
Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 219–227,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

A Frame Tracking Model
for Memory-Enhanced Dialogue Systems

Hannes Schulz∗ and Jeremie Zumer∗ and Layla El Asri and Shikhar Sharma
Microsoft Maluuba

first.last@microsoft.com

Abstract

Recently, resources and tasks were pro-
posed to go beyond state tracking in dia-
logue systems. An example is the frame
tracking task, which requires recording
multiple frames, one for each user goal
set during the dialogue. This allows
a user, for instance, to compare items
corresponding to different goals. This
paper proposes a model which takes as
input the list of frames created so far
during the dialogue, the current user
utterance as well as the dialogue acts,
slot types, and slot values associated
with this utterance. The model then
outputs the frame being referenced by
each triple of dialogue act, slot type,
and slot value. We show that on the
recently published Frames dataset, this
model significantly outperforms a previ-
ously proposed rule-based baseline. In
addition, we propose an extensive anal-
ysis of the frame tracking task by divid-
ing it into sub-tasks and assessing their
difficulty with respect to our model.

1 Introduction

Conversational agents can seamlessly integrate
into our lives by offering a natural language
interface for complex tasks. However, the com-
plexity of conversations with current slot-filling
dialogue systems is limited. One limitation is
that the user usually cannot refer back to an
earlier state in the dialogue, which is essential
e.g., when comparing alternatives or research-
ing a complex subject.

The recently published Frames dataset (El
Asri et al., 2017) provides 1369 goal-oriented

∗ Both authors contributed equally.

human-human dialogues where the participants
had to decide on a vacation package to pur-
chase. The authors observed that in order to
make up their minds, participants often com-
pared different packages and referred to items
that had been previously discussed during the
dialogue. Current dialogue systems do not
model the dialogue history in a way that a user
can go back-and-forth between the different
things that have been discussed. To address
this shortcoming, El Asri et al. (2017) intro-
duced a new task called frame tracking. Frame
tracking is an extension of the state tracking
(Henderson, 2015; Williams et al., 2016) task.

In a task-oriented dialogue system, the state
tracker keeps track of the user goal. The user
goal is often represented as the set of con-
straints that the user has (e.g., a budget) as
well as the questions that the user has about
the items presented to her by the dialogue sys-
tem (e.g., the price of the vacation package). It
is assumed that the dialogue system only needs
to keep track of the last set of constraints given
by the user. As a consequence, the user can
change her goal during the dialogue but never
come back to a previous goal. Frame track-
ing consists of recording all the different goals
set by the user during the dialogue. This re-
quires creating a new frame for each new user
goal, which is the annotation provided with
the Frames corpus.

A frame tracker needs to be able to assign
each new user utterance to the frames it ref-
erences. This requires understanding which
frame the user is talking about and recognizing
when the user changes her goal, which implies
that a new frame is created. For e.g. compar-
isons, multiple referenced frames need to be
identified. This paper proposes a neural model
that attempts to solve these tasks.

219

id=1
dst city=Mannheim
or city=Melbourne
price=8000USD

id=2
dst city=New York
or city=Melbourne

id=3
(new)

inform(dst city=Mannheim, budget=cheaper, flex=T)

Is there a cheaper package to Mannheim? I’m flexible with the dates.

Figure 1: Illustration of the frame tracking
task. The model must choose, for each slot,
which frame it is referring to, given the set
of available frames, the previous active frame
(bold), and the potential new frame (marked
“(new)”).

We show that the model significantly outper-
forms the baseline proposed by El Asri et al. on
all the tasks required to perform frame tracking
except for when the user switches frames with-
out specifying slots. We also provide an anal-
ysis of frame tracking. In particular, we show
that our model knows what frame anaphora
refer to almost 90% of the time, and which
hotel is being talked about 84.6% of the time.
On the other hand, it does not perform well
on slots which tend to be repeated in many
frames, such as dst city (destination city). It
also has difficulties selecting the right frame
among similar offers introduced in the same
dialogue turn.

2 Frame Tracking: An Extension of
State Tracking

In a goal-oriented dialogue system, the state
tracker records the user goal in a semantic
frame (Singh et al., 2002; Raux et al., 2003;
El Asri et al., 2014; Laroche et al., 2011). The
Dialogue State Tracking Challenge (DSTC)
(Williams et al., 2016) defines this semantic
frame with the following components:

� User constraints: slots which have been
set to a particular value by the user.

� User requests: slots whose values the user
wants to know.

� User’s search method: the user’s way
of searching the database (e.g., by con-
straints or alternatives).

In state tracking, when a new user constraint
is set, it overwrites the previous one in the

frame. In frame tracking, a new user constraint
creates a new frame and thus, there are as
many frames as user goals explored during the
dialogue.

To deal with user goals, two components
specific to this setting were added to a frame,
namely:

� User’s comparison requests: user requests
for this frame and one or more other
frames.

� User’s binary questions: user questions
with slot types and slot values for this
frame and possibly one or more other
frames.

The user’s search method is not part of the
semantic frame defined for frame tracking. In
addition, a frame is also created when the wiz-
ard proposes a vacation package to the user.
This type of frame contains the same compo-
nents as the ones defining a user goal except
that the constraints are set by the wizard and
not the user. A new frame is created so that
if the user wants to consider the package, it is
possible to switch to this frame and consider
it to be the current user goal.

An example of comparison request is “Could
you tell me which of these resorts offers free
wifi?” and an example of binary question is “Is
this hotel in the downtown area of the city?” or
“Is the this trip cheaper than the previous one?”.
A user request only has a slot type, e.g., “Where
is this hotel?” whereas a binary question has
a slot type and a slot value. In other words,
a binary question amounts to a confirmation
and a request, to an open question.

Frames was collected using a Wizard-of-Oz
method (WOz, Kelley, 1984; Rieser et al., 2005;
Wen et al., 2016): for each dialogue a user and
a wizard were paired. The user had a set of
constraints and was tasked with finding a good
vacation package that fits these constraints.
The wizard had access to a database of vacation
packages and helped the user find a suitable
package. The wizards were thus playing the
role of the dialogue system.

Each dialogue turn in the dataset is anno-
tated with the currently active frame, i.e., the
frame that is being currently discussed. The
corpus was annotated in such a way that both
users and wizards could create new frames. On

220

the wizard side, a new frame is created when-
ever the wizard proposes a new package to
the user. However, only the user can switch
the currently active frame, for instance, by
asking questions about a package proposed by
the wizard. The motivation is that the user
should have control of the frame being dis-
cussed throughout the dialogue, the dialogue
system being an assistant to the user.

El Asri et al. (2017) define the frame tracking
task as follows:

For each user turn τ , the full di-
alogue history H = {F1, ..., Fnτ−1} is
available, where Fi is a frame and
nτ−1 is the number of frames created
up to that turn. The following labels
are known for the user utterance uτ
at time τ : dialogue acts, slot types,
and slot values. The task is to pre-
dict if a new frame is created and to
predict the frame or frames that are
referenced in each dialogue act. A
referenced frame can be the currently
active frame or a previous one.

This task is illustrated in Figure 1. We propose
a model that tries to solve this task and analyze
this model’s behavior on several sub-tasks.

3 Related Work

As discussed in the previous section, frame
tracking extends state tracking from only track-
ing the current user goal to tracking all the user
goals that occur during the dialogue.

Recently, several approaches to state track-
ing have attempted to model more complex
behaviors than sequential slot-filling. The clos-
est approach to ours is the Task Lineage-based
Dialog State Tracking (TL-DST) setting pro-
posed by Lee and Stent (2016). TL-DST is a
framework that allows keeping track of multi-
ple tasks across different domains. Similarly to
frame tracking, Lee and Stent propose to learn
a dynamic structure of the dialogue composed
of several frames corresponding to different
tasks. TL-DST encompasses several sub-tasks
among which task frame parsing which con-
sists of assigning a set of new dialogue acts
to frames. This relates to frame tracking ex-
cept that they impose constraints on how a
dialogue act can be assigned to a frame and a

dialogue act can only reference one frame. Lee
and Stent (2016) trained their tracking model
on datasets released for DSTC (DSTC2 and
DSTC3, Henderson et al., 2014b,a) because no
appropriate data for the task was available at
the time. With this data, they could artificially
mix different tasks within one dialogue, e.g.,
looking for a restaurant and looking for a pub,
but they could not study human behavior and
how humans switch between tasks and frames.
Besides, TL-DST allows switching between dif-
ferent tasks but does not allow comparisons
which is an important aspect of frame tracking.

Another related approach was proposed by
Perez and Liu (2016), who re-interpreted the
state tracking task as a question-answering
task. Their state tracker is based on a memory
network (Weston et al., 2014) and can answer
questions about the user goal at the end of
the dialogue. They also propose adding other
skills such as keeping a list of the constraints
expressed by the user during the dialogue. This
work did not attempt to formalize the different
constraints as separate states to record.

Before describing our frame tracking model,
we analyze the frame-switching and frame-
creation behavior in Frames.

4 Analysis of Frame References

4.1 Reasons for Referencing Other
Frames

The Frames dataset contains 19986 turns,
among which 10407 are user turns. In 3785
(36%) of these user turns, the active frame is
changed. When the active frame is not changed,
the user refers to one or more other frames in
7.5% of the turns.

If we consider only inform acts1, a dialogue
system with a traditional state tracker which
tracks only a single semantic frame would be
able to deal with the subset of frame changes
which correspond to overriding an already es-
tablished value (1684 turns or 44% of the turns
where frame changes occur). The remaining
2102 (56%) turns contain switch frame acts
from the user. The switch frame act indi-
cates when a user switches from the currently
active frame to a previously-defined frame. A
switch frame act directly follows one or sev-

1Utterances where the user informs the wizard of
constraints.

221

eral vacation-package offers from the wizard
in 1315 (38%) of the frame-changing turns. In
428 turns, the user selects between multiple
offers made by the wizard and in 887 turns,
she accepts a single offer made by the wizard.
A total of 787 (20%) frame switches are made
to a point in the dialogue which is anterior to
the directly preceding turn. Note that in this
work, we assume that we know the list of all
previous frames at each turn of the dialogue
but a practical dialogue system should gener-
ate this list dynamically during the dialogue.
For this reason, it is crucial to also correctly
interpret the user’s inform acts so that if a
user appeals to an old frame, this frame exists
and is correctly identified.

Most of the turns where the user does not
change the active frame but refers to other
frames contain request compare (asking to
compare different frames, 191), negate (98),
request (28), and request alts (asking for
another package, 17) acts.

4.2 Examples

In this section, we categorize instances of inter-
esting frame-related user behavior and discuss
the resulting requirements for a frame tracker.

� Switching to a frame by mentioning
a slot value. “Oh, the Rome deal sounds
much better!”, “Can you tell me more
about the Frankfurt package?”, “I’ll take
the 13 day trip then!”.
For this case, we need to find which frames
match the identified slot values, for in-
stance, the destination city in the first
example. Since there might be multiple
matching frames, we have to incorporate
recency information as well. In addition,
equivalences have to be taken into account
(13 – thirteen, September – sept, NY –
Big Apple, etc.). Furthermore, in some
cases, we need to learn equivalences be-
tween slots. E.g., the user has a budget,
but the wizard typically only mentions
prices.

� Switching to a frame without refer-
encing it directly, usually by accept-
ing an offer explicitly or implicitly.
“yeah tell me more!”, “yes please”, “Rea-
sonable. any free wifi for the kids?”.
The difficult part here is to identify

whether the user actually accepted an offer
at all, which also modifies the frame if the
user asks follow-up questions in the same
turn like in the third example. Some users
ignore irrelevant wizard offers completely.

� Switching to a frame using anaphora.
“Yeah, how much does the second trip
cost?”, “When is this trip and what is the
price?”, “Give me the first option, thank
you”.
This is a slightly more explicit version of
the previous case, and requires additional
logic to determine the referenced frame
based on recency and other mentioned slot
values.

� Implicit reference for comparisons.
“Do these packages have different depar-
ture dates?”.

� Explicit reference for comparisons.
“Can you compare the price of this and
the one to the package in St. Luis?” (sic)

� Creating a new frame by specifying
a conflicting slot value. “okaaay, how
about to Tijuana then?”, “what’s the
cheapest you got?”, “Can I get a longer
package if I opt for economy first?”
Here, the mentioned slot values need to
be explicitly compared with the ones in
the current frame to identify contradicting
values. The same similarities discussed in
frame switching above must be considered.
The context in which the slot values occur
may be crucial to decide whether this is a
switch to an old frame or the creation of
a new one.

� Creating a new frame with an ex-
plicit reference to a previous one.
“Are there flights from Vancouver leaving
around the same time from another depar-
ture city?”, “I’d like to also compare the
prices for a trip to Kobe between the same
dates.”, “Is there a shorter trip to NY?”.
In these examples, the slots time, date,
and duration depend on references to
frames (the current frame and the NY
frame, respectively).

5 Frame Tracking Model

In the previous section, we identified various
ways employed by the users to reference past
frames or create new ones. In the following sec-
tions, we describe a model for frame tracking,

222

i.e., a model which takes as input the history
of past frames as well as the current user ut-
terance and the associated dialogue acts, and
which outputs the frames references for each
dialogue act.

5.1 Input Encoding

Our model receives three kinds of inputs: the
frames that were created before the current
turn, the current turn’s user dialogue acts with-
out frame references, and the user’s utterance.
We encode these three inputs before passing
them to the network. The frames and the
dialogue acts in particular are complex data
structures whose encodings are crucial for the
model’s performance.

5.1.1 Text Encoding

We encode the user text as well as all the slot
values by tokenizing the strings2 and converting
each token to letter trigrams3. Each trigram
t ∈ T is represented as its index in a trainable
trigram dictionary DT .

5.1.2 Frame Encoding

We encode only the constraints stored in the set
F containing the frames created before the cur-
rent turn. In the Frames dataset, each frame
F ∈ F contains constraints composed of slot-
value pairs, where for one slot s ∈ S multiple
equivalent values (e.g., NY and New York) and
additional negated values (for instance if the
user says that she does not want to go to a
city proposed by the wizard) may be present.
We encode a string representation of the most
recent non-negated value v as described in Sec-
tion 5.1.1. The slot type is encoded as an index
in a slot type dictionary DS . The final frame
encoding is the concatenation of all slot-value
pairs in the frame.

In addition to the encoded frames, we also
provide two vectors to the model: a one-hot
code fc marking the frame that was active
in the last turn (the bold frame in Figure 1)
and a one-hot code fn marking the frame that
will be added if a new frame is created by the
user in this turn (the frame marked “(new)” in
Figure 1).

2using nltk’s TweetTokenizer, www.nltk.org
3E.g., “hello” is converted to #he, hel, ell, llo, lo#

5.1.3 Similarity Encoding
To simplify learning of plain value matching,
we precompute a matrix SL ∈ RN×F , which
contains the normalized string edit distance of
the slot values in the user act to the value of
the same slot in each frame, if present.

5.1.4 Recency Encoding
We also provide the model with information
about the history of the dialogue by marking
recently added as well as recently active frames,
coded as hτd and hτc , respectively, at turn τ . For
a frame f introduced or last active at turn τf ,
we set

hτ· (f) =

0 if τ < τf

1 if τ = τf

γhτ−1· otherwise.

5.1.5 Act Encoding
A dialogue act in the current turn has an act
name a ∈ A and a number of arguments. Each
argument has a slot type s ∈ S and an optional
slot value v. We use a dictionary DA to assign
a unique index to each act a, and use the same
method as described in Section 5.1.2 to encode
slot-value pairs. In addition to the N triples
(a, s, v), we encode every act a separately, since
an act may not have any arguments but still
refer to a frame (cf. frame switching examples
in Section 4.2).

5.2 Output Encoding

For each triple (a, s, v), our model outputs a
multinomial distribution pasv,F over the frames
F ∈ F . Additionally, for each act a ∈ A and
frame F ∈ F , we determine the probability
pa,F that F is referenced by a.

It can be difficult for the model to correctly
predict the cases when the referenced frame is
the currently active frame, especially in situa-
tions where (a) the slot values do not match
and (b) the active frame was changed by an
earlier act within the same turn. To address
this challenge, in the target, we replace all oc-
currences of the active frame with a special
frame with index 0. In the example of Figure 1,
the value flex=T would point to this frame 0
since the active frame is changed by a previous
value, in this case, the budget.

In the loss function, we do not penalize the
model for confusing the active frame and the

223

Frames

Acts

Frame Embedding mF

A
ct

E
m

b
ed

d
in

g
m

a
sv

SM

gc gn

pasv,F

a, s, v
a, s, v

N

|F|
s, v
s, v

s, v
s, v

Recency hτd, h
τ
cUtterance

a
a

gc
pa,F

s, v
s, v

a, s, v

Figure 2: Simplified overview of our model.
N triples of acts a with slot-value arguments
s, v are matched to frames F by computing a
model similarity metric SM . Frames are de-
scribed by their constraints (slot-value pairs
s, v). Together with the current and new frame
indicators (gc, gn), SM represents a multino-
mial distribution pasv,F over the frames F ∈ F .
The same acts a can refer to additional frames
regardless of slot-value arguments, predicted in
pa,F with the help of recency information hτ .

special frame except for switch frame and
frame-creating inform acts, for which we want
the model to predict the referenced frame.

During prediction, we distribute pasv,0 over
F according to the predicted active frame:

gs =

{
1 if a switch frame act is present
0 otherwise

pnew = pasv,|F|+1

pasv,F := pasv,F + pasv,0
(
(1− gs)× pnew

+ gs × pswitch,F

)
,

where pswitch,· is the distribution assigned by
the model to the switch frame act. If no new
frame was predicted and no switch frame act
is present, the remaining probability mass is
assigned to the previously active frame.

5.3 Model Structure

For each user turn, we first embed all dialogue
acts a, slot types s, and letter trigrams t using

the dictionaries DA, DS , and DT , respectively.
We sum the letter trigram embeddings for ev-
ery token to generate trigram hashes (Huang
et al., 2013). A bidirectional GRU (Cho et al.,
2014) rt over the hashes of values and the utter-
ance generates summary vectors for both. The
summary vector is the concatenation of the
final hidden state of the forward and backward
computation.

A second bi-directional GRU rasv computes
a hidden activation for each of the (act, slot,
value) triples in the current turn. We compute
a value summary vector masv by appending
each hidden state of rasv with the utterance
embedding and projecting to a 256-dimensional
space.

For the frames, we proceed in a similar man-
ner, except that the frames do not contain dia-
logue acts nor an utterance, so we use a GRU
rF to compute hidden states for all slot-value
pairs DS [s1], rt(DT [v1])

DS [s2], rt(DT [v2])
. . .

 . (1)

During training, the constraint order within
frames is shuffled. The final hidden of the state
rF is projected to a 256-dimensional space,
resulting in a frame summary vector mF .

By comparing slot values masv mentioned
by the user to the frames mF , and taking into
account the recently-active and recently-added
information, we can determine which frame the
user is referencing. To this end, we compute the
dot-product between masv and mF , resulting
in a model similarity matrix SM ∈ RN×|F|.
It is important to have the user utterance in
the value summary vector because without it,
the comparison with the frames would only
work if slot values were explicitly mentioned,
which is not true in general. Boolean values,
for example, are usually only present implicitly
(cf. Section 4.2). We learn the weights of
a linear combination of the model similarity
matrix with the input SL, yielding the final
similarity matrix S.

Two special cases remain: (1) no match
could be found and (2) a new frame should
be created. To handle these cases, we extend S
with two columns corresponding to the active
frame gc and the new frame gn. Intuitively, gn

224

Accuracy (%)

Lesion Full Acts Only Acts Frames Text hτc hτd fn SL fc

Slot-based 58.3 66 63.7 74.5 65.4 78.8 79.5 64.4 82.7
Act-based 98 98.3 93.9 94.2 89.8 85.8 90.2 97.1 92.8

Table 1: Accuracy when removing model inputs.

is high if no frame matches the user turn and
if there is a strong discrepancy with the active
frame. On the other hand, gc is high only if no
frame matches the user turn. Since again, the
actual user utterance sometimes contains cru-
cial information, we condition gn and gc on the
maximum match with any frame, the match
with the previously active frame, and the user
utterance embedding.

For a user input triple (a, s, v), the slot-based
frame prediction is then computed as

pasv = softmax(gc, Sasv,1, Sasv,2, . . . , (2)
Sasv,|F|, gn).

Finally, we determine the act-based proba-
bility of frame references pa,F . For every pair
(a, F), this probability is computed by a 2 layer
densely connected network conditioned on the
dialogue act, the recency information, and the
user utterance embedding. We also set pa,0 to
1−maxF pa,F to produce an implicit reference
to the active frame by default.

6 Experiments

6.1 Learning Protocol and Metrics

We train the model by splitting the dataset
into 10 folds as described by El Asri et al.
(2017). For each fold, we further split the train-
ing corpus into training and validation sets by
withholding a random selection of 20% of the
dialogues from training. We use the Adam
(Kingma and Ba, 2014) algorithm to minimize
the sum of the loss for pasv and pa,F , with a
learning rate of 10−3. Learning is stopped when
the minimum validation error has not changed
for ten epochs. We compare our model to the
simple rule-based baseline described by El Asri
et al. (2017).

For slot-based predictions (pasv,F), we report
mean accuracy over the ten folds of the Frames
dataset. For act-based predictions (pa,F), i.e.,
we determine for every act a whether the

Accuracy (%)

Ours Baseline

Slot-based 76.43±4.49 61.32±2.19
Act-based 95.66±2.34 66.81±2.58

Table 2: Performance comparison between the
baseline of El Asri et al. (2017) and our model.

Accuracy (%)

Ours Baseline

Frame change (new val) 52.5 4.2
No frame change (new val) 93.8 74.3
Frame change (no offer) 36.4 22.7
Frame change (offer) 67 62.2
request compare 70.5 40.9

Table 3: Partial comparison table of perfor-
mance for different dialogue settings (cf Sec-
tion 4), including frame changes/lack of frame
changes upon the introduction of new values,
as well as when preceded by an offer or not,
demonstrating our model’s improvements over
the baseline.

ground truth set of referenced frames is equal
to the predicted set of referenced frames (with a
cutoff at pa,F = 1

2), and again average accuracy
scores over the ten folds.

Results are summarized in Table 2. Our
model strongly outperforms the baseline both
on references with and without slots. In par-
ticular, we observe that our model excels at
predicting frame references based on acts alone,
while the baseline struggles to solve this task.

6.2 Comparison with the Baseline

We further analyze the difference in perfor-
mance between our frame tracking model and
the rule-based baseline on classes of predictions
on a single fold of the data. We organize the
turns in the test set into 11 classes and measure
performance by computing accuracy only on

225

Accuracy (%)

Ours Baseline

switch frame(dst city) 66.1 21.4
switch frame(duration) 52.6 26.3
inform(seat) 60.0 36.0
request(end date) 66.7 0.0

Table 4: Partial comparison table of act-slot
combinations between our model and the base-
line of (El Asri et al., 2017).

turns that fall into the respective class.
We first observe that the baseline model al-

most completely fails to identify frame changes
when a new value is introduced by a user (4%
accuracy over 303 turns), frame changes as-
sociated with switch frame acts that do not
have slot values, or when a switch frame act
is present in a turn following one that does not
contain an offer act. On the other hand, the
baseline model predicts lacks of frame changes
(74.3% over 1111 instances) and frame changes
after an offer (62.2% over 312 instances) quite
well.

Our model dominates the rule-based base-
line on all classes except for the prediction of
frame changes with switch frame acts that do
not have slot values (4.2% over 24 occurrences).
Partial comparison results are presented in Ta-
ble 3.

Perhaps surprisingly, our model correctly
predicts 70.5% of frames associated with
request compare acts whereas the baseline
only correctly identifies 40.9% of them.

We then computed the accuracy on the set of
unique act and slot combinations in the dataset.
Here, our model outperforms the baseline on
all act-slot pairs with more than 10 occurrences
in the test set. We observe that the base-
line performs quite poorly on switch frames
with dst city (destination city) slots, whereas
our model does not have such a drawback.
The same is true for a switch frame with a
duration or for an inform with a seat (econ-
omy or business flight seat) or even a request
with an end date. Results are presented in
Table 4. We note that our model performs
worse on combinations that should express a
match with a frame whose slot values use very
different spellings (such as rich abbreviations

and synonyms) whereas the baseline model is
the weakest when slot values can be easily con-
fused for values of other slots (e.g. a rating
of 5 (stars) vs. a duration of 5 (days)). Our
model is also currently unable to distinguish
between similar offers introduced in the same
turn.

Code to generate the full set of metrics will
be made available.

6.3 Lesion Studies

To assess which of the features are useful for
the model, we remove the model’s inputs one at
a time and measure the model’s performance.
Results are shown in Table 1. We observe that
the model stops learning (i.e. its performance
does not exceed the baseline’s) on the act-slot-
value triples when any of the input is removed
except for the new frame history, new frame
candidate, and previous frame inputs. Simi-
larly, the model performance suffers when the
new frame candidate, any historical data, or
the frames are removed. We observe that all
the inputs are used by the model in its predic-
tions either for pasv,F or pa, F .

7 Discussion

Our model makes use of the text to correctly
predict the frames associated with acts. De-
pendence on input text means our method is
domain-dependent. The annotation process for
the Frames dataset is costly, so it would be
beneficial if we could transfer learned frame
switching behavior to other domains, possibly
with already existing NLU components. A pos-
sible solution might be to standardize the text
after NLU, and use anonymous placeholders
instead of domain-specific words.

Additionally, our current model assumes a
perfect NLU to provide acts, slots, and values
as inputs. While this is helpful for researching
the frame referencing issues in isolation, both
components should work together. For exam-
ple, currently, we assume that a switch frame
act is correctly identified, but we do not know
the frame the user wants to switch to. In
a more realistic pipeline, these decisions are
closely related and also need to take more of
the dialogue history into account.

226

7.1 Conclusion

In this paper, we provided a thorough analy-
sis of user behavior concerning switching be-
tween different user goals in the Frames dataset.
Based on this analysis, we have designed a
frame tracking model that outperforms the
baseline of El Asri et al. (2017) by almost 20%
relative performance. This model assigns the
dialogue acts of a new user utterance to the
semantic frames created during the dialogue,
each frame corresponding to a goal. We an-
alyzed the strengths and weaknesses of the
rule-based baseline and of our model on dif-
ferent subtasks of frame tracking. Our model
outperforms the baseline on all but one sub-
tasks. We showed that further improvement is
necessary for matching slot values when they
are present in many distinct frames. We have
demonstrated that the frame tracking task can
be performed effectively by learning from data
(our model correctly identifies frame changes
in about 3 out of 4 cases). This represents a
first step toward memory-enhanced dialogue
systems which understand when a user refers
to an older topic in a conversation and which
provide more accurate advice by understanding
the full context of a request.

References

Kyunghyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On
the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. arXiv:1409.1259
[cs, stat] .

L. El Asri, H. Schulz, S. Sharma, J. Zumer, J. Har-
ris, E. Fine, R. Mehrotra, and K. Suleman. 2017.
Frames: A Corpus for Adding Memory to Goal-
Oriented Dialogue Systems. arXiv:1704.00057
[cs.CL] https://datasets.maluuba.com/Frames.

Layla El Asri, Remi Lemonnier, Romain Laroche,
Olivier Pietquin, and Hatim Khouzaimi. 2014.
NASTIA: Negotiating Appointment Setting In-
terface. In LREC . pages 266–271.

M. Henderson, B. Thomson, and J. Williams.
2014a. The Third Dialog State Tracking Chal-
lenge. In Proc. of IEEE Spoken Language Tech-
nology .

Matthew Henderson. 2015. Machine learning for
dialog state tracking: A review. In Proc. of
The First International Workshop on Machine
Learning in Spoken Language Processing .

Matthew Henderson, Blaise Thomson, and Ja-
son D. Williams. 2014b. The second dialog state
tracking challenge. In Proc. of SIGDIAL.

Po-Sen Huang, Xiaodong He, Jianfeng Gao,
Li Deng, Alex Acero, and Larry Heck. 2013.
Learning deep structured semantic models for
web search using clickthrough data. In Proc. of
ACM . pages 2333–2338.

John F. Kelley. 1984. An iterative design method-
ology for user-friendly natural language office in-
formation applications. ACM Transactions on
Information Systems (TOIS) 2(1):26–41.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980 [cs.LG] .

Romain Laroche, Ghislain Putois, Philippe Bretier,
Martin Aranguren, Julia Velkovska, Helen
Hastie, Simon Keizer, Kai Yu, Filip Jurci-
cek, Oliver Lemon, and others. 2011. Final
evaluation of classic towninfo and appointment
scheduling systems. Technical report.

Sungjin Lee and Amanda Stent. 2016. Task lin-
eages: Dialog state tracking for flexible interac-
tion. In Proc. of SIGDIAL.

Julien Perez and Fei Liu. 2016. Dialog state track-
ing, a machine reading approach using memory
network. In Proc. of EACL.

Antoine Raux, Brian Langner, Black Alan, and
Maxine Eskenazi. 2003. LET’s GO: Improving
Spoken Dialog Systems for the Elderly and Non-
natives. In Proc. of Eurospeech.

Verena Rieser, Ivana Kruijff-Korbayov, and Oliver
Lemon. 2005. A corpus collection and annota-
tion framework for learning multimodal clarifi-
cation strategies. In SIGdial Workshop on Dis-
course and Dialogue.

Satinder Singh, Diane Litman, Michael Kearns,
and Marilyn Walker. 2002. Optimizing dialogue
management with reinforcement learning: Ex-
periments with the NJFun system. Journal of
Artificial Intelligence Research 16:105–133.

Tsung-Hsien Wen, David Vandyke, Nikola Mrk-
sic, Milica Gasic, Lina M. Rojas-Barahona, Pei-
Hao Su, Stefan Ultes, and Steve Young. 2016.
A Network-based End-to-End Trainable Task-
oriented Dialogue System. arXiv:1604.04562
[cs, stat] .

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv:1410.3916
[cs.AI] .

Jason D. Williams, Antoine Raux, and Matthew
Henderson. 2016. The dialog state tracking chal-
lenge series: A review. Dialogue and Discourse
.

227

