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Abstract

End-to-end training of automated speech
recognition (ASR) systems requires massive
data and compute resources. We explore
transfer learning based on model adaptation
as an approach for training ASR models under
constrained GPU memory, throughput and
training data. We conduct several systematic
experiments adapting a Wav2Letter convo-
lutional neural network originally trained for
English ASR to the German language. We
show that this technique allows faster training
on consumer-grade resources while requiring
less training data in order to achieve the same
accuracy, thereby lowering the cost of train-
ing ASR models in other languages. Model
introspection revealed that small adaptations
to the network’s weights were sufficient for
good performance, especially for inner layers.

1 Introduction

Automated speech recognition (ASR) is the task
of translating spoken language to text in real-time.
Recently, end-to-end deep learning approaches have
surpassed previously predominant solutions based
on Hidden Markov Models. In an influential paper,
Amodei et al. (2015) used convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs)
to redefine the state of the art. However, Amodei
et al. (2015) also highlighted the shortcomings of
the deep learning approach. Performing forward and
backward propagation on complex deep networks in a
reasonable amount of time requires expensive special-
ized hardware. Additionally, in order to set the large
number of parameters of a deep network properly, one
needs to train on large amounts of audio recordings.
Most of the time, the recordings need to be transcribed
by hand. Such data in adequate quantities is currently
available for few languages other than English.

We propose an approach combining two method-
ologies to address these shortcomings. Firstly,
we use a simpler model with a lower resource
footprint. Secondly, we apply a technique called
transfer learning to significantly reduce the amount
of non-English training data needed to achieve
competitive accuracy in an ASR task. We investigate
the efficacy of this approach on the specific example
of adapting a CNN-based end-to-end model originally
trained on English to recognize German speech. In
particular, we freeze the parameters of its lower layers
while retraining the upper layers on a German corpus
which is smaller than its English counterpart.

We expect this approach to yield the following
three improvements. Taking advantage of the
representation learned by the English model will lead
to shorter training times compared to training from
scratch. Relatedly, the model trained using transfer
learning requires less data for an equivalent score than
a German-only model. Finally, the more layers we
freeze the fewer layers we need to back-propagate
through during training. Thus we expect to see a
decrease in GPU memory usage since we do not have
to maintain gradients for all layers.

This paper is structured as follows. Section 2 gives
an overview of other transfer learning approaches
to ASR tasks. Details about our implementation of
the Wav2Letter model and how we trained it can
be found in Section 3. The data we used and how
we preprocessed it is described in Section 4. After
a short introduction of the performed experiments
in Section 5 we present and discuss the results in
Section 6 followed by a conclusion in Section 7.

2 Related Work

Annotated speech data of sufficient quantity and
quality to train end-to-end speech recognizers
is scarce for most languages other than English.
Nevertheless, there is demand for high-quality ASR
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systems for these languages. Dealing with this issue
requires specialized methods.

One such method, known as transfer learning, is a
machine learning technique for enhancing a model’s
performance in a data-scarce domain by cross-training
on data from other domains or tasks. There are
several kinds of transfer learning. The predominant
one being applied to ASR is heterogeneous transfer
learning (Wang and Zheng, 2015) which involves
training a base model on multiple languages (and
tasks) simultaneously. While this achieves some
competitive results (Chen and Mak, 2015; Knill et al.,
2014), it still requires large amounts of data to yield
robust improvements (Heigold et al., 2013).

In terms of how much data is needed for effective
retraining, a much more promising type of transfer
learning is called model adaptation (Wang and Zheng,
2015). With this technique, we first train a model on
one (or more) languages, then retrain all or parts of it
on another language which was unseen during the first
training round. The parameters learned from the first
language serve as a starting point, similar in effect to
pre-training. Vu and Schultz (2013) applied this tech-
nique by first learning a multilayer perceptron (MLP)
from multiple languages with relatively abundant
data, such as English, and then getting competitive
results on languages like Czech and Vietnamese, for
which there is not as much data available.

The method presented in this paper differs from
Vu and Schultz (2013) in that it does not force the
representation to be compressed into bottleneck
features (Grezl and Fousek, 2008) and use the result
as the output of the pre-trained network. The idea of
freezing only certain layers is another way in which
our approach differs.

3 Model Architecture

One of the reasons Amodei et al. (2015) had to train
their network using many GPUs was its complexity.
It uses both convolutional and recurrent units stacked
in many layers. Recently, a much simpler architecture
called Wav2Letter has been proposed by Collobert
et al. (2016). This model does not sacrifice accuracy
for faster training. It relies entirely on its loss function
to handle aligning the audio and the transcription
sequences while the network itself consists only of
convolutional units.

The resulting shorter training time and lower
hardware requirements make Wav2Letter a solid basis
for all of our transfer learning experiments. Since the
general structure of the network is described in the

original paper, we only mention what is notable in
our adaptation of it in the following. An overview of
their architecture is shown in Figure 1.

Collobert et al. (2016) do not specify the optimizer
they used. We tried several conventional gradient
descent optimizers and achieved best convergence
with Adam (Kingma and Ba, 2014). Hyperparame-
ters were slightly adapted from the defaults given by
Kingma and Ba (2014), that is, we used the learning
rate α= 10−4, β1 = 0.9, β2 = 0.999 and ε= 10−8.
Collobert et al. (2016) note that the choice of acti-
vation function for the inner convolution layers does
not seem to matter. We chose rectified linear units as
our activation function because they have been shown
to work well for acoustic models (Maas et al., 2013).
Weights are initialized Xavier uniformly as introduced
by Glorot and Bengio (2010).

At test time, decoding is performed using a
beam search algorithm based on KenLM (Heafield
et al., 2013). The decoding procedure follows the
TensorFlow implementation based on (Graves, 2012).
A beam is scored using two hyperparameters that
were derived using a local search optimized to yield
the best combined word error rate (WER) and letter
error rate (LER) on the LibriSpeech (Panayotov
et al., 2015) validation set. For the weight of the
language model we chose wlm = 0.8 and a weight
multiplied with the number of vocabulary words in
the transcription wvalid word=2.3.

The CNN was implemented in Keras (Chollet,
2015). The language model and beam search
were done in TensorFlow (Abadi et al., 2015)
and the introspection in NumPy (van der Walt
et al., 2011). The source code can be found at:
https://github.com/transfer-learning-asr/transfer-
learning-asr.

One of the innovations in Collobert et al. (2016)
was the introduction of the AutoSegCriterion (ASG)
loss function. The authors reported it mainly im-
proving the model’s throughput with negligible effect
on WER and LER compared to the Connectionist
Temporal Classification (CTC) loss introduced by
Graves et al. (2006). Since there is currently no
publicly available implementation of this loss function,
we decided to stay with an existing TensorFlow
implementation of the CTC loss instead.

The English model achieved a LER of 13.66%
and WER of 43.58% on the LibriSpeech (Panayotov
et al., 2015) test-clean corpus. This is worse than the
results of Collobert et al. (2016). Since the authors
of that paper did not publish their source code, we
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Figure 1: Network architecture adapted from
Collobert et al. (2016).

were not able to reproduce their results reliably. All
of our transfer learning experiments are based on this
model and for our experiments it is assumed that such
a model is already given for the transfer learning task
that is to be performed.

4 Datasets

For training the English model, we used the Lib-
riSpeech corpus (Panayotov et al., 2015). This dataset
consists of about 1000 hours of read speech, sampled
at 16 kHz, from the domain of audio books. This is
the same dataset that was used to train the original

Wav2Letter model.
The German models were trained on several

corpora taken from the Bavarian Archive for Speech
Signals (BAS) (Schiel, 1998; Reichel et al., 2016)
as well as the dataset described in Radeck-Arneth
et al. (2015), which will be referred to as “RADECK”
from now on. Overall, we had a total of 383 hours
of training data, which is only slightly more than one
third of the English corpus. Additional quantitative
information regarding each corpus, as well as any
available references, is given in Table 1. Information
about the kind of recording contained in each corpus
is given in Table 2. It is also important to point out that
some of the corpora pose additional challenges for
speech recognition like partially intoxicated people,
recordings over telephone, and different dialects.

Each German corpus was split into training and
test sets. We grouped the audio by speakers and used
10% of the groups for testing. Therefore, no speaker
appears in both training and test set ensuring that
results are not due to overfitting to certain speakers.
Exceptions to this procedure are: The VM corpora,
which were used exclusively for training because
obtaining a split based on speakers was not trivial
here; SC10, which was used only for testing because
it consists of recordings of speakers with German as
a second language and strong foreign accents with
only 5.8 hours in size; and RADECK, where we used
the original splits.

We also rely on text corpora for the KenLM
decoding step. For the English corpus (Panayotov
et al., 2015), the provided 4-gram model based on all
training transcriptions was used like in the original
Wav2Letter implementation. For the German corpus,
our n-gram model came from a preprocessed version
of the German Wikipedia, the European Parliament
Proceedings Parallel Corpus1, and all the training
transcriptions. Validation and test sets were carefully
excluded.

4.1 Preprocessing

Since the English model was trained on data with
a sampling rate of 16 kHz, the German speech data
needed to be brought into the same format so that
the convolutional filters could operate on the same
timescale. To this end, all data was resampled to 16
kHz. Preprocessing was done using librosa (McFee
et al., 2015) and consisted of applying a Short-time
Fourier transform (STFT) to obtain power level
spectrum features from the raw audio as described

1https://github.com/tudarmstadt-lt/kaldi-tuda-de/
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Name Size Number of speakers S LER S WER TL LER TL WER

ALC (Schiel et al., 2012) 54.54h 162 13.48% 32.83% 8.23% 21.14%
HEMPEL (Draxler and Schiel, 2002) 14.21h 3909 34.05% 71.74% 19.13% 46.78%
PD1 19.36h 201 21.02% 34.37% 8.32% 11.85%
PD2 4.33h 16 7.60% 19.64% 1.97% 5.96%
RVG-J (Draxler and Schiel, 2002) 46.28h 182 17.43% 39.87% 10.85% 24.92%
SC10 5.80h 70 25.62% 78.82% 17.59% 57.84%
VM1 (Wahlster, 1993) 32.40h 654 - - - -
VM2 (Wahlster, 1993) 43.90h 214 - - - -
ZIPTEL (Draxler and Schiel, 2002) 12.96h 1957 22.87% 62.27% 15.07% 46.25%
RADECK (Radeck-Arneth et al., 2015) 181.96h 180 27.83% 65.13% 20.83% 56.17%

All corpora 415.7h 7545 22.78% 58.36% 15.05% 42.49%

Table 1: Quantitative information on the corpora used to train the German model. References to individual
corpora are given where available. Size and number of speakers refer only to the subsets we used (including
training and test sets). Test set LER and WER are reported for the best transfer learning (TL) model and the
model from scratch (S) after 103h of training.

Name Speech Type Topic Idiosyncrasies

ALC read, spontaneous car control commands, tongue twisters,
answering questions

partially recorded in running car; speakers
partially intoxicated

HEMPEL spontaneous answer: What did you do in the last hour? recorded over telephone
PD1 read phonetically balanced sentences, two

stories: “Buttergeschichte” and “Nordwind
und Sonne”

recordings were repeated until error-free

PD2 read sentences from a train query task recordings were repeated until error-free
RVG-J read, spontaneous numbers, phonetically balanced sentences,

free-form responses to questions
speakers are adolescents mostly between
the ages 13–15

SC10 read, spontaneous phonetically balanced sentences, numbers,
“Nordwind und Sonne”, free dialogue, free
retelling of “Der Enkel und der Grossvater”

multi-language corpus; only German data
was used

VM1 spontaneous dialogues for appointment scheduling multi-language corpus; only German data
was used

VM2 spontaneous dialogues for appointment scheduling,
travel planning and leisure time planning

multi-language corpus; only German data
was used

ZIPTEL read street names, ZIP codes, telephone numbers,
city names

recorded over telephone

RADECK read, semi-spontaneous Wikipedia, European Parliament transcrip-
tions, commands for command-and-control
settings

contains six microphone recordings of each
speech signal

Table 2: Information on the kind of speech data contained in each corpus.

in Collobert et al. (2016). After that, spectrum
features were mel-scaled and then directly fed into the
CNN. Originally, the parameters were set to window
length w = 25ms, stride s = 10ms and number of
components n=257. We adapted the window length
to wnew = 32ms which equals a Fourier transform
window of 512 samples, in order to follow the
convention of using power-of-two window sizes.
The stride was set to snew =8ms in order to achieve
75% overlap of successive frames. We observed that
n = 257 results in many of the components being
0 due to the limited window length. We therefore
decreased the parameter to nnew =128. After the gen-
eration of the spectrograms, we normalized them to
mean 0 and standard deviation 1 per input sequence.

Any individual recordings in the German corpora
longer than 35 seconds were removed due to GPU
memory limitations. This could have been solved
instead by splitting audio files using their word
alignments where provided (and their corresponding
transcriptions), but we chose not to do so since the loss
of data incurred by simply ignoring overly long files
was negligible. Corpora sizes given in Table 1 are after
removal of said sequences. We excluded 1046 invalid
samples in the RADECK corpus due to truncated au-
dio as well as 569 samples with empty transcriptions.

5 Experiments

Given the English model, we froze k of the lower
layers and trained all 11− k layers above with the
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German corpora. This means the gradient was only
calculated for the weights of those 11−k layers and
gradient descent was then applied to update those as
usual. The process of freezing k layers is visualized in
Figure 1. The transfer training was performed based
on both the original weights as well as a new random
initialization for comparison. Except for changing the
training data, the German corpora introduce four new
class labels äöüß in addition to the original 28 labels.
We set the initial weights and biases of the final
softmax layer for these labels to zero. Additionally, as
a baseline for the performance of a Wav2Letter based
German ASR, we trained one model from scratch on
all German training corpora. For all experiments we
used a batch size of 64, both during training as well
as evaluation.

6 Results and Discussion

As initially hypothesized, transfer learning could give
us three benefits: Reduced computing time, lower
GPU memory requirements and a smaller required
amount of German speech data. In addition to that,
we may find structural similarities between languages
for the ASR task. In the subsequent sections, we
will first report general observations, evaluate each
hypothesis based on the performed experiments and
then analyze the learned weights using introspection
techniques. We report overall test scores and scores
on each test set in the form of WERs and LERs.
Finally, we discuss the language specific assumptions
that were required for the experiments and how
transfer learning may perform on other languages.

6.1 Retaining or reinitializing weights?

When the transfer learning training is performed,
one could either continue training on the existing
weights or reinitialize them. Reusing existing weights
might lead to stochastic gradient descent (SGD)
being stuck in a local minimum, reinitializing may
take longer to converge. For k=8 we compared the
speed of training for both methods. As it can be seen
in Figure 2, using existing weights is much faster
without a decrease in quality.

6.2 Reduced computing time

Given that languages share common features in
their pronunciation, lower layers should contain
common features that can be reused when transferring
the model to a different language. Therefore, we
subsequently froze k layers of the original English
model, choosing a different k in each experiment. Our
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Figure 2: Comparison of learning curves for 25 hours
of training with either reinitialized or retained weights.
In both cases k=8 layers were frozen.

experiments showed that this assumption is indeed
true, it is sufficient to adjust only at least two layers
for achieving training losses below 100 after 25 hours.
The loss curve for different k can be seen in Figure 3.
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Figure 3: Learning curves for 25 hours of training
with different numbers k of frozen layers. Note
that due to the decreased time to process a batch
(cf. Figure 4), training models with higher k (more
frozen layers) allows to iterate over the training
data more often in the same amount of time. But
eventually, this does not help to beat the model
with k= 0 which is trained with the fewest dataset
iterations but still at any time achieves the lowest loss.

For bigger k we need to backpropagate through
fewer layers, therefore training time per step (training
one batch) decreases almost monotonically with
k in Figure 4. Despite that boost in training time,
experiments show that loss is almost always smaller
at any given point in time for smaller k. In Figure 3

172



this manifests in k = 0 always having the smallest
training loss. We conclude that in terms of achieving
small loss, there is no reason to favor big values for
k, freezing layers is not necessary.

0 10 20 30 40 50 60
Training time in seconds per step
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k = 6

k = 0

Figure 4: The more layers we freeze, the faster one
batch of 64 is trained. Measured over 25h of training
each.

When we compare the best transfer learning model
with k=0 with a German model trained from scratch
in Figure 5, we are able to see huge improvements
in terms of computing time required for achieving
the same loss. We conclude that a good weight
starting configuration from another language’s ASR
is beneficial.
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Figure 5: Applying transfer learning by using the
weights from the English model leads to small losses
more quickly than training from scratch.

6.3 Lower GPU memory requirements
Not only does it matter how long training takes with
given resources, many researchers may also have
only limited GPU memory at disposal. All of our
experiments were performed on a single GeForce
GTX Titan X graphics card, but the more layers k
we freeze, the fewer layers we need to backpropagate
through. Therefore, memory requirements for the
GPU are lower. For a batch size of 64, forward propa-

gation takes less than 3 GB of memory, while training
the whole network requires more than 10.4 GB. In
contrast to that, freezing 8 layers already enables
training with less than 5.5 GB of GPU memory.

6.4 Little German speech data required

We hypothesized that little training data may be
required for the transfer learning task. Additionally to
using the whole 383 hours of data we had available,
we also tried an even more scarce variant. In order to
prevent overfitting, we used a transfer learning model
with k = 8 for our experiments. As it can be seen
in Figure 6, for a model with k=8 that was trained
for 25 hours, the LER using 100 hours of audio is
almost equal to using the complete training data.
Longer training causes overfitting. When using just
20 hours of training data this problem occurs even
earlier. We can conclude that even though training
for just 25 hours works well with only 100 hours of
audio, beyond that overfitting appears nevertheless.
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Figure 6: LER as a mean over all test samples for dif-
ferent training set sizes with k = 8 for all experiments

6.5 Model Introspection

When applying transfer learning, it is of interest
how much the model needs to be adapted and which
portions of the model are shared between different
languages. To get insights into those differences, we
compared the learned parameters both between the
English model and adapted German model (for k=0)
as well as between different points in time during
training. Since the output layers of both models do not
use the same number of output features, we excluded
this layer from the comparison. First, we investigated
the distribution of weights and corresponding changes
between the English and adapted model, visualized on
the left side of Figure 7. The plot shows the fraction
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Figure 7: Weight distributions of the German and English model (left) and weight difference distributions both
in an early stage and for the final model (right).

of weights in a layer lying in the respective range
of values. Because most of the weights are between
-0.2 and 0.2 (in just 2 bins), we used a log10-scale
for the fraction of weights in each bin. We observed
that the weights of highest absolute values are in
the input and topmost layer. This indicates that the
transformations in the middle layers are smaller than
in the outer ones. Moreover, the weights of each layer
are distributed with a mean value close to zero and
very small variance. Due to the similar distributions,
it is reasonable to compare the weights and their dif-
ferences in the following. Between both models, there
are only minor changes in the weight distributions,
which supports the assumption that transfer learning
is performing well because the English model is a
suitable model for being adapted to German.

Since the adaptation to German is not explainable
based on the distributions, we further investigated the
differences between the individual weights. Therefore,
we determined the absolute distance between weights
as shown in Figure 7 on the right side. In the plot,
we visualize the distribution of weight changes. We
observed only small changes, therefore a log10-scale
is used again. Figure 7 on the right side shows this
analysis for the transfer learning model early in
training as well as the final model after four days. In
the early phase, weights had only been adapted little
with a maximum difference of 0.1, while the final
model weights changed up to 0.36. Additionally, we
observed that the weights changed more in the middle
and top layers earlier, but with progressing training
the input layer experiences more changes. This higher
variability in the outer layers can both be observed

in the weights of each individual model as well as in
their differences. That is an indication that the model
needs to alter the outer layers more than the inner
ones in order to adapt to a particular language.

Finally, we looked into the changes of individual fil-
ters. Due to the large number of neurons, we provide
the complete set of filters from all layers only in the
supplement.2 We present our findings for a selected
set of neurons of the input layer that showed well-
interpretable patterns. The weights of those filters and
their differences between the English and German
model are shown in Figure 8. The top row shows neu-
rons that can be interpreted as detectors for short per-
cussive sounds (e.g. t or k) and the end of high pitched
noise (e.g. s). The bottom neurons might detect rising
or falling pitch in vowels. Of these four filters, the up-
per left differs most between English and German with
a maximum difference of 0.15. This supports that it is
detecting percussive sounds as German language has
considerably stronger pronunciation of corresponding
letters than English. On the other hand, the bottom
row filters experienced less change (both<0.1 max-
imum difference). This supports them being related
to vocal detection since there are few differences in
pronunciation between English and German speakers.

6.6 Overall test set accuracy
All test set LERs and WERs scores are consistent with
the differences of loss in the performed experiments.
After 103 hours of training, the best transfer learning
model is therefore k=0 with a LER of 15.05% and
WER of 42.49% as the mean over all test samples.

2supplements: https://doi.org/10.6084/m9.figshare.5048965
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Figure 8: Differences in specific filters of the input
layer. Neurons were chosen based on particular
patterns. Each triplet of images shows the weight
differences and the corresponding weights in the
German and English model (from left to right).

The model that has been trained from scratch for
the same amount of time achieves a LER of 22.78%
and WER of 58.36%. Table 1 gives details about the
accuracy on each test set.

Some very high WERs are due to heavy German
dialect that is particularly problematic with numbers,
e.g.

Expected: “sechsundneunzig”
Predicted: “sechs un nmeunsche”
LER 47%, WER 300%, loss: 43.15

This shows, that there is both room for improve-
ment in terms of word compounds as well as ASR
of different dialects where data is even more scarce.

6.7 Accuracy
boost through language model decoding

The original Wav2Letter network did not report on
improvements in LER and WER due to the KenLM
integration. In Table 3 We compared decoding
performed through KenLM scored beam search with
a greedy decoding on the German corpora.

6.8 Transfer learning for other languages

In our speech recognizer, the lower layers of the
network learn phonological features whereas the
higher (deeper) ones map these features onto

LER WER

with LM 15.05% 42.49%
without LM 16.77% 56.14%

Table 3: Comparing LER and WER with and without
KenLM based on model with k=0

graphemes. Thus for ASR these two types of features
clearly matter the most. German and English have
many phonemes and graphemes in common. The
apparent success of our transfer learning approach
was greatly facilitated by these similarities. Not all
languages share as much in terms of these features.
We anticipate that our approach will be less effective
for such pairs. This means we expect the adaptation
to a less similar language to require more data and
training time. We further suspect that differences
in grapheme inventories cause other effects than
differences in phonemes. This is because only the
mapping of phonological features to graphemes has
to be adapted for a different orthography. In contrast,
differences in phoneme inventories require more
changes in features learned at lower layers of the
network. Moreover, there could be differences in the
importance of specific features. For instance, having
vowels in common is potentially more important
for transfer learning than sharing many consonants,
because vowels experience higher variability in pro-
nunciation. At the same time very drastic differences
in orthography could probably trigger a stronger
change of weights in lower network layers. We expect
our transfer learning approach to encounter strong
difficulties sharing knowledge between English and a
logographic language like Mandarin Chinese. Despite
those difficulties, using weights from a pre-trained
ASR-network is a more reasonable initialization than
random weights. This is because very basic audio
features are shared between all languages. Therefore
even for more different language pairs, we expect
transfer learning to decrease the necessary amount
of training data and time.

7 Conclusions

We were able to show that transfer learning using
model adaptation can improve the speed of learning
when only 383 hours of training data are available.
Given an English model, we trained a German model
that outperforms the German baseline model trained
from scratch in the same amount of training time.
Thus, with little time, our approach allows training
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better models. We showed that the English model’s
weights are a good starting configuration and allow
the transfer learning model to reach smaller training
losses in comparison to a weight reinitialization.
When less GPU memory is available, freezing the
lower 8 layers allows to train batches of 64 with less
than 5.5 GB instead of more than 10.4 GB while still
performing similar after 25 hours of training. Model
introspection determined that lower and upper layers,
in contrast to the layers in the center, need to change
more thoroughly in order to adapt to the new language.

We identified several interesting directions for fu-
ture work. Test accuracy showed that word com-
pounds can be challenging and dialects pose difficul-
ties when little training data is available. GPU memory
consumption could be further reduced by caching the
representation that needs only forward propagation.
An open source version of the ASG loss would en-
able faster training. Finally, future research should
investigate how well this transfer learning approach
generalizes by applying it to more distinct languages.
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Evandro Gouvêa, Stefan Radomski, Max Mühlhäuser,
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