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Abstract 

This paper describes how language is 

grounded by a comprehension system 

called Lucia within a robotic agent called 

Rosie that can manipulate objects and nav-

igate indoors. The whole system is built 

within the Soar cognitive architecture and 

uses Embodied Construction Grammar 

(ECG) as a formalism for describing lin-

guistic knowledge. Grounding is per-

formed using knowledge from the gram-

mar itself, from the linguistic context, 

from the agent's perception, and from an 

ontology of long-term knowledge about 

object categories and properties and ac-

tions the agent can perform. The paper al-

so describes a benchmark corpus of 200 

sentences in this domain, along with test 

versions of the world model and ontology, 

and gold-standard meanings for each of 

the sentences. The benchmark is contained 

in the supplemental materials. 

1 Introduction 

This paper considers language grounding within 

the context of Interactive Task Learning (ITL; 

Laird et al., 2017), where the goal is to teach an 

intelligent agent new tasks and extend existing 

tasks through natural language instruction by a 

human teacher. This kind of instruction has been 

done with an agent called Rosie (Mohan and 

Laird, 2014). Rosie has been interfaced to a tab-

letop robot arm and a mobile robot that can navi-

gate and perform tasks in an indoor environment. 

We discuss the techniques and strategies used to 

ground the natural language input to the 

knowledge the agent has about the world and its 

own capabilities. 

Rosie can perform simple manipulation tasks 

like ‘Pick up the green sphere.’ or ‘Put that in the 

pantry.’, simple navigation tasks like ‘Go to the 

kitchen.’ or ‘Follow the right wall.’ and more 

complex tasks like ‘Fetch a soda.’ or ‘Deliver the 

package to the main office.’ It can also understand 

descriptions of objects and answer simple ques-

tions about its world. 

In the work described here, the language com-

prehension is performed by a system called Lucia. 

Lucia runs as a part of Rosie, and is under contin-

uing development. Previous work (Lindes and 

Laird, 2016; 2017a; 2017b) described some as-

pects of Lucia, but here we describe in some detail 

how Lucia does language grounding within Rosie. 

We also provide a benchmark that may be useful 

for comparing language grounding systems for 

robots. 

1.1 Research Context 

Our research is embedded in a cognitive model-

ling approach (Laird et al., 2012). This affects our 

goals and methods in three ways. First, we attempt 

to implement all aspects of Rosie’s intelligence, 

including language comprehension, task planning, 

dialog interaction, etc., within a single agent built 

on an architecture designed to model general prin-

ciples of human cognition. Specifically, we use 

the Soar cognitive architecture (Laird, 2012). 

Second, we wish to apply a theory of linguistic 

or grammatical knowledge, based on cognitive 

linguistics research, that combines syntactic and 

semantic knowledge in a single integrated gram-

mar. Lucia uses Embodied Construction Grammar 

(ECG; Feldman et al., 2009; Bergen and Chang, 

2013) as that theory. This theory has the potential 

to scale to cover much variation in human lan-

guage use, as well as relating to the complexities 

of human conceptual models of the world. 

Third, with Lucia we seek to build a language 

comprehension process that conforms to psycho-

linguistic research on incremental human pro-

cessing (Christiansen and Chater, 2016) and draws 

directly on all the contextual knowledge the agent 

has. This approach may have an advantage in 

meeting human expectations of how natural lan-

guage will be understood by the agent. 

This cognitive modeling approach differs from 

many other approaches to language comprehen-

sion and language grounding for robots found in 

the literature. For example, a number of research-
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ers have built systems to satisfy the need for 

grounded language in a robot, including Steels 

and Hild (2012), Tellex et al. (2014), and Eppe et 

al. (2016). However, none of those systems con-

forms to the three aspects of a cognitive modeling 

approach outlined above. Our work is beginning 

to explore whether the cognitive approach can 

provide more robust language understanding.  

Lucia could be characterized as a semantic par-

ser using textual and visual context since it takes 

natural language utterances in, uses knowledge of 

the surrounding text and the objects seen by the 

agent, and produces semantic representations as 

its output. However, it differs in many respects 

from many other “semantic parsers.” 

For example, Zettlemoyer and colleagues 

(Zettlemoyer and Collins, 2007; Artzi and Zettle-

moyer, 2013) have built systems for learning 

mappings from utterances to logical forms. Berant 

et al. (2013) learn a system to map questions to 

answers in relation to a large database. Wang et al. 

(2016) report on a system for learning the lan-

guage needed to instruct a computer to perform 

certain tasks. 

All these systems have produced impressive re-

sults.  Our results with Lucia are complementary 

in two important ways. The meaning representa-

tions they produce are not just logical forms but 

are connected to the perception and action 

knowledge of a fully embodied agent. Lucia also 

satisfies the cognitive modelling constraints we 

outlined above, which none of these other systems 

attempt to do. The richness of this variety of dif-

ferent approaches should help advance future re-

search. Our contribution is to show something of 

what is possible using a cognitive model embod-

ied in a robotic agent. 

1.2 Theoretical Background 

Rosie is built within the Soar cognitive archi-

tecture. The Soar architecture has a working 

memory with information about its current per-

ception of the world as well as its internal goals 

and state. A procedural memory contains produc-

tion rules that represent knowledge of how to per-

form internal and external actions. A long-term 

semantic memory holds knowledge of the catego-

ries of objects the agent knows about, what prop-

erties these objects can have, and the actions the 

agent knows how to perform. Dynamic operation 

in Soar consists of a series of decision cycles, 

where in each cycle a single operator is selected 

and applied, and that operator influences which 

production rules fire to make changes in working 

memory or initiate external actions during that cy-

cle. 

In order to learn new tasks from instruction, 

Rosie must have a natural language understanding 

capability. That capability must be able to produce 

a meaning structure for each input utterance that is 

grounded to the agent’s perception, action capa-

bilities, and general world knowledge. By ground-

ed we mean that the resulting meaning structure 

refers directly to the agent’s internal representa-

tion of objects, of the actions it knows how to per-

form, and of any other relevant knowledge the 

agent has, such as spatial relations between ob-

jects. 

Several approaches to language comprehension 

in Soar have been used previously (Lehman et al., 

1991; Mohan et al., 2012; Mohan and Laird, 

2014; Kirk et al. 2016). More recently a language 

comprehension system in Soar called Lucia 

(Lindes and Laird, 2016; 2017a) has been devel-

oped. In addition to the general cognitive abilities 

inherent in Soar, Lucia uses a cognitive theory of 

language called Embodied Construction Grammar 

(ECG; Feldman et al., 2009; Bergen and Chang, 

2013). 

The ECG grammar formalism (Bryant, 2008) 

defines a grammar in terms of two kinds of items: 

constructions and schemas. A construction is a 

pairing of form and meaning. Some constructions 

match individual lexical items and others match 

one or more constituents in a recursive hierarchy. 

Each construction describes its meaning in terms 

of schemas. 

A schema can be thought of as a feature bundle. 

It defines a data structure that has a type name and 

one or more roles, or slots, to hold information. A 

construction defines what schema is to be evoked 

when it is recognized and how to fill the roles of 

that schema. Roles can be filled with constants 

provided in a construction or from the meaning 

structures of the constituents of a construction, 

gradually building a complex hierarchical mean-

ing structure as each sentence is comprehended. 

As an example of Lucia’s comprehension, con-

sider the sentence ‘Pick up the green sphere.’ Fig-

ure 1 shows the data structures Lucia builds to 

comprehend this sentence. The blue rectangles 

represent the constructions that were recognized, 

the green ovals are the meaning schemas that were 
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instantiated, and the orange and red items repre-

sent information derived from grounding. 

In the example in Figure 1, there are five word 

cycles, one for each word in the input sentence. 

The circled numbers in the figure indicate during 

which word cycle each construction or schema 

was instantiated or each grounding link formed. 

Figure 2 shows the ECG form of the construc-

tion for TransitiveCommand, which produc-

es the blue rectangle with the same name in the 

figure, along with the schemas used to build its 

meaning. The construction specifies the types of 

constituents needed to trigger the instantiation of 

this construction, the type of the schema to be 

evoked, and constraints for mapping the meanings 

of its constituents to the slots in the meaning 

structure. 

Lucia stores all its linguistic knowledge in 

Soar’s procedural memory, thus avoiding the 

overhead of retrieving this knowledge from se-

mantic memory as the earlier systems generally 

do. 

1.3 Overview 

This paper concentrates on the methods used for 

grounding language in the Lucia system. Supple-

mental materials describe a benchmark to enable 

evaluating other systems against the same sen-

tence corpus we have used for testing and a set of 

gold-standard meanings for those sentences. We 

have found a lack of published material to com-

pare systems for language grounding in robots, 

and our intention is that this benchmark can be 

one attempt to fill this gap. 

The following sections discuss our approach to 

grounding, give some examples of language used 

for ITL, and describe the grounding processes in 

Lucia. Finally we describe the files contained in 

the benchmark, which are submitted as supple-

mental material with this paper. 

Transitive
Command

PickUp RefExpr

PICK UP THE GREEN SPHERE

Pick up the green sphere.

Action
Descriptor

pick-up1 @A1001

Reference
Descriptor

Property
Descriptor

Entity

block sphere1

color green1

ActOnIt object

large-green-sphere1

block sphere1green1 large1

1 2 3 4 5

1

2

4

5

5 5

5

5

5

@P1004

 

Figure 1: Comprehension of a simple sentence. (Adapted from Lindes and Laird, 2016.) 

 

   

Figure 2: ECG example. (Adapted from Lindes and Laird, 2016.) 
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2 Grounded Meanings 

Human interaction with robots using natural lan-

guage often needs language to be grounded to the 

agent’s perceptions of the physical world and its 

knowledge of its own action capabilities.  

Several projects have used the Rosie system to 

explore ITL. Mohan et al. (2012) discuss interac-

tive methods for learning words that are grounded 

in the agent's physical environment and actions 

with a table-top robotic arm. Kirk and Laird 

(2016) report using interactive instruction to teach 

Rosie to understand and play new games. The ap-

plication to games raises many issues with 

grounding language in hypothetical settings, but 

this paper does not consider this aspect. Mininger 

and Laird (2016) extend the table-top version of 

Rosie to one that can navigate in an indoor envi-

ronment and comprehend language about objects 

that are unseen or unknown. These projects have 

contributed much to task learning, but their lan-

guage comprehension systems are ad-hoc. 

Lucia (Lindes and Laird, 2016; 2017a; 2017b) 

is a comprehension system built within the same 

Rosie agent and using the Soar architecture, but it 

also is built around the ECG theory of language. 

Its linguistic knowledge is written by hand in the 

ECG formalism (Bryant, 2008) and translated au-

tomatically into Soar production rules. Since all 

this knowledge is procedural and does not have to 

be retrieved dynamically from long-term memory, 

Lucia simulates skilled comprehension in simulat-

ed time close to human real-time performance. It 

uses a human-like incremental processing system, 

distinct from the best-fit over a whole sentence 

approach used by other ECG systems (Bryant, 

2008). In what follows we look at how well Lucia 

succeeds in grounding language within the con-

straints imposed by ECG and incremental pro-

cessing. 

What does it mean to ground natural language 

in this context? The comprehension of each input 

sentence must produce a meaning structure in 

working memory that is sufficient for the agent to 

use its knowledge of perception and action to per-

form the internal and external actions the instruc-

tor intended. In ITL the interaction process may 

include requests from the agent for additional in-

formation or clarification. 

In this paper we do not consider the details of 

how the agent's perception and action work. Ra-

ther we assume that before trying to comprehend a 

given input utterance, the agent already has 

knowledge about what its vision system currently 

perceives in the world. It also has knowledge in 

long-term memory about what actions it can per-

form. Knowledge of actions can be either built in-

to the agent or learned through interaction. In ei-

ther case, the perception and action concepts 

which the agent grounds to physical percepts or 

motor control programs are represented by inter-

nal symbols shared by the linguistic and robotic 

parts of the agent. Thus we are concerned here 

with grounding the natural language to these in-

ternal symbols and compositions of them. 

In order to ground the meaning of a sentence, 

each linguistic unit involved must be grounded, 

including words, phrases, clauses, and complete 

sentences. To comprehend ‘Pick up the green 

sphere.’ as shown in Figure 1, pick up must be 

grounded to an action the agent knows how to 

perform, the green sphere must be grounded to a 

specific object that the agent sees in its current 

environment, and these two meanings must be 

composed into a sentence-level meaning that can 

produce an actionable “message'' which tells Ro-

sie what action to take. Along the way the mean-

ings of individual words like green and sphere 

must be grounded to the corresponding properties 

in the agent’s long-term knowledge that are re-

quired to find the object in its perceived scene. 

3 Language Used for Interactive Task 

Learning  

In ITL the agent starts with sufficient linguistic 

and operational knowledge to perform some tasks, 

but then needs to learn new tasks and extensions 

to known tasks through interaction with a human 

instructor (Laird et al., 2012; Mohan et al., 2012; 

Mininger and Laird, 2016). In this section we give 

some examples of the language input involved in 

learning a few example tasks. Although the inter-

action also involves requests from Rosie to the in-

structor, we consider only language comprehen-

sion and not production here. 

Assume that at first the agent knows the primi-

tive manipulation command to pick up an object 

in its visual field and another to put or put down 

that object in one of its known locations. Now we 

can instruct it to learn the verb move with an in-

teraction that includes the following sequence of 

instructions, interspersed with agent responses 

that are not shown. 
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(1) Sentences for teaching the verb move 
a. Move the red block to the left 

of the orange block. 

b. The goal is that the red block 

is to the left of the orange 

block. 

c. Pick up the red block. 

d. Put the red block to the left 

of the orange block. 

e. The task is done. 
 

In (1a) a command to perform an unknown task 

is given, and the agent asks for help. Then the in-

structor states the end goal of the task (1b). In 

some cases this may be sufficient, and the agent 

may be able to perform the reasoning needed to 

plan a sequence of actions to perform the task. In 

(1) we show a case where the agent asks for more 

help after (1b), and the instructor gives a sequence 

of known commands needed to complete the task 

(1c-e). Rosie can then remember the goal, its rela-

tion to the original move command, and the se-

quence of steps so that if given another move 

command in the future it can perform it unaided. 

Other examples of similar interactions are given 

in (2) through (4). 
 

(2) Sentences for teaching the discard task 
a. Discard the green box. 

b. The goal is that the green box 

is in the trash. 

c. Pick up the green box. 

d. Put the green box in the trash. 

e. The task is finished. 
 

(3) Sentences for teaching a deliver task 
a. Deliver the box to the main of-

fice. 

b. The goal is that the box is in 

the office. 

c. Pick up the box. 

d. Go to the main office. 

e. Put down the box. 

f. You are done. 
 

(4) Sentences for teaching a fetch task 
a. Fetch a stapler. 

b. The goal is that the stapler is 

in the starting location. 

c. Remember the current location 

as the starting location. 

d. Find the stapler. 

e. Pick up the stapler. 

f. Go to the starting location. 

g. Put down the stapler. 

h. The task is over. 
 

These examples illustrate the kinds of sequenc-

es involved in ITL, but do not represent the full 

linguistic range of the system. The benchmark de-

scribed below contains a corpus of 200 sentences 

that apply to the object manipulation and indoor 

navigation domains, as well as to learning com-

plex tasks in these domains. These sentences have 

been designed by hand to accomplish three pur-

poses: provide the information needed to achieve 

our ITL goals, say things in a way that seems nat-

ural to humans, and experiment with different lin-

guistic forms. 

The entire corpus includes declarative sentenc-

es to describe objects or relations, commands for 

object manipulation and indoor navigation, condi-

tional if/then commands, commands with until 

clauses, sentences about goals and task progress, 

and questions to Rosie about its knowledge of the 

world. Unrestricted human interaction with the 

agent might well produce many additional linguis-

tic forms we have not yet considered. As a group, 

the 200 sentences provide a number of compre-

hension challenges, including lexical, syntactic, 

and semantic ambiguities (Lindes and Laird, 

2017b). 

4 The Grounding Process in Lucia 

This section examines how Lucia grounds words, 

phrases, clauses, and sentences, eventually pro-

ducing a message to the operational part of Rosie 

for each sentence it comprehends. We describe the 

knowledge sources used to provide information 

for the grounding, give an overview of the com-

prehension process in Lucia, and describe the var-

ious grounding processes. 

4.1 Knowledge Sources 

Information for grounding the various linguistic 

units comes from four sources: the ECG grammar, 

the current state of the comprehension, the current 

perceived visual scene, and an ontology of clas-

ses, properties, and actions. 

The ECG grammar: Lucia uses a grammar 

built by hand in the ECG language. An off-line 

program translates the constructions and schemas 

in the grammar into Soar production rules (Lindes 

and Laird, 2016). As the comprehension proceeds, 

these rules fire at appropriate times to instantiate 

constructions and schemas and fill the schema 
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roles whose fillers are defined in the grammar. 

Additional Soar rules not built from the grammar 

fill in grounding information from the other 

knowledge sources. 

The comprehension state: The Lucia compre-

hension system works incrementally, doing as 

much processing as possible as each individual 

word comes in (Lindes and Laird, 2017a). In do-

ing so it recognizes lexical and phrasal construc-

tions and builds a hierarchy of their instances. 

Schemas are also instantiated and filled as soon as 

possible and attached to the constructions. At any 

point in time the comprehender has a stack of 

construction instances built so far that have not 

yet been incorporated as constituents in higher 

level constructions, and each of these has its at-

tached meaning. Thus the rules that are trying to 

ground any new meaning being constructed can 

draw on the knowledge contained in this compre-

hension state as one of their information sources. 

The world model: Rosie has a scene graph is 

brought into Soar's working memory by its visual 

perception system and thus is available to Lucia 

and to the part of Rosie that implements actions. 

Each object is identified by a unique identifier and 

has category, color, size, and shape properties set 

by the visual perception system. In addition to ob-

jects, the world model contains information about 

spatial relations between objects, an indicator of 

which object the instructor is currently pointing 

to, and a special object to represent the robot it-

self. This world model is a key source of 

knowledge for grounding language. 

The ontology: The objects and relations in the 

world model are in working memory and can 

change as Rosie proceeds through a task. We also 

need fixed knowledge to represent categories, 

property values, and actions. The source for this 

kind of knowledge is an ontology stored in Soar's 

long-term semantic memory. This knowledge, like 

the world model, is shared between Lucia and the 

operational rules in Rosie. 

4.2 Lucia Comprehension Overview 

Lucia processes a sentence word-by-word and 

left-to-right. A number of Soar operators are se-

lected and applied during each word cycle. By the 

end of the word cycle, the comprehension state 

will have the lexical construction for that word, 

larger phrasal constructions that combine it as ap-

propriate with items previously on the stack, and 

grounded meaning schemas corresponding to 

these new constructions. 

Each word known to the system has one or 

more lexical constructions in the grammar. If a 

word has multiple senses, each of these construc-

tions is instantiated at first, and later processes se-

lect the correct one for the current context (Lindes 

and Laird, 2017b). Phrasal constructions combine 

constituents into higher level constructions. As 

each construction is instantiated, it evokes a 

schema to represent its meaning. Along the way, 

the various forms of grounding are performed. 

4.3 Grounding Referring Expressions 

We define a referring expression as a linguistic 

unit meant to describe some object that the system 

can know about. The general construction for a re-

ferring expression is called a RefExpr, and its 

meaning is represented by a RefDesc, or refer-

ence descriptor. These are built up as words are 

being processed. A RefExpr can consist of a 

simple pronoun, like it or this, a noun phrase like 

the green sphere, or a more complex expression 

like the green rectangle to the left of the large 

green rectangle or a green block that is on the 

stove. As the individual words in the expression 

are processed, the complete RefExpr and its 

RefDesc meaning are gradually built up. 

A common noun generates a schema that repre-

sents some class of object, and sets the roles of 

this schema to identifiers for the category and/or 

shape of that class of objects. An adjective gener-

ates a schema to describe a property class and a 

value for that property, such as the color green. A 

determiner sets whether the expression is definite 

or indefinite. At this lexical level, part of the 

grounding is performed by instantiating the 

grammatical knowledge incorporated in the lexi-

cal constructions. Then an operator is selected to 

retrieve information about categories and proper-

ties from the ontology. 

As soon as a complete noun phrase has been 

built, an operator takes the RefDesc that has 

been assembled and searches in the world model 

for one or more objects that match the description. 

Similarly, a pronoun is grounded by an operator 

that deals with pronouns. The object that is found 

from this grounding is then set as the referent of 

the RefDesc. 

More complex referring expressions are 

grounded in several steps. For instance, the green 

rectangle to the left of the large green rectangle 
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causes several phrase-level grounding operations 

in addition to the lexical ones. The phrase the 

green rectangle will be grounded to the set of two 

green rectangles in our test world model, while 

the large green rectangle will be grounded to a 

single object. The preposition to the left of is 

looked up in the ontology to see what kind of rela-

tion it represents. Finally that relation is used to 

select from the possible green rectangles the one 

which satisfies the complete expression. 

A complex referring expression like a green 

block that is on the stove also requires several 

grounding steps. First when a green block is 

grounded, a set of several objects that match is 

formed. Next that is recognized as a relative pro-

noun, and connected to the preceding noun 

phrase. The phrase on the stove finds the stove 

and a relation to it, which is then applied to the set 

of objects found for the noun phrase that that is at-

tached to, resulting in a single object that satisfies 

the whole expression. 

4.4 Grounding and Attaching Prepositional 

Phrases 

Consider the full sentence: ‘Move the green rec-

tangle to the left of the large green rectangle to 

the pantry.’ Above we looked at grounding the 

green rectangle to the left of the large green rec-

tangle as an isolated expression. Within the com-

plete sentence, however, things get more compli-

cated. The prepositional phrase with to the left of 

could attach to the previous noun phrase, but it 

could also attach to the verb as its target location. 

Then later on, as the incremental processing pro-

ceeds, we get to the phrase to the pantry. Where 

should this be attached? 

Lucia has a strategy for resolving issues of this 

sort within its incremental, single-path parsing 

strategy context (Lindes and Laird, 2017a). When 

the first prepositional phrase has been assembled, 

two attachment sites are considered: the immedi-

ately preceding noun phrase or the previous verb. 

If the verb is one that requires a target location, 

such as put or move, the prepositional phrase will 

be attached to the verb. If the verb is one like pick 

up that does not require a target location, the 

phrase will be attached to the preceding noun 

phrase. 

When the second prepositional phrase has been 

processed, however, we have a problem. The verb 

already has a target location attached, and the 

noun phrase before that has been hidden under the 

construction that makes that attachment. Here Lu-

cia uses a strategy called local repair. A snip op-

eration disconnects the first prepositional phrase 

from the verb, and then it is reattached to the 

green rectangle, and that complete expression is 

regrounded. Now the phrase to the pantry can be 

attached to the verb as its target location. This lo-

cal repair operation is described more fully by 

Lindes and Laird (2017b). 

4.5 Grounding Full Sentences 

The ECG grammar provides constructions that 

combine the lexical items for verbs with the refer-

ring expressions that form the verb’s arguments to 

form complete sentences. These are often called 

argument structure constructions. Verbs describing 

actions are grounded by looking up their identifi-

ers in the ontology to connect to the actions the 

agent knows how to perform. This lookup pro-

vides the referring link to the agent’s knowledge 

of how to perform the given action. 

Once the comprehension process has recog-

nized a complete sentence as a single construc-

tion, an interpretation process is performed. This 

process converts the top-level meaning structure 

produced by the language comprehension system 

into a grounded, actionable message for Rosie to 

act on. Every message has a type field, plus other 

arguments depending on its type. Here we give 

brief descriptions of these messages; more detail 

can be found in the supplemental materials. 

In the example in Figure 1, the ActOnIt 

schema is interpreted to form a message of type 

command with arguments pick-up1 and 

large-green-sphere1. 

Declarative sentences produce object-

description messages. This message type has 

an object argument to indicate the object being 

described and a property argument showing the 

property to be assigned to the object. All action 

commands produce command messages. Each 

command message has an action argument, most 

have an object argument, and others have varying 

arguments. 

The command ‘If you see the soda then pick it 

up.’ illustrates a conditional command which pro-

duces a “conditional'' message an action for the 

then clause and a condition for the if clause. The 

condition must be met first, and the action will be 

performed when the condition is met. A command 

can also have an until clause describing a condi-
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tion to terminate the action, as in ‘Explore until 

you see a soda.’ 

Lucia and Rosie understand several types of 

questions, as shown in (5). 
 

(5) Some questions that Rosie can understand 
a. Is the large sphere green? 

b. Is the small orange triangle 

behind the green sphere? 

c. What is inside the pantry? 

d. Where is the red triangle? 

e. What color is the large sphere? 

f. What shape is this? 
 

Such questions produce various forms of ques-

tion messages, with arguments to define the ob-

jects, properties, or relations being asked about. 

5 Benchmark 

We have assembled various data items discussed 

in this paper into a package to be submitted as 

supplementary material. We hope this package, 

which we are calling The University of Michigan 

Robot Language Benchmark #1, will be useful to 

other researchers as a benchmark against which to 

evaluate their systems for robot language ground-

ing as we are using it to evaluate and continue to 

develop Lucia. 

The supplementary materials are contained in a 

file called UMRLB-1_v0.1.zip containing the files 

listed in Table 1. The “-1'' indicates that we expect 

there to be others in the future, and the “_v0.1'' in-

dicates the specific version. The files containing 

data structures are in the industry standard JSON 

format to make them easily machine-readable 

across many systems. 
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File Name  Description 

UMRLB-1 

.pdf 

A document describing in detail 

the files in the benchmark and 

their meanings. 

Sentences.txt The corpus of 200 sentences, 

grouped by their linguistic types. 

World.json A definition of a particular snap-

shot of the world perceived by a 

robot that can be used to ground 

linguistic expressions. 

Ontology.json An ontology defining properties 

of perceived objects and robot 

actions. 

GoldStandard 

.json 

A file giving the gold-standard 

meaning for each sentence in the 

corpus, along with other metada-

ta. 

Table 1: Files included in the Benchmark 
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