal rewrite rules of Chomsky and Halle (1968) are
describable with finite state machines; that is, that
they describe Regular relations. Subsequent work
on phonological transformations has demonstrated
for a wide variety of processes—including local
assimilation, deletion, and epenthesis (Chandlee,
2014), dissimilation (Payne, 2014), metathesis
(Chandlee and Heinz, 2012), and vowel harmony
(Heinz and Lai, 2013)—to lie in even more re-
strictive subclasses of Regular string transduc-
tions. The single known possible exception to
this is full reduplication—i.e. the copying over of
an entire input form, as in the Indonesian buku-
buku ‘books’, lit. ‘book-book’ (Sneddon et al.,
2010). This is not a Regular relation, although
it can be argued that this process is morphologi-
cal and not phonology proper (for discussion see
Chandlee and Heinz, 2012).

From the logical perspective, all of these re-
sults place phonological transformations squarely
within the class of MSO-definable transductions.
Any functional Regular relation is MSO-definable
(Filiot and Reynier, 2016), so any phonological
transformation describable with a (functional)
rewrite rule is MSO-definable. Even full redu-
plication is FO-definable, as witnessed by the
string doubling transduction defined in §2.2. Thus,
MSO-definability appears to be a loose, yet clear,
bound on the computational complexity of phono-
logical transformations.

3.3 Interim summary

The above has reviewed the evidence for MSO-
definability as a complexity bound on phonol-
ogy. The advantage of viewing such a complexity
bound in logical terms is that we are able to view
the complexity of both phonotactics and transfor-
mations in unified terms.

A further advantage of the logical perspective is

that it allows us to study the complexity of non-
string representations in the same terms. The re-
mainder of the paper studies autosegmental repre-
sentations (ARs) in the same terms.

4 The complexity of tone mapping

This section motivates tone mappings and ARs us-
ing a well-known empirical case, then it is shown
that tone mapping is not MSO-definable.

4.1 Tone mapping in Mende

Mende (Leben, 1973, 1978) is a classic example
of a tone pattern which has been argued to be best
analyzed in terms of autosegmental mapping of
tones to syllables. Mende nouns fall in to one of
five categories: 1) words for which all syllables
are pronounced with a high tone (e.g. [háwámá]
‘waist’), 2) words for which all syllables are pro-
nounced with a low tone (e.g. [kpàkàlı̀] ‘three-
legged chair’), 3) words which begin high but end
low (e.g. [mbû] ‘owl’ and [félàmà] ‘junction’), 4)
words which begin low but end high (e.g. [mbǎ]
‘rice’ and [ndàvúlá] ‘sling’), and 5) words which
show a rising-falling pattern (e.g. [mbǎ̀ ] ‘compan-
ion’ and [nı̀kı́lı̀] ‘peanut’). These five categories
are exemplified by the forms in Table 2, where
tones are indicated as diacritics on the vowels as
follows: [á] = high tone, [à] = low tone, [â] =
falling tone, [ǎ] = rising tone, and [ǎ̀ ] = rising-
falling tone. The columns are of 1-, 2-, and 3-
syllable words.

1. H kÓ pÉlÉ háwámá
‘war’ ‘house’ ‘waist’

2. L kpà bÈlÈ kpàkàlı̀
‘debt’ ‘pants’ ‘chair’

3. HL mbû ngı́là félàmà
‘owl’ ‘dog’ ‘junction’

4. LH mbǎ fàndé ndàvúlá
‘rice’ ‘cotton’ ‘sling’

5. LHL mbǎ̀ nyàhâ nı̀kı́lı̀
‘companion’ ‘woman’ ‘peanut’

Table 2: Mende noun tone (Leben, 1978)

Of interest is the fact that contour tones—
that is, the rising and falling toned-syllables—
and plateaus, or sequences of like-toned syllables,
only occur on the right edge of the word. For ex-
ample, [nyáhâ] ‘woman’ is attested, but a word
like *[nyâhá], with a rising toned-syllable on the
left edge, is not attested. Likewise, words like
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[félàmà] ‘junction’, with a sequence of two low-
toned syllables on the right edge, are commonly
attested, whereas words like *[fèlàmá], are rare.1

Furthermore, Mende words conform to one of the
five tonal shapes exemplified in Table 2; words
showing a falling-rising pattern, for example, are
unattested.

Furthermore, these tonal shapes are maintained
when toneless suffixes are affixed to the noun, re-
sulting in the tone of the suffix varying depending
on the tone pattern of its root. The following data
illustrate this with the toneless suffix /-ma/ ‘on’.

Isolation Suffixed
H pÉlÉ pÉlÉ-má ‘war’
HL mbû mbú-mà ‘owl’

ngı́là ngı́là-mà ‘dog’
LHL nyàhâ nyàhá-mà ‘companion’

Table 3: Mende /-ma/ suffix tone (Leben, 1978)

Note that the suffixed forms also preserve the
generalizations noted above restricting contours
and plateaus to the right edge, and so the tone
pattern ‘stretches’ to accomodate the new sylla-
ble. Thus [mbû] ‘owl’, which has a contour falling
tone in isolation, is realized with a sequence of
pure high and low-toned syllables as [mbú-mà]
‘on owl’ when suffixed.

Following a proposal by Leben (1973), and sub-
sequent work in autosegmental phonology (e.g.,
Goldsmith, 1976; Pulleyblank, 1986; Yip, 2002)
tone patterns like Mende’s have been explained by
a left-to-right mapping of a melody, or string of
tonal units, to a string of syllables. These disjoint
strings are referred to as tiers, and the representa-
tion as a whole is an AR. For example, the words
in Table 2, Row 3 share a HL (high-low) melody,
which is then mapped to the syllables in the words
as depicted in Fig. 4. Following convention, syl-
lables are denoted with σ and the association rela-
tion depicted as lines drawn between units on dis-
tinct tiers.

Thus, the contour falling tone of [mbû] ‘owl is
the result of an HL sequence associating to a single
syllable; likewise the plateau of low-toned sylla-
bles in [félàm̀a] ‘junction’ is the result of an L tone
associating to multiple syllables. The question
then is how to restrict association such that this
multiple association occurs only on the right edge

1See Dwyer (1978) and rebuttal by Leben (1978) for dis-
cussion about exceptions to the generalizations stated here.

H L
��

σ
[mbû]

H L

σ σ
[ngı́là]

H L
❅❅

σ σ σ
[félàmà]

Figure 4: ARs illustrating mapping of HL melody
to words of various syllable length

of the word. Because this association pattern holds
for all lexical items, including the suffixed forms
in Table 3, it is thus entirely predictable and taken
not to be present in the UR of a word. Thus, it must
be created by some phonological transformation
that associates tones to syllables. This transforma-
tion has been analyzed as proceeding according to
laws often referred to as the well-formedness con-
ditions (WFCs). The following definition is due to
Yip (2002).

Definition 2 The well-formedness conditions

a. Every syllable must have a tone.
b. Every tone must be associated to some sylla-

ble.
c. Association proceeds one-to-one, left-to-

right.
d. Association lines must not cross.

Intuitively, the WFCs ensure that in the SR, ev-
ery tone is associated to some syllable, and vice-
versa, by a step-by-step process in which first tone
and first syllable are associated, then the second
tone and second syllable, and so on. (It bears men-
tioning that ‘one-to-one’ here is used not as it is
to describe mathematical functions, but in terms
of how pairs of tones and syllables are associated
one after another.) If there are remaining tones or
syllables on the right edge of a tier that have not
been paired off, WFCs (a), (b), and (d) associate
them to the rightmost unit on the opposite tier: (a)
and (b) require all units to be associated, but (d)
forbids the crossing of any existing associations to
do so. Fig. 5 shows how this process works for
[nyàhâ] ‘woman’, [nyàhá-mà] ‘on woman’, both
of which have an underlying LHL melody, and
[félàmà] ‘junction’, which has an underlying HL
melody. This figure demonstrates that the WFCs
explain the generalization in Mende that contours
and plateaus only occur on the right edge of the
word through a transformation from a UR with no
association to a fully associated SR.

The WFCs have been shown not to be
strictly universal; whether or not tones are as-
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UR SR

L H L

σ σ
→

L H L

σ σ
→

L H L

σ σ
→

L H L
��

σ σ
[nyàhâ] ‘woman’

L H L

σ σ σ
→

L H L

σ σ σ
→

L H L

σ σ σ
→

L H L

σ σ σ
[nyàhá-mà] ‘on woman’

H L

σ σ σ
→

H L

σ σ σ
→

H L

σ σ σ
→

H L
❅❅

σ σ σ
[félàmà] ‘junction’

Figure 5: Step-by-step breakdown of the associa-
tion transformation

sociated from left-to-right or right-to-left, or
whether or not contours are built out of left-
over tones or are simply left unpronounced,
have been shown to vary from language to
language (Goldsmith, 1976; Newman, 1986;
Pulleyblank, 1986; Hewitt and Prince, 1989;
Archangeli and Pulleyblank, 1994; Yip, 2002).
Also, there have since been non-derivational
approaches to tone mapping (Zoll, 2003). How-
ever, all generative explanations of tone mapping
patterns that use ARs rely on the idea of an
unassociated UR being transformed into a SR
with associations, with one-to-one association
forming the basis of the transformation. The
following shows that such a transformation is not
a MSO-definable transduction.

4.2 Tone mapping as a logical transduction
We can characterize this transformation, as de-
picted in Fig. 6, as a transduction that takes two
strings of length n and m, respectively (n,m > 0),
as input and adds an association relation between
the positions in the strings that follows the WFCs
outlined in Def. 2. As long as we can assume there
is some property that distinguishes between units
on each tier, we can abstract away from distinc-
tions between units on a particular tier and instead
focus on predicates a(x) and b(x) which are true
if and only if x is on the ‘upper’ and ‘lower’ tier,
respectively. (For example, a(x) can mean ‘x is a
tone’ and b(x) can mean ‘x is a syllable’.)

In terms of relational models, the transduction
takes models of the form

〈U,≺, Pa, Pb〉

Input: Output:

a1 a2 . . . an

b1 b2
. . . bm

a1 a2 . . . an

b1 b2
. . . bm

Figure 6: The association transduction

and describes a model of the form
〈
U ′,≺′, ◦, Ra, Rb

〉
,

where ◦ denotes a new relation representing asso-
ciation. This relation must conform to the WFCs
in Def. 2; this is formalized in Def. 3 of the asso-
ciation relation.

Definition 3 For an AR whose tiers are a pair of
disjoint strings a1a2...an and b1b2...bm, and for ℓ
being the lesser of n and m, the association rela-
tion ◦ is the unique relation comprised of the sym-
metric closure of all pairs (ai, bi) for 1 ≤ i ≤ ℓ
unioned with (an, bn+1), ..., (an, bm) if n = ℓ or
(am+1, bm), ..., (an, bm) if m = ℓ.

To see why this definition matches that in Def.
2, note that WFC (c) in Def. 2, which stipu-
lates one-to-one, left-to-right association, requires
that (a1, b1), (a2, b2), ..., (aℓ, bℓ) ∈ ◦. If n 6= m,
this leaves either a final segment aℓ+1aℓ+2...an

(if m = ℓ) or bℓ+1bℓ+2...bm (if n = ℓ) that
must also be associated, per WFCs (a) and (b).
WFC (d), which bans line crossing, stipulates
that these final elements cannot ‘reach back’ and
associate to anything except for the final ele-
ment on the opposite tier. So if m = ℓ then
(am+1, bm), (am+2, bm)..., (an, bm) ∈ ◦ and if
n = ℓ then (an, bn+1), (an, bn+2)..., (an, bm) ∈ ◦.
We take the symmetric closure as association is
usually regarded as symmetric (Kornai, 1995).

No MSO definition of this relation is possible.
To show how, we can rely on two facts established
above: 1) MSO transductions are essentially in-
terpretations where relations in the output struc-
ture are defined in terms of the logical language of
the input structure; and 2) MSO transductions are
closed under composition.

First, we can instead consider as input strings
of the form anbm (again, with n,m > 0). This
set is MSO definable, as witnessed by the formula
stringanbm defined below:

stringanbm
def
=

(∀x, y)[¬(b(x) ∧ a(y) ∧ x ≺ y)] ∧
(∃x, y)[a(x) ∧ b(y)]
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These strings are equivalent, in terms of MSO, to
pairs of disjoint strings of shape an and bm. The
reason is that we can write a MSO transduction
from one to another. If ≺ is the ordering in the
input anbm string, we simply define the order ≺Γ

for the output structure such that it omits all prece-
dence between a positions and b positions.

ϕdom
def
= stringΣ ∧ stringanbm

ϕ1
a(x)

def
= a(x)

ϕ1
b(x)

def
= b(x)

ϕ1,1
≺Γ

(x, y)
def
= x ≺ y ∧ ¬(a(x) ∧ b(y))

An example of this is given in Fig. 7.

Input: a a a b b b b

Output: a a a

b b b b

Figure 7: Relating anbm strings to disjoint tiers an

and bm.

Thus, we know that MSO statements over pairs
of disjoint strings an and bm are equivalent to
statements over strings in anbm. We can then use
this to prove Theorem 1.

Theorem 1 Association between two disjoint
strings according to the WFCs in Definition 2 is
not MSO definable.

Proof: The proof is by contradiction. Assume the
converse, that we can define using MSO a trans-
duction that takes disjoint pairs of strings an and
bm and outputs them as associated autosegmen-
tal representations with some association relation
◦ that obeys the WFCs as defined in Def. 3.

With this relation we can write a sentence
ϕeq

def
= (∀x,∃y,∀z)[x ◦ y ∧ (x ◦ z → z = y)],

which holds that every position is associated to ex-
actly one position. If ◦ obeys the WFCs, then per
the discussion of the structure of ◦ in Def. 3, ϕeq is
only true for structures whose association relation
is the set of pairs of the form (ai, bi) (and their
converse). That is, the only structures for which
ϕeq are true are pairs of disjoint strings an and bm

for which n = m.
Now consider strings of the form anbm. As

shown above, there is a MSO transduction from
these strings to disjoint pairs of an and bm. By
assumption, there is then a MSO transduction

that adds an association relation ◦ to these pairs.
Because MSO transductions are closed under
composition, then ϕeq can be written as the
MSO language of strings {a, b}∗. Thus the
sentence stringanbm ∧ ϕeq restricts us exactly
the set of strings anbm for which n = m. It
is well-known that this set is not regular (see,
e.g., Hopcroft et al., 2006), and thus not MSO
definable. Thus we have a contradiction, and so
the assumption must be false. �

Importantly, because MSO transductions are
closed under composition, there is no breakdown
of this process into a finite set of composite steps
(such as those illustrated in Fig. 5) that are them-
selves MSO-definable. Note also that the proof
highlights that in particular it is the one-to-one re-
quirement on association that makes it not MSO-
definable: it is this property that introduces the
ability to check the parity of the a and b tiers.

4.3 Interpreting the result

We have thus shown that, as a transduction from
an unassociated pair of tiers to an associated one
following the WFCs in Def. 2, tone mapping is
not MSO-definable. This puts it in sharp contrast
to all other phonological UR-SR transductions for
whom complexity results exist: as discussed in
Sec. 3.2, these processes have been shown to be
well within MSO-definability. This makes tone
mapping aberrant in terms of its computational
complexity. How do we interpret this result?

One answer is to take this as evidence that
tone has access to more computational power than
other parts of phonology. In fact, this has been
argued by Jardine (2016a) on the basis of compar-
isons between the complexity of tonal phenomena
and segmental phenomena when viewed as string
transductions. However, an issue with this inter-
pretation is that the tonal phenomena that Jardine
cites are still Regular relations and thus MSO-
definable. Thus tone mapping is still highly com-
plex, even compared to other tonal phenomena.

Another possible interpretation is that tone
mapping is simply an incorrect characterization
of the data available. For example, both Dwyer
(1978) and Shih and Inkelas (2015) take issue with
Leben (1973)’s tone mapping characterization of
Mende, and offer alternative explanations using
representational assumptions that do not require
tone mapping (or an analogue thereof). However,
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other tone patterns that have been successfully ac-
counted for using tone mapping include those of
Hausa (Newman, 1986, 2000), Kukuya (Hyman,
1987), and the wide variety of languages ana-
lyzed in Goldsmith (1976), Pulleyblank (1986),
and Zoll (2003). The alternative explanations
mentioned above have yet to be shown to enjoy
the same broad empirical coverage (though future
work may indeed show this).

Another explanation is that it is wrong to as-
sume that the mapping generalization holds for
tiers of unbounded length. The proof above re-
lies on the fact that the input strings are of the
form anbm for any n,m—if either n or m had
some bound, the proof would no longer hold.
Indeed, Yli-Jyrä (2013) gives a finite-state (and
thus MSO-definable) implementation of tone map-
ping given the assumption that the tonal tier is
bounded. However, it is not clear that this can be
assumed for all cases. For example, in Kikuyu
(Clements and Ford, 1979), morphological con-
catenation can extend the tonal tier before map-
ping occurs. Regardless, “tonal tiers must be
bounded” is a hypothesis worth further testing, as
the result here shows it has consequences for the
complexity of phonology.

A final interpretation of the result is to posit
that the one-to-one property of tone mapping as a
phonological universal and thus is not relevant to
the study of the complexity of language-specific
phonological phenomena. As noted in §4, there
are languages whose patterns have been shown to
violate the WFCs in Def. 2 with respect to direc-
tionality and whether or not all tones or syllables
are associated. However, the one-to-one property
appears to be shared by all such patterns. Jardine
(2016b, to appear) demonstrates for many of these
patterns that, if one-to-one association is assumed
in the representation, these language-specific con-
straints on association can be described with a re-
stricted propositional logic, well within the com-
plexity of MSO. Thus, if we isolate the one-to-
one property of association, shown in the proof of
Thm. 1 to be responsible for its non-definability
in MSO, from the other aspects of tone mapping,
then we can maintain MSO-definability as a cohe-
sive bound on the complexity of language-specific
phonological phenomena. How this separation
might be implemented in a theory of tone will be
left for future work.

5 Deriving autosegmental
representations from single strings

The result in the previous section raises an impor-
tant question: How powerful are ARs? Specifi-
cally, does invoking ARs allow for grammars that
are too expressive to provide a reasonable theory
of phonological patterns? To put it in more con-
crete terms, we can represent the tone pattern of
a word either as a string of toned syllables or as
an AR.2 Table 4 gives some examples, two from
Mende and one hypothetical, where strings are
over an alphabet {H, L, F, R} whose symbols rep-
resent high-, low-, falling-, and rising-toned sylla-
bles, respectively.

Form String AR
H L

[félàmà] HLL ❅❅
‘junction’ σ σ σ

L H L
[nyàhâ] LF ��

‘woman’ σ σ

L H
(hypothetical) LLRH ❅❅❜❜☞☞❆❆

σ σ σ σ

Table 4: Strings and ARs

Thus, for any string over {H, L, F, R}, there
is a corresponding autosegmental representation.
Note that these ARs obey WFCs (a), (b), and (d)
from Def. 2, in that each tone is associated to a
syllable and vice versa, and these association lines
do not cross. However, the AR for LLRH violates
WFC (c), as the tones have not associated in a left-
to-right manner. We can thus talk about ARs that
obey (a), (b), and (d), but will ignore (c), as the
latter would restrict us to a subset {H, L, F, R}∗.

We can then talk about strings and their cor-
responding ARs. Jardine and Heinz (2015) de-
fine such a relationship in terms of concatenation,
but they do not address how this relationship con-
nects to complexity. As discussed in §3.1, natu-
ral language phonotactics are largely describable
with FO-definable stringsets. The question then is,
given, for example, an FO logic over ARs, can we
describe sets of strings that are not FO-definable?
This is a valid question as, for example, even re-
strictions on FO over trees can generate Context

2We abstract away from the issue of whether tones are a
property of moras, syllables, or some other unit. See, e.g.,
Yip (2002) for more on this issue.
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Free stringsets (Rogers, 1997).
The following demonstrates otherwise: ARs are

FO-definable from strings, and thus any FO for-
mula over ARs is translatable into a FO formula
in strings (given ≺). It should be noted that au-
tosegmental phonology is not a monolithic theory,
and in practice various definitions of ARs have
been proposed (one formal overview can be found
in Coleman and Local, 1991). A full survey of
these and how they might be defined is beyond the
scope of this paper; instead, this section focuses on
demonstrating that basic ARs obeying the WFCs
(a), (b), and (d) in Def. 2 are FO-definable from
strings over {H, L, F, R}. In other words, we for-
malize the relationship between strings and ARs
exemplified in Table 4. This illustrates that the
fundamental ideas of autosegmental structure—
distinct tiers associated to one another accord-
ing to some well-formedness conditions—is FO-
definable from strings.

5.1 Definition of transduction
We define a transduction from string models of the
form

〈U,≺, PH, PL, PF, PR〉
to autosegmental models of the form

〈
U ′, ⊳′, ◦, RH, RL, Rσ

〉
.

Essentially, we define the transformation from the
second column of Table 4 to the third, for all
strings in {H, L, F, R}∗.

We do this by defining the notion of a span, or
a series of consecutive positions in U that share
the same tone and thus will be associated to the
same tone on the melody tier in the output AR. We
then create extra copies of each element in U that
represents a change in spans. These extra copies
become the tones in the melody tier. Note that
the order in the output is a successor relation ⊳′;
this is not essential, but was chosen for two rea-
sons. One, it is more straightforward to depict in
the examples below. Two, its definition gives for-
mal weight to an idea long noted by phonologists:
local relationships (i.e. those over ⊳′) in ARs cor-
respond to long-distance relationships (i.e. those
over ≺) in strings (see, e.g., Odden, 1994).

First, we define some useful formula and no-
tational shortcuts. The first denotes when y lies
between some x and z.

x ≺ y ≺ z
def
= x ≺ y ∧ y ≺ z

We then define formulas in the logic of the in-
put string that represent the tonal relationships be-
tween units in the string. The following formula
sametone(x, y) is true when x ends with the same
tone that y begins with (thus it is true for an H and
an F pair as F starts high).

sametone(x, y)
def
=

(H(x) ∧ H(y)) ∨ (L(x) ∧ L(y)) ∨
(H(x) ∧ F(y)) ∨ (L(x) ∧ R(y)) ∨

(R(x) ∧ H(y)) ∨ (F(x) ∧ L(y))

We do this because we will create tones on the
melody tier exactly at syllables where there is a
change in tone. This marks the beginning of a span
of one or more like-toned syllables.

spanfirst(x)
def
=

(∀y)[y ⊳ x → ¬sametone(x, y)]

span(x, y)
def
= x ≺ y ∧ sametone(x, y)∧

(∀z)[x ≺ z ≺ y → sametone(x, z)]

For example, the positions in the following strings
that satisfy spanfirst(x) are underlined: HLL,
LF, and LLRH. Note that neither the R nor
the H in LLRH satisfy this formula because
sametone(x, y) returns true when x is L and y is
R and likewise when x is R and y is H.

We can then define the transduction from strings
to autosegmental representations by setting k = 3.
One set of copies transfers over the syllables, the
next initial tones. The third set of copies is for cre-
ating the additional tones in the F and R contours.
(In general, for strings whose symbols represent
contours of at most length n, k = n + 1.)

We define the unary labeling relations in the au-
tosegmental representation as follows.

ϕ1
σ(x)

def
= True

ϕ2
H(x)

def
= (H(x) ∨ F(x)) ∧ spanfirst(x)

ϕ2
L(x)

def
= (L(x) ∨ R(x)) ∧ spanfirst(x)

ϕ3
H(x)

def
= R(x) ϕ3

L(x)
def
= F(x)

All other unary formulas are set to false; that is,
ϕ1

H(x)
def
= ϕ1

L(x)
def
= ϕ2

σ(x)
def
= ϕ3

σ(x)
def
= False.

This works as depicted in Fig. 8 for the strings
HLL, LF, and LLRH. Each set of copies in the out-
put is organized into a labeled row.

As ϕ1
σ(x) is set to True, every element in the in-

put has a copy in set 1 labeled σ. This corresponds
to the intuition that each position in the input string
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In: H L L L F

Out: 3

2 H L

1 σ σ σ

3 L

2 L H

1 σ σ

In: L L R H

Out: 3 H

2 L

1 σ σ σ σ

Figure 8: Creating elements in autosegmental rep-
resentations.

represents a syllable. In copy set 2, Hs and Ls are
copied over only at the positions in a string rep-
resenting a change in tone, as ϕ2

H(x) and ϕ2
L(x)

are defined to be true only when spanfirst(x) is
true. (Note again that for the string LLRH, this is
false for the positions labeled R and H.) Finally,
ϕ3

H(x) and ϕ3
L(x) ensure that the contour-toned

syllables F and R in the input are given a third copy
L and H, respectively, in the output.

The next step is to define an order on the el-
ements of the output. Again, we define the suc-
cessor relation ⊳′. Like the definition of the
unary relations, this definition will make use of the
spanfirst(x) and span(x, y) formulas.

ϕ1,1
⊳′ (x, y)

def
=x ⊳ y

ϕ2,2
⊳′ (x, y)

def
=x ≺ y ∧
spanfirst(x) ∧ spanfirst(y) ∧

(∀z)[x ≺ z ≺ y → span(x, z)]

ϕ2,3
⊳′ (x, y)

def
=(

spanfirst(x) ∧ (F(y) ∨ R(y)) ∧ x = y
)
∨(

spanfirst(x) ∧ (F(x) ∨ R(x)) ∧ span(x, y)
)

ϕ3,2
⊳′ (x, y)

def
=(F(x) ∨ R(x)) ∧ spanfirst(y)∧

span(x, y)

ϕ3,3
⊳′ (x, y)

def
=(F(x) ∨ R(x)) ∧ (F(y) ∨ R(y))∧

span(x, y)

We set ϕm,n
⊳′ (x, y) for all other values of m and

n to false. These definitions work, as illustrated
in Fig. 9, as follows. The formula ϕ1,1

⊳′ (x, y)
copies the successor relation from the input faith-
fully for the initial copies (i.e. those labeled σ).
Next, ϕ2,2

⊳′ (x, y) draws a successor relation be-
tween the second copies of the initial positions for
adjacent spans. Finally, ϕ2,3

⊳′ (x, y) and ϕ3,2
⊳′ (x, y)

deal with the extra elements in a contour. The for-
mula ϕ2,3

⊳′ (x, y) draws a successor relation from
the second copy of a contour-toned syllable to its
third (i.e., between the two tones in the contour)
when the contour is first in a span (e.g. F in LF).
In case the first part of a contour is part of a previ-
ous span (e.g. in the case of R in LLRH), it draws
a successor relation from the first position in the
previous span to the second part of the contour.
The formulas ϕ3,2

⊳′ (x, y) and ϕ3,3
⊳′ (x, y) then sim-

ilarly draw a successor relation from the second
part of a contour that is the start of a span to the
initial position of the next successive span (these
latter two formulas are not used in the examples).

In: H L L L F

Out: 3

2 H L

1 σ σ σ

3 L

2 L H

1 σ σ

In: L L R H

Out: 3 H

2 L

1 σ σ σ σ

Figure 9: Creating the successor relation in au-
tosegmental representations.

Finally, we draw the associations between the
tiers. This is relatively simple: we define formulas
that relate a second or third copy of a node with its
own first copy as well as any first copies in its span
(and vice versa, to obtain a symmetric relation).

ϕ2,1
◦ (x, y)

def
= spanfirst(x)∧

(x = y ∨ span(x, y))

ϕ1,2
◦ (x, y)

def
= spanfirst(y)∧

(x = y ∨ span(y, x))

ϕ3,1
◦ (x, y)

def
= (F(x) ∨ R(x))∧

(x = y ∨ span(x, y))

ϕ1,3
◦ (x, y)

def
= (F(y) ∨ R(y))∧

(x = y ∨ span(y, x))

We set ϕm,n
◦ (x, y) for all other values of m and n

to false. This obtains the association relations as
depicted in Fig. 10.

As the reader can confirm, we have thus ob-
tained the relationship between strings and ARs as
originally examplified in Table 4.
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In: H L L L F

Out: 3

2 H L

1 σ σ σ

3 L

2 L H

1 σ σ

In: L L R H

Out: 3 H

2 L

1 σ σ σ σ

Figure 10: Creating the association relation in au-
tosegmental representations.

Theorem 2 The above FO transduction maps ev-
ery string over {H, L, R, F}∗ to an AR following
WFCs (a), (b), and (d).

Proof: (Sketch.) WFCs (a) and (b) in Def. 2
stipulate that every syllable is associated to a tone
and vice versa. Note that for any position x in the
input string, either spanfirst(x) will be true of
this position or span(y, x) is true of this position
in some y. The formulas defining the ◦ relation
ensures all such pairs are associated and each
spanfirst(x) is associated with its copy on the
melody tier, and that this relation is symmetric.
For WFC (d), that the definitions depend on both
spanfirst(x) and span(x, y) means that no
association line will ‘cross’ into a new span. �

5.2 Discussion
We have thus demonstrated a set of ARs that are
FO-definable from strings representing sequences
of toned syllables. Because this transduction is de-
fined as an interpretation of the input structure, the
relations in the AR model are equivalent to FO-
statements in the string model. For example, the
atomic formula x⊳′y in the AR model is true when
either of the formulas ϕn,m

⊳′ is true. In other words,

x⊳′y ≡ ϕ1,1
⊳′ (x, y) ∨ ϕ2,2

⊳′ (x, y) ∨ ϕ2,3
⊳′ (x, y) ∨

ϕ3,2
⊳′ (x, y) ∨ ϕ3,3

⊳′ (x, y).

The same is true for the other atomic formulas x ◦
y, H(x), L(x), and σ(x) in the FO logic of the
AR model. This means that any FO formula in the
logic of the AR model can be translated into the
FO logic of the string model. Thus, FO over these
ARs is equivalent to FO in the string model.

One caveat is that in the definition for the AR
successor order, ϕ2,2

⊳′ (x, y), ϕ2,3
⊳′ (x, y), ϕ3,2

⊳′ (x, y),
and ϕ3,3

⊳′ (x, y) all used the string precedence pred-
icate x ≺ y, either directly in the definition or
through the use of the predicate span(x, y). While
concerns for space preclude a full proof, it is easy
to see that these same predicates could not be de-
fined using the string successor x ⊳ y and still ac-
count for spans of arbitrary length. This means
that including the precedence relation ≺ in the
string model is crucial for the definition of the AR
successor ⊳′ (note that x ⊳ y is FO-definable from
x ≺ y but the reverse is not true). As mentioned
above, this means that successor in the AR, specif-
ically successor on the melody tier, corresponds to
precedence in the string model.

To summarize, this section has introduced a
method for defining ARs in FO from strings rep-
resenting sequences of toned syllables. Thus,
FO statements over ARs are no more powerful
than FO statements over strings (with ≺). Note
again that this definition is categorically different
from the tone-mapping transformation discussed
in the previous section, which was shown to not
be MSO-definable.

6 Conclusion

This paper has presented two new results, one neg-
ative and one positive, regarding complexity and
autosegmental representations in phonology. The
first result is that tone mapping transformations as-
signing units on one tier to units on another tier in
a one-to-one fashion are not MSO-definable. This
is in sharp contrast to other phonological patterns,
which have been shown to be at least MSO defin-
able and, in most cases, FO-definable. The second,
positive, result is that ARs are FO-definable from
strings, showing that they do not significantly in-
crease the expressive power of phonotactic gram-
mars. It is thus also likely that they do not sig-
nificantly increase the expressive power of string
mappings, although the logical study of phono-
logical transformations is still ongoing (see, e.g.,
Heinz, forthcoming). This work thus represents
one of many steps towards an understanding of
phonological computation and representation.
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Abstract

The work presented here continues a pro-
gram of completely characterizing the
constraints on the distribution of stress in
human languages that are documented in
the StressTyp2 database with respect to
the Local and Piecewise sub-regular hier-
archies.

We introduce algorithms that, given a
Finite-State Automaton, compute a set
of forbidden words, units, initial factors,
free factors and final factors that define a
Strictly Local (SL) approximation of the
stringset recognized by the FSA, along
with a minimal DFA that recognizes the
residue set: the set of strings in the approx-
imation that are not in the stringset recog-
nized by the FSA. If the FSA recognizes
an SL stringset, then the approximation is
exact (otherwise it overgenerates).

We have applied these tools to the 106
lects that have associated DFAs in the
StressTyp2 database, a wide-coverage cor-
pus of stress patterns that are attested in
human languages. The results include a
large number of strictly local constraints
that have not been included in prior work
categorizing these patterns with respect to
the Local and Piecewise Sub-Regular hier-
archies of Rogers et al. (2012), although,
of course, they do not contradict the cen-
tral result of that work, which establishes
an upper bound on their complexity that
includes strictly local constraints.

1 Introduction

A stringset L is Strictly k-Local if and only if (iff)
it is completely determined by its k-factors: the

substrings of length at most k that occur in strings
⋊·w·⋉ for w ∈ L. (The ‘⋊’ and ‘⋉’ are endmark-
ers.) That is to say, L contains all and only the
strings that are generated by the substring relation
from that set of k-factors. The class of stringsets
that are Strictly k-local for some k is known as SL.
This is at the bottom of the local side of a collec-
tion of classes of stringsets, all strict subclasses of
the class of Regular stringsets, which are hierar-
chically related and are characterized by finite sets
of either substrings (the Local Hierarchy) or sub-
sequences (the Piecewise Hierarchy) or by combi-
nations of the two. In Rogers et al. (2012) we ar-
gue that these hierarchies provide a robust notion
of cognitive complexity for constraints on strings.

The long-term project of our group is to charac-
terize all of the stress patterns collected in Goede-
mans et al. (2015)—a wide-coverage database of
stress patterns occurring in human languages—
with respect to this hierarchy. In Edlefsen et al.
(2008), we established that roughly 75% of these
patterns are SLk for k ≤ 6 and that half are SLk

for k ≤ 3. Subsequently, we derived a set of
“primitive” constraints sufficient to define all of
the patterns by co-occurrence and classified them
into abstract categories (Fero et al., 2014). Most
of these constraints were, in fact, SL, and it turned
out that all of the patterns could be defined by co-
occurrence of constraints at the bottom two lev-
els of the hierarchies. This is significant, since at
these levels it is possible to determine whether a
string satisfies a constraint solely on the basis of
the information that is explicitly contained in the
string, without inferring any additional structure.
Recent work by Heinz and his co-workers (Heinz,
forthcoming; Heinz, 2010; Chandlee, 2014; Jar-
dine, 2016) suggests that much of phonology may
be characterizable by correspondingly simple sets
of structures or functions.

The work on primitive constraints, however,
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did not include any of the factors from the SL
stringsets because the algorithm for determining
if a given Finite State Automaton (FSA) recog-
nizes an SL stringset, and determining k if it does,
does not yield the set of k-factors that define the
stringset. We resolve that problem in this work.

In Section 2 we introduce our notation and basic
formal definitions. In Section 3 we formally define
Strictly Local stringsets and discuss their formal
properties. In Section 4 we distinguish five types
of forbidden factors—factors in the complement
of the set of factors that generate the stringset. In
Section 5 we develop our algorithms for extract-
ing those factors given a Finite State Automaton.
In Section 7 we extend these algorithms in a way
that allows them to be used to partition non-SL
stringsets in a way that provides a set of SL con-
straints that approximates it (to varying degrees of
closeness) and an automaton that captures the non-
SL aspects of the stringset. We close with thoughts
about where these results lead.

2 Formal Preliminaries

A finite state automaton (FSA) is an edge-labeled
directed graph with distinguished vertices that we
will represent by a five-tuple 〈Σ, Q, δ, I, F 〉 where
Σ is the alphabet of the language of the automaton,
Q is the set of states, δ ⊆ (Σ × Q×Q) is a tran-
sition relation where 〈σ, q1, q2〉 ∈ δ iff there is an
edge labeled σ from q1 to q2, I is the set of ini-
tial states, and F is the set of accepting states. Let
A = 〈Σ, Q, δ, I, F 〉.

Let w = σ1σ2 . . . σn ∈ Σ∗ be a string and let
q1, qn ∈ Q. Then there is a path q1

w
❀ qn iff there

exists some sequence of edges

〈〈σi, qi, qi+1〉 ∈ δ | 0 < i < n,
w = σ1σ2 . . . σn−1〉 .

This is an accepting path on w if qn is in F , else it
is a non-accepting path.

The automaton A is total iff for every symbol
σ ∈ Σ and for every state q ∈ Q, there exists some
q′ such that 〈σ, q, q′〉 ∈ δ. It is (partial) functional
iff δ is functional in its first two places. That is,
given a state q ∈ Q and a symbol σ ∈ Σ, there is
at most one q′ ∈ Q such that 〈σ, q, q′〉 ∈ δ.

An FSA is (fully) deterministic (a proper DFA)
iff it has exactly one initial state and it is both total
and functional. We also consider trim functional
automata to be deterministic, where A is trim iff
for all states q ∈ Q there is some accepting path
from q.

An automaton is minimal iff it is deterministic
and no two states are Nerode-equivalent1 . Further,
it is normalized iff it is both minimal and trim.

Given a string w, the factors of w are those v
that are substrings of w (notation: v 4 w). If k
is the length of v (notation: |v| = k) then v is a
k-factor of w.

The powerset graph of the automaton A,
PSG(A) = 〈V,E〉, is another edge-labeled di-
rected graph where:

V = P(Q) and
E = {〈σ, S1, S2〉 | σ ∈ Σ,

S2 = {q′ ∈ Q | (∃q ∈ S1)[〈σ, q, q′〉 ∈ δ}]}

Often we are interested only in the subgraph of this
generated from a given set of initial states.

Lemma 1 If A is deterministic, then the sizes of
the sets along any path in PSG(A) are monotoni-
cally non-increasing.

This is because if A is deterministic δ maps each
state in S1 to at most one state in S2.

Corollary 1 All sets in any cycle are equal in size.

Corollary 2 All in-edges to Q and all out-edges
from ∅ are self-edges.

3 Strictly Local Stringsets

L is Strictly k-Local (L ∈ SLk) iff it is completely
characterized by its k-factors. Let Σ be the alpha-
bet of L and define Fk(Σ) = {v ∈ Σ∗ | |v| = k}
and F≤k(Σ) =

⋃
1≤i≤k[Fi(Σ)]. For any string

w ∈ Σ∗, the k-factors of w are

Fk(w) =





{w} if |w| <= k,
{v ∈ Fk(Σ) |

w = w1vw2, w1, w2 ∈ Σ∗}
otherwise.

Similarly for F≤k(w). This lifts to sets of strings
in the obvious way.

Let G ⊆ F≤k({⋊} ·Σ∗ · {⋉}) be the set of per-
mitted factors in L. Then the stringset generated
by G is

L(G) = {w ∈ Σ∗ | F≤k(⋊ · w ·⋉) ⊆ G} .

Since Σ is assumed to be finite, F≤k(Σ) is also
finite, and an SLk language can equivalently be
defined in terms of its forbidden factors: G =

1q1 and q2 are Nerode-equivalent iff for all strings w,
there is an accepting path on w from q2 iff there is an ac-
cepting path on w from q1
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F≤k(Σ) −G. This is more natural in many appli-
cations, including many linguistic ones (as in “no
pair of unstressed syllables occur adjacently”).

A stringset is said to be SL if it is SLk for any
finite k.

The following proposition characterizes SLk.
Proposition 1 (Suffix Substitution Closure)
(SSC)

L ∈ SLk iff
(∀x ∈ Fk−1(Σ))[ if w1 = u1 · x · v1 ∈ L

and w2 = u2 · x · v2 ∈ L
then u1 · x · v2 ∈ L ].

This is because if a symbol σ can follow x in some
string of L(A) then x · σ is a permitted factor and
σ can follow x in any string of L(A).

One consequence of this is that if L(A) ∈ SLk

and A is deterministic, then for each length k − 1
string x, all states in the set

{q′ ∈ Q | (∃q ∈ Q)[q
x
❀ q′]}

are Nerode Equivalent. If A is minimal as well,
then all paths that end with the same (k−1)-factor
lead to the same state. The computations of the
automaton synchronize after at most k − 1 steps.

This is the basis of the algorithm used by Edlef-
sen et al. (2008)2 to determine if a given A rec-
ognizes an SL stringset and, if it does, to find the
parameter k.

Proposition 2 Suppose A is a normalized DFA.
Then L(A) ∈ SLk iff every path from Q in
PSG(A) that is of length k−1 leads to a singleton
vertex. If that is the case, then k is one plus the
length of the longest path from Q to a singleton
(that does not include other singletons). If there is
no such longest path (i.e., there is an infinite path)
then there is some cycle of non-singleton vertices,
L(A) does not satisfy SSC for any k and it is not
SL.

In practice, it is not necessary to build even just
the subgraph of PSG(A) generated by Q. All that
one needs for a counter-example to SSC is a single
pair of strings in which SSC fails. So it suffices to
just explore the subgraph of PSG(A) that is gen-
erated by doubleton subsets of Q. The size of this
subgraph is only Θ(card(Q)2), in contrast to the
subgraph generated by Q, which is Θ(2card(Q)).

The following is an immediate consequence of
this proposition.

2The pair-graph algorithm was first published in Caron
(2000).

Lemma 2 If if A is a normalized DFA and
L(A) ∈ SLk then all cycles in PSG(A) are cycles
of singletons.

4 Classes of Forbidden Factors

Factors may or may not include either a left-end
marker at the beginning or a right-end marker at
the end. In the case that a factor contains neither,
it can occur anywhere in a string (including, pos-
sibly, at the beginning or end) and we say that it
is a free factor or, if forbidden, free forbidden fac-
tor. If the length of a free forbidden factor is one,
then it has somewhat different status than free for-
bidden factors of greater length; it is, in essence, a
restriction to the alphabet. We will refer to these
as forbidden units. If the first symbol of a forbid-
den factor is ‘⋊’, then it can only occur at the left
end of the word; this is an initial forbidden factor.
If the last symbol is ‘⋉’, then it can only occur at
the right end of the word; it is a final forbidden
factor. Note that the length of the string that these
anchored factors match is k − 1. An SLk defini-
tion can restrict length k− 1 prefixes and suffixes,
but not, in general length k prefixes and suffixes.3

Finally, if a factor contains both end-markers it is
a forbidden word, where the word it forbids is ac-
tually of length k − 2.

5 Forbidden Factors of SL Stringsets

5.1 Free Forbidden Factors
SupposeA is a DFA. A factor w is a free forbidden
factor of L(A) iff there is no path in the transition
graph of A from q0 to an accepting state that in-
cludes w as a substring. If A is normalized, this
will be the case iff there is no path at all that is
labeled w from any state of A, as all such paths
would necessarily lead to the sink state which has
been trimmed. Thus, in PSG(A) the path from Q
that is labeled w leads to ∅. Again, the converse
holds.

So the set of all labels of paths Q to ∅ in
PSG(A) are free forbidden factors of L(A), more-
over, that set includes all free forbidden factors of
L(A). Since in general PSG(A) may include cy-
cles and even in the case that L(A) is SL it may
include cycles of singleton vertices, in general this

3In the original definition of SLk (McNaughton and Pa-
pert, 1971) prefix and suffix factors and forbidden words
could be of length k. But the definition we use is equiva-
lent in all significant aspects and accounts for the information
contained in an anchored factor; it has become the prevailing
definition in most of the literature.
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set of paths will be infinite. (In fact, since PSG(A)
invariably includes a trivial cycle on ∅ for each
σ ∈ Σ, it will always be infinite.) The paths in-
cluding trivial cycles on ∅ are labeled with strings
in w · Σ∗, where w is a free forbidden factor. We
are interested in the set of paths that are minimal in
the sense that the label of the path does not include
the label of any other such path as a substring.

Note that, by Corollary 2, any such path that
includes an in-edge to Q or an out-edge from ∅
includes another path from Q to ∅ that is strictly
shorter. Thus none of those paths are minimal free
forbidden factors. Note, also, that if L(A) ∈ SL,
then there are no cycles on Q, although there will
always be trivial cycles on ∅ for each σ ∈ Σ.

The next two lemmas establish that if L(A) is
SL then there is some bound such that all cyclic
paths from Q to ∅ in PSG(A) with length greater
than that bound will be labeled with a string that
includes, as a suffix, the label of an acyclic path
from Q to ∅. Thus the set of minimal free forbid-
den factors of L(A) is just the set of labels from
paths from Q to ∅ in PSG(A) that do not include
the label of any other such path as a suffix and
that do not include self-edges on ∅. This allows
us to collect forbidden factors with a breadth-first
bottom-up traversal of PSG(A).

Lemma 3 If v and w label acyclic paths from Q
to ∅ in PSG(A) and v 4 w, then w = uv for some
u ∈ Σ∗.

Proof: v 4 w implies that w = uvx for some
u, x ∈ Σ∗. Since Q

v
❀ ∅ and all vertices

S ⊆ Q, for all vertices S, S
v
❀ ∅ as well, and, in

particular, Q
u
❀ S

v
❀ ∅. Hence x is either ε or the

path it labels is a self-loop on ∅, contradicting the
assumption of acyclicity. ⊣

Lemma 4 If a path from Q to ∅ in PSG(A), with
L(A) ∈ SL includes a cycle other than a trivial
cycle on Q or ∅, then there is a finite bound on the
number of times the cycle can be taken before the
label of the path includes the label of an acyclic
path from Q to ∅ as a suffix.

Proof: Since L(A) is SL, any cycle must be a cy-
cle of singletons. Suppose, then that there is a
path:

Q
u
❀ {q0} v

❀ {q1} w
❀ {q0} x

❀ ∅

where, possibly, v may be a prefix of x. Since
q0, q1 ∈ Q there must be a path:

Q = S0
v
❀ S1

w
❀ S2

v
❀ S3 · · ·

where q0 ∈ S2i and q1 ∈ S2i+1 for i ≥ 0. Since
there are no cycles of non-singletons, by Lemma 1
the sequence of Sis must ultimately be decreasing
in size. Thus, for some n it resolves to:

Q
v
❀ S1

w
❀ S2

v
❀ S3 · · · w

❀ S2n = {q0} x
❀ Q

So (vw)nx labels a path from Q to ∅ and will
be a suffix of all paths Q to ∅ that take the
{q0}❀ {q1} cycle at least 2n times. ⊣

Theorem 1 If L(A) ∈ SL then a string w is a free
forbidden factor of L(A) ∈ SL iff it labels a path
in PSG(A) from Q to ∅. It is minimal if that path
does not include any cycles other than cycles of
singletons and w does not include the label of any
other such path as a suffix.

Note that if L(A) ∈ SL then the only cycles of
non-singletons will be trivial cycles on ∅. Labels
of paths including these will include some free for-
bidden factor as a prefix and are, thus, not mini-
mal.

Paths including cycles of singletons are neces-
sary since none of the paths labeled u(vw)ix as in
the proof of Lemma 4 is labeled with a factor of
any of the others; they are minimal with respect to
each other. It is only the label of the acyclic path
that subsumes the labels of further iterations.

5.2 Final Forbidden Factors

Suppose A is a DFA. A factor w is a final for-
bidden factor of L(A) iff there is no path from q0

to an accepting state in the transition graph of A
that includes w as a suffix but there is some path
from q0 to an accepting state that includes w as a
proper substring. (If no there is no such accepting
path, then w is a free forbidden factor.) If A is
normalized then w is a final forbidden factor iff all
paths labeled w from any state in Q end at a non-
accepting state and there is some such path. This
will be the case iff the path from Q in PSG(A) la-
beled w ends at a non-empty vertex that is disjoint
with F .

Lemma 5 Suppose A is a DFA. No final forbid-
den factor of L(A) includes a free forbidden fac-
tor of L(A) as a substring.
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This is because if v is a free forbidden factor of
L(A) then the path from Q in PSG(A) leads to ∅
and, hence, the path labeled v from any vertex of
PSG(A) leads to ∅ as well.

Note that a final forbidden factor may include
another as a suffix. (It is irrelevant whether it in-
cludes an final forbidden factor as a non-suffix,
since final forbidden factors are, by definition,
only relevant as suffixes.)

Theorem 2 If a path from Q to a non-empty ver-
tex disjoint from F in PSG(A), with L(A) ∈ SL,
includes a cycle other than a trivial cycle on Q,
then there is a finite bound on the number of times
the cycle can be taken before the label of the path
includes the label of an acyclic path from Q to a
non-empty vertex disjoint from F as a suffix.

The proof is essentially the same as the proof of
Lemma 4.

5.3 Initial Forbidden Factors
Suppose A is a DFA. A string w is an initial for-
bidden factor of L(A) iff it is wR (w reversed)
for some w, a final forbidden factor of L(AR),
where AR is the DFA that recognizes the reversal
of L(A).

5.4 Forbidden Words
Suppose A is a DFA and L(A) ∈ SLk. Then w
is a forbidden word of L(A) iff it labels a path of
length less than or equal to k that leads from q0 to
a state in Q− F .

6 Algorithms

Theorem 1 guarantees that if we do a breadth-
first bottom-up traversal of PSG(A) then we will
discover each minimal forbidden factor before we
discover any of its proper suffixes. Expanding the
frontier of the search in discrete stages, every (re-
verse) path from ∅ to Q found in the kth stage will
be a minimal forbidden k-factor.

There may be more than one such path so we do
need to avoid gathering more than one instance of
the factor. In general, there will be open paths (not
reaching Q) that are labeled with the same factor.
Extended to Q, they would include the factor as a
proper suffix. So we exclude these from the fron-
tier for the next stage.

We structure the bottom-up traversal of PSG(A)
as a top-down traversal of PSGR(A), in which
each of the edges of PSG(A) is reversed. For con-
venience (and convergence) we trim self-edges on

∅ and Q while reversing the graph. Since we are
traversing bottom-up, we actually find wR of each
factor w, but we gather these in a list structure, in-
serting at the head, which reverses the factor again
as we construct it.

For the purposes of the algorithm, a Path in
an edge-labeled graph 〈V,E〉 as a computational
structure, is a 3-Tuple: 〈v, S,w〉, where v ∈ V
is the final vertex of the path, S ⊆ V is the (un-
ordered) set of vertices along the path and w ∈ Σ∗

is the sequence of labels of the edges in the path,
in reverse order. A Frontier is a set of paths. For-
bidden factors are gathered in stages, with Stagei

expanding Frontieri−1 to Frontieri, gathering the
set FFi of all minimal forbidden i-Factors in the
process.

The initial frontier Frontier0 for finding free for-
bidden factors includes just the trivial (0-length)
path from ∅. For finding final forbidden factors
Frontier0 includes the trivial path from each ver-
tex that is a subset of Q− F .

Theorem 1 guarantees that, if we eliminate
paths labeled with a forbidden i-Factor from
Frontieri the search will converge after finitely
many iterations, k, with Frontierk empty. (Note it
is an empty set of Paths, not a set including a path
ending at ∅.) The set of minimal free forbidden
factors will be the union of the sets of factors gath-
ered at stages 2 through k, where L(A) ∈ SLk.
(Forbidden 1-factors are not included, since they
are forbidden units.) The search for final forbid-
den factors will terminate after k − 1 iterations,
with the minimal k-final forbidden factors includ-
ing the right-end marker.

Pseudo-code for the algorithms is given in Fig-
ures 1 and 2.

6.1 Forbidden Words for SL Stringsets
If L(A) ∈ SLk and A is deterministic, then the
words it forbids are just the labels of paths of
length k − 2 (to allow for the endmarkers) from
the (single) initial state to a state in Q− F . These
can be gathered by doing a bounded traversal of
A.

6.2 Forbidden Units
If A is normalized (minimal and trim), the forbid-
den units of L(A) are just the symbols of Σ that
do not label any edge in δ. In PSG(A) these will
label edges Q to ∅ and will be gathered in Stage1

while gathering free forbidden factors. But these
may not be the only forbidden units of interest. In
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many applications there will be an alphabet that in-
cludes all symbols that occur in any of a collection
of stringsets and the subset of that alphabet that is
not included in the alphabet of the FSA will also
be significant. This is the case in most linguistic
applications, for example (as in “this lect forbids
unstressed heavy syllables”).

In those applications we need to include the dif-
ference between some default alphabet and the set
of symbols that label edges in A. Since we are
building PSG(A) anyway, the simplest way of do-
ing this is to just take the difference between the
default alphabet and the labels of the out-edges
from Q. If we union that with the labels of the sub-
set of those edges that lead to ∅ we get the free for-
bidden 1-factors as well. We can avoid gathering
the latter in both the set of free forbidden factors
and the set of forbidden units by not including the
forbidden factors gathered in Stage1. (Or, in order
to simplify the code, by removing them from the
set of free forbidden factors.)

7 Forbidden Factors of non-SL
Stringsets

Every non-SL stringset can be fully defined by the
conjunction of a set of SL constraints (possibly
trivial: Σ∗, ∅ and Σ+ are SL1 and SL2, respec-
tively) along with a set of properly non-SL con-
straints. In applications that are exploring con-
straints across a collection of stringsets, most lin-
guistic applications for instance, these SL con-
straints are significant. We would like to be able
to factor the constraints so that the non-SL con-
straints capture, to the extent possible, just the
non-strictly-local aspects of the patterns.

The problem isn’t finding factors that character-
ize the stringset, the problem is that there are too
many of them. Σ∗ − L(A), augmented with left
and right endmarkers, is a set of forbidden factors
that characterizes L(A) exactly. It is, of course, in
general infinite and necessarily so if L(A) is not
SL.

The algorithms for SL stringsets are still par-
tially correct for non-SL stringsets. The problem
is that if L(A) is non-SL then there will be non-
singleton cycles (in addition to those on ∅) and the
traversal will not terminate.

These non-singleton cycles actually localize the
reason that the stringset is not SL. They capture
circumstances under which the automaton fails to
synchronize ever; they identify places in which

SSC (Proposition 1) fails for L(A).
As with the set of forbidden words, the set of

labels of the paths in PSG(A) that include non-
singleton cycles are all legitimate forbidden fac-
tors of L(A), but again there are infinitely many of
them. The stringset they define is what we would
like to isolate as the non-SL fragment of L(A).

It is tempting to try modifying the traversal so it
follows only singleton cycles. But, unfortunately,
if there are non-singleton cycles the chain of the
proof of Lemma 4 may be infinite, so there is
no guarantee of termination even when following
only singleton cycles.

Another approach would be to modifyA, work-
ing backward from PSG(A), in a way that would
eliminate the non-singleton cycles. We have not
really pursued this idea, but our sense is that it is
likely to fail for the same reason as simply not fol-
lowing non-singleton cycles fails.

In any case, we are looking for a set of forbid-
den factors that approximates L(A). Since none of
our algorithms introduces constraints that are not
manifest in the automaton, the approximation will
overgenerate. The issue is how close do we need
it to be.

7.1 SL Approximations

First of all, as we noted above, Σ∗ is an SL ap-
proximation of every stringset over Σ. But it’s
a particularly licentious one. Another possibility
is to only gather the forbidden factors that label
non-cyclic paths in PSG(A). This will miss many
forbidden factors that may well be significant—all
those factors labeling paths with singleton cycles
that would have eventually been subsumed if there
were no non-singleton cycles. On the other hand,
it gives the smallest set of forbidden factors that
comprise a reasonable approximation of L(A).

Another way of bounding the traversal is to note
that no acyclic path from Q to ∅ in PSG(A) can
be 2card(Q) − 2 or longer. But the set of factors
gathered by a traversal with this bound, although
arguably the largest justifiable set of forbidden fac-
tors, is almost certainly unreasonably large.

SL approximations that are too large are mis-
leading both in terms of the apparent complexity
of the SL aspects of the constraints and in terms
of the their non-SL aspects, which will appear to
need to include many exceptions in order to ac-
count for the strings excluded by the SL approx-
imation. When the SL approximation overesti-
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mates, the non-SL residue undergeneralizes.
In some applications, there may be a theoret-

ically justified bound on how long the relevant
factors are, that is, on how many times a cycle
should be followed in the traversal. As we noted
in the introduction, all of the SL stress patterns in
StressTyp2 are SLk for k ≤ 6. Thus one may well
be justified in limiting the SL fragment to factors
of length no more than six. Even assuming the
bound is well-justified, this is still likely to gener-
ate too close an approximation. Forbidden factors
that should properly be captured by the non-SL
constraints, that involve non-singleton cycles that
are not needed to terminate the traversal of single-
ton cycles, will be included. If the goal is to ex-
plore the nature of the constraints across a collec-
tion of stringsets these will likely be misleading,
particularly since half of the patterns in StressTyp2
are SL3 (or less, SL is an inclusive hierarchy in k).

It is straightforward to modify the algorithms
given above for either of these approaches. Cy-
cles can be completely excluded by modifying the
definition of Extensions. Limits on the size of the
factor are just depth limits on the traversal. It is
also straightforward to combine these, only fol-
lowing singleton cycles and only doing it up to
a depth limit. To bound the search for forbidden
words we first compute the sets of forbidden ini-
tial, free and final factors and then bound the depth
to max(|frFF| − 2, |inFF| − 1, |fiFF| − 1), where
|frFF| , |inFF| , |fiFF| are the maximum width of
the free, initial and final factors, respectively.

As our goal in developing these algorithms is
to provide tools that phonologists can use produc-
tively in exploring systems of phonotactic con-
straints the third approach to bounding the traver-
sal seems most useful, although we have currently
only implemented the acyclic path approach.

7.2 Residue Automata

When the algorithms are run on automata that rec-
ognize non-SL stringsets the result is a set of for-
bidden factors for the approximated stringset. We
are just as interested in the characteristics of the
stringset that these forbidden factors miss. Most
work on approximating stringsets with stringsets
in a weaker complexity class has focused on ap-
proximating CFLs with regular stringsets (Neder-
hof (2000) includes a good survey) or Tree-
Adjoining Stringsets (TALs) with CFLs (Schabes
and Waters, 1993; Rogers, 1994). Whenever the

class of stringsets that is being approximated in-
cludes CFLs the (symmetric) difference between
the approximation and the target will not be a de-
cidable set. Consequently, there is little that can
be determined about that difference.

We have the advantage that all of our stringsets
are regular and so the difference is not only decid-
able but an automaton recognizing it is effectively
constructible. Moreover, in this case, we know
that every string excluded by the approximation is
necessarily excluded by the target. The approxi-
mation never undergenerates. To isolate the non-
SL characteristics of the target we construct an au-
tomaton that recognizes exactly the set of strings
that are overgenerated by the SL approximation.

Using well-known algorithms for combining
automata, it is straightforward to construct an au-
tomaton AFF that recognizes the set of strings li-
censed by the set of forbidden factors. One starts
with deterministic automata that recognize each
of the given factors, complements them and then
builds the automaton that recognizes the intersec-
tion of those complements. It is then straight-
forward to construct Ares, the residue automaton4

which recognizes exactly L(AFF) − L(A). This
residue automaton captures exactly the non-SL as-
pects of L(A), up to the degree to which the for-
bidden factors approximate the strictly SL aspects
of L(A).

8 Results and Prospectus

We have designed and implemented algorithms
that, given a Finite-State Automaton, compute a
set of forbidden words, units, initial factors, free
factors and final factors that define an SL approx-
imation of the stringset recognized by the FSA,
along with a minimal DFA that recognizes the
residue set: the set of strings in the approxima-
tion that are not in the stringset recognized by the
FSA. If the FSA recognizes a stringset that is SL,
then the approximation is exact.

As we explain in Section 7.1, the closeness of
the approximation is a parameter that may be var-
ied depending on the application. As we have im-
plemented it, we obtain the smallest set of fac-
tors that is arguably a reasonable approximation.

4The term “residue” is motivated from the perspective of
factoring constraints. These automata should not be confused
with the residual automata of Denis et al. (2002), NFAs in
which every state corresponds to the residual stringset wrt
some prefix. “Residual” in that context is justified from the
perspective of factoring strings.
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We have also implemented an algorithm that col-
lects the union of the forbidden factors of each
type from a collection of these results, although
we don’t present it here, the algorithm being obvi-
ous.

We have applied these tools to the 106 lects that
have associated DFAs in the StressTyp2 database.
For the individual lects the maximum number of
forbidden words is 20. Since the size of our de-
fault alphabet is 15 (five degrees of weight and
three degrees of stress) and some lects have only
one weight and two levels of stress, the maximum
number of forbidden units is 13. The maximum
number of forbidden initial factors is 15. The max-
imum number of forbidden free and final factors is
386 and 117, respectively, but these are all due to
Pirahã, an outlier. Without Pirahã they are 185 and
32, respectively.

For the union factor types, there are 14 distinct
forbidden units (only unstressed light syllables oc-
cur in every lect), 44 distinct forbidden words, 35
distinct forbidden initial factors, 904 distinct for-
bidden free factors and 230 distinct forbidden final
factors. The maximum width of forbidden words,
initial factors and free factors is 5. The maximum
width of forbidden final factor is 6, due to a single
lect (Içuã Tupi) which is also the only example of
a properly SL6 stringset, the other SL patterns all
being SL4 or less.

That is still a lot of factors, too many to draw
much insight from. But these are all in ground
form, with each syllable type represented by a dis-
tinct alphabet symbol. In future work we plan
to adapt the alphabet type to be tuples of fea-
tures or perhaps non-re-entrant feature structures
(adding full feature structures we will leave for
others), which will provide opportunities to gen-
eralize across those features. We know, just from
the phonology, that this will reduce the total num-
ber of exemplars significantly.

The algorithms we have presented here, are
asymptotically exponential-time in the size of the
automaton, but that is actually optimal for al-
gorithms that construct sets of ground factors:
the worst case size of the set of factors of the
stringset of an automaton with card(Q) states
is Ω(card(Σ)card(Q)). Nevertheless these algo-
rithms are actually quite effective in practice. We
have incorporated them into a Haskell workbench
for manipulating automata with a particular fo-
cus on logical descriptions of sub-regular con-

straints. With only minimal optimization the al-
gorithm computes the forbidden factors and the
residue automaton for all 106 lects in our corpus
in less than an hour, which is practical as it stands,
but can be improved significantly. The asymptotic
bound is due to the potential size of the power-
set graph as well as the potential size of the set
of factors. These are not, however, the dominant
factor in the practical performance. Rather it is
the time it takes to generate a minimal DFA from
the forbidden factors. This is an easy target for
optimization; the intersection step, a critical path
in the construction, can be done in time logarith-
mic in the number of factors, for example. There
are many other easy opportunities for optimization
and Haskell provides a particularly powerful plat-
form form implementing them.
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FREEFFS

Given: PSG R = 〈V,E〉
Where:V ⊆ P(Q), E ⊆ Σ× P(Q)× P(Q)

✄ The reversed powerset graph of a DFA A = 〈Σ, δ, I, F 〉
1 Let:
2 Front 0 = {〈∅, {∅}, ε〉}

✄ The initial frontier,
3 Goals = {Q}
4 Extensions(〈v, S,w〉) = {〈v′, S ∪ {v}, σ · w〉 | 〈σ, v, v′〉 ∈ E and either v′ 6∈ S or v is singleton}

✄ Outedges that are acyclic if not from a singleton
5 while Front i 6= ∅

Construct:
6 FrFF =

⋃
[FF 1,FF 2, . . .],

✄ the set of free forbidden factors of L(A)
7 in stages: STAGE1, STAGE2, . . .

✄ as given in Figure 2

FINALFFS

Given: PSG R = 〈V,E〉
✄ as in FREEFFS

1 Let:
2 Front 0 = {〈S, {∅}, ε〉 | S ⊆ Q− F}

✄ The set of trivial paths from vertices disjoint with F
3 Goals = {Q}
4 Extensions(〈v, S,w〉)

✄ as in FREEFFS

5 while Fronti 6= ∅
Construct:

6 FiFF =
⋃

[FF 1,FF 2, . . .],
✄ the set of final forbidden factors of L(A)

7 in stages: STAGE1, STAGE2, . . .
✄ as given in Figure 2

Figure 1: Main procedures for Free and Final forbidden factors.
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STAGEi

Given:
Front i−1 ⊆ {〈v, S,w〉 | v ∈ V, S ⊆ V,w ∈ Σ∗}

✄ The frontier of the search, a set of Path
Where: v ∈ V is the final vertex,

S ⊆ V is the (unordered) set of vertices in the path,
w ∈ Σ∗ is the sequence of labels of the edges in the path, in reverse order

Goals ⊆ V is the set of goal vertices
Extensions is a function taking a Path to its qualified extensions

Construct: Front i, FF i

1 ForEach Path ∈ Front i−1

2 ForEach 〈v′, S ∪ {v}, σ · w〉 ∈ Extensions(Path)
3 if σ · w 6∈ FFi ✄ σ · w has not already been found to be an i-FF
4 then if v′ ∈ Goals ✄ σ · w is an i-FF

then
5 Fronti ← Fronti − {〈−,−, σ · w〉 ∈ Fronti}

✄ Remove any paths labeled with this factor from Fronti
6 FF i ← FF i ∪ {σ · w}

✄ Add σ · w to FFi

else
7 Fronti ← Fronti ∪ {〈v′, S ∪ {v}, σ · w〉}

✄ Add extension to Fronti
End of STAGEi.

Figure 2: Gathering Forbidden Factors
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Abstract

Latent-variable probabilistic context-free
grammars are latent-variable models that
are based on context-free grammars. Non-
terminals are associated with latent states
that provide contextual information dur-
ing the top-down rewriting process of the
grammar. We survey a few of the tech-
niques used to estimate such grammars
and to parse text with them. We also give
an overview of what the latent states rep-
resent for English Penn treebank parsing,
and provide an overview of extensions and
related models to these grammars.

1 Introduction

Probabilistic grammars have been one of the most
important modeling tools available in the natu-
ral language processing toolkit. They are of-
ten humanly interpretable because of their sym-
bolic backbone, while their probabilistic compo-
nent helps with reasoning under uncertainty. Prob-
abilistic grammars have mostly been used for syn-
tactic analysis in NLP (Charniak, 1997; Collins,
2003; Hockenmaier and Steedman, 2002), but they
are also useful for other problems both in and out-
side of NLP (Sakakibara et al., 1994; Guerra and
Aloimonos, 2005; Lin et al., 2009).

Latent-variable models, on the other hand, are
also a modeling tool of great importance in natu-
ral language processing. They have been used for
many applications, including machine translation,
natural language generation, question answering
and semantics. Latent-variable models are cen-
tered around learning from incomplete data. This
means that the underlying statistical model is de-
fined over latent random variables that are not ob-
served in the data used for learning. The latent

variables explain correlations between observed
random variables.

As such, it is not surprising that latent-variable
models were combined with probabilistic gram-
mars to train strong models that detect unob-
served patterns in data, while retaining the in-
terpretability and symbolic backbone contained
within grammars. Latent-variable grammars have
been mostly used for syntactic parsing, most
prominently through the use of latent-variable
probabilistic context-free grammars (L-PCFGs) –
PCFGs that are augmented with latent states.

In this paper, we survey the use of L-PCFGs for
syntactic parsing and other applications. We also
survey the two main families of algorithms used
for learning L-PCFGs: expectation-maximization
algorithms and spectral algorithms. We analyze
the latent state representations that one learns
with L-PCFGs, and also describe extensions of L-
PCFGs and related models (such as those that ap-
pear in deep learning).

2 Latent-Variable PCFGs

Latent-variable PCFGs (L-PCFGs) are PCFGs
with additional latent states that decorate each
nonterminal in each rule. While the backbone of
an L-PCFG is simply a context-free grammar (be-
cause the decoration of the nonterminal with a la-
tent state together with the nonterminal itself can
be thought of as a new composite nonterminal),
the use of L-PCFGs also implies a specific pro-
cess of learning them from data: the decoration of
the nonterminals with latent states is assumed to
be absent from the sampled data from which we
learn the model.

More formally, a latent-variable probabilistic
context-free grammar (L-PCFG; in Chomsky nor-
mal form) is 5-tuple (N ,R,m, n, p) where:

• N is the set of nonterminal symbols in the
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grammar.

• [m] is the set of possible hidden states where
[m] is defined as {1, . . . ,m}.

• [n] is the set of possible words.

• R is a set of context-free rules in the form of
a → b c or a → x, where a, b, c ∈ N are
nonterminals and x ∈ [n] is a word.

• For all a → b c ∈ R, h1, h2, h3 ∈
[m], we have a context-free rule a(h1) →
b(h2) c(h3) and a parameter p(a(h1) →
b(h2) c(h3) | a(h1)).

• For all a → x ∈ R, h ∈ [m], we have a
context-free rule a(h) → x and a parameter
p(a(h)→ x | a(h)).

• For all a ∈ N and h ∈ [m], we have a pa-
rameter p(a(h)) which is the probability of
nonterminal a paired with hidden variable h
being at the root of the tree.

The parameters satisfy the following normaliza-
tion constraints:

∑

a,h

p(a(h)) = 1,

and for all a ∈ N and h ∈ [m]:

∑

a(h)→b(h2) c(h3)

p(a(h)→ b(h2) c(h3))

+
∑

a(h)→x
p(a(h)→ x) = 1

Note that for simplicity, we consider the case
where every nonterminal symbol has the same
number m of hidden state values. It is simple
to generalize the method to allow different num-
bers of hidden states for each nonterminal. In both
cases, though, the space of latent states for each
nonterminal is separate. This means that latent
state 2 for example for an NP has no relationship
to latent state 2 for VP.

The generative story that such an L-PCFG
model induces is similar to one of PCFGs. We
begin with the top node of the derivation tree with
its latent state by drawing a nonterminal and a la-
tent state from p(a(h)), and then recursively draw
rules in the form of a(h) → x or a(h1) →

b(h2) c(h3) conditioned on the parent node, un-
til all nodes at the bottom of the tree are terminal
nodes from [n]. Figure 1 provides an example of
such a derivation.

We refer to a rule of the form a → b c as a
“skeletal” rule from the “skeletal grammar.” We
note that while we provided the formulation of L-
PCFGs in Chomsky normal form, there is a natural
extension to arbitrary PCFGs, where rules of the
form a→ α for α ∈ N ∗ would be decorated with
|α| + 1 latent states, a state per nonterminal that
appears in the rule.

The usual independence assumption made by a
PCFG is that “inside” and “outside” trees (shown
in Figure 2) are conditionally independent from
each other if we know the node that connects them.
More formally, if we denote a tree τ and a node
β in that tree as a decomposition τ = (τ0, τ1, β)
where τ0 is the outside tree at node β and τ1 is the
inside tree at node β, then it holds that

p(τ1 | τ0, β) = p(τ1 | β).
This independence assumption of PCFGs can

be quite restrictive in modeling syntax of language
or in general. Essentially, no local context is mod-
eled for syntactic categories, context which should
be carried from different parts of the tree.

Latent-variable PCFGs weaken these indepen-
dence assumption by introducing a latent state at
every node in the tree. Now an inside and an
outside tree are conditionally independent of each
other given both the nonterminal node in the tree
that connects these two subtrees and the latent
state that is associated with that node.

In the rest of the paper, we denote a skeletal tree
by τ and a full derivation with latent state assign-
ments h = (h1, . . . , hN ) by τ(h) where N is the
number of nodes in τ .

3 Evolution of Latent-Variable PCFGs

The idea of decorating nonterminals with addi-
tional information, and breaking the statistical
independence assumptions that PCFGs typically
make, has a long history in natural language pro-
cessing. Johnson (1998) introduced a variety of
tree transformations on the Penn treebank, with an
aim to improve the parsing accuracy of a PCFG
extracted from that treebank. One of the trans-
formations introduced was that of “parent anno-
tation” where each nonterminal is annotated with
its parent symbol.

48
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welcomed
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DT(1)

the

NNS(2)

guests

Figure 1: An example of a phrase-structure tree in English inspired by the Penn treebank (Marcus et al.,
1993), potentially generated from an L-PCFG model. The indices next to each nonterminal in the tree
denote the latent states associated with that node in the derivation. (Punctuation omitted.)

This idea is also strongly related to lexicalized
grammars,1 in which nonterminals are decorated
with a head word propagated from the bottom of
the tree. Most often, the head word is propagated
using head rules, which decide which child of a
given node is the head node based on linguistically
motivated rules.

The context-free grammar formalism that cor-
responds to head lexicalization is bilexical gram-
mar, which was introduced by Eisner and Satta
(1999). Head lexicalization was used by Charniak
(1997) and Collins (2003) to achieve state-of-the-
art parsing results for English. Head lexicalization
of grammars served as the basis for much of the
subsequent parsing work.

Klein and Manning (2003) further built on the
idea of tree transformations, and created linguisti-
cally motivated nonterminal refinements to parse
the English treebank. Their work avoided the use
of head lexicalization, but still produced a rela-
tively high level of accuracy (though not state of
the art) for parsing the Penn treebank. Some of the
refinements they proposed generalize parent anno-
tation (to higher order “vertical” Markovization)
in a rather generic manner, but other refinements

1This is different than the lexicalization of grammars
where all derivation rules are put into the lexicon, such
as with combinatory categorial grammars (Steedman, 2000)
or head-driven phrase structure grammars (Pollard and Sag,
1994).

rely heavily on linguistic knowledge of English,
and as such they do not generalize to treebanks in
other languages.

With all of this previous work, nonterminal re-
finement is central to the underlying parsing for-
malism. However, these decorations are extracted
from the treebank by means of transformations
on trees. It was not until the work by Matsuzaki
et al. (2005) and Prescher (2005) that the decora-
tion became a “latent annotation.” At that point, L-
PCFGs were performing close to state of the art in
syntactic parsing. Dreyer and Eisner (2006) sug-
gested a more complex training algorithm for L-
PCFGs to improve their accuracy. Then, Petrov
et al. (2006) further improved the parsing results
of L-PCFGs to match state of the art and also sug-
gested a coarse-to-fine approach that made pars-
ing much more efficient (the asymptotic compu-
tational complexity of parsing with L-PCFGs, in
their vanilla form, grows cubically with the num-
ber of latent states). It was at this time that many
other researchers started to make use of L-PCFGs
for a variety of syntax parsers in different lan-
guages, some of which are described in the rest
of the paper.

4 Learning of L-PCFGs

Given that we assume with L-PCFGs that the la-
tent states decorating the nonterminals are not ob-
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VP
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NP

D

the

N

cat

S

NP

D

the

N

mouse

VP

Figure 2: The inside tree (left) and outside tree
(right) for the nonterminal VP in the parse tree
(S (NP (D the) (N mouse)) (VP (V
chased) (NP (D the) (N cat)))) for
the sentence “the mouse chased the cat.”

served as part of the data, the learning problem
posed by L-PCFGs is challenging and non-trivial.
It requires learning the rule probabilities of an L-
PCFG – such rules have latent states attached to
them, as described in §2 – without knowing any of
the latent states that are attached to the trees sam-
pled from the underlying L-PCFG distribution.

Formally, we are given M training examples in
the form of skeletal trees, τ (1), . . . , τ (M) and our
goal is to assign probabilities to the grammar rules
with latent states. Implicitly, we assume that the
skeletal grammar is given, and indeed it can be
read off a treebank by extracting parents together
with their immediate children (possibly after a “bi-
narization” process).

4.1 Expectation-Maximization Learning

The first attempt at learning the rule probabilities
of an L-PCFG from a treebank was carried out by
Matsuzaki et al. (2005), who used the expectation-
maximization (EM) algorithm. The EM algorithm
is tailored to this specific problem of estimating L-
PCFGs. It iterates between two steps, the E-step
and the M-step. In the E-step it collects statistics
about the latent state distributions for all nodes in
all trees in the treebank (using a dynamic program-
ming algorithm akin to CKY) and in the M-step
it re-estimates the model based on these collected
statistics. Before the first E-step is executed, the L-
PCFG rule probabilities are initialized randomly.

While the EM algorithm is a highly influential
algorithm that changed the way we reason about
learning from incomplete data, it has some weak-
nesses, both practical and theoretical. The major
practical weakness is that it requires running an
“inference” algorithm multiple times over the data
to collect the statistics in each E-step, which can
be computationally expensive. This inference, as
mentioned above, comes in the form of running a

dynamic programming algorithm that computes a
marginal probability for each node in each tree of
the form µ(a, hk, i, j) where i and j are indices in
the string the dynamic programming is run on, a
is a nonterminal and hk is a latent state for node k
in a tree.

This marginal probability corresponds to:

µ(a, hk, i, j) =
∑

τ(h) : (a,hk,i,j)∈τ(h)
p(τ(h))

i.e. the sum of all probabilities of full tree deriva-
tions (that include latent states) such that a(hk)
spans the substring between index i and j. It is
important to note that while the dynamic program-
ming algorithm is akin to parsing algorithms such
as CKY, its complexity is not cubic, but linear.
This is true because during the E-step, the skeletal
tree is fixed. We are not actually parsing a string,
but instead marginalize the latent states in the fixed
skeletal tree. When parsing a string with latent-
variable PCFG (see §5), the complexity indeed be-
comes cubic because the skeletal tree needs to be
inferred.

By estimating the parameters of an L-PCFG, the
EM algorithm finds a maximum for the following
objective function:

L(τ (1), . . . , τ (M)) =

M∑

i=1

log

(∑

h

p(τ (i)(h))

)
.

(1)
This is the log-likelihood of the observed data,

marginalizing out the latent state from the under-
lying L-PCFG distribution. This log-likelihood
function can be thought of as a measure of how
well a specific set of parameters fit the data. The
higher the log-likelihood is for a specific set of pa-
rameters, the more “likely” these parameters make
the observed data.

Maximizing the log-likelihood function has
deep roots in frequentist statistical theory, and in
many cases, it can be shown that finding the global
maximum of the log-likelihood will lead to “con-
sistent” parameter estimates – meaning, as the
amount of data increases, the parameters will get
closer to the parameters from which the data was
sampled.

The problem with the EM algorithm is that
it only identifies a local maximum of this log-
likelihood function, as the function has a “bumpy”
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surface that includes several maxima, some bet-
ter than others. Finding the global one (i.e. the
local maximum that gives the highest value to the
log-likelihood) is a computationally difficult prob-
lem for L-PCFGs, and there are no known solu-
tions that guarantee such identification in an effi-
cient manner. As a result, much of the theory of
maximum likelihood estimation that is mentioned
above does not apply to the EM algorithm with L-
PCFGs.

It is important to note that this issue with the
EM algorithm and L-PCFGs is more of a theo-
retical concern than a practical concern. In prac-
tice, if the EM algorithm is initialized in the
way specified by Matsuzaki et al. (2005), it con-
verges to a local maximum that provides a rel-
atively high parsing accuracy for syntactic pars-
ing of English and other languages. In addition,
the log-likelihood is not fully correlated with pars-
ing performance (such as that measured by the
PARSEVAL metric; Black et al., 1991) and there-
fore identifying the global maximum of the log-
likelihood function does not guarantee optimal
parsing performance.

Coarse-to-Fine Techniques Building on the
expectation-maximization algorithm, Petrov et al.
(2006) introduced a coarse-to-fine technique
(Charniak and Johnson, 2005) for estimating L-
PCFGs. This technique uses the EM algorithm as
a subroutine. It first starts by running the EM algo-
rithm with a small number of latent states for each
nonterminal. It then works by successively “split-
ting” and “merging” nonterminals. In a split step,
more latent states are added to the nonterminals
(usually by multiplying the number of latent states
associated with them by two). To avoid overfitting
the model to the training data, this is accompanied
by a merge step, in which latent states are merged
together to decrease the number of latent states as-
sociated with each nonterminal.

After each split and merge step (which are done
in “split-merge cycles”), EM is initialized using
the last model and re-run again to obtain a new
set of parameters for the split/merge grammar. As
such, this coarse-to-fine technique aims to locally
maximize the marginal log-likelihood as given in
Eq. 1 while also controlling for model size (the
number of latent variables associated with each
nonterminal).

4.2 Spectral Learning

At their core, spectral algorithms exploit the con-
ditional independence that L-PCFGs makes to ex-
tract the parameters with the latent states (Cohen
et al., 2013, 2014). More specifically, L-PCFGs
assume that an “inside” tree and an “outside” tree,
shown in Figure 2 are conditionally independent
of each other given the nonterminal and latent state
that attaches them to each other. As such, the
correlation between patterns in the inside tree and
outside tree distributions dictate the identity of the
latent states and their distribution. To identify such
a correlation, one can extract the latent state pa-
rameters by building a co-occurrence matrix (or
a cross-covariance matrix) of inside and outside
trees (in skeletal form; these are represented by
feature vectors over such trees; see below), and
then apply singular value decomposition (SVD;
Strang et al., 1993) on this matrix. This approach
was originally introduced for hidden Markov mod-
els (Hsu et al., 2012) and has been used for other
types of grammars and parsing formalisms as well
(Bailly et al., 2010; Luque et al., 2012; Dhillon
et al., 2012).

As mentioned above, the inside and outside
trees are represented by feature vectors in the co-
occurrence matrix. This means that the inside and
outside trees are mapped to real vectors. This is a
common way to reduce a structured object into a
manageable mathematical object that can be sta-
tistically processed. In the case of spectral al-
gorithms for parsing, the feature functions indi-
cate local neighborhood surrounding the top node
(for inside trees) or footer node (for outside trees).
As such, these methods distill information that
was previously used by approaches such as parent
annotation, annotation with linguistic features or
Markovization (see §3) into latent states. The EM
algorithm, on the other hand, does not make any
use of feature functions in the process of learning.

Another advantage of spectral algorithms over
the expectation-maximization algorithm is that
they provide a natural way to select the number
of latent states for each nonterminal. The singular
values of the inside-outside co-occurrence matrix
offer a criterion to do that. Each singular value
is associated with a latent state, and to retain a
good approximation of this matrix with SVD, one
needs to select only the largest singular values.
The smaller ones can be removed from the SVD
approximation.
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That being said, Narayan and Cohen (2016)
showed that the number of latent states can be
further optimized with spectral algorithms by us-
ing coarse-to-fine techniques such as Petrov et al.
(2006) used. This means that while the criterion
above with top singular values is natural and easy
to implement, further refinements can be made to
improve it.

It is important to note that unlike spectral algo-
rithms, the EM algorithm has an interpretation that
is valid even when the data it is applied on is not
generated from an L-PCFG in the family we are
estimating from. It can be viewed as minimizing
Kullback-Leibler (KL) divergence, a measure for
distributional divergence, between the empirical
distribution and the family of possible L-PCFGs
from which a model is selected. To date, the theo-
retical guarantees of L-PCFGs with spectral algo-
rithms require the assumption that the data is gen-
erated from an L-PCFG distribution. Still, the EM
algorithm and spectral algorithms yield similar re-
sults on a variety of benchmarks for multilingual
parsing, even for data that are clearly not sampled
from an L-PCFG (as one might argue is true for
most natural language data).

4.3 Other Learning Algorithms

Other scenarios and algorithms for learning L-
PCFGs have been proposed. One such example is
that of the work on self-training (McClosky et al.,
2006) of L-PCFGs by Huang et al. (2010) and
Huang and Harper (2009). With self-training, a
parser is trained from seed annotated data (such
as the Penn treebank), and then the parser learned
is used to parse a large amount of unlabeled data.
After that step, a new parser is learned from both
the annotated data and the parsed data, as if the
latter are gold-standard data.

Petrov (2010) exploited the fact that the EM al-
gorithm is sensitive to its initialization point (and
returns a different model in each execution) and
estimated an L-PCFG multiple times from anno-
tated data using a coarse-to-fine EM technique.
Once all grammars were learned, they were com-
bined in a product-of-experts style, and then they
were used to parse unseen data. Similar exper-
iments were done later with spectral algorithms,
and showed that essentially using multiple gram-
mars has the effect of regularization.

Petrov and Klein (2008) extended L-PCFGs to
log-linear latent grammars – this means that the

rule weights learned are no longer constrained to
be probabilities. Instead, the model has an ad-
ditional normalization constant that ensures that
it defines a probability of derivation trees even
though the rule weights are no longer probabil-
ities. They used discriminative training to esti-
mate such L-PCFGs. Instead of finding a local
maximum of the marginal log-likelihood as EM
does, they find a local maximum for the condi-
tional marginal log-likelihood.

One of the earlier training algorithms of L-
PCFGs selectively refines nonterminals by using
EM with annealing (Dreyer and Eisner, 2006).
The authors slightly modify the L-PCFG model to
pass features between nodes in the parse tree, mo-
tivated by prior linguistic work on feature passing.
Finally, Stanojević and Sima’an (2015) used a re-
finement model for the induction of a Reordering
Grammar for machine translation. They used the
EM algorithm for estimating their model.

5 L-PCFGs for Multilingual Parsing

In this section, we discuss the use of L-PCFGs for
syntactic parsing.

5.1 Parsing with L-PCFGs

Parsing with L-PCFGs usually entails finding a
skeletal tree for a given string. While the latent
variables assist in the modeling by adding con-
textual information to the derivation, they are not
necessarily a target for prediction, and therefore
we are interested in marginalizing them out dur-
ing parsing.

Given a string w, this means that we are inter-
ested in finding the following tree:

τ∗ = argmax
τ

∑

h

p(τ(h) | w).

The maximization of a sum of products in this
form (the product originates in the probability
p(τ(h) | w), which is proportional to a prod-
uct of rule probabilities) is computationally in-
tractable. As such, other approaches to parsing
with L-PCFGs have been developed. The most
common one used is based on minimum Bayes risk
decoding (MBR; Goodman, 1996). With MBR,
the maximization problem turns into maximizing
the sum of the marginal probabilities of each node
that appear in the tree. It is motivated by maxi-
mizing the recall of correct constituents in the pre-
dicted tree.
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MBR can be quite expensive to run with a large
number of latent states, as the dynamic program-
ming algorithm that performs the parsing scales
cubically as a function of the number of latent
states. This is where coarse-to-fine techniques
have an advantage – one can parse incrementally
with coarser models until reaching the most re-
fined model, at each point pruning the parsing
chart with low probability items from the coarser
model. Tensor decomposition can also be used
to speed up L-PCFG parsing (Cohen and Collins,
2012).

The main application for L-PCFGs is multilin-
gual syntactic parsing. In their early version (Mat-
suzaki et al., 2005), L-PCFGs were used to parse
the English Penn treebank with some success – the
results were not state of the art, but close to it. In
subsequent work, Petrov et al. (2006) used coarse-
to-fine techniques to further improve EM estima-
tion of L-PCFGs. This led to the development of
the Berkeley parser, which has given state-of-the-
art results for English and other languages. Spec-
tral algorithms also yield results which are close to
state of the art in a multilingual setting.

Since their inception, L-PCFGs have been used
for syntactic parsing in multiple studies for a vari-
ety of languages such as English, French, German,
Chinese, Arabic and other morphologically rich
languages (Candito et al., 2010; Attia et al., 2010;
Green and Manning, 2010; Tounsi and Van Gen-
abith, 2010; Goldberg and Elhadad, 2011; De-
hdari et al., 2011; Björkelund et al., 2014; Zeng
et al., 2014; Sun et al., 2014; Huang et al., 2014;
Narayan and Cohen, 2016)

5.2 Interpretation for Latent States

One of the advantages of using latent variable
models is that often the latent variables can be
assigned an interpretation once they are inferred.
This post-hoc interpretation can be revealing about
linguistic patterns that are present in the data and
are learned automatically.

To do this kind of analysis, we computed the
marginals for each node in each tree in the Penn
treebank after training a model with the spectral
algorithm of Narayan and Cohen (2015). The re-
sults are available in the LPCFGVIEWER tool.2

2Available in http://cohort.inf.ed.ac.uk/
lpcfgviewer. The online tool includes analysis of other
languages, including French, German, Hebrew, Hungarian,
Korean, Polish, Swedish and Basque.

State Frequent words
IN (preposition)

0 of ×323
1 about ×248
2 than ×661, as ×648, because ×209
3 from ×313, at ×324
4 into ×178
5 over ×122
6 Under ×127

DT (determiners)
0 These ×105
1 Some ×204
2 that ×190
3 both ×102
4 any ×613
5 the ×574
6 those ×247, all ×242
7 all ×105
8 another ×276, no ×211

CD (numbers)
0 8 ×132
1 million ×451, billion ×248

RB (adverb)
0 up ×175
1 as ×271
2 not ×490, n’t ×2695
3 not ×236
4 only ×159
5 well ×129

CC (conjunction)
0 But ×255
1 and ×101
2 and ×218
3 But ×196
4 or ×162
5 and ×478

Table 1: A list of part-of-speech tags and most fre-
quent words associated with latent states that were
learned for them using the algorithm of Narayan
and Cohen (2015). The numbers next to each word
indicate a strength (the number of times that word
appeared with that POS tag and latent state in the
Penn treebank).

There are a few observations that can be con-
cluded when inspecting these results:

• Lexicalization of closed-word tags: For the
closed-word part-of-speech (POS) tags, both the
EM algorithm and the spectral algorithm asso-
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ciate a latent state with mostly a single word.
For example, for determiners, there would be a
latent state for “the” and for “a.” Often words
with different casing or contracted form joined
in the same cluster. Table 1, for example, shows
that latent state 2 for RB (adverbs) is associated
with “not” and “n’t.”
• Semantic clustering of phrases: Consider the

noun phrases in Table 2, which are the most fre-
quently ones associated with each latent state
in the learned L-PCFG model. We see that
there is in certain cases semantic clustering of
such noun phrases, in cases where such seman-
tic clustering can be directed by syntactic in-
formation in the parse trees. For example, the
first latent state of the noun phrases is mostly
associated with dates in the form of month, day,
year. The seventh latent state is mostly associ-
ated with dollar amount.
• Dependence on domain: It is clear from Ta-

ble 2 and similar statistics for other nontermi-
nals that the association of latent states with
nonterminal phrases is highly dependent on the
domain on which the L-PCFG was trained. The
L-PCFG in Table 2 was trained on the Penn tree-
bank, and as such, latent states are associated
with financial terms that have some similarity
(such as shares and currency).

When inspecting the phrases associated with
specific latent states and nonterminals (in the
LPCFGVIEWER tool), one might argue that there
is a weak notion of substitutability that exists with
L-PCFGs. By this, we are referring to the idea that
phrases associated with an identical latent state
with high probability are more likely to be sub-
stitutable in different contexts, not just syntacti-
cally, but also semantically. The latent state asso-
ciated with dates (in noun phrases) in Table 1 is
one example of that. This hypothesis remains to
be proven empirically in a methodical way.

6 Extensions of L-PCFGs and Related
Models

Extensions Natural generalizations of PCFGs,
such as probabilistic linear-context free rewriting
systems (LCFRS; Kallmeyer and Maier, 2010)
and synchronous grammars can also be turned into
probabilistic grammars with latent states. As long
as the backbone structure of the skeletal grammar
is of the form a → α where α includes nontermi-
nals in one form or the other, the nonterminals can

be decorated with additional latent state informa-
tion.

Work about using other grammar formalisms
with latent states includes the work of Fowler and
Penn (2010) who introduced latent states into a
combinatory categorial grammar (CCG) for syn-
tactic parsing, the work of Saluja et al. (2014),
who generalized L-PCFGs to synchronous L-
PCFGs and proposed to estimate them using both
a spectral algorithm and EM for machine trans-
lation and the work of Louis and Cohen (2015)
who modeled online forum topic structure by us-
ing LCFRS with latent states (the latent states cor-
responded to topics that need to be inferred from
data). Models similar to L-PCFGs have been used
for parsing with discontinuous elements (Neder-
hof and Yli-Jyrä, 2017). They have also been
used to describe transition-based systems for de-
pendency formalisms (Nederhof, 2016).

Related Models As mentioned above, the tra-
ditional L-PCFG parsing algorithm requires com-
puting marginals for each node in the tree. They
are computed using an inside-outside algorithm –
an inside pass that works bottom up in the tree,
similarly to the CKY algorithm, and an outside
pass that works top down.

When computing marginals with the skeletal
tree being fixed, the bottom up inside algorithm
can be viewed as an algorithm that propagates
vector representations of each node up in the tree
by using tensor contraction. The general form of
that algorithm is:

vparent = F (vlc, vrc). (2)

where vparent, vlc, vrc ∈ Rm denoting vectors as-
sociated with a parent node, its left child and its
right child, and F : Rm × Rm → Rm takes as in-
put two children node vectors and returns the out-
put node vector. In the case of L-PCFGs, F is a
function that is associated with a rule a → b c,
T a→b c, where b is the nonterminal for the left
child, c is the nonterminal for the right child and a
is the parent nonterminal. T a→b c is then defined
as:

[T a→b c(vlc, vrc)]h1

=
∑

h2,h3

p(a(h1) → b(h2) c(h3) | a(h1))[vlc]h2 [vrc]h3 .
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0
”Aug. 30 , 1988”, ”Aug. 31 , 1987”, ”Dec. 31 , 1988”, ”Oct. 16 , 1996”, ”Oct. 1 , 1999”,
”Oct. 1 , 2019”, ”Nov. 8 , 1996”, ”Oct. 15 , 1999”, ”April 30 , 1988”, ”Nov. 8 , 1994”

1 ”12,000 miles”, ”About 20,000 years”, “this year”, “A year”, “a year” ×7

2

“FROG-7B missiles , the bomber version of the An-12 , MiG-23BN high-altitude aircraft ,
MiG-29s , which can outfly Pakistan ’s U.S.-built F16s ,”, “AMERICAN BUILDING MAIN-
TENANCE INDUSTRIES Inc. , San Francisco , provider of maintenance services , annual
revenue of $ 582 million , NYSE ,”, “DIASONICS INC. , South San Francisco , maker of
magnetic resonance imaging equipment , annual sales of $ 281 million , Amex ,”, “EVEREX
SYSTEMS INC. , Fremont , maker of personal computers and peripherals , annual sales of $
377 million , OTC ,”, “ANTHEM ELECTRONICS INC. , San Jose , distributor of electronic
parts , annual sales of about $ 300 million , NYSE ,”, “APPLIED MATERIALS INC. , Santa
Clara , maker of computer-chip machine systems , annual sales of $ 490 million , OTC ,”

3

“James McCall , vice president , materials , at Battelle , a technology and management-research
giant based in Columbus , Ohio”, “Frank Kline Jr. , partner in Lambda Funds , a Beverly
Hills , Calif. , venture capital concern”, “Allen Hadhazy , senior analyst at the Institute for
Econometric Research , Fort Lauderdale , Fla. , which publishes the New Issues newsletter
on IPOs”, “a group of investment banks headed by First Boston Corp. and co-managed by
Goldman , Sachs & Co. , Merrill Lynch Capital Markets , Morgan Stanley & Co. , and
Salomon Brothers Inc”, “Charles J. O’Connell , deputy district director in Los Angeles of the
California Department of Transportation , nicknamed Caltrans”, “Francis J. McNeil , who , as
deputy assistant secretary of state for inter-American affairs , first ran across reports about Mr.
Noriega in 1977”

4

“TREASURY BILLS : Results of the Monday , October 16 , 1989 , auction of short-term U.S.
government bills , sold at a discount from face value in units of $ 10,000 to $ 1 million : 7.37
% 13 weeks ; 7.42 % 26 weeks .”, “California Health Facilities Financing Authority – $ 144.35
million of revenue bonds for Kaiser Permanente , due 19931999 , 2004 , 2008 , 2018 and 2019
, tentatively priced by a PaineWebber Inc. group to yield from 6.25 % in 1993 to 7.227 %
in 2018 .”, “TREASURY BILLS : Results of the Monday , October 16 , 1989 , auction of
short-term U.S. government bills , sold at a discount from face value in units of $ 10,000 to $ 1
million : 7.37 % 13 weeks ; 7.42 % 26 weeks .”, “Health Care Property Investors Inc. , offering
of 2,250,000 shares of common stock , via Merrill Lynch Capital Markets , Alex . Brown &
Sons Inc. and Dean Witter Reynolds Inc .”, ”SUN MICROSYSTEMS INC. , Mountain View
, maker of desktop computers , annual sales $ 1.77 billion , OTC , no injured employees and
very little damage to buildings .”

5 “$ 615,000 face amount”, “a share” × 7, “a revival”

6

“bonds due Nov. 2 , 1993 , with equity-purchase warrants”, “bonds due Nov. 8 , 1994 ,
with equity-purchase warrants”, “20,000 to 30,000 Soviet Central Asian KGB Border Guards”,
“bonds due Nov. 1 , 1993 , with equity-purchase warrants”, “a van Gogh , a Monet , other
paintings , furniture”, “3,111,000 common shares”, “offering of 2,250,000 shares of common
stock”, “a Newark , N.J. , textile businessman”

7
“$ 1,150,000”, “166,900,000 shares”, “$ 124,732”, “$ 45,000”, “$ 1,500”, “$ 20,000”, “$
342,122”, “$ 1,000”, “$ 3,000”, “S$ 500,000”

8
“$ 20,000 a year”, “$ 342,122 last year”, “as many as 60,000 additional tourists a day”, “$
80,000 a year”, “1,000 flights a day”, “26,000 units next year”, “200,000 cars a year”, “$ 200
a share” ×3

Table 2: Examples of most likely phrases for the noun phrase category (NP) for a latent-variable PCFG
extracted using the algorithm of Narayan and Cohen (2015) from the Penn treebank. Numbers next to
the phrases indicate that the phrase appeared multiple times in the list.
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This general formulation as in Eq. 2 gives rise
to generalizations of other formulations of latent
representations that are propagated in a (parse)
tree structure. Perhaps the most related one to L-
PCFGs is the recursive neural network of Socher
et al. (2010). This recursive neural network prop-
agates word vectors (Turian et al., 2010) from the
bottom of an unlabeled tree all the way to its top
using the function:

F (vlc, vrc) = tanh(W [vlc, vrc] + b),

where W ∈ Rm×2m and b ∈ Rm are weight ma-
trices and biases that are learned when training the
neural network, [u1, u2] denotes the concatenation
of two vectors u1 and u2, and tanh: Rm → Rm is
a function that applies the hyperbolic tangent func-
tion coordinate-wise. Even more closely related to
L-PCFGs is the further refinement of these recur-
sive neural networks by Socher et al. (2013) where
the weights in the neural network are parametrized
by labels in the tree, corresponding to syntactic
categories.

Similarly to a formulation of the inside tree as
a vector propagation procedure (in Eq. 2), there is
also a formulation for the outside algorithm (Co-
hen et al., 2014). Le and Zuidema (2014) also
extended the recursive neural networks mentioned
above to make use of the outside tree information.

Finally, it is also important to note that L-
PCFGs are related to probabilistic regular tree
grammars (PRTGs; Knight and Graehl, 2005)
where the righthand side trees of the PRTG rules
are of depth 1. With general PRTGs, the righthand
side can be of arbitrary depth, where the leaf nodes
of these trees correspond to latent states in the L-
PCFG formulation above and the internal nodes of
these trees correspond to interminal symbols in the
L-PCFG formulation.

7 Conclusion

Latent-variable PCFGs are a flexible model for
modeling syntax and other problems in NLP. Their
backbone is a symbolic grammar, and as such
they can be easily interpreted, while they are aug-
mented with probabilities and latent states, allow-
ing the modeler to reason under uncertainty.

We gave an overview of the parsing and learn-
ing algorithms used with L-PCFGs and described
some natural extensions and related models.
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Abstract

The paper presents a proof-theoretic se-
mantics for sentences headed by transitive
verbs allowing an unexpressed (implicit)
object. Such sentences are shown to have
the same (proof-theoretic) meaning as the
same sentences with an explicit existen-
tially quantified object something.

This semantics is contrasted with a
model-theoretic semantics based on truth-
conditions in models. The models used
contain in their domain “filler” elements,
that have an unclear extra-theoretic signif-
icance with an unclear ontological com-
mitments. In contrast, the proof-theoretic
meaning is appealing to formal (syntactic)
resources that carry no ontological com-
mitment.

Furthermore, the sameness of mean-
ing is based on sameness of deductive
role within a meaning-conferring proof-
system, based on use.

1 Introduction

The purpose of this paper is to provide yet an-
other argument for the benefits of proof-theoretic
semantics (PTS), when applied to natural language
(NL), over the traditional model-theoretic seman-
tics (MTS), by focusing on what came be known
as unexpressed objects of transitive verbs (also re-
ferred to as implicit arguments) as manifested, for
example, by an intransitive use of a transitive verb,
as in1 (1(i)) and(1(ii)) below.

(i) John ate an apple (ii) John ate (1)

1All natural language expressions used in examples are
displayed in the San Serif font, and are always mentioned,
never used.

PTS is a theory of meaning serving as an alter-
native to the more traditional Model-Theoretic Se-
mantics (MTS). While the latter identifies mean-
ing with truth-conditions (in arbitrary models of a
suitable form), the former identifies meaning with
canonical derivability conditions in a meaning-
conferring proof system. Those canonical deriv-
ability conditions provide grounds for assertion.
For a presentation of the motivation for PTS and a
discussion of its advantages over MTS, the reader
is referred to the Introduction sections of Francez
and Dyckhoff (2010) or Francez and Ben-Avi
(2015), which present a PTS for extensive frag-
ments of English. A full presentation can be found
in Francez (2015b).

Turning to the unexpressed arguments, the
essence of the MTS-based meaning is to interpret
such arguments as existentially quantified. Hence,
(1(ii)) above is seen as equivalent to

John ate something (2)

with meaning expressed as usual by a (simply-
typed) λ-term, here expressible in 1st-order logic
(using simple types on variables and constants):

∃xe.eat(e,(e,t))(x, john) (3)

In Dowty (1982), (1(ii)) is seen as resulting from
(1(i)) by a general procedure of argument reduc-
tion.

The structure of the rest of the paper is as fol-
lows. In Section 2 I briefly survey two recent ap-
proaches to obtaining the above mentioned truth-
conditions (MTS-meaning). In Section 3 I briefly
review the PTS of a minimal fragment of En-
glish in which the issue of unexpressed arguments
arises. Fuller details about the PTS (for larger
fragments) can be found in Francez and Dyckhoff
(2010) or Francez and Ben-Avi (2015) and in part
II of Francez (2015b). Section 4 presents the the
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PTS account of the unexpressed argument issue,
and compares it to the reviewed MTS accounts.
Section 5 ends with some conclusions.

2 A brief review of some model-theoretic
approaches

The topic of unexpressed argument has a long his-
tory. I will mainly relate to Blom et al. (2012) (see
there for references to previous work), and to Gior-
golo and Asudeh (2012).

The common feature of those treatments of the
unexpressed argument is imposing the sameness
of meaning of an intransitive verb used with an im-
plicit argument with the meaning of that verb used
transitively with an existentially quantified object.
For example,

[[Mary ate]] = ∃x.[[Mary ate x]] (4)

The difference between Blom et al. (2012) and
Giorgolo and Asudeh (2012) is the formalism used
for composing meanings, a difference immaterial
for my purpose. I consider here only the issue
of meaning of such constructs, and not with the
syntax-semantics interface used to derive those
meanings compositionally, so I will take Blom
et al. (2012) as the representative of the MTS
to implicit arguments.. A completely different
model-theoretic approach is presented in Carlson
(1984), appealing to models with (Neo Davidso-
nian) events and event modifiers. See Blom et al.
(2012) for a discussion of this kind of MTS.

The main features of the proposed analysis are
the following (expressed in a somewhat different
notation).

1. The standard domainsDτ of interpretation of
types τ in (simply-typed) λ-calculi are ex-
tended with extra elements, designated gener-
ically as ‘∗τ ’, called the filler value of the do-
main of τ . The type-system is extended so
that for every type τ there is a corresponding
extended type τø accommodating the default
value so that Dτø = Dτ∪{∗τ} (where the
union is disjoint).

See below the qualms about this solution.

2. The lexical meaning of verbs licensing unex-
pressed objects is expressed via a function of

the (notationally slightly modified) form

option(xoτ1 , F(τ1,τ2), dτ2)

=df.

{
d x = ∗τ1
F (x) otherwise

(5)

Here dτ2 is the default value of type τ2, chosen ac-
cording to a global strategy: an existential closure
of the word in the lexical semantic value of which
this particular use of option is embedded. The op-
tion operator is of type τ o1 × (τ1, τ2) × τ2. The
function λx.option(x, F, d) is therefore of type
(τ o1 , τ2).

Example 2.1 Consider the lexical semantic value
associated2 with the verb ate, assuming it licensed
an implicit object.

λyeoλxe.option(

yeo ,
λue.ate(e,(e,t))(ue)(ye),

∃xe.ate(x)(y))
(6)

Now consider the two cases for ate.

explicit object: Mary ate an apple

See Figure 1:

implicit object: Mary ate

See Figure 2:

The extra-theoretic interpretation of such “filler el-
ements” ∗τ ∈ Dτo is non-obvious, as is the pres-
ence of such elements in lexical meaning assign-
ments of NL words. They cary an ontological
commitment which is left unexplained.

As an example of one problematic issue involv-
ing filler elements, consider selectional restric-
tions. Typically, the are ignored, but there are
ways of incorporating them into the type-based
analysis above. Suppose one wants to admit

Mary ate an apple

but to exclude

Mary ate a chair

Both are admissible by the above analysis. One
way of imposing selectional restrictions is by re-
fining the type e, to include a sub-type eaddible,

2I ignore here the finer points involved in implementing
this construction in abstract categorial grammar, orthogonal
to my main concern.
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λyeoλxe.option(yeo , λue.ate(e,(e,t))(ue)(ye),∃xe.ate(e,(e,t)(x)(y))([[an apple]])([[Mary]])

= λxe.option([[an apple]], λue.ate(e,(e,t))(ue)(ye)([[an apple]])([[Mary]]), ∃xe.ate(e,(e,t))(x)(y))

= λu.ate(u)([[an apple]])([[Mary]])
= ate([[an apple]])([[Mary]])

(7)
The second step is due to [[an apple]] 6= ∗e.

Figure 1: [[Mary ate an apple]]

λyeoλxe.option(yeo , λue.ate(e,(e,t))(ue)(ye),∃xe.ate(e,(e,t)(x)(y)))(∗e)([[Mary]])

= λxe.option(∗e, λue.ate(e,(e,t))(ue)(∗e)([[Mary]]),∃xe.ate(x)(y))([[Mary]])

= ∃x.ate(x)(y)([[Mary]])
= ∃x.ate(x)([[Mary]])

(8)

The second step is due to ∗e = ∗e.

Figure 2: [[Mary ate]]

and requiring the object of ate to be of that sub-
type (see Ben-Avi and Francez (2004)).

Is ∗e of type eaddible? One way out is to include
separate filler values for each sub-type of e, e.g.,
∗eaddible . But this cause a proliferation of those
intelligible values as more selectional restrictions
are imposed, for example, admitting

every girl smiled

but excluding

every chair smiled

by introducing a sub-type eanimate of e and requir-
ing the subject of smile to be of this sub-type..

Populating models with unintelligible entities is
typical to MTS in general. One of the main ad-
vantages of PTS is avoiding models an unintelligi-
ble entities with unclear ontological commitments,
dealing only with syntactic entities, artefacts of
meaning-conferring proof-systems.

3 A Proof-Theoretic Semantics for a
fragment of English

3.1 The language fragment
I briefly present in this section the core of a frag-
ment E+

0 of English. The core fragment consists
of sentences with intransitive and transitive verbs,
and determiner phrases with a (count, singular)

noun and a determiner. For simplicity, I con-
sider here only the positive determiners every and
some. The inclusion of negative determiners such
as no or at most three involve a certain compli-
cation (see Francez and Ben-Avi (2015)) that is or-
thogonal to the current issue. In addition, there is
the copula isa. For technical reasons (made clear
in Francez and Dyckhoff (2010)) I avoid the use of
proper names, and use quantified subjects instead.
Some typical sentences are listed below.

every/some girl smiles (9)

every/some girl loves every/some boy (10)

A typical sentence with an unexpressed argu-
ment to be considered is

every girl ate (11)

I refer to expressions such as every girl, some
boy as determiner phrases (dps).

3.2 The meaning-conferring proof-system
The PTS is based on a meaning-conferring natural-
deduction-proof system N+

0 with introduction
rules and elimination rules (I/E-rules) (see Figure
3). The proof-system is formulated over the lan-
guage L+

0 , slightly extending E+
0 . Meta-variables
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X schematise nouns, P – intransitive verbs and
R - transitive verbs. Meta-variable S ranges over
sentences, and boldface lower-case j, k, etc., range
over P , a denumerable set of (individual) param-
eters, artefacts of the proof-system (not used to
make assertions). Syntactically, a parameter in L+

0

is also regarded as a dp. If a parameter occurs
in S in some position, I refer to S as a pseudo-
sentence, and if all dps in S are parameters, the
pseudo-sentence S is ground. The ground pseudo-
sentences play the role of atomic sentences, and
their meaning is assumed given, externally to the
ND proof-system.

The original full system takes into account also
relative clauses, due to presence of which some
scope-related indexing is essential, as there may
be more than just two scope levels. For the pur-
pose of dealing with unexpressed arguments, it is
enough to have simple sentences, with just two
scope-levels, for the subject and object dps. Fur-
thermore, the general sentential variable S can be
instantiated by P (−), R(−,−) and Ru(−) for
simple sentences headed by intransitive, transi-
tive verbs and transitive verbs allowing intransi-
tive use (lexically specified), respectively. Ac-
cordingly, I consider here a simplification of the
original proof-system, not dealing with quantifier
scope ambiguity. For any dp-expression D having
a quantifier, I use the notation S[(D)] to refer to a
sentence S having a designated position filled by
D.

For example, S[(every X)] refers to a sen-
tence S with a designated occurrence of every X .
I use the conventions that within a rule, both
S[D1], S[D2] refer to the same designated posi-
tion in S. I use Γ, S for the context extending Γ
with sentence S.

Derivations (tree shaped), ranged over by D
(possibly indexed) are defined recursively as
usual. When presenting example derivations, the
context Γ is left implicit, and the notation [· · · ]i
indicates an assumption discharged by an applica-
tion of a rule.

The following is a convenient derived E-rule,
that can be used to shorten derivations.

Γ : S[(every X)] Γ : j isa X

Γ : S[j]
(eÊ) (12)

For example,

Γ : every girl smiled Γ : j isa girl

Γ : j smiled
(eÊ)

3.3 Canonical derivations and meaning

Consider an arbitrary natural-deduction proof-
system intended as being meaning-conferring for
the operators in some object language.

Definition 3.1 An N -derivation D for `NΓ : ψ
(for a compound ψ) is canonical iff it satisfies one
of the following two conditions.

• The last rule applied in D is an I-rule (for
the main operator of ψ).

• The last rule applied in D is an assumption-
discharging E-rule3 the major premise of
which is some ϕ in Γ, and its encompassed
sub-derivations D1, · · · ,Dn (of the minor
premises) are all canonical derivations of ψ.

• Denote by [[S]]cΓ the (possibly empty) collec-
tion of canonical derivations of S from Γ.

For Γ empty, the definition reduces to that of a tra-
ditional canonical proof. Note the recursion in-
volved in this definition. The important observa-
tion regarding this recursion is that it always termi-
nates via the first clause, namely by an application
of an I-rule. I refer to such an application of an
I-rule (ending a recursive path in the definition)
as an essential application, the outcome of which
is propagated throughout the canonical derivation
by applications of the assumption-discharging E-
rules. Note that each sub-derivation Di may start
with an essential application of an I-rule, thus hav-
ing “parallel” essential applications of that rule. I
refer to a sequence of occurrences of ψ in a canon-
icalD starting in the conclusion of an essential ap-
plication of an I-rule and ending in the conclusion
of D as a propagation chain of ψ in D.

The major observation here is that the conclu-
sion ψ of a canonical derivation D from open as-
sumptions, ending a propagation chain, was:

1. inferred (possibly more than once) by the es-
sential applications of the I-rule of its main
operator, and

2. propagated through applications of
assumption-discharging E-rules4 to its
position as the final conclusion of D.

3General elimination rules (GE) have this structure, hence
their association with permuting conversions during normal-
isation. See more on this in Negri and von Plato (2001).

4In propositional intuitionistic logic, say with Gentzen’s
NJ ND-system, this happens with disjunction.
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Γ, S : S
(Ax)

Γ, j isaX : S[j]

Γ : S[(every X)]
(eI)

Γ : j isaX Γ : S[j]

Γ`S[(someX)]
(sI)

Γ : S[(every X)] Γ : j isaX Γ, S[j] : S′

Γ : S′ (eE)
Γ : S[(someX)] Γ, j isaX,S[j] : S′

Γ : S′ (sE)

where j is fresh in (eI), and (sE).

Figure 3: The simplified rules for N+
0

The (reified) meaning of a sentence S (in the con-
sidered object language), denoted by [[S]], is de-
fined by

Definition 3.2 (reified meaning)

[[S]] =df. λΓ.[[S]]cΓ (13)

This is a very fine-granularity notion of meaning,
see Francez (2014). A natural coarsening is ob-
tained by considering grounds of assertion.

Definition 3.3 (grounds for assertion)

GA[[S]] = {Γ | `cΓ : S} (14)

Thus, any Γ that canonically derives S serves as
grounds for assertion of S. This is naturally ex-
tended to GA[[Γ]], the grounds of asserting all
S′ ∈ Γ. For the methodological role of this con-
cept in the theory of meaning adhered to by PTS,
see Dummett (1993).

By appealing to equality of grounds, we get
an equivalence relation coarser than meaning as
defined above, inducing a natural ‘sameness of
meaning’ relation.

Definition 3.4 (equi-groundedness) S1 and S2

are equi-grounded, denoted by S1 ≡GA S2, iff
GA[[S1]] = GA[[S2]].

Grounds of assertion lead (see Francez (2015a))
to the following notion of proof-theoretic conse-
quence, that captures the pre-theoretic entailment.

Definition 3.5 (proof-theoretic consequences)
S is a proof-theoretic consequence of Γ (Γ  S)
iff GA[[Γ]] ⊆ GA[[S]].

Thus, proof-theoretic consequences is based on
grounds propagation: every grounds for collec-
tively asserting all of Γ are already grounds for
asserting S.

4 Proof-theoretic semantics for
unexpressed arguments

In this section, I extend the proof-system with
I/E-rules for the sentences allowing (lexically li-
censed) intransitive uses of transitive verbs, under-
lying the proof-theoretic account of their meaning.

The main ideas on which the PTS for implicit
arguments is based is the following:

• Sameness of meaning is based on sameness
of I-rules, implying sameness of canonical
derivations.

• The reduction of an argument is reflected
proof-theoretically by omission of a premise
(in I-rules).

4.1 Adding something

As the alert reader might have noticed, all the nps
in E+

0 contain an explicit noun-component; for
example, some girl, every boy. I will refer to
such nps as nominally qualified. Indeed, typical
NL-quantification is what is known as restricted
quantification. However, for the sake of the speci-
fication of the meaning of sentences with an im-
plicit argument, what is needed5 is to augment
the language fragment with an np expressing un-
restricted existential quantification in the form of
something, lacking a nominal qualification.

The nominally-unqualified existential quantifi-
cation in object position is governed by the fol-

5Another alternative is to consider a universal noun thing,
and use it as the noun-qualifier. I consider this less elegant in
the context of PTS.
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lowing I/E-rules6.

Γ : j R k

Γ : j R something
(usI)

Γ : j R something Γ, j R k : S′

Γ : S′ (usE)
k fresh.

(15)
The difference between those two I/E-rules and
the I/E-rules for nominally-qualified nps ((sI)
and (sE) below) is the absence of a nominally-
qualifying premise k isa X (for some noun X) in
the I-rule, and the absence of a corresponding dis-
charged assumption in the E-rule.

For example,

Γ : j ate k

Γ : j ate something
(usI)

Γ : j ate something Γ, j ate k : S′

Γ : S′ (usE)
k fresh

4.2 Sentential meanings

In contrast to the view of argument reduction
(mentioned above), I present separate I-rules
for the transitive and intransitive uses of sen-
tences with Ru-verbs; furthermore, the same I-
rule serves both for the introduction for sentences
with Ru-verbs with an unexpressed object and for
the corresponding R with an explicit object some-
thing. This establishes the sameness of meaning of
pairs of sentences like (1(ii)) and (2), where this
sameness of meaning is based on both sentences
having the same grounds of assertion.

Transitive verb with an expressed object:
These are the usual rules (sI)and (sE), sim-
plified to objects only, of simple sentences.

Γ : k isa X Γ : j R k

Γ : j R some X
(sI)

Γ : j R some X Γ,k isa X, j R k : S′

Γ : S′ (sE)

k fresh
(16)

6Similar rules govern something in a subject position,
but they do not matter here and are omitted.

Transitive verb with an unexpressed object:

Γ : j Ru k

Γ : j Ru
(uI)

Γ : j Ru Γ, j Ru k : S′

Γ : S′ (uE)
k fresh

(17)
Here only a sentence with an Ru-verb can be
used. Note the “missing” premise k isa X
(for some X), leaving the object nominally-
unqualified, hence omit-able. It is crucial to
note that the subject ofRu has to be a param-
eter, assuring the meaning-identity with the
explicit existentially case below. The param-
eter j is a basis for introduction of a univer-
sally quantified subject with a higher scoping
quantifier.

For example, with Ru = ate (with contexts
omitted):

j ate k

j ate
(uI)

j ate j ate k : S′

Γ : S′ (uE)
k fresh

(18)
Note that no similar (uI)-application can be
used to derive, for example, j smiled, under
the assumption that smiled is a proper intran-
sitive verb.

Example 4.2 As an example, I show that

` every girl ate some apple : every girl ate (19)

The derivation is shown in Figure 4. So, the
“essence” of the derivation is not using the
premise k isa apple, later discharged by the ap-
plication of (sE), in deriving j ate.

4.3 Sameness of meaning
The following proposition, expressing the equal-
ity of meaning between intransitive Ru-headed
pseudo-sentence and explicitly existentially-
quantified R-headed pseudo-sentences is a simple
consequence of those rules.

Proposition 4.1

[[j Ru]] = [[j R something]] (21)

and in particular

j Ru ≡GA j R something (22)

Proof: immediate, as there is a one-one corre-
spondence between canonical derivations on both
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[j isa girl]1 every girl ate some apple

j ate some apple
(eÊ)

[j ate k]2, [k isa apple]3
j ate

(uI)

j ate
(sE2,3)

every girl ate
(eI1) (20)

Figure 4: Derivation of every girl ate

sides of the equality, because the premises of the
respective I-rules are the same.

A consequence of proposition 4.1 is the follow-
ing theorem7, establishing that the sameness of
meaning for ground pseudo-sentences with Ru-
verbs extends to a congruence of sameness of
meaning for arbitrary sentences with Ru-verbs in
the fragment (namely, arbitrary quantified nps as
subject). As we have here only two possible sub-
jects, we state the theorem for both, explicitly.

Theorem 4.1

[[every X Ru]] = [[every X R something]] (23)

[[some X Ru]] = [[some X R something]] (24)

Proof: Suppose D is a canonical derivation of
every X Ru. Then, omitting contexts, D has to
have a subderivation of the following form.

[j isa X]i
D′
j Ru

every X Ru
(eIi) (25)

There are two sub-cases to consider, depending
whether D′ itself is canonical or not.

1. First, assumeD′ is canonical. By proposition
4.1, D′ is also a canonical derivation of

[j isa X]i

D′
j R something

And, hence,

[j isa X]i
D′

j R something

every X R something
(eIi) (26)

7Note that neither Blom et al. (2012) nor Giorgolo and
Asudeh (2012) relate to this issue, discussing only sentences
with proper names as subjects.

is a canonical derivation, establishing

[[every X Ru]]⊆[[every X R something]]
(27)

Showing

[[every X R something]]⊆[[[[every X Ru]]
(28)

is similar.

2. Next, suppose D′ is not canonical. Thus, the
conclusion j Ru was obtained by an applica-
tion of an E-rule. In the small fragment con-
sidered here, there are two possible E-rules
that could yield this consequence.

(a) The one possibility is the (eÊ)-rule.
This means that D′ must have the fol-
lowing form.

D′
1

every Y Ru
D′

2
j isa Y

j Ru
(eÊj)

In the subderivation D′
1, the conclusion

must have been introduced by the (eI)-
rule. So this premise looks like

[k isa Y ]j
D′′

1
k Ru

every Y Ru
(eIj)

SinceD′′
1 is smaller thanD, by induction

it follows that

[k isa Y ]j
D′′

1
k R something

every Y R something
(eIj)

from which we get the required deriva-
tion

D′
1

every Y R something
D′

2
j isa Y

j R something
(eÊj)

The other direction is similar.
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(b) The other possibility is that the relevant
E-rules are (sE) and (uE) (for a subject
some X). The details are similar to the
previous case and omitted.

This proof could be extended for subjects with
other determiners, e.g. at least seven girls
ate, having the same meaning as at least seven
girls ate something, not in the current fragment,
though.

There is an interesting observation arising from
the proof-theoretic meaning device above. Con-
sider sentences with intensional transitive verb
(ITVs) with an indefinite object np, like

Mary seeks/looks for a secretary (29)

Such sentences are known to have a notional read-
ing (unspecific) of their object. Thus, (29) has a
reading by which Mary looks for any secretary.

Such sentences have no equivalent counterpart
with an unexpressed object.

(∗) Mary seeks/looks for (30)

The explanation for the impossibility of the object
omission can be found in the proof-theoretic se-
mantics for ITVs provided in Francez (2016). Un-
der this semantics, the objects of ITVs are different
kind of parameters than the individual parameters,
for which the omission rules present here do not
apply. This shows the power of syntactic meth-
ods, introducing formal distinctions not carrying
any ontological commitments, unlike the need to
populate models with entities of unclear nature as
in model-theoretic semantics.

5 Conclusions

In this paper I have presented a proof-theoretic se-
mantics for sentences headed by transitive verbs
allowing an unexpressed (implicit) object. Such
sentences are shown to have the same (proof-
theoretic) meaning as the same sentences with an
explicit existentially quantified object something.

This semantics is contrasted with a model-
theoretic semantics based on truth-conditions in
models. The models used contain in their do-
main “filler” elements, that have an unclear extra-
theoretic significance with an unclear ontologi-
cal commitments. In contrast, the proof-theoretic
meaning is appealing to formal (syntactic) re-
sources that carry no ontological commitment.

Furthermore, the sameness of meaning is based
on sameness of deductive role within a meaning-
conferring proof-system, based on use.

References
Gilad Ben-Avi and Nissim Francez. 2004. Categorial

grammar with ontology-refined types. In Categorial
Grammars 2004: An efficient tool for Natural Lan-
guage Processing. Montpellier, France.

Chris Blom, Philippe de Groote, Yoad Winter, and
Joost Zwarts. 2012. Implicit arguments: event mod-
ification or option type categories. In Maria Aloni,
Vadim Kimmelman, Floris Roelofsen, Galit W. Sas-
son, Katrin Schulz, and Matthijs Westera, editors,
Proceedings of the 2011 Amsterdam Colloquium.
Springer, LNCS 7218, pages 240–250l.

Greg N. Carlson. 1984. Thematic roles and their role
in semantic interpretation. Linguistics 22:259 – 279.

David Dowty. 1982. Grammatical relations and mon-
tague grammar. In Pauline I. Jacobson and Geof-
frey K. Pullum, editors, The Nature of Syntactic Rep-
resentation, Reidel, Dordrecht, pages 79–130.

Michael Dummett. 1993. The Logical Basis of Meta-
physics. Harvard University Press, Cambridge,
MA., paperback edition. Hardcover 1991.

Nissim Francez. 2014. The granularity of meaning in
proof-theoretic semantics. In Nicholas Asher and
Sergei Soloview, editors, Proceedings of the 8th In-
ternational Conference on Logical Aspects of Com-
putational Linguistics (LACL), Toulouse, France,
June 2014. Springer Verlag, LNCS 8535, Berlin,
Heidelberg, pages 96–106.

Nissim Francez. 2015a. On distinguishing proof-
theoretic consequence from derivability. Logique et
Analysis (to appear).

Nissim Francez. 2015b. Proof-theoretic Semantics.
College Publications, London.

Nissim Francez. 2016. Proof-theoretic semantics for
intensional transitive verbs. Journal of Semantics
33(4):803–826. Doi: 10.1093/jos/ffv013.

Nissim Francez and Gilad Ben-Avi. 2015. A
proof-theoretic reconstruction of generalized quan-
tifiers. Journal of Semantics 32(3):313–371.
Doi:10.1093/jos/ffu001.

Nissim Francez and Roy Dyckhoff. 2010. Proof-
theoretic semantics for a natural language fragment.
Linguistics and Philosophy 33(6):447–477.

Gianluca Giorgolo and Ash Asudeh. 2012. Missing re-
sources in a resource-sensitive semantics. In Pro-
ceedings of the 17th Lexical Functional Grammar
(LFG) conference, Bali, June-July 2012. CSLI on-
line publications.

66



Sara Negri and Jan von Plato. 2001. Structural Proof
Theory. Cambridge University Press, Cambridge,
UK.

67



Proceedings of the 15th Meeting on the Mathematics of Language, pages 68–74,
London, UK, July 13–14, 2017. c©2017 Association for Computational Linguistics

Why We Speak

Rohit Parikh
City University of New York

Brooklyn College and
CUNY Graduate Center

rparikh@gc.cuny.edu

Abstract

We explain the relevance of Nash, Hoare
and others in explaining Gricean impli-
cature and cheap talk. We also develop
a general model to address cases where
communication is not cooperative, i..e
cases of deception as well as cases where
there is common knowledge of different
interests in speaker and hearer. Tow mod-
els, one qualitative and one quantitative
are introduced.

1 Introduction

In his book Making the Social World, John Searle
indicates that speech acts have two directions.
There is the world to word direction, as in the
statement “the cat is on the chair” which is true
if the world is as the sentence says it is, i.e., the
cat is indeed on the chair. There is also a word to
world direction as in “Please shut the door” where
the relevant proposition becomes true when the
door is closed. The speech act seeks to change
the world rather than represent it. However, an ut-
terance even of “The cat is on the chair” can be
seen as having a word to world direction in that
it could be a way to prevent someone from sitting
in the chair, and hence on the cat. An utterance is
a social act and seeks to change the mental states
of listeners and perhaps, eventually, change their
actions. So it has the same word to world direc-
tion as a request or a command. This fact was no-
ticed originally by Wittgenstein with his language
games, but he characteristically refused to give a
more formal account. But he was followed by
Austin, by Searle himself and various game the-
orists like Crawford, Farrell and Sobel. Clearly if
an utterance has a word to world direction, then it
is a move in a game and can be of interest to game
theorists. Thus, paradoxically, a sentence and an

utterance are of opposite types in Searle’s termi-
nology

2 A Taxonomy

The simplest case is where an utterance merely
seeks to inform someone of something. Suppose a
sentence A is uttered, the listener already believes
T and A is consistent with T. Then the listener
moves from T to T + A, the logical closure of T
∪ {A}. The listener has been informed of A.1

If T is not consistent with A then the listener
may apply a revision operator a la AGM (Alchour-
ron et al, 1985) and go from T to T – A (which
reduces T to a subtheory not containing ¬A and
then adds A to that subtheory) Note that in the sec-
ond case, some formula B which was in T will no
longer be in T – A and it could have been the aim
of the speaker to achieve the deletion of B more
than the addition of A in the listener. To a man ex-
pecting his wife any moment, one could say “Her
flight has been delayed by 3 hours,” the intention
being to remove from him the belief that he will
see her at 4 PM.

As we see, even the base case has complexi-
ties which Frege did not anticipate. But there is
more, namely the phenomenon of implicature no-
ticed and investigated by Paul Grice. Since the ut-
terance of A is a move, the listener not only knows
that A has been said, but that it has been said un-
der the particular circumstances of the conversa-
tion and can typically infer more than just A and it
logical consequences. A motorist says to a pedes-
trian, “My car is out of gas” and the pedestrian re-
sponds, “There is a gas station around the corner.”

1My usage here is the reverse of Searle’s own usage but
will seem more natural to those used to functions. In the one
case the world is operating on the word to give it a truth value
and in the other case the word is operating on the world to
make it as desired. Some of the material in this paper has
been presented in various venues but is unpublished. Some
other material, especially the model is new.
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Grice points out that the implicature is that the gas
station is open as far as the pedestrian knows, for
otherwise why say what she has said. An exam-
ple from Pinker et al is where a representative of
the mob comes around to a store owner and says,
“Nice store you have here. It would be a pity if
something were to happen to it.” The store owner
already knows that it would be a pity and does not
need to be told. Here the message is in the fact
that it is said at all and by whom. The implicature
is likely to be something like “Give us $500 every
month and you will be fine.”

Deborah Tannen in her You Just Don’t Under-
stand gives an example of a husband and wife
travelling along a highway when they are near-
ing a restaurant. “Are you hungry?” says the wife.
“No,” says the husband and drives on. Later on he
is puzzled why she is angry. Here it is clear that
the signaling mechanism has not been sufficiently
established between husband and wife. He should
have said, “No, I am not hungry, but maybe you
are?” Should we call this also an example of an
implicature? If it is then it is one which did not
succeed for Grice asks that implicatures should be
calculable. Clearly the husband failed in his cal-
culation, or else it was not a genuine implicature
in Grice’s sense.
A particularly interesting but also difficult case is
where the utterance takes advantage of something
like a Nash equilibrium of communication and un-
derstanding.

Prashant Parikh gives an example of a man say-
ing, “I am going to the bank” where bank could
mean a financial institution or a river bank.

There are four possible situations here. It is
good if the speaker means financial institution and
the listener understands financial institution. A
bad one is where the speaker means financial in-
stitution and the listener understands river bank.
There are two more cases, one good and one bad.
It requires cooperation on the part of the speaker
and listener to agree to a good interpretation and
not a bad one. Perhaps common knowledge is in-
volved, perhaps something else.

A final case is one discussed by both Austin and
Searle. A minister says to a couple, “I now pro-
nounce you man and wife.” Here the minister is
not reporting on the world, nor is he suggesting a
future action. His statement is the action which
changes the world in the required way.

Can there be a general theory which deals with

all these cases? Perhaps there is no general theory,
but we want to suggest that there might well be a
general framework of which these are all special
cases. The general framework is one where there
is an existing social situation and the speaker is
using the utterance as a way of altering the situa-
tion in some way. One way the utterance can be
seen is as an operator applying to a situation S and
creating a new situation S’.

However, the “bank” example and the Deborah
Tannen example show that the situation contem-
plated by the speaker might not be the one which
does arise. So then we should think of an utterance
as non-deterministic operator which converts the
existing situation S into one of (a finite number of)
situations {S1;S2; ...Sn}. Perhaps the speaker in-
tends S1 and what comes about is S2. The speaker
might then have to repair the damage, or it may
happen that the damage is not easy to repair.

In the movie When Harry Met Sally, Harry tells
his friend Sally that she is a very attractive person.
“You are coming on to me!” says Sally. And when
Harry offers to take it back she says,“You can’t
take it back; it is already out there now!” Harry
does manage a repair but it takes him the rest of
the movie.

The notion of situation needed here would nec-
essarily be rich to handle all these cases. Some-
thing which would work in most cases would be
a contemplated game (or action) with a state of
knowledge (belief?) for the various actors, their
preferences (which might remain constant) and a
set of permitted sequences of action. What a par-
ticular actor would do (after an utterance) then
would depend on his perception of the (new) situa-
tion. As Parikh and Tasdemir point out, the action
of an agent can be manipulated by changing her
state of information, a point made also by Shake-
speare in his Much Ado about Nothing, where the
actions of Benedick and Beatrice are changed by
changing their beliefs.

3 Information versus Action

In this paper, we shall consider the cases where
the first speaker A has some goal in mind which
is common knowledge, and the second speaker B
makes a statement which is relevant to this goal.
In that case the (common) knowledge of the goal
is part of the context and is typically used to cal-
culate the implicature.

Prashant Parikh and Benz and van Rooij do
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point out that some implicatures might help some-
one to make a decision even though other impli-
catures might just be informational.

It will turn out that some contributions made
by the computer scientist Tony Hoare and by the
economist John Nash will be relevant. The con-
nection of implicatures with these two eminent
scholars seems to have been overlooked thus far
in the literature.

3.1 Hoare Semantics
Here is how Hoare semantics enters. A Hoare as-
sertion takes the form

{X}α{G}

where X,G are propositions, X is the pre-
condition, G is the goal and α is a contemplated
action (actions are programs for Hoare).

Formally, S is a state space, X,G are subsets of
S, and α becomes a relation Rα on S.

Then the Hoare condition is
(∀s)(∀t)(s ∈ X & (s, t) ∈ Rα → t ∈ G)

If X holds when the program starts, then G will
hold when it finishes.

Now A wants to reach G using α. We will as-
sume thatG is common knowledge between A and
B, and B has some information which would affect
the possibility of reaching G.

This could happen in four ways.

1. B has part of the information which implies
a suitable X . Thus B is supporting both the
goal and the action.

2. B has information which would cause A to
modify α in some way (e.g. to replace it by
a more specific action, or, technically, a sub-
action.)

3. B has information which suggests a particu-
lar action α to A.

4. B has information which would cause A to
abandon the method α. (Which may mean
abandoning the goal altogether or using some
completely unrelated method.)

B volunteers information which indicates
whether 1) or 2) or 3) or 4) is the case and leaves
A to

1. Either supply some other information which
will complete the process of deducing X or

2. modify α in some way, or

3. Conclude that ¬{X}α{G}.

This other information or the modification, or
¬{X}α{G} is the implicature.

And note that the modification is not in itself a
proposition, it may be an imperative. Thus part
of our thesis is that while an implicature may be a
proposition, it might well be something else which
affects A in some way.

4 The Cooperative Case

Here we assume, as Grice does, that the utilities of
A and B are in accord. We do not assume that they
are the same since what A gains from receiving
the information is likely to be much more than the
pleasure that B gets from helping out.

Consider the case of the motorist. The goal of
the motorist2 is clear. She wants to fill her tank
with gas. The statement which B makes points to
an algorithm, go around the corner and get gas
there. Here it is unclear whether A should walk
there carrying a gas can, or has at least enough
gas to drive around the corner. But in either case,
going around the corner is indicated (by B) as the
α.

Our Hoare assertion is

{X1&X2&X3}α{G}

Where X1 is that there is a gas station around
the corner, X2 is that the gas station is open and
X3 is that A has enough money to pay for the gas.

Only A knows whetherX3 is true and this is not
B’s business. B has volunteered X1. It is obvious
that α is useless unless X2 is true. Since B has in-
dicated that he supports the action α it follows that
X2 is true as far as B knows. If he is not support-
ing the action then he should not have said X1. So
in this case X2 is the implicature.

4.1 The Hiring Problem

In this example A is the chair of the hiring
committee for some college, B is a professor
and C is the professor’s student who is an appli-
cant for a position at A’s college. B writes about C

He has excellent handwriting and he always
came to class on time.

2In Grice’s original version
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Here A’s goal G is to have a colleague who will
be a good teacher and researcher, α is the action of
hiring C, and the precondition is that C is a good
philosopher.

B’s statement does not give A the information
which A needs, or even supports it in some rele-
vant way, and the implicature is that the precondi-
tion is false. A should abandon α. The implicature
is ¬{X}α{G} where X is any true condition.

But why doesn’t B simply say, “He is not a good
philosopher”? Clearly because B is C’s teacher
and professional ethics preclude him from saying
something negative about C. What he does instead
is to say something positive which is not good
enough.

Here is a joke which makes a similar point.

A tired and depressed looking man
walks into a restaurant and sits down.
A waiter comes over and asks what the
man wants.

“Two scrambled eggs with rye toast,
and a kind word,” says the man.

After a while the waiter comes back
and puts an order of eggs and rye toast
before the man.

As the waiter is walking away, the
man says, “What about the kind word?”

“Don’t eat them eggs,” says the
waiter.

Just like the professor, the waiter is forbidden to
say something negative about the restaurant. but
his “don’t eat them eggs” carries the implicature
that the eggs are not good, may even cause illness.
And that indeed is a kind word.

4.2 Modifying α

We note that in many cases actions are not disjoint
from each other. If we think of a (nondeterminis-
tic) action as a binary relation on the state space,
then two actions may be disjoint, may overlap, or
one may be included in the other.

One Hoare-like rule is

{X}α{G}, β ⊆ α
———————————————–

{X}β{G}
If a correctness condition is satisfied by α then

it is also satisfied by a subaction β but not neces-
sarily vice versa.

Here is an example.

A to B, “I am thinking of going to Times square
by public transport.”

B, “Buses will be very slow during the rush
hour.”

A likely implicature is “Take the subway.”
Here action α is the action of taking some pub-

lic transport, β is the action of taking the subway
and γ is the action of taking a bus.3 α is the union
of β and γ.

Let X be the current situation, and G be the
goal of getting to Times square on time. Then
{X}β{G} is true, but {X}α{G} is not4. B is sug-
gesting that the action be changed from α to β by
eliminating γ.

When an action satisfies a Hoare condition then
so does a sub-action. But this is not the case if we
are trying to maximize expected utility. It is quite
possible that the expected utility of α is higher
than that of β even though β ⊆ α.

For example, if I am betting on a horse, then it is
better to choose a horse at random than to choose
a specific horse which is well known to be a nag.

However, if satisficing is our desired condition
then subactions would be at least as good as an
action. If all outcomes of α are satisfactory, and β
is a subaction of α then all outcomes of β are also
going to be satisfactory.

5 Nash Bargaining

In Grice’s treatment of implicature, he assumes a
principle of cooperation. Thus for one of his first
examples, when a motorist says, “My car is out
of gas” and the pedestrian replies “There is a gas
station around the corner,” there is an implicature
that the station is open. And this follows from the
presumption that the pedestrian’s desires are the
same as those of the motorist, although perhaps
less intense and so the pedestrian wants the mo-
torist to get gas for his car. This tradition has been
followed in much of the subsequent literature.

However, there are exceptions. The economics
literature on cheap talk no longer assumes that the
utilities are aligned. What the speaker wants and
what the listener wants need no longer be fully
aligned, although some overlap is necessary for
communication to take place at all. Stalnaker in

3We assume it to be common knowledge that a taxicab is
out of the question given the traffic.

4This is a consequence of the nondeterminism of the two
actions. β is guaranteed to achieve the goal whereas αmight
but is not guaranteed to do so.
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his paper Cheap talk and credibility, follows this
tradition as well.

Yet as we noted, some degree of cooperation is
requisite, for otherwise why communicate at all?

We would like to suggest a slight generalization
of the Grice principle which looks like it might
bridge the gap between cooperation and strategiz-
ing. This principle was originally formulated by
John Nash in his paper “The Bargaining problem.”

In Nash’s framework two players A and B are
trying to decide on a point in two space. There is
a convex set S of possible solutions and each point
p in S yields utilities u(p), v(p) to A and B respec-
tively. Nash presumes that the actual bargain, i.e.
the point p which is finally chosen will be Pareto
optimal. That is to say, Nash assumes that there is
no q in S such that u(q) ≥ u(p) and v(q) > v(p)
or that u(q) > u(p) and v(q) ≥ v(p). There is no
way to make one person better off without making
the other person worse off.

Nash assumes moreover that the space S is con-
vex.5

Using very natural axioms on the solution con-
cept Nash proves that the final bargain will be the
unique point p such that u(p)× v(p) is maximum.

It is obvious that assuming that the players are
choosing a Pareto optimal point, and there are at
least two such, then there is a conflict. Neither can
gain without the other losing.

The element of cooperation enters through
Nash’s notion of a fallback point. The fallback
point F is the point to which they “fall back” in
case they cannot arrive at a bargain, and this point
is worse (for both) than any other point in S.

Thus cooperation arises through the fact that
both players want to avoid the fallback point and
each needs the help of the other to achieve this.

Grice’s cooperative principle is a special case of
Nash’s. For suppose the utilities are aligned. I.e.,
if for any two points p and q we have u(q) > u(p)
iff v(q) > v(p), then the Nash bargaining point
which maximizes the product u(p) × v(p) is also

5To take an example rather like that of Nash’s original
example. Suppose that the two are restricted to a point in the
set {(x, y)|2x + y ≤ 3}. The utilities are x for A and y
for B. The fallback point is (0,0). Then the Pareto optimal
points will be all the points on the line 2x + y = 3. But
which particular point should be chosen? The product of the
utilities is maximized at the point (.75, 1.5).

But Nash does not speak about communication and there is
no guarantee even that a Pareto optimal point will be reached,
let alone Nash’s “ideal” point. To take a real life example,
it seems highly unlikely that a Pareto optimal point will be
reached in Ukraine.

the point which maximizes u(p). B gains by help-
ing A to gain. The pedestrian helps the motorist to
get gas for the sake of the small pleasure of help-
ing another6.

But as we noted this is not the only case. The
mere fact that the players both want to avoid X
does not imply that their utilities are fully aligned.

We now offer an example of how the Nash prin-
ciple works.

Suppose that an American tourist is in India and
wants to buy a carved wooden elephant. He has al-
ready seen such an elephant in a store for Rs. 500
but sees a hawker selling the identical elephant for
Rs. 400.

It is customary to bargain with hawkers but what
should the tourist offer?7

In this situation, the fallback situation is that the
tourist abandons the hawker and buys his elephant
in the store. But the hawker himself has bought
the elephant for Rs. 40 and so any price paid from
41 rupees to 499 rupees would be better for both
than the fallback situation, which is no sale for the
hawker and a cost of Rs. 500 for the tourist.

The element of cooperation arises because both
parties want to avoid the fallback situation, but
given this fact there is an element of conflict in that
the hawker wants to charge more and the tourist
wants to pay less.

Here we assume that the utilities of A and B are
not aligned although there must be some concord
for communication to take place at all.8

6 A Model

In the following I am going to make two assump-
tions and offer a caveat.

1. Each party in a two way conversation expects
to benefit from the conversation.

2. This expectation is common knowledge.

3. But the benefit might not be common knowl-
edge and might not even be true.

Thus suppose Ann says something, A, to Bob
in response to a query. Then Bob believes that he
has benefited by hearing A (which, in normal cases

6See for instance Tomasello, (2009)
7In a similar situation, Aumann offered 200, the offer was

accepted and Aumann bought the elephant, only to find that
the proper price would have been Rs. 50.

8We do not consider the important and interesting case
where A thinks they are aligned but they are not.
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would also mean that Bob believes he benefits by
believing A).

And Ann, even if she does not benefit as much
expects to suffer no loss.

Thus suppose that the two of them were in states
(S, T) before A was said, and are now in states
(S’,T’), then Bob believes that T’ is better for him
than T and this is common knowledge. And Ann
believes that S’ is not worse for her than S, and
this too is common knowledge.

In a cooperative dialogue, and if Ann is well in-
formed, then both these beliefs will be true. They
could be false if Ann was mistaken about A, and
Bob believed her, or if Ann was trying to mislead
Bob by saying A and he was not aware that she
was doing so.

In order to define notions of better and worse
we need a notion of pragmatic belief.

A pragmatic belief for Bob is a formula of the
form X(a) = u which means that performing ac-
tion a will yield utility u to Bob. If Bob has n ac-
tions (a1, a2, , an) available then a pragmatic state
of belief is a mapX from {a1, ..., an} into the real
numbers.

A statement A made by Ann will cause a change
from one state S of pragmatic belief to another
state S’.

“But doesn’t the statement A cause a change in
Bob’s beliefs about the world?” To be sure it does.
But it might not mean the addition of A to Bob’s
beliefs if Bob does not believe Ann. Or it might
mean the addition of more than A, A+A’ where A’
is the implicature. And finally, the change in Bob’s
state of beliefs will eventuate in a change in what
he would do and why.

If Ann tells Bob that the bridge is closed, he
does normally come to believe that the bridge is
closed and hence not plan to take the bridge to
the other side. But it is his plan not to take the
bridge which will be our central concern. If Bob
had had no intention of going to the other side, he
would wonder why Ann had said that the bridge
was closed.

So facts result in actions, and it is actions that
will be our main concern.

So let us suppose that Bob’s initial pragmatic
state of beliefs was S, Ann’s saying A changes it
to S’ and the true state is S”. So let

S = {(a1, u1), , (an, un)}
S′ = {(a1, u′1), , (an, u′n)}

S” = {(a1, u”1), , (an, u”n)}
Let m be Bob’s best action according to S, m’

be the best action according to S’.
Thus suppose that u3 is the largest of u1, .., un,

and u′5 is the largest of u′1, , u
′
n then m is a3 and

m’ is a5.
Then Bob’s gain in utility is
S”(m’) – S”(m).
Bob was thinking according to S and would

have done m. After hearing A he will now do m.
But his real utilities should be evaluated according
to S”.

7 Applications of the Model

Consider the case of the motorist and the pedes-
trian. Initially the motorist had two options. To
keep driving hoping to come to a gas station and
go around the corner. Let these actions be a and
b. Then a has the higher utility for him since he
has no reason to think that b would do him any
good. After hearing Ann say, “There is a gas sta-
tion around the corner,” presumably his new best
action would be b. If it would still be a then why
should Ann bother to speak? Ergo b has a higher
utility. But, that is so only if the gas station is open.

Consider the case of the person who wants to go
to Times Square. She has two options. To take the
subway and take the bus. Perhaps they are equally
viable or at least both have a high enough utility.
But now consider the remark ”buses will be slow
during the rush hour.” That lowers the utility of the
bus and makes the subway the decisive choice.

This model does not yet accommodate cases
like that of the tourist in India since bargaining
goes beyond mere converation. But we hope to
deal with it in the next version of the paper.

The other cases are similar and can be dealt with
by looking at utilities and actions.

8 A Comparison

We have offered two models to understand the
phenomena of implicature and cheap talk. The
first model was based on Hoare and was quali-
tative. We do not need to assign numbers to the
value of getting faster to Times Square. The sec-
ond model makes shameless use of numerical util-
ities. Of course the first model is more general
and would apply also to situations where we have
no idea of utilities or probabilities. But the second
model has the potential for clean mathematical re-
sults.
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Abstract

One of the prominent mathematical fea-
tures of natural language is the prevalence
of “upward” and “downward” inferences
involving determiners and other functional
expressions. These inferences are asso-
ciated with negative and positive polarity
positions in syntax, and they also feature
in computer implementations of textual
entailment. Formal treatments of these
phenomena began in the 1980’s and have
been refined and expanded in the last 10
years. This paper takes a large step in the
area by extending typed lambda calculus
to the ordered setting. Not only does this
provide a formal tool for reasoning about
upward and downward inferences in natu-
ral language, it also applies to the analysis
of monotonicity arguments in mathemat-
ics more generally.

1 Introduction

Monotonicity reasoning is pervasive across many
domains, from mathematics to natural language,
indeed in any setting that deals with functions of
ordered sets. A function f is monotone if it pre-
serves order, that is, if x ≤ y implies f(x) ≤ f(y).
Anti-monotone (or antitone) functions f are those
that reserve order, that is, for which x ≤ y implies
f(y) ≤ f(x). Natural language constructions
that exhibit these patterns are ubiquitous, span-
ning semantic and grammatical categories. Algo-
rithms have been devised and studied for deriv-
ing monotonicity patterns in complex expressions
composed of simpler functional expressions (van
Benthem, 1986; Sánchez-Valencia, 1991; van Ei-
jck, 2007). For instance, the interaction of quan-
tifier and temporal expressions, together with the
fact that 2 ≤ 5, guarantee that Any play that lasts

more than 2 hours is too long entails (is “less than”
in a sense to be made precise) Any play that lasts
more than 5 hours is too long. There has been
recent theoretical work on monotonicity reason-
ing as part of a general interest in “natural logic”
(Bernardi, 2002; Zamansky et al., 2006; MacCart-
ney and Manning, 2009; Muskens, 2010; Icard,
2012; Moss, 2012; Icard and Moss, 2013; Tune,
2016), and much of this work has made its way
into psycholinguists (Geurts, 2003; Geurts and
van der Slik, 2005) and natural language process-
ing (MacCartney and Manning, 2007; Angeli and
Manning, 2014; Bowman et al., 2015; Abzianidze,
2015). (For review see Icard and Moss 2014.)

Whereas monotonicity reasoning in natural lan-
guage is often seen as comprising a fragment of
higher-order logic, we can also construe it as en-
coding a logical system in its own right relative
to a suitably coarsened model-theoretic interpre-
tation. In this context standard metalogical ques-
tions such as completeness can be raised. A com-
pleteness result would tell us that a proof system is
sufficient to derive everything that follows on the
intended model of monotonicity reasoning.

Though our primary interest here is natural lan-
guage, it bears mention that such reasoning in
higher-order settings is also ubiquitous in other
areas, e.g., in mathematics. Consider the conver-
gence test for improper integrals, which states that
if 0 ≤ f(x) ≤ g(x) on an interval [a,∞), then∫∞
a f(x)dx converges if

∫∞
a g(x)dx does. As an

example of this, note that knowing
∫∞
1 e−xdx =

e−1 converges allows, by monotonicity reasoning
alone, to infer that

∫∞
1 e−x

2
also converges:

1 ≤ x
x ≤ x2
−x2 ≤ −x
e−x

2 ≤ e−x∫∞
1 e−x

2
dx ≤

∫∞
1 e−xdx
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deftly - λx.x

deftly(soar) - (λx.x)(soar)

deftly(soar) - soar soar - fly

deftly(soar) - fly

few(marsupial)(fly) - few(marsupial)(deftly(soar))

marsupial - mammal

λx.
(
all(x)(run)

)
(mammal) - λx.

(
all(x)(run)

)
(marsupial)

λx.
(
all(x)(run)

) - λx.
(
few(x)(fly)

)

λx.
(
all(x)(run)

)
(mars.) - λx.

(
few(x)(fly)

)
(mars.)

λx.
(
all(x)(run)

)
(mammal) - λx.

(
few(x)(fly)

)
(marsupial)

all(mammal)(run) - few(marsupial)(fly)

...

all(mammal)(run) - few(marsupial)(fly)

...

few(marsupial)(fly) - few(marsupial)(deftly(soar))

all(mammal)(run) - few(marsupial)(deftly(soar))

Figure 1: Example proof that All mammals run implies Few marsupials deftly soar (in three parts).

This argument, similar to those we will be consid-
ering, depends only on the monotonicity profiles
of the relevant functions (multiplication, exponen-
tiation, etc.) on the relevant domains.

The aim of the present contribution is to formu-
late a suitable system for monotonicity reasoning
in a higher-order setting, appropriate to the task of
capturing common entailment patterns in natural
language in particular, and to prove a complete-
ness result for an associated proof system. Along
the way we also prove an analogue of Lyndon’s
(1959) Theorem for first order logic, showing ex-
actly when, in our general setting, a subterm oc-
currence stands in a monotone or antitone posi-
tion. For reasons of space, we skip some of the
less central proofs.

2 Motivating Example

To motivate the specific formal apparatus that we
will employ, consider the following small frag-
ment. As in previous work (Icard and Moss,
2013), we will be considering an extended simply
typed lambda calculus where the functional types
can be “marked” with monotonicity information,
+ for monotone, − for antitone, and · for neither
(or unknown). Suppose we have two base types
t and p, corresponding to truth values and predi-
cates (more commonly, functions from entity type
to truth value type), and the following typed terms:

all : p
−→ (p

+→ t)

few : p
·→ (p

−→ t)
mammal, marsupial : p
run, fly, soar : p

deftly : p
·→ p

Let us furthermore assume the following back-
ground entailment facts Γ, where M - N is un-
derstood as entailment generalized to all types:

λx.
(
all(x)(run)

)
- λx.

(
few(x)(fly)

)

deftly - λx.x

marsupial - mammal

soar - fly

The first statement encodes the assumption that if
all members of a given category run, it can be in-
ferred that few members of that category fly. The
second statement essentially says that deftly is sub-
sective (Kamp and Partee, 1995): deftly v’ing in-
volves v’ing (see Figure 1). The third and fourth
capture basic lexical entailments. We can then use
these assumptions to derive Few marsupials deftly
soar from All mammals run. A proof using our
monotonicity calculus appears in Figure 1.

There are several important points to notice
about this example. First, in order to state and use
assumptions such as the first two above, we make
crucial use of lambda abstraction and β-reduction.

Second, note that we can state entailment facts
between terms even when those terms have dif-
ferent (marked) types, as in the first two state-
ments. For example, though in our typing system
λx.x will be of type p +→ p, it can nonetheless
be compared with deftly because (denotations
of) terms of type p +→ p can be semantically “co-
erced” to type p ·→ p. This is simply because the
domain D

p
·→p for terms of type p ·→ p will be the

class of all functions from Dp to Dp, which cer-
tainly includes all the monotone functions.

Third, it can be useful to derive monotonic-
ity information for complex terms, e.g., so that
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we can derive λx.
(
all(x)(run)

)
(mammal) -

λx.
(
all(x)(run)

)
(marsupial) in one step.

Theorem 8.2 below guarantees that the way we
type lambda abstractions is in a sense optimal.

The framework developed in this paper is moti-
vated by the desire to capture patterns like these.
Such patterns could be derived in an inequational
system of full higher-order logic: given a constant
∨ for disjunction at a given type, it is easy to see
that a term f will be a monotone function just
in case we have λx.λy.f(x) - λx.λy.f(x ∨ y).
Proofs of facts like that above might then be de-
rived in a higher order logic proof system with
monotonicity declarations as additional premises.
We of course could not have completeness in this
setting, but more importantly, we would rather like
to isolate and understand what is characteristic of
monotonicity reasoning as such.

There are many instances of this kinds of rea-
soning outside of natural language. As a simple
illustration of the main concepts and definitions,
throughout the paper we will be considering a run-
ning example of elementary mathematical reason-
ing about real number functions.

3 Types and Domains

Our set T of types is defined inductively from a
set B of base types b:

τ ::= b | τ ·→ τ | τ +→ τ | τ −→ τ

Definition 3.1 (Markings and types). The set Mar
of markings is {+,−, ·}. We use m and m′ to de-
note markings. We always take Mar to be ordered
with + v ·, − v ·, and m v m for all m. We also
define a binary operation ◦ on Mar by + ◦+ = +,
+◦− = −,−◦+ = −,−◦− = +; and otherwise
m ◦m′ = ·. Notice that ◦ is associative.
We have a natural ordering� on types, where σ �
τ can be read as: any term of type σ could also be
considered of type τ (cf. Def. 3.5 below).
Definition 3.2 (� on types). Define � ⊆ T ×
T to be the least preorder with the property that
whenever σ′ � σ and τ � τ ′, and m v m′, we
have σ m→ τ � σ′ m

′
→ τ ′.

Definition 3.3 (the functions ↑, ∨, and σ 7→ σ̂ on
types). (Mar,v) is an upper semilattice. So we
have an operation ∨ on it. Explicitly, m ∨m = m
for all m, and for m 6= m′, m ∨m′ = ·. We also
define ↑ to be the smallest relation on types, and
∨ to be the smallest partial function on types, with
the properties that for all σ, τ1, and τ2:

1. σ ↑ σ, and σ ∨ σ = σ.

2. If τ1 ↑ τ2, then (σ
m1→ τ1) ↑ (σ

m2→ τ2) for
all m1,m2 ∈ Mar, (σ

m1→ τ1) ∨ (σ
m2→ τ2) =

σ
m1∨m2−→ (τ1 ∨ τ2).

Finally, we define σ 7→ σ̂ on T by σ̂ = σ for σ
basic, and (σ

m→ τ )̂ = σ
·→ τ̂ .

We also note the following characterization of
the order �. In it, we use the height function de-
fined by: ht(σ) = 0 for σ basic, and ht(σ m→ τ) =
1 + max(ht(σ), ht(τ)).

Proposition 3.4. Let R0 be the identity relation
on the set T of types. Given Rn, let

Rn+1 = {(σ m→ τ, σ′ m
′
→ τ ′) : σ, σ′, τ, τ ′

have height ≤ n;m v m′; and
both (σ′, σ), (τ, τ ′) belong to Rn}

Then
⋃
nRn is the order �.

Definition 3.5. A pre-structure D = {Dτ}τ∈T is
given by a class of preorders Dτ = (Dτ ,≤τ ) for
each type τ ∈ T , and a family of maps

πσ,τ : Dσ → Dτ

when σ � τ , subject to the following constraints:

1. D
σ

+→τ ∪Dσ
−→τ ⊆ Dσ

·→τ ⊆ D
Dσ
τ .

2. f ∈ D
σ

+→τ and a ≤σ b imply f(a) ≤τ f(b).

3. f ∈ D
σ
−→τ and a ≤σ b imply f(b) ≤τ f(a).

4. f ≤
σ
m→τ g iff for all a ∈ Dσ : f(a) ≤τ g(a).

5. πσ,σ is the identity on Dσ.

6. If σ � τ � µ, then πσ,µ = πτ,µ ◦ πσ,τ .

7. Each map πσ,τ is order-preserving.

Definition 3.6. Here is a family of pre-structures
called the full pre-structures based on an assign-
ment of preorders Dσ to base types σ. Then one
defines Dσ by recursion on the height of σ:

D
σ
·→τ = (Dτ )Dσ , all functions from Dσ to Dτ

D
σ

+→τ = {f ∈ D
σ
·→τ : f is monotone}

D
σ
−→τ = {f ∈ D

σ
·→τ : f is antitone}

The order in all cases is the pointwise order. We
define the maps πσ,τ in terms of the characteriza-
tion in Proposition 3.4. For n = 0, the only time
we have (σ, τ) ∈ R0 is when σ = τ ; in this case,
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we set πσ,σ to be the identity on Dσ. Notice that
each πσ,τ is order preserving (since τ must be σ
when n = 0), and also that πσ,µ = πτ,µ ◦ πσ,τ .

Given πσ,τ for all pairs (σ, τ) ∈ Rn, here is
how we extend the definition to Rn+1 \Rn. Given
σ′ � σ and τ � τ ′, m v m′, and also πσ,σ′ and
πτ,τ ′ , we define π

σ
m→τ,σ′m

′
→τ ′

to be

k ∈ D
σ
m→τ 7→ πτ,τ ′ ◦ k ◦ πσ′,σ. (1)

It is easy to verify the properties in Def. 3.5.

Example 3.7. Take B = {r}, with r intuitively
standing for real numbers. Then we will have
types in T such as those shown below. As an
example of ↑, (r

−→ r) ↑ (r
+→ r), while

(r
−→ r) ∨ (r

+→ r) = r
·→ r. We build the

full pre-structure using Dr = R, the reals with the
usual order ≤. Then we have, e.g.,

σ Dσ
r
·→ r functions from R to R

r
+→ r monotone functions from R to R

r
−→ r antitone functions from R to R

r
+→ (r

−→ r) monotone functions from R to D
r
−→r

4 The Language Lλ of Terms

Our language Lλ is a variant of the typed λ-
calculus which makes use of the marked types that
we saw in Section 3.

We begin with a set C of constants, each coming
with a unique type, and a set V of variables, also
with their types. We define the language Lλ of
all terms using a typing calculus. Beginning with
a set of typing statements determined from C and
V , we define several things simultaneously: terms
with their types (denoted M : σ, N : τ , etc.),
occurrences of free variables in terms, and the va-
lence of each free variable occurrence in M .

1. For a variable x : τ in V , x : τ is a term.
Further, x occurs free in itself in the evident
way, and x is the only variable that occurs
free in itself. The valence is +.

2. Each constant c : σ is a term, so there are no
free occurrences of any variables in c.

3. Let m ∈ Mar. We have the following rule:

M : (σ
m→ τ) N : σ′

σ′ � σ
M(N) : τ

The free occurrences of x in M(N) are the
free occurrences of x in M together with the
free occurrences of x in N .

Any free occurrence of x in M(N) is either
an occurrence in M , or an occurrence in N :

(a) For a free occurrence of x in M , the va-
lence in M(N) is that in M .

(b) For a free occurrence of x in N , with
valence m′, the valence of x in M(N)
is m ◦m′, where M : σ

m→ τ .

4. Finally, if x is a variable,

x : σ M : τ

λx.M : σ
m→ τ

If all free occurrences of x in M are +, and
if there is at least one free occurrence of x in
M , then m = +. If all free occurrences of x
in M are −, and if there is at least one free
occurrence of x in M , then m = −. If there
are either no free occurrences of x in M , or
if there are free occurrences but they are not
all + and also not all −, then m = ·.
There are no free occurrences of x in λx.M .
The free occurrences of variables y 6= x in
λx.M are the free occurrences of y in M .
Those occurrences have the same valence in
λx.M as they have in M .

We define FV (M) to be the variables with free
occurrences in M . We define BV (M) to be the
variables with bound occurrences in M . (We have
not defined these, but they are defined as usual.)
The main point about the valences of variable oc-
currences will come shortly, in Lemma 5.2.

Remark 4.1. Note that every termM has a unique
type. For this reason, we often omit the type when
it is not pertinent to the discussion.

Example 4.2. We build on Example 3.7. Let us
take the set C of constants to be given as follows:

constant c type σ standard interpretation
0 r 0
1 r 1

+ r
+→ r

+→ r a 7→ (b 7→ a+ b)

− r
+→ r

−→ r a 7→ (b 7→ a− b)

We shall present the semantics of terms in Sec-
tion 5 below. The “standard interpretation” is not
quite the semantics [[ ]] in our sense because [[ ]] is
defined in terms of valuations. The difference is
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term M type σ [[M ]]φ
+(0)(1) r 1
+(1)(1) r 2
−(0)(1) r −1
x r φ(x)

−(x) r
−→ r b 7→ (φ(x)− b)

−(0) r
−→ r b 7→ −b

term M type σ [[M ]]φ
−(1)(x) r 1− φ(x)
−(x)(1) r φ(x)− 1
−(x)(y) r φ(x)− φ(y)
λx.− (1)(x) r

−→ r a 7→ (1− a)
λx.− (x)(1) r

+→ r a 7→ (a− 1)

λf.λx.− (0)(f(x)) (r
·→ r)→ (r

·→ r) f 7→ −f

Figure 2: Examples of terms, types, and interpretations, under an arbitrary valuation φ. See Example 3.7.

harmless. Further, we take variables x, y, z : r,
and f, g : r

·→ r. Figure 2 has examples of terms,
again with types and semantics under a valuation
φ. We assume that the semantics interprets the
constants as above. Of course, it would be more
sensible to write 1 + 1 instead of +(1)(1).

5 Semantics of Lλ: Structures

At this point, we turn to the semantics of our lan-
guage. We interpret Lλ in what we call structures.
These are pre-structures together with additional
information needed to interpret variables and con-
stant symbols.

Definition 5.1. Let D be a pre-structure. We let
Φ = Φ(D) be the set of functions φ whose do-
main is the set of (typed) variables, with the prop-
erty that if x : σ, then φ(x) ∈ Dσ. We call such
functions φ valuations in D.

An interpretation function in D is a function

[[ ]] : Lλ × Φ→ D,

mapping the terms M of the language Lλ together
with valuations to elements of D. As before, we
require that if M : σ, then [[M ]]φ ∈ Dσ.

A structure is a pair

S = (D, [[ ]]),

where D is a pre-structure, and [[ ]] is an interpreta-
tion in D such that the following conditions hold:

1. For M : σ
m→ τ , and N : σ′ � σ,

[[M(N)]]φ = [[M ]]φ
(
πσ′,σ[[N ]]φ

)
.

2. For M : σ, x : τ , and a ∈ Dτ ,
[[λx.M ]]φ(a) = [[M ]]φax .

In the last point, we use our notation for modifying
functions when we write

φax(y) =

{
φ(y) if y 6= x

a if y = x

Again, see Figure 2 for examples.

5.1 Positivity Entails Monotonicity;
Negativity Entails Antitonicity

Recall that positive or negative occurrences of
variables are syntactic notions, whereas mono-
tonicity and antitonicity are semantic notions. One
of the contributions of this paper is to explore the
connection between these notions.

Lemma 5.2. Let M : τ , and let x : σ be a vari-
able. Let S = (D, [[ ]]) be any structure.

1. If all free occurrences of x in M are +, then
for all φ, a 7→ [[M ]]φax is monotone.

2. If all free occurrences of x in M are −, then
for all φ, a 7→ [[M ]]φax is antitone.

Proof. By induction on M . We prove both parts
simultaneously.

Let M be a variable. We have two cases, de-
pending on whether M = x or not. If M = x,
then all occurrences of x in x are +. Moreover,
a 7→ [[M ]]φax is the identity and hence monotone in
a. (Also, it is not the case that all occurrences of
x in x are −.) If M is a variable y 6= x, then all
occurrences of x in M (there are none) are both
+ and −. And in this case, [[M ]]φax = φ(y). So
a 7→ [[M ]]φax is a constant function. As such, it is
both monotone and antitone.

Now suppose (1) and (2) for M and for N , and
consider M(N). First, suppose that all free occur-
rences of x in M(N) are +. Then all free occur-
rences of x in M are +. We have two cases.

First, we consider the case when M is of func-
tional type σ +→ τ . In this case, all occurrences
of x in N must be +. By induction hypothesis,
a 7→ [[M ]]φax is monotone, and so is a 7→ [[N ]]φax .
Hence so is a 7→ [[M(N)]]φax . In more detail, let
a ≤ b. Then

[[M(N)]]φax = [[M ]]φax([[N ]]φax)
≤ [[M ]]φax([[N ]]φbx)

≤ [[M ]]φbx([[N ]]φbx)

= [[M(N)]]φbx .
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We have suppressed the type information on the
inequality signs ≤.

The case when M is of negative functional type
is similar. This concludes our (abridged) discus-
sion of point (1).

We turn to (2). Suppose that all free occurrences
of x in M(N) are −. Then all free occurrences of
x in M are −. We again have two cases.

First, we consider the case when M is +. So
all free occurrences of x in N are −. Thus a 7→
[[M ]]φax is monotone, and a 7→ [[N ]]φax is antitone.
Each [[M ]]φax is antitone. Now let a ≤ b. Then

[[M(N)]]φbx = [[M ]]φbx([[N ]]φbx)

≤ [[M ]]φax([[N ]]φbx)

≤ [[M ]]φax([[N ]]φax)
= [[M(N)]]φax .

Finally, we have the case that M is −. Each
[[M ]]φ is antitone, and a 7→ [[M ]]φax is antitone.
Further, all free occurrences of x in N are +, so
a 7→ [[N ]]φax is monotone. And for a ≤ b we have

[[M(N)]]φbx = [[M ]]φbx([[N ]]φbx)

≤ [[M ]]φbx([[N ]]φax)

≤ [[M ]]φax([[N ]]φax)
= [[M(N)]]φax .

This concludes our work on application terms.
We conclude the overall induction by consider-

ing abstraction terms λy.M . Let a ≤ b. To see
that [[λy.M ]]φax ≤τm→σ [[λy.M ]]φbx , let d ∈ Dσ:

[[λy.M ]]φax(d) = [[M ]](φax)dy
= [[M ]](φdy)ax
≤ [[M ]](φdy)bx ind. hyp.
= [[M ]](φbx)dy
= [[λy.M ]]φbx(d)

Note that we apply the induction hypothesis to φdy,
not to φ. This for all d shows (1) for λy.M . (Re-
call that we are using the pointwise order for func-
tional types τ m→ σ.) The same reasoning applies
to (2) for the term λy.M .

This concludes the proof. a
Example 5.3. The full pre-structures introduced
in Definition 3.6 give structures in the following
way. We define [[M ]]φ by recursion on M , simul-
taneously for all φ, and we also at the same time
verify that for M : σ, [[M ]]φ ∈ Dσ. The defini-
tions are related to (but not identical to) what we
saw in the definition of a structure:

1. For M : σ
m→ τ , and N : σ′ � σ,

[[M(N)]]φ = [[M ]]φ
(
πσ′,σ[[N ]]φ

)
.

2. For M : σ, and x : τ , [[λx.M ]]φ is the func-
tion a 7→ [[M ]]φax .

Now along with the definition, we carry along the
proof of Lemma 5.2. We do this in order to know
that the typings of the abstractions λx.M are cor-
rect. For example, suppose that our typing has
λx.M : σ

+→ τ . According to our definition in
Section 4, we know that all free occurrences of
x in M are +. So by Lemma 5.2, we know that
[[λx.M ]]φ as defined above really is a monotone
function; that is, it really belongs to D

σ
+→τ .

6 Term Substitution and Reduction

A substitution is a function s from variables to
terms, sending x : σ to some s(x) : σ′ � σ.

One example is the identity substitution Id. For
any substitution s, and any variable x : σ and M :
σ′ � σ, we get a new substitution sMx , defined by
sMx (x) = M , and for y 6= M , sMx (y) = s(y).
When the subscript/superscript notation becomes
cumbersome, we might change it. For example,
we usually write IdMx as [M/x].

The notion of capture-avoiding substitution is
something of a challenge to get correct. We adopt
the definitions of Stoughton (1988) and then quote
the results from this paper, adapted to our setting.

Given a term M and a substitution s, we define
M [s] by induction on s. It represents the result of
substituting, for each x, s(x) for every free occur-
rence of x in s. We only use the notation M [s]
when no variable occurs bound in M and free in
any s(x). (That is, we insist that no variable free
in any s(x) has bound occurrences in M .)

x[s] = s(x)
M(N)[s] = M [s](N [s])
(λx.M)[s] = λy.(M [syx])

(2)

In the last line, y is the least variable in some
pre-set list such that y is not free in M , nor in any
s(z) for z free in M . Also syx is just like s except
that syx(x) = y. But y can be any variable z with
those properties; by Corollary 3.11 of Stoughton
(1988), the result λz.(M [szx]) will be α-equivalent
to λy.(M [syx]). (We define α-equivalence below.)

Lemma 6.1. For all terms M and substitutions s,
M [s] is a proper term, and the type of M [s] is �
the type of M .
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Lemma 6.2. Let M be a term, and consider a free
occurrence of a variable x in M with valence m.
Let s be a substitution, and let y be a variable
which occurs free in s(x) with valence m′. Then
in M [s], the free occurrences of y which arise as
substitutions for the given occurrence of x all have
valence m ◦m′.

Proof. By induction onM . WhenM is a variable,
this variable must be x. Since the valence of x in
itself is +, and since + is a neutral element for ◦,
our result follows.

When M is a constant, our result is vacuous.
Consider an application term M(N), and as-

sume our lemma for M and for N . Recall that
M(N)[s] = (M [s])(N [s]). Consider a free oc-
currence of x in M(N).

First, we consider the case when our free occur-
rence of x in M(N) is actually a free occurrence
in M . In this case, the valence of all the corre-
sponding occurrences of y inM(N)[s] is the same
as the valence of those occurrences in M [s]. And
so the result in this case follows easily from the
induction hypothesis.

Second, we have the case when our free occur-
rence of x in M(N) is a free occurrence of x in
N . Let m1 and m2 be such that M : σ

m1→ τ and
the valence of our occurrence in N is m2. Then
m, the valence of x in M(N), is m1 ◦ m2. The
corresponding occurrences of y in (M(N))[s] are
free occurrences of y in N [s], and by induction
hypothesis, their valences there are m2 ◦ m′. So
their valences in (M(N))[s] arem1 ◦ (m2 ◦m′) =
(m1 ◦ m2) ◦ m′ = m ◦ m′. (We have used the
associativity of ◦.) This is as desired.

We conclude with the induction step for abstrac-
tion. Let M be λz.N with z 6= x. We assume our
lemma for N , and we have an occurrence of x in
M ; its valence there is the same as the valence of
the corresponding occurrence in N . Recall that
M [s] is λw.N [s], with w suitably fresh. A free
occurrence of y in M [s] corresponds to a free oc-
currence in N [s], and the valence is the same. Our
result follows from the induction hypothesis. a

The next two results will guarantee that the
usual reduction rules of lambda calculus involve
well-defined operations on our set of terms.

Theorem 6.3 (Subject Reduction Theorem). The
type of M [N/x] is � the type of (λx.M)N .

Proof. The type of (λx.M)N is the type of M , so
the result follows from Lemma 6.1. a

Theorem 6.4 (Subject Reduction Theorem for va-
lences). Consider a free occurrence occ of y in
(λx.M)N with valence m, either + or −. Also,
consider the term that results from (β) reduction,
M [N/x]. Then the occurrences of y in M [N/x]
which correspond to occ also have valence m.

Proof. If the free occurrence of y is in λx.M , then
our result is easy. So we focus on the case when it
is inN . Nowm = m1◦m2, wherem1 is such that
λx.M : σ

m1→ τ , andm2 is the valence of occ inN .
We are assuming that m1 is either + or −. By the
way we type abstractions, all free occurrences of
x in M have valence m1. By Lemma 6.2, the oc-
currences of y which correspond to occ also have
valence m1 ◦m2. a
Definition 6.5. Define ≈ to be the least equiva-
lence relation between Lλ-terms closed under:

(α) [y /∈ FV (M) ∪ BV (M)]
λx.M ≈ λy.M [y/x]

(β) [BV (M) ∩ FV (N) = ∅]
(λx.M)N ≈M [N/x]

(η)
λx.Mx ≈M M ≈ N(ξ)

λx.M ≈ λx.N
M ≈M ′ N ≈ N ′(Cong)
M(N) ≈M ′(N ′)

In the (η) rule we also assume x /∈ FV (M).

The following proposition guarantees that
equivalent terms are assigned the same meaning.

Proposition 6.6. If M ≈ N , then for all S and φ,
πσ1,τ [[M ]]φ = πσ2,τ [[N ]]φ, where τ = σ1 ∨ σ2.

We say that a term M is in normal form if it has
no β- or η-redexes, those defined in the usual way.

7 Term Structures

In this section, we outline a method to define a pre-
structure from a preorder on terms of the language.
Given a term M , we denote its ≈-equivalence
class by 〈M〉. When we define a function ι on the
≈-equivalence classes, we generally write ι〈M〉
rather than ι(〈M〉). Let

Lτ = {〈M〉 : M is an Lλ-term of type τ}
Tτ =

⋃{Lσ : σ � τ}

We have inclusion maps iσ,τ : Tσ → Tτ .

Proposition 7.1. The family iσ,τ has the following
functoriality properties: iσ,σ is the identity on Tσ,
and if σ � τ � µ, then iσ,µ = iτ,µ ◦ iσ,τ .

Definition 7.2. A term structure T is a family
{Tτ ,vτ} of preorders, subject to the following:
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1. If 〈M〉 ∈ T
σ

+→τ and 〈N〉 vσ 〈O〉, then
〈M(N)〉 vτ 〈M(O)〉.

2. If 〈M〉 ∈ T
σ
−→τ and 〈N〉 vσ 〈O〉, then

〈M(O)〉 vτ 〈M(N)〉.

3. 〈M〉 v
σ
m→τ 〈N〉 iff 〈M(O)〉 vτ 〈N(O)〉 for

all 〈O〉 ∈ Tσ.

Lemma 7.3. For any term structure and any type
σ, if 〈M〉 vσ 〈N〉 and σ � τ , then also 〈M〉 vτ
〈N〉. In other words, the inclusion maps iσ,τ are
order-preserving.

Proof. By induction on types. For basic types the
order is trivial, so suppose that 〈M〉 v

σ
m→τ 〈N〉,

and that σ m→ τ � σ′ m′→ τ ′, so that σ′ � σ,
τ � τ ′, and m v m′. Then:

〈M〉 v
σ
m→τ 〈N〉

⇔ for all 〈O〉 ∈ Tσ : 〈M(O)〉 vτ 〈N(O)〉
⇒ for all 〈O〉 ∈ Tσ′ : 〈M(O)〉 vτ 〈N(O)〉
⇒ for all 〈O〉 ∈ Tσ′ : 〈M(O)〉 vτ ′ 〈N(O)〉
⇔ 〈M〉 v

σ′m
′
→τ ′
〈N〉

The second implication is because Tσ′ ⊆ Tσ. The
third implication is by induction hypothesis. a
Proposition 7.4. For any term structure {Tτ}τ∈T
there is an associated pre-structure {Dτ}τ∈T with
order-isomorphisms ιτ : Tτ → Dτ , such that:

ι
σ
m→τ 〈M〉

(
πσ′,σ(ισ′〈N〉)

)
= ιτ 〈M(N)〉. (3)

Proof. We build preorders {Dτ}τ∈T and order-
isomorphisms ιτ : Tτ → Dτ using recursion on
the set of types. For base types b ∈ B we simply
take Db = Tb, and ιb is the identity.

Suppose we have already defined Dσ and Dτ ,
and we have isomorphisms ισ : Tσ → Dσ and
ιτ : Tτ → Dτ . For D

σ
m→τ , we use

D
σ
m→τ = {M∗ : 〈M〉 ∈ T

σ
m→τ}

where

M∗
(
ισ〈N〉

)
= ιτ 〈M(N)〉

M∗ ≤
σ
m→τ N

∗ iff M v
σ
m→τ N in T

σ
m→τ

In other words, we defineM∗ exactly so that (3) is
satisfied. The map M∗ is well-defined because ≈
respects term application. The order-embedding

ι
σ
m→τ : T

σ
m→τ → D

σ
m→τ is obviously given by

ι
σ
m→τ (〈M〉) = M∗. We show this map is 1-1.
Suppose ι

σ
m→τ 〈M〉 = ι

σ
m→τ 〈N〉. Choose

some variable v /∈ FV (M) ∪ FV (N). Then
by definition of ι

σ
m→τ we have ιτ 〈M(v)〉 =

ιτ 〈N(v)〉, which means by induction hypothesis
that 〈M(v)〉 = 〈N(v)〉, i.e, that M(v) ≈ N(v).
By rule (ξ) we also have λv.M(v) ≈ λv.N(v),
and by two applications of (η) and transitivity we
have M ≈ N , whence 〈M〉 = 〈N〉.

It remains only to show that {Dτ}τ∈T is a well
defined pre-structure with maps πσ,τ given by

πσ,τ = ιτ ◦ iσ,τ ◦ ι−1σ .

Condition 1 in Definition 3.5 holds trivially. Con-
dition 2 comes from condition 1 on the term struc-
ture, condition 3 from point 2, condition 4 from
point 3, and condition 7 from Lemma 7.3. The
functoriality properties 5 and 6 come from Propo-
sition 7.1. a

Lemma 7.5 is the main construction of seman-
tic models for our calculus besides the full struc-
tures which we saw in Definition 3.6 and Exam-
ple 5.3. In it, note that if ψ is an assignment func-
tion (a map from variables to terms), then com-
posing with the natural map (taking terms to ≈-
classes) gives a map into the term structure. So
further composing with ι gives a valuation into a
pre-structure. We thus define 〈ψ〉 to be the valu-
ation function given by 〈ψ〉(x) = ι〈ψ(x)〉 for all
x. What is more, every valuation function into a
model of this type is of the form 〈ψ〉, and ψ is de-
termined uniquely up to ≈.

Lemma 7.5. Let T be a term structure, and let
D be its associated pre-structure from Proposi-
tion 7.4. Define an interpretation function in D:

[[M ]]〈ψ〉 = ι〈M [ψ]〉, (4)

for all terms M and term substitutions ψ. Let S =
(D, [[ ]]). Then S is a structure.

Proof. We check the two requirements on the in-
terpretation function. The first requirement con-
cerns applications. Let M : σ

m→ τ , and N : σ′ �
σ. Fix a substitution ψ. Then

[[M(N)]]〈ψ〉
= ι〈M(N)[ψ]〉 by (4)
= ι〈M [ψ](N [ψ])〉 by def. of [ψ]
= ι〈M [ψ]〉(πσ′,σ〈ι(N [ψ])〉) by (3)
= [[M ]]ψ

(
πσ′,σ[[N ]]ψ

)
by (4), twice
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Finally, consider a term λx.M , and fix a substi-
tution ψ. Let a ∈ Dσ, and let A be a term such
that ι〈A〉 = a. Let y be a variable which is not
free in A, and also not free in M or any ψ(z) for
z a free variable of M . Then

(ι〈(λx.M)[ψ]〉)(a)
= (ι〈λy.M [ψyx]〉)(ι〈A〉) by def. of A and y
= (λy.M [ψyx])∗(ι〈A〉) by definition of ι
= ι((λy.M [ψyx])(A)) by definition of ∗

= ι(M [ψyx][idAy ]) by β-equivalence
= ι〈M [ψAx ]〉 by choice of y
= [[M ]]〈ψAx 〉 by the def. in (4)
= [[M ]]〈ψ〉ax because ι〈A〉 = a

= [[λx.M ]]〈ψ〉(a) semantics of λx.M

This completes the proof. a

8 Monotonicity Entails Positivity;
Antitonicity Entails Negativity

The main result of this section is Theorem 8.2, a
converse (of sorts) to Lemma 5.2.

8.1 A Term Structure Built “Freely” from an
Inequality

The proof of Theorem 8.2 employs a specific term
structure. Let σ be a type, and let x, y, and z
be distinct variables of type σ. We take T =
T(x, y, z) to be the term structure obtained by
defining for each type ρ, 〈P 〉 vρ 〈Q〉 if and only if
the following holds: P and Q are in normal form,
there is a term S with no occurrences of y or z,
and there are pairwise disjoint sets of occurrences
A, B, Y , and Z of x in S such that all occurrences
in A are positive, all occurrences in B are nega-
tive, and

P = S[y/xA, z/xB, y/xY , z/xZ ]
= S[y/xA∪Y , zB∪Z ]

Q = S[z/xA, y/xB, y/xY , z/xZ ]
= S[y/xB∪Y , zA∪Z ]

(5)

In other words, if 〈P 〉 vρ 〈Q〉, then we can ob-
tainQ from P , assuming these are in normal form,
by “increasing” some positive occurrences y to z
(those occurrences in A) and “decreasing” some
negative occurrences of z to y (those in B). The
sets Y and Z are needed in order to make the
whole construction work. More specifically, it fol-
lows from (5) that

P [x/y, x/z] = S = Q[x/y, x/z].

Lemma 8.1. T is a term structure.

Theorem 8.2 (Lyndon Theorem). Suppose M : τ
is a typed term in normal form, and let x : σ be a
variable. Then the following are equivalent:

a. All free occurrences of x in M are + (−).

b. For all structures S = (D, [[ ]]) and assign-
ments φ, a 7→ [[M ]]φax is monotone (antitone).

Proof. The (a) ⇒ (b) directions follow from
Lemma 5.2. We show (b) ⇒ (a). We only ar-
gue that “monotone implies positive”, as the ar-
gument that “antitone implies negative” is similar.
Let M : τ be a term, and suppose y : σ and z : σ
are distinct variables not appearing in M .

Fix a normal form M and a variable x : σ that
occurs freely in it. Take T to be the term structure
T(x, y, z) studied in Lemma 8.1. Take φ to be the
assignment generated by the identity substitution,
〈φ〉(w) = 〈id(w)〉 = 〈w〉.

Let (D, [[ ]]) be the structure obtained from T us-
ing Lemma 7.5. We apply (1b) to this structure.
By monotonicity of ι, ι〈y〉 ≤σ ι〈z〉 in D. We thus
see that in Dτ ,

ι〈M [y/x]〉
= [[M ]]〈φyx〉 by (4)
= [[M ]]〈φ〉ι〈y〉x

since 〈φyx〉(x) = ι〈y〉
≤τ [[M ]]〈φ〉ι〈z〉x

by hypothesis on M

= [[M ]]〈φzx〉 since 〈φzx〉(x) = ι〈z〉
= ι〈M [z/x]〉 by (4)

Since ι reflects order, 〈M [y/x]〉 vτ 〈M [z/x]〉.
Notice that M [y/x] and M [z/x] are β-normal

forms, since M is a β-normal form. By defini-
tion of the order in T, there is a term S and sets
of free occurrences of x in S, say A, B, Y , and
Z, such that all occurrences in A are positive, all
occurrences in B are negative, and

S = M [y/x][x/y, x/z]

= M [z/x][x/y, x/z]

M [y/x] = S[y/xA∪Y , z/xB∪Z ] (6)

M [z/x] = S[y/xB∪Y , z/xA∪Z ] (7)

However, z does not occur in the term on the left
of (6), since z does not occur in M . And so B =
Z = ∅. Similarly, y does not occur in the term on
the right of (7), so Y = ∅ also. Thus M [y/x] =
S[y/xA]. And as x is not free in M [y/x], it is not
free in S[y/xA]. This means that A is the set of
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(Ref)
M -σ M

M -σ N N -σ O(Trans)
M -σ O

M -
σ
m→τ N(Point)

M(O) -τ N(O)

N -σ O(Mono) [M : σ
+→ τ ]

M(N) -τ M(O)

N -σ O(Anti) [M : σ
−→ τ ]

M(O) -τ M(N)

M -σ N(Pres) σ � τ
M -τ N

(Equiv) M ≈ N
M -τ N

M -τ N(Func)
λx.M -

σ
m→τ λx.N

Figure 3: Rules of the Monotonicity Calculus. We omit the types on the terms, except for the side
conditions in the (Mono) and (Anti) rules.

all free occurrences of x in S. As a result, all free
occurrences of x in S are +. Furthermore,

S = M [y/x][x/y, x/z] = M.

(The last equality holds because
M [y/x][x/y, x/z] takes M , then changes all
free occurrences of x in M to y, and then changes
y and z back to x. Since y and z do not occur free
in M , this is M itself.) Again, S = M . Thus all
free occurrences of x in M are +, as desired. a

9 A Complete Proof System

We come to the centerpiece of this work, the
Monotonicity Calculus given by the rules of infer-
ence in Figure 3.

Syntax Our setting is similar to equational rea-
soning in simply typed lambda calculus (Fried-
man, 1975); however, our calculus deals with in-
equality assertions M -σ N . We make such as-
sertions when the types ofM andN are both� σ.
We use Γ for a set of inequality assertions. We
write Γ `M -σ N if there is a proof ofM -σ N
from Γ, that is, if there is a finite tree with root
M -σ N , and each node either a leaf from Γ, or
an application of one of the rules in Figure 3.

Example 9.1. In Figure 4 we give a derivation us-
ing our ongoing example of real functions. The
derivation is similar to the one depicted in Fig-
ure 1; we only include this one in full for rea-
sons of space. The proof of “1 − 1 ≤ 2 − 0”
uses two basic assumptions: “0 ≤ 1” and “x ≤
x + 0 for any x.” Note in particular the use of
Lemma 9.5. (We could alternatively have assumed
λx.x - λx.+ (x)(0) in the same way we used the
assumption deftly - λx.x in Figure 1.)

Semantics Given a structure S = (D, [[ ]]), we
write S �φ M -σ N if the following hold:

1. The types of M and N are both � σ.

2. πσ1,σ([[M ]]φ) ≤ πσ2,σ([[N ]]φ) in Dσ.

Frequently we leave off the type σ in assertions
S �φ M -σ N . We also write Γ � M - N if
for all structures S such that S �φ G - H for all
G - H ∈ Γ and all assignments φ, we also have
S �φ M - N for all assignments φ.

9.1 Basic Properties of the System

Proposition 9.2. If Γ ` M �σ N , and also M ≈
M ′ and N ≈ N ′, then Γ `M ′ �σ N ′

The next result is a key fact about our system.
It emphasizes the fact that we take open assertions
in hypothesis sets Γ to be “universally quantified.”

Proposition 9.3. Let M : σ1 → τ1 and N : σ2 →
τ2 be terms, let m1,m2 v m, and let σ and τ
be types with σ � σ1, σ2 and τ1, τ2 � τ . Thus,
σ1

m1→ τ1, σ2
m2→ τ2 � σ

m→ τ . Suppose that for
all terms O : σ, Γ ` M(O) �τ N(O). Then
Γ `M �

σ
m→τ N .

Proof. Let x be a variable of type σ which does
not occur in M or N . Our hypotheses tell us
that Γ ` M(x) �τ N(x). By (Func), Γ `
λx.M(x) �

σ
m→τ λx.N(x). By (η), (Equiv), and

(Trans), Γ `M �τ N . a
Remark 9.4. We do not know whether Proposi-
tion 9.3 holds without (Func). This would be im-
portant if one were to revise our meaning of the
calculus. Currently Γ � M - N means that for
all structures S such that S �φ G - H for all
G - H ∈ Γ and all assignments φ, we also have
S �φ M - N for all assignments φ. Suppose
we wish to change this to mean: for all S and φ
such that S �φ G - H for all G - H ∈ Γ,
S �φ M - N for the same φ. Then our rules
(ξ) and (Func) are no longer sound. We conjecture
that dropping (ξ) and (Func) results in a complete
system with the revised semantic interpretation.
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x - +(x)(0)

1 - +(1)(0)
Lemma 9.5

0 - 1

+(1)(0) - +(1)(1)
(Mono)

1 - 2
(Trans)

−(1) - −(2)
(Mono)

−(1)(1) - −(2)(1)
(Point)

0 - 1

−(2)(1) - −(2)(0)
(Anti)

−(1)(1) - −(2)(0)
(Trans)

Figure 4: Example of elementary monotonicity reasoning with real numbers and functions.

Lemma 9.5. For all terms M and N , and all term
substitutions ψ,

M - N `M [ψ] - N [ψ].

Proof. Let x1, . . . xn be the free variables of M
and N . By repeated use of (Func), we have

M - N ` λx1 . . . λxn.M - λx1 . . . λxn.N
Now, because of (Equiv) and α equivalence, we
may change each xi into a variable yi with yi /∈
FV (ψ(xj)) for each i, j = 1, . . . n. Then by re-
peated use of the (Point), we have

M - N ` (λy1 . . . λyn.M
′)ψ(x1) . . . ψ(xn)

- (λy1 . . . λyn.N
′)ψ(x1) . . . ψ(xn)

where

M ′ = M [y1/x1] . . . [yn/xn]

N ′ = N [y1/x1] . . . [yn/xn]

Then by repeated use of (Equiv) and β reductions:

M - N ` M ′[ψ(x1)/y1] . . . [ψ(xn)/yn] -
N ′[ψ(x1)/y1] . . . [ψ(xn)/yn]

Now because each yi does not appear in ψ(xj) for
j ≤ i, then these substitutions can be done simul-
taneously, i.e.,

M ′[ψ(x1)/y1] . . . [ψ(xn)/yn]

= M ′[ψ(x1)/y1, . . . , ψ(xn)/yn]

N ′[ψ(x1)/y1] . . . [ψ(xn)/yn]

= N ′[ψ(x1)/y1, . . . , ψ(xn)/yn]

And since

M ′[ψ(x1)/y1, . . . , ψ(xn)/yn]

= M [ψ(x1)/x1, . . . , ψ(xn)/xn]

N ′[ψ(x1)/y1, . . . , ψ(xn)/yn]

= N [ψ(x1)/x1, . . . , ψ(xn)/xn]

then M - N ` M [ψ(x1)/x1, . . . , ψ(xn)/xn] -
N [ψ(x1)/x1, . . . ψ(xn)/xn], or in other words,
we have M - N `M [ψ] - N [ψ]. a

Lemma 9.6. If Γ ` M - N , then for all term
substitutions ψ, Γ `M [ψ] - N [ψ].

Proof. This is an easy induction on the proof sys-
tem whose base case is Lemma 9.5. a
Theorem 9.7 (Completeness of the Monotonicity
Calculus). Γ `M -σ N iff Γ �M -σ N .

9.2 Soundness
We fix a structure S and a valuation φ making all
sentences in Γ true in S. We show by induction on
derivations from Γ that if Γ ` M -σ N , with the
types of M and N being σ1 � σ and σ2 � σ, then
πσ1,σ([[M ]]φ) ≤ πσ2,σ([[N ]]φ) in Sσ. We use the
properties of pre-structures in Definition 3.5.

The most basic derivations from Γ are the ele-
ments of Γ itself. This case is trivial.

We begin with (Pres). Assume we have Γ `
M -τ N via proof whose last line is an applica-
tion of (Pres), with σ � τ . So Γ `M -σ N . Our
induction hypothesis tells us, S |=φ M -σ Nφ.
Suppose that the types of M and N are σ1 and
σ2, respectively. Let us write m for [[M ]]φ and
n for [[N ]]φ. Then we have πσ1,σm ≤ πσ2,σn in
Dσ. And now we calculate easily that πσ1,τ (m) ≤
πσ1,τ (n). As a result, S |=φ M -τ N .

For (Ref), we use the fact that each relation vσ
is reflexive. We omit the easy details on (Trans).

In the rest of this proof, we shall deal with as-
sertions Γ ` M - N without any notation for the
overall type; that is, we shall assume that the types
of M and N are exactly σ.

For (Point), assume that [[M ]]φ ≤σ [[N ]]φ in Dσ.
Then by the “pointwise property” (Definition 3.5
part 4) of S,

[[M(O)]]φ
= [[M ]]φ([[O]]φ)
≤σ [[N ]]φ([[O]]φ)
= [[N(O)]]φ.

For (Mono), let M : σ
+→ τ . Assume

that [[N ]]φ ≤σ [[O]]φ in Dσ. By Lemma 5.2,

85



[[M ]] is a monotone function Dσ → Dτ . Hence
[[M(N)]]φ ≤σ [[M(O)]]φ. The (Anti) rule is
treated similarly. The soundness of the (Equiv)
rule follows easily from Proposition 6.6.

9.3 Completeness
We next show that the monotonicity calculus is
complete. Assume that Γ |= M? -σ N?, with the
types of M? and N? being σ1 and σ2. We shall
show that Γ ` M? -σ N? using a term structure
T whose associated structure S from Lemma 7.5 is
called the canonical model of Γ. We recall Defini-
tion 7.2 and the notation there, especially the fact
that each Tσ is the set of ≈-equivalence classes of
terms of type � σ. We order Tσ by

〈M〉 vσ 〈N〉 iff Γ `M -σ N.

This relation is well-defined by Proposition 9.2.

Claim 9.8. T is a term structure.

Proof. Let 〈M〉 ∈ T
σ

+→τ and 〈N〉 vσ 〈O〉. Then

M : σ′ +→ τ ′, for some types σ � σ′ and τ ′ � τ .
We thus have a derivation from Γ:

....
N -σ O
N -σ′ O

(Prec)

M(N) -τ ′ M(O)
(Mono)

M(N) -τ M(O)
(Prec)

Thus, 〈M(N)〉 vτ 〈M(O)〉. For a similar rea-
son, Property 2 also holds, only (Anti) is used
instead. One direction of Property 3 is easy, us-
ing (Point), and so we omit it. For the reverse
direction, suppose 〈M〉(〈O〉) vτ 〈N〉(〈O〉) for
all 〈O〉 ∈ Tσ. Using Proposition 9.3, we see that
Γ `M -

σ
m→τ N . a

Claim 9.8 proved, we appeal to Proposition 7.4
and Lemma 7.5 to obtain an associated structure
which we call S. As we know, for any assignment
φ on D, there is a substitution ψ such that 〈ψ〉 = φ.
To find such a ψ, note that for every variable x,
φ(x) = ι(〈A〉) for some term A, so we can define
ψ(x) = A. Then 〈ψ〉(x) = ι(〈ψ(x)〉) = ι(〈A〉).

Lemma 9.9. LetG : σ1 andH : σ2, with σ1, σ2 �
σ. If Γ ` G -σ H , then S � G -σ H . In other
words, for every assignment φ,

πσ1,σ([[G]]φ) ≤σ πσ2,σ([[H]]φ).

In particular, for every assertion G -σ H in Γ,
S � G -σ H .

Proof. Suppose Γ ` G -σ H , and fix an as-
signment φ, and let ψ be a substitution such that
〈ψ〉 = φ. By Lemma 7.5,

[[G]]φ = [[G]]〈ψ〉 = ι(〈G[ψ]〉, and
[[H]]φ = [[H]]〈ψ〉 = ι(〈H[ψ]〉).

As πσ1,σ, πσ2,σ, and ι are all order preserving,
to prove our lemma we only need to show that
〈G[ψ]〉 vσ 〈H[ψ]〉: in other words, Γ ` G[ψ] -σ
H[ψ]. And this was shown in Lemma 9.6. a

We conclude the proof of completeness. We
started with Γ |= M? - N?, and now we show
that Γ ` M? - N?. By Lemma 9.9, the canoni-
cal model S satisfies Γ under all assignments. We
apply this with the assignment φ given by φ(x) =
〈x〉. Therefore S �φ M? �σ N?. So 〈M?[φ]〉 vσ
〈N?[φ]〉. However, because 〈M?[φ]〉 = 〈M?〉 and
〈N?[φ]〉 = 〈N?〉, we see from the ordering on S
that Γ `M? -σ N?.

10 Conclusion

We have presented a calculus extending the sim-
ply typed lambda calculus with enough order-
theoretic infrastructure to represent arguments
about increasing and decreasing functions. The
calculus provides a mathematical foundation for
a style of monotonicity reasoning that is often im-
plicit in practical NLP work (e.g., MacCartney and
Manning 2007; Angeli and Manning 2014; Angeli
et al. 2016). Typically this research draws upon
lexical resources such as WordNet and entailment
relations learned from data, and uses these as-
sumptions as input for proof search over deriva-
tions similar to those we considered here. Func-
tional expressions will be marked as monotone or
antitone either “by hand” or in an automated way.

In addition to formalizing the proof procedures
used in existing work, we believe the present
study also suggests further possibilities for applied
work. For instance, we have shown how more
complex entailment assumptions can be stated and
used in a flexible way, e.g., allowing comparison
between functions of different polarity types (re-
call the example in Section 2).

From a technical point of view, our complete-
ness result is analogous to a standard result for
simply typed lambda calculus due to Friedman
(1975). While our setting is considerably more
complex, there still remain open issues here that
were settled in the simpler setting: e.g., how to ob-
tain completeness for “full” structures (Ex. 5.3).
We leave such questions for future work.
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Umeå University, Sweden
drewes@cs.umu.se

Abstract

Languages of directed acyclic graphs
(DAGs) are of interest in Natural Lan-
guage Processing because they can be
used to capture the structure of seman-
tic graphs like those of Abstract Mean-
ing Representation. This paper gives an
overview of recent results on a family
of automata recognizing such DAG lan-
guages.

1 Introduction

This paper attempts to survey, motivate, and ex-
plain recent work on automata that recognize sets
of directed acyclic graphs (DAGs). These au-
tomata are called DAG automata and the lan-
guages they recognize regular DAG languages.
While DAG automata are of interest in various ar-
eas of computer science, different application ar-
eas place different requirements on what consti-
tutes a good model of such automata. Here we
are interested in DAG automata that are suitable
for capturing the structure of semantic graphs in
Natural Language Processing, and in particular
meaning representations such as Abstract Mean-
ing Representation (AMR).

AMR was introduced by Banarescu et al. (2013)
as a domain-independent graph notation for the
semantics of meanings in natural language, and
since then a quickly growing AMR bank for
English has been built.1 The purpose of such
graphbanks is to enable research towards domain-
independent semantic language processing, thus
mirroring the advances in syntactic processing that
have been made during the past 20 years thanks to
the existence of large syntactic treebanks.

AMR serves a similar purpose in the realm of
semantic representation as the well-known con-

1See http://amr.isi.edu.

stituent tree does for syntactic representation. For
the latter, we have a great variety of well-studied
formal models for capturing the structure of cor-
rect representations, distinguishing them from
faulty ones, and efficiently processing these for-
mal objects. One of the simplest and at the same
time most useful models is the finite-state tree au-
tomaton or, equivalently, the regular tree grammar
(see Gécseg and Steinby (1984, 1997) and Drewes
(2006, Appendix A)). Simplicity, though resulting
in limited expressive power, is an is an asset in
this context. It is to their simplicity that finite-state
tree automata owe their usefulness. One of the ad-
vantages of the model is that it can easily be ex-
tended by weights (Fülöp and Vogler, 2009), then
associating with every tree a value that indicates
how “good” or perhaps probable the tree is. Such
weighted automata are especially useful in Natu-
ral Language Processing where one rarely finds
a clear dividing line between correct and wrong
representations, and where one furthermore has to
find ways to resolve ambiguities.

An AMR2 is usually not a tree but a DAG such
as the (somewhat simplified and abstracted) AMR
in Figure 1. Its vertices are mostly PropBank con-
cepts (Kingsbury and Palmer, 2002) connected by
edges which are labelled by role labels, intuitively
supplying the concepts with their semantic argu-
ments. Readers familiar with dependency trees
probably notice the similarity, but also the differ-
ence: if several concepts share a semantic argu-
ment the latter is still represented only once, being
pointed to by several edges. This is what turns
AMRs into DAGs, thus calling for formal mod-
els that allow to specify DAG languages or even
weighted DAG languages. Unsurprisingly, it turns

2We use the abbreviation AMR to refer to the general con-
cept of Abstract Meaning Representation as defined by Ba-
narescu et al. (2013), but also to refer to individual graphs
that follow the AMR specification.
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Figure 1: An AMR from the AMR Bank: “I asked her what she thought about where we’d be and she said
she doesn’t want to think about that, and that I should be happy about the experiences we’ve had (which
I am).” The PropBank frame names (the vertex labels) have been simplified for the sake of readability.
They can be found in Chiang et al. (2016), which also uses this example. As a side note, one may note
that the AMR does not specify whether her saying was the answer to my asking, the other way around,
or the two were independent. This, however, would contribute to a discussion about the limits of AMR
rather than about formal automata models for AMR.

out that the greater complexity and expressivity
of DAGs makes it all too easy to develop natural
types of DAG automata that are surprisingly pow-
erful, thus lacking the simplicity that is the great
advantage of finite-state tree automata.

The amount of research that has been devoted
to DAG automata models that extend finite-state
tree automata to the realm of DAGs is rather lim-
ited. Moreover, researchers have come up with
various different models that, owing to different
intended areas of application, work on different
types of DAGs and exhibit different properties.
Most appear to be more powerful than what ap-
pears to be reasonable from a linguistic point of
view, thus making the model more complex than

desirable. One of the potential problems that
comes with greater complexity is computational
inefficiency, another one is that such models, when
being trained, are prone to overfitting.

2 What Is a “Good” Automaton Model
for Meaning Representation?

Let us have a look at a few aspects that come
to mind when thinking about an appropriate au-
tomaton model for meaning representation such as
AMR.

2.1 Types of DAGs
A typical meaning representation, such as the one
in Figure 1 carries labels on both vertices and
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edges. However, as an edge labelled a may easily
be replaced by a sequence of two unlabelled edges
with a vertex labelled a in between, one may pre-
fer to view edge labels as “syntactic sugar” which,
in the name of simplicity, can be removed from the
core formalism.

As in the case of tree languages, DAG lan-
guages may be of bounded or unbounded vertex
degree (usually called ranked and unranked in the
context of tree languages). In principle, there is
no bound on the number of incoming or outgo-
ing edges of vertices in meaning representations
because an arbitrary number of optional modifiers
may be attached to a concept, and there may be
any number of references to a vertex (cf. the ‘she’
vertex in Figure 1). Thus, the vertex degree is only
bounded by the length of the sentence represented,
and even this is only true as long as representations
of single sentences are considered. In the future,
one may very well want to consider AMRs that
represent an entire text. However, it is certainly
meaningful to study DAG languages of bounded
degree as an important base case, especially if the
two can be linked in some way. Such a link will
be discussed in Section 7.

Another question is whether there should be an
order on the incoming and outgoing edges of a ver-
tex. Standard edge labels such as arg0, arg1,
etc seem to indicate an order on outgoing edges.
However, there can also be other labels, such as
polarity and location in Figure 1, and in-
coming edges are not naturally equipped with an
order in the first place. This indicates that mean-
ing representations should be viewed as unordered
DAGs. On the other hand, as an order only adds
expressiveness without affecting the formal prop-
erties of the resulting model very much, one may
wish to study both possibilities, especially as long
as DAG languages of bounded degree are consid-
ered. One reason why the ordered case is of inter-
est is that it can more readily be related to the case
of regular tree languages (which consist of ordered
trees). Another one is that the notion of determin-
ism is rather meaningless in the unordered case.

One may consider DAGs with multiple roots
or DAGs which are required to have a unique
root.3 As discussed by Chiang et al. (2016) AMRs
should preferably be viewed as multiply-rooted
DAGs because their standard representation turns
them into singly-rooted graphs only by introduc-

3We call a vertex a root if it has no incoming edges.

ing cycles. Moreover, ensuring single-rootedness
often requires the addition of a topmost ‘and’ ver-
tex. This may become awkward later on if several
related sentences shall be viewed as a collection of
statements to be represented in a single DAG. As
will be discussed below, there are also good formal
reasons for not imposing the single-root require-
ment (and not providing DAG automata with this
ability either).

In the literature one also finds DAG automata
that work on planar DAGs obeying additional
structural conditions (Kamimura and Slutzki,
1981), and finite-state tree automata applied to
trees with maximal sharing, meaning that isomor-
phic subtrees are represented only once and can
thus be processed only once even in the nonde-
terministic case (Charatonik, 1999; Anantharaman
et al., 2005). Meaning representations are often
non-planar once they get sufficiently complex, and
may contain isomorphic substructures that repre-
sent distinct instances of otherwise identical con-
cepts and relations.

Several other types of DAG automata are briefly
discussed by Chiang et al. (2016). Together
with (Quernheim and Knight, 2012; Blum and
Drewes, 2016, 2017; Drewes, 2017), the latter rep-
resents the line of research discussed in this pa-
per. Despite a rather different formal presenta-
tion, its DAG automata are closely related to those
by Priese (2007), except for the fact that the latter
includes a concept of initial and final states, and
can thus in particular restrict the number of roots
of accepted DAGs. The importance of this distinc-
tion will be discussed in Section 4.

2.2 Expressive Power vs Algorithmic and
Language Theoretic Properties

As the expressive power of formal models in-
creases, their algorithmic and language theoretic
properties become less favourable. As mentioned
initially, for meaning representations expressive
power appears to be less important than simplic-
ity and good computational properties. In prac-
tice, (weighted) DAG automata will have to be
learned from and trained on large semantic graph-
banks. For this to be feasible, DAG automata must
be implemented as efficiently as possible, it must
be possible to check their behaviour, and good clo-
sure properties may be required as well.

What makes it reasonable to look for a compar-
atively weak type of DAG automaton is that mean-
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ing representations, viewed as DAG languages,
seem to be relatively simple. One aspect that can
be used as an indicator of sufficient simplicity is
the complexity of the path languages of recog-
nizable DAG languages. Given a DAG language
(with labels only on the vertices, say), its path lan-
guage consists of all strings obtained by reading
the symbols on root-to-leaf paths in the DAGs of
the language. It seems linguistically reasonable
to assume that, for DAG languages formalizing
meaning representations such as AMR, these path
languages are regular. Hence, DAG automata that
give rise to non-regular path languages are suspi-
ciously powerful from the point of view of mean-
ing representation and should be avoided in favour
of simpler ones.

3 DAG Languages of Bounded Degree

Let us now give a formal definitions of DAGs and,
afterwards, DAG automata on DAGs of bounded
vertex degree.

3.1 DAGs
Let Σ be a (finite) alphabet of vertex labels. A
directed graph over Σ is a tuple G = (V,E,
lab, src, tar) consisting of

• finite sets V and E of vertices and edges,

• mappings src, tar : E → V associating with
each edge e ∈ E a source src(e) and a target
tar(e), and

• a mapping lab : V → Σ that assigns a label
lab(v) to every vertex v ∈ V .

For every vertex v we let IN (v) = tar−1(v) and
OUT (v) = src−1(v) denote its sets of incoming
and outgoing edges.

A path from u to v is an alternating se-
quence v0e1 · · · vk−1ekvk of vertices and edges
such that v0 = u, vk = v, and {vi−1, vi} =
{src(ei), tar(ei)} for all i ∈ {1, . . . , k}. The path
is empty if k = 0, directed if vi−1 = src(ei) for all
i ∈ {1, . . . , k}, and a (simple) cycle if v1, . . . , vk
are pairwise distinct and u = v. G is acyclic, a
DAG for short, if it does not contain any nonempty
directed cycle.

3.2 DAG Automata
Given a finite set Q, let us denote the set of all fi-
nite multisets over Q by M(Q). In other words,
M(Q) is the set of all functions M : Q → N. A

DAG automaton is a triple A = (Σ, Q,R) consist-
ing of

• an alphabet Σ,

• a finite set Q of states, and

• a finite set R of rules I σ−→ O, where I,O ∈
M(Q) and σ ∈ Σ.

A run of A on a DAG D = (V,E, lab, src, tar)
is a mapping ρ : E → Q. For a set E′ =
{e1, . . . , en} of edges in E, we let ρ(E′) de-
note the multiset {ρ(e1), . . . , ρ(en)}. (Formally,
ρ(E′)(q) = |{i ∈ {1, . . . , n} | ρ(ei) = q}| is
the number of times q occurs in ρ(e1), . . . , ρ(en).)
The run ρ is accepting if it is locally consistent
with the rules in R, i.e., if

ρ(IN (v))
lab(v)−−−→ ρ(OUT (v))

is in R for every vertex v ∈ V . Naturally, a
DAG D is accepted by A if there exists an ac-
cepting run of A on D. The DAG language ac-
cepted by A is the set L(A) of all connected and
nonempty DAGs accepted by A. Following Blum
and Drewes (2017) we shall in the following call
DAG languages of the form L(A) regular DAG
languages.

The fact that we restrict L(A) to connected and
nonempty DAGs deserves a brief reflexion. By the
definition of acceptance, a DAG is accepted by A
if and only if each of its connected components
is accepted individually. Hence the set of all ac-
cepted DAGs is uniquely determined by L(A). In
contrast to L(A) it is never empty (it always con-
tains the empty DAG, which is the disjoint union
of zero DAGs in L(A)), and it is finite if and only
if L(A) is empty. This shows that L(A) is a much
more meaningful object of study. In particular,
with this definition of L(A) it becomes sensible
to ask whether emptiness and finiteness are decid-
able properties.

3.3 Variants

As discussed above, one may sometimes pre-
fer to work with ordered DAGs instead of
the unordered variant defined above. In that
case, a DAG is conveniently defined to be a
tuple (V,E, IN ,OUT , lab), where IN (v) and
OUT (v) are sequences of edges, and the compo-
nents I and O of a rule I σ−→ O are sequences
rather than multisets of states. Similarly to the
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definition above, a run ρ would be accepting if

ρ(IN (v))
lab(v)−−−→ ρ(OUT (v)) is in R for every

vertex v ∈ V , with ρ being extended to a function
from sequences of edges to sequences of states in
the canonical way.

For a semiring S, a weighted DAG automaton
with weights in S is obtained by turning R into a
function that assigns a weight in S to every poten-
tial rule in such a way that all but a finite number
of rules are assigned the weight zero. This works
in both the ordered and the unordered case. The
weight of a run on a DAG D is then the product
of the weights of the rules applied at the individ-
ual vertices, and the weight of D is the sum of the
weights of all runs on D. As usual, unweighted
DAG automata are obtained as a special case by
choosing the Boolean semiring as S and represent-
ing the setR of rules by its characteristic function.

3.4 Example
As a simple but instructive example, let Σ =
{a, b, �} and Q = {p, p′, q, q′} with the following
rules (where ε denotes the empty sequence):

ε
a−→ pp′, p a−→ pp′,
p′ �−→ q′

pq′ b−→ q, qq′ b−→ q,

pq′ b−→ ε, qq′ b−→ ε.

A run on one of the DAGs accepted by this DAG
automaton is shown in Figure 2. Note that the sec-
ond outgoing edge of every a is assigned the state
p′, which then becomes a q′ by passing through �,
and every b requires an incoming q′. It follows that
all accepted DAGs have equal numbers of as and
bs. In the DAG of Figure 2 this makes sure that the
path not containing any � (i.e., the one obtained by
intersection with the regular language a∗b∗) is of
the form anbn.

4 What a Difference a Root Makes

The preceding example seems to show that the
DAG automata discussed here are more powerful
than intended, as the path language of L(A) ap-
pears to be non-regular. In fact, path languages
even seem to exceed the context-free languages as
it is easy to add further letters in the same way,
thus obtaining paths like anbncndn. However, this
is true only if L(A) is restricted to DAGs with a
unique root. As there is no way for A to ensure
this, we can take a second accepted DAG, add it

a

�a

�

a

�b

b

b

p

p

p

q

q

p′

p′

p′ q′

q′

q′

Figure 2: A run of the DAG automaton in Sec-
tion 3.4; for better visual clarity edges carrying
states p′ and q′ are drawn in blue and red, respec-
tively.

a

�

b

p

p′

q′

Figure 3: Another run of the DAG automaton in
Section 3.4

disjointly to the one in Figure 2, and then connect
the two by swapping the targets of two edges with
the same state. This swapping operation turns out
to be a powerful tool for proofs as it, by the defini-
tion of accepting runs, preserves acceptance. For
example, by using the DAG in Figure 3 as the sec-
ond component on can construct the accepting run
in Figure 4 on a DAG that contains the paths a3b
and ab3.

Thus, if we letLu(A) denote the set of all DAGs
in L(A) having exactly one root, then the path
language of Lu(A) may indeed be non-context-
free. In contrast, it can be shown that the path
language of L(A) is regular for every DAG au-
tomaton A. In fact, we can unfold a DAG D =
(V,E, lab, src, tar) into a set of trees over Σ, as
follows. For a vertex v ∈ V with lab(v) = σ
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Figure 4: A possible combination of the runs in
Figures 2 and 3

and OUT (v) = {e1, . . . , ek}, let unfoldD(v) be
the tree whose root is labelled σ and whose di-
rect subtrees are the trees unfoldD(tar(ei)) for
i = 1, . . . , k. Note that this works for ordered
DAGs as well as for unordered ones. In the former
case OUT (v) = e1 · · · ek is a sequence of edges
rather than a set and the direct subtrees are ordered
accordingly.

Now the unfolding unfold(D) of D yields the
set of all trees unfoldD(v) such that v is a root
of D, and the unfolding of a DAG language L
is given by

⋃
D∈L unfold(D). Pretending for

the moment that we work in the ordered setting,
one can then use edge swapping to show that
unfold(L(A)) is a regular tree language, mainly
by turning every rule p1 · · · pm σ−→ q1 · · · qn into
the set of rules pi → σ(q1, . . . , qn), obtaining a
regular tree grammar. (An initial nonterminal S
must be added, with all rules S → σ(q1, . . . , qn)
for which A contains the rule ε σ−→ q1 · · · qn.)

However, for this argument to work properly
one first has to remove useless rules from A be-
cause otherwise the regular tree grammar may
generate trees that are unfoldings of DAGs not in
L(A). Useless rules can be detected by a tech-
nique that also allows us to decide whether L(A)
is empty. The key observation is that A can be
seen as a Petri net whose places are the states of
A. Every rule I σ−→ O corresponds to a Petri net
transition that consumes tokens from the places in

I and produces tokens on the places in O. Again,
this works in both the ordered and the unordered
case as the Petri net is oblivious to an order on
its places. Deciding the emptiness of L(A) boils
down to the question whether the Petri net has a
zero cycle, meaning that it can take the empty con-
figuration back to itself. This is because a run
can be viewed as a top-down process that starts
with the empty DAG. It then creates a root ac-
cording to a rule, thus creating some outgoing
“dangling” edges with states assigned to them.
Then the process continues by applying rules, al-
ways taking some of the still unprocessed dangling
edges, making them the incoming edges of a ver-
tex and producing new dangling edges with as-
signed states (unless the vertex created is a leaf).
Finally, all dangling edges (and thus “unused”
states) must have vanished, corresponding to the
null configuration of the Petri net.

Petri nets with a zero cycle are also said to be
structurally cyclic. Deciding this property is a
special case of the Petri net reachability problem
which can be solved in polynomial time (Drewes
and Leroux, 2015). Consequently, emptiness of
regular DAG languages can be decided in polyno-
mial time as well. Moreover, the result in (Drewes
and Leroux, 2015) is obtained by presenting a
polynomial-time algorithm that computes the set
of all transitions of the Petri net that occur in zero
cycles. Since these transitions are exactly the use-
ful rules of A, the algorithm detects the latter.

With these pieces, especially the removal of
useless rules, in place it can furthermore be shown
that the finiteness problem is solvable in polyno-
mial time as well. On the other hand, consider-
ing Lu(A) instead of L(A), detection of useless
rules, emptiness, and finiteness all become as hard
as general Petri net reachability. Though this prob-
lem is decidable as well (Mayr, 1984; Kosaraju,
1982), no primitive recursive upper bound on its
complexity is known.

In summary:

1. The unfolding of a regular DAG language
(of ordered DAGs) yields a regular tree lan-
guage; in particular, since the path language
of a regular DAG language obviously coin-
cides with the path language of its unfolding,
it is a regular string language. In contrast,
the path language of Lu(A) is not necessarily
context-free. Furthermore, the latter shows
that the unfolding of Lu(A) is not necessar-
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ily a context-free tree language.

2. There is a polynomial algorithm that detects
the useless rules of a DAG automaton A.
However, one should be aware that some of
the remaining rules may be useless for gen-
erating DAGs in Lu(A). Detecting those re-
quires to solve the general Petri net reacha-
bility problem, which may very well be one
of the hardest decidable problems there is.

3. Similarly, the emptiness and finiteness prob-
lems can be solved in polynomial time for
L(A), but solving the same problems for
Lu(A) again requires to solve the general
Petri net reachability problem.

These results are especially interesting in the
light of the fact that most notions of DAG au-
tomata known from the literature can simulate the
DAG automata discussed here and are, in addition,
able to restrict the number of roots to one.

5 Further Properties of Regular DAG
Languages

5.1 Closure under Set Theoretic Operations

Unsurprisingly, the class of regular DAG lan-
guages turns out to be closed under union and
intersection, using the standard constructions.
Slightly less obvious is the fact that that it is not
closed under complementation or set difference.
Consider the language L of all connected non-
empty DAGs over {a, b} in which every vertex
is either a root of out-degree 2 or a leaf of in-
degree 2. Thus, the elements of L are simple undi-
rected cycles. Clearly, L is regular, and so is the
subset containing only the DAGs over {a}. Their
difference Lb = L \ L′ is the set of all DAGs in L
containing at least one b. Now, assuming that Lb is
regular and fixing a DAG automaton that accepts
it, consider a run on a DAG D ∈ Lb. If D is large
enough, it contains two edges with the same state
that can be swapped in such a way that the result-
ing DAG D′ falls apart into two components. As
D′ is still accepted, each of its components is in
Lb. However, if we choose D in such a way that it
contains only one b, then only one component of
D′ can contain that b, a contradiction.

5.2 Pumping

Swapping edges also yields two pumping lem-
mata. Both work by iterated application of the

swapping operation. Given a DAG D, two edges
e, e′ of D, and some n ≥ 0, let D(e ./ e′)n de-
note the DAG obtained from n + 1 isomorphic
copies D0, . . . , Dn of D by swapping the copy
of e′ in Di−1 with the copy of e in Di, for all
i ∈ {1, . . . , n}. (As before, swapping two edges f
and f ′ means that tar(f) and tar(f ′) become the
targets of f ′ and f , respectively.)

Pumping Property 1 For every DAG automa-
ton A there is a constant c such that every DAG
D ∈ L(A) with at least c edges contains edges
e, e′ such that

(1) A accepts D(e ./ e′)n for all n ≥ 0 and

(2) each D(e ./ e′)n contains a connected com-
ponent of size ≥ n.

The construction used to prove this property
(Blum and Drewes, 2017) actually creates con-
nected components in (b) that grow at a constant
rate, which means that regular DAG languages ex-
hibit a linear growth property: if we sort the DAGs
in a given regular DAG language by size (number
of vertices, say), then there is a global constant d
such that the sizes of two consecutive DAGs differ
by at most d.

Pumping Property 2 If a regular DAG language
L contains a DAG D that has an undirected cycle,
then D contains an edge e such that D(e ./ e)n ∈
L for all n ≥ 0.

The property follows from the simple fact that
swapping an edge e on a cycle in one copy of D
with its counterpart in a second copy of D creates
a connected DAG. This property entails an inter-
esting consequence, as it is not difficult to show
that {D} is regular for every connected nonempty
DAG D that does not contain a cycle.4 Hence,
by the closedness under union, finite sets of DAGs
that do not contain cycles are regular. Together
with the above property this proves that a finite
set of connected nonempty DAGs is regular if and
only if none of its DAGs contains a cycle.

6 Recognition

One of the most central computational problems
for automata is recognition, also known as the
membership problem: given an object D, in this

4This is a special case of the more general fact that every
regular tree language is a regular DAG language (of ordered
DAGs).
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Figure 5: DAG representation of the propositional
formula ((x1 ∧ x2) ∨ ¬x2) ∧ (x3 ∨ (x2 ∨ x1))

case a DAG, is it accepted by the automaton? In
the weighted case, the answer is not yes or no, but
the actual weight of D. Recognition comes in two
flavors, depending on whether the automaton is
part of the input – the uniform recognition prob-
lem – or not – the non-uniform recognition prob-
lem. For linguistic applications the potentially
more difficult uniform version is the more rele-
vant one, which should preferably be efficiently
solvable. Unfortunately, it turns out that even non-
uniform recognition is NP-complete, i.e., there ex-
ist fixed DAG automata whose accepted language
is NP-complete.

6.1 NP-Completeness

An NP-complete regular DAG language is surpris-
ingly easy to construct. Take the regular tree lan-
guage representing propositional formulas over ∧,
∨, ¬, and x, where x denotes an (anonymous) oc-
currence of a propositional variable. Link all oc-
currences of x that represent the same variable by
a linear chain of edges. An example of such a
DAG representation of the propositional formula
((x1 ∧ x2) ∨ ¬x2) ∧ (x3 ∨ (x2 ∨ x1)) is shown
in Figure 5. Now a DAG automaton can verify
that a formula is satisfiable, as follows: use states
t and f representing truth values and rules such as
tt

x−→ t and ff x−→ f , which guess a consistent as-
signment of truth values to all occurrences of the
same variable, and ff ∧−→ f , tf ∧−→ f , ft ∧−→ f ,
tt
∧−→ t, which implement the operators. More-

over, for every rule I σ−→ t there is a rule I σ−→ ε.
Clearly, such an automaton accepts a DAG repre-
senting a propositional formula ϕ in the way de-
scribed above if and only if ϕ is satisfiable.

6.2 Recognition

The NP-completeness result above indicates that,
in general, there may be no efficient recognition
algorithms for regular DAG languages. However,
according to statistics reported by Chiang et al.
(2016), DAGs actually arising from real-world
AMRs are usually rather benign. In particular, al-
though the treewidth of AMRs is unbounded in
principle, real-world AMRs seem to have a small
treewidth. Among 20 000 AMRs from the AMR
Bank the maximum treewidth turned out to be 4,
which was reached by only 31 AMRs, and the av-
erage treewidth was 1.55. It thus seems to be a rel-
evant goal to develop recognition algorithms that
work well on DAGs of small treewidth.

Let us recall here that a tree decomposition of
a graph G = (V,E, lab, src, tar) is a tree whose
vertices, called bags here, are labelled with subsets
of V such that

1. the union of all bags is V ,5

2. for each edge e ∈ E there is at least one bag
containing both src(e) and tar(e), and

3. for each vertex v ∈ V the bags containing v
form a connected subgraph of the tree.

The treewidth of G is the smallest width of any of
its tree decompositions, the width of a tree decom-
position being the maximum size of its bags minus
one. (A tree has treewidth 1 because it suffices
to use a bag of size two for each edge e, namely
{src(e), tar(e)}.)

A basic recognition algorithm generalizes the
well-known forward algorithm by Baum (1972).
Intuitively, it works as follows: To describe the
algorithm, let us call a vertex together with its
incident edges a star. For each such star in the
input DAG, the algorithm records a set of candi-
date assignments of states to its edges. The initial
candidate assignments to be recorded are given by
the rules: every rule that could potentially be ap-
plied to the star (i.e., has the right vertex label and
numbers of states in the left- and right-hand side)
yields a candidate assignment to be recorded.

Now, the algorithm repeatedly chooses two
stars s1, s2 that share an edge.6 It contracts the

5For the sake of brevity, we often identify a bag with the
set of vertices it is labelled with.

6To be precise, one also has to cover the case where more
than one edge is shared between s1 and s2, but here we dis-
regard this possibility.
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edge, merging s1 and s2 into a single (possibly
larger) star s. The candidate assignments to be
recorded in s are obtained as follows: assume that
s1 and s2 have edges e0, . . . , em and f0, . . . , fn,
where e0 = f0 is the one being contracted. Then
s has edges e1, . . . , em, f1, . . . , fn, and for all
candidate assignments p0, . . . , pm and q1, . . . , qn
recorded in s1 and s2 with p0 = q0 the assignment
p1, . . . , pm, q1, . . . , qn is recorded in s. When the
process stops, only one star s is left, which con-
sists of a single vertex with no edges. The DAG is
accepted if s records the empty candidate assign-
ment, and is rejected if it contains no assignment
at all.

With only little modification the algorithm may
be used for weighted DAG automata, then com-
puting the weight of the input DAG. In this case,
each of the recorded candidate assignments is as-
sociated with a weight, which in the initial step is
the weight of the rule in question. When two can-
didate assignments are combined in the process of
merging two stars s1, s2, their weights are mul-
tiplied. If one of the candidate assignments for
the combined star emerges in several ways from
combinations of candidate assignments recorded
in s1, s2, the resulting weights are summed up.

6.3 Efficiency of Recognition
The reader may have observed that the order in
which edges are contracted may strongly affect
the size of stars occurring during the execution of
the algorithm, thus making the algorithm more or
less efficient. Treating every vertex in the way de-
scribed means that we are actually working with
the linegraph LG(D) of D. It is obtained by turn-
ing every edge into a vertex and every vertex v
into a clique on the incident edges of v (which
are now vertices). The optimal contraction order
can be read off an optimal tree decomposition of
LG(D). A closer inspection of these facts (Chi-
ang et al., 2016) revels that the algorithm can be
implemented to run in time

O(|E| · |Q|tw(LG(D))+1),

where tw(G) denotes the treewidth of a graph G.
The exponential dependency on the treewidth of
LG(D) (rather than on the treewidth of D itself)
is bad; as soon as D contains a vertex v of degree
k the treewidth of LG(D) is at least k − 1 since
there must be a bag in the tree decomposition that
covers the entire clique of size k that corresponds
to v.

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 6: Binarizing a vertex of in-degree 3 and
out-degree 2

A potential improvement can be achieved by a
method called binarization, which is inspired by
the well-known first-sibling next-child encoding
of trees of unbounded rank by binary trees. The
idea is to replace every vertex by a sub-DAG in
which each vertex has in-degree ≤ 2 and out-
degree ≤ 1 or else in-degree ≤ 1 and out-degree
≤ 2. A simple binarization scheme is illustrated
in Figure 6 for a vertex of in-degree 3 and out-
degree 2. Applying this schema to all vertices in a
given DAG yields a binary DAG, and it is straight-
forward to modify the rules of a given DAG au-
tomaton in such a way that the automaton accepts
the binarized version of the original DAG lan-
guage.

By turning from an input DAG D to its bina-
rized version D′ we have thus reduced the de-
gree of vertices, and hence the size of cliques in
LG(D′), to three. However, this is not enough
in order to increase the efficiency of the algo-
rithm because any fixed binarization such as the
one above may be structurally incompatible with
an optimal tree decomposition of D, thus actually
making tw(D′) and tw(LG(D′)) much larger than
tw(D).

The solution to this dilemma is provided by the
fact that, for every tree decomposition of a graph
G, there is a binary tree decomposition of G (i.e.,
a tree decomposition which is a binary tree) of the
same width. If we, instead of binarizing vertices
according to a fixed scheme, base our binarization
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on an optimal binary tree decomposition of D, it
can be shown that a better binarization is obtained.

Here is a rough outline of the method. Con-
sider a binary tree decomposition T of D. It can
be shown that we may, without affecting the width
of T , build it in such a way that every edge e of
D is covered by an explicitly assigned leaf bag
of T , these bags being distinct for distinct edges.
By the definition of tree decompositions, the bags
containing a given vertex v of D form a subtree
Tv of T . This tree contains one leaf for each edge
e incident on v. Hence we can binarize D by re-
placing every vertex v by the corresponding Tv,
attaching each of the original incident edges of v
to the corresponding leaf of Tv. Intuitively, using
the subtrees Tv of T to binarize vertices ensures
that the structure of the resulting binary DAG DT

is compatible with the tree decomposition T . This
makes it possible to “refine” T into a tree decom-
position of DT , in this way showing that, if the
width of T is k ≥ 1, then

tw(LG(DT )) ≤ 2(k + 1).

In particular, choosing a tree decomposition T of
width tw(D), we get

tw(LG(DT )) ≤ 2(tw(D) + 1).

As in the case of the specific binarization above,
it is not very difficult to turn the original DAG au-
tomaton A into a DAG automaton A′ that accepts
the language of all binarized DAGs DT such that
D ∈ L(A) and T is a binary tree decomposition
of D. The application of a rule of A to a vertex
v is simulated by rules that read the sub-DAG Tv,
gathering the states on the original incoming and
outgoing edges of v one by one. A disadvantage of
this method is that it increases the number of states
exponentially, but at the same time the inequali-
ties above imply that the exponent tw(LG(D)) is
bounded from above by 2tw(D) + 1. Altogether,
running the recognition algorithm above on the bi-
narized versions of D and A yields a running time
that is exponential in |Q| and tw(D) rather than in
tw(LG(D)). For a detailed discussion as well as
formal constructions and proofs see Chiang et al.
(2016).

7 DAG Languages of Unbounded Degree

Let us briefly discuss the case of unbounded vertex
degree. Regular DAG languages are of bounded

vertex degree simply because the set of rules of
a DAG automaton is finite, and every rule applies
only to vertices with a fixed in- and out-degree.
If we want to change this, we need to represent
an infinite set of rules I σ−→ O in a finite manner.
Similarly to the well-known case of unranked tree
languages, we do this by replacing I andO by reg-
ular expressions over the alphabet of states. How-
ever, unrestricted regular expressions can specify
arbitrary semilinear sets, which seems unreason-
ably powerful from a linguistic perspective: condi-
tions such as “σ has twice as many incoming edges
labelled with state q as it has incoming states la-
belled with state q or q′” lack linguistic motivation
and would thus make the model overly powerful.

Extended DAG automata (Chiang et al., 2016),
therefore, use Ochmański’s c-regular expres-
sion (Ochmański, 1985), which are regular expres-
sions in which the Kleene star is only applied to
subexpressions over a unary alphabet. For ex-
ample, (qq)∗pp∗ + qq∗ is a c-regular expression
that specifies the language of all finite multisets
M ∈ M({p, q}) which either contain an even
number of qs and at least one p, or otherwise at
least one q and no p. (Recall that we are interested
in multisets of states rather than sequences, be-
cause we are dealing with unordered DAGs. In the
ordered case the above c-regular expression would
be interpreted as specifying the set of all nonempty
strings over {p, q} which either consist of an even
number of qs followed by at least one p, or contain
no p at all.)

In the following, we denote the set of multisets
denoted by a c-regular expression α by [[α]]. An
extended DAG automaton is defined like a DAG
automaton, except that its set R of rules now con-
sists of extended rules of the form α

σ−→ β, where
α and β are c-regular expressions over Q. An or-
dinary rule I σ−→ O is an instance of α σ−→ β
if I ∈ [[α]] and O ∈ [[β]]. A run ρ on a DAG
D = (V,E, lab, src, tar) is accepting if, for ev-
ery vertex v ∈ V , ρ(IN (v))

σ−→ ρ(OUT (v)) is an
instance of a rule in R.

7.1 The Weighted Case

Extended DAG automata can be made weighted
by using weighted c-regular expressions in their
rules. The semantics of a weighted c-regular ex-
pression α overQ is a function [[α]] : M(Q)→ S,
where S is the semiring of weights. The weight of
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an ordinary rule I σ−→ O is
∑

(α
σ−→β)∈R

[[α]] (I) · [[β]] (O),

using the addition and multiplication of S. Now,
every run gets as its weight the product of the
weights of the rule instances applied in it, and ev-
ery input DAG gets as its weight the sum of the
weights of all its runs.

7.2 Transferring Results by Binarization

Every (weighted) c-regular expression has an
equivalent (weighted) finite automaton working
on multisets rather than strings, a so-called m-
automaton. Essentially, such an m-automaton is
an ordinary finite automaton whose behaviour is
invariant under reordering the symbols in the in-
put string (which thus, in effect, is treated as a
multiset). Using such an m-automaton to imple-
ment the rules of an extended DAG automaton, bi-
narization works in essentially the same way as for
non-extended DAG automata. In other words, for
every extended DAG automaton A there is a bi-
nary DAG automaton A′ such that L(A′) is the set
of all binarized representations of DAGs in L(A),
and similarly for the weighted case.

It follows immediately that emptiness and
finiteness are decidable, and that the recognition
algorithm for DAG automata can be used to imple-
ment recognition for extended DAG automata, all
with essentially the same running times as in the
non-extended case.7 Even without the use of bina-
rization it is clear that the second pumping prop-
erty of Section 5.2 holds for extended DAG au-
tomata as well, since runs are still invariant under
edge swapping. The first pumping property, how-
ever, does not carry over because its proof relies
on the fact that, in the case of DAGs of bounded
degree, large DAGs contain long simple paths on
which states must eventually repeat. This is not
true anymore for DAGs of unbounded degree.

Acknowledgments

I thank everyone who contributed to the work on
DAG automata either directly or by discussing
ideas and providing opinions at various occasions.

7Naturally, here the input size must include the m-
automata that implement the c-regular expressions appearing
in the rules. These m-automata may, however, be compiled
into a single one to reduce the input size by representing com-
mon parts only once.

In particular, this includes Johannes Blum, David
Chiang, Daniel Gildea, Adam Lopez, Giorgio
Satta, the members of the research group Foun-
dations of Language Processing at Umeå Univer-
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Abstract

Distributions over strings and trees can be
represented by probabilistic regular lan-
guages, which characterise many mod-
els in natural language processing. Re-
cently, several datasets have become avail-
able which represent natural language phe-
nomena as graphs, so it is natural to ask
whether there is an equivalent of proba-
bilistic regular languages for graphs. This
paper presents regular graph languages,
a formalism due to Courcelle (1991) that
has not previously been studied in nat-
ural language processing. RGL is cru-
cially a subfamily of both Hyperedge Re-
placement Languages (HRL), which can
be made probabilistic; and Monadic Sec-
ond Order Languages (MSOL), which
are closed under intersection. We give
an accessible introduction to Courcelle’s
proof that RGLs are in MSOL, provid-
ing clues about how RGL may relate to
other recently introduced graph grammar
formalisms.

1 Introduction

NLP systems for machine translation, summarisa-
tion, paraphrasing, and other problems often fail to
preserve the compositional semantics of sentences
and documents because they model language as
bags of words, or at best syntactic trees. To pre-
serve semantics, they must model semantics. In
pursuit of this goal, several datasets have been pro-
duced which pair natural language with composi-
tional semantic representations in the form of di-
rected acyclic graphs (DAGs), including the Ab-
stract Meaning Represenation Bank (AMR; Ba-
narescu et al. 2013), the Prague Czech-English
Dependency Treebank (Hajič et al., 2012), Deep-
bank (Flickinger et al., 2012), and the Univer-
sal Conceptual Cognitive Annotation (Abend and

Anna fehlt
ihrem Kater

Anna’s cat
misses her

miss’ arg0

arg1 cat’

poss

Anna’

Figure 1: Semantic machine translation using AMR (Jones
et al., 2012). The edge labels identify ‘cat’ as the subject of
the verb ‘miss’, ‘Anna’ as the object of ‘miss’ and ‘Anna’ as
the possessor of ‘cat’.

Rappoport, 2013). To make use of this data, we
require probabilistic models of graphs.

Consider how we might use compositional
semantic representations in machine translation
(Figure 1). We first parse a source sentence to its
semantic representation, and then generate a tar-
get sentence from this representation. To do this
practically, we must be able to compose a string-
to-graph model with a graph-to-string model, and
we must be able to compute the probability of this
composition. To compose the models, we need to
be able to compute the intersection of the graph
domains of each model. Hence, we must be able to
define probability distributions over the graph do-
mains and efficiently compute their intersection.

For NLP problems in which data is in the form
of strings and trees, such distributions can be rep-
resented by finite automata (Mohri et al., 2008; Al-
lauzen et al., 2014), which are closed under inter-
section and can be made probabilistic. It is there-
fore natural to ask whether there is a family of
graph languages with similar properties to finite
automata. Recent work in NLP has focused pri-
marily on two families of graph languages: hy-
peredge replacement languages (HRL; Drewes
et al. 1997), a context-free graph rewriting for-
malism that has been studied in an NLP context
by several researchers (Chiang et al., 2013; Peng
et al., 2015; Bauer and Rambow, 2016); and DAG
automata languages, (DAGAL; Kamimura and
Slutzki 1981), studied by (Quernheim and Knight,
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2012). (Thomas, 1991) showed that the latter
are a subfamily of the monadic second order
languages (MSOL), which are of special interest
to us, since, when restricted to strings or trees,
they exactly characterise the recognisable—or
regular—languages of each (Büchi, 1960; Büchi
and Elgot, 1958; Trakhtenbrot, 1961).

The HRL and MSOL families are incompara-
ble: that is, the context-free graph languages do
not contain the recognisable graph languages, as
is the case in languages of strings and trees (Cour-
celle, 1990). So, while each formalism has appeal-
ing characteristics, neither appear adequate for the
problem outlined above: HRLs can be made prob-
abilistic, but they are not closed under intersection;
and while DAGAL and MSOL are closed under
intersection, it is unclear how to make them prob-
abilistic (Quernheim and Knight, 2012).1

This situation suggests that we might want a
family of languages that is a subfamily of both
HRL and MSOL. Courcelle (1991) defines all
such languages as the family of strongly context-
free languages (SCFL).2,3 Unfortunately, SCFLs
are defined non-constructively, but Courcelle
(1991) exhibits a constructively-defined subfam-
ily: Regular Graph Languages (RGL), defined
as a restricted form of HRL, which Courcelle
demonstrates is also in MSOL.

Recently, two new graph grammar formalisms
have been defined which are also restricted forms
of HRL: Tree-like Grammars (TLG; Matheja et al.
2015) and Restricted DAG Grammars (RDG;
Björklund et al. 2016). TLGs are claimed to be
in SCFL, but the relationship of RDG to SCFL
is unknown. The grammar restrictions of TLGs,
RDGs and RGGs are incomparable, but they share
important characteristics, which we discuss in §5.

This paper provides an accessible proof that
RGL are a subfamily of MSOL, since only a
sketch is provided in Courcelle (1991). Our aim
in studying the proof is to gain insights into the re-

1Semiring-weighted MSOLs have been defined, where
weights may be in the tropical semiring (Droste and Gastin,
2005). However, for the weights to define a probability distri-
bution, they must meet the stronger condition that the sum of
multiplied weights over all definable objects is one. This does
not appear to have been demonstrated for DAGAL, which
violate the sufficient conditions that (Booth and Thompson,
1973) give for probabilistic languages. We suspect that there
are DAGAL (hence MSOL) for which it is not possible.

2Courcelle’s definition of strongly context-free is unre-
lated to use of this term in NLP.

3The equality of SCFL and MSOL ∩ HRL was recently
proved by (Bojanczyk and Pilipczuk, 2016).

HRL∗ MSOL† Graphs

CFTL∗

CFL∗

RTL†∗ Trees

RL†∗ Strings

RGL†∗ DAGAL†

Figure 2: Containment relationships for families of regu-
lar and context-free string and tree languages, hyperedge re-
placement languages (HRL), monadic second order definable
graph languages (MSOL), directed acyclic graph automata
languages (DAGAL), and the regular graph languages (RGL).
∗ indicates that the family of languages is probabilistic and †
indicates that the family of languages is intersectible.

lationship of RGL, TLG, and RDG, which might
enable us to define more general classes of graph
languages that are also within SCFL. Our discus-
sion emphasises points at which Courcelle’s proof
relies on particular restrictions of RGL, and is in-
tended to highlight the places where relaxations of
these restrictions may be possible.

Figure 2 summarises the relationship of RGL to
other formalisms and their properties. The proof
of each Lemma, Proposition and Theorem in this
paper that does not appear here is provided in full
in the supplementary materials.4

2 Monadic Second-Order Logic

The regular string and tree languages precisely
coincide with the monadic second-order logic
(MSO) definable sets of strings and trees, re-
spectively (Büchi, 1960; Büchi and Elgot, 1958;
Trakhtenbrot, 1961), so it is natural to look at
MSO over graphs.

We use the following notation. If n is an integer,
[n] denotes the set {1, . . . , n}. IfA is a set, s ∈ A∗
denotes that s is a sequence of arbitrary length,
each element of which is in A. We denote by |s|
the length of s. A ranked alphabet is an alphabet
A paired with an arity function rank: A→ N.

Definition 1. A hypergraph over a ranked alpha-
bet Γ is a tuple G = (VG, EG, attG, labG, extG)
where VG is a finite set of nodes; EG is a finite
set of edges (distinct from VG); attG : EG → V ∗G
maps each edge to a sequence of nodes; labG :
EG → Γ maps each edge to a label such that
|attG(e)| = rank(labG(e)); and extG is an ordered
subset of VG called the external nodes of G.

4goo.gl/Z5L2gP
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Figure 3: The replacement of the X-labeled edge in G by the
graph H .

We assume that both the elements of extG and
the elements of attG(e) for each edge e are pair-
wise distinct. An edge e is attached to its nodes
by tentacles, each labeled by an integer indicat-
ing the node’s position in attG(e) = (v1, . . . , vk).
The tentacle from e to vi has label i, so the tenta-
cle labels lie in the set [k] where k = rank(e). To
express that a node v is attached to the i-th tenta-
cle of an edge e we say vert(e, i) = v. The nodes
in extG are labeled by their position in extG. In
figures, the i-th external node is labeled (i). The
rank of an edge e is k if att(e) = (v1, . . . , vk) (or
equivalently, rank(lab(e)) = k). The rank of a hy-
pergraph G is |extG|. An induced subgraph of a
hypergraph G by edges E′ ⊆ EG is the subgraph
of G formed by including all edges in E′ and their
endpoints. Define HGΣ,Γ to be the set of all hy-
pergraphs with node labels in Σ and edge labels in
Γ (the hypergraphs as defined here have no node
labels so are in HG∅,Γ).

Example 1. Hypergraph G in Figure 3 has four
nodes (shown as black dots) and three hyperedges
labeled a, b, and X (shown boxed). The bracketed
numbers (1) and (2) denote its external nodes and
the numbers between edges and the nodes are ten-
tacle labels. Call the top node v1 and, proceeding
clockwise, call the other nodes v2, v3, and v4. Call
its edges e1, e2 and e3. Its definition would state:

attG(e1) = (v1, v2) labG(e1) = a

attG(e2) = (v2, v3) labG(e2) = b

attG(e3) = (v1, v4, v3) labG(e3) = X

extG = (v4, v2).

MSO on graphs quantifies over nodes, sets of
nodes, edges, and sets of edges.5 The atomic
formulas are x ∈ X , x = y, labγ(x), and
vert(x, i) = y. We construct MSO sentences us-
ing the atomic formulas, connectives ∧,∨,¬,⇒,

5Formally, this is called MS2 (Courcelle and Engelfriet,
2011); MS1 only quantifies over nodes and sets of nodes.

and quantifiers ∃, ∀. We allow vert(x, i) = y
to hold only when x is an edge and y is a
node. In the case of edge-labelled graphs, the
x in labγ(x) must be an edge. We define the
formula edg(x, y1, . . . , yk) : vert(x, 1) = y1 ∧
. . . vert(x, k) = yk ∧

∧
k′>k ∀y¬vert(x, k′) = y

which expresses att(x) = (y1, . . . , yk).
We can write down an MSO formula to ex-

press that sets X1, . . . , Xn partition the domain.
PART(X1, . . . , Xn):

∀x[x ∈ X1 ∪ · · · ∪Xn ∧ ¬x ∈ X1 ∩X2

∧¬x ∈ X1 ∩X3 ∧ · · · ∧ ¬x ∈ Xn−1 ∩Xn]
(1)

We use ! to denote unique existential quantifica-
tion. For any formula R:

∃!xR(x) : ∃xR(x) ∧ ∀yR(y)→ x = y.

We can define an MSO statement expressing
that the graph is a string by defining an edge la-
belled graph where the edges have rank 2, there is
exactly one node with no incoming edge, there is
exactly one node with no outgoing edge, and every
node has at most one incoming edge and at most
one outgoing edge:

STRING : ∀y∃!x1∃!x2edg(y, x1, x2)∧
∃!x1∀y¬vert(y, 2) = x1 ∧ ∃!x2∀y¬vert(y, 1) = x2

∧ ∀x¬x = x1 ⇒ ∃!y∃!x′edg(y, x′, x)

∧ ∀x¬x = x2 ⇒ ∃!y∃!x′edg(y, x, x′)

Let First(x) denote that x has no incoming
edges and Last(x) denote that x has no outgoing
edges.

Example 2. Let A be the automaton in Figure 4.
The corresponding MSO quantifies over a subset
Xi for each state qi in the automaton. The subsets
partition the nodes of the string graph to simulate
a run of the automaton.

Finally, we encode each transition of the form
(qi, a, qj) as x ∈ Xi ∧ ∃y∃x′edg(y, x, x′) ∧
laba(y)⇒ x′ ∈ Xj .

From A, we construct the formula autA:

autA : STRING ∧ ∃X0∃X1PART(X0, X1)

∧ ∀xFirst(x)⇒ x ∈ X0

∧ ∀xLast(x)⇒ x ∈ X1

∧∀x ∈ X0∧∃y∃x′edg(y, x, x′)∧laba(y)⇒ x′ ∈ X1

∧∀x ∈ X1∧∃y∃x′edg(y, x, x′)∧laba(y)⇒ x′ ∈ X1

∧∀x ∈ X1∧∃y∃x′edg(y, x, x′)∧labb(y)⇒ x′ ∈ X0

For a graph G and an MSO statement φ we say
that G |= φ (or G satisfies φ) when there is an
assignment of variables of φ to nodes and edges of
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Figure 5: The graph representing the string aaba.

G that makes φ true.

Example 3. The string graph G = aaba as shown
in Figure 5 can be produced by automaton A. The
letters are edge labels and call its nodes from left to
right v0, v1, v2, v3, and v4. If we letX0 = {v0, v3}
and X1 = {v1, v2, v4} then G |= autA.

Let aut′A(X0, X1) be the MSO formula identi-
cal to autA with ∃X0∃X1 removed from the begin-
ning of the formula. X0 and X1 are free variables
of aut′A, and we refer to the set of free variables
of a formula as its parameters. Given a graph G
and a formula φ(W) with parametersW , let α be
function fromW to subsets of nodes and edges in
G. Then we say that (G,α) |= φ(W) if G and
α satisfy φ(W). We call α a parameter assign-
ment. The MSO interpretation of an automaton
is satisfied if we can find a parameter assignment
that simulates a run of the automaton—more pre-
cisely, G |= autA if (G,α) |= aut′A(X0, X1). In
general, there may be more than one such α.

Example 4. LetW = {X0, X1} be parameters. If
α(X0) = {v0, v3} and α(X1) = {v1, v2, v4} then
(G,α) |=aut′A(W).

We can use an MSO statement φ to define a
language, L(φ) = {G | G |= φ}, and we
call the family of languages definable this way
as MSOL. We define the intersection of two lan-
guages L(φ1) ∩ L(φ2) = {G | G |= φ1 ∧ φ2}.
This clearly shows that MSO languages are closed
under intersection.

2.1 MSO Transductions
One way to show that a language is MSO defin-
able is to use the backwards translation theorem
(Courcelle and Engelfriet, 2011), which depends
on MSO transductions (MSOT), a generalisation
of finite-state string and tree transductions. The
theorem is a generalisation to graphs of the fact
that regular string and tree languages are closed

under inverse finite-state transductions (Hopcroft
and Ullman, 1979; ?).

Theorem 1 (Backwards Translation Theorem). If
L is an MSO definable graph language and f is
an MSO graph transduction then f−1(L) is effec-
tively MSO definable.

Definition 2. An MSO transducer
τ : HGΣ,Γ → HGΣ′,Γ′ is τ =
〈ρ(W), δ(x,W), (θr(x1, . . . , xN(r),W))r∈R〉.
W is a set of parameters; ρ(W) is a precondition
which input graphs must satisfy; δ(x,W) is a
domain formula defining the output domain
(i.e. nodes); and θr(x1, . . . , xN(r),W) is a
relation formula defining relationships between
the elements in the output domain (i.e. edges).6

The role of parameters here is to allow non-
determinism. Given a graph G and a parame-
ter assignment α from W to VG ∪ EG such that
(G,α) |= ρ(W), we define the output of the
transducer τ(G,α) = (D,R) such that D =
{x ∈ G | (G, x, α) |= δ(x,W)} and R =
{θr(x1, . . . , xN(r)) | (G, x1, . . . , xN(r), α) |=
θr(x1, . . . , xN(r),W), r ∈ R}. Define τ(G) =
{τ(G,α) | (G,α) |= ρ(W)} and for a language
L, τ(L) = {τ(G) | G ∈ L}.

3 Hyperedge Replacement Grammars

If f is a function and S is a set, f |S is the restric-
tion of f to domain elements in S. If f, g are func-
tions, f ◦ g is their composition.

Definition 3. Let G be a hypergraph with an edge
e of rank k and letH be a hypergraph also of rank
k disjoint from G. The replacement of e by H
is the graph G′ = G[e/H]. Let VG′ = (VG ∪
VH)−extH , EG′ = (EG∪EH)−{e}. Let extH =
(v1, . . . , vk), attG(e) = (u1, . . . , uk) and let f :
(VG ∪ VH)→ VG′ replace vi by ui for i ∈ [k] and
be the identity otherwise. The extension of f to
(VG∪VH)∗ is also denoted f . Let E = EG−{e},
then attG′ = attG|E∪(f ◦attH), labG′ = labG|E∪
labH .

Example 5. Replacement is shown in Figure 3.
We denote the replacement as G[X/H] since the
edge is unambiguous given its label.

Definition 4. A hyperedge replacement gram-
mar (HRG) G = (N,T, P, S) consists of disjoint
ranked alphabets N and T of nonterminals and

6Technically, this is a non-copying MSO transducer. In
general, MSO transductions can define multiple copies of
each element of the input domain.
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Table 1: Productions of a HRG. The labels p, q, r, s, t, and u
label the productions so that we can refer to them in the text.
Note that Y can be rewritten either via production r or s.

terminals, a finite set of productions P , and a start
symbol S ∈ N . Every production in P is of the
form X → H where X ∈ N is of rank k and H is
a hypergraph of rank k over N and T .

A HRG G produces graphs in HG∅,TG . In each
example, we only show terminal edges of rank 2,
and depict them as directed edges where the direc-
tion is determined by the tentacle labels: tentacle
1 attaches to the source and 2 attaches to the tar-
get (Table 1). For each production p : X → G,
we use L(p) to refer to its left-hand side (X) and
R(p) to refer to its right-hand side (G). An edge
is a terminal edge if its label is terminal and a
nonterminal edge if its label is nonterminal. A
graph is terminal if all of its edges are labeled
with terminal symbols. The terminal subgraph
of a graph is the subgraph induced by its terminal
edges. Let NT(p) = {e1, . . . , en} be an enumera-
tion of the nonterminal edges in R(p), let |NT(p)|
be the number of nonterminal edges in R(p) and
let |NT(P )| = maxp∈P |NT(p)|.

Given a HRG G, we say that graph G de-
rives graph G′, denoted G → G′, iff there is an
edge e ∈ EG and a nonterminal X ∈ N such
that labG(e) = X and G′ = G[e/H], where
X → H is in P . We extend the idea of deriva-
tion to its transitive closure G →∗ G′. For ev-
ery X ∈ N we also use X to denote the con-
nected graph consisting of a single edge e with
lab(e) = X and nodes (v1, . . . , vrank(X)) such that

att(e) = (v1, . . . , vrank(X)), and we define the lan-
guage LX(G) = {G | X →∗ G,G is terminal}.
The language of G is thenL(G) = LS(G). We call
the family of languages that can be produced by
any HRG the hyperedge replacement languages
(HRL).

3.1 HRL and MSOT

Since HRGs are context-free, for each HRG G,
there is an underlying regular tree grammar TG
defining the derivation trees of the graphs in L(G).
Each T ∈ TG has node labels in PG and edge la-
bels in |NT(P )|. If a node has label p andR(p) has
n nonterminals X1, . . . , Xn then for each i ∈ [n],
there is an i labelled edge from p to a node la-
belled q where L(q) = Xi. The label of the root
of T must be p for some p with L(p) = S. Let
VAL : L(TG) → L(G) be a mapping from deriva-
tion trees to graphs so that G = VAL(T) iff T is
a derivation tree of G. Since HRGs can be am-
biguous, this mapping is not injective. (Courcelle,
1991) shows that VAL is an MSO transduction.7

This does not imply that HRLs are MSOL, since in
general MSOL is not closed under MSOT. Hence
an MSOT representing the inverse of VAL may not
exist for an arbitrary HRG, but we later discuss a
subfamily for which it does (§4), allowing us to
apply Theorem 1.

To distinguish between elements of a graph and
its derivation tree, we denote a grammar by G,
graph by G, derivation tree by T, derivation tree
node by v, edges and nodes in productions are
written with a bar (v̄) and nodes and edges in G
are unmarked (x).

The transduction VAL preserves the terminal
subgraph of every production used in a deriva-
tion and fuses nodes from different productions
together in the output graph. Node fusion is de-
termined by an equivalence relation ∼ generated
by a relation ∼0. Let NT(p) = (e1, . . . , en) the
nonterminal edges of R(p), let NTi(p) = ei, and
let extG(i) be the ith external node of G.

Definition 5. Let G be a HRG and T be a deriva-
tion tree of G, so that G = VAL(T). Define a bi-
nary relation∼0 on pairs (x̄,v) where x̄ is a node
in R(p) for some p ∈ P and v is a node of T with
label p. Then (x̄,v) ∼0 (ȳ,v′) iff:

1. v,v′ are nodes in T and v′ is the ith child of
v in T.

7It can also be viewed in the related framework of inter-
preted regular tree grammars (Koller and Kuhlmann, 2011).
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2. p = labT(v), p′ = labT(v′).
3. x̄ is the jth node of NTi(p), ȳ = extR(p′)(j).

We define ∼ as the reflexive, symmetric, transi-
tive closure of ∼0.

The mapping VAL translates derivation trees to
graphs in two steps. First, the terminal subgraph
of every instance of every production used in the
derivation tree is produced in the output. Then, all
equivalent nodes under ∼ are fused. (Courcelle,
1991) shows that each step is a MSOT; their com-
position is also a MSOT.

Example 6. Figure 6 illustrates how VAL maps a
derivation tree to a graph.

The mapping VAL can be defined in terms
of two finer-grained mappings. Let EP =
∪p∈PER(p) and VP = ∪p∈PVR(p). Then he :
EP × VT → EG maps a pair (ē,v) to its im-
age e in the graph, where ē is a terminal edge in p
and lab(v) = p. This mapping is one-to-one since
edges cannot be fused. hv : VP × VT → VG maps
a pair (x̄,v) to its image v, where x̄ is a node in p
and lab(v) = p. It is not one-to-one since nodes
can be fused.

Lemma 1. Let G be a HRG, and let G be a graph
in L(G) with derivation tree T. If x̄ and x̄′ are
nodes such that hv(x̄,v) = hv(x̄

′,v′) with v 6= v′

and, if x̄ is internal in R(p) for p =labT(v), then
x̄′ is an external node of R(p′) for p′ = labT(v′)
and v is an ancestor of v′ in T.

Consequently, if hv(x̄,v) = hv(x̄
′,v′) then x̄

and x̄′ cannot both be internal.

4 Regular Graph Grammars

A regular graph grammar (RGG; Courcelle 1991)
is a restricted form of HRG. To explain the restric-
tions, we first require some definitions.

Definition 6. Given a graph G, a path in G from
a node v to a node v′ is a sequence

(v0, i1, e1, j1, v1)(v1, i2, e2, j2, v2) . . . (vk−1, ik, ek, jk, vk)

such that vert(er, ir) = vr−1 and
vert(er, jr) = vr for each r ∈ [k], v0 = v,
and vk = v′. The length of this path is k.

A path is terminal if every edge in the path is
terminal. A path is internal if each vi is internal
for 1 ≤ i ≤ k − 1. The endpoints v0 and vk of an
internal path can be external.

Definition 7. A HRG G is a Regular Graph
Grammar if each nonterminal in N has rank at
least one and for each p ∈ PG the following hold:

(C1) R(p) has at least one edge. Either it is a
single terminal edge, all nodes of which are exter-
nal, or each of its edges has at least one internal
node.

(C2) Every pair of nodes in R(p) is connected
by a terminal and internal path.

RGLs are HRLs by definition; we will prove
that they are also MSOLs by constructing the in-
verse of VAL, a transducer from RGL graphs to
their derivation trees. Since the derivation trees
are MSO definable, RGLs must also be MSO de-
finable by Theorem 1. The construction requires
a unique anchor element (a node or edge) for
each production in the grammar. Given an input
graph, the transducer first guesses—via parameter
assignment—the preimage of each edge and the
set of elements whose preimages are anchors. It
then checks whether the guess satisfies constraints
that must be true for every derived graph:

1. It must be possible to partition the graph into
a set of edge-disjoint connected subgraphs, each
isomorphic to the terminal subgraph of some pro-
duction.

2. For each node that is in two such subgraphs,
the node must be the image of two nodes in the
productions that are allowed to be fused under the
grammar.

If these constraints are satisfied, the transducer
outputs each guessed anchor and an edge between
anchors that it identifies to be in a parent-child re-
lationship.

Every valid parameter assignment corresponds
to a different output from the transducer, and we
will show that all derivation trees for any input
graph in the grammar lie in this output set.

Theorem 2. RGL ⊆ MSOL.

The proof of each Lemma and Proposition in
this section either appears here or in the supple-
mentary materials. The proof of Theorem 2 is pro-
vided in §4.2.1.

4.1 Anchors and Parameters
There are two types of productions in RGGs:
those with a single terminal edge, all nodes of
which are external; and those where each edge
has an internal node. We call the former ext-
productions and the latter int-productions. For
each int-production, we arbitrarily choose one of
its internal nodes to be its anchor. For each ext-
production, we choose its single terminal edge to
be the anchor. By Lemma 1, this choice ensures
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Figure 6: A derivation tree (a), the terminal subgraphs of every copy of every production in the derivation tree (b), the relation
∼ illustrated with dashed lines (c) and the resulting graph (d).

that a pair of anchors cannot be fused, so the set
of anchors in any derived graph is guaranteed to
be in one-to-one correspondence with the nodes
of its derivation tree.

We define two sets of parameters: E and
C, where E guesses preimages of edges, and C
guesses anchors (which may be either nodes or
edges). To define E precisely, we require some
notation. Let G be an RGG, and for each p ∈ P ,
let T(p) = {f̄p,1, . . . , f̄p,|T(p)|} enumerate the ter-
minal edges of R(p) and let γp,j be the label of
f̄p,j for each p ∈ P and j ∈ [|T(p)|]. Let |NT(p)|
be the number of nonterminal edges in p and let
|NT(P )| = maxp∈P |NT(p)|. Given a node v in
a derivation tree T, we say that v is an i-child if
it is the ith child of some other node in T. By
convention, the root node is the only 0-child.

Let G be in L(G) and let T be a derivation tree
of G. For each i ∈ [0, |NT(P )|], p ∈ P and j ∈
[|T (p)|], we define a parameter Ei,p,j :

Ei,p,j = {e ∈ EG | he(f̄p,j ,v) and v is an i-child.}
Let E = {Ei,p,j} for i ∈ [0, |NT(P )|], p ∈ P and
j ∈ [|T(p)|].

For each i ∈ [|NT(P )|] and p ∈ P , define

Ci,p = {h(c̄p,v) | p = labT(v),v is an i-child.}
Where h = he ∪ ev since c̄p can either be an edge
or a node. Let C = ∪i,pCi,p.
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Figure 7: The derivation tree from Figure 6 (a) and the graph
from Figure 6 (d) with variable names for the nodes and
edges.

LetW = E ∪ C.

Example 7. Table 2 shows the productions of Ta-
ble 1 with labels on each node and edge. Figure
7 shows the derivation tree and graph from Figure
6 with variable names added. We use these vari-
able names to refer to specific nodes and edges
in the text. For example, hv(c̄s,v8) = v1, and
he(f̄u,1,v9) = e5.

Example 8. Using the labels in Table 2 and Figure
7, we see that E0,p,1 = {e9}, E1,q,2 = {e12, e14},
and v1 = h(c̄p,v8) is an anchor.
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Sp :

c̄p

X
x̄1

x̄2

1 f̄p,1
1

2

f̄p,3

f̄p,2
Y Zs :

c̄s

x̄7

x̄8

1

2

1

f̄s,1

f̄s,2

Xq : W

c̄q

Y

x̄3

x̄4
1

2

1
1

2

f̄q,1

f̄q,2 Wt :

x̄9

c̄t

1
f̄t,1

Yr : Z

c̄r

X

x̄5

x̄6
1

2

1
1

2

f̄r,1

f̄r,2 Zu :

x̄10

c̄u

1
f̄u,1

Table 2: The productions from Table 1 with variable names
added to each of the nodes and terminal edges. Node vari-
ables of the form c̄x for x ∈ {p, q, r, s, t, u} indicate anchors.

4.1.1 Path Properties of RGLs

The precondition will exploit the properties of
RGGs, particularly the properties of paths be-
tween nodes. Let G be an RGG, G ∈ L(G), and
let T be a derivation tree of G. In the following,
we relate paths within individual productions in P
(denoted π) to paths in G (denoted λ). For each e
in G, we define o(e) = (i, p, j) iff e ∈ Ei,p,j .

For every path λ in G of the form

(v, i1, e1, j1, v1)(v1, i2, e2, j2, v2) . . . (vk−1, ik, ek, jk, v
′)

we define its trace as the sequence

tr(λ) := (o(e1), i1, j1)(o(e2), i2, j2) . . . (o(ek), ik, jk).

Now let π be a path

(v̄, i1, ē1, j1, v̄1) . . . (v̄k−1, ik, ēk, jk, v̄
′)

in R(p) for some p ∈ P . Let v ∈ VT, p =
labT(v). We denote by h(π,v) the following path
in G:

(h(v̄,v), i1, h(ē1,v), j1, h(v̄1,v)) . . .

(h(v̄k−1,v), i1, h(ēk,v), j1, h(v̄′,v))

If v is an i-child of some node in VT then
tr(h(π,v)) is the sequence

((i, p,m1), i1, j1) . . . ((i, p,mk), ik, jk)

where ēj = f̄p,mj for each j ∈ [k]. Note that
tr(π) = tr(h(π,v)). The trace is a property that
remains constant when a path is projected from
a production into a graph. This projection is not

one-to-one since a production can be applied sev-
eral times; a trace appears in the graph once for
each application of the corresponding production
in a derivation. For v ∈ VT, we write π ∈
R(labT(v)) to denote that π is a path in the pro-
duction which is the label of v.

Example 9. Let π be the path
(x̄3, 2, f̄q,2, 1, c̄q)(c̄q, 1, f̄q,1, 2, x̄4) in produc-
tion q in Table 2. h(π,v4) for v4 is the path
(v11, 2, e13, 1, v4)(v4, 1, e4, 2, v5) in Figure 7,
and its trace is ((1, q, 2), 2, 1)((1, q, 1), 1, 2).

Lemma 2 (Lemma 5.5 from (Courcelle, 1991)).
Let G be an RGG,G be a graph in L(G), and T be
a derivation tree of G. Let λ be a path in G of the
form h(π,v) for some v ∈ VT and some terminal
path π ∈ R(labT(v)). The final node of π may be
internal or external but every other node must be
internal. If λ′ is another path in G with the same
trace and the same initial node as λ, then λ′ = λ.

Lemma 2 guarantees a unique trace for every
path in a graph that is the projection of a path in a
single production. By property C2 of RGGs, this
guarantee must hold for at least one path from the
anchor node of an int-production to every other
node in the production. For ext-productions, all
paths are of the form π = (ē, i, v̄i), where e is
the single nonterminal edge; these paths are also
guaranteed unique traces.

4.1.2 MSO Formulas for the Precondition
Given an assignment to our parameters, we can
use the path property in Lemma 2 to define some
useful MSO statements. The first, ANC, relates an-
chors to the nodes in the graph. Throughout this
section, given a derivation tree T, we will refer to
αT which is the parameter assignment fromW to
VG ∪ EG as defined above.

Lemma 3 (Lemma 5.6 from (Courcelle, 1991)).
Let G be an RGG, G be a graph in L(G), and T
be a derivation tree of G. For every p ∈ P , ev-
ery i ∈ [0, |NT(P )|], and every node x̄ ∈ R(p),
one can construct a formula ANCp,i,x̄(u,w, {W})
such that, for every u ∈ VG ∪ EG, w ∈ VG:

(G, u,w, αT) |= ANCp,i,x̄(u,w, {W})
iff u = h(c̄p,v) and w = hv(x̄,v) for some v ∈
VT which is an i-child and p = labT(v).

We say that node u anchors node v if for some
p, i and x̄, ANCp,i,x̄(u, v, {W}) holds. We use the
fact that a node or edge anchors itself to establish
its corresponding production.
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Example 10. Looking at Table 2 and Figure 7, we
can establish that ANCp,0,x̄1(v5, v11, {W}) holds
and that v5 ∈ C0,p.

The next MSO formula we construct relates
pairs of anchors to each other. Since the anchors
define the output domain of the transducer, the for-
mula PAR defines the edges of the output.

Lemma 4 (Lemma 5.7 of (Courcelle, 1991)). Let
G be an RGG,G be inL(G), T be a derivation tree
of G, and α be the parameter assignment defined
with respect to T. One can construct a formula
PARp,i,p′,i′(u,w, {W}) such that, for u,w ∈ VG ∪
EG:

(G, u,w, α) |= PARp,i,p′,i′(u,w, {W})
iff u = h(c̄p,v), w = h(c̄p′ ,v

′) for some v,v′ in
VT where p = labT(v), p′ = labT(v′), v is an
i-child, and v′ is the i′th child of v in T.

If PARp,i,p′,i′(u, u
′, {W}) holds, then u will be-

come the parent of u′ in the output tree. The proof
of this lemma relies on C1 of RGG.

Example 11. From Table 2 and Figure 7,
PARq,1,s,2(v2, v1, {W}) holds.

As introduced in §3, we have a binary equiv-
alence relation ∼ over pairs of the form (x̄,v)
where x̄ is a node in a production p and v is a node
in the derivation tree with label p. We use this
relation for the precondition of the transducer so
that a pair of nodes are only fused if the grammar
and derivation tree allows them to be. We project
∼ into the graph to construct a relation over an-
chors such that FUSEp,i,x̄,p′,i′,x̄′(u, u

′, {W}) holds
if and only if (x̄,v) ∼ (x̄′,v′), u = h(c̄p,v), u′ =
h(c̄p′ ,v

′), and h(x̄,v) = h(x̄′,v′).

Lemma 5. Let G be an RGG, G be in L(G), and
T be a derivation tree of G. One can construct
a formula FUSEp,i,x̄,p′,i′,x̄′(u, u

′, {W}) such that,
for u, u′ ∈ VG ∪ EG:

(G, u, u′, {W}) |= FUSEp,i,x̄,p′,i′,x̄′(u, u
′, {W})

iff u = h(c̄p,v), u′ = h(c̄p′ ,v
′) for some v,v′ in

VT where p = labT(v), p′ = labT(v′),v is the
ith child of some node, v′ is the i′th child of some
node, and hv(x̄,v) = hv(x̄

′,v′).

Example 12. From Table 2 and Figure 7, we
can see that FUSEp,0,x̄1,s,2,x̄8(v5, v1, {W}) holds
since v5 = hv(c̄p,v1), v1 = hv(c̄s,v8), v11 =
hv(x̄1,v1) = hv(x̄8,v8), ANCp,0,x̄1(v5, v6, {W})
and ANCs,2,x̄8(v1, v11, {W})

4.1.3 The Precondition of the Transducer
Let X be in N , then PX = {p ∈ P |L(p) = X},
and an X-derivation tree is a derivation tree with
respect to X as the start symbol (in this case, the
root will have label in PX ). An S-derivation tree
is referred to simply as a derivation tree.

Edge Requirements
(E1) α(E) partitions EG,
(E2) for all e ∈ α(Ei,p,j) e has label γp,j
(E3) there is a unique p ∈ PX such that

α(E0,p,j) has exactly one element for each j ∈
[|T(p)|] and for every p′ 6= p, α(E0,p′,j) is empty
for all j.

Recall the MSO statement PART(X1, . . . , Xn)
from Equation 1 which expresses that X1, . . . , Xn

form a partition over the domain. We can also de-
fine a partition over a restricted domain Y to be:

resPART(Y,X1, . . . , Xn) :

∀x ∈ Y [x ∈ X1 ∪ · · · ∪Xn ∧ ¬x ∈ X1 ∩X2

∧ ¬x ∈ X1 ∩X3 ∧ · · · ∧ ¬x ∈ Xn−1 ∩Xn]

Using this formula, the requirements E1,E2 and
E3 are all expressible in MSO as follows:

EDGEX(W) : resPART(EG, E)∧
∧

i,p,j

∀e ∈ Ei,p,j labγp,j (e)∧
∨

p∈PX
[
∧

j

∃!e ∈ E0,p,j∧
∧

p′∈P,p′ 6=p

∧

j

E0,p′,j = ∅]

Let EDGE(W) = EDGES(W). In using the symbol
∧i,p,j we are quantifying over i ∈ [0, |NT(P )|],
p ∈ P , and j ∈ [|T(p)|].
Lemma 6. Let G be an RGG and let G ∈
L(G) then for each derivation tree T of G,
(G,αT) |=EDGE(W).

Example 13. For the grammar in Table 2, and
derivation tree and graph in Figure 7, we obtain
E = {E0,p,1 = {e9}, E0,p,2 = {e14}, E0,p,3 =
{e15}, E1,q,1 = {e4, e2}, E1,q,2 = {e13, e11},
E2,r,1 = {e3}, E2,r,2 = {e12}, E2,s,1 = {e1},
E2,s,2 = {e10}, E1,t,1 = {e6, e8}, E2,u,1 = {e7},
E1,u,1 = {e5}}. This clearly forms a partition of
the edges, and we can easily check that the rest of
the requirements of EDGE also hold.

Decomposition into Subgraphs This con-
straint partitions the graph into a set of connected
subgraphs, each of which is isomorphic to the ter-
minal subgraph of the right-hand side of some pro-
duction. The requirements are:

(S1) Every node in G is attached to some edge,
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(S2) for each anchor u ∈ Ci,p we can identify
a unique edge e ∈ Ei,p,j for each j ∈ |T(p)| such
that u anchors all of the endpoints of e,

(S3) for each edge e ∈ Ei,p,j we can identify a
unique anchor u ∈ Ci,p such that u anchors all of
the endpoints of e.

SUBGRAPHi,p,j(W) :

(∀v∃e ∨j vert(e, j) = v)∧
(
∀c ∈ Ci,p∃!e ∈ Ei,p,j
∃v1ANCp,i,x̄1(c, v1, {W}) ∧ · · · ∧
∃vjkANCp,i,x̄jk (c, vjk , {W})∧

edg(e, v1, . . . , vjk)
)
∧

(
∀e ∈ Ei,p,j∃!c ∈ Ci,p
∃v1ANCp,i,x̄1(c, v1, {W}) ∧ · · · ∧
∃vjkANCp,i,x̄jk (c, vjk , {W})∧

edg(e, v1, . . . , vjk)
)

Define SUBGRAPH(W) :
∧
i,p,jSUBGRAPHi,p,j .

Lemma 7. Let G be an RGG and let G ∈ L(G)
then for each derivation tree T of G, (G,αT) |=
SUBGRAPH(W).

Example 14. For the graph in Figure 7, we
look at SUBGRAPH1,q,1. We need to look at
C1,q = {v4, v2}, and E1,q,1 = {e4, e2}. Look-
ing at the graph, we can see that each of
ANCq,1,c̄q(v4, v4, {W}), ANCq,1,x̄4(v4, v5, {W}),
ANCq,1,c̄q(v2, v2, {W}), ANCq,1,x̄4(v2, v3, {W})
hold. The label ‘arg1’ is on e2, e4 and fq,1 so we
can quickly verify that this shows that the graph
satisfies SUBGRAPH1,q,1.

Subgraph Composition
We require that for a graph G with derivation
tree T, (G,αT) |= ANCp,i,x̄(u, v, {W}) for
u ∈ Ci,p and (G,αT) |= ANCp′,i′,x̄′(u

′, v, {W})
for u′ ∈ Ci′,p′ if and only if (G,αT) |=
FUSEp,i,x̄,p′,i′,x̄′(u, u

′, {W}) holds. This part of
the precondition ensures that two different ways
of looking at how nodes can be fused agree with
one another. The first is if a node can be anchored
by two different anchors then this node must be the
image of two nodes from different production ap-
plications. The second is that we have FUSE which
is the equivalence relation generated by a relation
over the neighbouring nodes in the derivation tree.

SHARE(W) :
∧

i,p,x̄,i′,p′,x̄′
∀c1 ∈ Ci,p∀c2 ∈ Ci′,p′

(
ANCp,i,x̄(c1, v, {W})∧

ANCp′,i′,x̄′(c2, v, {W})
↔ FUSEi,p,x̄,i′,p′,x̄′(u, u

′, {W})
)

Lemma 8. Let G be an RGG and let G ∈ L(G)
then for each derivation tree T of G, there exists
αT such that (G,αT) |= SHARE(W).

Example 15. Looking at Table 2 and
Figure 7, FUSEp,0,x̄1,s,2,x̄8(v5, v1, {W})
holds and ANCp,0,x̄1(v5, v6, {W}) and
ANCs,2,x̄8(v1, v6, {W}) both also hold.

The proof of each of the above lemmas is avail-
able in the supplementary materials. In each
of these proofs, we prove by induction on the
size of T that (G,αT) |= R(W) for R ∈
{EDGE, SUBGRAPH, SHARE}. In each induction,
we use the equations (defined below) which ex-
press αT in terms of the parameter assignments of
sub-trees of T.

Let G ∈ LX(G) and q : X → H such
that H has nonterminals Y1, . . . , Yn and G =
H[Y1/H1] . . . [Yn/Hn]. Then Hη ∈ LYη(G) for
each η ∈ [n]. Let Tη be a derivation tree for Hη

and let αTη be the assignment ofW to the nodes
and edges in Hη. Then we can define αT(E) in
terms of the set of αTη(E)s:

αT :





e ∈ Ei,p,j if e ∈ EHη , αTη : e ∈ Ei,p,j , i 6= 0

e ∈ Eη,p,j if e ∈ EHη , αTη : e ∈ E0,p,j

e ∈ E0,q,j if e ∈ EH , e = he(f̄q,j ,v0).

(2)

Where e = he(f̄q,j ,v0) means that e can be
uniquely identified as corresponding to f̄q,j since
H and R(q) are isomorphic and v0 is the root of
T. For the anchor set,
αT(C) = c ∪η∈[n] αTη(C) (3)

where c = h(c̄q,v0).

4.1.4 RGLs Satisfy the Precondition
The precondition of the transducer is the conjunc-
tion of each of these formulas,

ρX(W) : EDGEX(W)∧SHARE(W)∧SUBGRAPH(W)

Define ρ(W) = ρS(W).
Proposition 1. Let G be an RGG and let G ∈
L(G), then for each derivation tree T of G,
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there exists a parameter assignment αT such that
(G,αT) |= ρ(W).

Proof. We use the parameter assignment αT

which is defined from T in §4.1. Lemma 6 proves
that (G,αT) |= EDGE(W). Lemma 7 proves that
(G,αT) |= SUBGRAPH(W). Lemma 8 proves that
(G,αT) |= SHARE(W). Therefore, (G,αT) |=
ρ(W).

4.2 Parsing as Transduction

The transducer is made up of three types of for-
mulas: the precondition, the domain formulas, and
the relation formulas. We have established the pre-
condition ρ(W) and next we define the domain
and relation formulas. The domain formulas de-
fine the nodes of the derivation tree and so we
write node(x, {W}). The relation formulas define
which output node is the ith child of another out-
put node, written childi(x, y, {W}), and the labels
of the output nodes, written labp(x, {W}).

The domain of the output for a parameter as-
signment α is DT where:
DT(α) : {x | (G, x, α) |= node(x, {W})}
and node(x, {W}) : x ∈ C.

The relation formula childr(x, y, {W}) defines
the edges of the output of the transducer. We use
the formula PARp,i,p′,i′(u, u

′, {W}) from Lemma
4, this encodes that the derivation tree node corre-
sponding to u′ is the i′th child of the node corre-
sponding to u (which itself is the ith child of some
other node).
childi′(x, y, {W}) :

∨

i,p,p′
(PARp,i,p′,i′(x, y, {W})

We also need to assign labels to the tree nodes
which can be done via the unary relation:
labp(x, {W}) :

∨

i

x ∈ Ci,p

Example 16. Figure 8 shows the output of the
transducer when it takes Figure 7 as input with α
defined as in the previous examples. The domain
formulas specify the existence of the 9 nodes and
the relation formulas specify the edges between
the nodes, labelled by PAR formulas, and the la-
bels of the nodes, according to the Ci,p sets.

We have now defined each part of the transducer
τ from graphs to their derivation trees. Let G be
an RGG, and let X ∈ N . Then the corresponding

pv5 ∈ C0,p

qv4 ∈ C1,q

tv9 ∈ C1,t r v3 ∈ C2,r

qv2 ∈ C1,q u v8 ∈ C2,u

tv7 ∈ C1,t s v1 ∈ C2,s

u v6 ∈ C1,u

PARp,0,q,1(v5, v4)

PARq,1,r,2(v4, v3)PARq,1,t,1(v4, v9)

PARr,2,u,2(v3, v8)PARr,2,q,1(v3, v2)

PARq,1,s,2(v2, v1)PARq,1,t,1(v2, v7)

PARs,2,u,1(v1, v6)

Figure 8: The output of the transducer, variable names are
based on those of Figure 7. The PAR formulas are there to
explain why the edge exists and the v ∈ Ci,p formulas are
there to show where the node labels come from.

transducer τX is
〈ρX({W}), node(x, {W}),
(labp(x, {W}))p∈P ,
(edger(x, y, {W}))r∈[|NT(P )|]〉.

For start symbol S of G, let τ = τS . Let G
be a graph in L(G), and let α be a parameter as-
signment such that (G,α) |= ρ({W}). Then the
output of the transducer with respect to α is
τ(G,α) = (VH , labH , (childiH)i∈[0,|NT(P )|])

where VH = DT(α) = {x | (G, x, α) |=
node(x, {W})}, labH : VH → P such that
labH(x) = p if x ∈ α(Ci,p) for some i, and
childiH : VH → VH such that childHi (x, y) if
(G, x, y, α) |= PARp,i,p′,r(x, y, {W}).

4.2.1 Transducer Output and Derivation
Trees

We will show that for each G ∈ L(G) if T is a
derivation tree of G then T ∈ τ(G). We will also
show that for each T ∈ τ(G), if it is a derivation
tree in TG then it is a derivation tree of G.

Proposition 2. Let G be an RGG and τ be the cor-
responding transducer. Let G ∈ L(G) and T be a
derivation tree of G. Then T ∈ τ(G).

By Proposition 2, we know that for each G,
{T|val(T) = G} ⊆ τ(G).

Proposition 3. Let G be an RGG and G ∈
L(G). Let α be a parameter assignment such that
(G,α) |= ρ(W). Then if T = τ(G,α) is in TG
then VAL(T) = G.

Theorem 2. RGL ⊆ MSOL.
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Proof. Let G be an RGG and τ be the correspond-
ing transducer. By Propositions 2 and 3, for each
G ∈ L(G), τ(G) is a set which contains all of
the derivation trees of G and possibly other ele-
ments none of which are derivation trees of any
G′ ∈ L(G) where G′ 6= G. Therefore, for each
G ∈ L(G),
τ(G) ∩ TG = {T ∈ TG | VAL(T) = G}.
Therefore,
τ(L(G)) ∩ TG = {T ∈ TG | VAL(T) = G,G ∈ L(G)}.
And since {T ∈ TG | VAL(T) = G,G ∈
L(G)} = TG ,
τ−1(τ(L(G)) ∩ TG) = τ−1(TG).

τ−1(τ(L(G))∩TG) = {G ∈ L(G) | τ(G)∩TG 6=
∅)} = L(G). Therefore,
L(G) = τ−1(TG)

and so by Theorem 1 and the fact that TG is MSO
definable, L(G) is MSO definable.

5 Conclusions and Discussion

Property C1 of RGGs is used repeatedly in the
proof that RGL is in MSOL. This property implies
connectedness of the terminal subgraph, a prop-
erty that both Tree-like Grammars (Matheja et al.,
2015) and Restricted DAG Grammars (Björklund
et al., 2016) share, although both of these for-
malisms allow nodes that are connected only to
nonterminals, which is forbidden in RGG. We sus-
pect that all three families of languages are incom-
parable. That these restricted forms of HRG all
share the property of connectedness suggests that
it may be an important property. In particular, we
plan to investigate whether connectedness of ter-
minal subgraphs implies that an HRL is in MSOL.

Languages which contain graphs of the form
shown in Figure 9 are MSOL but not in RGL or
TLG; hence both RGL and TLG are proper sub-
families of SCFL. Languages of this form can be
produced by RDG, whose relationship to SCFL is
unknown. To produce graphs like this, we must al-
low productions containing nonterminals that are
not incident to any internal node. We would need
to allow this only in certain circumstances how-
ever, as we could easily produce a language of
graphs that look like the graph in Figure 9 with
equal numbers of a-labelled and b-labelled edges;
such languages are not MSO-definable. On a tech-
nical level, allowing such extensions would mean
that PAR no longer holds. (Courcelle, 1991) dis-

cusses this problem and introduces an alternative
representation of derivation trees called reduced
trees which enable some cases of this type to be
defined in MSOL. This point requires further in-
vestigation.

Another possible extension would be to con-
sider alternative forms of Lemma 2. Every MSO
formula in the transducer depends on this lemma.
We could potentially extend RGG if we can de-
fine other cases in which a path could be defined
in terms of its trace and initial vertex. We intend
to investigate such cases in future work.

. . .
a a

Figure 9: A graph where every edge is labelled a and has the
same tail but each edge has a unique head.
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Abstract
Several typological gaps have attracted
a lot of interest in the linguistic litera-
ture recently. These concern the Person
Case Constraint and the absence of ABA
patterns in adjectival gradation, pronoun
suppletion, case syncretism, and singular
noun allomorphy, among others. This pa-
per is the first to provide a unified ex-
planation of all these phenomena, and it
does so via weakly non-inverting graph-
transductions. A pattern P is absent from
the typology whenever such transductions
cannot produce the graph corresponding to
P from some fixed underlying base graph.
I show that weakly non-inverting graph-
transductions are particularly simple from
a computational perspective, and conse-
quently all these typological gaps follow
from general simplicity desiderata.

1 Introduction

One peculiar property of natural language is that
its typology rarely cover the full range of log-
ically possible options. The Person Case Con-
straint (PCC), for instance, blocks certain combi-
nations of direct objects (DOs) and indirect objects
(IOs) based on their person specification.

(1) a. * Roger
Roger

me
1SG.ACC

leur
3PL.DAT

a
has

présenté.
shown

b. Roger
Roger

le
3SG.ACC

leur
3PL.DAT

a
has

présenté.
shown
‘Roger has shown me/him to them.’

Modulo cases where both DO and IO have the
same person, there are 64 conceivable PCC vari-
ants yet only 4 are attested.

A similar case of limited variation is the ∗ABA
generalization, which was first stated by Bobaljik
(2012) with respect to adjectival gradation. While
many adjectives have regular comparative and su-
perlative forms (smart, smarter, smartest), some
adjectives display stem suppletion (good, better,
best). Bobaljik (2012) claims that there are no lan-
guages where the comparative is suppletive while
the superlative is regular (good, better, good-
est) — in other words, there are no ABA pat-
terns. Since then the ∗ABA generalization has
been observed in a large number of morphologi-
cal paradigms, and many proposals have been put
forward to explain the absence of ABA patterns.

However, cases of limited complexity like the
PCC and the ∗ABA generalization have not re-
ceived much attention from mathematical lin-
guists. One reason may be that these restrictions
on natural languages do not seem to line up with
the usual notions of generative capacity, computa-
tional complexity, learnability or minimal descrip-
tion length. The PCC, for instance, is utterly un-
remarkable from a formal perspective: the con-
strained elements are string adjacent clitics, and
the sets of permitted and blocked configurations
are both finite. As a result, every PCC variant
is strictly 2-local over strings (McNaughton and
Papert, 1971), making it even less complex than
simple phonological processes such as intervo-
calic voicing and locally bounded vowel harmony
(Heinz, 2015). Since different PCCs only vary in
which one of six IO-DO combinations they allow,
there are no quantifiable consequences for learn-
ability, either. The tools of mathematical linguis-
tics are geared towards vertical variation — hier-
archies of expressivity and complexity — whereas
phenomena like the PCC and the ∗ABA general-
ization pertain to horizontal variation, i.e. limita-
tions that seem arbitrary and pointless from a com-
putational perspective.
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I argue in this paper that mathematical linguis-
tics does in fact have a lot to say about such cases
of horizontal variation. Not only does a mathe-
matically informed perspective allow for a level of
abstraction where the PCC and the ∗ABA general-
ization can be given a unified explanation, it even
allows us to derive the limits of variation from
computational considerations. Contrary to initial
appearances, then, horizontal variation is indeed
interwoven with vertical variation upon closer in-
spection.

More concretely, I show that both the PCC and
the ∗ABA generalization can be decomposed into
two components: a base hierarchy that is repre-
sented by a graph, and a graph transduction that
produces a language-specific ordering from the
base hierarchy. The restrictions on cross-linguistic
variation arise from limitations on how the graph
transduction may change the ordering relations in
the base hierarchy. These limitations, in turn,
guarantee that the transductions belong to an es-
pecially weak class of mappings. Viewed from
the perspective of strings, they are input strictly
1-local relations (Chandlee, 2014).

The paper is laid out as follows. The few re-
quired basics of graph theory are summarized and
exemplified in Sec. 2 in an effort to accommo-
date readers from various backgrounds. I then dis-
cuss Graf’s (2014) algebraic account of the PCC,
which forms the basis of my graph-theoretic anal-
ysis. Said analysis is subsequently extended to a
number of phenomena in Sec. 4. All of them are
instances of the ∗ABA generalization or at least
closely related to it: adjectival gradation, pronoun
allomorphy, case syncretism, and noun stem allo-
morphy, With the full analysis in place, I then turn
to the computational investigation (Sec. 5) and ad-
dress some methodological concerns about the vi-
ability of studying horizontal variation across nat-
ural languages (Sec. 6).

2 Preliminaries

Even though the paper presupposes only minimal
familiarity with graph theory, I include a slightly
more accessible explanation of the basic concepts
due to the interdisciplinary subject matter, which
might attract readers without the expected math-
ematical background. The reader can safely skip
this section if they are not puzzled by terms like
weakly connected graph and graph transduction.

A directed graph G := 〈V,E〉 consists of a set

V of vertices and a set E ⊆ V × V of edges
that connect these vertices. Both V and E may
be empty, so there is no requirement for a graph to
contain any vertices or that any of its vertices are
connected by edges. We say that vertex v is imme-
diately reachable from vertex u iff there is an edge
from u to v (i.e. 〈u, v〉 ∈ E). In the special case
where u = v the edge is called a loop. Further-
more, u′ is reachable from u iff there are vertices
v1, . . . , vn such that v1 is immediately reachable
from u, and vi+1 is immediately reachable from
vi (1 ≤ i < n), and u′ is immediately reachable
from vn. Reachability thus holds iff 〈u, v〉 ∈ E+,
where E+ is the transitive closure of E. In this
case we also write u / v. If a vertex is reachable
from itself, the graph contains a cycle.

As an example, consider the following directed
graph G:

1 2

34

Its set of vertices is {1, 2, 3, 4}, and the set of
edges is {〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈2, 3〉}. Therefore
2 is immediately reachable from 1, and the other
way round. We also see that 3 is immediately
reachable from 1 and 2, but no vertex is imme-
diately reachable from 3. Moreover, 1 is reach-
able from itself even though it is not immedi-
ately reachable from itself. This is the case be-
cause 2 is immediately reachable from 1 and from
there we can immediately reach 1. Formally, we
have 〈1, 2〉 ∈ E and 〈2, 1〉 ∈ E, which implies
〈1, 1〉 ∈ E+. This also entails that G contains a
cycle even though there is no loop 〈1, 1〉 ∈ E.

A graph is undirected iff its edge relation is
symmetric: for all u, v ∈ V , 〈u, v〉 ∈ E iff
〈v, u〉 ∈ E. In an undirected graph, u is (imme-
diately) reachable from v iff v is (immediately)
reachable from u. An undirected graph is con-
nected iff every node is reachable from every other
node: ∀u, v ∈ V , 〈u, v〉 ∈ E+. A directed graph
is

• connected iff for all u, v ∈ V it holds that
〈u, v〉 ∈ E+ or 〈v, u〉 ∈ E+,

• weakly connected iff adding 〈v, u〉 to E for
every 〈u, v〉 ∈ E yields an undirected graph
that is connected.
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The example graph G above is not connected
because I) 1 and 2 are not reachable from 3,
and II) no node can reach 4 or be reached from
4. Due to II G is not weakly connected ei-
ther. If G were weakly connected, then we
could turn it into a connected undirected graph
by adding the symmetric counterpart of every ex-
isting edge. But this only grows the edge rela-
tion E of G from {〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈2, 3〉} to
{〈1, 2〉, 〈2, 1〉, 〈1, 3〉, 〈3, 1〉, 〈2, 3〉, 〈3, 2〉}. The re-
sulting graph is still not connected because there is
no edge from or to 4. But if 4 were to be removed
from the set of vertices, the graph would indeed be
weakly connected (but not connected).

A graph transduction τ is any computable bi-
nary relation between graphs. In this paper, how-
ever, I only consider transductions that do not
change the set of vertices. Given a graph G,
τ(G) := {G′ | 〈G,G′〉 ∈ τ}. In order to distin-
guish reachability in G from reachability in some
g ∈ τ(G) I sometimes use the symbol J instead
of /.

Graph transductions generalize string transduc-
tions and tree transductions from strings and trees
to arbitrary graphs. String transductions are
closely related to phonological and morphologi-
cal rewrite rules (Johnson, 1972; Kaplan and Kay,
1994; Mohri, 1997; Chandlee, 2014, 2016). Tree
transductions are the formal counterpart to syn-
tactic transformations, as is explicitly mentioned
in Rounds (1970), one of the earliest papers on
tree transducers; others include Engelfriet (1975)
and Baker (1978; 1979). For modern surveys see
Knight (2007) and Maletti (2010). For the pur-
poses of this paper, the technical aspects of graph
transductions are of little concern. The only rel-
evant point is that just like string and tree trans-
ductions, graph transductions differ in their com-
putational requirements so that some transductions
are easier to compute than others. For a more for-
mal perspective on graph transductions, the reader
is referred to Courcelle (1992) and Courcelle and
Engelfriet (2012).

3 Person Case Constraint

The vantage point for this project is the algebraic
analysis of the Person Case Constraint (PCC) in
Graf (2014). Once the analysis is recast in graph-
theoretic terms, it is easily extended to the ∗ABA
generalization in Sec. 4. From a didactic perspec-
tive this order of topics is slightly lopsided be-

cause Graf’s (2014) PCC treatment is more com-
plex than the morphological paradigms I extend it
to. But it is still fairly simple, and mastering the
complex case first will greatly speed up the discus-
sion of the simpler phenomena later on.

As I mentioned in the introduction, the
PCC renders the well-formedness of DO-IO-
combinations contingent on their person specifi-
cations. Four PCCs are attested in the literature
(Walkow, 2012). Using 1, 2, and 3 as shorthands
for first, second, and third person, respectively,
they are defined as follows:

S(trong)-PCC DO must be 3. (Bonet, 1994)

U(ltrastrong)-PCC DO is less prominent than
IO, where 3 is less prominent than 2, and 2
is less prominent than 1. (Nevins, 2007)

W(eak)-PCC 3IO combines only with 3DO.
(Bonet, 1994)

M(e first)-PCC If IO is 2 or 3, then DO is not 1.
(Nevins, 2007)

Note that cases where IO and DO have the same
person feature are frequently treated separately in
the literature, so I will not consider them here ei-
ther.

Graf (2014) provides a mathematical account
of the PCC that gradually moves from presemi-
lattices as a purely descriptive device to a more
theoretical proposal that can be recast in graph-
theoretic terms. Rather than reiterate this grad-
ual development, I immediately skip ahead to the
three essential components of the final account.

1. All variants of the PCC are subsumed under
the G(eneralized)-PCC, which states that IO
must not be (strictly) less prominent than
DO (IO 6< DO). This constraint will pro-
duce exactly the four attested PCC variants if
combined with the directed graphs in Fig. 1,
where m is more prominent than n (n < m)
iff n is reachable from m.

2. The independently motivated person hierar-
chy 3 < 2 < 1 of Zwicky (1977) is posited
as a universal base ordering for person. From
our perspective, Zwicky’s person hierarchy is
identical to the graph for the U-PCC.

3. The four PCC-specific prominence rankings
in Fig. 1 are obtained from Zwicky’s hierar-
chy by a graph transduction τ that adds or
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removes edges while preserving three essen-
tial properties of the base structure. In the
following, / and J denote the transitive clo-
sure of the edge relations in the input and out-
put graph, respectively, and all graphs are as-
sumed to contain no loops.

Weak connectedness The output graph pro-
duced by τ must be weakly connected.

Weak maximality If there is no y such that
y / x, then z J x only if we also have
x J z.

Strong minimality If there is no y such that
x / y, then there is no z such that x J z.

Then x < y iff y J x.

The reader is invited to verify for themselves that
the four graphs in Fig. 1, and only those, can be
obtained from Zwicky’s person hierarchy without
violating any of the three constraints above.

As an example of how this account enforces a
specific PCC consider the S-PCC, which only al-
lows IO-DO combinations if DO is 3. Hence the
only allowed combinations are IO1-DO3 and IO2-
DO3. The G-PCC requires IO 6< DO, and the
graph for the S-PCC establishes 2 < 1, 1 < 2,
3 < 1, and 3 < 1. So any instance where DO
is 2 or 1 necessarily results in a violation of the
G-PCC: for 1, IO cannot be 2 or 3, and for 2, IO
cannot be 1 or 3. With a third person DO, on the
other hand, IO can freely vary between 1 and 2.
Consequently, the only allowed combinations are
indeed those where DO is 3.

This graph-based account is remarkably sim-
ple in comparison to syntactic proposals, which
not only have to capture the typological varia-
tion but must also provide a syntactic encoding for
both the G-PCC and the person hierarchy (Anag-
nostopoulou, 2005; Adger and Harbour, 2007;
Nevins, 2007). The specificity of linguistic pro-
posals has certain advantages, as I discuss at the
end of Sec. 5, but it also comes with its fair share
of problems that the graph-theoretic view avoids.
In particular, abstracting away from the details of
syntactic implementation provides a greater de-
gree of flexibility and makes the account more ac-
commodating to new data. For example, recent re-
sults from Slovenian (Stegovec, 2016) suggest that
there are inverted variants of the PCC where the G-
PCC is DO 6< IO instead of IO 6< DO. Most syn-
tactic accounts are entirely built around the idea
that all instances of the PCC involve an IO 6< DO

asymmetry, and thus they must now be rethought
from the ground up or reinterpret the Slovenian
data. The graph-based proposal, by contrast, ends
up even less complex because the very specific
G-PCC has now been reduced to a general ban
against prominence mismatches: x 6< y, with lan-
guages differing in how they instantiate x and y as
IO and DO.

For the purposes of this paper, however, the
more interesting aspect of the graph-theoretic view
is how it captures typological variation in the PCC:
languages all start out with the same base hierar-
chy but may modify it as long as the distinguished
roles of the top and bottom positions are not com-
pletely destroyed. In fact, weak maximality and
strong minimality are instances of more general
order preservation properties.

Strongly non-inverting If x / y, then it is not the
case that y J x.

Weakly non-inverting If x / y, then y J x only
if x J y.

The transductions that produce the PCC graphs
in Fig. 1 are weakly non-inverting but go a little
bit beyond that because they are all strongly non-
inverting with respect to 3.

If weak maximality and strong minimality were
completely replaced by the property of being
weakly non-inverting, this would allow for several
new graphs. However, the prominence ranking <
is defined in terms of reachability rather than im-
mediate reachability, and all the new graphs turn
out to define the same reachability relations as one
of the two graphs depicted in Fig. 2. One is a
variant of U-PCC where we also have 1 < 2 and
2 < 3, the other one a version of the M-PCC with
2 < 3 and 3 < 2. As noted in Graf (2014) the for-
mer is actually attested in Cairene Arabic as a ban
against all DO-IO combinations (Shlonsky, 1997).
Although this phenomenon may not be a genuine
PCC, we may classify it as the I(ndiscriminate)-
PCC. The second PCC variant changes the Me
first-PCC into a Me second-PCC. This M2-PCC is
still unattested. Whether the mathematically more
pleasing notion of being weakly non-inverting
fully captures the PCC thus has to remain an open
question.

Even though not all weakly non-inverting graph
transductions may be suitable for the PCC, it
is certainly the case given our current data that
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1 2

3

(a) S-PCC

1

2

3

(b) U-PCC

1 2

3

(c) W-PCC

1

2 3

(d) M-PCC

Figure 1: Graphs for the four variants of the PCC

1

2 3

(a) M2-PCC

1 2 3

(b) I-PCC

Figure 2: Replacing weak maximality and strong
minimality by the weakly non-inverting property
allows for another two PCC-graphs.

all PCC graph transductions are weakly non-
inverting. In the next section, I argue that many
aspects of morphology are also closely tied to
weakly non-inverting graph transductions. In par-
ticular, the restriction to weakly non-inverting
graph transductions is sufficient to derive the ban
against ABA patterns that has attracted a great
amount of attention since Bobaljik (2012).

4 Deriving the ∗ABA Generalization

4.1 Stem Suppletion in Adjectival Gradation

The ∗ABA generalization refers to a particular gap
in various morphological paradigms. Given a mor-
phological subsystem where one may posit an un-
derlying hierarchy x < y < z, z cannot pat-
tern with x to the exclusion of y. At the begin-
ning of this paper I already presented an example
from suppletion in adjectival gradation, analyzed
at great depth in Bobaljik (2012). Bobaljik points
out that if a language allows for stem suppletion
in either comparatives or superlatives, it must al-
low for both. Data illustrating this generalization
is given in Tab. 1. If one follows the convention to
list the three forms in the order positive, compara-
tive, superlative and uses letters to indicate which
forms use the same stem, one can decompose the

gap into two constraints, ∗AAB and ∗ABA.

In Bobaljik (2012), these constraints are ex-
plained via structural assumptions. Bobaljik de-
composes adjectival forms into a tree template
such that comparatives contain the positive base
form as a subtree and are in turn themselves sub-
trees of the corresponding superlative forms. Then
∗AAB and ∗ABA follow from specific assump-
tions about the rewrite rules (tree-to-string trans-
ducers in computational terms) that map these tree
structures to the output string. Bobaljik and Sauer-
land (2017) provide a less stipulative explanation
grounded in the combinatorics of feature systems,
which is closer to my graph-theoretic proposal (al-
though they ultimately reject this content-agnostic
solution in favor of the structural account). Both
works, however, agree that ∗ABA is the more im-
portant constraint of the two — ∗AAB seems to
be specific to adjectival suppletion whereas ∗ABA
holds for many morphological paradigms (more
on that in the next subsections).

The increased importance of ∗ABA relative to
∗AAB is noteworthy because the former is indeed
more complex than the latter from the perspec-
tive of graph transductions. Suppose that there
is a universal underlying hierarchy of the form
HU := positive < comparative < superlative,
which we may identify with the U-PCC graph and
thus abbreviate as 1 < 2 < 3 (I stipulate that
x < y iff x J y rather than y J x in order to
stay close to linguistic intuitions, but this is im-
material for the actual account). Assume further-
more that two forms m and n of an adjective in-
volve the same (original or suppletive) stem only
if m < n and n < m in the language-specific
hierarchy HL. Applying this idea to the graphs
in Fig. 1 and 2 produces four different patterns:
AAB, ABC, ABB, and AAA (see Tab. 2). Cru-
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Language Positive Comparative Superlative Pattern

English smart smart-er smart-est AAA
English good bett-er be-st ABB
Finnish hyvä pare-mpi parha-in ABB

Latin bon-us mel-ior opt-imus ABC
Welsh da gwell gor-au ABC

unattested good bett-er good-est ∗ABA
unattested good good-er be-st ∗AAB

Table 1: Examples of attested suppletion patterns from Smith et al. (2016)

PCC graph Suppletion pattern

S-PCC AAB
U-PCC ABC
W-PCC ABC
M-PCC ABC

M2-PCC ABB
I-PCC AAA

Table 2: Adjectival gradation patterns defined by
the six PCC graphs

cially, ABA is not among these graphs. So the
ABA pattern cannot be produced from the 1 <
2 < 3 base order assuming that the graph trans-
ductions

• are weakly non-inverting, and

• produce weakly connected graphs, and

• do not relabel any nodes, and

• do not delete any nodes.

Most of these assumptions are innocent from a
linguistic perspective. Deletion of nodes makes no
sense in this case as it would amount to removing
the positive, comparative, or superlative form, but
we are only interested in languages with all three
forms because the ∗ABA generalization is triv-
ially satisfied otherwise. Relabeling nodes would
create an “anything goes” scenario where adjec-
tival gradation hierarchies could even be mapped
to person and number with no rhyme or reason.
And the output graphs must be weakly connected
because hierarchies in natural language never al-
low for elements that are completely unordered
with respect to the other elements in the hierar-
chy. This leaves only two non-trivial assumptions
that do the actual work of blocking ABA patterns:
graph transductions must be weakly non-inverting,

and the base hierarchy is HU := positive <
comparative < superlative.

Note that positing this hierarchy does not en-
tail that the ordering needs to be reflected in the
structure of adjectives as proposed by Bobaljik
(2012). Instead, the hierarchy may be taken to re-
flect the semantics of these constructions or arise
from some other unknown factor. For our pur-
poses, it only matters that we have such an un-
derlying base hierarchy, not what its origins may
be. And this is not a peculiarity of this approach:
even stating the ∗ABA generalization for purely
descriptive purposes presupposes this order. If one
instead assumed an order of, say, comparative <
superlative < positive, then the banned pattern
would be BAA instead of ABA. But the latter
is equivalent to ABB, which is allowed in many
other morphological paradigms that have nothing
to do with adjectives. So an implicit commitment
to HU is required whenever one seeks to analyze
adjectival stem suppletion as an instance of the
general ban against ABA patterns.

As a matter of fact, though, our finding can be
strengthened so that it is compatible with a number
of underlying hierarchies rather than just HU . As
long as the directed graph we start with is one of
the connected PCC graphs, the ABA pattern can-
not be produced.

Theorem 1. Let τ be a non-deleting, weakly non-
inverting graph transduction that does not relabel
any nodes and only produces connected graphs,
and let S be one of the connected graphs in Fig. 1
and 2. Then no G ∈ τ(S) allows for the ABA
pattern.

Proof. Recall that by definition two vertices u and
v may have the same realization iff u/v and v /u.
Therefore the ABA pattern can only be produced
by graphs where both 1/3 and 3/2 hold but for all
x ∈ {1, 3}, x / 2 holds only if 2 / x does not. No
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such graph can be produced by τ from any of the
four choices for S without deleting 2 or relabeling
nodes.

In each S it holds that 1/2 and 2/3 (wherefore
1 / 3). So if 3 J 1 and 1 J 3 in G ∈ τ(S), then
necessarily 3 J 2:

1. Because G ∈ τ(S) is connected, at least one
of the following must hold: 1 J 2, 2 J 1,
3 J 2, 2 J 3.

2. If 2 J 3, then 2 J 1 by transitivity.

3. If 2 J 1, then 1 J 2 because τ is weakly
non-inverting.

4. If 1 J 2, then 3 J 2 by transitivity.

But 3 J 2 implies 2 J 3 because τ is weakly non-
inverting. So either 3 J 2 and 2 J 3 or it does not
hold that both 3 J 1 and 1 J 3.

The proof reveals that the ∗ABA generalization
is compatible with any universal base hierarchy
that specifies at least positive ≤ comparative and
comparative ≤ superlative.

While ∗ABA follows immediately if the graph
transductions must be weakly non-inverting,
∗AAB is much harder to derive. As shown in
Tab. 2, AAB patterns are produced by the S-PCC
graph. In order to block this graph, one has to dis-
allow 2 J 1. But then the I-PCC graph would
be blocked, too. This only leaves the stipulative
option of banning 2 J 1 unless 3 J 1. Intu-
itively, this states that 1 loses its privileged status
only if 1, 2, and 3 are all equally prominent. Just
as in the case of the PCC, then, we have to slightly
strengthen the requirements on the graph transduc-
tion to avoid overgeneration. That this strengthen-
ing pertained to 3 in the case of the PCC but to
1 in the case of adjectives is not significant since
the two are each other’s duals. We could have just
as well identified HU with the inverse of the U-
PCC graph and obtained a strengthening require-
ment with respect to 3 this way.

Putting aside these minor details, we can now
say with certainty that the PCC and the ∗ABA gen-
eralization are remarkably similar from a graph-
theoretic perspective. Both operate within a class
of graphs that are obtained from an underlying
base order by some weakly non-inverting graph
transduction. Each one puts an additional restric-
tion on the transduction, and in each case the re-
striction is designed to preserve the special status

of an element at the top/bottom of the underlying
hierarchy.

4.2 Other Morphological Paradigms
As mentioned earlier on, the ban against ABA pat-
terns also holds with respect to other morpholog-
ical paradigms. Some of those can be explained
in exactly the same manner as the ABA ban with
adjectives, whereas others require minor modifica-
tions.

Pronoun allomorphy The simplest case arises
with pronoun allomorphy. Harbour (2015) con-
ducts an extensive survey of pronoun systems and
shows that all of them adopt one of four systems
with respect to person:

• all persons are the same (AAA),

• first and second person are the same (AAB),

• second and third person are the same (ABB),

• all persons are different (ABC).

Again the ABA pattern is missing, and this fact
is expected if graph transductions must be weakly
non-inverting and the underlying person hierarchy
fixes 3 < 2 and 2 < 1, as we already had to as-
sume for the PCC. However, a quick glance at
Tab. 2 reveals that an even stronger result holds:
AAA, AAB, ABB, and ABC are exactly the pat-
terns that can be generated under our account.
Pronominal systems, then, are the first instance
where our base assumptions give a full characteri-
zation of the morphological paradigm and no extra
stipulations are needed.

Case syncretism Caha (2009; 2013) proposes
the Strong Case Contiguity Hypothesis according
to which case syncretism may only target con-
tiguous areas of Blake’s Case Hierarchy (Blake,
2001):

Nom > Acc > Gen > Dat > Inst > others

This means that a language may mark, say, ac-
cusative, genitive, dative and instrumental the
same, but not accusative and instrumental to the
exclusion of dative and genitive. In other words,
the Strong Case Contiguity Hypothesis extends
the ∗ABA generalization beyond systems with
three-way contrasts.

Using Blake’s Case Hierarchy as a baseline, it
is possible with our current assumptions to gen-
erate graphs that instantiate some ABA patterns.
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Figure 3: Two graphs that generate ABA patterns for case

Two examples are displayed in Fig. 3. A notable
property of these graphs is that they are not con-
nected, even though they are weakly connected. If
the graph transductions are limited to producing
connected graphs, then no ABA patterns can be
generated anymore. So case syncretism may once
again not be too different from the PCC, adjecti-
val gradation, or pronoun allomorphy, except that
it puts more stringent restrictions on what a valid
case hierarchy may look like: no two cases may be
unordered with respect to each other.

That said, Harðarson (2016) points out some
apparent exceptions to Caha’s Strong Case Con-
tinuity Hypothesis in Germanic languages, which
display accusative-dative syncretism in some case
paradigms but not accusative-genitive-dative syn-
cretism. One solution would be to posit a more
relaxed version of Blake’s hierarchy where geni-
tive and dative are unordered with respect to each
other. This allows for all the syncretism patterns
of Blake’s original hierarchy but also includes
accusative-dative syncretism. Whether this is the
right way to deal with these exceptions has to re-
main an open issue for now. Thankfully the ty-
pological literature on this topic is very rich (see
(Zompí, 2016) and references therein), so a deeper
exploration should be possible in the near future.

Noun stem allomorphy Case syncretism has
also been studied with respect to the noun stems
that are chosen for specific cases. In Latin, for ex-
ample, the nominative of ‘man’ is hom-o, whereas
the accusative is homin-em. Nominative and ac-
cusative thus are formed with different stems of
the same noun. In the following, I only consider
the behavior of singular stems because the typol-
ogy of plural stem allomorphy is still understudied
to the best of my knowledge.

McFadden (2017) proposes that all languages
obey the Nominative Stem-Allomorphy General-
ization: if noun stem allomorphy is conditioned
by case, it distinguishes the nominative from all
other cases. In other words, noun stem allomorphy
always displays an ABn pattern. For a language
with three cases, McFadden’s generalization per-
mits only AAA and ABB while excluding AAB,
ABA, and ABC.

This is an even more restrictive paradigm than
the one we encountered for case syncretism. But
it can still be explained in terms that fit naturally
into the graph-theoretic framework. Note that, as
indicated in Tab. 2, AAA and ABB are exactly
the patterns generated by the graphs in Fig. 2 —
the complement set of our four main PCC graphs
from Fig. 1. While at first counterintuitive, this
actually makes it possible to describe noun stem
allomorphy as the combination of case syncretism
with an inverted PCC. First, suppose once more
that the graph transduction must produce a con-
nected graph, as we did for case syncretism. Then
we only need to enforce two more properties for
graph transductions. The first one is weak maxi-
mality, which was also part of our account for the
PCC. The second is weak non-maximality:

Weak non-maximality If there is a y such that y/
x, then x J z iff z J x.

When applied to Blake’s hierarchy, these two
properties ensure that nominative is always a max-
imal vertex, whereas all other vertices are reach-
able from each other. This guarantees that only
ABn and An patterns are possible.

Interim summary We have looked at five dif-
ferent phenomena where typological variation is
much more narrow than one would expect from a
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computational perspective — the PCC, adjectival
gradation, pronoun suppletion, case syncretism,
and singular noun stem allomorphy. In all five
cases, the typology could be derived from a very
natural and independently motivated base hier-
archy in combination with certain assumptions
about structure preservation. For each language,
the base hierarchy is converted into a language-
specific hierarchy by some graph transduction τ
that must not delete or relabel any nodes, has to
produce weakly connected graphs, and, crucially,
is weakly non-inverting. In some cases, this al-
ready explains the full range of variation, while
other paradigms seem to invoke additional restric-
tions on τ . A succinct overview is given in Tab. 3.

5 Why These Properties?

The previous two sections have established that
the range of typological variation across many
morphological paradigms is accurately delimited
if one assumes that there are universally shared
base hierarchies that may only be manipulated
in narrowly restricted ways. At the very center
of my formal investigation was the requirement
that graph transductions be weakly non-inverting.
While descriptively adequate, it seems puzzling
that natural languages should obey such a partic-
ular property. And even if one grants that being
weakly non-inverting is advantageous for some
reason, why is the requirement not strengthened so
that all graph transductions must be strongly non-
inverting. If one is good, then the other should be
even better. I contend that there are indeed rea-
sons that make weakly non-inverting graph trans-
ductions particularly simple from a computational
perspective, whereas strongly non-inverting graph
transductions do not further improve on this sim-
plicity. Weakly non-inverting graph transductions
therefore represent a sweet spot between flexibil-
ity and computational simplicity.

Several computational considerations underly
this claim. First, the property of being weakly
non-inverting enforces a limited amount of order
preservation, and order preservation is known to
play a central role for other aspects of language,
too. Mönnich (2006; 2007) shows that standard
Minimalist grammars (Stabler, 1997), a formal-
ization of the Minimalist syntax (Chomsky, 1995),
generate tree languages that are the image of regu-
lar tree languages under direction preserving MSO

transductions. The tree languages of tree adjoining
grammars (Joshi, 1985), on the other hand, are the
image of regular tree languages under inversely di-
rection preserving MSO transductions (Mönnich,
2006, 2012). Either way order preservation seems
to be an important aspect of tree transductions in
syntax, so it is not unreasonable that graph trans-
ductions in morphology may display similar limi-
tations.

But there are stronger arguments that go beyond
mere analogy. If the computational complexity of
transductions is severely restricted, they are sim-
ply incapable of reversing order and hence are nec-
essarily weakly non-inverting. Unfortunately the
current knowledge of very weak graph transduc-
tions is not as well-developed as that for string and
tree transductions, so I will illustrate my point with
string transductions instead.

Note first that all the graphs in this paper are
strings or string-like. When a graph is not a string,
that is because there are two vertices that either
form a cycle or are not immediately reachable
from each other. We may use the dedicated sym-
bols - and | for these cases such that u-v means
that u and v form a cycle, and u|v denotes that u is
not immediately reachable from v, and vice versa.
With this notation, the four PCC graphs in Fig. 1
correspond to the strings 1-2 3, 1 2 3, 1|2 3, and
1 2|3, respectively. The notation will bring to light
that weakly non-inverting graph transductions in-
voked in this paper correspond to extremely weak
string transductions.

Suppose we have a string transduction τ that
can only insert - or | after a symbol. When this
transduction is applied to the input string 1 2 3, it
produces nine strings:

1 2 3 1 2-3 1 2|3
1-2 3 1-2-3 1-2|3
1|2 3 1|2-3 1|2|3

Among those strings, 1|2-3, 1-2|3 and 1|2|3 are
not weakly connected graphs. The remaining six
strings represent exactly the graphs in Fig 1 and
Fig 2. This establishes that τ computes a weakly
non-inverting graph transduction.

Towards the end of the discussion of case syn-
cretisms I entertained the hypothesis that the base
hierarchy might not be totally ordered. In order to
emulate such cases, the string transduction τ must
also be allowed to delete the symbols - and |. Now
suppose that our base is 1 2 3|4 5, which may be
regarded as a truncated version of the partially or-
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Phenomenon Target graph Additional properties of τ

PCC weakly connected weak maximality, strong minimality
Adjectival gradation weakly connected 2 J 1→ 3 J 1
Pronoun allomorphy weakly connected none

Case syncretism connected none
Noun stem suppletion connected weak maximality, weak non-maximality

Table 3: Parameters of each morphological paradigm

dered case hierarchy I proposed. Then τ yields
all strings of the form 1u 2 v 3x 4 y 5, where u,
v, x, and y may each be |, -, or the empty string
ε. Close inspection of this pattern reveals that τ
still encodes a weakly non-inverting graph trans-
duction.

Among string transductions, τ belongs to a very
weak class. It is computed by a transducer with
a single state (Fig. 4) and can be regarded as in-
put strictly 1-local (ISL-1) in the sense of Chan-
dlee (2014).1 Transductions that invert the order

σ : σ
- : ε
| : ε

ε : -
ε : |

Figure 4: The single state transducer for comput-
ing weakly non-inverting graph transductions over
string representations.

of symbols in arbitrary strings do not belong to this
class. Even switching the order of adjacent sym-
bols cannot be accomplished. This is very clear
from the ISL perspective. A transduction is k-ISL
iff the output for a given node n depends on the
label of n and the labels of the preceding k − 1
symbols. Chandlee (2014; 2016) proves that k-
ISL transductions are only capable of k-bounded
metathesis, which means that two symbols in the
input string can be switched iff they are separated
by at most k − 2 symbols. This immediately en-
tails that the order of two symbols can be reversed
iff k ≥ 2, wherefore 1-ISL transductions are inca-
pable of reversing order.

It seems, then, that the restriction to weakly
non-inverting graph transductions can be derived

1Note however, that the transduction discussed here is a
relation produce as multiple outputs may be produced from a
single input, whereas Chandlee only studies transducers that
compute functions. This difference, while mathematically
important, has no immediate bearing on the overall argument,
which hinges only on the fact that ISL transductions can only
consider a locally bounded context when rewriting strings.

from general simplicity desiderata. The recourse
to strings is inelegant but unfortunately necessary
as long as the class of ISL transductions has not
been lifted from strings to graphs. Hopefully this
will be rectified in the near future.

This still leaves open the question, though, why
subparts of morphology and morphosyntax should
impose additional criteria, in particular odd ones
like 2 J 1 → 3 J 1 for adjectival gradation.
While it is of course possible that a better compu-
tational understanding of graph transductions may
eventually offer a satisfying explanation, a more
likely scenario is that these properties are “echoes”
of mechanisms that operate at a lower level of de-
scription. The graph-theoretic approach provides
a more unified perspective than alternative propos-
als in the literature because it deliberately abstracts
away from how these graphs and transductions are
implemented in the grammar. There is no men-
tion of features, agreement operations, or struc-
tural constraints because those vary wildly across
domains and would obscure what the phenomena
have in common. But these low-level processes
might be subject to additional constraints that limit
the range of typological variation even more. Ab-
stracting away from them means losing the moti-
vation behind those restrictions.

This highlights that the graph-theoretic view
supplements existing approaches in linguistics,
rather than replacing them. Its abstract nature
makes it a lot easier to state general properties that
are shared by all morphological paradigms. But
when studying a single phenomenon in depth, the
more fine-grained approaches favored by linguists
may provide the necessary level of detail to ex-
plain aspects that are reduced to ad hoc stipula-
tions in the graph-theoretic view.

6 Remarks on Data Reliability

This paper is, in essence, a mathematical explo-
ration of a few particularly prominent typological
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universals. A common concern in this regard is
the reliability of the data on the basis of which
these universals are posited. While the general-
izations I discussed in Sec. 3 and 4 draw from
a wide range of typologically diverse languages,
even very extensive surveys such as Smith et al.
(2016) include only about 60 languages. Consid-
ering that there are an estimated 6000 languages
spoken today, this covers only 1% of the poten-
tial data. What more, languages frequently display
a large amount of variation across their dialects,
wherefore the amount of undetected “typological
dark matter” may be even larger. One has to won-
der, then, how reliable these generalizations are
and whether it is even worthwhile to explore them
from a formal perspective.

Unsurprisingly, I believe that they are worth ex-
ploring and that the arguments that are commonly
marshaled against the enterprise do not stand up to
closer scrutiny. If claims about substantive univer-
sals are unreliable due to the relative scarcity of
data, then mathematical linguists should not put
much stock into the mild context-sensitivity hy-
pothesis either. After all, there may be unknown
languages out there that are not even context-
sensitive. One may argue that this is unlikely be-
cause the parsing algorithm for such a language
could not run in polynomial time, but this holds
only if one adopts the competence-performance
distinction.

More importantly, it is just as conceivable that
variation in the realm of substantive universals
is also limited by independent factors — I pre-
sented a computational argument along these lines
in Sec. 5, but beyond that there may be general
principles of human cognition that prefer, say, a
base ordering of 1 < 2 < 3 over 3 < 1 < 2.
Therefore the exploration of substantive universals
is methodologically no different from the study
of formal universals; if the latter is a viable en-
terprise, the former is too. Being doubtful about
all substantive universals while embracing formal
universals cannot be motivated on logical grounds.
And refraining from making any claims in the ab-
sence of rock solid data is unscientific: science
proceeds in the absence of perfect knowledge, and
every inductive step necessarily requires a leap of
faith regarding the universality of the existing data.

That said, there is of course a bigger risk of
overfitting the data in the area of morphosyn-
tax because the models must characterize much

smaller classes. The mildly context-sensitive
hypothesis leaves a lot more room for cross-
linguistic variation, and if it were to be disproved
the problem would be solved by adding an addi-
tional mechanism to push weak generative capac-
ity to the required level. Designing a model around
four attested variants of the PCC or the ∗ABA
generalization increases the risk that a single data
point will render the whole model unsalvageable.

This has happened before: all Minimalist ac-
counts of the PCC assumed a strict asymmetry
with DO more prominent than IO, and conse-
quently they may now need to be redesigned from
the ground up if some languages do indeed dis-
play a mirror-PCC with IO more prominent than
DO (Stegovec, 2016). However, the root of the
problem is not that these proposals treated the data
that was known at that point as an upper bound on
the range of variation, but rather that their param-
eters were too tightly intertwined to allow for easy
modification in the future.

The graph-transduction perspective in this pa-
per, on the other hand, is similar to other math-
ematical approaches in that it displays a great
amount of malleability to accommodate a shifting
empirical landscape. Suppose for the sake of argu-
ment that an ABA pattern exists in some languages
for some morphological or morphosyntactic do-
main. That would disprove the ∗ABA generaliza-
tion, but it would not change the fact that ABA pat-
terns are much rarer than any of the alternatives.
From a formal perspective, this is easy to accom-
modate by moving to weighted graph transduc-
tions that penalize reversal and thus make ABA
patterns more costly. The main insights about the
importance of being weakly non-inverting stay the
same, but they are extended from the Boolean do-
main to a weighted one.

The move towards a quantitative perspective
is prudent anyways because it generalizes claims
about the possibility of certain paradigms to
claims about their relative frequency, which can be
tested even with a non-exhaustive data set. For ex-
ample, Tab. 2 lists three different graphs that pro-
duce ABC patterns, whereas only one graph each
gives rise to AAB, ABB, and AAA. It seems un-
likely that ABC is typologically three times more
common than AAA, but a more sophisticated anal-
ysis may be able to derive better quantitative pre-
dictions. At any rate the approach presented in
this paper has the requisite flexibility to be viable
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even with limited data, and in particular to avoid
irreparable damage due to overfitting.

Conclusion

The account proposed in this paper derives typo-
logical gaps from two components: a fixed un-
derlying hierarchy shared across all languages (a
person hierarchy, case hierarchy, and so on), and
heavily restricted graph transductions that gener-
ate the language-specific graph(s) from said hi-
erarchy. The most important restriction is that
the transductions be weakly non-inverting. Not
only does this property severely limit their ability
to alter the underlying hierarchy, it also reduces
their complexity tremendously. Applying con-
cepts from the theory of subregular string trans-
ductions, we may view these transductions as in-
put strictly 1-local, which is the weakest non-
trivial class of transductions. Overall, then, the
graph-theoretic view sheds new light on these ty-
pological gaps and demonstrates the virtues of a
mathematical approach that abstracts away from
matters of implementation.

Of course a lot of work remains to be done.
The literature on typological generalizations is
enormous, and only a few could be touched on
here. It will be particularly important to extend
this approach to phenomena where multiple hi-
erarchies are combined, e.g. number and person
in pronoun hierarchies. Some other phenomena
such as resolved agreement have more of a group-
theoretic flavor. Resolved agreement refers to
cases where an adjective agrees with multiple co-
ordinated noun phrases. In Icelandic, for example,
the adjective displays masculine agreement if all
noun phrases are masculine, feminine if all noun
phrases are feminine, and neuter in all other cases.
It is still unclear whether the graph-theoretic per-
spective can be fruitfully expanded to such phe-
nomena or whether algebraic techniques might
provide a better fit. Irrespective of the final an-
swer, there is no doubt that the abstraction and
flexibility of mathematical approaches will be a
great aid in the study of typological gaps.
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In this talk I will describe two attempts at in-
troducing syntactic structure into semantic models
using neural network architectures. The first study
focuses on a particular grammatical construction,
namely relative clauses, and centers around the
design of a new dataset for testing compositional
distributional models. The dataset is called REL-
PRON, and consists of pairs of terms and proper-
ties, such as

telescope : device that astronomer uses.

The idea is that a good compositional model will
produce a vector representation of the property
which is close to the vector for the term.

The second study focuses on deriving seman-
tic vectors for phrases and whole sentences, which
are then used in two tasks: sentence entailment,
and a dictionary definition-term matching task. A
feature of the proposed solution is that the syntac-
tic structure for a sentence is induced in an un-
supervised fashion, trained end-to-end in order to
optimize for the final task.

I will finish with some thoughts on whether and
how insights from traditional models of syntax and
semantics can contribute to semantic models based
on neural networks.
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Abstract

We define infinitary count-invariance
for categorial logic, extending count-
invariance for multiplicatives (van
Benthem, 1991) and additives and bracket
modalities (Valentı́n et al., 2013) to
include exponentials. This provides an
effective tool for pruning proof search in
categorial parsing/theorem-proving.

1 Introduction

In logical grammar, which dates back to (Aj-
dukiewicz, 1935), grammar is reduced to logic: an
expression is grammatical if and only if an associ-
ated logical statement is a theorem of a calculus.

1.1 Sharing
In standard logic information does not have mul-
tiplicity. Thus where + is the notion of addition
of information and ≤ is the notion of inclusion we
have x+x ≤ x and x ≤ x+x; both these two prop-
erties together amount to idempotency: x+x = x.
These properties are expressed by the rules of in-
ference of Contraction and Expansion:

(1) a.
∆(A, A)⇒ B

Contraction
∆(A)⇒ B

b.
∆(A)⇒ B

Expansion
∆(A, A)⇒ B

Linguistic resources do not freely have these prop-
erties: grammaticality is not generally preserved
under addition or removal of copies of words or
expressions. However, there are some construc-
tions manifesting something similiar. Parasitic
gaps involve a kind of Contraction. Parasitic gaps
cannot occur anywhere, thus:

(2) *the slave thati John sold ei to ei

Rather, we assume here that as the term ‘parasitic’
suggests, a parasitic gap must fall within an is-
land. Extraction from weak islands can become
fully acceptable when accompanied by a cobound
non-island extraction:

(3) a. man thati [the friends of ei] admire ei

b. paper thati John filed ei [without
reading ei]

c. paper thati [the editor of ei] filed ei

[without reading ei]

And iterated coordination allows a kind of Expan-
sion:

(4) John likes, Mary dislikes and Bill loves Lon-
don.

That is, in logical grammar a controlled use of
idempotency, or sharing, is motivated. Girard
(1987) introduced exponentials for such control.
Versions of the exponentials have been used to
treat (parasitic) gaps and iterated coordination
and iterated “respectively” in categorial gram-
mar (Morrill, 2017), (Morrill and Valentı́n, 2015a,
2016b).

1.2 Count-Invariance
Count-invariance for multiplicatives in (sub)linear
logic is introduced in van Benthem (1991). This
involves simply checking the number of positive
and negative occurrences of each atom in a se-
quent. Thus where #(Σ) is a count of the sequent
Σ we have:

(5) ` Σ =⇒ #(Σ) = 0

I.e. the numbers of positive and negative occur-
rences of each atom must exactly balance for the
sequent to be a theorem. This provides a neces-
sary, but of course not sufficient, criterion for the-
oremhood, and can be checked rapidly. It can be
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used as a filter in proof search: if backward chain-
ing proof search generates a goal which does not
satisfy the count-invariant, the goal can be dis-
carded. This notion of count for multiplicatives
was included in the categorial parser/theorem-
prover CatLog (Morrill, 2012).

In Valentı́n et al. (2013) the idea is extended to
additives (and bracket modalities). Instead of a
single count for each atom of a sequent Σ we have
a minimum count #min(Σ) and a maximum count
#max(Σ) and for a sequent to be a theorem it must
satisfy two inequations:

(6) ` Σ =⇒ #min(Σ) ≤ 0 ≤ #max(Σ)

I.e. the count functions #min and #max define an
interval which must include the point of balance
0; for the multiplicatives, #min = #max = # and
(6) reduces to the special case (5). This gener-
alised notion of count is included in the categorial
parser/theorem-prover CatLog2.

The structure of the continuation of the paper
is as follows. In Section 2 we present the infini-
tary count algebra which we employ, we define
the fragment of categorial logic for which we il-
lustrate count invariance, and we define the (in-
finitary) count functions for this fragment. In Sec-
tion 3 we state and prove our count-invariance the-
orem. In Section 4 we evaluate the introduction of
exponential count invariance experimentally in re-
lation to CatLog parsing/theorem-proving.

2 Infinitary Count Algebra

We consider terms built over constants 0, 1,
⊥ (−∞: minus infinity), and > (+∞: plus infinity)
by binary operations of plus (+), minus (−),
minimum (min) and maximum (max), and the
infinitary step functions X and Y as follows where
i and j are integers (* indicates undefined):

+ j ⊥ >
i i+ j ⊥ >
⊥ ⊥ ⊥ ∗
> > ∗ >

− j ⊥ >
i i− j > ⊥
⊥ ⊥ ∗ ⊥
> > > ∗

min j ⊥ >
i |i+ j|−|i− j|

2 ⊥ i
⊥ ⊥ ⊥ ⊥
> j ⊥ >

max j ⊥ >
i |i+ j|+|i− j|

2 i >
⊥ j ⊥ >
> > > >

X(i) =

{ > if i > 0
i if i ≤ 0

Y(i) =

{
i if i ≥ 0
⊥ if i < 0

(7) Proposition. 0. ⊥ < i < >; 1. for a, b < >,
a + b < >; 2. for a, b > ⊥, a + b > ⊥; 3. for
a > ⊥& b < >, b−a < >; 4. for b > ⊥& a <
>, b−a > ⊥; 5. for a, b > ⊥, min(a, b) > ⊥&
max(a, b) > ⊥; 6. for a, b < >, min(a, b) < >
& max(a, b) < >; 7. for a > ⊥, X(a) > ⊥; 8.
for a < >, Y(a) < >.

2.1 The count functions

The count function, or count functions, are func-
tions from types and sequents into values in the
count algebra such that if sequents are provable
their images under the count functions fall within
a certain range. It follows that if their images do
not fall within the required range then the sequents
are not provable; we give examples after defining
the count functions, in the next subsection. This
provides an efficient filter on parsing/theorem-
proving, as we show in the last section.

Let us assume primitive types P. For Q ∈
P∪{[]}, m ∈ {min,max} and min = max and
max = min we define

#m,Q(Γ⇒ A) = #◦m,Q(A) − #•m,Q(Γ)

where #◦ and #• are as below. We define the en-
richment LAb!b? of the Lambek calculus (Lam-
bek, 1958) with types Tp as follows:

Tp ::= P |
Tp\Tp | Tp/Tp | Tp•Tp |
Tp&Tp | Tp⊕Tp |
[ ]−1Tp | 〈〉Tp |
!Tp | ?Tp

Where P ∈ P, p ∈ {•, ◦}, and • = ◦ and ◦ = • we
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define the count functions:

#p
m,Q(P) =

1 if Q = P
0 if Q , P

#p
m,Q(A\C) = #p

m,Q(C) − #p
m,Q(A)

#p
m,Q(C/B) = #p

m,Q(C) − #p
m,Q(B)

#p
m,Q(A•B) = #p

m,Q(A) + #p
m,Q(B)

#◦m,Q(A&B) = m(#◦m,Q(A), #◦m,Q(B))

#•m,Q(A&B) = m(#•m,Q(A), #•m,Q(B))

#◦m,Q(A⊕B) = m(#◦m,Q(A), #◦m,Q(B))

#•m,Q(A⊕B) = m(#•m,Q(A), #•m,Q(B))

#p
m,P([ ]−1A) = #p

m,P(A)

#p
m,[]([ ]−1A) = #p

m,[](A) − 1

#p
m,P(〈〉A) = #p

m,P(A)

#p
m,[](〈〉A) = #p

m,[](A) + 1

#◦m,Q(!A) = #◦m,Q(A)

#•min,Q(!A) = Y(#•min,Q(A))

#•max,P(!A) = X(#•max,P(A))

#•max,[](!A) = >
#◦min,Q(?A) = Y(#◦min,Q(A))

#◦max,Q(?A) = X(#◦max,Q(A))

#•m,Q(?A) = #•m,Q(A)

(8) Lemma. #p
m(A) is defined and ⊥ <

#max(A) & #min(A) < >.

Proof. By induction as in Figure 1; justifications
refer to the Proposition (7). �

To present sequents we define configurations
Config and tree terms TreeTerm in terms of types
Tp as follows, where Λ is the empty string:

Config ::= Λ | TreeTerm,Config
TreeTerm ::= Tp | [Config]

The rules for LAb!b? are shown in Figure 2. Note
that !C is of a generalised form necessary to prove
Cut-elimination in the presence of !R. Note also
that ?L is an infinitary rule; it is not used in linguis-
tic applications. We include it here for the sake of
showing technical completeness of the count in-
variance. For tree terms and configurations, counts
are:

#•m,Q(Γ,∆) = #•m,Q(Γ) + #•m,Q(∆)
#•m,P([Γ]) = #•m,P(Γ)
#•m,[]([Γ]) = #•m,[](Γ) + 1
#•m,Q(Λ) = 0

Lemma 8 extends to configurations.

2.2 Examples

Relativisation including medial and parasitic ex-
traction is obtained by assigning a relative pro-
noun a type (CN\CN)/(!N\S ) whereby the body
of a relative clause is analysed as !N\S . By
way of example of count-invariance, we show
how it discards N,N\S ⇒ !N\S corresponding to
the ungrammaticality of a relative clause with-
out a gap: *paper that John walks. We have
the max N-count: #max,N(N,N\S ⇒ !N\S ) =

#◦max,N(!N\S ) − #•min,N(N,N\S ) = #◦max.N(S ) −
#•min,N(!N) − #•min,N(N) − #•min,N(N\S ) = 0 −
Y(#•min,N(N)) − 1 − #•min,N(S ) + #◦min,N(N) =

−Y(1) − 1 − 0 + 1 = −1 − 1 + 1 = −1 6≥ 0 which
means that the count-invariance is not satisfied.

Iterated sentential coordination is ob-
tained by assigning a coordinator the type
(?S \S )/S . By way of a second exam-
ple we show how count-invariance discards
N,N,N\S ⇒ ?S corresponding to the un-
grammaticality of unequilibrated coordination:
*John Mary walks and Suzy talks. Max N-count
is: #max,N(N,N,N\S ⇒ ?S ) = #◦max,N(?S ) −
#•min,N(N,N,N\S ) = X(#◦max,N(S )) −
#•min,N(N) − #•min,N(N) − #•min,N(N\S ) =

X(0) − 1 − 1 − #•min,N(S ) + #•max,N(N) =

0 − 2 − 0 + 1 = −1 6≥ 0 which means that the
count-invariance is not satisfied.

3 Theorem and Proof

Our main theorem is:

(9) Theorem.

` Γ⇒ A =⇒ ∀Q ∈ P ∪ {[]},
#min,Q(Γ⇒ A) ≤ 0 ≤ #max,Q(Γ⇒ A)
where as we have said,
#m,Q(Γ⇒ A) = #◦m,Q(A) − #•m,Q(Γ).

Proof. The proof is by induction on the length
of derivations. For the base case P⇒ P we have
#m,Q(P⇒ P) = #◦m,Q(P)−#•m,Q(P) = 0. The induc-
tive cases are as follows, where we use:

• a + b = b + a

• a + (b + c) = (a + b) + c

• a−(b+c) = (a−b)−c (including the undefined
case)

• (a + b) − c = (a − c) + b
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#p
m,Q(P) =

1 if Q = P
0 if Q , P

⊥ < 0, 1 < >
#p
max,Q(A\C) = #p

max,Q(C) − #p
min,Q(A) 4

#p
min,Q(A\C) = #p

min,Q(C) − #p
max,Q(A) 3

#p
max,Q(C/B) = #p

max,Q(C) − #p
min,Q(B) 4

#p
min,Q(C/B) = #p

min,Q(C) − #p
max,Q(B) 3

#p
max,Q(A•B) = #p

max,Q(A) + #p
max,Q(B) 2

#p
min,Q(A•B) = #pmin,Q(A) + #pmin,Q(B) 1

#◦min,Q(A&B) = max(#◦min,Q(A), #◦min,Q(B)) 6

#◦max,Q(A&B) = min(#◦max,Q(A), #◦max,Q(B)) 5
#•min,Q(A&B) = min(#•min,Q(A), #•min,Q(B)) 6

#•max,Q(A&B) = max(#•max,Q(A), #•max,Q(B)) 5
#◦min,Q(A⊕B) = min(#◦min,Q(A), #◦min,Q(B)) 6

#◦max,Q(A⊕B) = max(#◦max,Q(A), #◦max,Q(B)) 5
#•min,Q(A⊕B) = max(#•min,Q(A), #•min,Q(B)) 6

#•max,Q(A⊕B) = min(#•max,Q(A), #•max,Q(B)) 5
#p
max,P([ ]−1A) = #p

max,P(A) > ⊥
#p

min,P([ ]−1A) = #p
min,P(A) < >

#p
max,[]([ ]−1A) = #p

max,[](A) − 1 > ⊥
#p

min,[]([ ]−1A) = #p
min,[](A) − 1 < >

#p
max,P(〈〉A) = #p

max,P(A) > ⊥
#p

min,P(〈〉A) = #p
min,P(A) < ⊥

#p
max,[](〈〉A) = #p

max,[](A) + 1 > ⊥
#p
min,[](〈〉A) = #p

min,[](A) + 1 < >
#•max,P(!A) = X(#•max,P(A)) 7
#•min,Q(!A) = Y(#•min,Q(A)) 8

#•max,[](!A) = > > ⊥
#◦max,Q(!A) = #◦max,Q(A) > ⊥
#◦min,Q(!A) = #◦min,Q(A) < >

#◦max,Q(?A) = X(#◦max,Q(A)) 7
#◦min,Q(?A) = Y(#◦min,Q(A)) 8

#•min,Q(?A) = #•min,Q(A) < >
#•max,Q(?A) = #•max,Q(A) > ⊥

Figure 1: Count functions
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id, P ∈ P
P⇒ P

Γ⇒ A ∆(C)⇒ D \L
∆(Γ, A\C)⇒ D

Γ⇒ B ∆(C)⇒ D \L
∆(C/B,Γ)⇒ D

A,Γ⇒ C \R
Γ⇒ A\C

Γ, B⇒ C
/R

Γ⇒ C/B

∆(A, B)⇒ C •L
∆(A•B)⇒ C

Γ1 ⇒ A Γ2 ⇒ B •R
Γ1,Γ2 ⇒ A•B

∆(A)⇒ D
&L1

∆(A&B)⇒ D

∆(B)⇒ D
&L2

∆(A&B)⇒ D

Γ⇒ A Γ⇒ B
&R

Γ⇒ A&B

Γ⇒ A ⊕R1
Γ⇒ A⊕B

Γ⇒ B ⊕R2
Γ⇒ A⊕B

∆(A)⇒ D ∆(B)⇒ D ⊕L
∆(A⊕B)⇒ D

Γ(A)⇒ B
[ ]−1L

Γ([[ ]−1A])⇒ B

[Γ]⇒ A
[ ]−1R

Γ⇒ [ ]−1A

Γ([A])⇒ B 〈〉L
Γ(〈〉A)⇒ B

Γ⇒ A 〈〉R
[Γ]⇒ 〈〉A

∆(A)⇒ D
!L

∆(!A)⇒ D

!A1, . . . , !An ⇒ A
!R

!A1, . . . , !An ⇒ !A

∆(Γ, !A)⇒ D
!P1

∆(!A,Γ)⇒ D

∆(!A,Γ)⇒ D
!P2

∆(Γ, !A)⇒ D

∆(!A0, . . . , !An, [!A0, . . . , !An,Γ])⇒ D
!C

∆(!A0, . . . , !An,Γ)⇒ D

∆(A)⇒ D ∆(A, A)⇒ D . . .
?L

∆(?A)⇒ D

Γ⇒ A
?R

Γ⇒ ?A

Γ1 ⇒ C Γ2 ⇒ ?C
?M

Γ1,Γ2 ⇒ ?C

Figure 2: Rules for the categorial logic fragment LAb!b?
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• a − (b − c) = (a − b) + c

(Where we write #(∆) with ∆ a context we should
more precisely understand that ∆ is a configuration
with a hole where the count of a hole is always
zero.)

Multiplicatives

• Γ⇒ A ∆(C)⇒ D \L
∆(Γ, A\C)⇒ D

For every atom or bracket,

#m(∆(Γ, A\C)⇒ D) =

#◦m(D) − #•m(∆) − #•m(Γ) − #•m(A\C) =

#◦m(D) − #•m(∆) − #•m(Γ) − #•m(C) + #◦m(A) =

#◦m(A) − #•m(Γ) + #◦m(D) − #•m(∆) − #•m(C) =

#m(Γ⇒ A) + #m(∆(C)⇒ D)

The induction hypothesis (i.h.) tells us that
#min(Γ⇒ A) ≤ 0 and #min(∆(C)⇒ D) ≤ 0.
Thus #min(∆(Γ, A\C)⇒ D) = #min(Γ⇒ A) +

#min(∆(C)⇒ D) ≤ 0. Similarly,
0 ≤ #max(∆(Γ, A\C)⇒ D) = #max(Γ⇒ A) +

#max(∆(C)⇒ D) by i.h. Therefore we have:

#min(∆(Γ, A\C)⇒ D) ≤ 0 ≤
#max(∆(Γ, A\C)⇒ D)

• Γ⇒ B ∆(C)⇒ D \L
∆(C/B,Γ)⇒ D

Like \L.

• A,Γ⇒ C \R
Γ⇒ A\C

For every atom or bracket,

#m(Γ⇒ A\C) =

#◦m(A\C) − #•m(Γ) =

#◦m(C) − #•m(A) − #•m(Γ) =

#m(A,Γ⇒ C)

Therefore by i.h.,

#min(Γ⇒ A\C) ≤ 0 ≤ #max(Γ⇒ A\C)

• Γ, B⇒ C
/R

Γ⇒ C/B

Like \R.

• ∆(A, B)⇒ C •L
∆(A•B)⇒ C

For every atom or bracket,

#m(∆(A•B)⇒ C) =

#◦m(C) − #•m(∆) − #•m(A•B) =

#◦m(C) − #•m(∆) − #•m(A) − #•m(B) =

#m(∆(A, B)⇒ C)

Therefore by i.h.,

#min(∆(A•B)⇒ C) ≤ 0 ≤
#max(∆(A•B)⇒ C)

• Γ1 ⇒ A Γ2 ⇒ B •R
Γ1,Γ2 ⇒ A•B

For every atom or bracket,

#m(Γ1,Γ2 ⇒ A•B) =

#◦m(A•B) − #•m(Γ1,Γ2) =

#◦m(A) − #•m(Γ1) + #◦m(B) − #•m(Γ2) =

#m(Γ1 ⇒ A) + #m(Γ2 ⇒ B)

Therefore by i.h.,

#min(Γ1,Γ2 ⇒ A•B) ≤ 0 ≤
#max(Γ1,Γ2 ⇒ A•B)

Additives

• ∆(A)⇒ D
&L1

∆(A&B)⇒ D

For every atom or bracket,

#min(∆(A&B)⇒ D) =

#◦min(D) − #•max(∆) − #•max(A&B) =

#◦min(D) − #•max(∆)−
max(#•max(A), #•max(B)) ≤
#◦min(D) − #•max(∆) − #•max(A) =

#min(∆(A)⇒ D) ≤ 0 i.h.

And
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#max(∆(A&B)⇒ D) =

#◦max(D) − #•min(∆) − #•min(A&B) =

#◦max(D) − #•min(∆)−
min(#•min(A), #•min(B)) ≥
#◦max(D) − #•min(∆) − #•min(A) =

#max(∆(A)⇒ D) ≥ 0 i.h.

Therefore:

#min(∆(A&B)⇒ D) ≤ 0 ≤
#max(∆(A&B)⇒ D)

• ∆(B)⇒ D
&L2

∆(A&B)⇒ D
Like &L1.

• Γ⇒ A Γ⇒ B
&R

Γ⇒ A&B
#min(Γ⇒ A&B) =

#◦min(A&B) − #•max(Γ) =

max(#◦min(A), #◦min(B)) − #•max(Γ) =

max(#◦min(A) − #•max(Γ),
#◦min(B) − #•max(Γ)) =

max(#min(Γ⇒ A)︸          ︷︷          ︸
≤ 0 i.h.

, #min(Γ⇒ B)︸          ︷︷          ︸
≤ 0 i.h.

)

︸                                       ︷︷                                       ︸
≤ 0

And

#max(Γ⇒ A&B) =

#◦max(A&B) − #•min(Γ) =

min(#◦max(A), #◦max(B)) − #•min(Γ) =

min(#◦max(A) − #•min(Γ),
#◦max(B) − #•min(Γ)) =

min(#max(Γ⇒ A)︸           ︷︷           ︸
0 ≤ i.h.

, #max(Γ⇒ B)︸           ︷︷           ︸
0 ≤ i.h.

)

︸                                       ︷︷                                       ︸
0 ≤

Therefore:

#min(Γ⇒ A&B) ≤ 0 ≤ #max(Γ⇒ A&B).

• Γ⇒ A ⊕R1
Γ⇒ A⊕B

#min(Γ⇒ A⊕B) =

#◦min(A⊕B) − #•max(Γ) =

min(#◦min(A), #•min(B)) − #•max(Γ) ≤
#◦min(A) − #•max(Γ) =

#min(Γ⇒ A) ≤ 0 i.h.

And

#max(Γ⇒ A⊕B) =

#◦max(A⊕B) − #•min(Γ) =

max(#•max(A), #•max(B)) − #•min(Γ) ≥
#•max(A) − #•min(Γ) =

#max(Γ⇒ A) ≥ 0 i.h.

• Γ⇒ B ⊕R2
Γ⇒ A⊕B

Like ⊕R1.

• ∆(A)⇒ D ∆(B)⇒ D ⊕L
∆(A⊕B)⇒ D

For every atom or bracket,

#min(∆(A⊕B)⇒ D) =

#◦min(D) − #•max(∆) − #•max(A⊕B) =

#◦min(D) − #•max(∆)−
min(#•max(A), #•max(B)) =

max(#◦min(D) − #•max(∆) − #•max(A),
#◦min(D) − #•max(∆) − #•max(B)) =

max(#min(∆(A)⇒ D)︸                ︷︷                ︸
≤ 0 i.h.

, #min(∆(B)⇒ D)︸                ︷︷                ︸
≤ 0 i.h.

)

︸                                                 ︷︷                                                 ︸
≤ 0

0 ≤ #max(∆(A⊕B)⇒ D) similarly

Bracket modalities

•
Γ(A)⇒ B

[ ]−1L
Γ([[ ]−1A])⇒ B

For atoms:

#m,P(Γ([[ ]−1A])⇒ B) =

#◦m,P(B) − #•m,P(Γ([[ ]−1A])) =

#◦m,P(B) − #•m,P(Γ) − #•m,P([[ ]−1A])) =

#◦m,P(B) − #•m,P(Γ) − #•m,P([ ]−1A)) =

#◦m,P(B) − #•m,P(Γ) − #•m,P(A)) =

#◦m,P(B) − #•m,P(Γ(A)) =

#m,P(Γ(A)⇒ B)
I.e. the property for the conclusion follows from
the induccion hypothesis for the premise since
brackets and bracket modalities are transparent to
atom count.

For brackets:
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#m,[](Γ([[ ]−1A])⇒ B) =

#◦m,[](B) − #•m,[](Γ([[ ]−1A])) =

#◦m,[](B) − #•m,[](Γ) − #•m,[]([[ ]−1A])) =

#◦m,[](B) − #•m,[](Γ) − #•m,[]([ ]−1A) − 1 =

#◦m,[](B) − #•m,[](Γ) − #•m,[](A) + 1 − 1 =

#◦m,[](B) − #•m,[](Γ) − #•m,[](A)) =

#◦m,[](B) − #•m,[](Γ(A)) =

#m,[](Γ(A)⇒ B) =

Therefore by i.h.,

#min(Γ([[ ]−1A])⇒ B) ≤ 0 ≤
#max(Γ([[ ]−1A])⇒ B)

• [Γ]⇒ A
[ ]−1R

Γ⇒ [ ]−1A

For atoms:

#m,P(Γ⇒ [ ]−1A) =

#m,P(Γ⇒ A) =

#m,P([Γ]⇒ A)

Since brackets and bracket modalities are
transparant to atom count.

For brackets:

#m,[](Γ⇒ [ ]−1A) =

#◦m,[]([ ]−1A) − #•m,[](Γ) =

#◦m,[](A) − 1 − #•m,[](Γ) =

#◦m,[](A) − (#•m,[](Γ) + 1) =

#◦m,[](A) − #•m,[]([Γ]) =

#m,[]([Γ]⇒ A)

Therefore by i.h.

#min(Γ⇒ [ ]−1A) ≤ 0 ≤ #max(Γ⇒ [ ]−1A)

•
Γ([A])⇒ B 〈〉L
Γ(〈〉A)⇒ B

For atoms,

#m,P(Γ(〈〉A)⇒ B) = #m,P(Γ([A])⇒ B)

since brackets and bracket modalities are trans-
parent to atom count.

For brackets,

#m,[](Γ(〈〉A)⇒ B) =

#◦m,[](B) − #•m,[](Γ) − #•m,[](〈〉A) =

#◦m,[](B) − #•m,[](Γ) − (#•m,[](A) + 1) =

#◦m,[](B) − #•m,[](Γ) − #•m,[]([A]) =

#m,[](Γ([A])⇒ B)

Therefore by i.h.

#min(Γ(〈〉A)⇒ B) ≤ 0 ≤ #max(Γ(〈〉A)⇒ B)

• Γ⇒ A 〈〉R
[Γ]⇒ 〈〉A

For atoms,

#m,P([Γ]⇒ 〈〉A) = #m,P(Γ⇒ A)

since brackets and bracket modalities are trans-
parent to atom count.

For brackets,

#m,[]([Γ]⇒ 〈〉A) =

#◦m,[](〈〉A) − #•m,[]([Γ]) =

#◦m,[](A) + 1 − #•m,[](Γ) − 1 =

#◦m,[](A) − #•m,[](Γ) =

#m,[](Γ⇒ A)

Therefore by i.h.:

#min([Γ]⇒ 〈〉A) ≤ 0 ≤ #max([Γ]⇒ 〈〉A)

3.1 Exponentials

• ∆(A)⇒ D
!L

∆(!A)⇒ D

For atoms,

#min,P(∆(!A)⇒ D) =

#◦min,P(D) − #•max,P(∆) − #•max,P(!A) =

#◦min,P(D) − #•max,P(∆) − X(#•max,P(A)) ≤
#◦min,P(D) − #•max,P(∆) − #•max,P(A) =

#min,P(∆(A)⇒ D) ≤ 0 i.h.

For brackets,
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#min,[](∆(!A)⇒ D) =

#◦min,[](D) − #•max,[](∆) − #•max,[](!A) =

#◦min,[](D) − #•max,[](∆) − > ≤
#◦min,[](D) − #•max,[](∆) − #•max,[](A) =

#min,[](∆(A)⇒ D) ≤ 0 i.h.

For atoms and brackets,

#max,Q(∆(!A)⇒ D) =

#◦max,Q(D) − #•min,Q(∆) − #•min,Q(!A) =

#◦max,Q(D) − #•min,Q(∆) − Y(#•min,Q(A)) ≥
#◦max,Q(D) − #•min,Q(∆) − #•min,Q(A) =

#max,Q(∆(A)⇒ D) ≥ 0 i.h.

• !A1, . . . , !An ⇒ A
!R

!A1, . . . , !An ⇒ !A

For atoms,

#m,P(!A1, . . . , !An ⇒ !A) =

#◦m,P(!A) − #•m,P(!A1, . . . , !An) =

#◦m,P(A) − #•m,P(!A1, . . . , !An) =

#m,P(!A1, . . . , !An ⇒ A)

For brackets,

#m,[](!A1, . . . , !An ⇒ !A) =

#◦m,[](!A) − #•m,[](!A1, . . . , !An) =

#◦m,[](A) − #•m,[](!A1, . . . , !An) =

#◦m,[](A) − #•m,[](!A1, . . . , !An) =

#m,[](!A1, . . . , !An ⇒ A) ≥ 0 i.h.

• ∆(!A0, . . . , !An, [!A0, . . . , !An,Γ])⇒ D
!C

∆(!A0, . . . , !An,Γ)⇒ D

For atoms,

#min(∆(!A0, . . . , !An,Γ)⇒ D) =

#◦min(D) − #•max(∆,Γ)
−#•max(!A0) − · · · − #•max(!An) =

#◦min(D) − #•max(∆,Γ)
−X(#•max(A0)) − · · · − X(#•max(An)) ≤
#◦min(D) − #•max(∆, [Γ])−
X(#•max(A0)) − · · · − X(#•max(An))−
X(#•max(A0)) − · · · − X(#•max(An)) =

#min(∆(!A0, . . . , !An, |
[!A0, . . . , !An,Γ])⇒ D) ≤ 0

For brackets,

#min(∆(!A0, . . . , !An,Γ)⇒ D) =

#◦min(D) − #•max(∆,Γ)
−#•max(!A0) − · · · − #•max(!An) =

#◦min(D) − #•max(∆,Γ) − > − · · · − > ≤
#◦min(D) − #•max(∆, [Γ]) − > − · · · − >−
> − · · · − > =

#min(∆(!A0, . . . , !An,

[!A0, . . . , !An,Γ])⇒ D) ≤ 0

And for atoms and brackets,

#max(∆(!A0, . . . , !An,Γ)⇒ D) =

#◦max(D) − #•min(∆,Γ)
−#•min(!A0) − · · · − #•min(!An) =

#◦max(D) − #•min(∆,Γ)
−Y(#•min(A0)) − · · · − Y(#•min(An)) ≥
#◦max(D) − #•min(∆, [Γ])−
Y(#•min(A0)) − · · · − Y(#•min(An))−
Y(#•min(A0)) − · · · − Y(#•min(An)) =

#max(∆(!A0, . . . , !An,

[!A0, . . . , !An,Γ])⇒ D) ≥ 0

• ∆(A)⇒ D ∆(A, A)⇒ D . . .
?L

∆(?A)⇒ D

For atoms and brackets,

#min(∆(?A)⇒ D) =

#◦min(D) − #•max(∆) − #•max(?A) =

#◦min(D) − #•max(∆) − X(#•max(A)) ≤
#◦min(D) − #•max(∆) − #•max(A) =

#min(∆(A)⇒ D) ≤ 0 i.h.

And

#max(∆(?A)⇒ D) =

#◦max(D) − #•min(∆) − #•min(?A) =

#◦max(D) − #•min(∆) − Y(#•min(A)) ≥
#◦max(D) − #•min(∆) − #•min(A) =

#max(∆(A)⇒ D) ≥ 0 i.h.

• Γ⇒ A
?R

Γ⇒ ?A

For atoms and brackets,

#min(Γ⇒ ?A) =

#◦min(?A) − #•max(Γ) =

Y(#◦min(A)) − #•max(Γ) ≤
#◦min(A) − #•max(Γ) =

#◦min(Γ⇒ A)
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And,

#max(Γ⇒ ?A) =

#◦max(?A) − #•min(Γ) =

X(#◦max(A)) − #•min(Γ) ≥
#◦max(A) − #•min(Γ) =

#◦max(Γ⇒ A)

• Γ⇒ A ∆⇒ ?A
?M

Γ,∆⇒ ?A

For atoms and brackets,

#min(Γ,∆⇒ ?A) =

#◦min(?A) − #•max(Γ) − #•max(∆) =

Y(#◦min(A)) − #•max(Γ) − #•max(∆) ≤
Y(#◦min(A)) + #◦min(A) − #•max(Γ) − #•max(∆) =

#◦min(A) − #•max(Γ)
︸                   ︷︷                   ︸

≤ 0 i.h.

+ #◦min(?A) − #•max(∆)
︸                     ︷︷                     ︸

≤ 0 i.h.︸                                                    ︷︷                                                    ︸
≤ 0

And,

#max(Γ,∆⇒ ?A) =

#◦max(?A) − #•min(Γ) − #•min(∆n) =

X(#◦max(A)) − #•min(Γ) − #•min(∆) ≥
X(#◦max(A)) + #◦max(A)) − #•min(Γ) − #•min(∆) =

#◦max(A) − #•min(Γ)
︸                   ︷︷                   ︸

≥ 0 i.h.

+ #◦max(?A) − #•min(∆)
︸                     ︷︷                     ︸

≥ 0 i.h.︸                                                    ︷︷                                                    ︸
≥ 0

�

4 Evaluation

By way of evaluation of the exponential count in-
variance we compared the performance of Cat-
Log2 (version f8.1) which uses only multiplicative
and additive count invariance with CatLog version
j2 which uses in addition the exponential invari-
ance,1 both running under XGP Prolog on a Mac-
Book Air. The lexicon was the same in both cases.

We timed individually the exhaustive parsing of
the expressions in Figure 3. Thus, for the sentence
a:

(10) [john]+likes+the+man : S f

there is the result of lexical lookup:

(11) [�Nt(s(m)) : j],
�((〈〉∃gNt(s(g))\S f )/∃aNa) :
ˆλAλB(Pres ((ˇlike A) B)),

1The engines are otherwise the same.

�∀n(Nt(n)/CNn) : ι,
�CNs(m) : man ⇒ S f

Note that these types include, in addition to
the Lambek connectives, normal modalities for
intensionality —� for rigid designators and �
for semantically active intensionality— and first-
order quantifiers for features; these connectives
are transparent to count-invariance. There is the
derivation given in Figure 4, which delivers logi-
cal form:

(12) (Pres ((ˇlike (ι ˇman)) j))

CatLog proceeds by focalised proof search (Mor-
rill and Valentı́n, 2015b). The focusing discipline
considerably reduces redundancy in the sequent
proof search space. The focusing discipline com-
prises alternating phases of invertible rule appli-
cation and focalised non-invertible rule applica-
tion. The boxes in the derivations mark the fo-
cused types in focused rule application, i.e. the ac-
tive types decomposed by non-invertible rule ap-
plications. The focusing constrains proof search
but in displaying proofs the boxes are limited to
this decorative role.

For the sentence d:

(13) man+[[that+[john]+likes]] : CNs(m)

there is the lexical lookup:

(14) �CNs(m) : man,
[[�∀n([]−1[]−1(CNn\CNn)/�((〈〉Nt(n)u
!�Nt(n))\S f )) : λAλBλC[(B C) ∧ (A C)],
[�Nt(s(m)) : j],
�((〈〉∃gNt(s(g))\S f )/∃aNa) :
ˆλDλE(Pres ((ˇlike D) E))]] ⇒ CNs(m)

Note that these types include also an additive and
an exponential which are subject to the count-
invariance presented in this paper. There is the
derivation given in Figure 5. This uses stoups for
the sequent derivation with exponentials (Girard,
2011), (Morrill, 2017). It delivers the logical form:

(15) λC[(ˇman C) ∧ (Pres ((ˇlike C) j))]

The resulting times in seconds were as follows:
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a. John likes the man.
b. Mary thinks that John likes the man.
c. Suzy believes that Mary thinks that John likes the man.
d. man that John likes
e. man that Mary thinks that John likes
f. man that Suzy believes that Mary thinks that John likes
g. Mary talks and Bill sings.
h. John walks Mary talks and Bill sings.
i. Suzy laughs John walks Mary talks and Bill sings.
j. Bill walks Suzy laughs John walks Mary talks and Bill sings.
k. Suzy talks Bill walks Suzy laughs John walks Mary talks and Bill sings.
l. John sings Suzy talks Bill walks Suzy laughs John walks Mary talks and Bill sings.

Figure 3: Example sentences

CNs(m) ⇒ CNs(m)
�L

�CNs(m) ⇒ CNs(m) Nt(s(m)) ⇒ Nt(s(m))
/L

Nt(s(m))/CNs(m) ,�CNs(m) ⇒ Nt(s(m)) ∀L∀n(Nt(n)/CNn) ,�CNs(m) ⇒ Nt(s(m))
�L

�∀n(Nt(n)/CNn) ,�CNs(m) ⇒ Nt(s(m)) ∃R
�∀n(Nt(n)/CNn),�CNs(m) ⇒ ∃aNa

Nt(s(m)) ⇒ Nt(s(m))
�L

�Nt(s(m)) ⇒ Nt(s(m)) ∃R
�Nt(s(m)) ⇒ ∃gNt(s(g)) 〈〉R

[�Nt(s(m))] ⇒ 〈〉∃gNt(s(g)) S f ⇒ S f \L
[�Nt(s(m))], 〈〉∃gNt(s(g))\S f ⇒ S f

/L
[�Nt(s(m))], (〈〉∃gNt(s(g))\S f )/∃aNa ,�∀n(Nt(n)/CNn),�CNs(m) ⇒ S f

�L
[�Nt(s(m))], �((〈〉∃gNt(s(g))\S f )/∃aNa) ,�∀n(Nt(n)/CNn),�CNs(m) ⇒ S f

Figure 4: Derivation of example a

Nt(s(m)) ⇒ Nt(s(m))
�L

�Nt(s(m)) ⇒ Nt(s(m)) ∃R
�Nt(s(m)) ⇒ ∃aNa

Nt(s(m)) ⇒ Nt(s(m))
�L

�Nt(s(m)) ⇒ Nt(s(m)) ∃R
�Nt(s(m)) ⇒ ∃gNt(s(g)) 〈〉R

[�Nt(s(m))] ⇒ 〈〉∃gNt(s(g)) S f ⇒ S f \L
[�Nt(s(m))], 〈〉∃gNt(s(g))\S f ⇒ S f

/L
[�Nt(s(m))], (〈〉∃gNt(s(g))\S f )/∃aNa ,�Nt(s(m)) ⇒ S f

�L
[�Nt(s(m))], �((〈〉∃gNt(s(g))\S f )/∃aNa) ,�Nt(s(m)) ⇒ S f

!P
�Nt(s(m)) ; [�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa) ⇒ S f

!L
!�Nt(s(m)), [�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa) ⇒ S f uL〈〉Nt(s(m))u!�Nt(s(m)) , [�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa) ⇒ S f \R

[�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa) ⇒ (〈〉Nt(s(m))u!�Nt(s(m)))\S f
�R

[�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa) ⇒ �((〈〉Nt(s(m))u!�Nt(s(m)))\S f )

CNs(m) ⇒ CNs(m)
�L

�CNs(m) ⇒ CNs(m) CNs(m) ⇒ CNs(m) \L
�CNs(m), CNs(m)\CNs(m) ⇒ CNs(m)

[]−1L
�CNs(m), [ []−1(CNs(m)\CNs(m)) ] ⇒ CNs(m)

[]−1L
�CNs(m), [[ []−1[]−1(CNs(m)\CNs(m)) ]] ⇒ CNs(m)

/L
�CNs(m), [[ []−1[]−1(CNs(m)\CNs(m))/�((〈〉Nt(s(m))u!�Nt(s(m)))\S f ) , [�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa)]] ⇒ CNs(m) ∀L
�CNs(m), [[ ∀n([]−1[]−1(CNn\CNn)/�((〈〉Nt(n)u!�Nt(n))\S f )) , [�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa)]] ⇒ CNs(m)

�L
�CNs(m), [[ �∀n([]−1[]−1(CNn\CNn)/�((〈〉Nt(n)u!�Nt(n))\S f )) , [�Nt(s(m))],�((〈〉∃gNt(s(g))\S f )/∃aNa)]] ⇒ CNs(m)

Figure 5: Derivation of example d
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(16) f8.1 j2
(no exp. inv) (exp. inv)

a. 1 1
b. 2 2
c. 40 6
d. 2 2
e. 4 4
f. 265 6
g. 1 1
h. 2 1
i. 2 1
j. 2 2
k. 2 3
l. 2 4

We see that for the longer, third, example of a-
c there is a speedup. This is mostly in the time
taken to discard inappropriate lexical choices (e.g.
that is lexically ambiguous between a complemen-
tiser and a relative pronoun): to show that there
are no further analyses. The examples d-f involve
the universal exponential in a relative pronoun
roughly of the form (CN\CN)/((〈〉Nu!N)\S ); the
(semantically inactively) additively conjoined hy-
pothetical subtypes are for subject relativisation
and object relativisation respectively (Morrill,
2017). Again we see a considerable speedup with
exponential count invariance in the longer third
case. The examples g-l involve the existential ex-
ponential in a coordinator assignment roughly of
the form (?S \[ ]−1[ ]−1S )/S to obtain the iteration.
Here there is no gain from the exponential type in-
variance; the overhead causes a slowdown.

For the minicorpus examples of the Montague
Test (Morrill and Valentı́n, 2016a), and for the full
CatLog2 corpus (Montague minicorpus, typical
categorial examples, discontinuity examples, rel-
ativisation and coordination examples, and some
Scripture) the parsing times in seconds were:

(17) f8.1 j2
Montague Test. 37 32
CatLog2 corpus 826 643

We interpret the experiment as showing that the
pruning of the search space of count-invariance in-
cluding exponentials outweighs the overhead that
it engenders: it delivers a speedup of around 20%.
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Abstract

Basic categorial grammars are enriched
with a conjunction operation, and it is
proved that the formalism obtained in this
way has the same expressive power as con-
junctive grammars, that is, context-free
grammars enhanced with conjunction. It
is also shown that categorial grammars
with conjunction can be naturally embed-
ded into the Lambek calculus with con-
junction and disjunction operations. This
further implies that a certain NP-complete
set can be defined in the Lambek calculus
with conjunction.

1 Introduction

This paper establishes a connection between two
formal grammar models that emerged within two
different theories of syntax.

One theory is the immediate constituent anal-
ysis, which has its roots in the traditional gram-
mar, and was investigated in the early 20th cen-
tury by the structural linguists. It reached uni-
versal recognition under the name “context-free
grammars,” introduced in Chomsky’s early work.
In this paradigm, a grammar assigns certain prop-
erties to groups of words, such as “noun phrase”
(NP), “verb phrase” (VP) or “sentence” (S). These
properties are known as syntactic categories, or,
in Chomsky’s terminology, nonterminal symbols.
Rules of a grammar, such as S → NP VP, show
how shorter substrings with known properties can
be concatenated to form longer strings belonging
to a certain category.

In the other theory, which was discovered by Aj-
dukiewicz (1935), further developed by Bar-Hillel
et al. (1960), and is nowadays known as cate-
gorial grammars, syntactic categories are defined
in different way. “Noun phrases” are treated as

“the category of phrases equivalent to nouns,”
whereas verb phrases are defined as “the cate-
gory of phrases, which would form a complete
sentence, if a noun, or anything equivalent to a
noun, is concatenated on the left,” denoted by
NOUN\SENTENCE. A categorial grammar ex-
plicitly assigns categories to individual words;
and then, by definition, a concatenation of any
string of type NOUN with any string of type
NOUN\SENTENCE forms a complete sentence.
The crucial feature of this approach is that the
laws that govern reduction of categories, namely,
A (A \B) to B, and (B /A)A to B, are univer-
sal. In contrast, Chomsky’s context-free formal-
ism uses different rules for different categories.

A formal connection between these two models
was established by Bar-Hillel et al. (1960), who
proved them to be equivalent in power: a language
is defined by a context-free grammar if and only if
it is defined by a basic categorial grammar (assum-
ing languages do not contain the empty string).

More than half a century of research gave birth
to many extensions of both basic models. Cate-
gorial grammars were the first to get an interest-
ing extension: the Lambek calculus, introduced
by Lambek (1958), augments the model with ad-
ditional derivation rules. Later, Pentus (1993) es-
tablished that this extended model is still equiva-
lent in power to context-free grammars. Pentus’
translation yields a context-free grammar of ex-
ponential size with respect to the original Lam-
bek grammar. For the special case of unidirec-
tional Lambek grammars, which use only one
kind of division operators (\, /), but not both,
Kuznetsov (2016), using the ideas of Savateev
(2009), presents a polynomial translation into
context-free grammars. Other generalizations of
categorial grammars include combinatory catego-
rial grammars by Steedman (1996), categorial de-
pendency grammars by Dekhtyar and Dikovsky
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(2008), and others.

Lambek grammars, in their turn, can be gener-
alized further. Modern extensions of the Lambek
calculus with new operations, such as those con-
sidered by Carpenter (1997), Morrill (2011), and
Moot and Retoré (2012), are capable of describ-
ing quite sophisticated syntactic phenomena.

From the point of view of modern logic, the
Lambek calculus is a substructural logical sys-
tem, namely, a non-commutative variation of lin-
ear logic, introduced by Girard (1987), see Abr-
usci (1990), Yetter (1990). Linear logic offers
many logical operations, and some of them can be
used in the non-commutative case for extending
Lambek grammars.

Morrill (2011) and his collaborators, follow-
ing and extending Moortgat (1996), consider a
system, based on the Lambek calculus, with dis-
continuous connectives, subexponentials for con-
trolled non-linearity, brackets for controlled non-
associativity, and many other operations. The use
of negation in categorial grammars was considered
by Buszkowski (1996). Kanazawa (1992) investi-
gated the power of Lambek grammars with con-
junction and disjunction operations that are “addi-
tive operations” in terms of linear logic.

Numerous generalized models have also been
introduced in the paradigm of immediate con-
stituent analysis, as extensions of the context-free
formalism. One direction is to extend the form of
constituents, that is, sentence fragments to which
syntactic categories are being assigned in a gram-
mar. The most well-known of these models are the
multi-component grammars, introduced by Vijay-
Shanker et al. (1987) and by Seki et al. (1991), in-
spired by an earlier model by Fischer (1968): these
grammars define the properties of discontinuous
constituents, that is, substrings with a bounded
number of gaps. Extensions of another kind aug-
ment the model by introducing new logical opera-
tors to be used in grammar rules: for instance, con-
junctive grammars, featuring a conjunction oper-
ation, and Boolean grammars, further equipped
with negation, were introduced by Okhotin (2001,
2004). Earlier, Latta and Wall (1993) argued for
the relevance of such operations in linguistic de-
scriptions. The main results on conjunctive gram-
mars indicate that they preserve the practically
useful properties of context-free grammars, such
as efficient parsing algorithms, while substantially
extending their expressive power. The known re-

sults on conjunctive grammars are presented in a
fairly recent survey by Okhotin (2013).

A few years ago, Kuznetsov (2013) compared
the expressive power of Lambek grammars with
conjunction, as considered by Kanazawa (1992),
with that of conjunctive grammars. It was proved
that a large subclass of conjunctive grammars
(namely, conjunctive grammars in Greibach nor-
mal form) can be simulated in the Lambek calcu-
lus with conjunction, but the exact power of the
latter remains undetermined.

This paper makes a fresh attempt at introduc-
ing conjunction in categorial grammars. The new
model extends basic categorial grammars, rather
than Lambek grammars, and for that reason it uses
categories and rules of a simpler form than in the
earlier model by Kanazawa (1992) and Kuznetsov
(2013). Yet, it is shown that this model can simu-
late every conjunctive grammar. A converse sim-
ulation is presented as well, which implies the
equivalence of the two models.

As compared to the classical equivalence re-
sult for context-free grammars and basic catego-
rial grammars, the new result requires a more
elaborate construction. One particular difficulty
is that the normal form theorems for conjunctive
grammars are weaker than those for the context-
free grammars: in particular, no analogue of the
Greibach normal form is known for conjunctive
grammars. For this reason, the simulation of
conjunctive grammars by the proposed conjunc-
tive categorial grammars relies on a different nor-
mal form by Okhotin and Reitwießner (2010).
This leads to a representation of the whole class
of conjunctive grammars, in contrast to the re-
sult by Kuznetsov (2013), which is valid only for
grammars in Greibach normal form.

The second result is that conjunctive catego-
rial grammars, as defined in this paper, can be
represented in the Lambek calculus with the con-
junction operation, as considered by Kanazawa
(1992), and therefore this extension of the Lam-
bek calculus is at least as powerful as are the
conjunctive grammars. Furthermore, it is proved
that Kanazawa’s model (Kanazawa, 1992) can de-
scribe an NP-complete language, which conjunc-
tive grammars cannot describe unless P = NP.

141



2 Basic Categorial Grammars and
Context-Free Grammars

Let Σ be a finite alphabet of the language being
defined. Its elements are called symbols. In lin-
guistic descriptions, symbols typically represent
words of the language. The set of non-empty
strings over Σ is denoted by Σ+. Throughout this
paper, any subset of Σ+ is a language, that is, all
languages are assumed to be without the empty
string.

The models considered in this paper are derived
from two classical formal grammar frameworks:
basic categorial grammars and context-free gram-
mars.

Basic categorial grammars (BCG) have their
roots in the works of Ajdukiewicz (1935). Let Σ
be an alphabet. Let Pr = {p, q, r, . . . } be a finite
set of primitive categories, and let s ∈ Pr be a
designated target category of all syntactically cor-
rect sentences.

The set BCat of basic categories is defined as
follows.

• Every primitive category is a basic category.

• If A ∈ BCat and p ∈ Pr, then (p \A) ∈
BCat and (A/p) ∈ BCat.

The definition of a basic categorial grammar is
given in terms of logical propositions, which are
expressions of the form B(v), where B ∈ BCat
and v ∈ Σ+. This proposition states that v is a
string of syntactic category B.

The language of propositions is indeed very
simple: all propositions are atomic, there are no
variables and quantifiers (if the syntactic category
B is considered, in the spirit of first-order logic,
as a predicate, then its argument, v, is a constant
term).

A categorial grammar is regarded as a logical
calculus for deriving categorial propositions. It
includes a finite set of axioms (axiomatic propo-
sitions) of the form A(a), where A ∈ BCat and
a ∈ Σ, and the following inference rules.

p(u) (p \A)(v)

A(uv)

(A/p)(u) p(v)

A(uv)

The string w belongs to the language generated
by the BCG if and only if the proposition s(w) is
derivable by means of this calculus.

Example 1. The basic categorial grammar with
the following axiomatic propositions and with s as

the target category (Pr = {s, p, q}) describes the
language {bancan | n > 0}.

(s / p)(b), p(c), (p / q)(a), (p \ q)(a)

Another, more well-known formal grammar
framework is the phrase-structure formalism, de-
fined by Chomsky (1956) and later renamed into
context-free grammars (CFG). In a CFG, there is
a fixed finite set of categories N (usually called
“non-terminal symbols”), and one of them is des-
ignated as the initial symbol S ∈ N . The gram-
mar is defined by a finite set of rules (or “produc-
tions”) of the form A → β, where A ∈ N and
β ∈ (Σ ∪N)+.

Even though Chomsky’s original definition of
context-free grammars was given in terms of string
rewriting, it is more convenient—at least in this
paper—to present it as a logical derivation similar
to the one in categorial grammars. Propositions in
the context-free framework are of the form β(u),
where β ∈ (Σ ∪ N)+ and u ∈ Σ+. Intuitively,
such a proposition means that u can be derived
from β using the rules of the CFG. Axioms of
the calculus of propositions are of the form a(a),
a ∈ Σ, and the rules of inference are as follows.

β1(u1) β2(u2)

(β1β2)(u1u2)

β(v)

A(v) for each rule A→ β

Again, the stringw belongs to the language gen-
erated by this grammar if and only if the proposi-
tion S(w) is derivable.
Example 2. The language from Example 1 is de-
scribed by the following CFG.

S → bA

A→ aAa | c
As usual, “A→ aAa | c” is a short-hand notation
for two rules, A→ aAa and A→ c.

There is an important difference between BCGs
and CFGs: in BCGs, the linguistic information is
stored in the axioms (in other words, it is lexical-
ized), while the inference rules are the same for all
BCGs. For CFGs, the situation is opposite: ax-
ioms are trivial, and all information is kept in the
rules. However, these two formalisms are equiva-
lent in power.
Theorem A. A language is generated by a BCG
if and only if it is generated by a CFG. (Bar-Hillel
et al., 1960)
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b(b)

a(a)

c(c)

B(c) a(a)

B(aca) c(a)

a(a)

A(a)

bBcA(bacaca)

b(b)

a(a)

A(a) c(a)

a(a)

c(c)

B(c) a(a)

B(aca)

bAcB(bacaca)

S(bacaca)

Figure 1

3 Conjunction in Grammars

In this section, both grammar formalisms are en-
riched with a conjunction operation. Using con-
junction, one can impose multiple syntactic con-
straints on the same phrase at the same time. The
extension of context-free grammars with conjunc-
tion, called conjunctive grammars, was introduced
by Okhotin (2001).

Let Σ be the alphabet, and let N be the set of
categories (“non-terminal symbols”), with S ∈ N
representing all well-formed sentences. A con-
junctive grammar is defined by a finite set of rules
of the form A → β1 & . . .&βk, with βi ∈ (Σ ∪
N)+. If k is 1, then this is an ordinary ruleA→ β,
as in an ordinary context-free grammar.

Propositions in a conjunctive grammar are of
the form β(u), where u ∈ Σ+ and β ∈ (Σ∪N)+.
Axioms of the calculus of propositions are of the
form a(a), where a ∈ Σ. The first inference rule
is as follows.

β1(u1) β2(u2)

(β1β2)(u1u2)

The other inference rule is valid for each grammar
rule A→ β1 & . . .&βk and for each string v.

β1(v) . . . βk(v)

A(v)

The string w belongs to the language generated
by the grammar if and only if the proposition S(w)
is derivable from the axioms.

Example 3. The following conjunctive grammar
describes the language {bancancan | n > 1}.

S → bBcA& bAcB

A→ aA | a
B → aBa | c

The rules for A and B use no conjunction, and
have the same effect as in ordinary context-free
grammars. Thus, bBcA(w) is true for all strings

of the form w = bancancai, with n > 0, i > 1,
whereas bAcB(w) holds true for strings of the
form w = baicancan. The conjunction of these
two conditions is exactly the condition of member-
ship in the desired language, and the rule for S
ensures it by derivations of the following form.

bBcA(bancancan) bAcB(bancancan)

S(bancancan)

A full derivation of the string w = bacaca is given
in Figure 1.

The notion of a conjunctive categorial gram-
mar is defined by extending basic categorial gram-
mars with the conjunction operation. Let Pr =
{p, q, r, . . . } be the set of primitive categories,
s ∈ Pr is the target category.
The set of conjuncts, Conj, is defined as follows:

1. every primitive category is a conjunct;

2. if p1, . . . , pk ∈ Pr, then (p1 ∧ · · · ∧ pk) ∈
Conj.

The set of basic categories with conjunction,
BCat∧, is defined as follows.

1. Every primitive category belongs to BCat∧.

2. If C ∈ Conj and A ∈ BCat∧, then
(C \A) ∈ BCat∧ and (A/ C) ∈ BCat∧.

Categorial propositions are expressions of the
form B(v), where v ∈ Σ+ and B ∈ BCat∧ ∪
Conj. A conjunctive categorial grammar is a log-
ical theory deriving categorial propositions. It in-
cludes an arbitrary finite set of axioms of the form
A(a), with A ∈ BCat∧ and a ∈ Σ, and the fol-
lowing inference rules.

p1(v) . . . pk(v)

(p1 ∧ · · · ∧ pk)(v)

C(u) (C \A)(v)

A(uv)

(A/ C)(v) C(u)

A(vu)
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(s /(x ∧ y))(b)

(p / q)(a)

p(c) (p \ q)(a)
q(ca)

p(aca) (p \(x / r))(c)

(x / r)(acac) r(a)

x(acaca)

r(a)

((r \ y) / p)(c)
(p / q)(a)

p(c) (p \ q)(a)
q(ca)

p(aca)

(r \ y)(caca)
y(acaca)

(x ∧ y)(acaca)

s(bacaca)

Figure 2

The string w belongs to the language generated
by this grammar if and only if the proposition s(w)
is derivable.

Example 4. The categorial conjunctive gram-
mar with the set of primitive categories Pr =
{s, x, y, p, q, r}, s as the target category, and with
the following set of axioms describes the language
{bancancan | n > 1}, the same as in Example 3.

r(a), (r / r)(a),

p(c), (p / q)(a), (p \ q)(a),

(p \(x / r))(c), ((r \ y) / p)(c),

(s /(x ∧ y))(b).

The category p is defined in the same way as in
Example 1. Then, using further categories without
conjunction, the propositions x(ancancai) and
y(aicancan), for all n > 0, i > 1, are derived
as in an ordinary categorial grammar. The only
strings that satisfy both conditions, x and y, are
those of the form ancancan, and these are there-
fore all strings in the category s, derived as fol-
lows.

(s /(x ∧ y))(b)

x(ancancan) y(ancancan)

(x ∧ y)(ancancan)

s(bancancan)

A complete derivation of the proposition
s(bacaca) is presented in Figure 2.

The calculus used in the conjunctive categorial
grammar formalism enjoys the following inverted
subformula property (ISF): if a category of the
form (C \A) or (A/ C) appears somewhere in the
derivation, then it is a subexpression of some cate-
gory used in an axiom. (The notion of subexpres-
sion on categories is defined in a standard way:
each conjunct (in particular, primitive category) is
a subexpression of itself, and subexpressions of
(C \A) include C \A, C, and all subexpressions

of A; symmetrically for (A/ C). To prove the ISF,
we trace the rightmost branch of the derivation up-
wards; finally we reach an axiom that includes the
goal category as a subexpression.)

Another useful property is the fact that the rule
for ∧ is invertible: if (p1∧. . .∧pk)(v) is derivable,
then so are p1(v), . . . , pk(v). Indeed, the only way
to derive (p1∧ . . .∧pk)(v) is by applying this rule.

The calculus used in conjunctive categorial
grammars also enjoys the following cut elimina-
tion property.

Lemma 1. Let A(u) (for some A ∈ BCat∧ and
u ∈ Σ+) be derivable in the given conjunctive
categorial grammar. Consider a new conjunc-
tive categorial grammar over an extended alpha-
bet Σ ∪ {b}, where b /∈ Σ. The new grammar has
all the same axioms as the original grammar, and
an additional axiom A(b). Then, if the new gram-
mar derives B(v1bv2), for some B ∈ BCat∧ and
arbitrary, possibly empty, strings v1, v2 over Σ,
then B(v1uv2) is derivable in the original gram-
mar.

Proof. Consider the derivation of B(v1bv2) in the
extended grammar and substitute u for all occur-
rences of b. Applications of inference rules remain
valid; the same for axioms of the old grammar
(they don’t include b). The new axiom A(b) be-
comes A(u), which is derivable in the old gram-
mar by assumption.

4 Equivalence of Conjunctive Grammars
and Conjunctive Categorial Grammars

The main result of this paper is an extension of
Theorem A for grammars with conjunction, stated
as follows.

Theorem 1. A language is generated by a con-
junctive grammar if and only if it is generated by
a conjunctive categorial grammar.
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The proof uses the following two known prop-
erties of conjunctive grammars. The first result is
their closure under quotient with a single symbol.

Lemma B. If L is a language over Σ described
by a conjunctive grammar, and a ∈ Σ is any
symbol, then there exists a conjunctive grammar
that describes the language a−1L = {w | aw ∈
L}. (Okhotin and Reitwießner, 2010, Thm. 2)

The other result is a normal form theorem. A
conjunctive grammar G with the initial symbol S
is in the odd normal form, if all its rules are of the
following form, with A ∈ N , a ∈ Σ, Bi, Ci ∈ N ,
and ai ∈ Σ.

A→ a

A→ B1a1C1 & . . .&BkakCk

S → aA

Rules of the latter kind are allowed only if S is
never referenced in any rules.

Theorem C. Every language described by a con-
junctive grammar can be described by a conjunc-
tive grammar in odd normal form. (Okhotin and
Reitwießner, 2010)

Proof of Theorem 1. The “if” part is easier. A
conjunctive grammar equivalent to a given cate-
gorial grammar G has the set N comprised of all
categories used in the axioms of G, and of all their
subexpressions (categories and conjuncts). The
conjunctive rules are now as follows.

(p1 ∧ . . . ∧ pk)→ p1 & . . .& pk,

A→ C (C \A),

A→ (A/ C) C,

for all (p1 ∧ . . . ∧ pk), (C \A), (A/ C) ∈ N , and

A→ a, if A(a) is an axiom in G.

For the “only if” part of the proof, the first
step is to transform a given conjunctive grammar.
Let Σ = {a1, . . . , an}. For each symbol ai, by
Lemma B, there is a conjunctive grammar Gi that
describes the quotient a−1i L. By Theorem C, this
grammar can be assumed to be in the odd normal
form. It can also be assumed that, for i 6= j, the
grammars Gi and Gj have disjoint sets of non-
terminal symbols. Let Si be the initial symbol of
Gi. Then this grammar is further modified as fol-
lows. Every rule

A→ B1a1C1 & . . .&BkakCk

is replaced with k + 1 new rules:

A→ X̃1 & . . .& X̃k and X̃i → BiaiCi,

where X̃i are fresh non-terminals. For the sake of
uniformity, rules of the form

Si → aA

are replaced with

Si → Ỹ and Ỹ → aA,

and rules of the form

A→ a

are replaced with

A→ Z̃ and Z̃ → a.

Finally, a new conjunctive grammar for L is ob-
tained by joining these grammars together, for all
i, adding the following extra rules for the new ini-
tial symbol S̃.

S̃ → a1S1, . . . , S̃ → anSn

In the resulting grammar, all non-terminals are
of two sorts (with and without a tilde), and the
rules have the following form.

A→ X̃1 & . . .& X̃k (here k could be 1)

X̃ → BaC, Ỹ → aA, and Z̃ → a

It is then transformed to a conjunctive catego-
rial grammar, with the set of primitive categories
Pr = {p

X̃
| X̃ is a non-terminal decorated with a

tilde }, and with the following axioms.

1. For each rule Z̃ → a, there is an axiom
p
Z̃

(a).

2. For each pair of rules Ỹ → aA and A →
X̃1 & . . .& X̃k, the axiom is

(
p
Ỹ
/(p

X̃1
∧

. . . ∧ p
X̃k

)
)

(a).

3. For each triple of rules X̃ → BaC, B →
Ỹ1 & . . .& Ỹk, and C → Z̃1 & . . .& Z̃m, the
axiom is

((
(p
Ỹ1
∧ . . .∧p

Ỹk
) \ p

X̃

)
/(p

Z̃1
∧ . . .∧p

Z̃m
)
)

(a).

The target category is p
S̃

.
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Claim. For every non-terminal X̃ decorated with
a tilde, the proposition p

X̃
(v) is derivable in the

newly constructed conjunctive categorial gram-
mar if and only if X̃(v) is derivable in the original
conjunctive grammar.

Proof. The “if” part. The proof proceeds by in-
duction on the derivation size. There are three pos-
sible cases.

Case 1. The proposition X̃(v) is actually of the
form Z̃(a) and is derived from a(a) using the rule
Z̃ → a. Then p

Z̃
(a) is an axiom in the conjunctive

categorial grammar.
Case 2. The proposition X̃(v) is of the form

Ỹ (av1) and is derived from a(a) and A(v1) us-
ing a rule of the form Ỹ → aA. Next, a rule
of the form A → X̃1 & . . .& X̃k should be ap-
plied for A. Therefore, the propositions X̃i(v1)
are derivable (for all i) in the original conjunctive
grammar. Then, by induction hypothesis, p

X̃i
(v1)

are derivable in the conjunctive categorial gram-
mar, and there is a derivation for p

Ỹ
(av1) shown

in Figure 3.
Case 3. The proposition X̃(v) is of the form

X̃(v1av2) and is derived from some propositions
of the form B(v1), a(a), and C(v2), following
the rule X̃ → BaC. Next, for B and C, some
rules for the form B → Ỹ1 & . . .& Ỹk and C →
Z̃1 & . . .& Z̃m should be applied. Therefore, the
propositions Ỹi(v1) and Z̃j(v2) are derivable (for
all i, j) in the original conjunctive grammar. Then,
by induction hypothesis, p

Ỹi
(v1) and p

Z̃j
(v2) are

derivable in the conjunctive categorial grammar,
and there is a derivation for p

X̃
(v1av2), as shown

in Figure 4.
The “only if” part. This time, it is assumed

that p
X̃

(v) is derivable in the newly constructed
conjunctive categorial grammar. The proof is by
induction on its derivation.

The axiom case is trivial: any axiom of the form
p
Z̃

(a) is associated with a rule Z̃ → a in the orig-
inal conjunctive grammar, and then Z̃(a) is deriv-
able from a(a).

In the left division case, v = v1w, and the last
step of the derivation is as follows.

C(v1) (C \ p
X̃

)(w)

p
X̃

(v1w)

By the ISF (see above), (C \ p
X̃

) is a subex-
pression of the category in one of the axioms.
The only possibility is that (C \ p

X̃
) is a subex-

pression ((p
Ỹ1
∧ . . . ∧ p

Ỹk
) \ p

X̃
) of an axiom

((p
Ỹ1
∧ . . .∧p

Ỹk
) \ p

X̃
) /(p

Z̃1
∧ . . .∧p

Z̃m
). More-

over, again by the ISF, the only way to derive
(C \ p

X̃
)(w) is to apply the right division rule to

the category used in the axiom. This analysis
shows that the derivation must end in the way de-
picted in the earlier Figure 4, where w = av2.

Since the rules for ∧ are invertible (see above),
the propositions p

Ỹ1
(v1), . . . , p

Ỹk
(v1), p

Z̃1
(v2),

. . . , p
Z̃m

(v2) are derivable. By induction hypoth-

esis, Ỹi(v1) and Z̃j(v2), for all i, j, are deriv-
able in the original conjunctive grammar. Then,
the derivation uses the rules X̃ → BaC, B →
Ỹ1 & . . .& Ỹk, and C → Z̃1 & . . .& Z̃m, and is of
the following form.

Ỹ1(v1) . . . Ỹk(v1)

B(v1) a(a)

Z̃1(v2) . . . Z̃m(v2)

C(v2)

X̃(v1av2)

The right division case is even easier. Here a
derivation ends as follows.

(p
Ỹ
/ C)(w) C(v1)
p
Ỹ

(wv1)

By the ISF, the left premise could be nothing but
an axiom of the form

(
p
Ỹ
/(p

X̃1
∧ . . . ∧ p

X̃k
)
)
(a)

(and w = a). Then, C(v1) is (p
X̃1
∧ . . . ∧

p
X̃k

)(v1), and by the invertibility of the ∧ rule, all
p
X̃i

(v1) are derivable. By the induction hypothe-

sis, X̃i(v1), for all i, are derivable in the original
conjunctive grammar, and there is the following
derivation for Ỹ (av1), using the rules Ỹ → aA
and A→ X̃1 & . . .& X̃k.

a(a)

X̃1(v1) . . . X̃k(vk)

A(v1)

Ỹ (av1)

This claim immediately yields the main result,
since S̃(w) is derivable in the original conjunctive
grammar if and only if p

S̃
(w) is derivable in the

constructed conjunctive categorial grammar.

5 Conjunctive Categorial Grammars and
Lambek Grammars with Additives

Lambek (1958) suggested a richer logic as a back-
ground for categorial grammars, called the Lam-
bek calculus. In the Lambek calculus, or L for
short, syntactic categories built from a set of Pr =
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(
p
Ỹ
/(p

X̃1
∧ . . . ∧ p

X̃k
)
)
(a)

p
X̃1

(v1) . . . p
X̃k

(v1)

(p
X̃1
∧ . . . ∧ p

X̃k
)(v1)

p
Ỹ

(av1)

Figure 3

(p
Ỹ1
∧ . . . ∧ p

Ỹk
)(v1)

(
((p

Ỹ1
∧ . . . ∧ p

Ỹk
) \ p

X̃
) /(p

Z̃1
∧ . . . ∧ p

Z̃m
)
)
(a) (p

Z̃1
∧ . . . ∧ p

Z̃m
)(v2)

((p
Ỹ1
∧ . . . ∧ p

Ỹk
) \ p

X̃
)(av2)

p
X̃

(v1av2)

Figure 4

{p1, p2, p3, . . .} of primitive categories using three
binary operations: product (·), which means con-
catenation, left division (\), and right division (/).
The formal recursive definition is as follows.

1. Every primitive category is a category.

2. If A and B are categories, then (A · B),
(A \B), and (B /A) are also categories.

The set of all Lambek categories is denoted by
Cat. As opposed to basic categories, deep nest-
ing of division operations is allowed here, that is
denominators are allowed to be non-primitive.

A Lambek categorial grammar consists of a tar-
get category s ∈ Cat (usually s is required to be
a primitive category) and a finite number of ax-
iomatic propositions of the form A(a), where A is
a category and a is a letter of the alphabet.

A string w = a1 . . . an is considered ac-
cepted by the grammar, if, for some categoriesA1,
. . . , An, the propositions Ai(ai) are included in
the grammar as axiomatic ones, and the sequent
A1, . . . , An → s is derivable in the Lambek cal-
culus, which consists of the axioms and inference
rules listed in Figure 5. In all rules, left-hand sides
of the sequents are required to be non-empty.

Note that in Lambek grammars, arrows tran-
ditionally point in an opposite direction than in
context-free grammars (. . .→ s vs. S → . . .).

The following cut rule is not officially included
in the system, but is admissible (Lambek, 1958).

Π→ A Γ, A,∆→ D

Γ,Π,∆→ D
(cut)

As one can easily see, all basic categories,
as defined in Section 2, are also Lambek cate-
gories: BCat ⊂ Cat. Moreover, as noticed

by Buszkowski (1985), if a basic categorial gram-
mar is regarded as a Lambek categorial grammar
with the same set of axiomatic propositions, then
it describes the same language.

Next, the Lambek calculus is extended with the
so-called “additive” conjunction and disjunction,
as defined by Kanazawa (1992). These new op-
erations correspond to the additive operations in
linear logic by Girard (1987). Inference rules for
these operations are depicted in Figure 6.

This calculus, denoted by MALC
(“multiplicative-additive Lambek calculus”),
also enjoys cut elimination and the subformula
property.

Lambek categories with ∧ and ∨ generalize
conjunctive categories (and conjuncts):

BCat∧ ∪Conj ⊂ Cat∧,∨,

and every conjunctive categorial grammar can be
translated into a Lambek grammar with ∧ and ∨.
However, one cannot simply take the axiomatic
propositions of a conjunctive categorial grammar
and use them as axiomatic propositions in the
sense of Lambek grammars: this would yield a
grammar that is not equivalent to the original one
(for instance, the Lambek grammar with the ax-
iomatic propositions from Example 4 does not ac-
cept any strings at all). The construction has to be
more subtle.
Theorem 2. Let Σ = {a1, . . . , an} and consider
a conjunctive categorial grammar with the follow-
ing axiomatic propositions.

A1,1(a1), A1,2(a1), . . . A1,k1(a1),
A2,1(a2), A2,2(a2), . . . A2,k2(a2),

...
An,1(an), An,2(an), . . . An,kn(an).
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A→ A

Π→ A Γ, B,∆→ D

Γ,Π, A \B,∆→ D
(\ →)

A,Π→ B

Π→ A \B (→ \) Γ, A,B,∆→ D

Γ, A ·B,∆→ D
(· →)

Π→ A Γ, B,∆→ D

Γ, B /A,Π,∆→ D
(/→)

Π, A→ B

Π→ B /A
(→ /) Γ→ A ∆→ B

Γ,∆→ A ·B (→ ·)

Figure 5: The Lambek Calculus

Γ, A1,∆→ D

Γ, A1 ∧A2,∆→ D
(∧ →)1

Γ, A2,∆→ D

Γ, A1 ∧A2,∆→ D
(∧ →)2

Π→ A1 Π→ A2

Π→ A1 ∧A2
(→ ∧)

Γ, A1,∆→ D Γ, A2,∆→ D

Γ, A1 ∨A2,∆→ D
(∨ →)

Π→ A1

Π→ A1 ∨A2
(→ ∨)1

Π→ A2

Π→ A1 ∨A2
(→ ∨)2

Figure 6: Rules for Conjunction and Disjunction

Then the Lambek grammar with atomic propo-
sitions (Ai,1 ∧ Ai,2 ∧ . . . ∧ Ai,ki)(ai) (for i =
1, . . . , n) describes the same language as the orig-
inal conjunctive categorial grammar. (If ki = 1,
we take just Ai,1(ai).)

Proof. LetBi = Ai,1∧Ai,2∧ . . .∧Ai,ki . The new
Lambek grammar uses axiomatic propositions of
the form Bi(ai), one for each symbol in Σ. It
is sufficient to prove the following: for the target
category s ∈ Pr and for a string ai1 . . . aim , the
proposition s(ai1 . . . aim) is derivable in the con-
junctive categorial grammar if and only if the se-
quent Bi1 , . . . , Bim → s is derivable in MALC.

The “only if” part. In order to use induc-
tion on the length of derivation in the conjunc-
tive categorial grammar, the statement is proved
not only for s, but for an arbitrary category D ∈
BCat∧ ∪Conj.

The proof in the base case is immediate: if
D(ai) is an axiom, then D is one of the Ai,j in
the conjunction Bi, and the sequent Bi → Ai,j
is derivable by several applications of the (∧ →)
rules.

For the induction step, there are three cases.
Case 1: D = (p1 ∧ . . . ∧ pk). Then, by the in-

duction hypothesis, Bi1 , . . . , Bim → pj is deriv-
able in MALC for every j, and Bi1 , . . . , Bim →
p1 ∧ . . . ∧ pk is derived by the (→ ∧) rule.

Case 2: D(ai1 . . . aim) is derived from

C(ai1 . . . ai`) and (C \D)(ai`+1
. . . aim) for some

C ∈ Conj. Then, by the induction hy-
pothesis, the sequents Bi1 , . . . , Bi` → C and
Bi`+1

, . . . , Bim → C \D are derivable, and
then Bi1 , . . . , Bim → D can be derived in the
following way. First, Bi1 , . . . , Bi` , C \D →
D is derived from Bi1 , . . . , Bi` → C and
D → D, and then it is combined with
Bi`+1

, . . . , Bim → C \D using the cut rule, to get
Bi1 , . . . , Bi` , Bi`+1

, . . . , Bim → D.

Case 3: D(ai1 . . . aim) is derived from
(D/ C)(ai1 . . . ai`) and C(ai`+1

. . . aim). The
proof is symmetric.

The “if” part. The following more general
statement is claimed. For every j = 1, . . . ,m,
let B′ij be a conjunction of an arbitrary subset
of formulae Aij ,k used in the conjunction Bij ; in
other words, B′ij may coincide with Bij or lack
some of the conjuncts. Then, for any C ∈ Conj
(in particular, for C = s ∈ Pr ⊂ Conj), if
B′i1 , . . . , B

′
im
→ C is derivable in MALC, then

the proposition C(ai1 . . . aim) is derivable in the
original conjunctive categorial grammar.

The claim is proved by induction on the cut-free
derivation of the sequent B′i1 , . . . , B

′
im
→ C in

MALC.

Case 1. C = p1 ∧ . . .∧ pk, k > 2. Since the (→
∧) rule in MALC is invertible (this follows from
the cut elimination), it can be assumed that all k−1
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applications of this rule were applied immediately.

B′i1 , . . . , B
′
im
→ p1 . . . B′i1 , . . . , B

′
im
→ pk

B′i1 , . . . , B
′
im
→ p1 ∧ . . . ∧ pk

Then, by the induction hypothesis, all propositions
pj(a1 . . . am) are derivable in the conjunctive cat-
egorial grammar, and from them one can derive
(p1 ∧ . . . ∧ pk)(a1 . . . am).

In all other cases, C ∈ Pr.
Case 2: an axiom. Then, m = 1, B′i1 = C,

and, since all elements of B′i1 should be of the
form Ai1,k, the proposition C(a1) is an axiom of
the conjunctive categorial grammar, and therefore
derivable.

Case 3: the last rule of the derivation is (∧ →).
Then, B′i` = B′′i` ∧Ai`,k:

B′i1 , . . . , B
′′
i`
, . . . , B′im → C

B′i1 , . . . , B
′′
i`
∧Ai`,k, . . . , B′im → C

or

B′i1 , . . . , Ai`,k, . . . , B
′
im
→ C

B′i1 , . . . , B
′′
i`
∧Ai`,k, . . . , B′im → C

In both cases the induction hypothesis is applied:
since B′′i` or Ai`,k can act as B′i` , the proposition
C(ai1 . . . ai` . . . aim) is derivable in the conjunc-
tive categorial grammar.

Case 4: the last rule is (\ →). In this case,
B′ih = Aih,k = C′ \A′, for some h and for
C′ ∈ Conj and A′ ∈ BCat∧, and the sequent
B′i1 , . . . , B

′
i`−1

, B′i` , . . . , B
′
ih−1

, C′ \A′, B′ih+1
, . . . ,

B′am → C is derived from B′i` , . . . , B
′
ih−1

→ C′
and B′i1 , . . . , B

′
i`−1

, A′, B′ih+1
, . . . , B′im → C.

By the induction hypothesis, the proposition
C′(ai` . . . aih−1

) can be derived in the conjunctive
categorial grammar, and, since (C′ \A′)(aih) is
an axiom, the proposition A′(ai` . . . aih−1

aih) is
also derivable.

Now, the conjunctive categorial grammar is ex-
tended by adding a new symbol an+1 to the orig-
inal alphabet Σ = {a1, . . . , an}, with a new ax-
iom, A′(an+1). For the new grammar, we have
the same Bj for j = 1, . . . , n, and Bn+1 = A′.
Since B′i1 , . . . , B

′
i`−1

, A′, B′ih+1
, . . . , B′im → C is

derivable in MALC, by the induction hypothesis,
the proposition C(ai1 . . . ai`−1

an+1aih+1
. . . aim)

is derivable in the extended conjunctive categorial
grammar.

By Lemma 1, the desired proposition
C(ai1 . . . ai`−1

ai` . . . aih−1
aihaih+1

. . . aim),

where the string u = ai` . . . aih−1
aih has been

substituted for a fresh symbol b = an+1, can
be derived in the original conjunctive categorial
grammar.

Case 5: the last rule is (/→). Symmetric.

This embedding immediately implies that every
language generated by a conjunctive grammar can
be generated by an MALC-grammar. This super-
sedes the result by Kuznetsov (2013).

In the classical case without the conjunction,
a converse result was shown by Pentus (1993):
every language generated by a Lambek gram-
mar is context-free. Whether an analogous prop-
erty holds for MALC (that is, whether every
MALC-language is generated by a conjunctive
grammar) remains an open problem. Establishing
any such upper bound on the power of the new
model would require proving a non-trivial variant
of the famous theorem by Pentus (1993), which
would likely be difficult.

However, there is some evidence that MALC
should be strictly more powerful than conjunc-
tive grammars. First, there is a result by Okhotin
(2011) that conjunctive grammars can describe a
certain P-complete language representing the Cir-
cuit Value Problem (CVP) under a suitable encod-
ing. On the other hand, the class of languages
generated by MALC-grammars is, by defini-
tion, closed under symbol-to-symbol homomor-
phisms. These two facts are sufficient to develop
a MALC represenation for an NP-complete lan-
guage, which is the last result of this paper.

Theorem 3. The family of languages generated
by MALC-grammars contains an NP-complete
language.

Sketch of proof. It is not difficult to transform the
grammar for the CVP given by Okhotin (2011), so
that each CVP instance is represented in the form
uk,Cv, where uk,C ∈ Σ∗ is a description of a cir-
cuit C with k inputs, while v ∈ {0, 1}k contains
the input values, and 0, 1 /∈ Σ. The grammar then
describes the set of all such strings, on which the
circuit evaluates to 1 on the given input values.

CVP = {uk,Cv | C(v) = 1}

Let h : Σ∪{0, 1} → Σ∪{?} be a homomorphism
that maps both digits to the question mark symbol,
leaving all other symbols intact: h(0) = h(1) =
?, h(a) = a for all a ∈ Σ. This transforms the
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Circuit Value Problem to the Circuit Satisfiability
Problem, which is NP-complete.

h(CVP) = {uk,C?k | ∃v ∈ {0, 1}k : C(v) = 1}

Since the language CVP is described by a
conjunctive grammar, by Theorem 1, it is also
described by a conjunctive categorial grammar,
and then, by Theorem 2, also by an MALC-
grammar. Next, as observed by Kanazawa
(1992), its symbol-to-symbol homomorphic im-
age h(CVP) must have an MALC-grammar as
well.

On the other hand, every language described
by a conjunctive grammar can be parsed in poly-
nomial time—to be exact, in time O(nω), where
ω < 3 is the exponent in the complexity of matrix
multiplication (Okhotin, 2014). This leads to the
following corollary.

Corollary 1. Under the assumption that P 6=
NP, conjunctive categorial grammars are strictly
weaker in power than MALC.

It would be interesting to establish an uncondi-
tional separation of these two classes.
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