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Abstract

Generative Adversarial Networks (GANs)
have gathered a lot of attention from the
computer vision community, yielding im-
pressive results for image generation. Ad-
vances in the adversarial generation of nat-
ural language from noise however are not
commensurate with the progress made in
generating images, and still lag far be-
hind likelihood based methods. In this
paper, we take a step towards generating
natural language with a GAN objective
alone. We introduce a simple baseline that
addresses the discrete output space prob-
lem without relying on gradient estima-
tors and show that it is able to achieve
state-of-the-art results on a Chinese poem
generation dataset. We present quantita-
tive results on generating sentences from
context-free and probabilistic context-free
grammars, and qualitative language mod-
eling results. A conditional version is also
described that can generate sequences con-
ditioned on sentence characteristics.

1 Introduction

Deep neural networks have recently enjoyed some
success at modeling natural language (Mikolov
et al., 2010; Zaremba et al., 2014; Kim et al.,
2015). Typically, recurrent and convolutional
language models are trained to maximize the
likelihood of observing a word or character
given the previous observations in the sequence
P (w1 . . . wn) = p(w1)

∏n
i=2 P (wi|w1 . . . wi−1).

These models are commonly trained using a tech-
nique called teacher forcing (Williams and Zipser,
1989) where the inputs to the network are fixed
and the model is trained to predict only the next

∗Indicates first authors. Ordering determined by coin flip.

item in the sequence given all previous observa-
tions. This corresponds to maximum-likelihood
training of these models. However this one-step
ahead prediction during training makes the model
prone to exposure bias (Ranzato et al., 2015; Ben-
gio et al., 2015). Exposure bias occurs when
a model is only trained conditioned on ground-
truth contexts and is not exposed to its own er-
rors (Wiseman and Rush, 2016). An important
consequence to exposure bias is that generated se-
quences can degenerate as small errors accumu-
late. Many important problems in NLP such as
machine translation and abstractive summariza-
tion are trained via a maximum-likelihood train-
ing objective (Bahdanau et al., 2014; Rush et al.,
2015), but require the generation of extended se-
quences and are evaluated based on sequence-level
metrics such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004).

One possible direction towards incorporating a
sequence-level training objective is to use Gener-
ative Adversarial Networks (GANs) (Goodfellow
et al., 2014). While GANs have yielded impres-
sive results for modeling images (Radford et al.,
2015; Dumoulin et al., 2016), advances in their
use for natural language generation has lagged be-
hind. Some progress has been made recently in
incorporating a GAN objective in sequence mod-
eling problems including natural language gen-
eration. Lamb et al. (2016) use an adversarial
criterion to match the hidden state dynamics of
a teacher forced recurrent neural network (RNN)
and one that samples from its own output distri-
bution across multiple time steps. Unlike the ap-
proach in Lamb et al. (2016), sequence GANs (Yu
et al., 2016) and maximum-likelihood augmented
GANs (Che et al., 2017) use an adversarial loss
at outputs of an RNN. Using a GAN at the out-
puts of an RNN however isn’t trivial since sam-
pling from these outputs to feed to the discrimi-
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nator is a non-differentiable operation. As a re-
sult gradients cannot propagate to the generator
from the discriminator. Yu et al. (2016) use policy
gradient to estimate the generator’s gradient and
(Che et al., 2017) present an importance sampling
based technique. Other alternatives include RE-
INFORCE (Williams, 1992), the use of a Gumbel
softmax (Jang et al., 2016) and the straighthrough
estimator (Bengio et al., 2013) among others.

In this work, we address the discrete output
space problem by simply forcing the discriminator
to operate on continuous valued output distribu-
tions. The discriminator sees a sequence of proba-
bilities over every token in the vocabulary from the
generator and a sequence of 1-hot vectors from the
true data distribution as in Fig. 1. This technique
is identical to that proposed by Gulrajani et al.
(2017), which is parallel work to this. In this paper
we provide a more complete empirical investiga-
tion of this approach to applying GANs to discrete
output spaces. We present results using recurrent
as well as convolutional architectures on three lan-
guage modeling datasets of different sizes at the
word and character-level. We also present quanti-
tative results on generating sentences that adhere
to a simple context-free grammar (CFG), and a
richer probabilistic context-free grammar (PCFG).
We compare our method to previous works that
use a GAN objective to generate natural language,
on a Chinese poetry generation dataset. In addi-
tion, we present a conditional GAN (Mirza and
Osindero, 2014) that generates sentences condi-
tioned on sentiment and questions.

2 Generative Adversarial Networks

GANs (Goodfellow et al., 2014) are a general
framework used in training generative models by
formulating the learning process as a two player
minimax game as formulated in the equation be-
low. A generator network G tries to generate sam-
ples that are as close as possible to the true data
distribution P (x) of interest from a fixed noise
distribution P (z). We will refer to the samples
produced by the generator as G(z). A discrimina-
tor network is then trained to distinguish between
G(z) and samples from the true data distribution
P (x) while the generator network is trained us-
ing gradient signals sent by the discriminator by
minimizing log(1 −D(G(z))). Goodfellow et al.
(2014) have shown that, with respect to an opti-
mal discriminator, the minimax formulation can

be shown to minimize the Jensen Shannon Diver-
gence (JSD) between the generator’s output distri-
bution and the true data distribution.

min
G

max
D

V (D,G) = E
x∼P (x)

[logD(x)]

+ E
z∼P (z)

[log(1−D(G(z)))]

However, in practice, the generator is trained to
maximize log(D(G(z))) instead, since it provides
stronger gradients in the early stages of learning
(Goodfellow et al., 2014).

GANs have been reported to be notoriously
hard to train in practice (Arjovsky and Bottou,
2017) and several techniques have been proposed
to alleviate some of the complexities involved in
getting them to work including modified objec-
tive functions and regularization (Salimans et al.,
2016; Arjovsky et al., 2017; Mao et al., 2016; Gul-
rajani et al., 2017). We discuss some of these prob-
lems in the following subsection.

Nowozin et al. (2016) show that it is possible
to train GANs with a variety of f-divergence mea-
sures besides JSD. Wasserstein GANs (WGANs)
(Arjovsky et al., 2017) minimize the earth mover’s
distance or Wasserstein distance, while Least
Squared GANs (LSGANs) (Mao et al., 2016)
modifies replaces the log loss with an L2 loss.
WGAN-GP (Gulrajani et al., 2017) incorporate a
gradient penalty term on the discriminator’s loss
in the WGAN objective which acts as a regular-
izer. In this work, we will compare some of these
objectives in the context of natural language gen-
eration.

2.1 Importance of Wasserstein GANs
Arjovsky and Bottou (2017) argue that part of
the problem in training regular GANs is that it
seeks to minimize the JSD between the G(z)
and P (x). When the generator is trying to op-
timized log(1 − D(G(z))), the gradients that it
receives vanish as the discriminator is trained to
optimality. The authors also show that when
trying to optimize the more practical alternative,
−log(D(G(z))), the generator might not suffer
from vanishing gradients but receives unstable
training signals. It is also important to consider
the fact that highly structured data like images and
language lie in low-dimensional manifolds (as is
evident by studying their principal components).
Wassterstein GANs (Arjovsky et al., 2017) over-
come some of the problems in regular GAN train-

242



ing by providing a softer metric to compare the
distributions lying in low dimensional manifolds.
A key contribution of this work was identifying
the importance of a lipschitz constraint which is
achieved by clamping the weights of the discrim-
inator to lie in a fixed interval. The lipschitz
constraint and training the discriminator multiple
times for every generator gradient update creates a
strong learning signal for the generator.

Gulrajani et al. (2017) present an alternative to
weight clamping that they call a gradient penalty
to enforce lipschitzness since model performance
was reported to be highly sensitive to the clamp-
ing hyperparameters. They add the following
penalty to the discriminator training objective -
(||OG(z)D(G(z))||2 − 1)2. A potential concern
regarding our strategy to train our discriminator
to distinguish between sequence of 1-hot vectors
from the true data distribution and a sequence of
probabilities from the generator is that the discrim-
inator can easily exploit the sparsity in the 1-hot
vectors to reach optimality. However, Wasster-
stein distance with a lipschitz constraint / gradi-
ent penalty provides good gradients even under an
optimal discriminator and so isn’t a problem for
us in practice. Even though it is possible to ex-
tract some performance from a regular GAN ob-
jective with the gradient penalty (as we show in
one of our experiments), WGANs still provide bet-
ter gradients to the generator since the discrimina-
tor doesn’t saturate often.

3 Model architecture

Let z ∼ N (0, I) be the input to our generator
network G from which we will attempt to gener-
ate natural language. For implementation conve-
nience, the sample z is of shape n × d where n
is the length of sequence and d is a fixed length
dimension of the noise vector at each time step.
The generator then transforms z into a sequence of
probability distributions over the vocabulary G(z)
of size n×k where k is the size of our true data dis-
tribution’s vocabulary. The discriminator network
D is provided with fake samples G(z) and sam-
ples from the true data distribution P (x). Sam-
ples from the true distribution are provided as a
sequence of 1-hot vectors with each vector serv-
ing as an indicator of the observed word in the
sample. As described in section 2, the discrimi-
nator is trained to discriminate between real and
fake samples and the generator is trained to fool

Figure 1: Model architecture

the discriminator as in Fig. 1.
We investigate recurrent architectures as in

(Lamb et al., 2016; Yu et al., 2016; Che et al.,
2017) and convolutional architectures in both the
generator as well as the discriminator. The follow-
ing subsections detail our architectures.

3.1 Recurrent Models

Recurrent Neural Networks (RNNs), particu-
larly Long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Networks (Cho et al., 2014) are power-
ful models that have been successful at modeling
sequential data (Graves and Schmidhuber, 2009;
Mikolov et al., 2010). They transform a sequence
of input vectors x = x1 . . . xn into a sequence
of hidden states h = h1 . . . hn where each hid-
den state maintains a summary of the input up un-
til then. RNN language models are autoregres-
sive in nature since the input to the network at
time t depends on the output at time t − 1. How-
ever, in the context of generating sequences from
noise, the inputs are pre-determined and there is
no direct correspondence between the output at
time t − 1 and the input at time t this fundamen-
tally changes the auto-regressiveness of the RNN.
The RNN does however carry forward informa-
tion about its output at time t through subsequent
time steps via its hidden states h as evident from
its recurrent transition function. In order to incor-
porate an explicit dependence between subsequent
RNN outputs, we add a peephole connection be-
tween the output probability distribution yt−1 at
time t−1 and the hidden state ht at time t as show
in the LSTM equations below. Typical RNN lan-

243



guage models have a shared affine transformation
matrix Wout that is shared across time all steps
that projects the hidden state vector to a vector of
the same size as the target vocabulary to generate a
sequence of outputs y = y1 . . . yt. Subsequently a
softmax function is applied to each vector to turn it
into a probability distribution over the vocabulary.

yt = softmax(Woutht + bout),

During inference, an output is sampled from the
softmax distribution and becomes the input at the
subsequent time step. While training the inputs
are pre-determined. In all of our models, we
perform greedy decoding where we always pick
argmax yt. When using the LSTM as a discrim-
inator we use a simple binary logistic regression
layer on the last hidden state hn to determine the
probability of the sample being from the genera-
tor’s data distribution or from the real data distri-
bution. P (real) = σ(Wpredhn + bpred).

The LSTM update equations with an output
peephole are :

it = σ(Wxixt + Whiht−1 + Wpiyt−1 + bi)
ft = σ(Wxfxt + Whfht−1 + Wpfyt−1 + bf )
ot = σ(Wxoxt + Whoht−1 + Wpoyt−1 + bo)
ct = tanh(Wxcxt + Whcht−1 + Wpcyt−1 + bc)
ct = ft � ct−1 + it � ct

ht = ot � tanh(ct),

where σ is the element-wise sigmoid function, �
is the hadamard product, tanh is the element-wise
tanh function. W· and b· are learn-able parame-
ters of the model and it, ft, ot and ct constitute the
input, forget, output and cell states of the LSTM
respectively.

3.2 Convolutional Models
Convolutional neural networks (CNNs) have also
shown promise at modeling sequential data us-
ing 1-dimensional convolutions (Dauphin et al.,
2016; Zhang et al., 2015). Convolution filters are
convolved across time and the input dimensions
are treated as channels. In this work, we explore
convolutional generators and discriminators with
residual connections (He et al., 2016).

Gulrajani et al. (2017) use a convolutional
model for both the generator and discriminator.
The generator consists of 5 residual blocks with
2 1-D convolutional layers each. A final 1-D con-
volution layer transforms the output of the resid-

ual blocks into a sequence of un-normalized vec-
tors for each element in the input sequence (noise).
These vectors are then normalized using the soft-
max function. All convolutions are ’same’ con-
volutions with a stride of 1 followed by batch-
normalization (Ioffe and Szegedy, 2015) and the
ReLU (Nair and Hinton, 2010; Glorot et al., 2011)
activation function without any pooling so as to
preserve the shape of the input. The discrimina-
tor architecture is identical to that of the generator
with the final output having a single output chan-
nel.

3.3 Curriculum Learning

In likelihood based training of generative language
models, models are only trained to make one-step
ahead predictions and as a result it is possible to
train these models on relatively long sequences
even in the initial stages of training. However, in
our adversarial formulation, our generator is en-
couraged to generate entire sequences that match
the true data distribution without explicit supervi-
sion at each step of the generation process. As
a way to provide training signals of incremen-
tal difficulty, we use curriculum learning (Bengio
et al., 2009) and train our generator to produce se-
quences of gradually increasing lengths as training
progresses.

4 Experiments & Data

GAN based methods have often been critiqued for
lacking a concrete evaluation strategy (Salimans
et al., 2016), however recent work (Wu et al.,
2016) uses an annealed importance based tech-
nique to overcome this problem.

In the context of generating natural language,
it is possible to come up with a simpler approach
to evaluate compute the likelihoods of generated
samples. We synthesize a data generating distri-
bution under which we can compute likelihoods in
a tractable manner. We propose a simple evalua-
tion strategy for evaluating adversarial methods of
generating natural language by constructing a data
generating distribution from a CFG or P−CFG.
It is possible to determine if a sample belongs to
the CFG or the probability of a sample under a
P−CFG by using a constituency parser that is pro-
vided with all of the productions in a grammar.
Yu et al. (2016) also present a simple idea to esti-
mate the likelihood of generated samples by using
a randomly initialized LSTM as their data gener-
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ating distribution. While this is a viable strategy
to evaluate generative models of language, a ran-
domly initialized LSTM provides little visibility
into the complexity of the data distribution itself
and presents no obvious way to increase its com-
plexity. CFGs and PCFGs however, provide ex-
plicit control of the complexity via their produc-
tions. They can also be learned via grammar in-
duction (Brill, 1993) on large treebanks of natural
language and so the data generating distribution is
not synthetic as in (Yu et al., 2016).

Typical language models are evaluated by mea-
suring the likelihood of samples from the true
data distribution under the model. However, with
GANs it is impossible to measure likelihoods un-
der the model itself and so we measure the like-
lihood of the model’s samples under the true data
distribution instead.

We divide our experiments into four categories:

• Generating language that belongs to a toy
CFG and an induced PCFG from the Penn
Treebank (Marcus et al., 1993).

• Chinese poetry generation with comparisons
to (Yu et al., 2016) and (Che et al., 2017).

• Generated samples from a dataset consisting
of simple English sentences, the 1-billion-
word and Penn Treebank datasets.

• Conditional GANs that generate sentences
conditioned on certain sentence attributes
such as sentiment and questions.

4.1 Simple CFG
We use a simple and publicly available CFG1 that
contains 248 productions. We then generate two
sets of data from this CFG - one consisting of sam-
ples of length 5 and another of length 11. Each
set contains 100,000 samples selected at random
from the CFG. The first set has a vocabulary of
36 tokens while the second 45 tokens. We eval-
uate our models on this task by measuring the
fraction of generated samples that satisfy the rules
of the grammar and also measure the diversity in
our generated samples. We do this by generating
1,280 samples from noise and computing the frac-
tion of those that are valid under our grammar us-
ing the Earley parsing algorithm (Earley, 1970). In
order to measure sample diversity, we simply the

1http://www.cs.jhu.edu/˜jason/465/
hw-grammar/extra-grammars/holygrail

count the number of unique samples; while this as-
sumes that all samples are orthogonal it still serves
as a proxy measure of the entropy. We compare
various generator, discriminator and GAN objec-
tives on this problem.

4.2 Penn Treebank PCFG

To construct a more challenging problem than a
simple CFG, we use sections 0-21 of the WSJ sub-
section of the Penn Treebank to induce a PCFG
using simple count statistics of all productions.

P (A→ BC) =
count(A→ BC)
count(A→ ∗)

We train our model on all sentences in the treebank
and restrict the output vocabulary to the top 2,000
most frequently occurring words. We evaluate our
models on this task by measuring the likelihood of
a sample using a Viterbi chart parser (Klein and
Manning, 2003). While such a measure mostly
captures the grammaticality of a sentence, it is still
a reasonable proxy of sample quality.

4.3 Chinese Poetry

Zhang and Lapata (2014) present a dataset of Chi-
nese poems that were used to evaluate adversarial
training methods for natural language in (Yu et al.,
2016) and (Che et al., 2017). The dataset consists
of 4-line poems with a variable number of charac-
ters in each line. We treat each line in a poem as a
training example and use lines of length 5 (poem-
5) and 7 (poem-7) with the train/validation/test
split2 specified in (Che et al., 2017). We use
BLEU-2 and BLEU-3 to measure model perfor-
mance on this task. Since there is no obvious ”tar-
get” for each generated sentence, both works re-
port corpus-level BLEU measures using the entire
test set as the reference.

4.4 Language Generation

We generate language from three different datasets
of varying sizes and complexity. A dataset com-
prising simple English sentences3 which we will
henceforth refer to as CMU−SE, the version of
the Penn Treebank commonly used in language
modeling experiments (Zaremba et al., 2014) and
the Google 1-billion word dataset (Chelba et al.,

2http://homepages.inf.ed.ac.uk/mlap/
Data/EMNLP14/

3https://github.com/clab/sp2016.
11-731/tree/master/hw4/data
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2013). We perform experiments at generating lan-
guage at the word as well as character-level. The
CMU−SE dataset consists of 44,016 sentences
with a vocabulary of 3,122 words, while the Penn
Treebank consists of 42,068 sentences with a vo-
cabulary of 10,000 words. We use a random sub-
set of 3 million sentences from the 1-billion word
dataset and constrain our vocabulary to the top
30,000 most frequently occurring words. We use
a curriculum learning strategy in all of our LSTM
models (with and without the output peephole con-
nection) that starts training on sentences of length
5 at the word level and 13 for characters and in-
creases the sequence length by 1 after a fixed num-
ber of epochs based on the size of the data. Con-
volutional methods in (Gulrajani et al., 2017) are
able to generate long sequences even without a
curriculum, however we found it was critical in
generating long sequences with an LSTM.

Figure 2: Negative log-likelihood of generated
samples under the PCFG using an LSTM trained
with the WGAN-GP, GAN-GP and a standard
MLE objective on the PTB dataset

4.5 Conditional Generation of Sequences
GANs are able to leverage explicit condition-
ing on high-level attributes of data (Mirza and
Osindero, 2014; Gauthier, 2014; Radford et al.,
2015) to generate samples which contain these at-
tributes. Recent work (Hu et al., 2017) generates
sentences conditioned on certain attributes of lan-
guage such as sentiment using a variational au-
toencoders (VAEs) (Kingma and Welling, 2013)
and holistic attribute discriminators. In this paper,
we use two features inherent in language - sen-
timent and questions. To generate sentences that
are questions, we use the CMU−SE dataset and
label sentences that contain a ”?” as being ques-
tions and the rest as been statements. To generate
sentences of positive and negative sentiment we
use the Amazon review polarity dataset collected

in (Zhang et al., 2015) and use the first 3 million
short reviews with a vocabulary of the top 4,000
most frequently occurring words. Conditioning on
sentence attributes is achieved by concatenating a
single feature map containing either entirely ones
or zeros to indicate the presence or absence of the
attribute as in (Radford et al., 2015) at the out-
put of each convolutional layer. The conditioning
is done on both the generator and the discrimina-
tor. We experiment with conditional GANs using
only convolutional methods since methods adding
conditioning information has been well studied in
these architectures.

4.6 Training

All models are trained using the back-propagation
algorithm updating our parameters using the
Adam optimization method (Kingma and Ba,
2014) and stochastic gradient descent (SGD) with
batch sizes of 64. A learning rate of 2 × 10−3,
β1 = 0.5 and β2 = 0.999 is used in our LSTM
generator and discriminators while convolutional
architectures use a learning rate of 1× 10−4. The
noise prior and all LSTM hidden dimensions are
set to 128 except for the Chinese poetry genera-
tion task where we set it to 64.

5 Results and Discussion

Table. 1 presents quantitative results on generat-
ing sentences that adhere to the simple CFG de-
scribed in Section 4.1. The Acc column computes
the accuracy with which our model generates sam-
ples from the CFG using a sample of 1,280 gen-
erations. We observe that all models are able to
fit sequences of length 5 but only the WGAN,
WGAN-GP objectives are able to generalize to
longer sequences of length 11. This motivated us
to use only the WGAN and WGAN-GP objectives
in our subsequent experiments. The GAN-GP cri-
terion appears to perform reasonably as well but
we restrict our experiments to use the WGAN and
WGAN-GP criteria only. GANs have been shown
to exhibit the phenomenon of ”mode dropping”
where the generator fails to capture a large fraction
of the modes present in the data generating distri-
bution (Che et al., 2016). It is therefore important
to study the diversity in our generated samples.
The Uniq column computes the number of unique
samples in a sample 1,280 generations serves as a
rough indicator of sample diversity. The WGAN-
GP objective appears to encourage the generation
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Gen Disc Objective Length 5 Length 11
Acc (%) Uniq Acc (%) Uniq

LSTM LSTM GAN 99.06 0.913 0 0.855
LSTM LSTM LSGAN 99.45 0.520 0 0.855
LSTM LSTM WGAN 93.98 0.972 98.04 0.924

LSTM-P LSTM WGAN 97.96 0.861 99.29 0.653
LSTM LSTM WGAN-GP 99.21 0.996 96.25 0.992
CNN CNN WGAN-GP 98.59 0.990 97.01 0.771

LSTM-P LSTM GAN-GP 98.68 0.993 96.32 0.995

Table 1: Accuracy and uniqueness measure of samples generated by different models. LSTM, LSTM-P
refers to the LSTM model with the output peephole and the WGAN-GP and GAN-GP refer to models
that use a gradient penalty in the discriminator’s training objective

Models Poem 5 Poem 7
BLEU-2 BLEU-3 BLEU-2 BLEU-3

Val Test Val Test Val Test Val Test
MLE (Che et al., 2017) - 0.693 - - - 0.318 - -

Sequence GAN (Yu et al., 2016) - 0.738 - - - - - -
MaliGAN-basic (Che et al., 2017) - 0.740 - - - 0.489 - -
MaliGAN-full (Che et al., 2017) - 0.762 - - - 0.552 - -

LSTM (ours) 0.840 0.837 0.427 0.372 0.660 0.655 0.386 0.405
LSTM Peephole (ours) 0.845 0.878 0.439 0.363 0.670 0.670 0.327 0.355

Table 2: BLEU scores on the poem-5 and poem-7 datasets

of diverse samples while also fitting the data dis-
tribution well.

Fig. 2 shows the negative-log-likelihood of gen-
erated samples using a LSTM architecture using
the WGAN-GP, GAN-GP and MLE criteria. All
models used an LSTM generator. The sequence
length is set to 7 and the likelihoods are evaluated
at the end of every epoch on a set of 64 samples.

Table. 2 contains quantitative results on the Chi-
nese poetry generation dataset. The results indi-
cate that our straightforward strategy to overcome
back-propagating through discrete states is com-
petitive and outperforms more complicated meth-
ods.

Table. 5 contains sequences generated by
our model conditioned on sentiment (posi-
tive/negative) and questions/statements. The
model is able to pick up on certain consistent pat-
terns in questions as well as when expressing sen-
timent and use them while generating sentences.

Tables 3 and 4 contain sequences generated at
the word and character-level by our LSTM and
CNN models. Both models are able to produce re-
alistic sentences. The CNN model with a WGAN-

GP objective appears to be able to maintain con-
text over longer time spans.

6 Conclusion and Future work

In conclusion, this work presents a straightforward
but effective method to train GANs for natural lan-
guage. The simplicity lies in forcing the discrimi-
nator to operate on continuous values by present-
ing it with a sequence of probability distributions
from the generator and a sequence of 1-hot vec-
tors corresponding to data from the true distribu-
tion. We propose an evaluation strategy that in-
volves learning the data distribution defined by a
CFG or PCFG. This lets us evaluate the likeli-
hood of a sample belonging to the data generating
distribution. The use of WGAN and WGAN-GP
objectives produce realistic sentences on datasets
of varying complexity (CMU-SE, Penn Treebank
and the 1-billion dataset). We also show that it is
possible to perform conditional generation of text
on high-level sentence features such as sentiment
and questions. In future work, we would like to ex-
plore GANs in other domains of NLP such as non
goal-oriented dialog systems where a clear train-
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Level Method 1-billion-word

Word

LSTM

An opposition was growing in China .
This is undergoing operation a year .
It has his everyone on a blame .
Everyone shares that Miller seems converted President as Democrat .
Which is actually the best of his children .
Who has The eventual policy and weak ?

CNN

Companies I upheld , respectively patented saga and Ambac.
Independence Unit have any will MRI in these Lights
It is a wrap for the annually of Morocco
The town has Registration matched with unk and the citizens

Character CNN

To holl is now my Hubby ,
The gry timers was faller
After they work is jith a
But in a linter a revent

Table 3: Word and character-level generations on the 1-billion word dataset

Level Model PTB CMU-SE

Word

LSTM

what everything they take everything away
from .

<s>will you have two moment ? </s>

may tea bill is the best chocolate from
emergency .

<s>i need to understand deposit length .
</s>

can you show show if any fish left inside . <s>how is the another headache ? </s>
room service , have my dinner please . <s>how there , is the restaurant popular this

cheese ? </s>

CNN

meanwhile henderson said that it has to
bounce for.

<s>i ’d like to fax a newspaper . </s>

I’m at the missouri burning the indexing
manufacturing and through .

<s>cruise pay the next in my replacement .
</s>
<s>what ’s in the friday food ? ? </s>

Table 4: Word level generations on the Penn Treebank and CMU-SE datasets

POSITIVE NEGATIVE
best and top notch newtonmom . usuall the review omnium nothing non-

functionable
good buy homeostasis money well spent
kickass cosamin of time and fun . extreme crap-not working and eeeeeew
great britani ! I lovethis. a horrible poor imposing se400
QUESTION STATEMENT
<s>when ’s the friday convention on ? </s> <s>i report my run on one mineral . </s>
<s>how many snatched crew you have ? </s> <s>we have to record this now . </s>
<s>how can you open this hall ? </s> <s>i think i deeply take your passenger

.</s>

Table 5: Coditional generation of text. Top row shows generated samples conditionally trained on ama-
zon review polarity dataset with two attributes ’positive’ and ’negative’. Bottom row has samples condi-
tioned on the ’question’ attribute
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ing and evaluation criterion does not exist.
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Appendix

We demonstrate that our approach to solve the
problem of discrete outputs produces reasonable
outputs even when applied to images. Fig-
ure 3 shows samples generated on the bina-
rized MNIST dataset (Salakhutdinov and Murray,
2008). We used a generator and discriminator ar-
chitecture identical to (Radford et al., 2015) with
the WGAN-GP criterion. The generator’s outputs
are continuous while samples from the true data
distribution are binarized.

Figure 3: Binarized MNIST samples using a
DCWGAN with gradient penalty
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tou. 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems. pages 1171–1179.

Yoshua Bengio, Nicholas Léonard, and Aaron
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