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Abstract

Service robots are expected to operate in
specific environments, where the presence
of humans plays a key role. A major fea-
ture of such robotics platforms is thus the
ability to react to spoken commands. This
requires the understanding of the user ut-
terance with an accuracy able to trigger the
robot reaction. Such correct interpretation
of linguistic exchanges depends on physi-
cal, cognitive and language-dependent as-
pects related to the environment. In this
work, we present the empirical evaluation
of an adaptive Spoken Language Under-
standing chain for robotic commands, that
explicitly depends on the operational en-
vironment during both the learning and
recognition stages. The effectiveness of
such a context-sensitive command inter-
pretation is tested against an extension of
an already existing corpus of commands,
that introduced explicit perceptual knowl-
edge: this enabled deeper measures prov-
ing that more accurate disambiguation ca-
pabilities can be actually obtained.

1 Introduction

In recent years, one of the most challenging issues
that Service Robotics is facing is the automation of
high level and collaborative interactions between
humans and robots. In such a robotic context, hu-
man language is the most natural way of commu-
nication as for its expressiveness and flexibility.
However, an effective communication in natural
language between humans and robots is challeng-
ing mostly for the different cognitive abilities it in-
volves. For a robot to react to a simple command
like “take the mug in the kitchen”, a number of
implicit assumptions should be met. First, at least

two entities, a mug and a kitchen, must exist in
the environment and the speaker must be aware of
such entities. Accordingly, the robot must have
access to an inner representation of its world, e.g.,
an explicit map of the environment. Second, map-
pings from lexical references to real world entities
must be developed or made available. In this re-
spect, the Grounding process (Harnad, 1990) links
symbols (e.g., words) to the corresponding percep-
tual information. Hence, robot interactions need
to be grounded, as meaning depends on the state
of the physical world and the interpretation cru-
cially interplays with perception, as pointed out
by psycho-linguistic theories (Tanenhaus et al.,
1995). The integration of perceptual information
derived from the robot’s sensors with an onto-
logically motivated description of the world has
been adopted as an augmented representation of
the environment, in the so-called semantic maps
(Nüchter and Hertzberg, 2008). In these maps, the
existence of real world objects can be associated
to lexical information, in the form of entity names
given by a knowledge engineer or spoken by a
user for a pointed object, as in Human-Augmented
Mapping (Diosi et al., 2005; Gemignani et al.,
2016). While Command Interpretation for Inter-
active Robotics has been mostly carried out over
the only evidence specific to the linguistic level
(see, for example, (Chen and Mooney, 2011; Ma-
tuszek et al., 2012)), we argue that a proper Spo-
ken Language Understanding (SLU) for Human-
Robot Interaction should be context-aware, in the
sense that both the user and the robot live in and
make references to a shared environment. For ex-
ample, in the above command, “taking” is the in-
tended action whenever a mug is actually in the
kitchen, so that “the mug in the kitchen” refers to
a single argument. On the contrary, the command
may refer to a “bringing” action, when no mug
is in the kitchen and the mug and in the kitchen
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correspond to different semantic roles. We are in-
terested in an approach for the interpretation of
robotic spoken commands that is consistent with
(i) the world (with all the entities composing it),
(ii) the Robotic Platform (with its inner represen-
tations and capabilities), and (iii) the linguistic in-
formation derived from the user’s utterance.

In this paper, we foster machine learning
methodologies for Spoken Language Understand-
ing that force the above research perspective: this
is obtained by extending the linguistic evidence
that can be extracted from the uttered commands
with perceptual evidence directly derived by the
semantic map of a robot. In particular, the in-
terpretation process is modeled as a sequence la-
beling problem where the final labeler is trained
by applying Structured Learning methods over re-
alistic commands expressed in domestic environ-
ments, as in (Bastianelli et al., 2017). The re-
sulting interpretations adhere to Frame Seman-
tics (Fillmore, 1985): this well-established the-
ory provides a strong linguistic foundations to the
overall process while enforcing its applicability,
as it is made independent of the vast plethora of
existing robotic platforms. Such methodologies
have been implemented in a free and ready-to-use
framework, here presented, whose name is LU4R
- an adaptive spoken Language Understanding
framework for(4) Robots. LU4R is entirely coded
in Java and, thanks to its Client/Server architec-
tural design, it is completely decoupled from the
robot, enabling for an easy and fast deployment
on every platform1.

As the aforementioned approaches rely on re-
alistic data, in this work we also present an
extended version of HuRIC - a Human Robot
Interaction Corpus, originally introduced in (Bas-
tianelli et al., 2014) This resource is a collection
of realistic spoken commands that users might
express towards generic service robots. In this
resource, each sentence is labeled with morpho-
syntactic information (e.g., dependency relations,
POS tags, . . . ), along with its correct interpretation
in terms of semantic frames (Baker et al., 1998). In
our extension, each annotated sentence is paired
with a semantic representation of the world, that
justifies the command itself. To the best of our
knowledge this is the first corpus providing such a
rich representation of a robotic spoken command2.

1LU4R can be downloaded at
http://sag.art.uniroma2.it/lu4r.html

2The extended version of HuRIC will be released at

This extension of HuRIC supports a broader
evaluation of LU4R chain against the information
introduced by perceptual knowledge. We observed
a significant increase in performance w.r.t. inher-
ent ambiguities of the language, whose outcomes
are encouraging for the deployment of such sys-
tem in realistic applications.

The rest of the paper is structured as follows.
Section 2 provides a short survey of existing ap-
proaches to SLU for Human-Robot Interaction.
Section 3 describes the semantic analysis process
that represents the core of LU4R. In Section 4, an
architectural description of the entire framework is
provided, as well as an overall introduction about
its integration with a generic robot. Section 5 de-
scribes the extension of HuRIC, while in Section 6
we provide empirical evidence demonstrating the
applicability of the proposed system in the inter-
pretation of robotic commands, by reporting our
experimental results. In Section 7 we draw some
conclusions.

2 Related Work

In Robotics, some solutions for the interpreta-
tion of spoken commands have been modeled us-
ing grammar-based approaches. In general, they
provide mechanisms to enrich the syntactic struc-
ture with semantic information, to build a se-
mantic representation during the transcription pro-
cess (Bos, 2002; Bos and Oka, 2007).

Other approaches are based on formal lan-
guages, as in (Kruijff et al., 2007; Thoma-
son et al., 2015), where Combinatory Catego-
rial Grammar (CCG) are applied for spoken dia-
logues in Human-Robot Interaction, and in (Per-
era and Veloso, 2015) where template-based algo-
rithms allow extracting semantic interpretations of
robotic commands by applying specific templates
over the corresponding syntactic trees.

Data-driven methods have been also applied to
command interpretation for robotic applications.
Examples are (MacMahon et al., 2006) and (Chen
and Mooney, 2011), where the parsing of route
instructions is addressed as a Statistical Machine
Translation task between the human language and
a synthesized robot language. The same approach
is applied in (Matuszek et al., 2010) to learn trans-
lation models between natural language and for-
mal descriptions of paths. A probabilistic CCG
is used in (Matuszek et al., 2012) to map natu-

http://sag.art.uniroma2.it/huric.html
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ral navigational instructions into robot executable
commands. The same problem is faced in (Kol-
lar et al., 2010; Duvallet et al., 2013), where Spa-
tial Description Clauses are parsed from sentences
through sequence labeling approaches. In (Tellex
et al., 2011), the authors address natural language
instructions about motion and grasping, that are
mapped into Generalized Grounding Graphs (G3).
In (Fasola and Mataric, 2013a,b), Spoken Lan-
guage Understanding (SLU) for pick-and-place in-
structions is performed through a Bayesian classi-
fier trained over a specific corpus. In (Misra et al.,
2016), the authors define a probabilistic approach
to ground natural language instructions within a
changing environment.

In this paper we present a data-driven approach
that integrates an explicit semantic representation
with linguistic generalization induced through ma-
chine learning. On the one hand, the interpre-
tation is carried out according to the Frame Se-
mantics paradigm (Fillmore, 1985), thus result-
ing in a principled meaning representation for-
malism. Moreover, a context-dependent inter-
pretation process is realized: knowledge derived
from perceptual evidence is made available and di-
rectly used to discriminate against conflicting in-
terpretations. Perceptual information is here rep-
resented through an ontologically motivated de-
scription of the surrounding environment, i.e., a
semantic map (Nüchter and Hertzberg, 2008). The
semantic map is an explicit representation of the
knowledge about surroundings, acquired to enable
reasoning over environments, objects and proper-
ties. In the map, the existence and position of real
world objects is associated to lexical information,
in the form of entity class names. On the other
hand, machine learning depends on such percep-
tual information, thus inducing the contextual pre-
conditions of the involved disambiguation choices
from real examples, i.e. sentence-map pairs. The
process can thus provide different interpretations
of one sentence against different maps and realizes
a highly reusable and mostly domain-independent
model of grounded interpretation.

3 The Language Understanding Cascade

A command interpretation system for a robotic
platform must produce interpretations of user ut-
terances. In this paper, we consider Frame Seman-
tics (Fillmore, 1985), the formalization promoted
in the FrameNet (Baker et al., 1998) project, where

actions expressed in user utterances can be mod-
eled as semantic frames. Each frame represents a
micro-theory about a real world situation, e.g., the
actions of bringing, motion or manipulation. Such
micro-theories encode all the relevant information
needed for their correct interpretation. This in-
formation is represented in FrameNet via the so-
called frame elements, whose role is to specify the
participating entities in a frame, e.g., the THEME

frame element represents the object that is taken in
a bringing action.

As an example, let us consider the sentence:
“take the pillow to the couch”. This sentence can
be intended as a command whose effect is to in-
struct a robot that, in order to achieve the task,
has to: (i) move towards a pillow, (ii) pick it up,
(iii) move to the couch and, finally, (iv) release the
object on the couch. The language understanding
cascade should produce its FrameNet-annotated
version:

[take]Bringing[the pillow]THEME[to the couch]GOAL (1)

Semantic frames can thus provide a cognitively
sound bridge between the actions expressed in the
language and the implementation of such actions
in the robot world, namely plans and operations.

The whole SLU process has been designed as
a cascade of reusable components, as shown in
Figure 1. As we deal with vocal commands,
their (possibly multiple) hypothesized transcrip-
tions derived from an Automatic Speech Recog-
nition (ASR) engine constitute the input of this
process. It is composed by four modules, whose
final output is the interpretation of an utterance, to
be used to implement the corresponding robotic
actions. First, Morpho-syntactic analysis is
performed over the available utterance transcrip-
tions by applying morphological analysis, Part-of-
Speech tagging and syntactic analysis. In partic-
ular, dependency trees are extracted from the sen-
tence as well as POS tags, as shown in Figure 2.
Then, if more than one transcription hypothesis is
available, the Re-ranking module can be activated
to compute a new ranking of the hypotheses, in or-
der to get the best transcription out of the initial
ranking. This module is realized through a learn-
to-rank approach, where a Support Vector Ma-
chine exploiting a combination of linguistic ker-
nels is applied, according to (Basili et al., 2013).
Third, the best transcription is the input of the
Action Detection (AD) component. The evoked
frames in a sentence are detected, along with the

27



Morpho-
Syntactic
Analysis

Re-ranking Action 
Detection

Argument 
Identification

Argument 
Classification

Hypotheses

Perceived 
entities

Interpretation

Figure 1: The SLU cascade
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Figure 2: Example of a dependency graph associ-
ated to “take the pillow to the couch”

corresponding evoking words, the so-called lexi-
cal units. Let us consider the recurring sentence:
the AD should produce the following interpreta-
tion [take]Bringing the pillow to the couch. The fi-
nal step is the Argument Labeling, where a set of
frame elements is retrieved for each frame. This
process is realized in two sub-steps. First, the Ar-
gument Identification (AI) finds the spans of all
the possible frame elements, producing the follow-
ing form [take]Bringing [the pillow] [to the couch].
Then, the Argument Classification (AC) assigns
the suitable label (i.e., the frame element) to each
span thus returning the final tagging shown in the
Example (1).

The AD, AI and AC steps are modeled as a
sequence labeling task, as in (Bastianelli et al.,
2016). The Markovian formulation of a structured
SVM proposed in (Altun et al., 2003) is applied
to implement the labeler, known as SVMhmm. In
general, this learning algorithm combines a local
discriminative model, which estimates the individ-
ual observation probabilities of a sequence, with
a global generative approach to retrieve the most
likely sequence, i.e., tags that better explain the
whole sequence. In other words, given an input
sequence x = (x1 . . . xl) ∈ X of feature vectors
x1 . . . xl, SVMhmm learns a model isomorphic to
a k-order Hidden Markov Model, to associate x
with a set of labels y = (y1 . . . yl) ∈ Y .

A sentence s is here intended as a sequence of
words wi, each modeled through a feature vector
xi and associated to a dedicated label yi, specif-
ically designed for each interpretation process3:
in any case, features combine linguistic evidence

3More details about the labeling notation can be found in
(Bastianelli et al., 2016)

from a targeted sentences, but also properties de-
rived from the semantic map (when available) in
order to synthesize information about existence
and position of entities around the robot, as dis-
cussed in more details in (Bastianelli et al., 2016).
During training, the SVM algorithm associates
words to step-specific labels: linear kernel func-
tions are applied to different types of features,
ranging from linguistic to perception-based fea-
tures, and linear combinations of kernels are used
to integrate independent properties. At classifi-
cation time, given a sentence s = (w1 . . . w|s|),
the SVMhmm efficiently predicts the tag sequence
y = (y1 . . . y|s|) using a Viterbi-like decoding al-
gorithm. More details about the construction of
feature vectors xi are reported in (Bastianelli et al.,
2016).

Notice that both the re-ranking and the seman-
tic parsing phases can be realized in two different
settings, depending on the type of features adopted
in the labeling process. It is thus possible to rely
upon linguistic information to solve the given task,
or also on perceptual knowledge coming from a
semantic map. In the first case, that we call ba-
sic setting, the information used to solve the task
comes from linguistic inputs, as the sentence itself
or external linguistic resources. These models cor-
respond to the methods discussed in (Bastianelli
et al., 2017; Basili et al., 2013). In the second
case, the simple setting, when perceptual infor-
mation is made available to the chain, a context-
aware interpretation is triggered, as in (Bastianelli
et al., 2016). Such perceptual knowledge is mainly
exploited through a linguistic grounding mecha-
nism. This lexically-driven grounding is estimated
through distances between filler (i.e., argument
heads) and entity names. Such a semantic distance
integrates metrics over word vectors descriptions
and phonetic similarity. Word semantic vectors
are here acquired through corpus analysis, as in
Distributional Lexical Semantic paradigms (Tur-
ney and Pantel, 2010). They allow to map referen-
tial elements, such as lexical fillers, e.g., couch, to
entities, e.g., a sofa, by thus modeling synonymy
or co-hyponymy. Conversely, phonetic similarities
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are smoothing factors against possible ASR tran-
scription errors, e.g., pitcher and picture: this al-
lows to actually cope with the noisy phenomena
characterizing spoken language.

Once links between fillers and entities have
been activated, they act as abductive hypothesis:
they inspire features related to individual words
that express perceptual information (e.g. pres-
ence/absence of referred objects in the environ-
ment or spatial relations between them) as well
as lexical knowledge (e.g. semantic and phonetic
similarity between entity names and uttered refer-
ences). The labeler trained over such richer de-
scriptions is made thus sensitive to perceptual in-
formation both in the learning and the tagging
process. As a side effect, the above mechanism
provides the robot with the set of linguistically-
motivated groundings, that can be potentially used
for any further grounding process.

This information can be crucial in the correct
interpretation of ambiguous commands, which de-
pends on the specific environmental setting the
robot is operating into. A clear example is the
command “bring the pillow on the couch in the
living room”. Such a sentence may have two
different interpretations, according to the config-
uration of the environment. In fact, when the
couch is located into the living room, the goal
of the Bringing action is the couch and interpre-
tation will be: [bring]Bringing[the pillow]THEME[on
the couch in the living room]GOAL. Conversely,
if the couch is outside the living room, it means
that probably the pillow is already on the couch.
Hence, the interpretation of the sentence will be
different, due to different argument spans, and the
couch becomes the goal of the Bringing action:
[bring]Bringing[the pillow on the couch]THEME[in
the living room]GOAL.

Additional details about the pure linguistic ap-
proach can be found in (Bastianelli et al., 2017).

4 The LU4R Framework

The architecture of the system considers two main
actors, as shown in Figure 3: the Robotic Plat-
form and LU4R, where the processing cascade of
the latter component have been introduced in the
previous Section.

The Client-Server communication schema be-
tween LU4R and the Robot allows for the indepen-
dence from the Robotic Platform, in order to max-
imize the re-usability and integration in heteroge-

neous robotic settings. LU4R exhibits semantic
capabilities (e.g., disambiguation, predicate detec-
tion or grounding into robotic actions and environ-
ments) that are designed to be general enough to
be representative of a large set of application sce-
narios.

It is obvious that an interpretation process must
be achieved even when no information about the
domain/environment is available, i.e., a scenario
involving a blind but speaking robot, or when
the actions a robot can perform are not made ex-
plicit. At the same time, the proposed SLU cas-
cade makes available methods to specialize its se-
mantic interpretation process to individual situa-
tions where more information is available about
goals, the environment and the robot capabilities.
These methods are expected to support the opti-
mization of the core SLU process against a spe-
cific interactive robotics setting, in a cost-effective
manner. In fact, whenever more information about
the environment perceived by the robot (e.g., a se-
mantic map) or about its capabilities is provided,
the interpretation of a command can be improved
by exploiting a more focused scope.

In order to better understand the different oper-
ating modalities of LU4R, some assumptions to-
ward the Robotic Platform must be made explicit:
this will allow to precisely establish functionalities
and resources that the robot needs to provide to un-
lock the more complex processes. These informa-
tion will be used to express the experience that the
robot is able to share with the user (i.e., the percep-
tual knowledge about the environment where the
linguistic communication occurs and some lexical
information and properties about objects in the en-
vironment) and some level of awareness about its
own capabilities (e.g., the primitive actions that
the robot is able to perform, given its hardware
components).

4.1 The Robotic Platform

The overall framework contemplates a generic
Robotic Platform, whose task, domain and phys-
ical setting are not necessarily specified. In or-
der to make the SLU process independent of the
above specific aspects, we assume that the plat-
form requires, at least, the following modules:
(i) an Automatic Speech Recognition (ASR) sys-
tem, (ii) a SLU Orchestrator, (iii) a Grounding
and Command Execution Engine, and (iv) a Phys-
ical Robot. The ASR component currently re-
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Figure 3: The architecture of the LU4R framework

Number of examples 656
Number of frames 18
Number of predicates 767
Number of roles 34
Predicates per sentence 1.17
Sentences per frame 36.44
Roles per sentence 2.04
Entities per sentence 7.29

Table 1: Some statistics of the corpus

alized exploits the LU4R Android app whereas
the SLU orchestrator is implemented as a ROS
node, through the LU4R ROS interface. Addition-
ally, the optional Support Knowledge Base compo-
nent is expected to interface the different involved
knowledge sources and support their maintenance:
this provides the contextual information discussed
above.

5 A Perceptual Corpus of Robotic
Commands

The computational paradigms adopted here are
based on machine learning techniques and depend
strictly on the availability of training data. In or-
der to train and test our framework, a proper re-
source that collects both linguistic and perceptual
information is required. To this end, we extended
the Human-Robot Interaction Corpus4 (HuRIC),
formerly presented in (Bastianelli et al., 2014),
by pairing each English sentence with the corre-
sponding perceptual evidence that justifies the tar-
geted semantics.

HuRIC is based on Frame Semantics and cap-

4Available at http://sag.art.uniroma2.it/huric. The
download page also contains a detailed description of the re-
lease format.

Motion 143 Bringing 153
Cotheme 39 Locating 90
Inspecting 29 Taking 80
Change direction 11 Arriving 12
Giving 10 Placing 52
Closure 19 Change operat state 49
Being located 38 Attaching 11
Releasing 9 Perception active 6
Being in category 11 Manipulation 5

Table 2: Distribution of frames over the corpus

tures cognitive information about situations and
events expressed in sentences. The corpus does
not include system or robot-dependent sentences
or formalisms. Instead, it contains information
strictly related to Natural Language Semantics,
decoupled from specific tasks. The corpus ex-
ploits different situations representing possible
commands given to a robot in a house environ-
ment. Each sentence is paired with a set of au-
dio files representing robot commands and its cor-
responding correct transcription. Each sentence
is then annotated with: lemmas, POS tags, de-
pendency trees and Frame Semantics. Semantic
frames and frame elements are used to represent
the meaning of commands, as they reflect the ac-
tions a robot can accomplish in a home environ-
ment. In this respect, the AMR representation of the
Example 1 is

(t1 / take-Bringing
: Theme (b1 / pillow)
: Goal (t2 / couch)

)

In this way, HuRIC can potentially be used to
train all the modules of the processing chain pre-
sented in Section 4.

With respect to the previous release, we ex-
tended HuRIC by pairing each sentence with the
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corresponding semantic map, composed of all en-
tities populating the environment and presumably
“perceived” by the robot. Each entity is repre-
sented by the following set of information.

The Atom is a unique identifier of the entity,
whereas the Type of each entity, reflects the class
to which each specific entity belongs5.

The Preferred Lexical Reference is used to re-
fer to a class of objects; it is crucial in order to en-
able the grounding between the commands uttered
by the user and the entities within the environment.
For example, an entity of the class table can be
referred by the word desk.

Finally, the position of each entity is essential to
determine shallow spatial relations between enti-
ties, e.g., whether two objects are near or far from
each other. To this end, each entity is associated
with its Coordinate in the world, in terms of pla-
nar coordinates (x, y), elevation (z) and angle as
the orientation. We adopted a simple numerical
scaling that discretized the map.

Table 1 shows the number of annotated sen-
tences, number of frames, along with the average
number of entities per sentence. Each entity in-
volved in the command, e.g., mug and kitchen in
the Example 1, is provided with one lexical ref-
erence, not necessarily the same word used in the
command (e.g. using a synonym such as cushion
or sofa). Detailed statistics about the number of
sentences for each frame are reported in Table 2.

6 Experimental Evaluation

In order to provide evidence about the benefits
of perceptual knowledge, we report an evaluation
of the interpretation process of robotic commands
over the enhanced version of HuRIC, i.e., contem-
plating the semantic maps for each sentence.

Table 3 shows the results obtained. The re-
sults, expressed in terms of Precision, Recall and
F1 measure, focus on the semantic interpretation
process, in particular Action Detection (AD), Ar-
gument Identification (AI) and Argument Classi-
fication (AC) steps, addressing two possible con-
figurations: a basic setting where only linguistic
information is exploited (i.e., noSM, as the seman-
tic maps are ignored), and the configuration where
semantic maps are included into the learning loop
(i.e., SM). F1 scores measure the quality of a spe-
cific module. While in the AD step the F1 refers

5Notice that an entity can be an object, e.g., couch, pillow,
or a location, e.g., bedroom

Precision Recall F1-Measure
AD

noSM 94.73± 1.21 94.02± 1.51 94.37± 1.00
SM 95.69± 1.40 96.90± 1.90 96.29± 1.56

AI
noSM 88.95± 2.24 88.22± 2.08 88.57± 1.65
SM 91.34± 1.73 91.72± 1.14 91.53± 1.43

AC
noSM 93.05± 1.05 93.05± 1.05 93.05± 1.05
SM 94.02± 1.25 94.02± 1.25 94.02± 1.25

Table 3: Experimental evaluation of the semantic
interpretation process

to the ability to extract the correct frame(s) (i.e.,
robot action(s) expressed by the user) evoked by
a sentence, in the AI step it evaluates to the cor-
rectness of the predicted argument spans. Finally,
in the AC step the F1 measures the accuracy of
the classification of individual arguments. The ex-
periments have been performed in a 5-fold cross
validation setting. In this respect, Table 3 pro-
vides also the standard deviations among the dif-
ferent folds. We tested each sub-module in isola-
tion, feeding each step with gold information pro-
vided by the previous step in the chain. Moreover,
the evaluation has been carried out considering the
correct transcriptions, i.e., not contemplating the
error introduced by the Automatic Speech Recog-
nition system.

The overall results are encouraging for the ap-
plication of the proposed approach in realistic sce-
narios. In fact, the F1 is always higher than 94%
in the recognition of semantic predicates used to
express intended actions (AD). The system is able
to recognize the involved entities (AC) with high
accuracy as well, with a F1 higher than 93% in
both noSM and SM settings. This result is surpris-
ing when analyzing the complexity of the task. In
fact, the classifier is able to cope with a high level
of uncertainty, as the amount of possible semantic
roles is sizable, i.e., 34. In general, the most chal-
lenging task seems to be the ability to recognize
the spans composing a single frame element (AI).

Regarding the noSM setting, i.e., only linguistic
information, one of the most frequent error con-
cerns the ambiguity of the “take” verb. In fact,
as explained in the previous sections, the interpre-
tation of such verb may be different (i.e., either
Bringing or Taking), depending on the configura-
tion of the environment. As this particular setting
does not provide any kind of perceptual informa-
tion, the system is not able to correctly discrimi-
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nate among them. Hence, the resulting interpre-
tation will be wrong, as it does not reflect the se-
mantics that is motivated by the environment. In
terms of F1 measure, this issue affects mainly the
Argument Identification step (AI), rather than the
Action Detection (AD) one, as for each (possibly)
wrong frame, there could be more than two (possi-
bly) wrong arguments. For example, the sentence
“take the mug in the kitchen” will be probably
recognized to be a Taking action, even though it
is labeled as Bringing, i.e., mug and kitchen are
supposed to be far in the environment. While the
AD step will receive just one penalty for the wrong
recognized action, the AI step is penalized twice,
as two arguments were expected by the gold stan-
dard annotation, i.e., the the mug as THEME and
the in the kitchen as GOAL, instead of one, i.e., the
mug in the kitchen as a single THEME argument.

When looking at the SM setting, it seems that
the injection of perceptual knowledge into the se-
mantic analysis process is able to mitigate the ef-
fect of the aforementioned phenomena and each
SLU step gains in predictive performance. In
the case of AD, the information about the enti-
ties shows a relative improvement of +2.03% in
terms of F1 (94.37% vs 96.29%). This means that
the semantic map allows to predict the intended
action more accurately, whenever the underlying
semantic ambiguity depends on the configuration
of the environment. The tight correlation between
the predicted action and the frame elements sug-
gests a similar behavior in Argument Identifica-
tion. In fact, as well as for the AD, in the AI step
perceptual knowledge reveal its support in predict-
ing the correct spans of semantic arguments, with
a relative improvement of +3.34% w.r.t. the F1
score. Though a lower gain is observed (+1.04%),
the introduction of Distributional Semantics im-
proves the ability of recognizing the correct frame
element for a given argument span, i.e., AC step.
This is probably due to the lexical generalization
provided by the word embeddings, whenever al-
ternative naming are used to refer to an entity of
the semantic map.

Finally, small values of standard deviation sug-
gest that the system seems to be rather stable
across the different iterations of the experiment
and that the results do not depend on specific splits
of the entire dataset.

7 Conclusions

In this paper, we presented a comprehensive
framework for the design of robust natural
language interfaces for Human-Robot Interac-
tion (HRI). The corresponding implementation is
specifically designed for the automatic interpre-
tation of spoken commands in domestic environ-
ments. The proposed solution relies on Frame
Semantics and supports a structured learning ap-
proach to language processing able to map indi-
vidual sentence transcriptions to meaningful com-
mands. A hybrid discriminative and generative
learning method is proposed to map the interpre-
tation process into a cascade of sentence anno-
tation tasks. The interpretation of commands is
made dependent on the robot’s environment; in
fact the adopted training annotations not only ex-
press linguistic evidence from source utterances,
but also account for specific perceptual informa-
tion derived from a reference map. In this way
the semantic map aspects useful to interpretation
are expressed via feature modeling with the struc-
tured learning mechanism applied. Such percep-
tual knowledge is derived from a semantically-
enriched implementation of a robot map, i.e., its
semantic map. It expresses information about the
existence and position of entities surrounding the
robot: as this is also available to the user, this
information is crucial to disambiguate predicates
and role assignments.

To this end, we trained the machine learning
processes by using an extended version of HuRIC,
the Human Robot Interaction Corpus. This cor-
pus, originally composed by sentences in English,
now benefits from the introduction of such seman-
tic maps, expressed as lists of entities and support-
ing the research in natural language interfaces for
Robots in such language. The empirical results
obtained over the perceptual version of the dataset
show a significant improvement w.r.t. the pure lin-
guistic process. This confirms the effectiveness of
the proposed processing chain.

Future research will also focus on the extension
of the proposed methodology, e.g., by considering
spatial relations between entities in the environ-
ment or their physical characteristics, such as their
color and the application of this solution in inter-
active question answering or dialogue with robots.
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