
ACL 2017

The 55th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the 2nd Workshop on Representation
Learning for NLP

August 3, 2017
Vancouver, Canada

c©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-62-3

ii

Introduction

Welcome to the 2nd Workshop on Representation Learning for NLP (RepL4NLP), held on August 3,
2017 and hosted by the 55th Annual Meeting of the Association for Computational Linguistics (ACL) in
Vancouver, Canada. The workshop is sponsored by DeepMind, Facebook AI Research, and Microsoft
Research.

The 2nd Workshop on Representation Learning for NLP aims to continue the spirit of previously
successful workshops at ACL/NAACL/EACL, namely RepL4NLP at ACL’16, VSM at NAACL’15
and CVSC at ACL’13/EACL’14/ACL’15, which focused on vector space models of meaning,
compositionality, and the application of deep neural networks and spectral methods to NLP. It provides a
forum for discussing recent advances on these topics, as well as future research directions in linguistically
motivated vector-based models in NLP.

iii

Organizers:

Phil Blunsom, DeepMind and Oxford University
Antoine Bordes, Facebook AI Research
Kyunghyun Cho, New York University
Shay Cohen, University of Edinburgh
Chris Dyer, DeepMind
Edward Grefenstette, DeepMind
Karl Moritz Hermann, DeepMind
Laura Rimell, University of Cambridge
Jason Weston, Facebook AI Research
Scott Yih, Microsoft Research

Program Committee:

Waleed Ammar
Eneko Agirre
Jacob Andreas
Isabelle Augenstein
Mohit Bansal
Marco Baroni
Jonathan Berant
Léon Bottou
Samuel Bowman
Junyoung Chung
Danqi Chen
Stephen Clark
Marco Damonte
Kevin Duh
Long Duong
Katrin Erk
Orhan Firat
Kevin Gimpel
Caglar Gulcehre
He He
Felix Hill
Mohit Iyyer
Kazuya Kawakami
Douwe Kiela
Jamie Ryan Kiros
Tomáš Kočiský
Angeliki Lazaridou
Omer Levy
Wang Ling
Shashi Narayan
Graham Neubig
Thien Huu Nguyen
Diarmuid Ó Séaghdha
Alexander Panchenko
Ankur Parikh
John Platt
Siva Reddy

v

Roi Reichart
Tim Rocktäschel
Hinrich Schütze
Holger Schwenk
Richard Socher
Mark Steedman
Karl Stratos
Sam Thomson
Yoshimasa Tsuruoka
Yulia Tsvetkov
Lyle Ungar
Oriol Vinyals
Andreas Vlachos
Dani Yogatama
Yi Yang

vi

Table of Contents

Sense Contextualization in a Dependency-Based Compositional Distributional Model
Pablo Gamallo . 1

Context encoders as a simple but powerful extension of word2vec
Franziska Horn . 10

Machine Comprehension by Text-to-Text Neural Question Generation
Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro Sordoni, Philip Bachman, Saizheng Zhang,

Sandeep Subramanian and Adam Trischler . 15

Emergent Predication Structure in Hidden State Vectors of Neural Readers
Hai Wang, Takeshi Onishi, Kevin Gimpel and David McAllester . 26

Towards Harnessing Memory Networks for Coreference Resolution
Joe Cheri and Pushpak Bhattacharyya. .37

Combining Word-Level and Character-Level Representations for Relation Classification of Informal Text
Dongyun Liang, Weiran Xu and Yinge Zhao . 43

Transfer Learning for Neural Semantic Parsing
Xing Fan, Emilio Monti, Lambert Mathias and Markus Dreyer . 48

Modeling Large-Scale Structured Relationships with Shared Memory for Knowledge Base Completion
Yelong Shen, Po-Sen Huang, Ming-Wei Chang and Jianfeng Gao . 57

Knowledge Base Completion: Baselines Strike Back
Rudolf Kadlec, Ondrej Bajgar and Jan Kleindienst . 69

Sequential Attention: A Context-Aware Alignment Function for Machine Reading
Sebastian Brarda, Philip Yeres and Samuel Bowman . 75

Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines
Jan Rygl, Jan Pomikálek, Radim Řehůřek, Michal Růžička, Vít Novotný and Petr Sojka 81

Multi-task Domain Adaptation for Sequence Tagging
Nanyun Peng and Mark Dredze . 91

Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
Shyam Upadhyay, Kai-Wei Chang, Matt Taddy, Adam Kalai and James Zou 101

DocTag2Vec: An Embedding Based Multi-label Learning Approach for Document Tagging
Sheng Chen, Akshay Soni, Aasish Pappu and Yashar Mehdad . 111

Binary Paragraph Vectors
Karol Grzegorczyk and Marcin Kurdziel . 121

Representing Compositionality based on Multiple Timescales Gated Recurrent Neural Networks with
Adaptive Temporal Hierarchy for Character-Level Language Models

Dennis Singh Moirangthem, Jegyung Son and Minho Lee . 131

Learning Bilingual Projections of Embeddings for Vocabulary Expansion in Machine Translation
Pranava Swaroop Madhyastha and Cristina España-Bonet . 139

vii

Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings
Teresa Botschen, Hatem Mousselly Sergieh and Iryna Gurevych. .146

Learning Joint Multilingual Sentence Representations with Neural Machine Translation
Holger Schwenk and Matthijs Douze . 157

Transfer Learning for Speech Recognition on a Budget
Julius Kunze, Louis Kirsch, Ilia Kurenkov, Andreas Krug, Jens Johannsmeier and Sebastian Stober

168

Gradual Learning of Matrix-Space Models of Language for Sentiment Analysis
Shima Asaadi and Sebastian Rudolph . 178

Improving Language Modeling using Densely Connected Recurrent Neural Networks
Fréderic Godin, Joni Dambre and Wesley De Neve . 186

NewsQA: A Machine Comprehension Dataset
Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman and

Kaheer Suleman . 191

Intrinsic and Extrinsic Evaluation of Spatiotemporal Text Representations in Twitter Streams
Lawrence Phillips, Kyle Shaffer, Dustin Arendt, Nathan Hodas and Svitlana Volkova 201

Rethinking Skip-thought: A Neighborhood based Approach
Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang and Virginia de Sa . 211

A Frame Tracking Model for Memory-Enhanced Dialogue Systems
Hannes Schulz, Jeremie Zumer, Layla El Asri and Shikhar Sharma . 219

Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning
Caglar Gulcehre, Francis Dutil, Adam Trischler and Yoshua Bengio . 228

Does the Geometry of Word Embeddings Help Document Classification? A Case Study on Persistent
Homology-Based Representations

Paul Michel, Abhilasha Ravichander and Shruti Rijhwani . 235

Adversarial Generation of Natural Language
Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Chris Pal and Aaron Courville 241

Deep Active Learning for Named Entity Recognition
Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod and Animashree Anandkumar . . . 252

Learning when to skim and when to read
Alexander Johansen and Richard Socher . 257

Learning to Embed Words in Context for Syntactic Tasks
Lifu Tu, Kevin Gimpel and Karen Livescu . 265

viii

Workshop Program

Thursday, August 3, 2017

09:30–09:45 Welcome and Opening Remarks

09:45–10:30 Keynote Session

09:45–10:30 Learning Joint Embeddings of Vision and Language
Sanja Fidler

A successful autonomous system needs to not only understand the visual world
but also communicate its understanding with humans. To make this possible, lan-
guage can serve as a natural link between high level semantic concepts and low
level visual perception. In this talk, I’ll discuss recent work in the domain of vi-
sion and language, covering topics such as image/video captioning and retrieval,
and question-answering. I’ll also talk about our recent work on task execution via
language instructions.

10:30–11:00 Coffee Break

11:00–12:30 Keynote Session

11:00–11:45 Learning Representations of Social Meaning
Jacob Eisenstein

Language plays a critical role in structuring human relationships, while marking so-
cial properties of the speaker/writer, audience, and communicative situation. With
the increasing availability of big social media datasets, computational linguists have
begun to join with sociolinguists in working to elucidate language’s social dimen-
sion. However, this promising synthesis is threatened by a theoretical mismatch
between these two disciplines. Much of the research in the emerging field of com-
putational sociolinguistics involves social-theoretical models that uncritically assign
individuals to broad categories such as man/woman, black/white, northern/southern,
and urban/rural. Meanwhile, sociolinguists have worked for decades to elaborate a
more nuanced view of identity and social meaning, but it has proven difficult to
reconcile these rich theoretical models with scalable quantitative research methods.
In this talk, I will ask whether representation learning can help to bridge this gap.
The key idea is to use learned representations to mediate between linguistic data and
socially relevant metadata. I will describe applications of this basic approach in the
context of clustering, latent variable models, and neural networks, with applications
to gender, multi-community studies, and social network analysis.

ix

Thursday, August 3, 2017 (continued)

11:45–12:30 Representations in the Brain
Alona Fyshe

What can the brain tell us about computationally-learned representations of words,
phrases and beyond? And what can those computational representations tell us
about the brain? In this talk I will describe several brain imaging experiments that
explore the representation of language meaning in the brain, and relate those brain
representations to computationally learned representations of language meaning.

12:30–14:00 Lunch

14:00–14:45 Keynote Session

14:00–14:45 "A million ways to say I love you" or Learning to Paraphrase with Neural Machine
Translation
Mirella Lapata

Recognizing and generating paraphrases is an important component in many nat-
ural language processing applications. A well-established technique for automati-
cally extracting paraphrases leverages bilingual corpora to find meaning-equivalent
phrases in a single language by “pivoting” over a shared translation in another lan-
guage. In the first part of the talk I will revisit bilingual pivoting in the context of
neural machine translation and present a paraphrasing model based purely on neural
networks. The proposed model represents paraphrases in a continuous space, esti-
mates the degree of semantic relatedness between text segments of arbitrary length,
and generates paraphrase candidates for any source input. In the second part of the
talk I will illustrate how neural paraphrases can be seamlessly integrated in mod-
els of question answering and summarization, achieving competitive results across
datasets and languages.

14:45–15:00 Best Paper Session

x

Thursday, August 3, 2017 (continued)

15:00–16:30 Poster Session, including Coffee Break

Sense Contextualization in a Dependency-Based Compositional Distributional
Model
Pablo Gamallo

Context encoders as a simple but powerful extension of word2vec
Franziska Horn

Active Discriminative Text Representation Learning
Ye Zhang, Matthew Lease and Byron Wallace

Using millions of emoji occurrences to pretrain any-domain models for detecting
emotion, sentiment and sarcasm
Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan and Sune Lehmann

Evaluating Layers of Representation in Neural Machine Translation on Syntactic
and Semantic Tagging
Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi and
James Glass

Machine Comprehension by Text-to-Text Neural Question Generation
Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro Sordoni, Philip Bachman,
Saizheng Zhang, Sandeep Subramanian and Adam Trischler

Emergent Predication Structure in Hidden State Vectors of Neural Readers
Hai Wang, Takeshi Onishi, Kevin Gimpel and David McAllester

Towards Harnessing Memory Networks for Coreference Resolution
Joe Cheri and Pushpak Bhattacharyya

Combining Word-Level and Character-Level Representations for Relation Classifi-
cation of Informal Text
Dongyun Liang, Weiran Xu and Yinge Zhao

Regularized Topic Models for Sparse Interpretable Word Embeddings
Anna Potapenko and Artem Popov

xi

Thursday, August 3, 2017 (continued)

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word
Embeddings
Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama and Adam T.
Kalai

Transfer Learning for Neural Semantic Parsing
Xing Fan, Emilio Monti, Lambert Mathias and Markus Dreyer

MUSE: Modularizing Unsupervised Sense Embeddings
Guang-He Lee and Yun-Nung Chen

Modeling Large-Scale Structured Relationships with Shared Memory for Knowl-
edge Base Completion
Yelong Shen, Po-Sen Huang, Ming-Wei Chang and Jianfeng Gao

Knowledge Base Completion: Baselines Strike Back
Rudolf Kadlec, Ondrej Bajgar and Jan Kleindienst

Sequential Attention: A Context-Aware Alignment Function for Machine Reading
Sebastian Brarda, Philip Yeres and Samuel Bowman

Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines
Jan Rygl, Jan Pomikálek, Radim Řehůřek, Michal Růžička, Vít Novotný and Petr
Sojka

Multi-task Domain Adaptation for Sequence Tagging
Nanyun Peng and Mark Dredze

Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
Shyam Upadhyay, Kai-Wei Chang, Matt Taddy, Adam Kalai and James Zou

DocTag2Vec: An Embedding Based Multi-label Learning Approach for Document
Tagging
Sheng Chen, Akshay Soni, Aasish Pappu and Yashar Mehdad

Binary Paragraph Vectors
Karol Grzegorczyk and Marcin Kurdziel

Representing Compositionality based on Multiple Timescales Gated Recurrent Neu-
ral Networks with Adaptive Temporal Hierarchy for Character-Level Language
Models
Dennis Singh Moirangthem, Jegyung Son and Minho Lee

xii

Thursday, August 3, 2017 (continued)

Learning Bilingual Projections of Embeddings for Vocabulary Expansion in Ma-
chine Translation
Pranava Swaroop Madhyastha and Cristina España-Bonet

Learning to Compose Words into Sentences with Reinforcement Learning
Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette and Wang Ling

Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame
Embeddings
Teresa Botschen, Hatem Mousselly Sergieh and Iryna Gurevych

Learning Joint Multilingual Sentence Representations with Neural Machine Trans-
lation
Holger Schwenk and Matthijs Douze

Transfer Learning for Speech Recognition on a Budget
Julius Kunze, Louis Kirsch, Ilia Kurenkov, Andreas Krug, Jens Johannsmeier and
Sebastian Stober

Gradual Learning of Matrix-Space Models of Language for Sentiment Analysis
Shima Asaadi and Sebastian Rudolph

Improving Language Modeling using Densely Connected Recurrent Neural Net-
works
Fréderic Godin, Joni Dambre and Wesley De Neve

NewsQA: A Machine Comprehension Dataset
Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip
Bachman and Kaheer Suleman

Intrinsic and Extrinsic Evaluation of Spatiotemporal Text Representations in Twitter
Streams
Lawrence Phillips, Kyle Shaffer, Dustin Arendt, Nathan Hodas and Svitlana
Volkova

Rethinking Skip-thought: A Neighborhood based Approach
Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang and Virginia de Sa

A Frame Tracking Model for Memory-Enhanced Dialogue Systems
Hannes Schulz, Jeremie Zumer, Layla El Asri and Shikhar Sharma

Plan, Attend, Generate: Character-Level Neural Machine Translation with Plan-
ning
Caglar Gulcehre, Francis Dutil, Adam Trischler and Yoshua Bengio

xiii

Thursday, August 3, 2017 (continued)

Does the Geometry of Word Embeddings Help Document Classification? A Case
Study on Persistent Homology-Based Representations
Paul Michel, Abhilasha Ravichander and Shruti Rijhwani

Adversarial Generation of Natural Language
Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Chris Pal and Aaron Courville

Deep Active Learning for Named Entity Recognition
Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod and Animashree
Anandkumar

The Coadaptation Problem when Learning How and What to Compose
Andrew Drozdov and Samuel Bowman

Learning when to skim and when to read
Alexander Johansen and Richard Socher

Learning to Embed Words in Context for Syntactic Tasks
Lifu Tu, Kevin Gimpel and Karen Livescu

16:30–17:30 Panel Discussion

17:30–17:40 Closing Remarks

xiv

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 1–9,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Sense Contextualization in a Dependency-Based Compositional
Distributional Model

Pablo Gamallo
Centro Singular de Investigación en

Tecnoloxı́as da Información (CiTIUS)
Universidade de Santiago de Compostela, Galiza

pablo.gamallo@usc.es

Abstract

Little attention has been paid to distribu-
tional compositional methods which em-
ploy syntactically structured vector mod-
els. As word vectors belonging to differ-
ent syntactic categories have incompatible
syntactic distributions, no trivial compo-
sitional operation can be applied to com-
bine them into a new compositional vec-
tor. In this article, we generalize the
method described by Erk and Padó (2009)
by proposing a dependency-base frame-
work that contextualize not only lem-
mas but also selectional preferences. The
main contribution of the article is to ex-
pand their model to a fully compositional
framework in which syntactic dependen-
cies are put at the core of semantic com-
position. We claim that semantic compo-
sition is mainly driven by syntactic depen-
dencies. Each syntactic dependency gen-
erates two new compositional vectors rep-
resenting the contextualized sense of the
two related lemmas. The sequential ap-
plication of the compositional operations
associated to the dependencies results in
as many contextualized vectors as lemmas
the composite expression contains. At the
end of the semantic process, we do not
obtain a single compositional vector rep-
resenting the semantic denotation of the
whole composite expression, but one con-
textualized vector for each lemma of the
whole expression. Our method avoids the
troublesome high-order tensor representa-
tions by defining lemmas and selectional
restrictions as first-order tensors (i.e. stan-
dard vectors). A corpus-based experiment
is performed to both evaluate the quality

of the compositional vectors built with our
strategy, and to compare them to other ap-
proaches on distributional compositional
semantics. The experiments show that our
dependency-based compositional method
performs as (or even better than) the state-
of-the-art.

1 Introduction

Erk and Padó (2008) proposed a method in which
the combination of two words, a and b, returns
two vectors: a vector a’ representing the sense of
a given the selectional preferences imposed by b,
and a vector b’ standing for the sense of b given
the (inverse) selectional preferences imposed by a.
The main problem is that this approach does not
propose any compositional model for sentences.
Its objective is to simulate word sense disambigua-
tion, but not to model semantic composition at any
level of analysis. In Erk and Padó (2009), the au-
thors briefly describe an extension of their model
by proposing a recursive application of the com-
positional function. However, they only formalize
the recursive application when the composite ex-
pression consits of two dependent words linked to
the same head. So, they only explain how the head
is contextualized by its dependents, but not the
other way around. In addition, they do not model
the influence of context on the selectional prefer-
ences. In other terms, their recursive model does
not make use of contextualized selectional prefer-
ences.

In this article, we generalize the method de-
scribed in Erk and Padó (2009) by proposing
a dependency-base framework that contextualize
both lemmas and selectional preferences. The
main contribution of the article is to expand their
model to a fully compositional framework in
which syntactic dependencies are put at the core
of semantic composition.

1

In our model, lemmas and selectional prefer-
ences are defined as unary-tensors (standard vec-
tors), while syntactic dependencies are binary
functions combining vectors in an iterative and in-
cremental way.

For dealing with any sequence with N (lexical)
words and N − 1 dependencies linking them, the
compositional process can be applied N − 1 times
dependency-by-dependency in two different ways:
from left-to-right and from right-to-left. Figure 1
illustrates the incremental process of building the
sense of words dependency-by-dependency from
left-to-right. Given the composite expression “a b
c” and its dependency analysis depicted in the first
row of the figure, several compositional processes
are driven by the two dependencies involved in
the analysis (m and n). First, m is decomposed
into two functions: the head function m↑, and
the dependent one, m↓. The head function m↑
takes as input the sense of the head word b and
the selectional preferences of a, noted here as a◦,
and returns a new denotation of the head word,
bm↑, which represents the contextualized sense of
b given a at the m relation. Similarly, the depen-
dent function m↓ takes as input the sense of the
dependent word a and the selectional preferences
b◦, and returns a new denotation of the dependent
word: am↓. The green box is used to highlight the
result of each function. Next, the dependency n
between b and c is also decomposed into the head
and dependent functions: n↑ and n↓. Function
n↑ combines the already contextualized head bm↑
with the selectional preferences c◦, and returns a
still more specific sense of the head: bm↑+n↑. Fi-
nally, function n↓ takes as input the sense of the
dependent word c and the already contextualized
selectional preferences b◦m↓, and builds a contex-
tualized sense of the dependent word: cm↓+n↓. At
the end of the process, we have not obtained one
single sense for the whole expression “a b c”, but
one contextualized sense per word: am↓, bm↑+n↑,
and cm↓+n↓. Notice that the two words involved in
the direct object dependency, b and c, have been
contextualized twice since they inherit the restric-
tions of the subject dependency. The root word, b,
is directly involved in the two dependencies and,
then, is assigned an intermediate contextualized
sense, bm↑, in the first combination with a.

In the second case, from right-to-left, the se-
mantic process is applied in a similar way, but
starting from the rightmost dependency, n, and

ending by the leftmost one, m. At the end of the
process, three contextualized word senses are also
obtained which might be slightly different from
those obtained by the left-to-right algorithm. The
main difference is that a is now contextualized by
both b and c, while c is just contextualized by b.

The iterative application of the syntactic depen-
dencies found in a sentence is actually the pro-
cess of building the contextualized sense of all the
content words constituting that sentence. So, the
whole sentence is not assigned only one mean-
ing - which could be the contextualized sense of
the root word-, but one sense per word, being the
sense of the root just one of them, as in the work
described in Weir et al. (Weir et al., 2016). This
allows us to retrieve the contextualized sense of
all constituent words within a sentence. The con-
textualized sense of any word might be required
in further semantic processes, namely for dealing
with co-reference resolution involving anaphoric
pronouns. Such an elementary operation is pre-
vented if the sense of the phrase is just one com-
plex sense, as in most compositional approaches.

The rest of the article is organized as follows.
In Section 2, several distributional compositional
approaches are introduced and discussed. Next,
in Section 3, our dependency-based compositional
model is described. In Section 4, a corpus-based
experiment is performed to build and evaluate the
quality of compositional vectors. Finally, relevant
conclusions are addressed in Section 5.

2 Related Work

To take into account “the mode of combination”,
some distributional approaches follow a strategy
aligned with the formal semantics perspective in
which functional words are represented as high-
dimensional tensors (Coecke et al., 2010; Baroni
and Zamparelli, 2010; Grefenstette et al., 2011;
Krishnamurthy and Mitchell, 2013; Kartsaklis and
Sadrzadeh, 2013; Baroni, 2013; Baroni et al.,
2014). Using the abstract mathematical frame-
work of category theory, they provide the distribu-
tional models of meaning with the elegant mecha-
nism expressed by the principle of composition-
ality, where words interact with each other ac-
cording to their type-logical identities (Kartsak-
lis, 2014). The categorial-based approaches de-
fine arguments as vectors while functions taking
arguments (e.g., verbs or adjectives that combine
with nouns) are n-order tensors, with the number

2

a b c

m n

a bm↑

m↑(b, a◦)

am↓ b

m↓(b◦, a)

bm↑+n↑ c

n↑(bm↑, c◦)

bm↑ cm↓+n↓

n↓(b◦m↓, c)

Figure 1: Syntactic analysis of the expression “a b c” and left-to-right construction of the contextualized
word senses.

of arguments determining their order. Function
application is the general composition operation.
This is formalized as the tensor product, which is
nothing more than a generalization of matrix mul-
tiplication in higher dimensions. However, this
method results in an information scalability prob-
lem, since tensor representations grow exponen-
tially (Kartsaklis et al., 2014).

In our approach, by contrast, we operate with
only two types of semantic objects: first-order ten-
sors (or standard vectors) for lemmas and pref-
erences, and second-order functions for syntactic
dependencies. This solves the scalability problem
of high-order tensors. In addition, it also prevent
us giving different categorical representations to
verbs in different syntactic contexts. A verb is rep-
resented as a single vector which is contextualized
as it is combined with its arguments.

Some of the approaches cited above induce the
compositional meaning of the functional words
from examples adopting regression techniques
commonly used in machine learning (Baroni and
Zamparelli, 2010; Krishnamurthy and Mitchell,
2013; Baroni, 2013; Baroni et al., 2014). In our
approach, by contrast, functions associated with
dependencies are just basic arithmetic operations
on vectors, as in the case of the first arithmetic
approaches to composition (Mitchell and Lapata,
2008, 2009, 2010; Guevara, 2010; Zanzotto et al.,
2010). Arithmetic approaches are easy to imple-
ment and produce high-quality compositional vec-
tors, which makes them a good choice for practical
applications (Baroni et al., 2014).

However, given that our vector space is struc-
tured and enriched with syntactic information, the
vectors built by composition cannot be a sim-

ple mixture of the input vectors as in the bag-
of-words approaches (Mitchell and Lapata, 2008).
Our syntax-based vector representation of two re-
lated words encodes incompatible information and
there is no direct way of combining the informa-
tion encoded in their respective vectors. Vectors
of content words (nouns, verbs, adjectives, and ad-
verbs) live into different and incompatible spaces
because they are constituted by different types of
syntactic contexts. So, they cannot be merged.
To combine them, on the basis of previous work
(Thater et al., 2010; Erk and Padó, 2008; Melamud
et al., 2015), we distinguish between direct deno-
tation and selectional preferences within a depen-
dency relation. Our approach is an attempt to join
the main ideas of these syntax-based and struc-
tured vector space models into an entirely compo-
sitional model. More precisely, we generalize the
recursive model introduced by Erk and Pado (Erk
and Padó, 2009) with the addition of contextual-
ized selection preferences.

Finally, recent works make use of deep learn-
ing strategies to build compositional vectors, such
as recursive neural network models (Socher et al.,
2012; Hashimoto and Tsuruoka, 2015). Still in
the deep learning paradigm, special attention de-
serves a syntax-based compositional version of C-
BOW algorithm (Pham et al., 2015). Our method,
however, requires transparent and structured vec-
tor spaces to model compositionality.

3 The Method

In our approach, composition is modeled in terms
of recursive function application on word vectors
driven by binary dependencies. Each dependency
stands for two functions on vectors: the head func-

3

tion and the dependent one. Let us consider the
nominal subject syntactic dependency, which de-
notes two functions represented by the following
binary λ-expressions:

λxλy◦ nsubj↑(x, y◦) (1)

λx◦ λy nsubj↓(x◦, y) (2)

where nsubj↑ and nsubj↓ represent the head and
dependent functions, respectively; x, x◦, y, and
y◦ stand for vector variables. On the one hand,
x and y represent the denotation of the head and
dependent lemmas, respectively. They represent
standard context distributions. On the other hand,
x◦ represents the selectional preferences imposed
by the head, while y◦ stands for the selectional
preferences imposed by the dependent lemma. Se-
lectional preferences are also vectors and the way
we build them is described later.

Consider now the vectors of two specific lem-
mas, cat and chase, and their respective selec-
tional preferences at the subject position. Each
function application consists of multiplying the di-
rect vector associated with a lemma and the selec-
tional preferences imposed by the other lemma:

nsubj↑(chase, cat◦) = chase� cat◦ = chasensubj↑
(3)

nsubj↓(chase◦, cat) = cat� chase◦ = catnsubj↓ (4)

Each multiplicative operation results in a com-
positional vector which represents the contextual-
ized sense of one of the two lemmas (either the
head or the dependent). Component-wise multi-
plication has an intersective effect: the selectional
preferences restricts the direct vector by assigning
frequency 0 to those contexts that are not shared
by both vectors. Here, cat◦ and chase◦ are se-
lectional preferences resulting from the following
vector addition:

cat◦ =
∑

w∈ S↓(cat)
w (5)

chase◦ =
∑

w∈ S↑(chase)
w (6)

where S↓(cat) returns the vector set of those verbs
having cat as subject (except the verb chase).

More precisely, given the nominal subject posi-
tion, the new vector cat◦ is obtained by adding
the vectors {w|w ∈ S↓(cat)} of those verbs (eat,
jump, etc) that are combined with the noun cat in
that syntactic context. Component-wise addition
of vectors has an union effect. In more intuitive
terms, cat◦ stands for the inverse selectional pref-
erences imposed by cat on any verb at the sub-
ject position. As this new vector consists of ver-
bal contexts, it lives in the same vector space than
verbs and, therefore, it can be combined with the
direct vector of chase.

On the other hand, S↑(chase) in equation 6 rep-
resents the vector set of nouns occurring as sub-
jects of chase (except the noun cat). Given the
subject position, the vector chase◦ is obtained by
adding the vectors {w|w ∈ S↑(chase)} of those
nouns (e.g. dog, man, tiger, etc) that might be at
the subject position of the verb chase.

The incremental application of head and de-
pendent functions contextualize the representa-
tion of each word in the phrase. Incremental-
ity also model the influence of context on the
selectional preferences. The incremental left-to-
right interpretation of “the cat chased a mouse”
is illustrated in Figure 2 (without considering the
meaning of determiners nor verbal tense): First,
the head and dependent functions associated with
the subject dependency nsubj build the composi-
tional vectors chasensubj↑ and catnsubj↓. Then,
the head function associated with dobj produces a
more elaborate chasing event, chasensubj↑+dobj↑,
which stands for the final contextualized sense
of the root verb. In addition, the dependent
function of dobj yields a new nominal vector,
mousensubj↓+dobj↓, whose internal information
only can refer to a specific animal: “the mouse
chased by the cat”. Notice that contextualization
may disambiguate ambiguous words: in the con-
text of a chasing event, mouse does not refer to a
computer’s device. In fact, to interpret “the cat
chased a mouse”, it is required to interpret “cat
chased” as a fragment that restricts the type of
nouns that can appear at the direct object position:
mouse, rat, bird, etc. In the same way “police
chases” restricts the entities that can be chased by
police officers: thieves, robbers, and so on.

In our approach, not only the lemmas are
contextualized but also the selectional prefer-
ences. The contextualized selectional preferences,

4

cat chase mouse

nsubj dobj

cat chasensubj↑

nsubj↑(chase, cat◦)

catnsubj↓ chase

nsubj↓(chase◦, cat)

chasensubj↑+dobj↑ mouse

dobj↑(chasensubj↑,mouse◦)

chasensubj↑ mousensubj↓+dobj↓

dobj↓(chase◦nsubj↑,mouse)

nsubj↑(chase, cat◦) = chasensubj↑
nsubj↓(chase◦, cat) = catnsubj↓
dobj↑(chasensubj↑,mouse◦) = chasensubj↑+dobj↑
dobj↓(chase◦nsubj↑,mouse) = mousensubj↓+dobj↓

Figure 2: Syntactic analysis of the expression “the cat chased a mouse” and left-to-right construction of
the contextualized word senses.

chase◦nsubj↑, are obtained as follows:

chase◦nsubj↑ = catnsubj↓ �
∑

w∈ D↑(chase)
w

(7)
where D↑(chase) returns the vector set of those
nouns that are in the direct object role of chase
(except the noun mouse). The new vector result-
ing by this addition is combined by multiplication
(intersection) with the contextualized dependent
vector, catnsubj↓, to build the contextualized se-
lectional preferences. In more intuitive terms, the
selectional preferences built in equation 7 are con-
stituted by selecting the contexts of the nouns ap-
pearing as direct object of chase, which are also
part of cat after having been contextualized by the
verb at the subject position. This is the major con-
tribution with regard to the work described in Erk
and Padó (2009).

The dependency-by-dependency functional
application results in three contextualized word
senses: catnsubj↓, chasensubj↑+dobj↑ and
mousensubj↓+dobj↓. They all together represent
the meaning of the sentence in the left-to-right
direction.

In the opposite direction, from right-to-left, the
incremental process starts with the direct object
dependency:

dobj↑(chase,mouse◦) = chasedobj↑
dobj↓(chase◦,mouse) = mousedobj↓
nsubj↑(chasedobj↑, cat◦) = chasedobj↑+nsubj↑
nsubj↓(chase◦dobj↑, cat) = catdobj↓+nsubj↓

(8)

In Equation 8, the verb chase is first restricted
by mouse at the direct object position, and then
by its subject cat. In addition, this noun is re-
stricted by the vector chase◦dobj↓, which repre-
sents the contextualized selectional preferences
built by combining mousedobj↓ with the vectors
of the nouns that are in the subject position of
chase (except cat). This new compositional vec-
tor represents a very contextualized nominal con-
cept: “the cat that chased a mouse”. The word cat
and its specific sense can be related to anaphorical
expressions by making use of co-referential rela-
tionships at the discourse level: e.g., pronoun it,
other definite expressions (“that cat”, “the cat”),
and so on.

4 Experiments

We carried out a corpus-based experiment based
on compositional distributional similarity to check
the quality of composite expressions, namely
NOUN-VERB-NOUN constructions (NVN) incre-

5

mentally composed with nsubj and dobj depen-
dencies.

4.1 The Corpus and the Structured Vector
Model

Our working corpus consists of both the English
Wikipedia (dump file of November 20151) and the
British National Corpus (BNC)2. In total, the cor-
pus contains about 2.5 billion word tokens. We
used the rule-based dependency parser DepPattern
(Gamallo and González, 2011; Gamallo, 2015) to
perform syntactic analysis on the whole text.

Word vectors were built by computing their
co-occurrences in syntactic contexts. Two dif-
ferent types of vectors were built from the cor-
pus: nominal and verbal vectors. Then, for each
word we filtered out non relevant contexts using
simple count-based techniques inspired by those
described in (Bordag, 2008; Padró et al., 2014;
Gamallo, 2016), where matrices are stored in hash
tables with only non-zero values. More precisely,
the association between words and their contexts
were weighted with the Dunning’s likelihood ra-
tio (Dunning, 1993) and then, for each word, only
theN contexts with highest likelihood scores were
stored in the hash table (where N = 500). So, the
remaining contexts were removed from the hash
(in standard vector/matrix representations, instead
of removing contexts we should assign them zero
values).

The process of matrix reduction resulted in the
selection of 330, 953 nouns (most of them proper
names) with 236, 708 different nominal contexts;
and 6, 618 verbs with 140, 695 different verbal
contexts. As the contexts of nouns and verbs
are not compatible, we created two different vec-
tor spaces. Words and their contexts were stored
in two hashes, one per vector space, which rep-
resent matrices containing only non-zero values.
To build compositional vectors from these matri-
ces, the strategy defined in the previous section
was implemented in PERL giving rise to the soft-
ware Depfunc3. Distributional similarity between
pairs of composite expressions was performed us-
ing Cosine.

1https://dumps.wikimedia.org/enwiki/
2http://www.natcorp.ox.ac.uk
3Software and models are available at http://

gramatica.usc.es/˜gamallo/prototypes.htm

4.2 NVN Composite Expressions
This experiment consists of evaluating the qual-
ity of compositional vectors built by means of the
consecutive application of head and dependency
functions associated with nominal subject and di-
rect object. The experiment is performed on the
dataset developed by Grefenstette and Sadrzadeh
(2011a). The dataset was built using transi-
tive verbs paired with subjects and direct objects:
NVN composites.

Given our compositional strategy, we are able
to compositional build several vectors that some-
how represent the meaning of the whole NVN
composite expression. Take the expression “the
coach runs the team”. If we follow the left-to-
right strategy (noted nv-n), at the end of the com-
positional process, we obtain two fully contextu-
alized senses:

nv-n head The sense of the head run, as a result
of being contextualized first by the prefer-
ences imposed by the subject and then by the
preferences required by the direct object. We
note nv-n head the final sense of the head in
a NVN composite expression following the
left-to-right strategy.

nv-n dep The sense of the object team, as a re-
sult of being contextualized by the prefer-
ences imposed by run previously combined
with the subject coach. We note nv-n dep the
final sense of the direct object in a NVN com-
posite expression following the left-to-right
strategy.

If we follow the right-to-left strategy (noted n-
vn), at the end of the compositional process, we
obtain two fully contextualized senses:

n-nv head The sense of the head run as a result of
being contextualized first by the preferences
imposed by the object and then by the sub-
ject.

n-nv dep The sense of the subject coach, as a
result of being contextualized by the prefer-
ences imposed by run previously combined
with the object team.

Table 1 shows the Spearman’s correlation val-
ues (ρ) between individual human similarity
scores and the similarity values predicted by the
different versions built from our Depfunc system.
The best score was achieved by averaging the

6

Systems ρ

non-compositional (V) 0.27
Depfunc (nv head) 0.33
Depfunc (nv dep) 0.19
Depfunc (vn head) 0.36
Depfunc (vn dep) 0.38
Depfunc (nv-n head+dep) 0.35
Depfunc (nv-n head) 0.33
Depfunc (nv-n dep) 0.20
Depfunc (n-vn head+dep) 0.46
Depfunc (n-vn head) 0.36
Depfunc (n-vn dep) 0.42
Depfunc (n-vn+nv-n) 0.44
Grefenstette and Sadrzadeh (2011) 0.28
Hashimoto and Tsuruoka (2014) 0.43
Polajnar et al. (2015) 0.35

Table 1: Spearman correlation for transitive ex-
pressions using the benchmark by Grefenstette
and Sadrzadeh (2011)

head and dependent similarity values derived from
the n-vn (right-to-left) strategy. Let us note that,
for NVN composite expressions, the left-to-right
strategy seems to build less reliable compositional
vectors than the right-to-left counterpart. Besides,
the combination of the two strategies (n-vn+nv-n)
does not improve the results of the best one (n-
vn).4

The score value obtained by our n-vn head+dep
right-to-left strategy outperforms other systems
tested for this dataset: Grefenstette and Sadrzadeh
(2011b); Polajnar et al. (2015), which are two
works based on the categorical compositional dis-
tributional model of meaning of Coecke et al.
(2010), and the neural network strategy described
in Hashimoto and Tsuruoka (2015).

At the top of Table 1, we show the non-
compositional baseline we have created for this
dataset: similarity beteween single verbs. The
table also shows four intermediate values result-
ing from comparing partial compositional con-
structions: the noun-verb (nv head and nv dep)
and the verb-noun (vn head and vn dep) combina-
tions. Two interesting remarks can be made from
these values when they are compared with the full
compositional constructions.

First, there is no clear improvement of perfor-
mance if we compare the full compositional infor-
mation of the two transitive constructions with the
partial combinations. On the one hand, the full
nv-n construction does not improve the scores ob-
tained by the partial intransitive nv. On the other

4n-vn+nv-n is computed by averaging the similarities of
both n-vn head+dep and nv-n head+dep

hand, n-vn performs slightly better than vn but
only in the case of the dependent function which
makes use of contextualized selectional prefer-
ences: n-vn dep = 0.42 / vn dep = 0.38. The low
performance at the second level of composition
might call into question the use of contextualized
vectors to build still more contextualized senses.
The scarcity problem derived from the recursive
combination of contextualized vectors is an impor-
tant issue which could be faced with more corpus,
and which we should analyze with more complex
evaluation tests.

The second remark is about the difference be-
tween the two algorithms: left-to-righ and right-
to-left. The scores achieved by the left-to-
right algorithm (nv, nv-n) are clearly below those
achieved by right-to-left (vn, n-vn) . This might be
due to the weak semantic motivation of the selec-
tional preferences involved in the subject depen-
dency of transitive constructions in comparison to
the direct object one. In fact, right-to-left and left-
to-right function application produces quite differ-
ent vectors because each algorithm corresponds
to a particular hierarchy of constituents. Change
of constituency implies different semantic entail-
ments such as we can easily observe if we consider
the different levels of constituency of noun mod-
ifiers (e.g. “fastest American runner” 6= “Amer-
ican fastest runner”). Finally, the poor results of
nv in this dataset might be explained because the
subject role is less meaningful in transitive clauses
than in intransitive ones. The subject of intransi-
tive clauses is assigned a complex semantic role
that tends to merge the notions of agent and pa-
tient. By contrast, the subject of transitive con-
structions tends to be just the agent of an action
with an external patient.

5 Conclusions

In this paper, we described a distributional compo-
sitional model based on a transparent and syntacti-
cally structured vector space. The combination of
two related lemmas gives rise to two vectors which
represent the senses of the two contextualized lem-
mas. This process can be repeated until no syntac-
tic dependency is found in the analyzed composite
expression. The compositional interpretation of a
composite expression builds the sense of each con-
stituent lemma in an incremental way.

Substantial problems still remain unsolved. For
instance there is no clear borderline between

7

compositional and non-compositional expressions
(collocations, compounds, or idioms). It seems to
be obvious that vectors of full compositional units
should be built by means of compositional oper-
ations and predictions based on their constituent
vectors. It is also evident that vectors of entirely
frozen expressions should be totally derived from
corpus co-occurrences of the whole expressions
without considering internal constituency. How-
ever, there are many expressions, in particular col-
locations (such as “save time”, “go mad”, “heavy
rain”, . . .) which can be considered as both com-
positional and non-compositional. In those cases,
it is not clear which is the best method to build
their distributional representation: predicted vec-
tors by compositionality or corpus-observed vec-
tors of the whole expression?

Another problem that has not been considered
is how to represent the semantics of some gram-
matical words, namely determiners and auxiliary
verbs (i.e., noun and verb specifiers). For this pur-
pose, we think that it would be required a different
functional approach, probably closer to the work
described by Baroni (2014), who defines functions
as linear transformations on vector spaces.

Finally, as we have outlined above, generated
vectors tend to be too scarce when they are derived
from the recursive combination of already contex-
tualized vectors. Further experiments with more
complex phrases and larger training corpora are
required in order to deeply analyse this issue. For
this purpose, we will explore the strategy defined
in Kober et al. (2016) to improve sparse distribu-
tional representations.

In current work, we are defining richer semantic
word models by combining WordNet features with
semantic spaces based on distributional contexts
(Gamallo and Pereira-Fariña, 2017). This hybrid
method might also help overcome scarcity.

Acknowledgments

This work has received financial support from a
2016 BBVA Foundation Grant for Researchers
and Cultural Creators, TelePares (MINECO,
ref:FFI2014-51978-C2-1-R), the Consellerı́a de
Cultura, Educación e Ordenación Universitaria
(accreditation 2016-2019, ED431G/08) and the
European Regional Development Fund (ERDF).

References
Marco Baroni. 2013. Composition in distributional se-

mantics. Language and Linguistics Compass 7:511–
522.

Marco Baroni, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program for compo-
sitional distributional semantics. LiLT 9:241–346.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing. Strouds-
burg, PA, USA, EMNLP’10, pages 1183–1193.

Stefan Bordag. 2008. A Comparison of Co-occurrence
and Similarity Measures as Simulations of Context.
In 9th CICLing. pages 52–63.

B. Coecke, M. Sadrzadeh, and S. Clark. 2010. Math-
ematical foundations for a compositional distribu-
tional model of meaning. Linguistic Analysis 36(1-
4):345–384.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. Computational Lin-
guistics 19(1):61–74.

Katrin Erk and Sebastian Padó. 2008. A structured vec-
tor space model for word meaning in context. In
Proceedings of EMNLP. Honolulu, HI.

Katrin Erk and Sebastian Padó. 2009. Paraphrase as-
sessment in structured vector space: Exploring pa-
rameters and datasets. In Proceedings of the EACL
Workshop on Geometrical Methods for Natural Lan-
guage Semantics. Athens, Greece.

Pablo Gamallo. 2015. Dependency parsing with com-
pression rules. In International Workshop on Pars-
ing Technology (IWPT 2015). Bilbao, Spain.

Pablo Gamallo. 2016. Comparing explicit and predic-
tive distributional semantic models endowed with
syntactic contexts. Language Resources and Eval-
uation First online: 13 May 2016.

Pablo Gamallo and Isaac González. 2011. A grammat-
ical formalism based on patterns of part-of-speech
tags. International Journal of Corpus Linguistics
16(1):45–71.

Pablo Gamallo and Martı́n Pereira-Fariña. 2017. Com-
positional semantics using feature-based models
from wordnet. In 1st Workshop on Sense, Con-
cept and Entity Representations and their Applica-
tions, co-located at 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics. Association of Computational Linguistics
(ACL), pages 1–10.

Edward Grefenstette and Mehrnoosh Sadrzadeh.
2011a. Experimental support for a categorical com-
positional distributional model of meaning. In Con-
ference on Empirical Methods in Natural Language
Processing.

8

Edward Grefenstette and Mehrnoosh Sadrzadeh.
2011b. Experimenting with transitive verbs in a dis-
cocat. In Workshop on Geometrical Models of Nat-
ural Language Semantics (EMNLP-2011).

Edward Grefenstette, Mehrnoosh Sadrzadeh, Stephen
Clark, Bob Coecke, and Stephen Pulman. 2011.
Concrete sentence spaces for compositional distri-
butional models of meaning. In Proceedings of the
Ninth International Conference on Computational
Semantics. IWCS ’11, pages 125–134.

Emiliano Guevara. 2010. A regression model of
adjective-noun compositionality in distributional se-
mantics. In Proceedings of the 2010 Workshop on
GEometrical Models of Natural Language Seman-
tics. GEMS ’10.

Kazuma Hashimoto and Yoshimasa Tsuruoka.
2015. Learning embeddings for transitive verb
disambiguation by implicit tensor factoriza-
tion. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their
Compositionality. Association for Computa-
tional Linguistics, Beijing, China, pages 1–11.
http://www.aclweb.org/anthology/W15-4001.

Dimitri Kartsaklis. 2014. Compositional operators in
distributional semantics. Springer Science Reviews
2(1-2):161–177.

Dimitri Kartsaklis, Nal Kalchbrenner, and Mehrnoosh
Sadrzadeh. 2014. Resolving lexical ambiguity in
tensor regression models of meaning. In Proceed-
ings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Vol. 2: Short
Papers). Association for Computational Linguistics,
Baltimore, USA, pages 212–217.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2013.
Prior disambiguation of word tensors for construct-
ing sentence vectors. In Conference on Empirical
Methods in Natural Language Processing (EMNLP
2013).

Thomas Kober, Julie Weeds, Jeremy Reffin, and
David J. Weir. 2016. Improving sparse word rep-
resentations with distributional inference for se-
mantic composition. In Proceedings of EMNLP
2016, Austin, Texas, USA. pages 1691–1702.
http://aclweb.org/anthology/D/D16/D16-1175.pdf.

Jayant Krishnamurthy and Tom Mitchell. 2013. Pro-
ceedings of the Workshop on Continuous Vector
Space Models and their Compositionality, Associ-
ation for Computational Linguistics, chapter Vector
Space Semantic Parsing: A Framework for Compo-
sitional Vector Space Models, pages 1–10.

Oren Melamud, Ido Dagan, and Jacob Gold-
berger. 2015. Modeling word meaning in con-
text with substitute vectors. In NAACL HLT
2015, Denver, Colorado, USA. pages 472–482.
http://aclweb.org/anthology/N/N15/N15-1050.pdf.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
ACL-08: HLT . pages 236–244.

Jeff Mitchell and Mirella Lapata. 2009. Language
models based on semantic composition. In Proceed-
ings of EMNLP. pages 430–439.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence 34(8):1388–1439.

Muntsa Padró, Marco Idiart, Aline Villavicencio, and
Carlos Ramisch. 2014. Nothing like good old fre-
quency: Studying context filters for distributional
thesauri. In Proceedings of EMNLP 2014, Doha,
Qatar. pages 419–424.

Nghia The Pham, Germán Kruszewski, Angeliki
Lazaridou, and Marco Baroni. 2015. Jointly op-
timizing word representations for lexical and sen-
tential tasks with the C-PHRASE model. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers. pages 971–981.
http://aclweb.org/anthology/P/P15/P15-1094.pdf.

Tamara Polajnar, Laura Rimell, and Stephen Clark.
2015. An exploration of discourse-based sentence
spaces for compositional distributional semantics.
In Proceedings of the First Workshop on Linking
Computational Models of Lexical, Sentential and
Discourse-level Semantics. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1–11.
http://aclweb.org/anthology/W15-2701.

Richard Socher, Brody Huval, Christopher D.
Manning, and Andrew Y. Ng. 2012. Seman-
tic compositionality through recursive matrix-
vector spaces. In Proceedings of the EMNLP-
CoNLL’12. Association for Computational Lin-
guistics, Stroudsburg, PA, USA, pages 1201–1211.
http://dl.acm.org/citation.cfm?id=2390948.2391084.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2010. Contextualizing semantic representations us-
ing syntactically enriched vector models. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics. Stroudsburg,
PA, USA, pages 948–957.

David J. Weir, Julie Weeds, Jeremy Reffin, and Thomas
Kober. 2016. Aligning packed dependency trees: A
theory of composition for distributional semantics.
Computational Linguistics 42(4):727–761.

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating linear models for compositional distribu-
tional semantics. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics.
COLING ’10, pages 1263–1271.

9

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 10–14,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Context encoders as a simple but powerful extension of word2vec

Franziska Horn
Machine Learning Group

Technische Universität Berlin, Germany
franziska.horn@campus.tu-berlin.de

Abstract

With a strikingly simple architecture and
the ability to learn meaningful word em-
beddings efficiently from texts containing
billions of words, word2vec remains one
of the most popular neural language mod-
els used today. However, as only a single
embedding is learned for every word in
the vocabulary, the model fails to optimally
represent words with multiple meanings
and, additionally, it is not possible to create
embeddings for new (out-of-vocabulary)
words on the spot. Based on an intuitive in-
terpretation of the continuous bag-of-words
(CBOW) word2vec model’s negative sam-
pling training objective in terms of predict-
ing context based similarities, we motivate
an extension of the model we call context
encoders (ConEc). By multiplying the ma-
trix of trained word2vec embeddings with
a word’s average context vector, out-of-
vocabulary (OOV) embeddings and repre-
sentations for words with multiple mean-
ings can be created based on the words’
local contexts. The benefits of this ap-
proach are illustrated by using these word
embeddings as features in the CoNLL 2003
named entity recognition (NER) task.

1 Introduction

Representation learning is very prominent in the
field of natural language processing (NLP). For
example, word embeddings learned by neural lan-
guage models (NLM) were shown to improve
the performance when used as features for super-
vised learning tasks such as named entity recogni-
tion (NER) (Collobert et al., 2011; Turian et al.,
2010). The popular word2vec model (Mikolov
et al., 2013a,b) learns meaningful word embed-

dings by considering only the words’ local con-
texts and thanks to its shallow architecture it can
be trained very efficiently on large corpora. The
model, however, only learns a single representation
for words from a fixed vocabulary. This means, if
in a task we encounter a new word that was not
present in the texts used for training, we cannot
create an embedding for this word without repeat-
ing the time consuming training procedure of the
model.1 Additionally, a single embedding does not
optimally represent words with multiple meanings.
For example, “Washington” is both the name of a
US state as well as a former president and only by
taking into account the word’s local context one
can identify the proper sense.

Based on an intuitive interpretation of the con-
tinuous bag-of-words (CBOW) word2vec model’s
negative sampling training objective, we propose
an extension of the model we call context encoders
(ConEc). This allows for an easy creation of OOV
embeddings as well as a better representation of
words with multiple meanings simply by multi-
plying the trained word2vec embeddings with the
words’ average context vectors. As demonstrated
on the CoNLL 2003 NER challenge, using the
word embeddings created with ConEc instead of
word2vec as features improves the classification
performance significantly.

Related work In the past, NLM have addressed
the issue of polysemy in various ways. For exam-
ple, sense2vec is an extension of word2vec, where
in a preprocessing step all words in the training cor-
pus are annotated with their part-of-speech (POS)

1In practice the model is trained on such a large vocab-
ulary that it is rare to encounter a word that does not have
an embedding. Yet there are still scenarios where this is the
case, for example, it is unlikely that the term “W10281545”
is encountered in a regular training corpus, but we might still
want its embedding to represent a search query like “whirlpool
W10281545 ice maker part”.

10

tag and then the embeddings are learned for tokens
consisting of the words themselves and their POS
tags, thereby generating different representations
e.g. for words that are used both as a noun and verb
(Trask et al., 2015). Other methods first cluster the
contexts the words appear (Huang et al., 2012) or
use additional resources such as wordnet to identify
multiple meanings of words (Rothe and Schütze,
2015). One possibility to create OOV embeddings
is to learn representations for all character n-grams
in the texts and then compute the embedding of a
word by combining the embeddings of the n-grams
occurring in it (Bojanowski et al., 2016). However,
none of these NLM are designed to solve both the
OOV and polysemy problem at the same time and
compared to word2vec they require more parame-
ters, resources, or additional steps in the training
procedure. ConEc on the other hand can generate
OOV embeddings as well as better representations
for words with multiple meanings simply by multi-
plying the matrix of trained word2vec embeddings
with the words’ average context vectors.

2 Background: CBOW word2vec trained
with negative sampling

Word2vec learns d -dimensional vector represen-
tations, referred to as word embeddings, for all
N words in the vocabulary. It is a shallow NLM
with parameter matrices W0,W1 ∈ RN×d, which
are tuned iteratively by scanning huge amounts of
texts sentence by sentence. Based on some con-
text words the algorithm tries to predict the target
word between them. Mathematically, this is real-
ized by first computing the sum of the embeddings
of the context words by selecting the appropriate
rows from W0. This vector is then multiplied by
several rows selected from W1: one of these rows
corresponds to the target word, while the others
correspond to k ‘noise’ words, selected at random
(negative sampling). After applying a non-linear
activation function, the backpropagation error is
computed by comparing this output to a label vec-
tor t ∈ Rk+1, which is 1 at the position of the
target word and 0 for all k noise words. After the
training of the model is complete, the word embed-
ding for a target word is the corresponding row of
W0.

3 Context Encoders

Similar words appear in similar contexts (Harris,
1954), for example, two words synonymous with

each other could be exchanged for one another in al-
most all contexts without a reader noticing. Based
on the context word co-occurrences, pairwise sim-
ilarities between all N words of the vocabulary
can be computed, resulting in a similarity matrix
S ∈ RN×N (or for a single word w the vector
sw ∈ RN) with similarity scores between 0 and 1.
These similarities should be preserved in the word
embeddings, e.g. the cosine similarity between the
embedding vectors of two words used in similar
contexts should be close to 1, or, more generally,
the scalar product of the matrix with word em-
beddings Y ∈ RN×d should approximate S. Of
course, the most straightforward way of obtain-
ing word embeddings satisfying Y Y > ≈ S would
be to compute the singular value decomposition
(SVD) of the similarity matrix S and use the eigen-
vectors corresponding to the d largest eigenvalues
(Levy et al., 2014, 2015). As our vocabulary typ-
ically comprises several 10, 000 words, however,
performing an SVD of the corresponding similarity
matrix is computationally far too expensive. Yet,
while the similarity matrix would be huge, it would
also be quite sparse, as many words are of course
not synonymous with each other. If we picked a
small number k of random words, chances are their
similarities to a target word would be close to 0.
So, while the product of a single word’s embed-
ding yw ∈ Rd and the matrix of all embeddings Y
should result in a vector ŝw ∈ RN close to the true
similarities sw of this word, if we only consider a
small subset of ŝw corresponding to the word itself
and k random words, it is sufficient if this approxi-
mates the binary vector tw ∈ Rk+1, which is 1 for
the word itself and 0 elsewhere.

The CBOW word2vec model trained with neg-
ative sampling can therefore be interpreted as a
neural network (NN) that predicts a word’s similar-
ities to other words (Fig. 1). During training, for
each occurrence i of a word w in the texts, a binary
vector xwi ∈ RN , which is 1 at the positions of
the context words of w and 0 elsewhere, is used
as input to the network and multiplied by a set of
weights W0 to arrive at an embedding ywi ∈ Rd

(the summed rows of W0 corresponding to the con-
text words). This embedding is then multiplied by
another set of weights W1, which corresponds to
the full matrix of word embeddings Y , to produce
the output of the network, a vector ŝwi ∈ RN con-
taining the approximated similarities of the word
w to all other words. The training error is then

11

computed by comparing a subset of the output to a
binary target vector twi ∈ Rk+1, which serves as
an approximation of the true similarities sw when
considering only a small number of random words.
We refer to this interpretation of the model as con-
text encoders (ConEc), as it is closely related to
similarity encoders (SimEc), a dimensionality re-
duction method used for learning similarity pre-
serving representations of data points (Horn and
Müller, 2017).

Input Embedding Output Target

xwi
2 RN ywi

2 Rd sw ⇡ twi
2 Rk+1ŝwi

the

black

slept

on

cat

W0 W1

Figure 1: Context encoder (ConEc) NN architec-
ture corresponding to the CBOW word2vec model
trained with negative sampling.

While the training procedure of ConEc is iden-
tical to that of word2vec, there is a difference in
the computation of a word’s embedding after the
training is complete. In the case of word2vec, the
word embedding is simply the row of the tuned W0

matrix. When considering the idea behind the opti-
mization procedure, however, we instead propose
to create the representation of a target word w by
multiplying W0 with the word’s average context
vector xw, as this better resembles how the word
embeddings are computed during training.

We distinguish between a word’s ‘global’ and
‘local’ average context vector (CV): The global CV
is computed as the average of all binary CVs xwi

corresponding to the Mw occurrences of w in the
whole training corpus:

xwglobal =
1
Mw

Mw∑
i=1

xwi ,

while the local CV xwlocal is computed likewise but
considering only the mw occurrences of w in a
single document. We can now compute the em-
bedding of a word w by multiplying W0 with the

weighted average between both CVs:
yw = (a · xwglobal + (1− a)xwlocal)

>W0 (1)

with a ∈ [0, 1]. The choice of a determines how
much emphasis is placed on the word’s local con-
text, which helps to distinguish between multiple
meanings of the word (Melamud et al., 2015).2 As
an out-of-vocabulary word does not have a global
CV (as it never occurred in the training corpus), its
embedding is computed solely based on the local
context, i.e. setting a = 0.

With this new perspective on the model and op-
timization procedure, another advancement is fea-
sible. Since the context words are merely a sparse
feature vector used as input to a NN, there is no
reason why this input vector should not contain
other features about the target word as well. For ex-
ample, the feature vector xw could be extended to
contain information about the word’s case, part-of-
speech (POS) tag, or other relevant details. While
this would increase the dimensionality of the first
weight matrix W0 to include the additional fea-
tures when mapping the input to the word’s em-
bedding, the training objective and therefore also
W1 would remain unchanged. These additional
features could be especially helpful if details about
the words would otherwise get lost in preprocess-
ing (e.g. by lowercasing) or to retain information
about a word’s position in the sentence, which is ig-
nored in a BOW approach. These extended ConEcs
are expected to create embeddings that distinguish
even better between the words’ different senses by
taking into account, for example, if the word is
used as a noun or verb in the current context, simi-
lar to the sense2vec algorithm (Trask et al., 2015).
But instead of learning multiple embeddings per
term explicitly, like sense2vec, only the dimension-
ality of the input vector is increased to include the
POS tag of the current word as a feature, which is
expected to improve generalization if few training
examples are available.

4 Experiments

The word embeddings learned by word2vec and
context encoders are evaluated on the CoNLL 2003
NER benchmark task (Tjong et al., 2003). We use
a CBOW word2vec model trained with negative
sampling as described above where k = 13, the
embedding dimensionality d is 200 and we use a
context window of 5 words. The word embeddings

2This implicitly assumes a word is only used in a single
sense in one document.

12

A
B

C

Figure 2: Results of the NER task based on three random initializations of the word2vec model. Left panel:
Overall results, where the mean performance using word2vec embeddings (dashed lines) is considered as
our baseline, all other embeddings are computed with ConEcs using various combinations of the words’
global and local CVs. Right panel: Increased performance (mean and standard deviation) on the test
fold when using ConEc: Multiplying the word2vec embeddings with global CVs yields a performance
gain of 2.5 percentage points (A). By additionally using local CVs to create OOV word embeddings
we gain another 1.7 points (B). When using a combination of global and local CVs (with a = 0.6) to
distinguish between the different meanings of words, the F1-score increases by another 5.1 points (C),
yielding a F1-score of 39.92%, which marks a significant improvement compared to the 30.59% reached
with word2vec features.

created by ConEc are built directly on top of the
word2vec model by multiplying the original em-
beddings (W0) with the respective context vectors.
Code to replicate the experiments is available on-
line.3

Named Entity Recognition The main advan-
tage of context encoders is that they can use local
context to create OOV embeddings and distinguish
between the different senses of words. The effects
of this are most prominent in a task such as NER,
where the local context of a word can make all the
difference, e.g. to distinguish between the “Chicago
Bears” (an organization) and the city of Chicago
(a location). We tested this on the CoNLL 2003
NER task by using the word embeddings as fea-
tures together with a logistic regression classifier.
The reported F1-scores were computed using the
official evaluation script. The results achieved with
various word embeddings on the training, develop-
ment and test part of the CoNLL task are reported
in Fig. 2. Please note that we are using this task as
an extrinsic evaluation to illustrate the advantages
of ConEc embeddings over the regular word2vec
embeddings. To isolate the effects on the perfor-
mance, we are only using these word embeddings

3https://github.com/cod3licious/conec

as features, while of course the performance on
this NER challenge is typically much higher when
other features such as a word’s case or POS tag are
included as well.

The word2vec embeddings were trained on the
documents used in the training part of the task and
OOV words in the development and test parts are
represented as zero vectors.4 With three parameter
settings we illustrate the advantages of ConEc:
A) Multiplying the word2vec embeddings by the
words’ average context vectors generally improves
the embeddings. To show this, ConEc word embed-
dings were computed using only global CVs (Eq. 1
with a = 1), which means OOV words again have
a zero representation. With these embeddings (la-
beled ‘global’ in Fig. 2) the performance improves
on the dev and test folds of the task.
B) Useful OOV embeddings can be created from
the local context of a new word. To show this, the
ConEc embeddings for words from the training vo-
cabulary (w ∈ N) were computed as in A), but
now the embeddings for OOV words (w′ /∈ N)
were computed using local CVs (Eq. 1 with a =
1 ∀w ∈ N and a = 0 ∀w′ /∈ N ; referred to as
‘OOV’ in the figure). The training performance

4Since this is a very small corpus, we trained word2vec for
25 iterations on these documents.

13

stays the same, of course, as here all words have
an embedding based on their global contexts, but
there is a jump in the ConEc performance on the
dev and test folds, where OOV words now have a
representation based on their local contexts.
C) Better embeddings for a word with multiple
meanings can be created by using a combination
of the word’s average global and local CVs as in-
put to the ConEc. To show this, the OOV embed-
dings were computed as in B), but now for the
words occurring in the training vocabulary, the lo-
cal context was taken into account as well by set-
ting a < 1 (Eq. 1 with a ∈ [0, 1) ∀w ∈ N and
a = 0 ∀w′ /∈ N). The best performances on all
folds are achieved when averaging the global and
local CVs with around a = 0.6 before multiplying
them with the word2vec embeddings, which clearly
shows that ConEc embeddings created by incorpo-
rating local context can help distinguish between
multiple meanings of words.

5 Conclusion

Context encoders are a simple but powerful exten-
sion of the CBOW word2vec model trained with
negative sampling. By multiplying the matrix of
trained word2vec embeddings with the words’ av-
erage context vectors, ConEcs are able to easily
create OOV embeddings on the spot as well as
distinguish between multiple meanings of words
based on their local contexts. The benefits of this
were demonstrated on the CoNLL NER challenge.

Acknowledgments

I would like to thank Antje Relitz, Ivana Balaže-
vić, Christoph Hartmann, Klaus-Robert Müller, and
other anonymous reviewers for their helpful com-
ments on earlier versions of this manuscript.
Franziska Horn acknowledges funding from the
Elsa-Neumann scholarship from the TU Berlin.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
12:2493–2537.

Zellig S Harris. 1954. Distributional structure. Word
10(2-3):146–162.

Franziska Horn and Klaus-Robert Müller. 2017.
Learning similarity preserving representations
with neural similarity encoders. arXiv preprint
arXiv:1702.01824 .

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:
Long Papers-Volume 1. ACL, pages 873–882.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics 3:211–225.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan.
2014. Linguistic regularities in sparse and explicit
word representations. In CoNLL. pages 171–180.

Oren Melamud, Ido Dagan, and Jacob Goldberger.
2015. Modeling word meaning in context with sub-
stitute vectors. In Human Language Technologies:
The 2015 Annual Conference of the North American
Chapter of the ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Sascha Rothe and Hinrich Schütze. 2015. Au-
toextend: Extending word embeddings to embed-
dings for synsets and lexemes. arXiv preprint
arXiv:1507.01127 .

EF Tjong, Kim Sang, and F De Meulder. 2003. Intro-
duction to the CoNLL-2003 Shared Task: Language-
Independent Named Entity Recognition. In Walter
Daelemans and Miles Osborne, editors, Proceedings
of CoNLL-2003. Edmonton, Canada, pages 142–
147.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec-a fast and accurate method for word sense
disambiguation in neural word embeddings. arXiv
preprint arXiv:1511.06388 .

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics. Association for Computational
Linguistics, pages 384–394.

14

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 15–25,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Machine Comprehension by Text-to-Text Neural Question Generation

Xingdi Yuan1∗ Tong Wang1,∗ Caglar Gulcehre2,∗† Alessandro Sordoni1,∗

Philip Bachman1 Sandeep Subramanian2,† Saizheng Zhang2,† Adam Trischler1

1Microsoft Maluuba, 2Montreal Institute for Learning Algorithms, Université de Montréal
{eric.yuan,tong.wang,alsordon,phbachma,adam.trischler}@microsoft.com

gulcehrc@iro.umontreal.ca , sandeep.subramanian@gmail.com , saizheng.zhang@umontreal.ca

Abstract

We propose a recurrent neural model that
generates natural-language questions from
documents, conditioned on answers. We
show how to train the model using a com-
bination of supervised and reinforcement
learning. After teacher forcing for standard
maximum likelihood training, we fine-tune
the model using policy gradient techniques
to maximize several rewards that measure
question quality. Most notably, one of these
rewards is the performance of a question-
answering system. We motivate question
generation as a means to improve the per-
formance of question answering systems.
Our model is trained and evaluated on the
recent question-answering dataset SQuAD.

1 Introduction

People ask questions to improve their knowledge
and understanding of the world. Questions can be
used to access the knowledge of others or to direct
one’s own information-seeking behavior. Here we
study the generation of natural-language questions
by machines, based on text passages. This task
is synergistic with machine comprehension (MC),
which pursues the understanding of written lan-
guage by machines at a near-human level. Because
most human knowledge is recorded in text, this
would enable transformative applications.

Many machine comprehension datasets have
been released recently. These generally comprise
(document, question, answer) triples (Hermann
et al., 2015; Hill et al., 2015; Rajpurkar et al., 2016;
Trischler et al., 2016a; Nguyen et al., 2016), where
the goal is to predict an answer, conditioned on a
document and question. The availability of large

∗Equal contribution.
†Supported by funding from Maluuba.

Text Passage

in 10661,2 , duke william ii3 of normandy conquered england
killing king harold ii at the battle of hastings. the invading
normans and their descendants4 replaced the anglo-saxons
as the ruling class of england.

Questions Generated by our System
1) when did the battle of hastings take place?
2) in what year was the battle of hastings fought?
3) who conquered king harold ii at the battle of hastings?
4) who became the ruling class of england?

Table 1: Examples of conditional question genera-
tion given a context and an answer from the SQuAD
dataset, using the scheme referred to as RPPL + QA
below. Bold text in the passage indicates the an-
swers used to generate the numbered questions.

labeled datasets has spurred development of in-
creasingly advanced models for question answer-
ing (QA) from text (Kadlec et al., 2016; Trischler
et al., 2016b; Seo et al., 2016; Wang et al., 2016;
Shen et al., 2016).

In this paper we reframe the standard MC task:
rather than answering questions about a document,
we teach machines to ask questions. Our work
has several motivations. First, we believe that pos-
ing appropriate questions is an important aspect
of information acquisition in intelligent systems.
Second, learning to ask questions may improve the
ability to answer them. Singer and Donlan (1982)
demonstrated that having students devise questions
before reading can increase scores on subsequent
comprehension tests. Third, answering the ques-
tions in most existing QA datasets is an extractive
task – it requires selecting some span of text within
the document – while question asking is compar-
atively abstractive – it requires generation of text
that may not appear in the document. Fourth, ask-
ing good questions involves skills beyond those
used to answer them. For instance, in existing QA

15

datasets, a typical (document, question) pair speci-
fies a unique answer. Conversely, a typical (docu-
ment, answer) pair may be associated with multi-
ple questions, since a valid question can be formed
from any information or relations which uniquely
specify the given answer. Finally, a mechanism to
ask informative questions about documents (and
eventually answer them) has many practical appli-
cations, e.g.: generating training data for question
answering (Serban et al., 2016; Yang et al., 2017),
synthesising frequently asked question (FAQ) doc-
umentation, and automatic tutoring systems (Lind-
berg et al., 2013).

We adapt the sequence-to-sequence approach
of Cho et al. (2014) for generating questions, con-
ditioned on a document and answer: first we en-
code the document and answer, then output ques-
tion words sequentially with a decoder that condi-
tions on the document and answer encodings. We
augment the standard encoder-decoder approach
with several modifications geared towards the ques-
tion generation task. During training, in addition
to maximum likelihood for predicting questions
from (document, answer) tuples, we use policy
gradient optimization to maximize several auxil-
iary rewards. These include a language-model-
based score for fluency and the performance of a
pretrained question-answering model on generated
questions. We show quantitatively that policy gra-
dient increases the rewards earned by generated
questions at test time, and provide examples to il-
lustrate the qualitative effects of different training
schemes. To our knowledge, we present the first
end-to-end, text-to-text model for question genera-
tion.

2 Related Work

Recently, automatic question generation has re-
ceived increased attention from the research com-
munity. It has been harnessed, for example, as a
means to build automatic tutoring systems (Heil-
man and Smith, 2010; Ali et al., 2010; Lindberg
et al., 2013; Labutov et al., 2015; Mazidi and
Nielsen, 2015), to reroute queries to community
question-answering systems (Zhao et al., 2011),
and to enrich training data for question-answering
systems (Serban et al., 2016; Yang et al., 2017).

Several earlier works process documents as in-
dividual sentences using syntactic (Heilman and
Smith, 2010; Ali et al., 2010; Kumar et al., 2015)
or semantic-based parsing (Mannem et al., 2010;

Lindberg et al., 2013), then reformulate questions
using hand-crafted rules acting on parse trees.
These traditional approaches generate questions
with a high word overlap with the original text
that pertain specifically to the given sentence by
re-arranging the sentence parse tree. An alterna-
tive approach is to use generic question templates
whose slots can be filled with entities from the doc-
ument (Lindberg et al., 2013; Chali and Golestani-
rad, 2016). Labutov et al. (2015), for example, use
ontology-derived templates to generate high-level
questions related to larger portions of the document.
These approaches comprise pipelines of indepen-
dent components that are difficult to tune for final
performance measures.

More recently, neural networks have enabled
end-to-end training of question generation sys-
tems. Serban et al. (2016) train a neural system to
convert knowledge base (KB) triples into natural-
language questions. The head and the relation form
a context for the question and the tail serves as the
answer. Similarly, we assume that the answer is
known a priori, but we extend the context to en-
compass a span of unstructured text. Mostafazadeh
et al. (2016) use a neural architecture to gener-
ate questions from images rather than text. Con-
temporaneously with this work, Yang et al. (2017)
developed generative domain-adaptive networks,
which perform question generation as an auxiliary
task in training a QA system. The main goal of
their question generation is data augmentation, thus
questions themselves are not evaluated. In contrast,
our work focuses primarily on developing a neural
model for question generation that could be ap-
plied to a variety of downstream tasks that includes
question answering.

Our model shares similarities with recent end-
to-end neural QA systems, e.g. Seo et al. (2016);
Wang et al. (2016). I.e., we use an encoder-decoder
structure, where the encoder processes answer and
document (instead of question and document) and
our decoder generates a question (instead of an an-
swer). While existing question answering systems
typically extract the answer from the document, our
decoder is a fully generative model.

Finally, we relate the recent body of works
that apply reinforcement learning to natural lan-
guage generation, such as Li et al. (2016); Ranzato
et al. (2016); Kandasamy and Bachrach (2017);
Zhang and Lapata (2017). We similarly apply
a REINFORCE-style (Williams, 1992) algorithm

16

to maximize various rewards earned by generated
questions.

3 Encoder-Decoder Model for Question
Generation

We adapt the simple encoder-decoder architecture
first outlined by Cho et al. (2014) to the ques-
tion generation problem. Particularly, we base our
model on the attention mechanism of Bahdanau
et al. (2015) and the pointer-softmax copying mech-
anism of Gulcehre et al. (2016). In question gener-
ation, we can condition our encoder on two differ-
ent sources of information (compared to the single
source in neural machine translation (NMT)): a
document that the question should be about and an
answer that should fit the generated question. Next,
we describe how we adapt the encoder and decoder
architectures in detail.

3.1 Encoder

Our encoder is a neural model acting on two in-
put sequences: the document, D = (d1, . . . , dn)
and the answer, A = (a1, . . . , am). Sequence el-
ements di, aj ∈ RDe are given by embedding
vectors (Bengio et al., 2001).

In the first stage of encoding, similar to current
question answering systems, e.g. (Seo et al., 2016),
we augment each document word embedding with
a binary feature that indicates if the document word
belongs to the answer. Then, we run a bidirec-
tional long short-term memory (Hochreiter and
Schmidhuber, 1997) (LSTM) network on the aug-
mented document sequence, producing annotation
vectors hd = (hd1, . . . ,h

d
n). Here, hdi ∈ RDh is the

concatenation of the network’s forward (~hdi) and
backward hidden states (~hdi) for input token i, i.e.,
hdi = [~hdi ; ~hdi].

1

Our model operates on QA datasets where the
answer is extractive; thus, we encode the answer A
using the annotation vectors corresponding to the
answer word positions in the document. We assume
that, without loss of generality, A consists of the
sequence of words (ds, . . . , de) in the document,
s.t. 1 ≤ s ≤ e ≤ n. We concatenate the annota-
tion sequence (hds , . . . ,h

d
e) with the correspond-

ing answer word embeddings (as, . . . , ae), i.e.,
[hdj ; aj], s ≤ j ≤ e, then apply a second bidi-
rectional LSTM (biLSTM) over the resulting se-
quence of vectors to obtain the extractive condition

1We use the notation [·; ·] to denote concatenation of two
vectors throughout the paper.

encoding ha ∈ RDh . We form ha by concatenat-
ing the final hidden states from each direction of
the biLSTM.

We also compute an initial state s0 ∈ RDs for
the decoder using the annotation vectors and the
extractive condition encoding:

r = Lha +
1
n

|D|∑
i

hdi , s0 = tanh (W0r + b0) ,

where L ∈ RDh×Dh , W0 ∈ RDs×Dh , and b0 ∈
RDs are model parameters.2

3.2 Decoder
Our decoder is a neural model that generates out-
puts yt sequentially to yield the question sequence
Q = {yt}. At each time-step t, the decoder models
a conditional distribution parametrized by θ,

pθ(yt|y<t, D,A), (1)

where y<t represents the outputs at earlier time-
steps. In question generation, output yt is a word
sampled according to (1).

When formulating questions based on docu-
ments, it is common to refer to phrases and entities
that appear directly in the text. We therefore incor-
porate into our decoder a mechanism for copying
relevant words fromD. We use the pointer-softmax
formulation (Gulcehre et al., 2016), which has two
output layers: the shortlist softmax and the location
softmax. The shortlist softmax places a distribu-
tion over words in a predefined output vocabulary.
The location softmax is a pointer network (Vinyals
et al., 2015) that places a distribution over doc-
ument tokens to be copied. A source switching
network enables the model to interpolate between
these distributions.

In more detail, the decoder is a recurrent neu-
ral network. Its internal state, st ∈ RDs , evolves
according to the long short-term memory up-
date (Hochreiter and Schmidhuber, 1997), i.e.,

st = LSTM(st−1, yt−1,vt), (2)

where vt is a the context vector computed from the
document and answer encodings.

At every time-step t, the model computes a soft-
alignment score over the document to decide which
words are more relevant to the question being gen-
erated. As in a traditional NMT architecture, the de-
coder computes a relevance weight αtj for the jth

2Let |X| denote the length of sequence X .

17

word in the document when generating the tth word
in the question. Alignment score vector αt ∈ R|D|
is computed with a single layer feedforward neural
network f(·) using the tanh(·) activation function.
The scores αt are also used as the location softmax
distribution. The network defined by f(·) com-
putes energies according to (3) for the alignments,
and the normalized alignments αtj are computed
as in (4):

etj = exp(f(hdj , ha, yt, st−1)), (3)

αtj =
exp(etj)∑T
i=1 exp(eij)

. (4)

To compute the context vector vt used in (2), we
first construct context vector ct for the document
and then concatenate it with ha:

ct =
|D|∑
i=1

αtihdi , (5)

vt = [ct; ha]. (6)

We use a deep output layer (Pascanu et al., 2013)
at each time-step for the shortlist softmax vector ot.
This layer fuses the information coming from st,
vt and yt−1 through a simple MLP to predict the
word logits for the softmax as in (7). Parameters of
the softmax layer are denoted as Wo ∈ R|V |×Dh

and bo ∈ R|V |, where |V | is the size of the shortlist
vocabulary (we used 2000 words).

et = g(st,vt, yt−1)
ot = softmax(Woet + bo) (7)

A source switching variable zt enables the model
to interpolate between document copying and gen-
eration from shortlist. It is computed by an MLP
with two hidden layers using tanh units (Gulcehre
et al., 2016). Similarly to the computation of the
shortlist softmax, the switching network takes st,
vt and yt−1 as inputs. Its output layer generates
the scalar zt through the logistic sigmoid activation
function.

Finally, pθ(yt|y<t, D,A) is approximated by the
full pointer-softmax pt ∈ R|V |+|D| by concatenat-
ing ot and αt after both are weighted by zt:

pt = [ztot; (1 − zt)αt]. (8)

As is standard in NMT, during decoding we use a
beam search (Graves, 2012) to maximize (approx-
imately) the conditional probability of an output
sequence. We discuss this in more detail in the
following section.

3.3 Training
The model is trained initially to minimize the neg-
ative log-likelihood of the training data under the
model distribution,

L = −
∑
t

log pθ(yt|y<t, D,A), (9)

where, in the decoder as defined in (2), the previ-
ous token yt−1 comes from the source sequence
rather than the model output (this is called teacher
forcing).

Based on our knowledge of the task, we intro-
duce additional training signals to aid the model’s
learning. First, we encourage the model not to gen-
erate answer words in the question. We use the soft
answer-suppression constraint given in (10) with
the penalty hyperparameter λs; Ā denotes the set
of words that appear in the answer but not in the
ground-truth question:

Ls = λs
∑
t

∑
ā∈Ā

pθ(yt = ā|y<t, D,A). (10)

We also encourage variety in the output words to
counteract the degeneracy often observed in NLG
systems towards common outputs (Sordoni et al.,
2015). This is achieved with a loss term that maxi-
mizes entropy in the output softmax (8), i.e.,

Le = λe
∑
t

pTt log pt. (11)

4 Policy Gradient Optimization

As described above, we use teacher forcing to train
our model to generate text by maximizing ground-
truth likelihood. Teacher forcing introduces critical
differences between the training phase (in which
the model is driven by ground-truth sequences) and
the testing phase (in which the model is driven by
its own outputs) (Bahdanau et al., 2016). Signif-
icantly, teacher forcing prevents the model from
making and learning from mistakes during training.
This is related to the observation that maximizing
ground-truth likelihood does not teach the model
how to distribute probability mass among exam-
ples other than the ground-truth, some of which
may be valid questions and some of which may be
completely incoherent. This is especially problem-
atic in language, where there are often many ways
to say the same thing. A reinforcement learning
(RL) approach, by which a model is rewarded or
penalized for its own actions, could mitigate these

18

issues – though likely at the expense of reduced sta-
bility during training. A properly designed reward,
maximized via RL, could provide a model with
more information about how to distribute probabil-
ity mass among sequences that do not occur in the
training set (Norouzi et al., 2016).

We investigate the use of RL to fine-tune our
question generation model. Specifically, we per-
form policy gradient optimization following a pe-
riod of “pretraining” on maximum likelihood, using
a combination of scalar rewards correlated to ques-
tion quality. We detail this process below. To make
clear that the model is acting freely without teacher
forcing, we indicate model-generated tokens with
ŷt and sequences with Ŷ .

4.1 Rewards
Question answering (QA) One obvious mea-
sure of a question’s quality is whether it can be
answered correctly given the context document D.
We therefore feed model-generated questions into
a pretrained question-answering system and use
that system’s accuracy as a reward. We use the re-
cently proposed Multi-Perspective Context Match-
ing (MPCM) (Wang et al., 2016) model as our
reference QA system, sans character-level encod-
ing. Broadly, that model takes in a generated ques-
tion Ŷ and a document D, processes them through
bidirectional recurrent neural networks, applies an
attention mechanism, and points to the start and
end tokens of the answer in D. After training a
MPCM model on the SQuAD dataset, the reward
RQA(Ŷ) is given by MPCM’s answer accuracy on
Ŷ in terms of the F1 score, a token-based measure
proposed by Rajpurkar et al. (2016) that accounts
for partial word matches:

RQA(Ŷ) = F1(Â, A), (12)

where Â = MPCM(Ŷ) is the answer to the gener-
ated question by the MPCM model. Optimizing the
QA reward could lead to ‘friendly’ questions that
are either overly simplistic or that somehow cheat
by exploiting quirks in the MPCM model. One ob-
vious way to cheat would be to inject answer words
into the question. We prevented this by masking
these out in the location softmax, a hard version of
the answer suppression loss (10).

Fluency (PPL) Another measure of quality is
a question’s fluency – i.e., is it stated in proper,
grammatical English? As simultaneously proposed
in Zhang and Lapata (2017), we use a language

model to measure and reward the fluency of gener-
ated questions. In particular, we use the perplexity
assigned to Ŷ by an LSTM language model:

RPPL(Ŷ) = −2−
1
T

∑T
t=1 log2 pLM(ŷt|ŷ<t), (13)

where the negation is to reward the model for mini-
mizing perplexity. The language model is trained
through maximum likelihood estimation on over
80, 000 human-generated questions from SQuAD
(the training set).

Combination For the total scalar reward earned
by the word sequence Ŷ , we also test a weighted
combination of the individual rewards:

RPPL + QA(Ŷ) = λQARQA(Ŷ) + λPPLRPPL(Ŷ),

where λQA and λPPL are hyperparameters. The in-
dividual reward functions use neural models to tune
the neural question generator. This is reminiscent
of recent work on GANs (Goodfellow et al., 2014)
and actor-critic methods (Bahdanau et al., 2016).
We treat the reward models as black boxes, rather
than attempting to optimize them jointly or back-
propagate error signals through them. We leave
these directions for future work.

We also experimented with several other rewards,
most notably the BLEU score (Papineni et al.,
2002) between Ŷ and the ground-truth question for
the given document and answer, and a softer mea-
sure of similarity between output and ground-truth
based on skip-thought vectors (Kiros et al., 2015).
Empirically, we were unable to obtain consistent
improvements on these rewards through training,
though this may be an issue with hyperparameter
settings.

4.2 REINFORCE
We use the REINFORCE algorithm (Williams,
1992) to maximize the model’s expected reward.
For each generated question Ŷ , we define the loss

LRL = −EŶ∼π(Ŷ |D,A)[R(Ŷ)], (14)

where π is the policy to be trained. The policy is
a distribution over discrete actions, i.e. words ŷt
that make up the sequence Ŷ . It is the distribution
induced at the output layer of the encoder-decoder
model (8), initialized with the parameters deter-
mined through likelihood optimization.3

3The policy also depends on the switch values but we omit
these for brevity.

19

REINFORCE approximates the expectation in
(14) with independent samples from the policy dis-
tribution, yielding the policy gradient

∇LRL ≈
∑
t=1

∇ log π(ŷt|ŷ<t, D,A)
R(Ŷ)− µR

σR
.

(15)
The optional µR and σR are the running mean and
standard deviation of the reward, which push R(Ŷ)
toward zero mean and unit variance. This “whiten-
ing” of rewards is a simple version of PopArt (van
Hasselt et al., 2016), and we found empirically that
it stabilized learning.

It is straightforward to combine policy gradient
with maximum likelihood, as both gradients can be
computed by backpropagating through a properly
reweighted sequence-level log-likelihood. The se-
quences for policy gradient are sampled from the
model and weighted by a whitened reward, and the
likelihood sequences are sampled from the training
set and weighted by 1.

4.3 Training Scheme

Instead of sampling from the model’s output distri-
bution, we use beam-search to generate questions
from the model and approximate the expectation in
Eq. 14. Empirically we found that rewards could
not be improved through training without this ap-
proach. Randomly sampling from the model’s dis-
tribution may not be as effective for estimating the
modes of the generation policy and it may intro-
duce more variance into the policy gradient.

Beam search keeps a running set of candidates
that expands and contracts adaptively. At each
time-step t, k output words that maximize the prob-
abilities of their respective paths are selected and
added to the candidate sequences, where k is the
beam size. The probabilities of these candidates
are given by their accumulated log-likelihood up to
t.4

Given a complete sample from the beam search
and its accumulated log-likelihood, the gradient
in (15) can be estimated as follows. After calcu-
lating the reward with a sequence generated by
beam search, we use the sample to teacher-force
the decoder so as to recreate exactly the model
states from which the sequence was generated.
The model can then be accurately updated by cou-

4We also experimented with a stochastic version of beam
search by randomly sampling k words from top-2k predictions
sorted by candidate sequence probability at each time step.
No performance improvement was observed.

pling the parameter-independent reward with the
log-likelihood of the generated sequence. This ap-
proach adds a computational overhead but it signifi-
cantly increases the initial reward values earned by
the model and stabilizes policy gradient training.

We also further tune the likelihood during policy
gradient optimization to prevent the model from
overwriting its earlier training. We combine the
policy gradient update to the model parameters,
∇LRL, with an update from ∇L based on teacher
forcing on the ground-truth signal.

5 Experiments

5.1 Dataset

We conducted our experiments on the SQuAD
dataset for machine comprehension (Rajpurkar
et al., 2016), a large-scale, human-generated cor-
pus of (document, question, answer) triples. Doc-
uments are paragraphs from 536 high-PageRank
Wikipedia articles covering a variety of subjects.
Questions are posed by crowdworkers in natural
language and answers are spans of text in the re-
lated paragraph highlighted by the same crowd-
workers. There are 107,785 question-answer pairs
in total, including 87,599 training instances and
10,570 development instances.

5.2 Baseline Seq2Seq System

Our baseline system, denoted “Seq2Seq,” is based
on the encoder-decoder architecture with attention
and pointer-softmax outlined in Bahdanau et al.
(2015) and Gulcehre et al. (2016). This is essen-
tially the model outlined in Section 3, with a few
key differences: (i) since the baseline was origi-
nally designed for translation, its encoder and de-
coder vocabularies are separate; (ii) the baseline
conditions question generation on the answer sim-
ply by setting ha as the average of the document
encodings corresponding to the answer positions in
D; (iii) the baseline has no constraint on generating
answer words in the question (Equation (10)); and
(iv) the baseline does not include the entropy-based
loss defined in (11).

5.3 Quantitative Evaluation

We use several automatic evaluation metrics to
judge the quality of generated questions with re-
spect to the ground-truth questions from the dataset.
We are undertaking a large-scale human evaluation
to determine how these metrics align with human
judgments. The first metric is BLEU (Papineni

20

NLL BLEU F1 QA PPL

Seq2Seq 45.8 4.9 31.2 45.6 153.2

Our System 35.3 10.2 39.5 65.3 175.7
+ PG (RPPL) 35.7 9.2 38.2 61.1 155.6
+ PG (RQA) 39.8 10.5 40.1 74.2 300.9
+ PG (RPPL+QA) 39.0 9.2 37.8 70.2 183.1

Question LM - - - - 87.7
MPCM - - - 70.5 -

Table 2: Automatic metrics on SQuAD’s dev set.
NLL is the negative log-likelihood. BLEU and F1
are computed with respect to the ground-truth ques-
tions. QA is the F1 obtained by the MPCM model
answers to generated questions and PPL is the per-
plexity computed with the question language model
(LM) (lower is better). PG denotes policy gradient
training. The bottom two lines report performance
on ground-truth questions.

Text Passage

...the court of justice accepted that a requirement to speak
gaelic to teach in a dublin design college could be justified as
part of the public policy of promoting the irish language.

Generated Questions
1) what did the court of justice not claim to do?

2) what language did the court of justice say should be justified
as part of the public language?

3) what language did the court of justice decide to speak?

4) what language did the court of justice adopt a requirement
to speak?

5) what language did the court of justice say should be justified
as part of?

Table 3: Examples of generated questions given a
context and an answer. Questions are generated by
the five systems in Table 2, in order.

et al., 2002), a standard in machine translation,
which computes {1,2,3,4}-gram matches between
generated and ground-truth questions. Next we use
F1, which focuses on unigram matches (Rajpurkar
et al., 2016). We also report fluency and QA per-
formance metrics used in our reward computation.
Fluency is measured by the perplexity (PPL) of
the generated question computed by the pretrained
question language model. The PPL score is propor-
tional to the marginal probability p(Ŷ) estimated
from the corpus. The QA performance is measured
by running the pretrained MPCM model on the
generated questions and measuring F1 between the
predicted answer and the conditioning answer.

5.4 Results and qualitative analysis

Our results for automatic evaluation on SQuAD’s
development set are presented in Table 2. Imple-
mentation details for all models are given in the
supplementary material. One striking feature is
that BLEU scores are quite low for all systems
tested, which relates to our earlier argument that a
typical (document, answer) pair may be associated
with multiple semantically-distinct questions. This
seems to be born out by the result since most gen-
erated samples look reasonable despite low BLEU
scores (see Tables 1, 3).

Our system vs. Seq2Seq Comparing our model
to the Seq2Seq baseline, we see that all metrics im-
prove notably with the exception of PPL. Interest-
ingly, our system performs worse in terms of PPL
despite achieving lower negative log-likelihood.
This, along with the improvements in BLEU, F1
and QA, suggests that our system learns a more
powerful conditional model at the expense of ac-
curately modelling the marginal distribution over
questions. It is likely challenging for the model to
allocate probability mass to rarer keywords that are
helpful to recover the desired answer while also
minimizing perplexity. We illustrate with samples
from both models, specifically the first two samples
in Table 3. The Seq2Seq baseline generated a well-
formed English question, which is also quite vague
– it is only weakly conditioned on the answer. On
the other hand, our system’s generated question is
more specific, but still not correct given the con-
text and perhaps less fluent given the repetition of
the word language. We found that our proposed
entropy regularization helped to avoid over-fitting
and worked nicely in tandem with dropout: the
training loss for our regularized model was 26.6
compared to 22.0 for the Seq2Seq baseline that
used only dropout regularization.

Policy gradient (RPPL: λPPL = 0.1) Policy gra-
dient training with the negative perplexity of the
pretrained language model improves the genera-
tor’s PPL score as desired, which approaches that
of the baseline Seq2Seq model. However, QA, F1,
and BLEU scores decrease. This aligns with the
above observation that fluency and answerability
(as measured by the automatic scores) may be in
competition. As an example, the third sample in
Table 3 is more fluent than the previous examples
but does not refer to the desired answer.

21

Training Generated Questions QA PPL

RPPL what was the name of the library that was listed on the grainger market? 0 73.2
RQA the grainger market architecture was listed in 1954 by what? 100 775

RQA+PPL what language did the grainger market architecture belong to? 0 257

RPPL what are the main areas of southern california? 0 114
RQA southern california is famous for what? 16.6 269

RQA+PPL what is southern california known for? 16.6 179

RPPL what was the goal of the imperial academy of medicine? 19.1 44.3
RQA why were confucian scholars attracted to the medical profession? 73.7 405

RQA+PPL what did the confucian scholars believe were attracted to the medical schools? 90.9 135

RPPL what is an example of a theory that can be solved in theory? 0 38
RQA in complexity theory, it is known as what? 100 194

RQA+PPL what is an example of a theory that can cause polynomial-time solutions to be useful? 100 37

Table 4: Comparison of questions from different reward combinations on the same text and answer.

Policy gradient (RQA: λQA = 1.0) Policy gra-
dient is very effective at maximizing the QA re-
ward, gaining 8.9% in accuracy over the improved
Seq2Seq model and improving most other metrics
as well. The fact that QA score is 3.7% higher than
that obtained on the ground-truth questions sug-
gests that the question generator may have learned
to exploit MPCM’s answering mechanism, and the
higher reported perplexity suggests questions under
this scheme may be less fluent. We explore this in
more detail below. The fourth sample in Table 3,
in contrast to the others, is clearly answered by the
context word gaelic as desired.

Policy gradient (RPPL + QA: λPPL = 0.25, λQA =
0.5) We attempted to improve fluency and an-
swerability in tandem by combining QA and PPL
rewards. The PPL reward adds a prior towards ques-
tions that look natural. According to Table 2, this
optimization scheme yields a good balance of per-
formance, improving over the maximum-likelihood
model by a large margin in terms of QA perfor-
mance and gaining back some PPL. In the sample
shown in Table 3, however, the question is specific
to the answer but ends prematurely.

In Table 4 we provide additional generated sam-
ples from the different PG rewards. This table
reveals one of the ‘tricks’ encouraged by the QA
reward for improving MPCM performance: ques-
tions are often phrased with the interrogative ‘wh’
word at the end. This gives the language high per-
plexity, since such questions are rarer in the train-
ing data, but brings the question form closer to the
form of the source text for answer matching.

5.5 Discussion

Looking through examples revealed certain difficul-
ties in the task and some pathologies in the model
that should be rectified through future work.

Entities and Verbs Similar entities and related
verbs are often swapped, e.g., miami for jack-
sonville in a question about population. This issue
could be mitigated by biasing the pointer softmax
towards the document for certain word types.

Abstraction We desire a system that generates
interesting questions, which are not limited to re-
ordering words from the context but exhibit some
abstraction. Rewards from existing QA systems do
not seem beneficial for this purpose. Questions gen-
erated through NLL training show more abstraction
at the expense of decreased specificity.

Commonsense and Reasoning Commonsense
understanding appears critical for generating ques-
tions that are well-posed and show abstraction from
the original text. Likewise, the ability to reason
about and compose relations between entities could
lead to more abstract and interesting questions. The
existing model has no such capacities.

Evaluation Due to the large number of possi-
ble questions given a predefined answer, it is
challenging to evaluate the outputs using stan-
dard overlap-based metrics such as BLEU. In this
sense, question generation from text is similar to
other tasks with large output spaces (Galley et al.,
2015) and may benefit from corpora with multi-
ple ground-truth questions associated to a quality
rating (Mostafazadeh et al., 2016).

22

6 Conclusion and Future Work

We proposed a recurrent neural model that gener-
ates natural-language questions conditioned on text
passages and predefined answers. We showed how
to train this model using a combination of maxi-
mum likelihood and policy gradient optimization,
and demonstrated both quantitatively and quali-
tatively how several reward combinations affect
the generated outputs. We are now undertaking
a human evaluation to determine the correlation
between rewards and human judgments, improving
our model, and testing on additional datasets.

One of our interests is to build models that
seek information autonomously through question
asking, as people do. This would entail, among
other things, the direct sampling of interesting,
informative questions from documents, i.e., mod-
elling distribution p(Q|D) rather than the distri-
bution conditioned on the answer, p(Q|D,A), as
in this work. The present work may serve as a
useful first step toward this goal, since the larger
problem can be tackled by factorizing p(Q|D) =∑

A p(Q|D,A)p(A|D) and first sampling a docu-
ment’s likely answers according to modelled distri-
bution p(A|D).

References
Husam Ali, Yllias Chali, and Sadid A Hasan. 2010.

Automation of question generation from sentences.
Proc. of QG2010: The Third Workshop on Question
Generation .

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2016. An actor-critic
algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. International Con-
ference on Learning Representations (ICLR) .

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
2001. A neural probabilistic language model. In
Todd K. Leen, Thomas G. Dietterich, and Volker
Tresp, editors, NIPS’2000. MIT Press, pages 932–
938.

Yllias Chali and Sina Golestanirad. 2016. Ranking au-
tomatically generated questions using common hu-
man queries. Proc. of INLG .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning

phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

François Chollet. 2015. keras. https://github.
com/fchollet/keras.

Michel Galley, Chris Brockett, Alessandro Sordoni,
Yangfeng Ji, Michael Auli, Chris Quirk, Mar-
garet Mitchell, Jianfeng Gao, and Bill Dolan. 2015.
deltableu: A discriminative metric for generation
tasks with intrinsically diverse targets. arXiv
preprint arXiv:1506.06863 .

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems. pages 2672–2680.

Alex Graves. 2012. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711 .

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. arXiv preprint
arXiv:1603.08148 .

Michael Heilman and Noah A Smith. 2010. Good ques-
tion! statistical ranking for question generation. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 609–617.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems. pages 1693–1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9.8:1735–
1780.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547 .

Kirthevasan Kandasamy and Yoram Bachrach. 2017.
Batch policy gradient methods for improving neural
conversation models. Proc. of ICLR .

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR).

23

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems.
pages 3294–3302.

Girish Kumar, Rafael E Banchs, and Luis Fernando
D’Haro Enriquez. 2015. Revup: Automatic gap-fill
question generation from educational texts. Proc. of
ACL .

Igor Labutov, Sumit Basu, and Lucy Vanderwende.
2015. Deep questions without deep understanding.
Proc. of ACL .

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep rein-
forcement learning for dialogue generation. Proc. of
EMNLP .

David Lindberg, Fred Popowich, and John Nesbit Phil
Winne. 2013. Generating natural language ques-
tions to support learning on-line. Proc. of ENLG .

Prashanth Mannem, Rashmi Prasad, and Aravind Joshi.
2010. Question generation from paragraphs at
upenn: Qgstec system description. In Proceedings
of QG2010: The Third Workshop on Question Gen-
eration. pages 84–91.

Karen Mazidi and Rodney D Nielsen. 2015. Lever-
aging multiple views of text for automatic question
generation. In International Conference on Artifi-
cial Intelligence in Education. Springer, pages 257–
266.

Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Mar-
garet Mitchell, Xiaodong He, and Lucy Vander-
wende. 2016. Generating natural questions about an
image. arXiv preprint arXiv:1603.06059 .

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268 .

Mohammad Norouzi, Samy Bengio, Zhifeng Chen,
Navdeep Jaitly, Mike Schuster, Yonghui Wu, and
Dale Schuurmans. 2016. Reward augmented max-
imum likelihood for neural structured prediction.
In Advances In Neural Information Processing Sys-
tems.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2013. How to construct
deep recurrent neural networks. arXiv preprint
arXiv:1312.6026 .

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP). pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 .

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. Proc. of ICLR
.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Iulian Vlad Serban, Alberto García-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generating
factoid questions with recurrent neural networks:
The 30m factoid question-answer corpus. Proc. of
ACL .

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. Reasonet: Learning to stop
reading in machine comprehension. arXiv preprint
arXiv:1609.05284 .

Harry Singer and Dan Donlan. 1982. Active com-
prehension: Problem-solving schema with question
generation for comprehension of complex short sto-
ries. Reading Research Quarterly pages 166–186.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. arXiv preprint
arXiv:1506.06714 .

Nitish Srivastava, Geoffrey Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple
way to prevent neural networks from overfit-
ting. J. Mach. Learn. Res. 15(1):1929–1958.
http://dl.acm.org/citation.cfm?id=2627435.2670313.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016a. Newsqa: A machine compre-
hension dataset. arXiv preprint arXiv:1611.09830 .

Adam Trischler, Zheng Ye, Xingdi Yuan, Phil Bach-
man, Alessandro Sordoni, and Kaheer Suleman.
2016b. Natural language comprehension with the
epireader. In Empirical Methods on Natural Lan-
guage Processing (EMNLP).

24

Hado P van Hasselt, Arthur Guez, Matteo Hessel,
Volodymyr Mnih, and David Silver. 2016. Learn-
ing values across many orders of magnitude. In Ad-
vances in Neural Information Processing Systems.
pages 4287–4295.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and
William W Cohen. 2017. Semi-supervised qa with
generative domain-adaptive nets. arXiv preprint
arXiv:1702.02206 .

Xingxing Zhang and Mirella Lapata. 2017. Sen-
tence simplification with deep reinforcement learn-
ing. arXiv preprint arXiv:1703.10931 .

Shiqi Zhao, Haifeng Wang, Chao Li, Ting Liu, and
Yi Guan. 2011. Automatically generating questions
from queries for community-based question answer-
ing. Proc. of IJCNLP .

Supplementary Material

A Implementation details

All models are implemented using Keras (Chollet,
2015) with Theano (Theano Development Team,
2016) backend. We used Adam (Kingma and Ba,
2014) with an initial learning rate 2e-4 for both
maximum likelihood and policy gradient updates.
Word embeddings were initialized with the GloVe
vectors (Pennington et al., 2014) and updated dur-
ing training. The hidden size for all RNNs is 768.

Dropout (Srivastava et al., 2014) is applied with
a rate of 0.3 to the embedding layers as well as all
the RNNs (between both input-hidden and hidden-
hidden connections).

Both λs for answer-suppression and λe for en-
tropy maximization are set to 0.01. We used beam
search with a beam size of 32 in all experiments.
The reward weights used in policy gradient training
are listed in Table 5. These parameters are selected
using grid search based on validation QA reward.

QAMPCM PPLQuest. LM

λQA 1.0 -
λPPL - 0.1

λPPL+QA 0.5 0.25

Table 5: Hyperparameter settings for policy gradi-
ent training.

25

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 26–36,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Emergent Predication Structure
in Hidden State Vectors of Neural Readers

Hai Wang∗ Takeshi Onishi∗ Kevin Gimpel David McAllester
Toyota Technological Institute at Chicago

6045 S. Kenwood Ave., Chicago, Illinois 60637, USA
{haiwang,tonishi,kgimpel,mcallester}@ttic.edu

Abstract

A significant number of neural architec-
tures for reading comprehension have re-
cently been developed and evaluated on
large cloze-style datasets. We present
experiments supporting the emergence of
“predication structure” in the hidden state
vectors of these readers. More specifi-
cally, we provide evidence that the hid-
den state vectors represent atomic formu-
las Φ[c] where Φ is a semantic property
(predicate) and c is a constant symbol en-
tity identifier.

1 Introduction

Reading comprehension is a type of question an-
swering task where the answer is to be found
in a passage about particular entities and events.
In particular, the entities and events should not
be mentioned in structured databases of general
knowledge. Reading comprehension problems are
intended to measure a system’s ability to extract
semantic information about entities and relations
directly from unstructured text.

Several large scale reading comprehension
datasets have been introduced recently, includ-
ing the CNN & Daily Mail datasets (Hermann
et al., 2015), the Children’s Book Test (CBT) (Hill
et al., 2016), and the Who-did-What dataset (On-
ishi et al., 2016). The large sizes of these datasets
enable the application of deep learning. These are
all cloze-style datasets where a question is con-
structed by deleting a word or phrase from an ar-
ticle summary (in CNN/Daily Mail), from a sen-
tence in a children’s story (in CBT), or by deleting
a person from the first sentence of a different news
article on the same entities and events (in Who-
did-What).

∗Authors contributed equally.

In this paper we present empirical evidence for
the emergence of predication structure in a certain
class of neural readers. To understand predication
structure, it is helpful to review the anonymization
performed in the CNN/Daily Mail dataset. In this
dataset named entities are replaced by anonymous
entity identifiers such as “entity37”. The passage
might contain “entity52 gave entity24 a rousing
applause” and the question might be “X received
a rounding applause from entity52”. The task is to
fill in X from a given multiple choice list of can-
didate entity identifiers. A fixed relatively small
set of the same entity identifiers are used over all
the problems and the same problem is presented
many times with different entity identifiers shuf-
fled. This prevents a given entity identifier from
having any semantically meaningful vector em-
bedding. The embeddings of the entity identifiers
are presumably just pointers to semantics-free to-
kens. We will write entity identifiers as logical
constant symbols such as c rather than strings such
as “entity37”.

“Aggregation” readers, including Memory Net-
works (Weston et al., 2015; Sukhbaatar et al.,
2015), the Attentive Reader (Hermann et al.,
2015), and the Stanford Reader (Chen et al.,
2016), use bidirectional LSTMs or GRUs to con-
struct a contextual embedding ht of each position
t in the passage and also an embedding hq of the
question q. They then select an answer c using a
criterion similar to

argmax
c

∑
t

< ht, hq > < ht, e(c) > (1)

where e(c) is the vector embedding of the constant
symbol (entity identifier) c. In practice the inner-
product < ht, hq > is normalized over t using a
softmax to yield attention weights αt over t and

26

(1) becomes

argmax
c

< e(c),
∑
t

αtht > . (2)

Here
∑

t αtht can be viewed as a vector represen-
tation of the passage.

We argue that for aggregation readers, roughly
defined by (2), the hidden state ht of the passage
at position (or word) t can be viewed as a vector
concatenation ht = [s(Φt), s(ct)] where Φt is a
property (or statement or predicate) being stated
of a particular constant symbol ct. Here s(Φt) and
s(ct) are unknown emergent embeddings of Φt

and ct respectively. A logician might write this as
ht = Φt[ct]. Furthermore, the question can be in-
terpreted as having the form Ψ[x] where the prob-
lem is to find a constant symbol c such that the pas-
sage implies Ψ[c]. Assuming ht = [s(Φt), s(ct)],
hq = [s(Ψ), 0], and e(c) = [0, s(c)], we can
rewrite (1) as

argmax
c

∑
t

< s(Φt), s(Ψ) > < s(ct), s(c) > .

(3)
The first inner product in (3) is interpreted as mea-
suring the extent to which Φt[x] implies Ψ[x] for
any x. The second inner product is interpreted as
restricting t to positions talking about the constant
symbol c.

Note that the posited decomposition of ht is
not explicit in (2) but instead must emerge during
training. We present empirical evidence that this
structure does emerge. The empirical evidence is
somewhat tricky as the direct sum structure that di-
vides ht into its two parts need not be axis aligned
and therefore need not literally correspond to vec-
tor concatenation.

We also consider a second class of neural read-
ers that we call “explicit reference” readers. Ex-
plicit reference readers avoid (2) and instead use

argmax
c

∑
t∈R(c)

αt (4)

whereR(c) is the subset of the positions where the
constant symbol (entity identifier) c occurs. Note
that if we identify αt with < s(Φt), s(Ψ) > and
assume that < s(c), s(ct) > is either 0 or 1 de-
pending on whether c = ct, then (3) and (4) agree.
In explicit reference readers the hidden state ht
need not carry a pointer to ct as the restriction on
t is independent of learned representations. Ex-
plicit reference readers include the Attention Sum

Reader (Kadlec et al., 2016), the Gated Attention
Reader (Dhingra et al., 2017), and the Attention-
over-Attention Reader (Cui et al., 2017).

So far we have only considered anonymized
datasets that require the handling of semantics-
free constant symbols. However, even for non-
anonymized datasets such as Who-did-What, it is
helpful to add features which indicate which posi-
tions in the passage are referring to which candi-
date answers. This indicates, not surprisingly, that
reference is important in question answering. The
fact that explicit reference features are needed in
aggregation readers on non-anonymized data in-
dicates that reference is not being solved by the
aggregation readers. However, as reference seems
to be important for cloze-style question answer-
ing, these problems may ultimately provide train-
ing data from which reference resolution can be
learned.

Sections 2 and 3 review various existing
datasets and models respectively. In the CNN
dataset the vector embeddings of entity identi-
fiers such as “entity32” are clearly interpretable as
vector representations of semantics-free constant
symbols. However, to the best of our knowledge
the emergent decomposition of the hidden state
vectors into a concatenation of a property vector
and an entity vector has not been previously de-
scribed or empirically investigated in the litera-
ture. Section 4 presents the logical structure in-
terpretation of aggregation readers in more detail
and the empirical evidence supporting it. Section 5
proposes new models that enforce the direct sum
structure of the hidden state vectors. It is shown
that these new models perform well on the Who-
did-What dataset provided that reference annota-
tions are added as input features. Section 5 also
describes additional linguistic features that can be
added to the input embeddings and show that these
improve the performance of existing models re-
sulting in the best single-model performance to
date on the Who-did-What dataset.

2 A Brief Survey of Datasets

Before presenting various models for machine
comprehension we give a general formulation of
the machine comprehension task. We take an in-
stance of the task to be a four tuple (q, p, a,A),
where q is a question given as a sequence of words
containing a special token for a “blank” to be filled
in, p is a document consisting of a sequence of

27

words, A is a set of possible answers and a ∈ A
is the ground truth answer. All words are drawn
from a vocabulary V . We assume that all possi-
ble answers are words from the vocabulary, that is
A ⊆ V , and that the ground truth answer appears
in the document, that is a ∈ p. The problem can
be described as that of selecting the answer a ∈ A
that answers question q based on information from
p. We now briefly summarize important features
of the related datasets in reading comprehension.

CNN & Daily Mail: Hermann et al. (2015)
constructed these datasets from a large number of
news articles from the CNN and Daily Mail news
websites. The main article is used as the con-
text, while the cloze style question is formed from
one short article summary sentence appearing in
conjunction with the published article. To avoid
the model using external world knowledge when
answering the question, the named entities in the
entire dataset were replaced by anonymous entity
IDs which were then further shuffled for each ex-
ample. This forces models to rely on the con-
text document to answer each question. In this
anonymized corpus the entity identifiers are taken
to be a part of the vocabulary and the answer set
A consists of the entity identifiers occurring in the
passage.

Who-did-What (WDW): The Who-did-What
dataset (Onishi et al., 2016) contains 127,000 mul-
tiple choice cloze questions constructed from the
LDC English Gigaword newswire corpus (David
and Cieri, 2003). In contrast with CNN and
Daily Mail, WDW avoids using article summaries
for question formation. Instead, each problem
is formed from two independent articles: one is
given as the passage to be read and a different arti-
cle on the same entities and events is used to form
the question. Further, WDW avoids anonymiza-
tion — each choice is a person named entity. In
this dataset the answer set A consists of the per-
son named entities occurring in the passage. Fi-
nally, the problems have been filtered to remove
a fraction that are easily solved by simple base-
lines. It has two training sets. The larger training
set (“relaxed”) is created using less baseline filter-
ing, while the smaller training set (“strict”) uses
the same filtering as the validation and test sets.

Other Related Datasets. It is also worth men-
tioning several related datasets. The MCTest
dataset (Richardson et al., 2013) consists of chil-
dren’s stories and questions written by crowd-

sourced workers. The dataset only contains 660
documents and is too small to train deep mod-
els. The bAbI dataset (Weston et al., 2016)
is constructed automatically using synthetic text
generation and can be perfectly answered by
hand-written algorithms (Lee et al., 2016). The
SQuAD dataset (Rajpurkar et al., 2016) consists
of passage-question pairs where the passage is a
Wikipedia article and the questions are written via
crowdsourcing. The dataset contains over 100,000
problems, but the answer is often a word sequence
which is difficult to handle with the reader mod-
els considered here. The Children’s Book Test
(CBT) (Hill et al., 2016) takes any sequence of
21 consecutive sentences from a children’s book:
the first 20 sentences are used as the passage, and
the goal is to infer a missing word in the 21st sen-
tence. The task complexity varies with the type of
the omitted word (verb, preposition, named entity,
or common noun). The LAMBADA dataset (Pa-
perno et al., 2016) is a word prediction dataset
which requires a broad discourse context, though
the correct answer might not actually be contained
in the context. Nevertheless, when the correct an-
swer is in the context, neural readers can be ap-
plied effectively (Chu et al., 2017).

3 Aggregation Readers and Explicit
Reference Readers

As outlined in the introduction, here we clas-
sify readers into aggregation readers and ex-
plicit reference readers. Aggregation readers ap-
peared first in the literature and include Mem-
ory Networks (Weston et al., 2015; Sukhbaatar
et al., 2015), the Attentive Reader (Hermann
et al., 2015), and the Stanford Reader (Chen
et al., 2016). In this section we define ag-
gregation readers more specifically by equations
(7) and (9) below. Explicit reference read-
ers include the Attention-Sum Reader (Kadlec
et al., 2016), the Gated-Attention Reader (Dhin-
gra et al., 2017), and the Attention-over-Attention
Reader (Cui et al., 2017). In this section we de-
fine explicit reference readers more specifically by
equation (13) below. We first present the Stanford
Reader as a paradigmatic aggregation reader and
the Attention-Sum Reader as a paradigmatic ex-
plicit reference reader.

28

3.1 Aggregation Readers
Stanford Reader. The Stanford Reader (Chen
et al., 2016) computes a bidirectional LSTM rep-
resentation of both the passage and the question.

h = biLSTM(e(p)) (5)

hq = [fLSTM(e(q))|q|, bLSTM(e(q))1] (6)

In equations (5) and (6) we have that e(p) is the
sequence of word embeddings e(wi) for wi ∈ p
and similarly for e(q). The expression biLSTM(s)
denotes the sequence of hidden state vectors re-
sulting from running a bidirectional LSTM on the
vector sequence s. We write biLSTM(s)i for the
ith vector in this sequence. Similarly fLSTM(s)
and bLSTM(s) denote the sequence of vectors re-
sulting from running a forward LSTM and a back-
ward LSTM respectively and [·, ·] denotes vector
concatenation. The Stanford Reader, and various
other readers, then compute a bilinear attention
over the passage which is used to construct a sin-
gle weighted vector representation of the passage.

αt = softmax
t

h>t Wα hq o =
∑
t

αtht (7)

Finally, they compute a probability distribution P
over the answers:

P (·|d, q,A) = softmax
a∈A

eo(a)>o (8)

â = argmax
a∈A

eo(a)>o (9)

Here eo(a) is the “output embedding” of the an-
swer a. On the CNN dataset the Stanford Reader
trains an output embedding for each of the roughly
550 entity identifiers used in the dataset. For
datasets in which the answer might be any word
in V , output embeddings must be trained for the
entire vocabulary.

The reader is trained with log-loss
− logP (a|p, q,A) where a is the correct an-
swer. At test time the reader is scored on the
percentage of problems where â = a.

Memory Networks. Memory Networks (We-
ston et al., 2015; Sukhbaatar et al., 2015) use
(7) and (9) but have more elaborate methods of
constructing “memory vectors” ht not involving
LSTMs. Memory networks use (7) and (9) but re-
place (8) with

P (·|p, q,A) = P (·|p, q) = softmax
w∈V

eo(w)>o.

(10)

It should be noted that (10) trains output vectors
over the whole vocabulary rather than just those
items occurring in the choice setA. This is empir-
ically significant in non-anonymized datasets such
as CBT and Who-did-What where choices at test
time may never have occurred as choices in the
training data.

Attentive Reader. The Stanford Reader was
derived from the Attentive Reader (Hermann
et al., 2015). The Attentive Reader uses αt =
softmaxt MLP([ht, hq]) instead of (7). Here
MLP(x) is the output of a multi layer perceptron
given input x. Also, the answer distribution in the
Attentive Reader is defined over the full vocabu-
lary rather than just the candidate answer set A:

P (·|p, q,A) = softmax
w∈V

eo(w)>MLP([o, hq])

(11)
Equation (11) is similar to (10) in that it leads
to the training of output vectors for the full vo-
cabulary rather than just those items appearing in
choice sets in the training data. As in memory net-
works, this leads to improved performance on non-
anonymized datasets.

3.2 Explicit Reference Readers
Attention-Sum Reader. In the Attention-Sum
Reader (Kadlec et al., 2016), h and q are com-
puted with equations (5) and (6) as in the Stanford
Reader but using GRUs rather than LSTMs. The
attention αt is computed similarly to (7) but us-
ing a simple inner product αt = softmaxt h>t hq
rather than a trained bilinear form. Most signifi-
cantly, however, equations (8) and (9) are replaced
by the following where t ∈ R(a, p) indicates that a
reference to candidate answer a occurs at position
t in p.

P (a|p, q,A) =
∑

t∈R(a,p)

αt (12)

â = argmax
a

∑
t∈R(a,p)

αt (13)

Here we think of R(a, p) as the set of references
to a in the passage p. It is important to note that
(12) is an equality and that P (a|p, q,A) is not nor-
malized to the members ofR(a, p). When training
with the log-loss objective this drives the attention
αt to be normalized — to have support only on the
positions t with t ∈ R(a, p) for some a. See the
heat maps in the supplementary material.

29

Gated-Attention Reader. The Gated-Attention
Reader (Dhingra et al., 2017) involves a K-layer
biGRU architecture defined by the following equa-
tions.

h`q = [fGRU(e(q))|q|, bGRU(e(q))1] 1 ≤ ` ≤ K
h1 = biGRU(e(p))

h` = biGRU(h`−1 � h`−1
q) 2 ≤ ` ≤ K

Here the question embeddings h`q for different val-
ues of ` are computed with different GRU model
parameters. Here h� hq abbreviates the sequence
h1�hq, h2�hq, . . . h|p|�hq. Note that forK = 1
we have only h1

q and h1 as in the attention-sum
reader. An attention is then computed over the fi-
nal layer hK with αt = softmaxt (hKt)> hKq in
the Attention-Sum Reader. This reader uses (12)
and (13).

Attention-over-Attention Reader. The
Attention-over-Attention Reader (Cui et al., 2017)
uses a more elaborate method to compute the
attention αt. We will use t to range over positions
in the passage and j to range over positions in
the question. The model is then defined by the
following equations.

h = biGRU(e(p)) hq = biGRU(e(q))

αt,j = softmaxt h>t hq,j βt,j = softmaxj h>t hq,j

βj = 1
|p|
∑

t βt,j αt =
∑

j βjαt,j

Note that the final equation defining αt can be in-
terpreted as applying the attention βj to the atten-
tions αt,j . This reader uses (12) and (13).

4 Emergent Predication Structure

As discussed in the introduction the entity iden-
tifiers such as “entity37” introduced in the
CNN/Daily Mail datasets cannot be assigned any
semantics other than their identity. We should
think of them as pointers or semantics-free con-
stant symbols. Despite this undermining of se-
mantics, aggregation readers using (7) and (9) are
able to perform well. Here we posit that this is
due to an emergent predication structure in the
hidden vectors ht. Intuitively we want to think
of the hidden state vector ht as a concatenation
[s(Φt), s(at)] where Φt is a property being as-
serted of entity at at the positon t in the passage.
Here s(Φt) and s(at) are emergent embeddings of
the property and entity respectively, We also think

of the vector representation q of the question as
having the form [s(Ψ), 0] and the vector embed-
ding eo(a) as having the form [0, s(a)].

Unfortunately, the decomposition of ht into this
predication structure need not be axis aligned.
Rather than posit an axis-aligned concatenation
we posit that the hidden vector space H is a possi-
bly non-aligned direct sum

H = S ⊕ E (14)

where S is a subspace of “statement vectors” and
E is an orthogonal subspace of “entity pointers”.
Each hidden state vector h ∈ H then has a unique
decomposition as h = Ψ+e for Ψ ∈ S and e ∈ E.
This is equivalent to saying that the hidden vector
space H is some rotation of a concatenation of the
vector spaces S and E. In this non-axis aligned
model we also assume emergent embeddings s(Φ)
and s(a) with s(Φ) ∈ S and s(a) ∈ E. We will
also assume that the latent spaces are learned in
such a way that explicit entity output embeddings
satisfy eo(a) ∈ E.

We now present empirical evidence for this
decomposition structure. This structure implies
eo(a)>ht equals eo(a)>s(at). This suggests the
following for some fixed positive constant c.

eo(a)>ht =
{
c if t ∈ R(a, p)
0 otherwise

(15)

We note that if eo(a)>s(a) was different for dif-
ferent constant a then answers would be biased
toward constant symbols where this product was
larger. But we need to have that all constant sym-
bols are equivalent. We note that (15) gives

argmax
a

eo(a)>o = argmax
a

eo(a)>
∑
t

αtht

= argmax
a

∑
t

αt eo(a)>ht = argmax
a

∑
t∈R(a,p)

αt

and hence (9) and (13) agree — the aggregation
readers and the explicit reference readers are using
essentially the same answer selection criterion.

Empirical evidence for (15) is given in the first
three rows of Table 1. The first row empiri-
cally measures the constant c in (15) by measur-
ing e0(a)>ht for those cases where t ∈ R(a, p).
The second row measures “0” in (15) by measur-
ing eo(a)>ht in those cases where t 6∈ R(a, p).
The third row shows that this inner product falls
off significantly just one word before or after the

30

CNN Dev CNN Test
samples mean variance samples mean variance

eo(a)>ht, t ∈ R(a, p) 222,001 10.66 2.26 164,746 10.70 2.45
eo(a)>ht, t /∈ R(a, p) 93,072,682 -0.57 1.59 68,451,660 -0.58 1.65
eo(a)>ht±1, t ∈ R(a, p) 443,878 2.32 1.79 329,366 2.25 1.84

Cosine(hq, ht), ∃a t ∈ R(a, p) 222,001 0.22 0.11 164,746 0.22 0.12
Cosine(hq, eo(a)), ∀a 103,909 -0.03 0.04 78,411 -0.03 0.04

Table 1: Statistics to support (15) and (16). These statistics are computed for the Stanford Reader.

position of the answer word. Additional evidence
for (15) is given in Figure 1 showing that the out-
put vectors eo(a) for different entity identifiers a
are nearly orthogonal. Orthogonality of the output
vectors is required by (15) provided that each out-
put vector eo(a) is in the span of the hidden state
vectors ht,p for which t ∈ R(a, p). Intuitively, the
mean of all vectors ht,p with t ∈ R(a, p) should
be approximately equal to eo(a). Empirically this
will only be approximately true.

Equation (15) would suggest that the vector em-
bedding of the constant symbols should have di-
mension at least as large as the number of distinct
constants. However, in practice it is sufficient that
e0(a)>s(a′) is small for a 6= a′. This allows the
vector embeddings of the constants to have dimen-
sion much smaller than the number of constants.
We have experimented with two-sparse constant
symbol embeddings where the number of embed-
ding vectors in dimension d is 2d(d−1) (d choose
2 times the four ways of setting the signs of the
non-zero coordinates). Although we do not report
results here, these designed and untrained constant
embeddings worked reasonably well.

As further support for (15) we give heat maps
for eo(a)>ht for different identifiers a and heat
maps for αt for different readers in the supplemen-
tary material.

As another testable predication we note that the
posited decomposition of the hidden state vectors
implies

h>q (hi + eo(a)) = h>q hi. (16)

This equation is equivalent to h>q eo(a) = 0. Ex-
perimentally, however, we cannot expect h>q eo(a)
to be exactly zero and (16) seems to provides a
more experimentally meaningful test. Empirical
evidence for (16) is given in the fourth and fifth
rows of Table 1. The fourth row measures the

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350
−30

0

30

60

90

120

150

180

210

Figure 1: Plot of eo(ai)>eo(aj) from Stanford
Reader trained on CNN dataset, where rows range
over i values and columns range over j values.
Off-diagonal values have mean 25.6 and variance
17.2 while diagonal values have mean 169 and
variance 17.3.

cosine of the angle between the question vector
hq and the hidden state ht averaged over passage
positions t at which some entity identifier occurs.
The fifth row measures the cosine of the angle be-
tween hq and eo(a) averaged over the entity iden-
tifiers a.

A question asks for a value of x such that a
statement Ψ[x] is implied by the passage. For a
question Ψ we might even suggest the following
vectorial interpretation of entailment.

Φ[x] implies Ψ[x] iff Φ>Ψ ≥ ||Ψ||1.

This interpretation is exactly correct if some of the
dimensions of the vector space correspond to pred-
icates, Ψ is a 0-1 vector representing a conjunction
predicates, and Φ is also 0-1 on these dimensions
indicating whether a predicate is implied by the
context. Of course in practice one expects the di-
mension to be smaller than the number of possible
predicates.

31

5 Pointer Annotation Readers

It is of course important to note that
anonymization provides reference information—
anonymization assumes that one can determine
coreference so as to replace coreferent phrases
with the same entity identifier. Anonymization
allows the reference set R(a, p) to be directly
read off of the passage. Still, an aggregation
reader must learn to recover this explicit reference
structure.

Aggregation readers can have difficulty when
anonymization is not done. The Stanford Reader
achieves just better than 45% on the Who-did-
What dataset while the Attention-Sum Reader can
get near 60% (see Table 2). But if we anonymize
the Who-did-What dataset and then re-train the
Stanford Reader, the accuracy jumps to near 65%.
Anonymization greatly reduces the number of out-
put word embeddings eo(a) to be learned. We
need to learn only output embeddings for the rel-
atively small number of entity identifiers needed
for the question. Anonymization suppresses the
semantics of the reference phrases and leaves only
a semantics-free entity identifier. This suppres-
sion of semantics may facilitate the separation of
the hidden state vector space H into a direct sum
S ⊕ E with s(Φ) ∈ S and eo(a), s(a) ∈ E.

A third, and perhaps more important effect of
anonymization is to provide reference informa-
tion. Anonymization explicitly marks positions of
candidate answers and establishes coreference. A
natural question is whether this information can
be provided without anonymization by simply
adding additional coreference features to the
input. Here we evaluate two architectures inspired
by this question. This evaluation is done on the
Who-did-What dataset which is not anonymized.
In each architecture we add features to the input to
mark the occurrences of candidate answers. These
models are simpler than the Stanford Reader but
perform comparably. This comparable perfor-
mance in Table 2 further supports our analysis of
logical structure in aggregation readers.

One-Hot Pointer Reader: The Stanford Reader
uses input embeddings of words and output em-
beddings of entity identifiers. In the Who-did-
What dataset each problem has at most five
choices in the multiple choice answer list. This
means that we need only five entity identifiers and
we can use a five dimensional one-hot vector rep-

resentation for answer identifiers.
If an answer choice exists at position t in the

passage let it be the index of that choice on the
answer choice list. If no answer choice occurs at
position t we let it be zero. We define e′(i) to
be the zero vector if i = 0 and otherwise to be the
one-hot vector for i (i.e., the five-dimensional vec-
tor with zeroes at all positions except with a one at
position i). We define “pointer annotation” to be
the result of concatenating e′(it) as additional fea-
tures to the word embedding e(wt) for token wt in
the passage:

ē(wt) = [e(wt), e′(it)] (17)

We feed the new ē(wt) to the readers for each to-
ken wt. We define a “one-hot pointer reader” by
designating the last five dimensions of the hidden
state as indicators of the answer and take the prob-
ability of choice i to be defined as

p(i|d, q) = softmax
i∈A

oi (18)

where o is computed by (7) and oi is the ith-to-last
dimension of vector o. Table 2 shows results using
this reader, showing performance comparable to
the Stanford Reader with anonymization.

General Pointer Reader: In the CNN dataset
there are roughly 550 entity identifiers and a one-
hot representation may not be desirable because it
would enlarge the embedding space too much. In-
stead we can let e′(i) be a fixed set of “pointer
vectors”—vectors distributed widely on the unit
sphere so that for i 6= j we have that e′(i)>e′(j) is
small. We again use (17) but replace (18) with

p(i|d, q) = softmax
i

[0, e′(i)]>o (19)

where “0” stands for a sufficient number of zeroes
in order to make the dimensions match. We re-
fer to this as a “general pointer reader”. In this
reader, the pointer embeddings e′(i) are held fixed
and not trained. Even though not shown here, in
preliminary experiments, this reader yield similar
performance to the one hot pointer reader while
permitting smaller embedding dimensionality.
Linguistic Features: Each model can be modified
to include additional input features for each input
token in the question and passage. More specifi-
cally we can add the following features to the word
embeddings: whether the current token occurs in
the question; the frequency of the current token in

32

the passage; the position of the token’s first occur-
rence in the passage as a percentage of the passage
length; and whether the text surrounding the to-
ken matches the text surrounding the placeholder
in the question. More details of the experimental
setup are provided in the appendix.

Table 2 shows results when adding these fea-
tures to the Gated-Attention Reader, Stanford
Reader, and One-Hot Pointer Reader, showing
large improvements to all readers and leading to
the best single-model performance reported to-
date on the Who-did-What dataset.

6 Discussion

Explicit reference architectures rely on reference
resolution—a specification of which phrases in the
given passage refer to candidate answers. Our ex-
periments indicate that all existing readers bene-
fit greatly from this externally provided informa-
tion. Aggregation readers seem to demonstrate
a stronger learning ability in that they essentially
learn to mimic explicit reference readers by iden-
tifying reference annotation and using it appro-
priately. This is done most clearly in the pointer
reader architectures. Furthermore, we have ar-
gued for, and given experimental evidence for,
an interpretation of aggregation readers as learn-
ing emergent predication structure—a factoring of
neural representations into a direct sum of a state-
ment (predicate) representation and an entity (ar-
gument) representation.

At a very high level our analysis and experi-
ments support a central role for reference resolu-
tion in reading comprehension. Automating refer-
ence resolution in neural models, and demonstrat-
ing its value on appropriate datasets, would seem
to be an important area for future research.

There is great interest in learning representa-
tions for natural language understanding. The cur-
rent state of the art in reading comprehension is
such that systems still benefit from externally pro-
vided linguistic features including externally an-
notated reference resolution. It would be interest-
ing to develop fully automated neural readers that
perform as well as readers using externally pro-
vided annotations.

Acknowledgments

We thank NVIDIA Corporation for donating
GPUs used in this research.

References
Frederic Bastien, Pascal Lamblin, Razvan Pascanu,

James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. In
NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
CNN/Daily Mail reading comprehension task. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Zewei Chu, Hai Wang, Kevin Gimpel, and David
McAllester. 2017. Broad context language model-
ing as reading comprehension. In Proceedings of
the 15th Conference of the European Chapter of the
ACL (EACL).

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
attention neural networks for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Graff David and Christopher Cieri. 2003. English Gi-
gaword LDC2003T05. Linguistic Data Consortium.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang,
William W. Cohen, and Ruslan Salakhutdinov.
2017. Gated-attention readers for text comprehen-
sion. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers).

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The Goldilocks principle: Reading
children’s books with explicit memory representa-
tions. In Proceedings of the 4th International Con-
ference on Learning Representations.

Pennington Jeffrey, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the Confer-
ence on Empirical Methods on Natural Language
Processing (EMNLP).

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations.

33

Who did What Validation Test
Attention Sum Reader (Onishi et al., 2016) 59.8 58.8
Gated Attention Reader (Onishi et al., 2016) 60.3 59.6
NSE (Munkhdalai and Yu, 2016) 66.5 66.2
Gated Attention + Linguistic Features+ 72.2 72.8
Stanford Reader 46.1 45.8
Attentive Reader with Anonymization 55.7 55.5
Stanford Reader with Anonymization 64.8 64.5
One-Hot Pointer Reader 65.1 64.4
One-Hot Pointer Reader + Linguistic Features+ 69.3 68.7
Stanford with Anonymization + Linguistic Features+ 69.7 69.2
Human Performance - 84

Table 2: Accuracy on Who-did-What dataset. Each result is based on a single model. Results for neural
readers other than NSE are based on replications of those systems. All models were trained on the
relaxed training set which uniformly yields better performance than the restricted training set. The first
group of models are explicit reference models and the second group are aggregation models. + indicates
anonymization with better reference identifier.

Moontae Lee, Xiaodong He, Scott Wen tau Yih, Jian-
feng Gao, Li Deng, and Paul Smolensky. 2016. Rea-
soning in vector space: An exploratory study of
question answering. In Proceedings of the 4th Inter-
national Conference on Learning Representations.

Tsendsuren Munkhdalai and Hong Yu. 2016. Reason-
ing with memory augmented neural networks for
language comprehension. arXiv .

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David McAllester. 2016. Who did What:
A large-scale person-centered cloze dataset. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernandez. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing.

Pascanu Razvan, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of International Confer-
ence on Machine Learning (ICML).

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. MCTest: A challenge dataset for
the open-domain machine comprehension of text. In
Proceedings of the Conference on Empirical Meth-
ods on Natural Language Processing (EMNLP).

Andrew M. Saxe, James L. McClelland, and Surya
Ganguli. 2013. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks.
arXiv .

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Advances in Neural Information Process-
ing Systems.

Bart van Merrienboer, Dzmitry Bahdanau, Vincent Du-
moulin, Dmitriy Serdyuk, David Warde-farley, Jan
Chorowski, and Yoshua Bengio. 2015. Blocks and
fuel: Frameworks for deep learning. arXiv .

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M. Rush, Bart van Merrienboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards AI complete
question answering: A set of prerequisite toy tasks.
In Proceedings of the 4th International Conference
on Learning Representations.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In Proceedings of the 3rd
International Conference on Learning Representa-
tions.

34

A Supplemental Material

A.1 Experiment Details
We implemented the neural readers using
Theano (Bastien et al., 2012) and Blocks (van
Merrienboer et al., 2015) and train them on
a single NVIDIA Tesla K40 GPU. Negative
log-likelihood is employed as training criterion.
We used stochastic gradient descent (SGD) with
the Adam update rule (Kingma and Ba, 2015) and
set the learning rate to 0.0005.

For the Stanford Reader and One-Hot Pointer
Reader, we use the Stanford Reader’s default set-
tings. For the Gated-Attention reader, the lookup
table was initialized using pre-trained GloVe (Jef-
frey et al., 2014) vectors.1 Input to hidden state
weights were initialized by random orthogonal
matrices (Saxe et al., 2013) and biases were ini-
tialized to zero. Hidden to hidden state weights
were initialized by identity matrices to force the
model to remember longer information. To com-
pute the attention weight, we use αt = h>t Wαhq
and initialize Wα with random uniform distribu-
tion. We also use gradient clipping (Razvan et al.,
2013) with a threshold of 10 and mini-batches of
size 32.

During training we randomly shuffle all exam-
ples within each epoch. To speed up training,
we always pre-fetch 10 batches worth of exam-
ples and sort them according to document length
as done by Kadlec et al. (2016). When using
anonymization, we randomly reshuffle the entity
identifier to match the procedure proposed by Her-
mann et al. (2015).

During training we evaluate the accuracy after
each epoch and stop training when the accuracy
on the validation set starts decreasing. We tried
limiting the vocabulary to the most frequent tokens
but did not observe any performance improvement
compared with using all distinct tokens as the vo-
cabulary. Since part of our experiments need to
check word embedding assignment issues, we fi-
nally use all the distinct tokens as vocabulary. To
find the optimal embedding and hidden state di-
mension, we tried several groups of different com-
binations, and the optimal values were 200 and
384, respectively.

When anonymizing the Who-did-What dataset,
we can either use simple string matching to re-
place answers in the question and passage with en-

1http://nlp.stanford.edu/data/glove.
6B.zip

tity identifiers, or we can use the Stanford named
entity recognizer (NER)2 to detect named entities
and replace the answer named entities in the ques-
tion and passage with entity identifiers. We found
the latter to bring 2% improvement compared with
simple string matching.

A.2 Heat Maps for Stanford Reader for
Different Answer Candidates

We randomly choose one article from the CNN
dataset and show softmax(eo(a)>ht) for t ∈
[0, |p|] for each answer candidate a in Figures 2-6.
Red color indicates larger probability and orange
indicates smaller probability and the remaining in-
dicates very low probability that can be ignored.
From these figures, we can see that our assump-
tion that eo(a) is used to pick up its occurrence is
reasonable.

@entity0 (@entity1) six survivors of the @entity0 kosher supermarket siege in january are suing a
@entity5 media outlet for what they call dangerous live broadcasting during the hostage - taking .
according to @entity0 prosecutor 's spokeswoman @entity10 , the lawsuit was filed march 27 and a
preliminary investigation was opened by the prosecutor 's office wednesday . the media outlet ,
@entity1 affiliate @entity16 , is accused of endangering the lives of the hostages , who were hiding
in a cold room during the attack , by broadcasting their location live during the siege . @entity23 in a
statement friday said one of its journalists " mentioned only once the presence of a woman hidden
inside the @entity27 , on the basis of police sources on the ground . " " immediately , the chief editor
felt that this information should not be released . it therefore has subsequently never been repeated
on air or posted on - screen . @entity16 regrets that the mention of this information could cause
concern to the hostages , as well as their relatives , that their lives were in danger , " the statement
said . gunman @entity47 , also suspected in the slaying of a police officer , stormed the @entity27
@entity51 supermarket on january 9 , killing four people and taking others hostage . he was killed in
the police operation to end the siege . a 24 - year - old supermarket employee , @entity57 - born
@entity56 , was hailed as a hero afterward when it emerged that he had risked his life to hide 15
customers from @entity47 in the cold room . the hostage - taking was the culmination of three days
of terror in @entity0 that began with the january 7 shooting of 12 people at the offices of @entity5
satirical magazine @entity69 . the two brothers blamed for that attack , @entity72 and @entity73 ,
were killed on january 9 after a violent standoff at an industrial site . the terror attacks claimed the
lives of 17 people and put @entity5 on a heightened state of alert . @entity1 's @entity80 reported
from @entity0 , and @entity81 wrote from @entity82 . @entity1 's @entity83 contributed to this
report .
query: they hid in a cold room during the attack in @entity0 by gunman @placeholder

Figure 2: Heat map when a = entity0.

@entity0 (@entity1) six survivors of the @entity0 kosher supermarket siege in january are suing a
@entity5 media outlet for what they call dangerous live broadcasting during the hostage - taking .
according to @entity0 prosecutor 's spokeswoman @entity10 , the lawsuit was filed march 27 and a
preliminary investigation was opened by the prosecutor 's office wednesday . the media outlet ,
@entity1 affiliate @entity16 , is accused of endangering the lives of the hostages , who were hiding
in a cold room during the attack , by broadcasting their location live during the siege . @entity23 in a
statement friday said one of its journalists " mentioned only once the presence of a woman hidden
inside the @entity27 , on the basis of police sources on the ground . " " immediately , the chief editor
felt that this information should not be released . it therefore has subsequently never been repeated
on air or posted on - screen . @entity16 regrets that the mention of this information could cause
concern to the hostages , as well as their relatives , that their lives were in danger , " the statement
said . gunman @entity47 , also suspected in the slaying of a police officer , stormed the @entity27
@entity51 supermarket on january 9 , killing four people and taking others hostage . he was killed in
the police operation to end the siege . a 24 - year - old supermarket employee , @entity57 - born
@entity56 , was hailed as a hero afterward when it emerged that he had risked his life to hide 15
customers from @entity47 in the cold room . the hostage - taking was the culmination of three days
of terror in @entity0 that began with the january 7 shooting of 12 people at the offices of @entity5
satirical magazine @entity69 . the two brothers blamed for that attack , @entity72 and @entity73 ,
were killed on january 9 after a violent standoff at an industrial site . the terror attacks claimed the
lives of 17 people and put @entity5 on a heightened state of alert . @entity1 's @entity80 reported
from @entity0 , and @entity81 wrote from @entity82 . @entity1 's @entity83 contributed to this
report .
query: they hid in a cold room during the attack in @entity0 by gunman @placeholder

Figure 3: Heat map when a = entity1.

A.3 Heat Maps for Other Readers
We randomly choose one article from the CNN
dataset and show the attention map αt =

2http://nlp.stanford.edu/software/
CRF-NER.shtml

35

@entity0 (@entity1) six survivors of the @entity0 kosher supermarket siege in january are suing a
@entity5 media outlet for what they call dangerous live broadcasting during the hostage - taking .
according to @entity0 prosecutor 's spokeswoman @entity10 , the lawsuit was filed march 27 and a
preliminary investigation was opened by the prosecutor 's office wednesday . the media outlet ,
@entity1 affiliate @entity16 , is accused of endangering the lives of the hostages , who were hiding
in a cold room during the attack , by broadcasting their location live during the siege . @entity23 in a
statement friday said one of its journalists " mentioned only once the presence of a woman hidden
inside the @entity27 , on the basis of police sources on the ground . " " immediately , the chief editor
felt that this information should not be released . it therefore has subsequently never been repeated
on air or posted on - screen . @entity16 regrets that the mention of this information could cause
concern to the hostages , as well as their relatives , that their lives were in danger , " the statement
said . gunman @entity47 , also suspected in the slaying of a police officer , stormed the @entity27
@entity51 supermarket on january 9 , killing four people and taking others hostage . he was killed in
the police operation to end the siege . a 24 - year - old supermarket employee , @entity57 - born
@entity56 , was hailed as a hero afterward when it emerged that he had risked his life to hide 15
customers from @entity47 in the cold room . the hostage - taking was the culmination of three days
of terror in @entity0 that began with the january 7 shooting of 12 people at the offices of @entity5
satirical magazine @entity69 . the two brothers blamed for that attack , @entity72 and @entity73 ,
were killed on january 9 after a violent standoff at an industrial site . the terror attacks claimed the
lives of 17 people and put @entity5 on a heightened state of alert . @entity1 's @entity80 reported
from @entity0 , and @entity81 wrote from @entity82 . @entity1 's @entity83 contributed to this
report .
query: they hid in a cold room during the attack in @entity0 by gunman @placeholder

Figure 4: Heat map when a = entity16.

@entity0 (@entity1) six survivors of the @entity0 kosher supermarket siege in january are suing a
@entity5 media outlet for what they call dangerous live broadcasting during the hostage - taking .
according to @entity0 prosecutor 's spokeswoman @entity10 , the lawsuit was filed march 27 and a
preliminary investigation was opened by the prosecutor 's office wednesday . the media outlet ,
@entity1 affiliate @entity16 , is accused of endangering the lives of the hostages , who were hiding
in a cold room during the attack , by broadcasting their location live during the siege . @entity23 in a
statement friday said one of its journalists " mentioned only once the presence of a woman hidden
inside the @entity27 , on the basis of police sources on the ground . " " immediately , the chief editor
felt that this information should not be released . it therefore has subsequently never been repeated
on air or posted on - screen . @entity16 regrets that the mention of this information could cause
concern to the hostages , as well as their relatives , that their lives were in danger , " the statement
said . gunman @entity47 , also suspected in the slaying of a police officer , stormed the @entity27
@entity51 supermarket on january 9 , killing four people and taking others hostage . he was killed in
the police operation to end the siege . a 24 - year - old supermarket employee , @entity57 - born
@entity56 , was hailed as a hero afterward when it emerged that he had risked his life to hide 15
customers from @entity47 in the cold room . the hostage - taking was the culmination of three days
of terror in @entity0 that began with the january 7 shooting of 12 people at the offices of @entity5
satirical magazine @entity69 . the two brothers blamed for that attack , @entity72 and @entity73 ,
were killed on january 9 after a violent standoff at an industrial site . the terror attacks claimed the
lives of 17 people and put @entity5 on a heightened state of alert . @entity1 's @entity80 reported
from @entity0 , and @entity81 wrote from @entity82 . @entity1 's @entity83 contributed to this
report .
query: they hid in a cold room during the attack in @entity0 by gunman @placeholder	

Figure 5: Heat map when a = entity27.

@entity0 (@entity1) six survivors of the @entity0 kosher supermarket siege in january are suing a
@entity5 media outlet for what they call dangerous live broadcasting during the hostage - taking .
according to @entity0 prosecutor 's spokeswoman @entity10 , the lawsuit was filed march 27 and a
preliminary investigation was opened by the prosecutor 's office wednesday . the media outlet ,
@entity1 affiliate @entity16 , is accused of endangering the lives of the hostages , who were hiding
in a cold room during the attack , by broadcasting their location live during the siege . @entity23 in a
statement friday said one of its journalists " mentioned only once the presence of a woman hidden
inside the @entity27 , on the basis of police sources on the ground . " " immediately , the chief editor
felt that this information should not be released . it therefore has subsequently never been repeated
on air or posted on - screen . @entity16 regrets that the mention of this information could cause
concern to the hostages , as well as their relatives , that their lives were in danger , " the statement
said . gunman @entity47 , also suspected in the slaying of a police officer , stormed the @entity27
@entity51 supermarket on january 9 , killing four people and taking others hostage . he was killed in
the police operation to end the siege . a 24 - year - old supermarket employee , @entity57 - born
@entity56 , was hailed as a hero afterward when it emerged that he had risked his life to hide 15
customers from @entity47 in the cold room . the hostage - taking was the culmination of three days
of terror in @entity0 that began with the january 7 shooting of 12 people at the offices of @entity5
satirical magazine @entity69 . the two brothers blamed for that attack , @entity72 and @entity73 ,
were killed on january 9 after a violent standoff at an industrial site . the terror attacks claimed the
lives of 17 people and put @entity5 on a heightened state of alert . @entity1 's @entity80 reported
from @entity0 , and @entity81 wrote from @entity82 . @entity1 's @entity83 contributed to this
report .
query: they hid in a cold room during the attack in @entity0 by gunman @placeholder

Figure 6: Heat map when a = entity47.

softmax(h>q Waht) for different readers (in At-
tention Sum and Gated Attention Reader, Wα is
identity matrix). In Figures 7-9, we can see that
all readers put essentially all weight on the entity
identifiers.

(@entity3) suspected @entity2 militants this week attacked civilians inside @entity5 for the first
time in a month , killing at least 16 villagers , a military spokesman told @entity3 saturday . six
attackers were killed by @entity5 forces , said maj. @entity10 , an operations officer with a special
military unit set up to fight @entity2 . the attackers came thursday " in the hundreds ... torched
@entity14 village in the @entity15 , " he said . @entity14 is a village that borders @entity17 and
has been identified as a recruiting ground for @entity2 . regional gov. @entity19 said the insurgents
have been attacking border villages in @entity5 in search of supplies . @entity5 troops retook cattle
that was stolen by the attackers in @entity14 , @entity10 said . the last attack in @entity5 by the
@entity29 - based militants was march 10 , when the assailants struck the locality of @entity32 in a
failed attempt to overrun a military base . @entity2 , whose name translates as " @entity44
education is sin , " has been waging a years - long campaign of terror aimed at instituting its extreme
version of @entity42 law in @entity29 . @entity2 's tactics have intensified in recent years , from
battling @entity29 government soldiers to acts disproportionately affecting civilians -- such as raids
on villages , mass kidnappings , assassinations , market bombings and attacks on churches and
unaffiliated mosques . much of this violence has taken place in @entity29 , but neighboring
countries -- @entity5 included -- have also been hit increasingly hard . journalist @entity61 in
@entity63 , @entity5 , contributed to this report .

query: @placeholder is based in @entity29 but has attacked across the border of several neighbors

Figure 7: Heat map αt for Stanford Reader.

(@entity3) suspected @entity2 militants this week attacked civilians inside @entity5 for the first
time in a month , killing at least 16 villagers , a military spokesman told @entity3 saturday . six
attackers were killed by @entity5 forces , said maj. @entity10 , an operations officer with a special
military unit set up to fight @entity2 . the attackers came thursday " in the hundreds ... torched
@entity14 village in the @entity15 , " he said . @entity14 is a village that borders @entity17 and
has been identified as a recruiting ground for @entity2 . regional gov. @entity19 said the insurgents
have been attacking border villages in @entity5 in search of supplies . @entity5 troops retook cattle
that was stolen by the attackers in @entity14 , @entity10 said . the last attack in @entity5 by the
@entity29 - based militants was march 10 , when the assailants struck the locality of @entity32 in a
failed attempt to overrun a military base . @entity2 , whose name translates as " @entity44
education is sin , " has been waging a years - long campaign of terror aimed at instituting its extreme
version of @entity42 law in @entity29 . @entity2 's tactics have intensified in recent years , from
battling @entity29 government soldiers to acts disproportionately affecting civilians -- such as raids
on villages , mass kidnappings , assassinations , market bombings and attacks on churches and
unaffiliated mosques . much of this violence has taken place in @entity29 , but neighboring
countries -- @entity5 included -- have also been hit increasingly hard . journalist @entity61 in
@entity63 , @entity5 , contributed to this report .

query: @placeholder is based in @entity29 but has attacked across the border of several neighbors

	

Figure 8: Heat map αt for Gated Attention Reader.

(@entity3) suspected @entity2 militants this week attacked civilians inside @entity5 for the first
time in a month , killing at least 16 villagers , a military spokesman told @entity3 saturday . six
attackers were killed by @entity5 forces , said maj. @entity10 , an operations officer with a special
military unit set up to fight @entity2 . the attackers came thursday " in the hundreds ... torched
@entity14 village in the @entity15 , " he said . @entity14 is a village that borders @entity17 and
has been identified as a recruiting ground for @entity2 . regional gov. @entity19 said the insurgents
have been attacking border villages in @entity5 in search of supplies . @entity5 troops retook cattle
that was stolen by the attackers in @entity14 , @entity10 said . the last attack in @entity5 by the
@entity29 - based militants was march 10 , when the assailants struck the locality of @entity32 in a
failed attempt to overrun a military base . @entity2 , whose name translates as " @entity44
education is sin , " has been waging a years - long campaign of terror aimed at instituting its extreme
version of @entity42 law in @entity29 . @entity2 's tactics have intensified in recent years , from
battling @entity29 government soldiers to acts disproportionately affecting civilians -- such as raids
on villages , mass kidnappings , assassinations , market bombings and attacks on churches and
unaffiliated mosques . much of this violence has taken place in @entity29 , but neighboring
countries -- @entity5 included -- have also been hit increasingly hard . journalist @entity61 in
@entity63 , @entity5 , contributed to this report .

query: @placeholder is based in @entity29 but has attacked across the border of several neighbors

	

Figure 9: Heat map αt for Attention Sum Reader.

36

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 37–42,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Towards Harnessing Memory Networks for Coreference Resolution

Joe Cheri Ross and Pushpak Bhattacharyya
Department of Computer Science & Engineering,

Indian Institute of Technology Bombay, India
{joe,pb}@cse.iitb.ac.in

Abstract

Coreference resolution task demands com-
prehending a discourse, especially for
anaphoric mentions which require seman-
tic information for resolving antecedents.
We investigate into how memory networks
can be helpful for coreference resolu-
tion when posed as question answering
problem. The comprehension capabil-
ity of memory networks assists corefer-
ence resolution, particularly for the men-
tions those require semantic and context
information. We experiment memory net-
works for coreference resolution, with 4
synthetic datasets generated for corefer-
ence resolution with varying difficulty lev-
els. Our system’s performance is com-
pared with a traditional coreference reso-
lution system to show why memory net-
works can be promising for coreference
resolution.

1 Introduction

Coreference resolution resolves anaphoric men-
tions against the co-referring entities by integrat-
ing syntactic, semantic and pragmatic knowledge
(Carbonell and Brown, 1988). Even when syn-
tactic knowledge has a crucial role in resolving
many coreferential mentions, semantic knowledge
is a much more challenging aspect of corefer-
ence (Durrett and Klein, 2013). This makes the
attempts to bring significant improvement to the
state-of-the-art results difficult.

There has been quite a few research in coref-
erence resolution to bring in semantic knowl-
edge through identification of semantic class of
the entities (Ng, 2007a,b) and incorporating world
knowledge with the help of sources like Wikipedia
(Ponzetto and Strube, 2006; Rahman and Ng,
2011). The semantic analysis approach for coref-
erence resolution discussed by Hobbs (1978)
takes semantics into consideration. Vincent Ng

(2007b) discusses a pattern-based feature to iden-
tify corefering expressions through extracted pat-
terns. Kehler et. al. (2004) make use of predicate-
argument statistics based on co-occurrence to re-
solve coreference. Despite these significant contri-
butions, the achieved results show the incapability
to emulate the human process of coreference res-
olution. The potential of memory networks (We-
ston et al., 2014) towards comprehending the con-
text of a discourse motivates this initiative.

A few psycholinguistic studies on memory
based processing of anaphora, investigate the pro-
cessing of antecedent information from a memory
representation of the discourse (Dell et al., 1983;
Gernsbacher, 1989; Gerrig and McKoon, 1998;
Sanford and Garrod, 1989, 2005). Experiments
by Nieuwland and Martin (2016) verify the inter-
action between the recognition memory network
and the canonical frontal-temporal language net-
work in the human process of coreference resolu-
tion. These insights confirm the applicability of
memory networks for the task.

Memory networks integrate a memory compo-
nent and inference capability which are jointly
used to comprehend a discourse and perform
reasoning based on that (Weston et al., 2014;
Sukhbaatar et al., 2015; Kumar et al., 2015). Vari-
ants of memory networks, specially designed for
question answering tasks, read from the external
memory multiple times before delivering the an-
swer. Internally, they compute a representation for
the input story and the question. The question rep-
resentation initiates a search through the memory
representation of the input and extracts relevant
facts. In the subsequent step, the answer module
generates the answer based on the information got
from the memory module (Sukhbaatar et al., 2015;
Kumar et al., 2015). We utilize memory networks
for coreference resolution, modeling it as a ques-
tion answering task. The context of the mentions
and its relative salience in a discourse are benefi-
cial to resolve coreference. In practice, there are
2 ways in which coreference resolution can be as-

37

sisted by memory networks, viz. (i) for end-to-end
coreference resolution, identifying the antecedents
for the anaphoric mentions (ii) for identifying the
relevant sentences for resolving anaphoric men-
tions using attention mechanism.

End-to-end memory networks proposed by
Sukhbaatar et al.(2015) for question answering is
taken for our experiments. They performed ques-
tion answering experiments with Facebook’s syn-
thetic dataset bAbI (Weston et al., 2015). For our
experiments we create another set of synthetic data
with varying difficulty levels, targeting corefer-
ence resolution. Here, each instance is a discourse
and the question is on an anaphoric mention in
the discourse, with answer as its antecedent. Ex-
periment results with memory networks on bAbI
dataset is reported in terms of the accuracy of
the answers whereas, our experiments also eval-
uate attention mechanism accuracy. We compare
the prediction accuracy of memory networks with
an existing state-of-the-art coreference resolution
system on the same synthetic dataset. We also
report results on a few modifications on memory
networks.

2 Memory Networks

The end-to-end memory networks described in
Sukhbaatar et al.(2015) takes input as sentences
in a story (x1, x2, ...xn), query (q) and outputs
the answer (a). The sentences in the input story
({xi}) forms the memory vectors ({mi}), getting
the word embeddings of the words within. The
initial internal state u is formed from the word
embeddings of the input query. The input story
and the query are embedded in a continous space
through different embedding matrices (A and B),
each of size d× V , where V is the size of vocabu-
lary and d is the embedding dimension.

Figure 1 shows the memory networks archi-
tecture with an example. The memory module
has an attention mechanism responsible for iden-
tifying attention weights for each memory vec-
tor. Softmax over the dot product between the
query representation (u1) and each memory vec-
tor gives the probability (attention weights) asso-
ciated with each memory vector w.r.t to its rele-
vance to the given query. Attention weights are
utilized to compute the weighted sum (o1) of the
memory vectors. The input query representation
(u1) is added to o1 to obtain u2. The above steps
in the memory module are iterated depending on

Figure 1: End-to-end memory networks (Weston,
2016)

the number of hops. In each subsequent iteration,
uk+1 is computed taking uk from the previous it-
eration as the input representation.

uk+1 = uk.H + ok (1)

A linear mapping H updates u between the hops.
The answer module computes Softmax(W (ok +
uk), predicting the output answer after defined
number of hops.

3 Coreference Resolution as Question
Answering

For our experiments with memory networks,
coreference resolution is posed as a question
answering problem, where the input story is the
discourse containing entities and an anaphoric
mention. The question is on an anaphoric mention
and the answer is the antecedent entity. The
following is one of the simple cases from the
synthetic data.

Sandra went to the garden.
Mary moved to the hallway.
She is in the garden.
Who is She? Ans: Sandra

3.1 Modifications to the Network

Restricting Vocabulary: The above described
memory networks architecture is designed for
question answering tasks which include tasks hav-
ing answers with words outside of the input
story. On the other hand, the answers in our task
for coreference resolution are restricted to words
within the discourse. We have introduced a modi-
fication to the answer module to switch off words

38

outside the discourse. Our proposed modifica-
tion takes a one-hot representation of the words
present in a discourse. A masking layer is intro-
duced at the output layer of the answer module.
The mask vector (Xmask) with dimension V, has
bits set for the words present in the discourse. The
added layer performs element-wise multiplication
betweenXmask and the preceding output as shown
in Equation 2 before the softmax is applied.

Softmax((ok + uk).Xmask) (2)

Initialization of H: In the available implemen-
tation, the hidden layer matrix H in equation 1
is initialized with random values sampled from
a normal distribution. To give uniform impor-
tance to the components in question representation
initially, this modification uniformly initialize H
with ones.

tanh activation: As mentioned in Section 2,
the probability associated with a memory vector
is computed by softmax over the dot product be-
tween query representation and each memory vec-
tor. This modification applies tanh activation be-
fore the softmax is computed. The clipping of
higher values by the tanh activation helps to avoid
getting skewed attention weights.

While the first modification is specific to coref-
erence resolution, the latter 2 are task independent.

4 Experiments

Our experiments are designed to see how memory
networks can help the task of coreference resolu-
tion. All the experiments are carried out with the
synthetic data.

4.1 Synthetic Dataset

Most existing memory networks based question
answering research depend on synthetic dataset
inorder to reduce the adverse effect of noise in
real-world data (Weston et al., 2015) . On simi-
lar lines, we generate 4 sets of data with different
difficulty levels, keeping the vocabulary size min-
imal and maintaining an uniform syntactic struc-
ture. It is difficult to make valid observations with
a dataset like Ontonotes (Pradhan et al., 2007)
considering the diversity in sentence structure and
the vocabulary size. Since the task is posed as
a question answering problem each data instance
has one pronominal reference to the one of the en-
tities in the discourse. The ques tion here is on

the anaphoric mention and the answer is the an-
tecedent mention. The 4 datasets are generated
from 4 different templates randomizing the names
and verbs. This synthetic data is constructed in a
way such that, resolution of anaphoric mentions
requires semantic knowledge to be available from
the context. Each generated discourse has differ-
ent names, actions and locations randomly picked
from a pre-defined set of names, actions and lo-
cations. From the generated instances, 20% are
taken for testing resulting in 11520 training in-
stances and 2880 test instances in each dataset 1.

4.2 Experiment Setup

All the results are reported on the test data from
4 synthetic datasets. One of the state-of-the-art
coreference resolution systems, Cort (Martschat
et al., 2015) is chosen to compare with end-to-
end memory networks (MemN2N). All the results
reported with MemN2N are averaged across 10
different executions with different seeds used for
training data shuffling. This is done to make the
results independent of data-shuffling during train-
ing. The hyper-parameters are fixed as embed-
ding size=20, hops=3 under the training config-
uration as optimizer=Adam, #epochs=100, batch
size=32, learning rate=0.01. To make the re-
sults of Cort comparable with the answer predic-
tion accuracy of memory networks, accuracy of
Cort is computed based on the number of correctly
identified coreferent mentions, instead of CoNLL
score (Pradhan et al., 2012). This evaluation is
valid since there is only one coreferent chain com-
prising 2 mentions in each synthetic dataset in-
stance. We experiment Cort with the available
pre-trained coreference model and with the model
trained on training data from the corresponding
synthetic dataset.

We also check for the effectiveness of atten-
tion mechanism in memory networks to aid coref-
erence resolution, through attention mechanism
accuracy. Attention mechanism accuracy indi-
cates, given an anaphoric mention, how capable
the memory networks approach approach is in
identifying the probable sentences to find the an-
tecedent. The synthetic dataset has information
about sentences those are relevant to the answer
for each discourse instance. Attention weights ob-
tained from memory networks are analyzed to get

1Dataset is available for download at http://www.
cfilt.iitb.ac.in/˜coreference/memnet

39

the sentences from the input discourse with higher
attention, which in turn is used to compute atten-
tion accuracy.

5 Results

Table 2 compares the antecedent prediction ac-
curacy between Cort and MemN2N. The re-
sults shows the superiority of memory networks
over Cort (on both pre-trained and synthetic data
trained models) in considering the context while
resolving coreference. The existing feature based
approaches have an inclination towards syntactical
clues. Table 1 discusses prediction accuracy and
attention accuracy with MemN2N and the modifi-
cations described in Section 3.1. We observe that
most of the mis-predictions stem from attention er-
rors, i.e. a wrong answer usually comes from a
wrongly high-weighted sentence. This shows the
strong dependence of the answer module on the
attention mechanism.

Masking of the absent words in the discourse
(MASK) has helped to improve the prediction ac-
curacy of datasets 3 and 4. Masking helps to filter
out the irrelevant words reducing the false predic-
tions. This improvement is very intuitive since re-
striction of prediction to document words is rele-
vant to the task of coreference resolution.

The initialization of H with ones helps to reach
an accuracy of 100% for datasets 1 and 2 and
brings significant improvement to attention accu-
racy. While there is no noticeable accuracy im-
provement for dataset 3 and there is a reduction in
accuracy for dataset 4, the improvement in atten-
tion accuracy is quite significant.
tanh activation helps the system to improve the

prediction accuracy significantly on datasets 3 and
4, but not for datasets 1 and 2 which have already
achieved highest prediction accuracy. For datasets
1 and 2 the attention accuracy has improved com-
pared to MEMN2N and MASK, but not compared
to H-INIT. There is a considerable improvement
in prediction accuracy and attention accuracy with
datasets 3 and 4. tanh activation enables clip-
ping of values before softmax is applied, thereby
preventing attention weights from getting skewed
towards 0 or 1. We observed with many test in-
stances that, when tanh is not applied the mem-
ory vector with the largest attention weight in the
first hop tends to remain the largest in the subse-
quent hops as well. tanh activation resolves this
by reducing the skewness. Errors pertaining to

location related pronouns with datasets 3 and 4
in the other experiments are getting reduced con-
siderably here, resulting in improvement in accu-
racy.

5.1 Analysis of Cort Results

Here we explain why an existing coreference res-
olution approach fails to consider context based
clues through analysis of distance (in terms of
sentence) between the anaphoric mention and the
identified antecedent in the synthetic test data.
Figure 2 shows the distance distribution of coref-
erent mentions in the gold annotation for all the
datasets. Sentence distances in the range 1-4 are
denoted using different colors. The random sen-
tences in DS2 and DS4 make the distance distri-
bution broader. Figures 3 and 4 show the distance
distribution of Cort output. Cort could not detect
the pronominal mention ’there’ making the num-
ber of coreferent distances in DS3 and DS4 less
than the number of test data instances shown in
the ground truth figure.

Figure 2: Distribution of distance between coref-
erent mentions identified by Cort (pre-trained
model)

In a coreference resolution approach like Cort,
syntactic features play a major role. Figure 3
shows distance distribution of coreferent mentions
identified by Cort with pre-trained model trained
on Ontonotes dataset. The preceding entity which
forms subject in a sentence is likely to be the
antecedent of an anaphoric mention in a dataset
like ontonotes. When executed with pre-trained
model, this leads to picking the recent subject
mention as the antecedent making the distribu-
tion biased to 1. These features are designed
considering the general behaviour of datasets like
ontonotes, but does not work for cases where se-
mantic/context knowledge is important.

When trained with synthetic training set, the

40

Experiment Dataset 1 Dataset 2 Dataset 3 Dataset 4

pred. acc. att. acc. pred. acc. att. acc. pred. acc. att. acc. pred. acc. att. acc.

MemN2N 99.05 85.06 99.23 78.56 89.99 76.53 88.51 73.37
MASK 99.06 85.06 99.23 78.56 92.28 76.53 89.02 73.37
H-INIT 100 99.83 100 99.53 92.94 87.87 86.98 75.61
TANH 99.99 87.05 98.34 93.02 99.75 92.4 99.55 89.32

Table 1: Antecedent prediction accuracy (pred. acc.) and attention accuracy (att. acc.) with MemN2N
and its modifications. (Accuracy in %. Best results shown in bold.)

Experiment DS 1 DS 2 DS 3 DS 4

Cort-pre 63.02 35.17 32.5 17.40
Cort-synth 80.42 79.90 40.66 41.04
MemN2N 99.05 99.23 89.99 88.51

Table 2: Comparison of antecedent prediction ac-
curacy (%) of MemN2N with Cort. (DS: Dataset
Cort-pre: results with Cort on available pre-
trained model Cort-synth: results with Cort on
model trained with synthetic training data)

Figure 3: Distribution of distance between coref-
erent mentions identified by Cort (pre-trained
model)

Figure 4: Distribution of distance between coref-
erent mentions identified by Cort (synthetic-
trained model)

antecedents are not always the subject mentions
in the preceding sentence based on the evidence
learned from the training data. This makes the dis-
tribution of distances spread to higher distances.
Even though the accuracy has improved over the
experiment with pre-trained model, it is behind
memory networks. From our observations, we
could infer that certain other features (most likely
next token and preceding token features) in Cort
take the lead role here. This makes the system to
take coreference decision based on some not so
relevant patterns (based on afore-mentioned fea-
tures) seen in the training data, leading to inferior
performance compared to memory networks.

These observations conclude that even when
syntactical clues can help coreference resolution
to much extent, that is not sufficient to deal with
all the cases where semantic understanding is re-
quired.

6 Conclusion

In this paper, we investigated into the suitabil-
ity of posing coreference resolution as a question
answering problem based on memory networks,
taking motivation from psycholinguistics studies
establishing the role of working memory during
resolving coreferences. The experimental results
comparing Cort with memory networks demon-
strate the potential of memory networks. We also
found that the task-driven modifications when ap-
plied, help to achieve better prediction and atten-
tion accuracy. While this work is a step towards
identifying the potential of memory networks for
coreference resolution, experiments are restricted
to synthetic data. In the future, we propose to in-
vestigate on an architecture on real-world data, ei-
ther through attention mechanism to assist existing
approaches or through an end-to-end framework
for coreference resolution.

41

References
Jaime G Carbonell and Ralf D Brown. 1988. Anaphora

resolution: a multi-strategy approach. In Pro-
ceedings of the 12th conference on Computational
linguistics-Volume 1. Association for Computational
Linguistics, pages 96–101.

Gary S Dell, Gail McKoon, and Roger Ratcliff. 1983.
The activation of antecedent information during
the processing of anaphoric reference in reading.
Journal of Verbal Learning and Verbal Behavior
22(1):121–132.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In EMNLP.
pages 1971–1982.

Morton Ann Gernsbacher. 1989. Mechanisms that im-
prove referential access. Cognition 32(2):99–156.

Richard J Gerrig and Gail McKoon. 1998. The readi-
ness is all: The functionality of memory-based text
processing. Discourse Processes 26(2-3):67–86.

Jerry R Hobbs. 1978. Resolving pronoun references.
Lingua 44(4):311–338.

Andrew Kehler, Douglas E Appelt, Lara Taylor, and
Aleksandr Simma. 2004. The (non) utility of
predicate-argument frequencies for pronoun inter-
pretation. In HLT-NAACL. volume 4, pages 289–
296.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Brad-
bury, Robert English, Brian Pierce, Peter On-
druska, Ishaan Gulrajani, and Richard Socher. 2015.
Ask me anything: Dynamic memory networks
for natural language processing. arXiv preprint
arXiv:1506.07285 .

Sebastian Martschat, Patrick Claus, and Michael
Strube. 2015. Plug latent structures and play coref-
erence resolution. ACL-IJCNLP 2015 page 61.

Vincent Ng. 2007a. Semantic class induction and
coreference resolution. In Proc. of the ACL. pages
536–543.

Vincent Ng. 2007b. Shallow semantics for coreference
resolution. In Proceedings of the 20th International
Joint Conference on Artifical Intelligence. IJCAI’07,
pages 1689–1694.

Mante Nieuwland and Andrea E Martin. 2016. A neu-
ral oscillatory signature of reference. bioRxiv page
072322.

Simone Paolo Ponzetto and Michael Strube. 2006.
Exploiting semantic role labeling, wordnet and
wikipedia for coreference resolution. In Proceed-
ings of the main conference on HLT-NAACL. Asso-
ciation for Computational Linguistics, pages 192–
199.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unre-
stricted coreference in ontonotes. In Joint Confer-
ence on EMNLP and CoNLL-Shared Task. Associa-
tion for Computational Linguistics, pages 1–40.

Sameer S Pradhan, Eduard Hovy, Mitch Mar-
cus, Martha Palmer, Lance Ramshaw, and Ralph
Weischedel. 2007. Ontonotes: A unified relational
semantic representation. International Journal of
Semantic Computing 1(04):405–419.

Altaf Rahman and Vincent Ng. 2011. Coreference res-
olution with world knowledge. In Proc. of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies-
Volume 1. Association for Computational Linguis-
tics, pages 814–824.

AJ Sanford and SC Garrod. 1989. What, when, and
how?: Questions of immediacy in anaphoric refer-
ence resolution. Language and Cognitive Processes
4(3-4):SI235–SI262.

Anthony J Sanford and Simon C Garrod. 2005.
Memory-based approaches and beyond. Discourse
Processes 39(2-3):205–224.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems. pages
2440–2448.

Jason Weston. 2016. ICML 2016 Tutorial on
Memory Networks for Language Understanding.
http://www.thespermwhale.com/jaseweston/icml2016/
icml2016-memnn-tutorial.pdf.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698 .

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916 .

42

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 43–47,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Combining Word-Level and Character-Level Representations for
Relation Classification of Informal Text

Dongyun Liang, Weiran Xu, Yinge Zhao,
PRIS, Beijing University of Posts and Telecommunications, China

{dongyunliang, xuweiran}@bupt.edu.cn yingezhao@outlook.com

Abstract

Word representation models have achieved
great success in natural language process-
ing tasks, such as relation classification.
However, it does not always work on infor-
mal text, and the morphemes of some mis-
spelling words may carry important short-
distance semantic information. We pro-
pose a hybrid model, combining the mer-
its of word-level and character-level rep-
resentations to learn better representations
on informal text. Experiments on two
dataset of relation classification, SemEval-
2010 Task8 and a large-scale one we com-
pile from informal text, show that our
model achieves a competitive result in the
former and state-of-the-art with the other.

1 Introduction

Deep learning has made significant progress in
natural language processing, and most of ap-
proaches treat word representations as the corner-
stone. Though it is effective, word-level represen-
tation is inherently problematic: it assumes that
each word type has its own vector that can vary in-
dependently; most words only occur once in train-
ing data and out-of-vocabulary(OOV) words can-
not be addressed. A word may typically include
a root and one or more affixes (rock-s, red-ness,
quick-ly, run-ning, un-expect-ed), or more than
one root in a compound (black-board, rat-race).
It is reasonable to assume that words which share
common components(root, prefix, suffix)may be
potentially related, while word-level representa-
tion considers each word separately. On the other
hand, new words enter English from every area of
life, e.g. Chillaxing - Blend of chilling and relax-
ing, represent taking a break from stressful activ-
ities to rest or relax. Whereas the vocabulary size

of word-level model is fixed beforehand, the lack
of these word representations may lose important
semantic information.

Especially on informal text, the problems of
word-level representation will be amplified and
hard to ignore. Recently, character-level repre-
sentation, which takes characters as atomic units
to derive the embeddings, demonstrates that it can
memorize the arbitrary aspects of word orthogra-
phy. Parameters of these simple model are less,
and it will be not ideal when processing long sen-
tence. Combining word-level and character-level
representations attempts to overcome the weak-
nesses of the two representations.

We utilize a Bidirectional Gated Recurrent Unit
(Bi-GRU) (Chung et al., 2014) and Convolu-
tional Neural Networks(CNN) to capture two-
level semantic representations respectively. While
character-level information is likely to be drowned
out by word-level information if simply con-
nected, we adopt Highway Networks (Srivas-
tava et al., 2015) to balance both. To evaluate
our model, we evaluate on a public benchmark:
SemEval-2010 Task8. This dataset is small and
restricted in their relation types and their syn-
tactic and lexical variations, and it is still un-
known whether learning on the range of the spe-
cific relation transfers well to informal text. As
such, we introduce a large-scale dataset based on
the corpus and queries of TAC-KBP Slot Fill-
ing Track (Surdeanu and Ji, 2014) between 2009
to 2014, which contains 48k relation sentences,
called KBP-SF481.

TAC-KBP corpus comes from newswire, Web,
post and discussion forum documents actually
comprised of informal content, including language
mismatch and spelling errors. We extract sen-
tences from slots and fillers of Slot Filling Evalua-

1https://github.com/waterblas/KBP-SF48

43

tion with position indicators to keep the same for-
mat as SemEval-2010 Task8. For instance, the fol-
lowing sentence with two nominals surrounded by
position indicators belong to org:founded by rela-
tion:

Bharara’s office brought insider trading
charges against <e1>Raj Rajaratnam <e1/>,
the co-founder of hedge fund <e2>Galleon
Group<e2/>.

2 Related Work

Some works (Mikolov et al., 2013; Pennington
et al., 2014) started to learn semantic representa-
tions of word by unsupervised approaches. Re-
cently, relation classification has focused on neu-
ral networks. Zeng et al. (2014) utilized CNN
to learn patterns of relations from raw text data
to make representative progress, but a potential
problem is that CNN is not suitable for learning
long-distance semantic information. Santos et al.
(2015) proposed a similar model named CR-CNN,
and replaced the cost function with a ranking-
based function. Some models (Xu et al., 2015;
Cai et al., 2016) leveraged the shortest dependency
path(SDP) between two nominals. Others (Zhou
et al., 2016; Wang et al., 2016) employed atten-
tion mechanism to capture more important seman-
tic information.

Working to a new dataset KBP37, Zhang and
Wang (2015) proposed a framework based on
a bidirectional Recurrent Neural Network(RNN).
However, all these methods depend on learning
word-level distributed representation without uti-
lizing morphological feature.

Recent work captures word orthography using
character-based neural networks. dos Santos and
Zadrozny (2014) proposed a deep neural network
to learn character-level representation of words for
POS Tagging. Zhang et al. (2015) demonstrated
the effectiveness of character-level CNN in text
classification. Kim et al. (2015) employed CNN
and a highway network to learn rich semantic and
orthographic features from encoding characters.
There were some models (Ling et al., 2015; Dhin-
gra et al., 2016) based on RNN structures, which
can memorize arbitrary aspects of word orthogra-
phy over characters.

Our model uses multi-channel GRU units and
CNN architecture to learn the representations of
word-level and character-level, and project it to a
softmax output layer for relation classification.

3 Model

As shown in Figure 1, the model learns word-
level and character-level representations respec-
tively, and combines them with interaction to get
the final representation.

3.1 Word-level
Given a relation sentence consisting of words
w1, w2, ..., wm, each wi is defined as a one hot
vector 1wi , with value 1 at index wi and 0 in
all other dimensionality. We multiply a matrix
PW ∈ Rdw×|V | by 1wi to project the word wi into
its word embedding xi, as with a lookup table:

xi = PWwi (1)

where dw is the size of word embedding and V
is the vocabulary of training set.

Then input the x1, x2, ..., xm sequence to a Bi-
GRU network iteratively. Each GRU unit apply
the following transformations:

rt = σ(Wrxt + Urht−1 + br)
zt = σ(Wzxt + Uzht−1 + bz)

ht = (1− zt)� ht−1 + zt � h̃t

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh)

(2)

where zt is a set of update gates, rt is a set of re-
set gates and � is an element-wise multiplication.
Wr,Wz,Wh and Ur, Uz, Uh are weight matrices
to be learned, and h̃t is the candidate activation.
We use element-wise sum to combine the forward
and backward pass final states as word-level rep-
resentation: hw

m = [
−→
hm +

←−
h0] .

3.2 Character-level
To capture morphological features, we use convo-
lutions to learn local n-gram features at the lower
network layer. As character-level input, origi-
nal sentence is decomposed into a sequence of
characters, including special characters, such as
white-space. We first project each character into
a character embedding xi by a lookup table whose
mechanism is exactly as Eq.1.

Given the x1, x2, , xn embedding sequence, we
compose the matrix Dk ∈ Rkdc×n to execute con-
volutions with same padding:

Ck = tanh(W k
conD

k) (3)

where dc is the size of word embedding and each
column i in Dk consists of the concatenation of

44

s t a r e d h e r c a r e… …e

Divide sequence into words

Divide sequence into characters

Michelle Obama <e1/> started her career<e1> …

<e1> Michelle Obama <e1/> started her career as a corporate lawyer specializing in

marketing and intellectual property. She was born in <e2> Chicago <e2/>

GRU GRU GRU GRU

… …
… …

GRU GRU GRU GRU GRU
Bi-GRU

GRU GRU GRU GRU

Convolution

y

Highway

Figure 1: Hybrid model combining word-level and character-level representation.

vectors (i.e. k embeddings centered at the i-th
character), W k

con is a weight matrix of convolution
layer, and Ck ∈ Rc×n is the output of the con-
volution with c filters. We use p groups of filters
with varying widths to obtain n-gram feature, and
concatenate them by column:

C = Ck1 ⊕ Ck2 ⊕ ...⊕ Ckp (4)

The next step, ci, ..., cn denoted by the column
vector of C are fed as input sequence to a forward-
GRU network(Eq.2), and we pick up final states
activation hc

n as character-level representation.

3.3 Combination
Instead of fully connected network layer, we uti-
lize Highway Networks to emphasize impact of
character level. Highway can be used to adap-
tively copy or transform representations, even
when large depths are not required. We apply
this idea to retain some independence of word and
character when merging with interaction. Let h∗

be the concatenation of hw
m and hc

n, The combina-
tion z is obtained by the Highway Network:

z = t� g(WHh
∗ + bH) + (1− t)� h∗

t = σ(WTh
∗ + bT)

(5)

where g is a nonlinear function (tanh), t is referred
to as the transform gate, and (1 − t) as the carry
gate. WT andWH are square weight matrices, and
bT and bH are bias vectors.

3.4 Training
Training our model for classifying sentence rela-
tion is a processes to optimizing the whole param-
eters θ of network layers. Given a input sentence
X and the candidate set of relation Y , the classifier
returns output ŷ as follows:

ŷ = arg max
y∈Y

p(y|X, θ) (6)

We let the combination vector z through a
softmax layer to give the distribution y =
softmax(Wfz + bf).

The training objective is the penalized cross-
entropy loss between predicted and true relation:

J(θ) = − 1
N

N∑
i=1

m∑
j=1

ti,j log(yi,j) + λ‖θ‖2F (7)

whereN is the mini-batch size,m is the size of re-
lation set, t ∈ Rm denotes the one-hot represented
ground truth, yi,j is the predicted probability that
the i−th sentence belongs to class j, and λ is a
coefficient of L2 regularization.

4 Experiments

4.1 Dataset

We evaluate our model on two dataset.
SemEval-2010 Task8 dataset contains 9 direc-
tional relations and an Other class.

There exist dataset derived from TAC-
KBP for relation classification, such as
KBP37(20k example for evaluation) collected
by (Zhang and Wang, 2015). Based on
this and more public corpus of resent years,
we introduce a new larger scale dataset,
called KBP-SF48. There are 48,340 anno-
tated examples distributed among 40 rela-
tions(excluding no relation and org:website),
including 33,838 sentences for training that
consists of 102 unique characters, 9,668 for
testing and 4,834 for validation.

Compared to SemEval-2010 Task8, the
relation type of KBP-SF48 is designed to
build a Knowledge Base from unstructured
text, including quite a few informal docu-
ments, and the specific nominals that be-

45

longs to these relations can be filled in spe-
cific slots. There exists non-directional and
the directional corresponding relations (e.g.
per:children & per:parents and org:members
& org:member of).

4.2 Results

Model F1
SVM (Rink and Harabagiu, 2010) 82.2
CNN (Zeng et al., 2014) 82.7
SDP-LSTM (Xu et al., 2015) 83.7
Att-BLSTM (Zhou et al., 2016) 84.0
BRCNN (Cai et al., 2016) 86.3
Ours 84.1

Table 1: Comparison on SemEval-2010 Task8.

Table 1 compares our model with other pre-
vious state-of-the-art methods on SemEval-
2010 Task8 dataset. Rink and Harabagiu
(2010) built a SVM classifier on a variety
of handcrafted features, and achieved an F1-
score of 82.2%. Xu et al. (2015) achieved
an F1-score of 83.7% via heterogeneous
information along the SDP. BRCNN (Cai
et al., 2016) combined CNN and two-channel
LSTM units to learns features along SDP, and
made use of POS tags, NER and WordNet
hypernyms. Att-BLSTM (Zhou et al., 2016)
only operated attention mechanism on Bidi-
rectional Long Short-Term Memory(BLSTM)
units with word vector.

Our model yields an F1-score of 84.1%,
and outperforms most of the existing com-
peting approaches without using any human-
designed features and lexical resources.

On KBP-SF48 benchmark, we evaluate our
model by top 1 precision, and mean rank of
correct relation because of the existence of
non-directional relations,

We reproduce the results on our own to
show the performances of the other systems
with the same train/dev/test splits, and ab-
late different aspects of the proposed model
to show the impact of every component of
our architecture. As is seen from Table 2,
our model achieves a state-of-the-art result
on KBP-SF48 dataset. Our model has al-
ready outperformed the RNN-based (Zhang
and Wang, 2015) model of the KBP37 dataset,

Model Precision
@1

Mean
Rank

RNN-based (Zhang and
Wang, 2015)

68.9% 2.01

CNN (Zeng et al., 2014) 79.1% 1.55
BLSTM and Att-BLSTM
(Zhou et al., 2016)

78.9% 1.59
80.2% 1.51

Character-level Only
(Dhingra et al., 2016)

74.9% 1.85

Word-level Only 78.4% 1.60
Full connected network 80.9% 1.51
Ours 81.7% 1.45

Table 2: Comparison on KBP-SF48

a small scale dataset based on TAC-KBP
Slot Filling Track. We compare our results
against some state-of-the-art methods (Zeng
et al., 2014; Zhou et al., 2016) of SemEval-
2010 Task8, and our model achieves a bet-
ter result by combining character feature into
word-level representation. Then, we illustrate
Bi-GRU architecture of Tweet2Vec (Dhingra
et al., 2016), a pure character-level compo-
sition model, to show the effectiveness of
character-level representation. Next, we get
rid of the impact of characters to do word-
level only experiment, and replace the high-
way with a fully connected layer. These clean
comparisons demonstrate that the character-
level and Highway network help to learn a
better representation for classification.

5 Conclusion

In this paper, we propose a hybrid model that
combines word-level and character-level rep-
resentations. This model encodes characters
by a cascade of CNN and GRU units, en-
codes words by Bi-GRU units, and uses High-
way Network to combine. We demonstrate
that our model achieves competitive results on
the popular benchmark SemEval-2010 Task8
and achieves a better performance at learning
character features on the KBP-SF48 dataset
without relying on any lexical resources. In
future, we plan to add interactions for each
word with the corresponding positional char-
acters.

46

References

Rui Cai, Xiaodong Zhang, and Houfeng
Wang. 2016. Bidirectional recurrent con-
volutional neural network for relation clas-
sification. In Proceedings of the 54th An-
nual Meeting of the Association for Com-
putational Linguistics. pages 756–765.

Junyoung Chung, Caglar Gulcehre,
KyungHyun Cho, and Yoshua Bengio.
2014. Empirical evaluation of gated
recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555
.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitz-
patrick, Michael Muehl, and William W
Cohen. 2016. Tweet2vec: Character-based
distributed representations for social media.
arXiv preprint arXiv:1605.03481 .

Cı́cero Nogueira dos Santos and Bianca
Zadrozny. 2014. Learning character-level
representations for part-of-speech tagging.
In ICML. pages 1818–1826.

Yoon Kim, Yacine Jernite, David Sontag, and
Alexander M Rush. 2015. Character-aware
neural language models. arXiv preprint
arXiv:1508.06615 .

Wang Ling, Tiago Luı́s, Luı́s Marujo,
Ramón Fernandez Astudillo, Silvio Amir,
Chris Dyer, Alan W Black, and Isabel Tran-
coso. 2015. Finding function in form:
Compositional character models for open
vocabulary word representation. arXiv
preprint arXiv:1508.02096 .

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient estimation of
word representations in vector space. arXiv
preprint arXiv:1301.3781 .

Jeffrey Pennington, Richard Socher, and
Christopher D Manning. 2014. Glove:
Global vectors for word representation. In
EMNLP. volume 14, pages 1532–43.

Bryan Rink and Sanda Harabagiu. 2010. Utd:
Classifying semantic relations by combin-
ing lexical and semantic resources. ACL
2010 page 256.

Cicero Nogueira dos Santos, Bing Xiang, and
Bowen Zhou. 2015. Classifying relations
by ranking with convolutional neural net-
works. arXiv preprint arXiv:1504.06580 .

Rupesh K Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Training very deep
networks. In Advances in neural informa-
tion processing systems. pages 2377–2385.

Mihai Surdeanu and Heng Ji. 2014. Overview
of the english slot filling track at the
tac2014 knowledge base population evalu-
ation. In Proc. Text Analysis Conference
(TAC2014).

Linlin Wang, Zhu Cao, Gerard de Melo, and
Zhiyuan Liu. 2016. Relation classifica-
tion via multi-level attention cnns. In Pro-
ceedings of the 54th Annual Meeting of the
Association for Computational Linguistics.
pages 1298–1307.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen,
Hao Peng, and Zhi Jin. 2015. Classify-
ing relations via long short term memory
networks along shortest dependency paths.
In Proceedings of Conference on Empirical
Methods in Natural Language Processing.

Daojian Zeng, Kang Liu, Siwei Lai,
Guangyou Zhou, Jun Zhao, et al. 2014.
Relation classification via convolutional
deep neural network. In COLING. pages
2335–2344.

Dongxu Zhang and Dong Wang. 2015. Rela-
tion classification via recurrent neural net-
work. arXiv preprint arXiv:1508.01006 .

Xiang Zhang, Junbo Zhao, and Yann LeCun.
2015. Character-level convolutional net-
works for text classification. In Advances
in Neural Information Processing Systems.
pages 649–657.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi,
Bingchen Li, Hongwei Hao, and Bo Xu.
2016. Attention-based bidirectional long
short-term memory networks for relation
classification. In The 54th Annual Meeting
of the Association for Computational Lin-
guistics. page 207.

47

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 48–56,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Transfer Learning for Neural Semantic Parsing

Xing Fan, Emilio Monti, Lambert Mathias, and Markus Dreyer
Amazon.com

{fanxing, mathias, mddreyer}@amazon.com, monti@amazon.co.uk

Abstract

The goal of semantic parsing is to map nat-
ural language to a machine interpretable
meaning representation language (MRL).
One of the constraints that limits full ex-
ploration of deep learning technologies for
semantic parsing is the lack of sufficient
annotation training data. In this paper,
we propose using sequence-to-sequence
in a multi-task setup for semantic pars-
ing with a focus on transfer learning. We
explore three multi-task architectures for
sequence-to-sequence modeling and com-
pare their performance with an indepen-
dently trained model. Our experiments
show that the multi-task setup aids transfer
learning from an auxiliary task with large
labeled data to a target task with smaller
labeled data. We see absolute accuracy
gains ranging from 1.0% to 4.4% in our in-
house data set, and we also see good gains
ranging from 2.5% to 7.0% on the ATIS
semantic parsing tasks with syntactic and
semantic auxiliary tasks.

1 Introduction

Conversational agents, such as Alexa, Siri and
Cortana, solve complex tasks by interacting and
mediating between the end-user and multiple
backend software applications and services. Natu-
ral language is a simple interface used for com-
munication between these agents. However, to
make natural language machine-readable we need
to map it to a representation that describes the se-
mantics of the task expressed in the language. Se-
mantic parsing is the process of mapping a natural-
language sentence into a formal machine-readable
representation of its meaning. This poses a chal-
lenge in a multi-tenant system that has to inter-
act with multiple backend knowledge sources each

with their own semantic formalisms and custom
schemas for accessing information, where each
formalism has various amount of annotation train-
ing data.

Recent works have proven sequence-to-
sequence to be an effective model architecture (Jia
and Liang, 2016; Dong and Lapata, 2016) for
semantic parsing. However, because of the limit
amount of annotated data, the advantage of neural
networks to capture complex data representation
using deep structure (Johnson et al., 2016) has not
been fully explored. Acquiring data is expensive
and sometimes infeasible for task-oriented sys-
tems, the main reasons being multiple formalisms
(e.g., SPARQL for WikiData (Vrandečić and
Krötzsch, 2014), MQL for Freebase (Flanagan,
2008)), and multiple tasks (question answering,
navigation interactions, transactional interac-
tions). We propose to exploit these multiple
representations in a multi-task framework so
we can minimize the need for a large labeled
corpora across these formalisms. By suitably
modifying the learning process, we capture the
common structures that are implicit across these
formalisms and the tasks they are targeted for.

In this work, we focus on a sequence-to-
sequence based transfer learning for semantic
parsing. In order to tackle the challenge of
multiple formalisms, we apply three multi-task
frameworks with different levels of parameter
sharing. Our hypothesis is that the encoder-
decoder paradigm learns a canonicalized represen-
tation across all tasks. Over a strong single-task
sequence-to-sequence baseline, our proposed ap-
proach shows accuracy improvements across the
target formalism. In addition, we show that even
when the auxiliary task is syntactic parsing we can
achieve good gains in semantic parsing that are
comparable to the published state-of-the-art.

48

2 Related Work

There is a large body of work for semantic pars-
ing. These approaches fall into three broad cat-
egories – completely supervised learning based
on fully annotated logical forms associated with
each sentence (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2012) using question-answer
pairs and conversation logs as supervision (Artzi
and Zettlemoyer, 2011; Liang et al., 2011; Be-
rant et al., 2013) and distant supervision (Cai and
Yates, 2013; Reddy et al., 2014). All these ap-
proaches make assumptions about the task, fea-
tures and the target semantic formalism.

On the other hand, neural network based
approaches, in particular the use of recurrent
neural networks (RNNs) and encoder-decoder
paradigms (Sutskever et al., 2014), have made fast
progress on achieving state-of-the art performance
on various NLP tasks (Vinyals et al., 2015; Dyer
et al., 2015; Bahdanau et al., 2014). A key advan-
tage of RNNs in the encoder-decoder paradigm is
that very few assumptions are made about the do-
main, language and the semantic formalism. This
implies they can generalize faster with little fea-
ture engineering.

Full semantic graphs can be expensive to an-
notate, and efforts to date have been fragmented
across different formalisms, leading to a limited
amount of annotated data in any single formalism.
Using neural networks to train semantic parsers
on limited data is quite challenging. Multi-task
learning aims at improving the generalization per-
formance of a task using related tasks (Caruana,
1998; Ando and Zhang, 2005; Smith and Smith,
2004). This opens the opportunity to utilize large
amounts of data for a related task to improve the
performance across all tasks. There has been re-
cent work in NLP demonstrating improved perfor-
mance for machine translation (Dong et al., 2015)
and syntactic parsing (Luong et al., 2015).

In this work, we attempt to merge various
strands of research using sequence-to-sequence
modeling for semantic parsing with focusing
on improving semantic formalisms with small
amount of training data using a multi-task model
architecture. The closest work is Herzig and Be-
rant (2017). Similar to this work, the authors use
a neural semantic parsing model in a multi-task
framework to jointly learn over multiple knowl-
edge bases. Our work differs from their work in
that we focus our attention on transfer learning,

where we have access to a large labeled resource
in one task and want another semantic formalism
with access to limited training data to benefit from
a multi-task learning setup. Furthermore, we also
demonstrate that we can improve semantic parsing
tasks by using large data sources from an auxil-
iary task such as syntactic parsing, thereby open-
ing up the opportunity for leveraging much larger
datasets. Finally, we carefully compare multiple
multi-task architectures in our setup and show that
increased sharing of both the encoder and decoder
along with shared attention results in the best per-
formance.

3 Problem Formulation

3.1 Sequence-to-Sequence Formulation
Our semantic parser extends the basic encoder-
decoder approach in Jia and Liang (2016). Given a
sequence of inputs x = x1, . . . , xm, the sequence-
to-sequence model will generate an output se-
quence of y = y1, . . . , yn. We encode the input
tokens x = x1, . . . , xm into a sequence of embed-
dings h = h1, . . . ,hm

hi = fencoder(Ex(xi),hi−1) (1)

First, an input embedding layer Ex maps each
word xi to a fixed-dimensional vector which is
then fed as input to the network f to obtain the
hidden state representation hi. The embedding
layer Ex could contain one single word embed-
ding lookup table or a combination of word and
gazetteer embeddings, where we concatenate the
output from each table. For the encoder and de-
coder, we use a stacked Gated Recurrent Units
(GRU) (Cho et al., 2014).1 The hidden states
are then converted to one fixed-length context vec-
tor per output index, cj = φj(h1, . . . , hm), where
φj summarizes all input hidden states to form the
context for a given output index j.2

The decoder then uses these fixed-length vec-
tors cj to create the target sequence through the
following model. At each time step j in the output
sequence, a state sj is calculated as

sj = fdecoder(Ey(yj−1), sj−1, cj) (2)

1In order to speedup training, we use a right-to-left GRU
instead of a bidirectional GRU.

2In a vanilla decoder, each φj(h1, . . . , hm)
def
= hm, i.e,

the hidden representation from the last state of the encoder is
used as context for every output time step j.

49

Figure 1: An example of how the decoder output y3 is generated.

Here, Ey maps any output symbol to a fixed-
dimensional vector. Finally, we compute the prob-
ability of the output symbol yj given the history
y<j using Equation 3.

p(yj | y<j ,x) ∝ exp(O[sj ; cj]) (3)

where the matrix O projects the concatenation
of sj and cj , denoted as [sj ; cj], to the final out-
put space. The matrix O are part of the train-
able model parameters. We use an attention mech-
anism (Bahdanau et al., 2014) to summarize the
context vector cj ,

cj = φj(h1, . . . , hm) =
m∑

i=1

αji hi (4)

where j ∈ [1, . . . , n] is the step index for the
decoder output and αji is the attention weight, cal-
culated using a softmax:

αji =
exp(eji)∑m

i′=1 exp(eji′)
(5)

where eji is the relevance score of each context
vector cj , modeled as:

eji = g(hi, sj) (6)

In this paper, the function g is defined as fol-
lows:

g(hi, sj) = υᵀ tanh(W 1hi +W 2sj) (7)

where υ,W 1 andW 2 are trainable parameters.
In order to deal with the large vocabularies in

the output layer introduced by the long tail of en-
tities in typical semantic parsing tasks, we use a
copy mechanism (Jia and Liang, 2016). At each
time step j, the decoder chooses to either copy a
token from the encoder’s input stream or to write
a token from the the decoder’s fixed output vocab-
ulary. We define two actions:

1. WRITE[y] for some y ∈ Vdecoder, where
Vdecoder is the output vocabulary of the de-
coder.

2. COPY[i] for some i ∈ 1, . . . ,m, which
copies one symbol from the m input tokens.

We formulate a single softmax to select the ac-
tion to take, rewriting Equation 3 as follows:

p(aj = WRITE[yj] | y<j ,x) ∝ exp(O[sj ; cj])
(8)

p(aj = COPY[i] | y<j ,x) ∝ exp(eji) (9)

The decoder is now a softmax over the actions
aj ; Figure 1 shows how the decoder’s output y at
the third time step y3 is generated. At each time
step, the decoder will make a decision to copy a
particular token from input stream or to write a
token from the fixed output label pool.

50

(a) one-to-many: A multi-task architecture where only the encoder is shared across the
two tasks.

(b) one-to-one: A multi-task architecture where both the encoder and decoder along with
the attention layer are shared across the two tasks.

(c) one-to-shareMany: A multi-task architecture where both the encoder and decoder
along with the attention layer are shared across the two tasks, but the final softmax
output layer is trained differently, one for each task.

Figure 2: Three multi-task architectures.

3.2 Multi-task Setup

We focus on training scenarios where multiple
training sources K are available. Each source K
can be considered a domain or a task, which con-
sists of pairs of utterance x and annotated logi-
cal form y. There are no constraints on the logi-
cal forms having the same formalism across theK
domains. Also, the tasks K can be different, e.g.,
we can mix semantic parsing and syntactic pars-
ing tasks. We also assume that given an utterance,
we already know its associated source K in both
training and testing.

In this work, we explore and compare three
multi-task sequence-to-sequence model architec-
tures: one-to-many, one-to-one and one-to-

shareMany.

3.2.1 One-to-Many Architecture
This is the simplest extension of sequence-to-
sequence models to the multi-task case. The en-
coder is shared across all the K tasks, but the de-
coder and attention parameters are not shared. The
shared encoder captures the English language se-
quence, whereas each decoder is trained to pre-
dict its own formalism. This architecture is shown
in Figure 2a. For each minibatch, we uniformly
sample among all training sources, choosing one
source to select data exclusively from. Therefore,
at each model parameter update, we only update
the encoder, attention module and the decoder for
the selected source, while the parameters for the

51

otherK−1 decoder and attention modules remain
the same.

3.2.2 One-to-One Architecture
Figure 2b shows the one-to-one architecture. Here
we have a single sequence-to-sequence model
across all the tasks, i.e., the embedding, encoder,
attention, decoder and the final output layers are
shared across all the K tasks. In this architec-
ture, the number of parameters is independent of
the number of tasks K. Since there is no explicit
representation of the domain/task that is being de-
coded, the input is augmented with an artificial to-
ken at the start to identify the task the same way as
in Johnson et al. (2016).

3.2.3 One-to-ShareMany Architecture
We show the model architecture for one-to-
shareMany in Figure 2c. The model modifies the
one-to-many model by encouraging further shar-
ing of the decoder weights. Compared with the
one-to-one model, the one-to-shareMany differs in
the following aspects:

• Each task has its own output layer. Our hy-
pothesis is that by separating the tasks in the
final layer we can still get the benefit of shar-
ing the parameters, while fine-tuning for spe-
cific tasks in the output, resulting in better ac-
curacy on each individual task.

• The one-to-one requires a concatenation of
all output labels from training sources. Dur-
ing training, every minibatch needs to be for-
warded and projected to this large softmax
layer. While for one-to-ShareMany, each
minibatch just needs to be fed to the softmax
associated with the chosen source. Therefore,
the one-to-shareMany is faster to train espe-
cially in cases where the output label size is
large.

• The one-to-one architecture is susceptible to
data imbalance across the multiple tasks, and
typically requires data upsampling or down-
sampling. While for one-to-shareMany we
can alternate the minibatches amongst the K
sources using uniform selection.

From the perspective of neural network opti-
mization, mixing the small training data with
a large data set from the auxiliary task can be
also seen as adding noise to the training pro-
cess and hence be helpful for generalization

and to avoid overfitting. With the auxiliary
tasks, we are able to train large size modesl
that can handle complex task without worry-
ing about overfitting.

4 Experiments

4.1 Data Setup
We mainly consider two Alexa dependency-based
semantic formalisms in use – an Alexa meaning
representation language (AlexaMRL), which is a
lightweight formalism used for providing built-
in functionality for developers to develop their
own skills.3 The other formalism we consider is
the one used by Evi,4 a question-answering sys-
tem used in Alexa. Evi uses a proprietary for-
malism for semantic understanding; we will call
this the Evi meaning representation language (Evi-
MRL). Both these formalisms aim to represent
natural language. While the EviMRL is aligned
with an internal schema specific to the knowl-
edge base (KB), the AlexaMRL is aligned with
an RDF-based open-source ontology (Guha et al.,
2016). Figure 3 shows two example utterances and
their parses in both EviMRL and AlexaMRL for-
malisms.

Our training set consists of 200K utterances –
a fraction of our production data, annotated us-
ing AlexaMRL – as our main task. For the Evi-
MRL task, we have > 1M utterances data set for
training. We use a test set of 30K utterances for
AlexaMRL testing, and 366K utterances for Evi-
MRL testing. To show the effectiveness of our
proposed method, we also use the ATIS corpora
as the small task for our transfer learning frame-
work, which has 4480 training and 448 test utter-
ances (Zettlemoyer and Collins, 2007). We also
include an auxiliary task such as syntactic pars-
ing in order to demonstrate the flexibility of the
multi-task paradigm. We use 34K WSJ training
data for syntactic constituency parsing as the large
task, similar to the corpus in Vinyals et al. (2015).

We use Tensorflow (Abadi et al., 2016) in all our
experiments, with extensions for the copy mecha-
nism. Unless stated otherwise, we train all models
for 10 epochs, with a fixed learning rate of 0.5 for
the first 6 epochs and halve it subsequently for ev-
ery epoch. The mini-batch size used is 128. The
encoder and decoder use a 3-layer GRU with 512

3For details see https://tinyurl.com/
lnfh9py.

4https://www.evi.com

52

”play	madonna from	the	playlist”
AlexaMRL

“what	is	the	elevation	of	the	san	francisco”
Is_the_elevation_of@now(obj_1(“san		francisco”))

EviMRL

PlaybackAction(object(MusicCreativeWork))	object(byArtist(name(Person(“mandonna”))))	object(
type(MusicCreativeWork(“playlist”)))

ATIS
“flight	from	dallas to	san	francisco”
lambda	$0	e	(and	(flight	$0)	(from	$0	“dallas”)	(to	$0	“san	francisco”))

WSJ
“the	next	province	?”
Top(FRAG(NP(DT	JJ	NN)	.))

Figure 3: Example utterances for the multiple semantic formalisms

hidden units. We apply dropout with probabil-
ity of 0.2 during training. All models are initial-
ized with pre-trained 300-dimension GloVe em-
beddings (Pennington et al., 2014). We also apply
label embeddings with 300 dimension for the out-
put labels that are randomly initialized and learned
during training. The input sequence is reversed
before sending it to the encoder (Vinyals et al.,
2015). We use greedy search during decoding.
The output label size for EviMRL is 2K and for
Alexa is < 100. For the multi-task setup, we use
a vocabulary size of about 50K, and for Alexa-
MRL independent task, we use a vocabulary size
of about 20K. We post-process the output of the
decoder by balancing the brackets and determiniz-
ing the units of production to avoid duplicates.

4.2 AlexaMRL Transfer Learning
Experiments

We first study the effectiveness of the multi-task
architecture in a transfer learning setup. Here
we consider EviMRL as the large source auxil-
iary task and the AlexaMRL as the target task we
want to transfer learn. We consider various data
sizes for the target task – 10K, 50K and 100K
and 200K by downsampling. For each target data
size, we compare a single-task setup, trained on
the target task only, with the the various multi-
task setups from Section 3.2 – independent, one-
to-one, one-to-many, and one-to-manyShare. Fig-
ure 4 summarizes the results. The x-axis lists the
four model architecture, and y-axis is the accu-
racy. The positive number above the mark of one-
to-one, one-to-many and one-to-manyShare rep-
resents the absolute accuracy gain compared with
the independent model. For the 10k independent

model, we reduce the hidden layer size from 512
to 256 to optimize the performance.

In all cases, the multi-task architectures provide
accuracy improvements over the independent ar-
chitecture. By jointly training across the two tasks,
the model is able to leverage the richer syntac-
tic/semantic structure of the larger task (EviMRL),
resulting in an improved encoding of the input ut-
terance that is then fed to the decoder resulting in
improved accuracy over the smaller task (Alexa-
MRL).

We take this sharing further in the one-to-one
and one-to-shareMany architecture by introduc-
ing shared decoder parameters, which forces the
model to learn a common canonical representation
for solving the semantic parsing task. Doing so,
we see further gains across all data sizes in 4. For
instance, in the 200k case, the absolute gain im-
proves from +2.0 to +2.7 . As the training data
size for the target task increases, we tend to see rel-
atively less gain from model sharing. For instance,
in 10k training cases, the absolute gain from the
one-to-one and one-to-manyshared is 1.6, this gain
reduces to 0.7 when we have 200k training data.

When we have a small amount of training data,
the one-to-shareMany provides better accuracy
compared with one-to-one. For instance, we see
1.0 and 0.6 absolute gain from one-to-one to one-
to-shareMany for 10k and 50k cases respectively.
However, no gain is observed for 100k and 200k
training cases. This confirms the hypothesis that
for small amounts of data, having a dedicated out-
put layer is helpful to guide the training.

Transfer learning works best when the source
data is large, thereby allowing the smaller task to
leverage the rich representation of the larger task.

53

90

85

80

75

70

independent One-to-many One-to-one One-to-shareMany

+2.8 +3.4
+4.4

+1.0 +1.3 +1.9
+1.2

+2.0 +1.7
+2.0

+2.7 +2.7

Accuracy (%)

Figure 4: Accuracy for AlexaMRL.

However, as the training data size increases, the
accuracy gains from the shared architectures be-
come smaller – the largest gain of 4.4% absolute
is observed in the 10K setting, but as the data
increases to 200K the improvements are almost
halved to about 2.7%.

In Table 1, we summarize the numbers of pa-
rameters in each of the four model architectures
and their step time.5 As expected, we see com-
parable training time for one-to-many and one-to-
shareMany, but 10% step time increase for one-
to-one. We also see that one-to-one and one-
to-shareMany have similar number of parameter,
which is about 15% smaller than one-to-many due
to the sharing of weights. The one-to-shareMany
architecture is able to get the increased sharing
while still maintaining reasonable training speed
per step-size.

We also test the accuracy of EviMRL with the
transfer learning framework. To our surprise, the
EviMRL task also benefits from the AlexMRL
task. We observe an absolute increase of accu-

5In our experiment, it is the training time for a 128 size
minibatches update on Nvidia Tesla K80 GPU

Model architecture param. size step time

independent 15 million 0.51
one-to-many 33 million 0.66
one-to-one 28 million 0.71
one-to-shareMany 28 million 0.65

Table 1: parameter size and training time compar-
ision for independent and multi-task models

racy of 1.3% over the EviMRL baseline.6 This ob-
servation reinforces the hypothesis that combining
data from different semantic formalisms helps the
generalization of the model by capturing common
sub-structures involved in solving semantic pars-
ing tasks across multiple formalisms.

4.3 Transfer Learning Experiments on ATIS
Here, we apply the described transfer learning se-
tups to the ATIS semantic parsing task (Zettle-
moyer and Collins, 2007). We use a single GRU
layer of 128 hidden states to train the independent
model. During transfer learning, we increase the
model size to two hidden layers each with 512 hid-

6The baseline is at 90.9% accuracy for the single task
sequence-to-sequence model

54

den states. We adjust the minibatch size to 20 and
dropout rate to 0.2 for independent model and 0.7
for multi-task model. We post-process the model
output, balancing the braces and removing dupli-
cates in the output. The initial learning rate has
been adjusted to 0.8 using the dev set. Here, we
only report accuracy numbers for the independent
and one-to-shareMany frameworks. Correctness is
based on denotation match at utterance level. We
summarize all the results in Table 2.

System Test accuracy

Previous work
Zettlemoyer and Collins (2007) 84.6
Kwiatkowski et al. (2011) 82.8
Poon (2013) 83.5
Zhao and Huang (2014) 84.2
Jia and Liang (2016) 83.3
Dong and Lapata (2016) 84.2

Our work
Independent model 77.2
+ WSJ constituency parsing 79.7
+ EviMRL semantic parsing 84.2

Table 2: Accuracy on ATIS

Our independent model has an accuracy of
77.2%, which is comparable to the published base-
line of 76.3% reported in Jia and Liang (2016) be-
fore their data recombination. To start with, we
first consider using a related but complementary
task – syntactic constituency parsing, to help im-
prove the semantic parsing task. By adding WSJ
constituency parsing as an auxiliary task for ATIS,
we see a 3% relative improvement in accuracy
over the independent task baseline. This demon-
strates that the multi-task architecture is quite gen-
eral and is not constrained to using semantic pars-
ing as the auxiliary task. This is important as
it opens up the possibility of using significantly
larger training data on tasks where acquiring la-
bels is relatively easy.

We then add the EviMRL data of > 1M in-
stances to the multi-task setup as a third task,
and we see further relative improvement of 5%,
which is comparable to the published state of the
art (Zettlemoyer and Collins, 2007) and matches
the neural network setup in Dong and Lapata
(2016).

5 Conclusion

We presented sequence-to-sequence architectures
for transfer learning applied to semantic parsing.
We explored multiple architectures for multi-task
decoding and found that increased parameter shar-
ing results in improved performance especially
when the target task data has limited amounts of
training data. We observed a 1.0-4.4% absolute
accuracy improvement on our internal test set with
10k-200k training data. On ATIS, we observed a
> 6% accuracy gain.

The results demonstrate the capabilities of
sequence-to-sequence modeling to capture a
canonicalized representation between tasks, par-
ticularly when the architecture uses shared param-
eters across all its components. Furthermore, by
utilizing an auxiliary task like syntactic parsing,
we can improve the performance on the target se-
mantic parsing task, showing that the sequence-
to-sequence architecture effectively leverages the
common structures of syntax and semantics. In
future work, we want to use this architecture to
build models in an incremental manner where the
number of sub-tasks K continually grows. We
also want to explore auxiliary tasks across multi-
ple languages so we can train multilingual seman-
tic parsers simultaneously, and use transfer learn-
ing to combat labeled data sparsity.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning
Research 6(Nov):1817–1853.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrap-
ping semantic parsers from conversations. In Pro-
ceedings of the conference on empirical methods in
natural language processing. Association for Com-
putational Linguistics, pages 421–432.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Freebase

55

from question-answer pairs. In EMNLP. volume 2,
page 6.

Qingqing Cai and Alexander Yates. 2013. Semantic
parsing Freebase: Towards open-domain semantic
parsing. In Second Joint Conference on Lexical and
Computational Semantics (* SEM). volume 1, pages
328–338.

Rich Caruana. 1998. Multitask learning. In Learning
to learn, Springer, pages 95–133.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL (1). pages 1723–
1732.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280 .

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. arXiv preprint arXiv:1505.08075 .

David Flanagan. 2008. Mql reference guide. Metaweb
Technologies, Inc page 2.

Ramanathan V Guha, Dan Brickley, and Steve Mac-
beth. 2016. Schema. org: Evolution of structured
data on the web. Communications of the ACM
59(2):44–51.

Jonathan Herzig and Jonathan Berant. 2017. Neu-
ral semantic parsing over multiple knowledge-bases.
https://arxiv.org/abs/1702.01569 .

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622 .

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
arXiv preprint arXiv:1611.04558 .

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in ccg grammar induction for semantic pars-
ing. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1512–
1523.

Percy Liang, Michael I Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1. Association
for Computational Linguistics, pages 590–599.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114 .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Hoifung Poon. 2013. Grounded unsupervised semantic
parsing. In ACL (1). Citeseer, pages 933–943.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics 2:377–392.

David A. Smith and Noah A. Smith. 2004. Bilingual
parsing with factored estimation: Using english to
parse korean. In EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems. pages 2773–2781.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM 57(10):78–85.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the national con-
ference on artificial intelligence. pages 1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In EMNLP. pages 678–687.

Luke S. Zettlemoyer and Michael Collins. 2012.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. arXiv preprint arXiv:1207.1420 .

Kai Zhao and Liang Huang. 2014. Type-driven incre-
mental semantic parsing with polymorphism. arXiv
preprint arXiv:1411.5379 .

56

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 57–68,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Modeling Large-Scale Structured Relationships with Shared Memory for
Knowledge Base Completion

Yelong Shen∗ and Po-Sen Huang∗ and Ming-Wei Chang and Jianfeng Gao
Microsoft Research, Redmond, WA, USA

{yeshen,pshuang,minchang,jfgao}@microsoft.com

Abstract

Recent studies on knowledge base comple-
tion, the task of recovering missing relation-
ships based on recorded relations, demon-
strate the importance of learning embed-
dings from multi-step relations. However,
due to the size of knowledge bases, learn-
ing multi-step relations directly on top of
observed triplets could be costly. Hence, a
manually designed procedure is often used
when training the models. In this paper, we
propose Implicit ReasoNets (IRNs), which
is designed to perform multi-step inference
implicitly through a controller and shared
memory. Without a human-designed infer-
ence procedure, IRNs use training data to
learn to perform multi-step inference in an
embedding neural space through the shared
memory and controller. While the infer-
ence procedure does not explicitly operate
on top of observed triplets, our proposed
model outperforms all previous approaches
on the popular FB15k benchmark by more
than 5.7%.

1 Introduction

Knowledge bases such as WordNet (Fellbaum,
1998), Freebase (Bollacker et al., 2008), or
Yago (Suchanek et al., 2007) contain many real-
world facts expressed as triples, e.g., (Bill
Gates, FOUNDEROF, Microsoft). These
knowledge bases are useful for many downstream
applications such as question answering (Berant
et al., 2013; Yih et al., 2015) and information ex-
traction (Mintz et al., 2009). However, despite the
formidable size of knowledge bases, many impor-
tant facts are still missing. For example, West et al.
(2014) showed that 21% of the 100K most frequent
∗These authors contributed equally.

PERSON entities have no recorded nationality in
a recent version of Freebase. We seek to infer
unknown entities based on the observed entities
and relations. Thus, the knowledge base comple-
tion (KBC) task has emerged an important open
research problem (Nickel et al., 2011).

Neural-network based methods have been very
popular for solving the KBC task. Following Bor-
des et al. (2013), one of the most popular ap-
proaches for KBC is to learn vector-space repre-
sentations of entities and relations during training,
and then apply linear or bi-linear operations to in-
fer the missing relations at test time. However,
several recent papers demonstrate limitations of
prior approaches relying upon vector-space models
alone (Guu et al., 2015; Toutanova et al., 2016; Lin
et al., 2015a). By themselves, there is no straight-
forward way to capture the structured relationships
between multiple triples adequately. For example,
assume that we want to fill in the missing rela-
tion for the triple (Obama, NATIONALITY, ?), a
multi-step search procedure might be needed to
discover the evidence in the observed triples such
as (Obama, BORNIN, Hawaii) and (Hawaii,
PARTOF, U.S.A). To address this issue, Guu et al.
(2015); Toutanova et al. (2016); Neelakantan et al.
(2015); Das et al. (2016); Lin et al. (2015a) pro-
pose different approaches of injecting structured
information based on the human-designed infer-
ence procedure (e.g., random walk) that directly
operates on the observed triplets. Unfortunately,
due to the size of knowledge bases, these newly
proposed approaches suffer from some limitations,
as most paths are not informative for inferring miss-
ing relations, and it is prohibitive to consider all
possible paths during the training time.

In this paper, we propose Implicit ReasoNets
(IRNs) that take a different approach from prior
work on KBC by addressing the challenges of per-
forming multi-step inference through the design of

57

Training Samples from Knowledge Graph
(Obama, BornIn, ?) -> (Hawaii)
(Hawaii, PartOf, ?) -> (USA)

(Obama, Citizenship, ?)

Target: (USA)

Share Memory

Controller

st
DecoderEncoderEncoder

P(stop|st)

1- P(stop|st)

Figure 1: An overview of the IRN for KBC tasks.

controller and shared memory. We design a shared
memory component to store KB information im-
plicitly. That is, the model needs to determine what
information it should store. Moreover, instead of
explicitly manipulating the observed triples based
on the human-designed inference procedure, the
proposed model learns the multi-step inference pro-
cedure implicitly, i.e., without human intervention.
Specifically, our model makes the prediction sev-
eral times while forming different intermediate rep-
resentations along the way. The controller deter-
mines how many steps the model should proceed
given an input. At each step, a new representation
is formed by taking the current representation and
a context vector generated by accessing the shared
memory. The detailed process is introduced in Sec-
tion 3.3 and an overview of the model is shown in
Figure 1.

The main contributions of our paper are as fol-
lows:

• We propose Implicit ReasoNets (IRNs),
which use a shared memory guided by a con-
troller to model multi-step structured relation-
ships implicitly.

• We evaluate IRNs and demonstrate that our
proposed model achieves the state-of-the-art
results on the popular FB15k benchmark, sur-
passing prior approaches by more than 5.7%.

• Our analysis shows that the multi-step in-
ference is crucial to the performance of our
model.

2 Knowledge Base Completion Task

The goal of Knowledge Base Completion (KBC)
tasks is to predict a head or a tail entity given the
relation type and the other entity, i.e. predicting
the head entity h given a triplet (?, R,t) with re-
lation R and tail entity t, or predicting the tail
entity t given a triplet (h, R,?) with head entity h
and relation R, where ? denotes the missing entity.

Early work on KBC focuses on learning symbolic
rules. Schoenmackers et al. (2010) learns infer-
ence rules from a sequence of triplets, e.g., (X,
COUNTRYOFHEADQUARTERS, Y) is implied by
(X, ISBASEDIN, A) and (A, STATELOCATEDIN, B)
and (B, COUNTRYLOCATEDIN, Y). However, enu-
merating all possible relations is intractable when
the knowledge base is large, since the number of
distinct sequences of triplets increases rapidly with
the number of relation types. Also, the rules-based
methods cannot be generalized to paraphrase alter-
nations.

Recent approaches (Bordes et al., 2013; Socher
et al., 2013) achieve better generalization by operat-
ing on embedding representations, where the vector
similarity can be regarded as semantic similarity.

In the evaluation, models compute the similar-
ity between the output prediction and all entities.
Mean rank and precision of the target entity are
used as metrics for evaluation.

3 Proposed Model

Our proposed model uses the same setup as in the
embedding type of approaches (Bordes et al., 2013;
Socher et al., 2013), i.e., the model first takes a
triplet with a missing entity, (h, R,?), as input,
then maps the input into the neural space through
embeddings, and finally outputs a prediction vector
of the missing entity. Given that our model is a neu-
ral model, we use the encoder module to transform
the input triplet (h, R,?) to a continuous represen-
tation. For generating the prediction results, the
decoder module takes the generated continuous rep-
resentation and outputs a predicted vector, which
can be used to find the nearest entity embedding.
Basically, we use encoder and decoder modules
to convert the tasks between symbolic space and
neural space.

The main differences between our model and
previous proposed models is that we make the pre-
diction several times while forming multiple in-
termediate continuous representations along the
way. Given an intermediate representation, the con-
troller judges if the representation encodes enough
information for us to produce the output prediction
or not. If the controller agrees, we produce the
current prediction as our final output. Otherwise,
the controller generates a new continuous repre-
sentation by taking current representation and a
context vector generated by accessing the shared
memory. Then the new presentation will be fed into

58

Controller

St St+1 St+2

Xt

P(stop|St)

False

fatt(St,M) Xt+1fatt(St+1,M)

False

Shared Memory

Attention

Termination

Decoder fo(St+2)

Ot+2

M

(USA)

Encoder

(Obama, Citizenship, ?)

True
P(stop|St+1) P(stop|St+1)

Figure 2: A running example of the IRN architecture. Given

the input (Obama,CITIZENSHIP,?), the model iteratively re-

formulates the input vector via the current input vector and

the attention vector over the shared memory, and determines

to stop when an answer is found.

the controller, and the whole process is performed
repeatedly until the controller stops the process.
Note that the number of steps varies according to
the complexity of each example.

3.1 Inference
Encoder/Decoder Given an input (h, R,?), the
encoder module retrieves the entity h and relation
R embeddings from an embedding matrix, and then
concatenates the two vectors as the intermediate
representation s1.

The decoder module outputs a prediction vector
fo(st) = tanh(Wost + bo) based on the interme-
diate representation st, which is a nonlinear projec-
tion from the controller hidden state and Wo and bo
are the weight matrix and bias vector, respectively.
Wo is a k-by-n matrix, where k is the number of
the possible entities, and n is the dimension of the
hidden vector st.

Shared Memory The shared memory is denoted
as M = {mi}|M |i=1, which consists of a list of vec-
tors. During training, the shared memory, which
is shared across all training instances, is first ran-
domly initialized and then is jointed learned with
the controller on training data.

Controller The controller has two roles in our
model. First, it needs to judge if the process should
be stopped. If yes, the output will be generated.
Otherwise, it needs to generate a new represen-

tation based on previous representation and the
context vector generated from shared memory. The
controller is a recurrent neural network and controls
the process by keeping internal state sequences to
track the current search process and history. The
controller uses an attention mechanism to fetch in-
formation from relevant memory vectors inM , and
decides if the model should output the prediction
or continue to update the input vector in the next
step.

To judge the process should be continued or not,
the model estimates P (stop|st) by a logistical
regression module: sigmoid(Wcst + bc), where
the weight matrixWc and bias vector bc are learned
during training. With probability P (stop|st), the
process will be stopped, and the decoder will be
called to generate the output.

With probability 1−P (stop|st), the controller
needs to generate the next representation st+1 =
RNN(st, xt). The attention vector xt at t-th step is
generated based on the current internal state st and
the shared memory M . Specifically, the attention
score at,i on a memory vector mi given a state st
is computed as

at,i ∝ λ cos(W1mi,W2st),

where λ is set to 10 in our experiments and the
weight matrices W1 and W2 are learned during
training. The attention vector xt can be written as
xt = fatt(st,M) =

∑|M |
i at,imi.

Overall Process The inference process is for-
mally described in Algorithm 1. Given input
(Obama, NATIONALITY, ?), the encoder mod-
ule converts it to a vector s1 by concatenating
entity/relation embedding lookup. Second, at
step t, with probability P (stop|st), model out-
puts the prediction vector oi. With probability
1 − P (stop|st), the state si+1 is updated based
on the previous state si and the vector xt generated
by performing attention over the shared memory.

We iterate the process till a predefined maximum
step Tmax. At test time, the model outputs a predic-
tion oj where the step j has the maximum termina-
tion probability. Note that the overall framework
is generic to different applications by tailoring the
encoder/decoder to a target application. An ex-
ample of shortest path synthesis task is shown in
Appendix B.

59

Algorithm 1 Inference Process of IRNs
Lookup entity and relation embeddings, h and r.
Set s1 = [h, r] . Encoder
while True do

u ∼ [0, 1]
if u > P (stop|st) then

xt = fatt(st,M) . Access Memory
st+1 = RNN(st, xt), t← t+ 1

else
Generate output ot = fo(st) . Decoder
break . Stop

end if
end while

3.2 Training Objectives

In this section, we introduce the training objectives
to train our model. While our process is stochastic,
the model mainly needs to decide the number of
steps for generating the intermediate representa-
tions for each example. Since the number of steps
the model should take for each example is unknown
in the training data, we optimize the expected re-
ward directly, motivated by the REINFORCE algo-
rithm (Williams, 1992).

The expected reward at step t can be obtained
as follows. At t-step, given the representation
vector st, the model generates the output score
ot as fo(st). We convert the output score to a
probability by the following steps. The probabil-
ity of selecting a prediction ŷ ∈ D is approxi-
mated as p(ŷ|ot) = exp(−γd(ot,ŷ))∑

yk∈D exp(−γd(ot,yk)) , where

d(o, y) = ‖o− y‖1 is the L1 distance between the
output o and the target entity y, and D is the set of
all possible entities. In our experiments, we set γ to
5 and sample 20 negative examples in D to speed
up training. Assume that ground truth target entity
embedding is y∗, the expected reward at time t is:

J(st|θ) =
∑
ŷ

R(ŷ)
exp(−γd(ot, ŷ))∑
ȳ∈D exp(−γd(o, ȳ))

=
exp(−γd(ot, y∗))∑
ȳ∈D exp(−γd(o, ȳ))

,

where R is the reward function, and we assign the
reward to be 1 when we make a correct prediction
on the target entity, and 0 otherwise.

Next, we can calculate the reward by summing
them over each step. The overall probability of
model terminated at time t is Πt−1

i=1(1−vi)vt, where
vi = P (stop|si, θ). Therefore, the overall objec-

tive function can be written as

J(θ) =
Tmax∑
t=1

Πt−1
i=1(1− vi)vtJ(st|θ). (1)

Then, the parameters can be updated through back-
propagation.

3.3 Motivating Examples

We now describe the motivating examples to ex-
plain the design of shared memory that implicitly
stores KB information and the design of the con-
troller that implicitly learns the inference proce-
dure.

Shared Memory Suppose, in a KBC task, the
input is (Obama, NATIONALITY, ?) and the
model is required to answer the missing entity (an-
swer: U.S.A). Our model can learn to utilize and
store information in the shared memory through
the controller. When a new information from a
new instance is received (e.g., (Obama, BORNIN,
Hawaii)), the model first uses its controller to
find relevant information (e.g., (Hawaii, PARTOF,
U.S.A)). If the relevant information is not found,
the model learns to store the information to mem-
ory vectors by gradient update in order to answer
the missing entity correctly. Due to the limited size
of the shared memory, the model cannot store all
new information explicitly. Thus, the model needs
to learn to utilize the shared memory efficiently
to lower the training loss. If a related information
from a new instance is received, the model learns
to do inference by utilizing the controller to go over
existing memory vectors iteratively. In this way,
the model could learn to do inference and corre-
late training instances via memory cells without
explicitly storing new information.

Controller The design of the controller allows
the model to iteratively reformulate its represen-
tation through incorporating context information
retrieved from the shared memory. Without ex-
plicitly providing human-designed inference pro-
cedure, during the iterative progress, the controller
needs to explore the multi-step inference procedure
on its own. Suppose a given input triplet is not able
to be resolved in one step. The controller needs to
utilize its reformulation capability to explore differ-
ent representations and make a prediction correctly
in order to lower the training loss.

60

Table 1: The knowledge base completion (link prediction) results on WN18 and FB15k.

Model Additional Information WN18 FB15k

Hits@10 (%) MR Hits@10 (%) MR
SE (Bordes et al., 2011) NO 80.5 985 39.8 162
Unstructured (Bordes et al., 2014) NO 38.2 304 6.3 979
TransE (Bordes et al., 2013) NO 89.2 251 47.1 125
TransH (Wang et al., 2014) NO 86.7 303 64.4 87
TransR (Lin et al., 2015b) NO 92.0 225 68.7 77
CTransR (Lin et al., 2015b) NO 92.3 218 70.2 75
KG2E (He et al., 2015) NO 93.2 348 74.0 59
TransD (Ji et al., 2015) NO 92.2 212 77.3 91
TATEC (García-Durán et al., 2015) NO - - 76.7 58
NTN (Socher et al., 2013) NO 66.1 - 41.4 -
DISTMULT (Yang et al., 2014) NO 94.2 - 57.7 -
STransE (Nguyen et al., 2016) NO 94.7 (93) 244 (206) 79.7 69

RTransE (García-Durán et al., 2015) Path - - 76.2 50
PTransE (Lin et al., 2015a) Path - - 84.6 58
NLFeat (Toutanova et al., 2015) Node + Link Features 94.3 - 87.0 -
Random Walk (Wei et al., 2016) Path 94.8 - 74.7 -

IRN NO 95.3 249 92.7 38

Table 2: The performance of IRNs with different
memory sizes and inference steps on FB15k, where
|M | and Tmax represent the number of memory
vectors and the maximum inference step, respec-
tively.

|M | Tmax FB15k
Hits@10 (%) MR

64 1 80.7 55.7
64 2 87.4 49.2
64 5 92.7 38.0
64 8 88.8 32.9

32 5 90.1 38.7
64 5 92.7 38.0

128 5 92.2 36.1
512 5 90.0 35.3
4096 5 88.7 34.7

4 Experimental Results
In this section, we evaluate the performance of
our model on the benchmark FB15k and WN18
datasets for KBC (Bordes et al., 2013). These
datasets contain multi-relations between head and
tail entities. Given a head entity and a relation, the
model produces a ranked list of the entities accord-
ing to the score of the entity being the tail entity
of this triple. To evaluate the ranking, we report
mean rank (MR), the mean of rank of the correct
entity across the test examples, and hits@10, the
proportion of correct entities ranked in the top-10
predictions. Lower MR or higher hits@10 indi-
cates a better prediction performance. We follow
the evaluation protocol in Bordes et al. (2013) to re-
port filtered results, where negative examplesN are

removed from the dataset. In this case, we avoid
some negative examples being valid and ranked
above the target triplet.

We use the same hyper-parameters of our model
for both FB15k and WN18 datasets. Entity em-
beddings (which are not shared between input and
output modules) and relation embedding are both
100-dimensions. We use the encoder module and
decoder module to encode input entities and rela-
tions, and output entities, respectively. There are 64
memory vectors with 200 dimensions each, initial-
ized by random vectors with unit L2-norm. We use
single-layer GRU with 200 cells as the search con-
troller. We set the maximum inference step Tmax
of the IRN to 5. We randomly initialize all model
parameters, and use SGD as the training algorithm
with mini-batch size of 64. We set the learning rate
to a constant number, 0.01. To prevent the model
from learning a trivial solution by increasing entity
embeddings norms, we follow Bordes et al. (2013)
to enforce the L2-norm of the entity embeddings
as 1. We use hits@10 as the validation metric for
the IRN. Following the work (Lin et al., 2015a),
we add reverse relations into the training triplet set
to increase the training data.

Following Nguyen et al. (2016), we divide the
results of previous work into two groups. The first
group contains the models that directly optimize
a scoring function for the triples in a knowledge
base without using extra information. The sec-
ond group of models make uses of additional in-
formation from multi-step relations. For example,
RTransE (García-Durán et al., 2015) and PTransE

61

Table 3: Hits@10 (%) in the relation category on FB15k. (M stands for Many)

Model Predicting head h Predicting tail t
1-1 1-M M-1 M-M 1-1 1-M M-1 M-M

SE (Bordes et al., 2011) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
Unstructured (Bordes et al., 2014) 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
TransE (Bordes et al., 2013) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (Wang et al., 2014) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR (Lin et al., 2015b) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
CTransR (Lin et al., 2015b) 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8
KG2E (He et al., 2015) 92.3 94.6 66.0 69.6 92.6 67.9 94.4 73.4
TransD (Ji et al., 2015) 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2
TATEC (García-Durán et al., 2015) 79.3 93.2 42.3 77.2 78.5 51.5 92.7 80.7
STransE (Nguyen et al., 2016) 82.8 94.2 50.4 80.1 82.4 56.9 93.4 83.1
PTransE (Lin et al., 2015a) 91.0 92.8 60.9 83.8 91.2 74.0 88.9 86.4
IRN 87.2 96.1 84.8 92.9 86.9 90.5 95.3 94.1

(Lin et al., 2015a) models are extensions of the
TransE (Bordes et al., 2013) model by explicitly ex-
ploring multi-step relations in the knowledge base
to regularize the trained embeddings. The NLFeat
model (Toutanova et al., 2015) is a log-linear model
that makes use of simple node and link features.

Table 1 presents the experimental results. Ac-
cording to the table, our model significantly out-
performs previous baselines, regardless of whether
previous approaches use additional information or
not. Specifically, on FB15k, the MR of our model
surpasses all previous results by 12, and our hit@10
outperforms others by 5.7%. On WN18, the IRN
obtains the highest hit@10 while maintaining simi-
lar MR results compared to previous work.∗

To better understand the behavior of IRNs, we
report the results of IRNs with different memory
sizes and different Tmax on FB15k in Table 2. We
find the performance of IRNs increases signifi-
cantly if the number of inference step increases.
Note that an IRN with Tmax = 1 is the case that
an IRN without the shared memory. Interestingly,
given Tmax = 5, IRNs are not sensitive to mem-
ory sizes. In particular, larger memory always im-
proves the MR score, but the best hit@10 is ob-
tained by |M | = 64 memory vectors. A possible
reason is that the best memory size is determined
by the complexity of the tasks.

We evaluate hits@10 results on FB15k with re-
spect to the relation categories. Following the eval-
uation in Bordes et al. (2013), we categorize the
relations according to the cardinalities of their as-
sociated head and tail entities in four types: 1-1,
∗Nguyen et al. (2016) reported two results on WN18,

where the first one is obtained by choosing to optimize
hits@10 on the validation set, and second one is obtained
by choosing to optimize MR on the validation set. We list
both of them in Table 1.

1-Many, Many-1, and Many-Many. A given re-
lation is 1-1 if a head entity can appear with at
most one tail entity, 1-Many if a head entity can
appear with many tail entities, Many-1 if multi-
ple heads can appear with the same tail entity, and
Many-Many if multiple head entities can appear
with multiple tail entities. The detailed results are
shown in Table 3. The IRN significantly improves
the hits@10 results in the Many-1 category on
predicting the head entity (18.8%), the 1-Many
category on predicting the tail entity (16.5%), and
the Many-Many category (over 8% in average).

In order to show the inference procedure deter-
mined by IRNs, we map the representation st back
to human-interpretable entity and relation names
in the KB. In Table 4, we show a randomly sam-
pled example with its top-3 closest triplets (h, R,
?) in terms of L2-distance, and top-3 answer pre-
dictions along with the termination probability at
each step. Throughout our observation, the in-
ference procedure is quite different from the tra-
ditional inference chain that people designed in
the symbolic space (Schoenmackers et al., 2010).
The potential reason is that IRNs operate in the
neural space. Instead of connecting triplets that
share exactly the same entity as in the symbolic
space, IRNs update the representations and con-
nects other triplets in the semantic space instead.
As we can observe in the examples of Table 4, the
model reformulates the representation st at each
step and gradually increases the ranking score of
the correct tail entity with higher termination prob-
ability during the inference process. In the last step
of Table 4, the closest tuple (Phoenix Suns,
/BASKETBALL_ROSTER_POSITION/POSITION) is
actually within the training set with a tail entity
Forward-center, which is the same as the tar-

62

Table 4: Interpret the state st in each step via finding the closest (entity, relation) tuple, and the corre-
sponding the top-3 predictions and termination probability. “Rank” stands for the rank of the target entity
and “Term. Prob.” stands for termination probability.

Input: (Milwaukee Bucks, /BASKETBALL_ROSTER_POSITION/POSITION)
Target: Forward-center
Step Term. Prob. Rank Top 3 Entity, Relation/Prediction

1 6.85e-6 5

(Entity, Relation)
1. (Milwaukee Bucks, /BASKETBALL_ROSTER_POSITION/POSITION)
2. (Milwaukee Bucks, /SPORTS_TEAM_ROSTER/POSITION)
3. (Arizona Wildcats men’s basketball,

/BASKETBALL_ROSTER_POSITION/POSITION)

Prediction
1. Swingman
2. Punt returner
3. Return specialist

2 0.012 4

(Entity, Relation)
1. (Phoenix Suns, /BASKETBALL_ROSTER_POSITION/POSITION)
2. (Minnesota Golden Gophers men’s basketball,

/BASKETBALL_ROSTER_POSITION/POSITION)
3. (Sacramento Kings, /BASKETBALL_ROSTER_POSITION/POSITION)

Prediction
1. Swingman
2. Sports commentator
3. Wide receiver

3 0.987 1

(Entity, Relation)
1. (Phoenix Suns, /BASKETBALL_ROSTER_POSITION/POSITION)
2. (Minnesota Golden Gophers men’s basketball,

/BASKETBALL_ROSTER_POSITION/POSITION)
3. (Sacramento Kings, /BASKETBALL_ROSTER_POSITION/POSITION)

Prediction
1. Forward-center
2. Swingman
3. Cabinet of the United States

get entity. Hence, the whole inference process can
be thought as the model iteratively reformulates the
representations in order to minimize its distance to
the target entity in neural space.

To understand what the model has learned in
the shared memory in the KBC tasks, in Table 5,
we visualize the shared memory in an IRN trained
from FB15k. We compute the average attention
scores of each relation type on each memory cell.
In the table, we show the top 8 relations, ranked
by the average attention scores, of some memory
cells. These memory cells are activated by certain
semantic patterns within the knowledge graph. It
suggests that the shared memory can efficiently
capture the relationships implicitly. We can still see
a few noisy relations in each clustered memory cell,
e.g., “bridge-player-teammates/teammate” relation
in the “film” memory cell, and “olympic-medal-
honor/medalist” in the “disease” memory cell.

We provide some more IRN prediction examples
at each step from FB15k as shown in Appendix
A. In addition to the KBC tasks, we construct a
synthetic task, shortest path synthesis, to evaluate
the inference capability over a shared memory as
shown in the Appendix B.

5 Related Work
Link Prediction and Knowledge Base Comple-
tion Given that R is a relation, h is the head entity,
and t is the tail entity, most of the embedding mod-
els for link prediction focus on finding the scoring
function fr(h,t) that represents the implausibility
of a triple. (Bordes et al., 2011, 2014, 2013; Wang
et al., 2014; Ji et al., 2015; Nguyen et al., 2016).
In many studies, the scoring function fr(h,t) is
linear or bi-linear. For example, in TransE (Bor-
des et al., 2013), the function is implemented as
fr(h,t) = ‖h + r− t‖, where h, r and t are the
corresponding vector representations.

Recently, different studies (Guu et al., 2015; Lin
et al., 2015a; Neelakantan et al., 2015; Das et al.,
2016; Toutanova et al., 2016) demonstrate the im-
portance for models to also learn from multi-step
relations. Learning from multi-step relations in-
jects the structured relationships between triples
into the model. However, this also poses a tech-
nical challenge of considering exponential num-
bers of multi-step relationships. Prior approaches
address this issue by designing path-mining algo-
rithms (Lin et al., 2015a) or considering all possi-
ble paths using a dynamic programming algorithm
with the restriction of using linear or bi-linear mod-
els only (Toutanova et al., 2016). Neelakantan et al.

63

Table 5: Shared memory visualization in an IRN trained on FB15k, where we show the top 8 relations,
ranked by the average attention scores, of some memory cells. The first row in each column represents the
interpreted relation.

“family” “person” “film”, “award”
lived-with/participant person/gender film-genre/films-in-this-genre
breakup/participant person/nationality film/cinematography
marriage/spouse military-service/military-person cinematographer/film
vacation-choice/vacationer government-position-held/office-holder award-honor/honored-for
support/supported-organization leadership/role netflix-title/netflix-genres
marriage/location-of-ceremony person/ethnicity director/film
canoodled/participant person/parents award-honor/honored-for
dated/participant person/place-of-birth bridge-player-teammates/teammate

“disease” “sports” “tv program”
disease-cause/diseases sports-team-roster/team tv-producer-term/program
crime-victim/crime-type basketball-roster-position/player tv-producer-term/producer-type
notable-person-with-medical-condition/condition basketball-roster-position/player tv-guest-role/episodes-appeared-in
cause-of-death/parent-cause-of-death baseball-player/position-s tv-program/languages
disease/notable-people-with-this-condition appointment/appointed-by tv-guest-role/actor
olympic-medal-honor/medalist batting-statistics/team tv-program/spin-offs
disease/includes-diseases basketball-player-stats/team award-honor/honored-for
disease/symptoms person/profession tv-program/country-of-origin

(2015) and Das et al. (2016) use an RNN to model
the multi-step relationships over a set of random
walk paths on the observed triplets. Toutanova and
Chen (2015) shows the effectiveness of using sim-
ple node and link features that encode structured
information on FB15k and WN18. In our work,
the IRN outperforms prior results and shows that
similar information can be captured by the model
without explicitly designing inference procedures
on the observed triplets. Our model can be regarded
as a recursive function that iteratively update the
representation in such a way that its distance to the
target entity in the neural space is minimized, i.e.,
‖fIRN(h, r)− t‖.

Studies such as (Riedel et al., 2013) show that
incorporating textual information can further im-
prove the KBC tasks. It would be interesting to
incorporate the information outside the knowledge
bases in our model in the future.

Neural Frameworks Sequence-to-sequence
models (Sutskever et al., 2014; Cho et al., 2014)
have shown to be successful in many applications
such as machine translation and conversation mod-
eling (Sordoni et al., 2015). While sequence-to-
sequence models are powerful, recent work has
shown the necessity of incorporating an external
memory to perform inference in simple algorithmic
tasks (Graves et al., 2014, 2016).

Compared IRNs to Memory Networks
(MemNN) (Weston et al., 2014; Sukhbaatar et al.,
2015; Miller et al., 2016) and Neural Turing
Machines (NTM) (Graves et al., 2014, 2016), the

biggest difference between our model and the
existing frameworks is the controller and the use of
the shared memory. We follow Shen et al. (2017)
for using a controller module to dynamically
perform a multi-step inference depending on the
complexity of the instance. MemNN and NTM
explicitly store inputs (such as graph definition,
supporting facts) in the memory. In contrast, in
IRNs, we do not explicitly store all the observed
inputs in the shared memory. Instead, we directly
operate on the shared memory, which modeling the
structured relationships implicitly. During training,
we randomly initialize the memory and update the
memory jointly with the controller with respect
to task-specific objectives via back-propagation,
instead of explicitly defining memory write
operations as in NTM.

6 Conclusion

In this paper, we propose Implicit ReasoNets
(IRNs), which perform inference over a shared
memory that stores large-scale structured relation-
ships implicitly. The inference process is guided by
a controller to access the memory that is shared
across instances. We demonstrate and analyze
the multi-step inference capability of IRNs in the
knowledge base completion tasks. Our model, with-
out using any explicit knowledge base information
in the inference procedure, outperforms all prior
approaches on the popular FB15k benchmark by
more than 5.7%.

For future work, we aim to further extend IRNs

64

in two ways. First, inspired from Ribeiro et al.
(2016), we would like to develop techniques to
exploit ways to generate human understandable
reasoning interpretation from the shared memory.
Second, we plan to apply IRNs to infer the relation-
ships in unstructured data such as natural language.
For example, given a natural language query such
as “are rabbits animals?”, the model can infer a
natural language answer implicitly in the shared
memory without performing inference directly on
top of huge amounts of observed sentences such
as “all mammals are animals” and “rabbits are ani-
mals”. We believe that the ability to perform infer-
ence implicitly is crucial for modeling large-scale
structured relationships.

References
Jonathan Berant, Andrew Chou, Roy Frostig, and Percy

Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of EMNLP.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proceedings of SIGMOD-08.
pages 1247–1250.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning 94(2):233–259.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems. pages 2787–2795.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelli-
gence. pages 301–306.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Rajarshi Das, Arvind Neelakantan, David Belanger,
and Andrew McCallum. 2016. Chains of reasoning
over entities, relations, and text using recurrent neu-
ral networks. arXiv preprint arXiv:1607.01426 .

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. MIT Press.

Alberto García-Durán, Antoine Bordes, and Nicolas
Usunier. 2015. Composing relationships with trans-
lations. In EMNLP. pages 286–290.

Alberto García-Durán, Antoine Bordes, Nicolas
Usunier, and Yves Grandvalet. 2015. Combining
two and three-way embeddings models for link pre-
diction in knowledge bases. CoRR abs/1506.00999.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural network
with dynamic external memory. Nature .

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. arXiv
preprint arXiv:1506.01094 .

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao.
2015. Learning to represent knowledge graphs with
gaussian embedding. In Proceedings of the 24th
ACM International on Conference on Information
and Knowledge Management. pages 623–632.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In ACL. pages 687–696.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015a. Modeling rela-
tion paths for representation learning of knowledge
bases. In Proceedings of the Conference on Em-
pirical Methods for Natural Language Processing
(EMNLP).

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning entity and relation em-
beddings for knowledge graph completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAI’15, pages 2181–2187.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. In EMNLP.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of ACL-
IJCNLP-09. pages 1003–1011.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional vector space mod-
els for knowledge base completion. arXiv preprint
arXiv:1504.06662 .

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016. STransE: a novel embedding model
of entities and relationships in knowledge bases. In
NAACL. pages 460–466.

65

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings
of the 28th International Conference on Machine
Learning. pages 809–816.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. “Why Should I Trust You?”: Ex-
plaining the Predictions of Any Classifier. In KDD.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In HLT-
NAACL. pages 74–84.

Stefan Schoenmackers, Oren Etzioni, Daniel S Weld,
and Jesse Davis. 2010. Learning first-order horn
clauses from web text. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 1088–1098.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2017. ReasoNet: Learning to stop
reading in machine comprehension. In KDD.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning With Neural
Tensor Networks For Knowledge Base Completion.
In Advances in Neural Information Processing Sys-
tems.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. arXiv preprint
arXiv:1506.06714 .

F. M. Suchanek, G. Kasneci, and G. Weikum. 2007.
Yago: A Core of Semantic Knowledge. In WWW.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in Neural Information Processing Systems. pages
2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems. pages 3104–3112.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compo-
sitionality. pages 57–66.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of text
and knowledge bases. In EMNLP.

Kristina Toutanova, Xi Victoria Lin, Scott Wen tau Yih,
Hoifung Poon, and Chris Quirk. 2016. Composi-
tional learning of embeddings for relation paths in
knowledge bases and text. In ACL.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence.
pages 1112–1119.

Zhuoyu Wei, Jun Zhao, and Kang Liu. 2016. Mining
inference formulas by goal-directed random walks.
In EMNLP.

Robert West, Evgeniy Gabrilovich, Kevin Murphy,
Shaohua Sun, Rahul Gupta, and Dekang Lin. 2014.
Knowledge base completion via search-based ques-
tion answering. In Proceedings of the 23rd Interna-
tional Conference on World Wide Web. ACM, pages
515–526.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916 .

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning 8:229–256.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. CoRR abs/1412.6575.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proc. of ACL.

66

A Inference Steps in KBC

To analyze the behavior of IRNs in each inference
step, we further pick some examples for the tail
entity prediction in Table 6. Interestingly, we ob-
served that the model can gradually increase the
ranking score of the correct tail entity during the
inference process.

B Analysis: Applying IRNs to a Shortest
Path Synthesis Task

To further understand the inference procedure of
IRNs, we construct a synthetic task, shortest path
synthesis, to evaluate the inference capability over
a shared memory. The motivations of applying our
model to this task are as follows. First, we want
to evaluate IRNs on another task requiring multi-
step inference. Second, we select the sequence
generation task so that we are able to analyze the
inference capability of IRNs in details.

In the shortest path synthesis task, as illustrated
in Figure 3, a training instance consists of a start
node and an end node (e.g., 215 ; 493) of an un-
derlying weighted directed graph that is unknown
to models. The output of each instance is the short-
est path between the given start and end nodes of
the underlying graph (e.g., 215 → 101 → 493).
Specifically, models can only observe the start-end
node pairs as input and their shortest path as output.
The whole graph is unknown to the models and the
edge weights are not revealed in the training data.
At test time, a path sequence is considered correct
if it connects the start node and the end node of
the underlying graph, and the cost of the predicted
path is the same as the optimal path.

We construct the underlying graph as follows:
on a three-dimensional unit-sphere, we randomly
generate a set of nodes. For each node, we con-
nect its K-nearest neighbors and use the euclidean
distance between two nodes to construct a graph.
We randomly sample two nodes and compute its
shortest path if it is connected between these two
nodes. Given the fact that all the sub-paths within
a shortest path are shortest paths, we incrementally
create the dataset and remove the instances which
are a sub-path of previously selected paths or are
super-set of previous selected paths. In this case,
all the shortest paths can not be answered through
directly copying from another instance. In addi-
tion, all the weights in the graph are hidden and
not shown in the training data, which increases the
difficulty of the tasks. We set k = 50 as a default

value.
Note that the task is very difficult and cannot be

solved by dynamic programming algorithms since
the weights on the edges are not revealed to the
algorithms or the models. To recover some of the
shortest paths at the test time, the model needs to
infer the correct path from the observed instances.
For example, assume that we observe two instances
in the training data, “A ; D: A→ B → G→ D”
and “B ; E: B → C → E”. In order to an-
swer the shortest path between A and E, the model
needs to infer that “A → B → C → E” is a pos-
sible path between A and E. If there are multiple
possible paths, the model has to decide which one
is the shortest one using statistical information.

In the experiments, we construct a graph with
500 nodes and we randomly assign two nodes to
form an edge. We split 20,000 instances for train-
ing, 10,000 instances for validation, and 10,000
instances for testing. We create the training and
testing instances carefully so that the model needs
to perform inference to recover the correct path.
We describe the details of the graph and data con-
struction parts in the appendix section. A sub-graph
of the data is shown in Figure 3.

For the settings of the IRN, we switch the output
module to a GRU decoder for a sequence genera-
tion task. We assign reward rT = 1 if all the pre-
diction symbols are correct and 0 otherwise. We
use a 64-dimensional embedding vector for input
symbols, a GRU controller with 128 cells, and a
GRU decoder with 128 cells. We set the maximum
inference step Tmax to 5.

We compare the IRN with two baseline ap-
proaches: dynamic programming without edge-
weight information and a standard sequence-to-
sequence model (Sutskever et al., 2014) using a
similar parameter size to our model. Without
knowing the edge weights, dynamic programming
only recovers 589 correct paths at test time. The
sequence-to-sequence model recovers 904 correct
paths. The IRN outperforms both baselines, re-
covering 1,319 paths. Furthermore, 76.9% of the
predicted paths from IRN are valid paths, where
a path is valid if the path connects the start and
end node nodes of the underlying graph. In con-
trast, only 69.1% of the predicted paths from the
sequence-to-sequence model are valid.

To further understand the inference process of
the IRN, Figure 3 shows the inference process of a
test instance. Interestingly, to make the correct pre-

67

Table 6: An inference example of FB15k dataset. Given a head entity and a relation, the predictions of
IRN in different steps associated with the corresponding termination probabilities.

Input: (Dean Koontz, /PEOPLE/PERSON/PROFESSION)
Target: Film Producer
Step Termination Prob. Answer Rank Predict top-3 entities

1 0.018 9 Author TV. Director Songwriter
2 0.052 7 Actor Singer Songwriter
3 0.095 4 Actor Singer Songwriter
4 0.132 4 Actor Singer Songwriter
5 0.702 3 Actor Singer Film Producer

Input: (War and Peace, /FILM/FILM/PRODUCED_BY)
Target: Carlo Ponti
Step Termination Prob. Answer Rank Predict top-3 entities

1 0.001 13 Scott Rudin Stephen Woolley Hal B. Wallis
2 5.8E-13 7 Billy Wilder William Wyler Elia Kazan
3 0.997 1 Carlo Ponti King Vidor Hal B. Wallis

Step Termination Distance Predictions
Probability

1 0.001 N/A 215→ 158→ 89→ 458→ 493
2 ∼0 N/A 215→ 479→ 277→ 353→ 493
3 ∼0 N/A 215→ 49→ 493
4 ∼0 0.77 215→ 140→ 493
5 0.999 0.70 215→ 101→ 493

Figure 3: An example of the shortest path synthesis dataset, given an input “215 ; 493” (Answer: 215→ 101→ 493). Note
that we only show the nodes that are related to this example here. The corresponding termination probability and prediction
results are shown in the table. The model terminates at step 5.

diction on this instance, the model has to perform
a fairly complicated inference.† We observe that
the model cannot find a connected path in the first
three steps. Finally, the model finds a valid path at
the forth step and predict the correct shortest path
sequence at the fifth step.

† In the example, to find the right path, the model needs to
search over observed instances “215 ; 448: 215→ 101→
448” and “76 ; 493: 76 → 308 → 101 → 493”, and to
figure out the distance of “140→ 493” is longer than “101→
493” (there are four shortest paths between 101 → 493 and
three shortest paths between 140→ 493 in the training set).

68

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 69–74,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Knowledge Base Completion: Baselines Strike Back

Rudolf Kadlec and Ondrej Bajgar and Jan Kleindienst
IBM Watson

V Parku 4, 140 00 Prague, Czech Republic
{rudolf kadlec, obajgar, jankle}@cz.ibm.com

Abstract

Many papers have been published on the
knowledge base completion task in the
past few years. Most of these introduce
novel architectures for relation learning
that are evaluated on standard datasets
such as FB15k and WN18. This paper
shows that the accuracy of almost all mod-
els published on the FB15k can be out-
performed by an appropriately tuned base-
line — our reimplementation of the Dist-
Mult model. Our findings cast doubt on
the claim that the performance improve-
ments of recent models are due to ar-
chitectural changes as opposed to hyper-
parameter tuning or different training ob-
jectives. This should prompt future re-
search to re-consider how the performance
of models is evaluated and reported.

1 Introduction

Projects such as Wikidata1 or earlier Free-
base (Bollacker et al., 2008) have successfully ac-
cumulated a formidable amount of knowledge in
the form of 〈entity1 - relation - entity2〉 triplets.
Given this vast body of knowledge, it would be
extremely useful to teach machines to reason over
such knowledge bases. One possible way to
test such reasoning is knowledge base completion
(KBC).

The goal of the KBC task is to fill in
the missing piece of information into an in-
complete triple. For instance, given a query
〈Donald Trump, president of, ?〉 one should pre-
dict that the target entity is USA.

More formally, given a set of entities E and a set
of binary relations R over these entities, a knowl-
edge base (sometimes also referred to as a knowl-

1https://www.wikidata.org/

edge graph) can be specified by a set of triplets
〈h, r, t〉 where h, t ∈ E are head and tail entities
respectively and r ∈ R is a relation between them.
In entity KBC the task is to predict either the tail
entity given a query 〈h, r, ?〉, or to predict the head
entity given 〈?, r, t〉.

Not only can this task be useful to test the
generic ability of a system to reason over a knowl-
edge base, but it can also find use in expanding
existing incomplete knowledge bases by deducing
new entries from existing ones.

An extensive amount of work has been pub-
lished on this task (for a review see (Nickel et al.,
2015; Nguyen, 2017), for a plain list of citations
see Table 2). Among those DistMult (Yang et al.,
2015) is one of the simplest.2 Still this paper
shows that even a simple model with proper hyper-
parameters and training objective evaluated using
the standard metric of Hits@10 can outperform 27
out of 29 models which were evaluated on two
standard KBC datasets, WN18 and FB15k (Bor-
des et al., 2013).

This suggests that there may be a huge space for
improvement in hyper-parameter tuning even for
the more complex models, which may be in many
ways better suited for relational learning, e.g. can
capture directed relations.

2 The Model

Inspired by the success of word embeddings in
natural language processing, distributional models
for KBC have recently been extensively studied.
Distributional models represent the entities and
sometimes even the relations as N -dimensional
real vectors3, we will denote these vectors by bold
font, h, r, t ∈ RN .

2We could even say too simple given that it assumes sym-
metry of all relations which is clearly unrealistic.

3Some models represent relations as matrices instead.

69

The DistMult model was introduced by Yang
et al. (2015). Subsequently Toutanova and Chen
(2015) achieved better empirical results with the
same model by changing hyper-parameters of the
training procedure and by using negative-log like-
lihood of softmax instead of L1-based max-margin
ranking loss. Trouillon et al. (2016) obtained even
better empirical result on the FB15k dataset just
by changing DistMult’s hyper-parameters.

DistMult model computes a score for each
triplet 〈h, r, t〉 as

s(h, r, t) = hT ·Wr · t =
N∑

i=1

hiriti

where Wr is a diagonal matrix with elements of
vector r on its diagonal. Therefore the model can
be alternatively rewritten as shown in the second
equality.

In the end our implementation normalizes the
scores by a softmax function. That is

P (t|h, r) =
exp(s(h, r, t))∑

t̄∈Eh,r
exp(s(h, r, t̄))

where Eh,r is a set of candidate answer entities for
the 〈h, r, ?〉 query.

3 Experiments

Datasets. In our experiments we use two stan-
dard datasets WN18 derived from WordNet (Fell-
baum, 1998) and FB15k derived from the Freebase
knowledge graph (Bollacker et al., 2008).

Method. For evaluation, we use the filtered
evaluation protocol proposed by Bordes et al.
(2013). During training and validation we trans-
form each triplet 〈h, r, t〉 into two examples: tail
query 〈h, r, ?〉 and head query 〈?, r, t〉. We train
the model by minimizing negative log-likelihood
(NLL) of the ground truth triplet 〈h, r, t〉 against
randomly sampled pool of M negative triplets
〈h, r, t′〉, t′ ∈ E \ {t} (this applies for tail queries,
head queries are handled analogically).

In the filtered protocol we rank the validation
or test set triplet against all corrupted (supposedly
untrue) triplets – those that do not appear in the
train, valid and test dataset (excluding the test set
triplet in question itself). Formally, for a query
〈h, r, ?〉 where the correct answer is t, we com-
pute the rank of 〈h, r, t〉 in a candidate set Ch,r =
{〈h, r, t′〉 : ∀t′ ∈ E} \ (Train∪V alid∪Test)∪
{〈h, r, t〉}, where Train, V alid and Test are sets

of true triplets. Head queries 〈?, r, t〉 are handled
analogically. Note that softmax normalization is
suitable under the filtered protocol since exactly
one correct triplet is guaranteed to be among the
candidates.

In our preliminary experiments on FB15k, we
varied the batch size b, embedding dimension-
ality N , number of negative samples in train-
ing M , L2 regularization parameter and learning
rate lr. Based on these experiments we fixed
lr=0.001, L2=0.0 and we decided to focus on in-
fluence of batch size, embedding dimension and
number of negative samples. For final exper-
iments we trained several models from hyper-
parameter range: N ∈ {128, 256, 512, 1024},
b ∈ {16, 32, 64, 128, 256, 512, 1024, 2048} and
M ∈ {20, 50, 200, 500, 1000, 2000}.

We train the final models using Adam (Kingma
and Ba, 2015) optimizer (lr = 0.001, β1 =
0.9, β2 = 0.999, ε = 10−8, decay = 0.0). We
also performed limited experiments with Adagrad,
Adadelta and plain SGD. Adagrad usually re-
quired substantially more iterations than ADAM
to achieve the same performance. We failed
to obtain competitive performance with Adadelta
and plain SGD. On FB15k and WN18 valida-
tion datasets the best hyper-parameter combina-
tions were N = 512, b = 2048, M = 2000
and N = 256, b = 1024, M = 1000, respec-
tively. Note that we tried substantially more hyper-
parameter combinations on FB15k than on WN18.
Unlike most previous works we do not normalize
neither entity nor relation embeddings.

To prevent over-fitting, we stop training once
Hits@10 stop improving on the validation set. On
the FB15k dataset our Keras (Chollet, 2015) based
implementation with TensorFlow (Abadi et al.,
2015) backend needed about 4 hours to converge
when run on a single GeForce GTX 1080 GPU.

Results. Besides single models, we also eval-
uated performance of a simple ensemble that av-
erages predictions of multiple models. This tech-
nique consistently improves performance of ma-
chine learning models in many domains and it
slightly improved results also in this case.

The results of our experiments together with
previous results from the literature are shown in
Table 2. DistMult with proper hyperparameters
twice achieves the second best score and once
the third best score in three out of four com-
monly reported benchmarks (mean rank (MR) and

70

Hits@10 on WN18 and FB15k). On FB15k only
the IRN model (Shen et al., 2016) shows better
Hits@10 and the ProjE (Shi and Weniger, 2017)
has better MR.

Our implementation has the best reported mean
reciprocal rank (MRR) on FB15k, however this
metric is not reported that often. MRR is a metric
of ranking quality that is less sensitive to outliers
than MR.

On WN18 dataset again the IRN model together
with R-GCN+ shows better Hits@10. However,
in MR and MRR DistMult performs poorly. Even
though DistMult’s inability to model asymmetric
relations still allows it to achieve competitive re-
sults in Hits@10 the other metrics clearly show its
limitations. These results highlight qualitative dif-
ferences between FB15k and WN18 datasets.

Interestingly on FB15k recently published mod-
els (including our baseline) that use only r and h
or t as their input outperform models that utilize
richer features such as text or knowledge base path
information. This shows a possible gap for future
improvement.

Table 1 shows accuracy (Hits@1) of several
models that reported this metric. On WN18 our
implementation performs worse than HolE and
ComplEx models (that are equivalent as shown by
Hayashi and Shimbo (2017)). On FB15k our im-
plementation outperforms all other models.

3.1 Hyper-parameter influence on FB15k

In our experiments on FB15k we found that in-
creasing the number of negative examples M had
a positive effect on performance.

Another interesting observation is that batch
size has a strong influence on final performance.
Larger batch size always lead to better results,
for instance Hits@10 improved by 14.2% abso-
lute when the batch size was increased from 16 to
2048. See Figure 1 for details.

Compared to previous works that trained Dist-
Mult on these datasets (for results see bottom of
Table 2) we use different training objective than
Yang et al. (2015) and Trouillon et al. (2017)
that optimized max margin objective and NLL
of softplus activation function (softplus(x) =
ln(1 + ex)), respectively. Similarly to Toutanova
and Chen (2015) we use NLL of softmax func-
tion, however we use ADAM optimizer instead of
RProp (Riedmiller and Braun, 1993).

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

Batch size

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

FB15k

Hits@10
Hits@1

Figure 1: Influence of batch size on Hits@10 and
Hits@1 metrics for a single model with N = 512
and M = 2000.

Method Accuracy(Hits@1)
WN18 FB15k

HolE † 93.0 40.2
DistMult ‡ 72.8 54.6
ComplEx ‡ 93.6 59.9
R-GCN+] 67.9 60.1
DistMult ensemble 78.4 79.7

Table 1: Accuracy (Hits@1) results sorted by per-
formance on FB15k. Results marked by †, ‡ and
] are from (Nickel et al., 2016), (Trouillon et al.,
2017) and (Schlichtkrull et al., 2017), respectively.
Our implementation is listed in the last row.

4 Conclusion

Simple conclusions from our work are: 1) Increas-
ing batch size dramatically improves performance
of DistMult, which raises a question whether other
models would also significantly benefit from sim-
ilar hyper-parameter tuning or different training
objectives; 2) In the future it might be better to
focus more on metrics less frequently used in this
domain, like Hits@1 (accuracy) and MRR since
for instance on WN18 many models achieve sim-
ilar, very high Hits@10, however even models
that are competitive in Hits@10 underperform in
Hits@1, which is the case of our DistMult imple-
mentation.

A lot of research focus has recently been cen-
tred on the filtered scenario which is why we de-
cided to use it in this study. An advantage is that
it is easy to evaluate. However the scenario trains
the model to expect that there is only a single cor-
rect answer among the candidates which is unre-
alistic in the context of knowledge bases. Hence

71

Method
Filtered

E
xt

ra
fe

at
ur

es

WN18 FB15k
MR H10 MRR MR H10 MRR

SE (Bordes et al., 2011) 985 80.5 - 162 39.8 -

N
on

e

Unstructured (Bordes et al., 2014) 304 38.2 - 979 6.3 -
TransE (Bordes et al., 2013) 251 89.2 - 125 47.1 -
TransH (Wang et al., 2014) 303 86.7 - 87 64.4 -
TransR (Lin et al., 2015b) 225 92.0 - 77 68.7 -
CTransR (Lin et al., 2015b) 218 92.3 - 75 70.2 -
KG2E (He et al., 2015) 331 92.8 - 59 74.0 -
TransD (Ji et al., 2015) 212 92.2 - 91 77.3 -
lppTransD (Yoon et al., 2016) 270 94.3 - 78 78.7 -
TranSparse (Ji et al., 2016) 211 93.2 - 82 79.5 -
TATEC (Garcia-Duran et al., 2016) - - - 58 76.7 -
NTN (Socher et al., 2013) - 66.1 0.53 - 41.4 0.25
HolE (Nickel et al., 2016) - 94.9 0.938 - 73.9 0.524
STransE (Nguyen et al., 2016) 206 93.4 0.657 69 79.7 0.543
ComplEx (Trouillon et al., 2017) - 94.7 0.941 - 84.0 0.692
ProjE wlistwise (Shi and Weniger, 2017) - - - 34 88.4 -
IRN (Shen et al., 2016) 249 95.3 - 38 92.7 -
RTransE (Garcı́a-Durán et al., 2015) - - - 50 76.2 -
PTransE (Lin et al., 2015a) - - - 58 84.6 -

Pa
thGAKE (Jun Feng and Zhu, 2015) - - - 119 64.8 -

Gaifman (Niepert, 2016) 352 93.9 - 75 84.2 -
Hiri (Liu et al., 2016) - 90.8 0.691 - 70.3 0.603
R-GCN+ (Schlichtkrull et al., 2017) - 96.4 0.819 - 84.2 0.696
NLFeat (Toutanova and Chen, 2015) - 94.3 0.940 - 87.0 0.822

Te
xtTEKE H (Wang and Li, 2016) 114 92.9 - 108 73.0 -

SSP (Xiao et al., 2017) 156 93.2 - 82 79.0 -
DistMult (orig) (Yang et al., 2015) - 94.2 0.83 - 57.7 0.35

N
on

eDistMult (Toutanova and Chen, 2015) - - - - 79.7 0.555
DistMult (Trouillon et al., 2017) - 93.6 0.822 - 82.4 0.654
Single DistMult (this work) 655 94.6 0.797 42.2 89.3 0.798
Ensemble DistMult (this work) 457 95.0 0.790 35.9 90.4 0.837

Table 2: Entity prediction results. MR, H10 and MRR denote evaluation metrics of mean rank, Hits@10
(in %) and mean reciprocal rank, respectively. The three best results for each metric are in bold. Addi-
tionally the best result is underlined. The first group (above the first double line) lists models that were
trained only on the knowledge base and they do not use any additional input besides the source entity and
the relation. The second group shows models that use path information, e.g. they consider paths between
source and target entities as additional features. The models from the third group were trained with addi-
tional textual data. In the last group we list various implementations of the DistMult model including our
implementation on the last two lines. Since DistMult does not use any additional features these results
should be compared to the models from the first group. “NLFeat” abbreviates Node+LinkFeat model
from (Toutanova and Chen, 2015). The results for NTN (Socher et al., 2013) listed in this table are taken
from Yang et al. (2015). This table was adapted from (Nguyen, 2017).

72

future research could focus more on the raw sce-
nario which however requires using other informa-
tion retrieval metrics such as mean average preci-
sion (MAP), previously used in KBC for instance
by Das et al. (2017).

We see this preliminary work as a small contri-
bution to the ongoing discussion in the machine
learning community about the current strong fo-
cus on state-of-the-art empirical results when it
might be sometimes questionable whether they
were achieved due to a better model/algorithm or
just by more extensive hyper-parameter search.
For broader discussion see (Church, 2017).

In light of these results we think that the field
would benefit from a large-scale empirical com-
parative study of different KBC algorithms, sim-
ilar to a recent study of word embedding mod-
els (Levy et al., 2015).

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Man, Rajat
Monga, Sherry Moore, Derek Murray, Jon Shlens,
Benoit Steiner, Ilya Sutskever, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Oriol Vinyals, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow : Large-Scale Machine
Learning on Heterogeneous Distributed Systems .

Kurt Bollacker, Colin Evans, Praveen Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Free-
base: A collaboratively created graph database
for structuring human knowledge. In Proceed-
ings of the 2008 ACM SIGMOD International
Conference on Management of Data. ACM, New
York, NY, USA, SIGMOD ’08, pages 1247–1250.
https://doi.org/10.1145/1376616.1376746.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning 94(2):233–259.

Antoine Bordes, Nicolas Usunier, Jason Weston, and
Oksana Yakhnenko. 2013. Translating Embed-
dings for Modeling Multi-Relational Data. NIPS
26:2787–2795. https://doi.org/10.1007/s13398-
014-0173-7.2.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Conference on artifi-
cial intelligence. EPFL-CONF-192344.

Francois Chollet. 2015. Keras
https://github.com/fchollet/keras/.

Kenneth Ward Church. 2017. Emerging trends:
I did it, I did it, I did it, but... Natu-
ral Language Engineering 23(03):473–480.
https://doi.org/10.1017/S1351324917000067.

Rajarshi Das, Arvind Neelakantan, David Belanger,
and Andrew Mccallum. 2017. Chains of Reasoning
over Entities, Relations, and Text using Recurrent
Neural Networks. EACL .

Christiane Fellbaum. 1998. WordNet. Wiley Online
Library.

Alberto Garcı́a-Durán, Antoine Bordes, and Nico-
las Usunier. 2015. Composing Relationships
with Translations. In Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP 2015). Lisbonne, Portugal, pages 286–290.
https://doi.org/10.18653/v1/D15-1034.

Alberto Garcia-Duran, Antoine Bordes, Nicolas
Usunier, and Yves Grandvalet. 2016. Combin-
ing Two And Three-Way Embeddings Models for
Link Prediction in Knowledge Bases. Journal
of Artificial Intelligence Research 55:715—-742.
https://doi.org/10.1613/jair.5013.

Katsuhiko Hayashi and Masashi Shimbo. 2017.
On the Equivalence of Holographic and Com-
plex Embeddings for Link Prediction pages 1–8.
http://arxiv.org/abs/1702.05563.

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao.
2015. Learning to Represent Knowledge Graphs
with Gaussian Embedding. CIKM ’15 Proceedings
of the 24th ACM International on Conference on In-
formation and Knowledge Management pages 623–
632. https://doi.org/10.1145/2806416.2806502.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge Graph Embedding
via Dynamic Mapping Matrix. Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers) pages 687–696.
http://www.aclweb.org/anthology/P15-1067.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao.
2016. Knowledge Graph Completion with Adap-
tive Sparse Transfer Matrix. Proceedings of the 30th
Conference on Artificial Intelligence (AAAI 2016)
pages 985–991.

Minlie Huang Yang Yang Jun Feng and Xiaoyan Zhu.
2015. GAKE: Graph Aware Knowledge Emeb-
dding. In Proceedings of the 27th International
Conference on Computational Linguistics (COL-
ING’16). pages 641–651.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: a
Method for Stochastic Optimization. International
Conference on Learning Representations pages 1–
13.

73

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015.
Improving Distributional Similarity with Lessons
Learned from Word Embeddings. Transactions
of the Association for Computational Linguistics
3:211–225. https://doi.org/10.1186/1472-6947-15-
S2-S2.

Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2015a.
Modeling relation paths for representation learn-
ing of knowledge bases. CoRR abs/1506.00379.
http://arxiv.org/abs/1506.00379.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015b. Learning Entity and Re-
lation Embeddings for Knowledge Graph Comple-
tion. Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence Learning pages 2181–
2187.

Qiao Liu, Liuyi Jiang, Minghao Han, Yao Liu, and
Zhiguang Qin. 2016. Hierarchical random walk in-
ference in knowledge graphs. In Proceedings of the
39th International ACM SIGIR conference on Re-
search and Development in Information Retrieval.
ACM, pages 445–454.

Dat Quoc Nguyen. 2017. An overview of
embedding models of entities and rela-
tionships for knowledge base completion
https://arxiv.org/pdf/1703.08098.pdf.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016. STransE: a novel embedding model
of entities and relationships in knowledge bases.
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
pages 460–466. https://doi.org/10.18653/v1/N16-
1054.

Maximilian Nickel, Kevin Murphy, Volker Tresp,
and Evgeniy Gabrilovich. 2015. A Review
of Relational Machine Learning for Knowledge
Graph. Proceedings of the IEEE (28):1–23.
https://doi.org/10.1109/JPROC.2015.2483592.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso
Poggio. 2016. Holographic Embeddings of
Knowledge Graphs. AAAI pages 1955–1961.
http://arxiv.org/abs/1510.04935.

Mathias Niepert. 2016. Discriminative gaifman mod-
els. In Advances in Neural Information Processing
Systems. pages 3405–3413.

Martin Riedmiller and Heinrich Braun. 1993. A direct
adaptive method for faster backpropagation learn-
ing: The rprop algorithm. In Neural Networks,
1993., IEEE International Conference on. IEEE,
pages 586–591.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2017. Modeling Relational Data with Graph Convo-
lutional Networks http://arxiv.org/abs/1703.06103.

Yelong Shen, Po-Sen Huang, Ming-Wei Chang, and
Jianfeng Gao. 2016. Implicit reasonet: Model-
ing large-scale structured relationships with shared
memory. arXiv preprint arXiv:1611.04642 .

Baoxu Shi and Tim Weniger. 2017. ProjE : Embedding
Projection for Knowledge Graph Completion. AAAI
.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning With Neural
Tensor Networks for Knowledge Base Completion.
Proceedings of the Advances in Neural Information
Processing Systems 26 (NIPS 2013) .

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. Proceedings of the 3rd Workshop on Con-
tinuous Vector Space Models and their Composition-
ality pages 57–66.

Théo Trouillon, Christopher R. Dance, Johannes
Welbl, Sebastian Riedel, Éric Gaussier, and
Guillaume Bouchard. 2017. Knowledge Graph
Completion via Complex Tensor Factorization
http://arxiv.org/abs/1702.06879.

Théo Trouillon, Johannes Welbl, Sebastian Riedel,
Eric Gaussier, and Guillaume Bouchard. 2016.
Complex Embeddings for Simple Link Predic-
tion. Proceedings of ICML 48:2071–2080.
http://arxiv.org/pdf/1606.06357v1.pdf.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge Graph Embedding by
Translating on Hyperplanes. AAAI Conference on
Artificial Intelligence pages 1112–1119.

Zhigang Wang and Juanzi Li. 2016. Text-enhanced
representation learning for knowledge graph. In
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence. AAAI Press,
pages 1293–1299.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2017. Ssp:
Semantic space projection for knowledge graph em-
bedding with text descriptions. In Pro- ceedings of
the 31st AAAI Conference on Artificial In- telligence.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding
Entities and Relations for Learning and Infer-
ence in Knowledge Bases. ICLR page 12.
http://arxiv.org/abs/1412.6575.

Hee-geun Yoon, Hyun-je Song, Seong-bae Park, and
Se-young Park. 2016. A Translation-Based Knowl-
edge Graph Embedding Preserving Logical Property
of Relations. Naacl pages 1–9.

74

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 75–80,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Sequential Attention:
A Context-Aware Alignment Function for Machine Reading

Sebastian Brarda∗
Center for Data Science

New York University
sb5518@nyu.edu

Philip Yeres∗
Center for Data Science

New York University
yeres@nyu.edu

Samuel R. Bowman
Center for Data Science

and Department of Linguistics
New York University
bowman@nyu.edu

Abstract

In this paper we propose a neural network
model with a novel Sequential Attention
layer that extends soft attention by assign-
ing weights to words in an input sequence
in a way that takes into account not just
how well that word matches a query, but
how well surrounding words match. We
evaluate this approach on the task of read-
ing comprehension (on the Who did What
and CNN datasets) and show that it dra-
matically improves a strong baseline—the
Stanford Reader—and is competitive with
the state of the art.

1 Introduction

Soft attention (Bahdanau et al., 2014), a differen-
tiable method for selecting the inputs for a com-
ponent of a model from a set of possibilities, has
been crucial to the success of artificial neural net-
work models for natural language understanding
tasks like reading comprehension that take short
passages as inputs. However, standard approaches
to attention in NLP select words with only very in-
direct consideration of their context, limiting their
effectiveness. This paper presents a method to
address this by adding explicit context sensitivity
into the soft attention scoring function.

We demonstrate the effectiveness of this ap-
proach on the task of cloze-style reading compre-
hension. A problem in the cloze style consists of
a passage p, a question q and an answer a drawn
from among the entities mentioned in the pas-
sage. In particular, we use the CNN dataset (Her-
mann et al., 2015), which introduced the task into
widespread use in evaluating neural networks for
language understanding, and the newer and more

∗ These authors contributed equally to this work.

Figure 1: The Sequential Attention Model. RNNs
first encode the question into a vector j and the
document into a sequence of vectors H . For each
word index i in the document, a scoring vector
γi is then computed from j and hi using a func-
tion like the partial bilinear function shown here.
These vectors are then used as inputs to another
RNN layer, the outputs of which (ηi) are summed
elementwise and used as attention scores (αi) in
answer selection.

carefully quality-controlled Who did What dataset
(Onishi et al., 2016).

In standard approaches to soft attention over
passages, a scoring function is first applied to ev-
ery word in the source text to evaluate how closely

75

that word matches a query vector (here, a func-
tion of the question). The resulting scores are then
normalized and used as the weights in a weighted
sum which produces an output or context vector
summarizing the most salient words of the input,
which is then used in a downstream model (here,
to select an answer).

In this work we propose a novel scoring func-
tion for soft attention that we call Sequential At-
tention (SA), shown in Figure 1. In an SA model,
a mutiplicative interaction scoring function is used
to produce a scoring vector for each word in the
source text. A newly-added bidirectional RNN
then consumes those vectors and uses them to pro-
duce a context-aware scalar score for each word.
We evaluate this scoring function within the con-
text of the Stanford Reader (Chen et al., 2016),
and show that it yields dramatic improvements
in performance. On both datasets, it is outper-
formed only by the Gated Attention Reader (Dhin-
gra et al., 2016), which in some cases has access
to features not explicitly seen by our model.

2 Related Work

In addition to Chen et al. (2016)’s Stanford Reader
model, there have been several other modeling ap-
proaches developed to address these reading com-
prehension tasks.

Seo et al. (2016) introduced the Bi-Directional
Attention Flow which consists of a multi-stage hi-
erarchical process to represent context at different
levels of granularity; it use the concatenation of
passage word representation, question word repre-
sentation, and the element-wise product of these
vectors in their attention flow layer. This is a more
complex variant of the classic bi-linear term that
multiplies this concatenated vector with a vector
of weights, producing attention scalars. Dhingra
et al. (2016)’s Gated-Attention Reader integrates a
multi-hop structure with a novel attention mecha-
nism, essentially building query specific represen-
tations of the tokens in the document to improve
prediction. This model conducts a classic dot-
product soft attention to weight the query repre-
sentations which are then multiplied element-wise
with the context representations, and fed into the
next layer of RNN. After several hidden layers that
repeat the same process, the dot product between
the context representation and the query is used to
compute a classic soft-attention.

Outside the task of reading comprehension

there has been other work on soft attention over
text, largely focusing on the problem of attending
over single sentences. Luong et al. (2015) study
several issues in the design of soft attention mod-
els in the context of translation, and introduce the
bilinear scoring function. They also propose the
idea of attention input-feeding where the original
attention vectors are concatenated with the hidden
representations of the words and fed into the next
RNN step. The goal is to make the model fully
aware of the previous alignment choices.

In work largely concurrent to our own, Kim
et al. (2017) explore the use of conditional random
fields (CRFs) to impose a variety of constraints on
attention distributions achieving strong results on
several sentence level tasks.

3 Modeling

Given the tuple (passage, question, answer), our
goal is to predict Pr(a|d, q) where a refers to an-
swer, d to passage, and q to question. We define
the words of each passage and question as d =
d1, .., dm and q = q1, ..., ql, respectively, where
exactly one qi contains the token @blank, repre-
senting a blank that can be correctly filled in by the
answer. With calibrated probabilities Pr(a|d, q),
we take the argmaxa Pr(a|d, q) where possible
a’s are restricted to the subset of anonymized en-
tity symbols present in d. In this section, we
present two models for this reading comprehen-
sion task: Chen et al. (2016)’s Stanford Reader,
and our version with a novel attention mechanism
which we call the Sequential Attention model.

3.1 Stanford Reader

Encoding Each word or entity symbol is
mapped to a d-dimensional vector via embedding
matrix E ∈ Rd×|V |. For simplicity, we de-
note the vectors of the passage and question as
d = d1, .., dm and q = q1, ..., ql, respectively.
The Stanford Reader (Chen et al., 2016) uses bidi-
rectional GRUs (Cho et al., 2014) to encode the
passage and questions. For the passage, the hid-
den state is defined: hi = concat(

−→
hi,
←−
hi). Where

contextual embeddings di of each word in the pas-
sage are encoded in both directions.

←−
hi = GRU(

←−−
hi+1,di) (1)

−→
hi = GRU(

−−→
hi−1,di) (2)

76

And for the question, the last hidden representa-
tion of each direction is concatenated:

j = concat(
−→
jl ,
←−
j1) (3)

Attention and answer selection The Stanford
Reader uses bilinear attention (Luong et al., 2015):

αi = softmaxi(jWhi) (4)

Where W is a learned parameters matrix of the
bilinear term that computes the similarity between
j and hi with greater flexibility than a dot prod-
uct. The output vector is then computed as a linear
combination of the hidden representations of the
passage, weighted by the attention coefficients:

o =
∑

αihi (5)

The prediction is the answer, a, with highest prob-
ability from among the anonymized entities:

a = argmax
a∈p∩entities

MT
a o (6)

Here, M is the weight matrix that maps the output
to the entities, and Ma represents the column of a
certain entity. Finally a softmax layer is added on
top of MT

a o with a negative log-likelihood objec-
tive for training.

3.2 Sequential Attention
In the Sequential Attention model instead of pro-
ducing a single scalar value αi for each word in
the passage by using a bilinear term, we define the
vectors γi with a partial-bilinear term1. Instead
of doing the dot product as in the bilinear term, we
conduct an element wise multiplication to produce
a vector instead of a scalar:

γi = j ◦Whi (7)

Where W is a matrix of learned parameters. It
is also possible to use an element-wise multiplica-
tion, thus prescinding the parameters W:

γi = j ◦ hi (8)

We then feed the γi vectors into a new bidirec-
tional GRU layer to get the hidden attention ηi
vector representation.

←−ηi = GRU(←−−ηi+1,γi) (9)
1Note that doing softmax over the sum of the terms of the

γi vectors would lead to the same αi of the Stanford Reader.

−→ηi = GRU(−−→ηi−1,γi) (10)

We concatenate the directional η vectors to be
consistent with the structure of previous layers.

ηi = concat(−→ηi ,←−ηi) (11)

Finally, we compute the α weights as below, and
proceed as before.

αi = softmaxi(1>ηi]) (12)

o =
∑

αihi (13)

a = argmax
a∈p∩entities

MT
a o (14)

4 Experiments and Results

We evaluate our model on two tasks, CNN and
Who did What (WDW). For CNN, we used the
anonymized version of the dataset released by
Hermann et al. (2015), containing 380,298 train-
ing, 3,924 dev, and 3,198 test examples. For
WDW we used Onishi et al. (2016)’s data gener-
ation script to reproduce their WDW data, yielding
127,786 training, 10,000 dev, and 10,000 test ex-
amples.2 We used the strict version of WDW.

Training We implemented all our models in
Theano (Theano Development Team, 2016) and
Lasagne (Dieleman et al., 2015) and used the Stan-
ford Reader (Chen et al., 2016) open source im-
plementation as a reference. We largely used the
same hyperparameters as Chen et al. (2016) in
the Stanford Reader: |V | = 50K, embedding
size d = 100, GloVe (Pennington et al., 2014)
word embeddings3 for initialization, hidden size
h = 128. The size of the hidden layer of the bidi-
rectional RNN used to encode the attention vec-
tors is double the size of the one that encodes the
words, since it receives vectors that result from the
concatenation of GRUs that go in both directions,
η ∈ R256. Attention and output parameters were

2In the WDW data we found 340 examples in the strict
training set, 545 examples in the relaxed training set, 20 ex-
amples in the test set, and 30 examples in the validation set
that were not answerable because the anonymized answer en-
tity did not exist in the passage. We removed these examples,
reducing the size of the WDW test set by 0.2%, to 9,980. We
believe this difference is not significant and did not bias the
comparison between models.

3The GloVe word vectors used were pretrained with 6 bil-
lion tokens with an uncased vocab of 400K words, and were
obtained from Wikipedia 2014 and Gigaword 5.

77

Model WDW Strict CNN

Attentive Reader 53% 63%
Stanford Reader 65.6% 73.4%

+ SA partial-bilinear 67.2% 77.1%
Gated Att. Reader 71.2% 77.9%

Table 1: Accuracy on WDW and CNN test sets

initialized from a U ∼ (−0.01, 0.01) while GRU
weights were initialized from a N ∼ (0, 0.1).
Learning was carried out with SGD with a learn-
ing rate of 0.1, batch size of 32, gradient clipping
of norm 10 and dropout of 0.2 in all the vertical
layers4 (including the Sequential Attention layer).
Also, all the anonymized entities were relabeled
according to the order of occurrence, as in the
Stanford Reader. We trained all models for 30
epochs.

4.1 Results

Who did What In our experiments the Stanford
Reader (SR) achieved an accuracy of 65.6% on the
strict WDW dataset compared to the 64% that On-
ishi et al. (2016) reported. The Sequential Atten-
tion model (SA) with partial-bilinear scoring func-
tion got 67.21%, which is the second best perfor-
mance on the WDW leaderboard, only surpassed
by the 71.2% from the Gated Attention Reader
(GA) with qe-comm (Li et al., 2016) features and
fixed GloVe embeddings. However, the GA model
without qe-comm features and fixed embeddings
performs significantly worse at 67%. We did not
use these features in our SA models, and it is likely
that adding these features could further improve
SA model performance. We also experimented
with fixed embeddings in SA models, but fixed
embeddings reduced SA performance.

Another experiment we conducted was to add
100K training samples from CNN to the WDW
data. This increase in the training data size
boosted accuracy by 1.4% with the SR and 1.8%
with the Sequential Attention model reaching a
69% accuracy. This improvement strongly sug-
gests that the gap in performance/difficulty be-
tween the CNN and the WDW datasets is partially
related to the difference in the training set sizes

4We also tried increasing the hidden size to 200, using
200d GloVe word representations and increasing the dropout
rate to 0.3. Finally we increased the number of hidden en-
coding layers to two. None of these changes resulted in sig-
nificant performance improvements in accordance with Chen
et al. (2016).

which results in overfitting.

CNN For a final sanity check and a fair compar-
ison against a well known benchmark, we ran our
Sequential Attention model on exactly the same
CNN data used by Chen et al. (2016).

The Sequential Attention model with partial-
bilinear attention scoring function took an average
of 2X more time per epoch to train vs. the Stanford
Reader. However, our model converged in only 17
epochs vs. 30 for the SR. The results of training
the SR on CNN were slightly lower than the 73.6%
reported by Chen et al. (2016). The Sequential At-
tention model achieved 77.1% accuracy, a 3.7%
gain with respect to SR.

4.1.1 Model comparison on CNN
After achieving good performance with SA we
wanted to understand what was driving the in-
crease in accuracy. It is clear that SA has more
trainable parameters compared to SR. However,
it was not clear if the additional computation re-
quired to learn those parameters should be allo-
cated in the attention mechanism, or used to com-
pute richer hidden representations of the passage
and questions. Additionally, the bilinear parame-
ters increase the computational requirements, but
their impact on performance was not clear. To an-
swer these questions we compared the following
models: i) SR with dot-product attention; ii) SR
with bilinear attention; iii) SR with two layers (to
compute the hidden question and passage repre-
sentations) and dot-product attention; iv) SR with
two layers and bilinear attention; v) SA with ele-
mentwise multiplication scoring function; vi) SA
with partial-bilinear scoring function.

Surprisingly, the element-wise version of SA
performed better than the partial-bilinear version,
with an accuracy of 77.3% which, to our knowl-
edge, has only been surpassed by Dhingra et al.
(2016) with their Gated-Attention Reader model.

Additionally, 1-layer SR with dot-product atten-
tion got 0.3% lower accuracy than the 1-layer SR
with bilinear attention. These results suggest that
the bilinear parameters do not significantly im-
prove performance over dot-product attention.

Adding an additional GRU layer to encode
the passage and question in the SR model in-
creased performance over the original 1-layer
model. With dot-product attention the increase
was 1.1% whereas with bilinear attention, the in-
crease was 1.3%. However, these performance in-

78

Figure 2: Representative sample output for the Stanford Reader and our model.

Model CNN Params

SR, dot prod. att. 73.1% 5.44× 106

SR, bilinear att. 73.4% 5.50× 106

SR, 2-layer, dot prod. att. 74.2% 5.83× 106

SR, 2-layer, bilinear att. 74.7% 5.90× 106

SA, element-wise att. 77.3% 5.73× 106

SA, partial-bilinear att. 77.1% 5.80× 106

Table 2: Accuracy on CNN test sets and number of
trainable parameters for various Stanford Reader
(SR) and Sequential Attention (SA) models.

creases were considerably less than the lift from
using an SA model (and SA has fewer parameters).

4.2 Discussion

The difference between our Sequential Attention
and standard approaches to attention is that we
conserve the distributed representation of simi-
larity for each token and use that contextual in-
formation when computing attention over other
words. In other words, when the bilinear atten-
tion layer computes αi = softmaxi(jWhi), it
only cares about the magnitude of the resulting αi

(the amount of attention that it gives to that word).
Whereas if we keep the vector γi we can also
know which were the dimensions of the distributed
representation of the attention that weighted in that
decision. Furthermore, if we use that information
to feed a new GRU, it helps the model to learn how
to assign attention to surrounding words.

Compared to Sequential Attention, Bidirec-
tional attention flow uses a considerably more
complex architecture with a query representations
for each word in the question. Unlike the Gated
Attention Reader, SA does not require intermedi-
ate soft attention and it uses only one additional
RNN layer. Furthermore, in SA no dot product is
required to compute attention, only the sum of the

elements of the η vector. SA’s simpler architecture
performs close to the state-of-the-art.

Figure 2 shows some sample model behavior.
In this example and elsewhere, SA results in less
sparse attention vectors compared to SR, and this
helps the model assign attention not only to poten-
tial target strings (anonymized entities) but also to
relevant contextual words that are related to those
entities. This ultimately leads to richer semantic
representations o =

∑
αihi of the passage.

Finally, we found: i) bilinear attention does
not yield dramatically higher performance com-
pared to dot-product attention; ii) bilinear parame-
ters do not improve SA performance; iii) Increas-
ing the number of layers in the attention mech-
anism yields considerably greater performance
gains with fewer parameters compared to increas-
ing the number of layers used to compute the hid-
den representations of the question and passage.

5 Conclusion and Discussion

In this this paper we created a novel and simple
model with a Sequential Attention mechanism that
performs near the state of the art on the CNN and
WDW datasets by improving the bilinear and dot-
product attention mechanisms with an additional
bi-directional RNN layer. This additional layer al-
lows local alignment information to be used when
computing the attentional score for each token.
Furthermore, it provides higher performance gains
with fewer parameters compared to adding an ad-
ditional layer to compute the question and passage
hidden representations. For future work we would
like to try other machine reading datasets such
as SQuAD and MS MARCO. Also, we think that
some elements of the SA model could be mixed
with ideas applied in recent research from Dhin-
gra et al. (2016) and Seo et al. (2016). We believe
that the SA mechanism may benefit other tasks as
well, such as machine translation.

79

Acknowledgements

This paper was the result of a term project for
the NYU Course DS-GA 3001, Natural Language
Understanding with Distributed Representations.
Bowman acknowledges support from a Google
Faculty Research Award and gifts from Tencent
Holdings and the NVIDIA Corporation.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. CoRR
abs/1606.02858. http://arxiv.org/abs/1606.02858.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder-decoder for statis-
tical machine translation. CoRR abs/1406.1078.
http://arxiv.org/abs/1406.1078.

Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and
Ruslan Salakhutdinov. 2016. Gated-attention read-
ers for text comprehension. CoRR abs/1606.01549.
http://arxiv.org/abs/1606.01549.

Sander Dieleman, Jan Schlter, Colin Raffel, Eben Ol-
son, Sren Kaae Snderby, Daniel Nouri, Daniel Mat-
urana, Martin Thoma, Eric Battenberg, Jack Kelly,
Jeffrey De Fauw, Michael Heilman, Diogo Moit-
inho de Almeida, Brian McFee, Hendrik Weide-
man, Gbor Takcs, Peter de Rivaz, Jon Crall, Gregory
Sanders, Kashif Rasul, Cong Liu, Geoffrey French,
and Jonas Degrave. 2015. Lasagne: First release.
https://doi.org/10.5281/zenodo.27878.

Karl Moritz Hermann, Tomás Kociský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. 2015. Teach-
ing machines to read and comprehend. CoRR
abs/1506.03340. http://arxiv.org/abs/1506.03340.

Yoon Kim, Carl Denton, Luong Hoang, and
Alexander M. Rush. 2017. Structured at-
tention networks. CoRR abs/1702.00887.
http://arxiv.org/abs/1702.00887.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang,
Ying Cao, Jie Zhou, and Wei Xu. 2016. Dataset
and neural recurrent sequence labeling model for
open-domain factoid question answering. CoRR
abs/1607.06275. http://arxiv.org/abs/1607.06275.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR
abs/1508.04025. http://arxiv.org/abs/1508.04025.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David A. McAllester. 2016. Who did what:
A large-scale person-centered cloze dataset. CoRR
abs/1608.05457. http://arxiv.org/abs/1608.05457.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional at-
tention flow for machine comprehension. CoRR
abs/1611.01603. http://arxiv.org/abs/1611.01603.

Theano Development Team. 2016. Theano: A
python framework for fast computation of math-
ematical expressions. CoRR abs/1605.02688.
http://arxiv.org/abs/1605.02688.

80

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 81–90,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Semantic Vector Encoding and Similarity Search
Using Fulltext Search Engines

Jan Rygl and Jan Pomikálek and
Radim Řehůřek

RaRe Technologies
jimmy@rare-technologies.com
honza@rare-technologies.com
radim@rare-technologies.com

Michal Růžička and Vít Novotný and
Petr Sojka

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czechia
mruzicka@mail.muni.cz,
witiko@mail.muni.cz,
sojka@fi.muni.cz

ORCID: 0000-0001-5547-8720,

0000-0002-3303-4130, 0000-0002-5768-4007Abstract

Vector representations and vector space
modeling (VSM) play a central role in
modern machine learning. We propose a
novel approach to ‘vector similarity search-
ing’ over dense semantic representations of
words and documents that can be deployed
on top of traditional inverted-index-based
fulltext engines, taking advantage of their
robustness, stability, scalability and ubiq-
uity. We show that this approach allows
the indexing and querying of dense vectors
in text domains. This opens up exciting
avenues for major efficiency gains, along
with simpler deployment, scaling and mon-
itoring. The end result is a fast and scal-
able vector database with a tunable trade-
off between vector search performance and
quality, backed by a standard fulltext en-
gine such as Elasticsearch. We empirically
demonstrate its querying performance and
quality by applying this solution to the
task of semantic searching over a dense
vector representation of the entire English
Wikipedia.

1 Introduction

The vector space model (Salton et al., 1975) of
representing documents in high-dimensional vec-
tor spaces has been validated by decades of re-
search and development. Extensive deployment
of inverted-index-based information retrieval (IR)
systems has led to the availability of robust open
source IR systems such as Sphinx, Lucene or its
popular, horizontally scalable extensions of Elastic-
search and Solr.

Representations of document semantics based
solely on first order document-term statistics, such
as TF-IDF or Okapi BM25, are limited in their ex-
pressiveness and search recall. Today, approaches

based on distributional semantics and deep learn-
ing allow the construction of semantic vector
space models representing words, sentences, para-
graphs or even whole documents as vectors in high-
dimensional spaces (Deerwester et al., 1990; Blei
et al., 2003; Mikolov et al., 2013).

The ubiquity of semantic vector space modeling
raises the challenge of efficient searching in these
dense, high-dimensional vector spaces. We would
naturally want to take advantage of the design and
optimizations behind modern fulltext engines like
Elasticsearch so as to meet the scalability and ro-
bustness demands of modern IR applications. This
is the research challenge addressed in this paper.

The rest of the paper describes novel ways of
encoding dense vectors into text documents, allow-
ing the use of traditional inverted index engines,
and explores the trade-offs between IR accuracy
and speed. Being motivated by pragmatic needs,
we describe the results of experiments carried out
on real datasets measured on concrete, practical
software implementations.

2 Semantic Vector Encoding
for Inverted-Index Search Engines

2.1 Related Work

The standard representation of documents in the
Vector Space Model (VSM) (Salton and Buckley,
1988) uses term feature vectors of very high dimen-
sionality. To map the feature space onto a smaller
and denser latent semantic subspace, we may use
a body of techniques, including Latent Semantic
Analysis (LSA) (Deerwester et al., 1990), Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) or
the many variants of Locality-sensitive hashing
(LSH) (Gionis et al., 1999).

Throughout the long history of VSM develop-
ments, many other methods for improving search

81

efficiency have been explored. Weber et al. ran one
of the first rigorous studies that dealt with the inef-
fectiveness of the VSM and the so-called curse of
dimensionality. They evaluated several data parti-
tioning and vector approximation schemes, achiev-
ing significant nearest-neighbour search speedup in
(Weber and Böhm, 2000). The scalability of simi-
larity searching through a new index data structures
design is described in (Zezula et al., 2006). Dimen-
sionality reduction techniques proposed in (Digout
et al., 2004) allow a robust speedup while show-
ing that not all features are equally discriminative
and have a different impact on efficiency, due to
their density distribution. Boytsov shows that the
k-NN search can be a replacement for term-based
retrieval when the term-document similarity matrix
is dense.

Recently, deep learning approaches and tools
like doc2vec (Le and Mikolov, 2014) construct se-
mantic representations of documents D as d = |D|
(dense) vectors in an n-dimensional vector space.

To take advantage of ready-to-use and optimized
systems for term indexing and searching, we have
developed a method for representing points in a
semantic vector space encoded as plain text strings.
In our experiments, we will be using Elastic-
search (Gormley and Tong, 2015) in its ‘vanilla’
setup. We do not utilize any advanced features of
Elasticsearch, such as custom scoring, tokeniza-
tion or a n-gram analyzers. Thus, our method
does not depend on any functionality that is spe-
cific to Elasticsearch, and it is possible (and some-
times even desirable) to substitute Elasticsearch
with other fulltext engine implementations.

2.2 Our Vector to String Encoding Method

Let our query be a document, represented by its
vector ~q, for which we aim to find the top k most
similar documents in D. We want to search ef-
ficiently, indexing and deleting documents from
the index in near-real-time, and in a manner that
could scale by eventual parallelization, re-using
the significant research and engineering effort that
went into designing and implementing systems like
Elasticsearch.

Conceptually, our method consists of encoding
vector features into string tokens (feature tokens),
creating a text document from each dense vec-
tor. These encoded documents are consequently
indexed in traditional inverted-index-based search
engines. At query time, we encode the query vec-

tor and retrieve the subset of similar vectors E,
|E| ≪ |D|, using the engine’s fulltext search func-
tionality. Finally, the small set of candidate vec-
tors E is re-ranked by calculating the exact similar-
ity metric (such as cosine similarity) to the query
vector. This makes the search effectively a two-
phase process, with our encoded fulltext search
as the first phase and candidate re-ranking as the
second.

2.2.1 Encoding Vectors
The core of our method of encoding vectors into
strings lies in encoding the vector feature values
at a selected precision as character strings – fea-
ture tokens.1 This is best demonstrated on a small
example: Let us take a semantic vector of three
dimensions, ~w = [0.12,−0.13, 0.065]. Each feature
token starts with its feature identification (e.g. a
feature number such as 0, 1 etc.) followed by a
precision encoding schema identifier (such as P2,
I10 etc.) and the encoded feature value (such as
i0d12, ineg0d2 etc.) depending on the particular
encoding method. We propose and evaluate three
encoding methods:

rounding Feature values are rounded to a fixed
number of decimal positions and stored
as a string that encodes both the feature
identification and its value. Rounding to
two decimal places produces representa-
tion of ~w as [’0P2i0d12’, ’1P2ineg0d13’,
’2P2i0d07’].

interval quantizes ~w into intervals of fixed length.
For example, with an interval width of 0.1,
feature values fall into intervals starting at 0.1,
−0.2 and 0.0, which we encode as d1, d2 and
d0, respectively. Combined with the interval
length denotation of I10, the full vector is
encoded into the tokens ~w = [’0I10i0d1’,
’1I10ineg0d2’, ’2I10i0d0’].

combined Rounding and interval encoding used
together. Rounding ~w to three decimal
places and using intervals of length 0.2,
we get the representation of ~w as feature
tokens [’0P3i0d120’, ’1P3ineg0d130’,
’2P3i0d065’, ’0I5i0d0’, ’1I5ineg0d2’,
’2I5i0d0’].

1We avoid the use of any special characters such as plus (+)
or minus (−) signs, white spaces etc. inside the tokens. This
is used as a safeguard against any unintended tokenization
within the fulltext search system, so as to avoid having to
define custom tokenizers.

82

The intuition behind all these encoding schemes
is a trade-off between increasing feature sparsity
and retaining search quality: we show that some
types of sparsification actually lead to little loss of
quality, allowing an efficient use of inverted-index
IR engines.

2.2.2 High-Pass Filtering Techniques
The rationale behind the next two techniques is
to filter out semantic vector features of low im-
portance, further increasing feature sparsity. This
improves performance at the expense of quality.

Trim: In the trimming phase, a fixed thresh-
old – such as 0.1 – is used. Feature tokens in
the query with an absolute value of the feature
below the threshold are simply discarded from
the query. In the case of our example vector
~w = [0.12,−0.13, 0.065], the tokens representing
the third feature value 0.065 are removed since
|0.065| < 0.1.

Best: Features of each vector are ordered accord-
ing to their absolute value and only a fixed num-
ber of the highest-valued features are added to
the index, discarding the rest. As an example,
with best = 1, only the second feature of −0.13
(the highest absolute value) would be considered
from ~w.

Note that in both cases, this type of filtering
is only meaningful when the feature ranges are
comparable. In our experiments all vectors are
normalized to unit length, ranging absolute values
of features from zero (no feature importance) to
one (maximal feature importance).

2.3 Space and Time Requirements
In this section we summarize and compare the the-
oretical space and time requirements of our pro-
posed vector-to-string encoding and filtering meth-
ods with a baseline of a naive, linear brute force
search. The inverted-index-based analysis is based
on the documentation of the Lucene search engine
implementation2.

While the running time of the naive search is
stable and predictable, the efficiency of the other
optimization methods depends on the data set, such
as its vocabulary size and the expected postings
list sparsity, after the feature token encoding and
filtering. On the other hand, performance can be
influenced by how the method is configurated – for

2https://lucene.apache.org/core/6_5_1/index.
html

example, the expected number of distinct feature
values depends on the precision of the rounding of
the feature values that was used.

The efficiency trade-offs are summarized in Ta-
ble 1. Each document is represented as a vector ~d
of n features computed by LSA over TF-IDF.

Baseline – naive brute force search: The naive
baseline method avoids using a fulltext search alto-
gether, and instead stores all d ‘indexed’ vectors in
their original dense vector representation in RAM,
as an n × d matrix. At query time, it computes
a similarity between the query vector ~q and each
of the indexed document vectors ~d, in a single lin-
ear scan through the matrix, and returns the top k
vectors with the best score.

Efficiency of a naive brute force search: The
index is a matrix of floats of size nd resulting in
𝒪(nd) space complexity. We have chosen the co-
sine similarity as our similarity metric. To calcu-
late cossim between the query and all d documents,
vector ~q of length n has to be multiplied with a
length-normalized matrix of dimensionality n × d,
e.g. 𝒪(nd). Using the resulting vector of d scores,
we then pick the k nearest documents as the final
query result, in 𝒪(d).

Efficiency of encoding: We investigate the ef-
ficiency of our vector-to-string encoding when a
general inverted-index-based search engine is used
to index and search through them.

At worst, we store one token per dimension for
each vector. We need 𝒪(nd) space to store all in-
dexed documents, as is the case with the naive
search. In practice, there are several different con-
stants as naive search saves one float per feature
(four bytes), while our feature tokens are com-
pressed string-encoded feature values and indices
of the sparse feature positions in the inverted index.

Each dimension of the query vector ~q contains a
string-encoded feature q j. For each q j we fetch a
list of documents ci together with term frequency
tn in that document: tf(tn, ci).

For each of these (ci, tf(tn, ci)) pairs we add the
corresponding score value to the score of docu-
ment ci in a list of result-candidate documents. The
score computation contains a vector dot-product
operation in the dimension of the size v of feature
vocabulary V that can be computed in 𝒪(v). Docu-
ment ci is added to the set C of all result-candidate
documents, which we sort in 𝒪(c log c) time and
return the top k results. The whole search is per-

83

formed in 𝒪(n · p · v + c log c) steps, where p is the
expected postings list size and c = |C|.
Efficiency of high-pass filtering: We approxi-
mate the full feature vector by storing only the
most significant features, e.g. only the top m di-
mensions. When compared with a naive search,
we save on space: only 𝒪(md), m ≪ n values are
needed.

For each feature value q j we have to find all
documents with the same feature value. We are
able to find the feature set in 𝒪(log j) steps, where
j is the number of distinct indexed values of the
feature. Consequently, we retrieve the matched
documents in 𝒪(l) time, where l is the number of
documents in the index with the appropriate feature
value.

Each of the found documents is added to set C
and its score is incremented for this hit. If repre-
sented with an appropriate data structure, such as
a hash table, we are able to add and increment
scores of the items in 𝒪(1) time. Having all
c = |C| candidate documents over all the separate
feature-searches, we pick and return the top k items
in 𝒪(c) time.

Combined, 𝒪(n · (log j + l) + c) steps are needed
for the search, where j is the expected number of
distinct indexed values per feature and l is the num-
ber of documents in the index per feature value.

3 Experimental Setup

To evaluate our method, we used ScaleText (Rygl
et al., 2016) based on Elasticsearch (Gormley and
Tong, 2015) as our fulltext IR system. The evalua-
tion dataset was the whole of the English Wikipedia
consisting of 4,181,352 articles.

3.1 Quality Evaluation
The aim of the quality evaluation was to investi-
gate how well the approximate ‘encoded vector’
search performs in comparison with the exact naive
brute-force search, using cosine similarity as the
similarity metric. Cosine similarity is definitely
not the only possible metric – we selected cosine
similarity as we needed a fully automatic evalua-
tion, without any need of human judgement, and
because cosine similarity suits our upstream appli-
cation logic perfectly.

We converted all Wikipedia documents into
vectors using LSA with 400 features. We then
randomly selected 1,000 documents from our
Wikipedia dataset to act as our query vectors. By

doing a naive brute force scan over all the vectors
(the whole dataset), we identified the 10 most sim-
ilar ones for each query vector. This became our
‘gold standard’.

We encoded the dataset vectors into various
string representations, as described in Section 2.2.1
and stored them in Elasticsearch.

For evaluating the search, we pruned the val-
ues in the query vectors (see Section 2.2.2) and
encoded them into a string representation. Using
these strings, we performed 1,000 Elasticsearch
searches. For each query, we measured the over-
lap between the retrieved documents and the gold
standard using Precision@k or the Normalized Dis-
counted Cumulative Gain (nDCGk). The mean
cumulative loss between the ideal and the actual
cosine similarities of the top k results (avg. diff.) is
also reported.

Note that since we re-rank |E| results obtained
from Elasticsearch (see Section 2.2), the positions
on which the gold standard vectors were originally
returned by the fulltext engine are irrelevant.

Apart from the vector dimensionality n (the
number of LSA features), we monitored the trim
threshold and the number of best features as de-
scribed in Section 2.2.2. We also experimented
with the number of vectors E retrieved for each
Elasticsearch query as the page parameter.

To provide a comparison with an established
search approach, and to serve as a baseline, we
also evaluated indexing and searching using the
native fulltext indexing and searching capabilities
of Elasticsearch. In this case, the plain fulltext of
every article was sent directly to the fulltext search
engine as a string, without any vector conversions
or preprocessing. For querying, we use the More
Like This (MLT) Query API of Elasticsearch.3 Any
data processing during indexing and querying was
done by Elasticsearch in its default settings with
a single exception: we evaluated multiple values
of the max_query_terms parameter of the MLT
API. We tested the default value (25) plus values
corresponding to the values of the best parameter
used for the evaluation of our method.

We report mainly on the avg. diff., i.e. the mean
difference between the ideal and the actual cosine
similarities of the first ten retrieved documents to
a query, averaged over all 1,000 queries. We also
report Precision@10, i.e. the ratio of the gold stan-

3https://www.elastic.co/guide/
en/elasticsearch/reference/5.2/
query-dsl-mlt-query.html

84

Table 1: Comparison of encoding methods in terms of space and time. n is the number of semantic vector
features, d is the number of semantic vectors, m is the number of semantic vector features after high-pass
filtering, p is the expected postings list size (inverted index sparsity), v is the expected vocabulary size per
a feature, c is the number of result-candidate semantic vectors, j the expected number of distinct indexed
values of the feature, and l the expected number of documents in the index per a feature value. For details
see Section 2.3.

naive search token encoding high-pass filtering

space 𝒪(nd) 𝒪(nd) 𝒪(md)
time 𝒪(nd) 𝒪(n · p · v + c log c) 𝒪(n · (log j + l) + c)

dard documents in the first ten results averaged over
all 1,000 queries, and on Normalized Discounted
Cumulative Gain (nDCG10) (Manning et al., 2008,
Section 8.4), where the relevance value of a re-
trieved document is taken to be its cosine similarity
to the query.

3.2 Speed Evaluation

In this section, we evaluate the performance of fea-
ture token strings searches in Elasticsearch, using
various Elasticsearch configurations as well as var-
ious vector filtering parameters.

Our Elasticsearch cluster consisted of 6 nodes,
with 32 GiB RAM and 8 CPUs each, for a total of
192 GiB and 48 cores.

We experimented with several Elasticsearch pa-
rameters: the number of Elasticsearch index shards
(6, 12, 24, 48, 96; always using one replica), the
number of LSA features (100, 200, 400), a trim
threshold of LSA vector values (none, 0.05, 0.10,
0.20), the number of Elasticsearch results used
(Elasticsearch page size; 20, 80, 320, 640), par-
allel querying (1 [serial], 4, 16) and the cluster
querying strategy (querying single-node or round-
robin querying of 5 different Elasticsearch nodes).
Each evaluation batch consisted of 128 queries (ran-
domly selected for each batch) that were used to
ask Elasticsearch one-by-one or in parallel in mul-
tiple queues depending on the evaluation setup.

We report ES avg./std. [s] – the average num-
ber of seconds per request Elasticsearch took (the
‘took’ time from the Elasticsearch response, i.e.
the search time inside Elasticsearch) and its stan-
dard deviation, Request avg./std. [s] – the average
number of seconds and its standard deviation per
request including communication overhead with
Elasticsearch to get the results (i.e. the time of the
client to get the answer), Total time [s] – total num-
ber of seconds for processing all requests in the

batch. This can differ from the sum of average
request times when executing queries in parallel.
The number of features in query vectors that passed
through threshold trimming is reported as Vec. size
avg./std.

4 Results

4.1 Quality Evaluation

Results of the quality evaluation are summarized
in Table 2. The results of our method in different
settings are put side by side with the results of the
brute-force naive search and with Elasticsearch’s
native More Like This (MLT) search. For the MLT
results, the max_query_terms Elasticsearch pa-
rameter is reported in the best column since both
the semantics and the impact on the search speed
are similar.

Figure 1 illustrates the impact of feature value
filtering and the number of retrieved search candi-
dates from Elasticsearch (page size) on its accuracy.
It can be seen that avg. diff. decreases logarithmi-
cally with the page size. The results improve all
the way up to 640 search results (the maximum
value we have tried), which is expected as this in-
creases the size of the subset E that is consequently
ordered (re-ranked) in phase 2 with the precise but
more costly exact algorithm. Increasing the size of
E increases the chance of the inclusion of relevant
results.

The shape of the curve suggests that there would
only be a slight improvement in accuracy, and this
would be at the cost of a substantial drop in per-
formance. The impact of including only a limited
number of features with the highest absolute value
(see Section 2.2.2), is rather low. This is an excel-
lent result with regard to performance as it means
we may effectively sparsify the query vector with
very little impact on search quality. We observe
little difference between no filtering (searching by

85

Table 2: Results of quality evaluation. 400 LSA features were used. See Section 3.1 for more details.
Only the subset of results with the top nDCG10 scores are shown. Results with Precision@10 ≥ 0.9 are
shown in bold, with avg. diff. ≤ 0.002 in italics.

Tr
im

B
es

t

Pa
ge

M
in

. P
@

10
Av

g.
P@

10

M
ax

. P
@

10

nD
C

G 10

Av
g.

di
ff

.

naive search 10 1.0 1.0000 1.0 1.0000 0.0000

MLT 17 10 0.0 0.1967 1.0 0.9206 0.1799
MLT 25 10 0.0 0.2029 1.0 0.9221 0.1698
MLT 40 10 0.0 0.2077 1.0 0.9224 0.1619
MLT 90 10 0.0 0.2120 1.0 0.9210 0.1580
MLT 400 10 0.0 0.2114 1.0 0.9211 0.1568

0.00 160 17 0.0 0.4275 1.0 0.9840 0.0220
0.00 320 17 0.0 0.5281 1.0 0.9949 0.0149
0.00 640 17 0.0 0.6340 1.0 0.9989 0.0101
0.00 40 40 0.0 0.5090 1.0 0.9870 0.0142
0.00 80 40 0.0 0.6215 1.0 0.9940 0.0085
0.00 160 40 0.0 0.7254 1.0 0.9980 0.0051
0.00 320 40 0.1 0.8181 1.0 0.9998 0.0030
0.00 640 40 0.0 0.8883 1.0 0.9989 0.0016
0.00 10 90 0.0 0.3927 1.0 0.9940 0.0323
0.00 20 90 0.0 0.5167 1.0 0.9950 0.0147
0.00 40 90 0.0 0.6314 1.0 0.9970 0.0084
0.00 80 90 0.1 0.7306 1.0 0.9994 0.0051
0.00 160 90 0.1 0.8185 1.0 0.9994 0.0029
0.00 320 90 0.0 0.8818 1.0 0.9988 0.0017
0.00 640 90 0.0 0.9282 1.0 0.9989 0.0010
0.00 20 all 0.1 0.5730 1.0 1.0000 0.0124
0.00 80 all 0.3 0.7870 1.0 1.0000 0.0044
0.00 320 all 0.4 0.9050 1.0 1.0000 0.0016
0.00 640 all 0.4 0.9460 1.0 1.0000 0.0010
0.05 160 17 0.0 0.4276 1.0 0.9837 0.0220
0.05 320 17 0.0 0.5280 1.0 0.9948 0.0149
0.05 640 17 0.0 0.6341 1.0 0.9989 0.0101

Tr
im

B
es

t
Pa

ge

M
in

. P
@

10
Av

g.
P@

10

M
ax

. P
@

10

nD
C

G 10

Av
g.

di
ff

.

0.05 40 40 0.0 0.5088 1.0 0.9870 0.0142
0.05 80 40 0.0 0.6216 1.0 0.9940 0.0085
0.05 160 40 0.0 0.7255 1.0 0.9980 0.0051
0.05 320 40 0.1 0.8177 1.0 0.9992 0.0030
0.05 640 40 0.0 0.8880 1.0 0.9988 0.0016
0.05 10 90 0.0 0.3927 1.0 0.9940 0.0323
0.05 20 90 0.0 0.5168 1.0 0.9950 0.0147
0.05 40 90 0.0 0.6313 1.0 0.9970 0.0084
0.05 80 90 0.0 0.7305 1.0 0.9990 0.0051
0.05 160 90 0.1 0.8187 1.0 0.9997 0.0029
0.05 320 90 0.0 0.8815 1.0 0.9988 0.0017
0.05 640 90 0.0 0.9281 1.0 0.9988 0.0010
0.05 10 all 0.0 0.3923 1.0 0.9960 0.0321
0.05 20 all 0.0 0.5154 1.0 0.9976 0.0149
0.05 40 all 0.0 0.6320 1.0 0.9985 0.0085
0.05 80 all 0.0 0.7321 1.0 0.9990 0.0051
0.05 160 all 0.0 0.8179 1.0 0.9990 0.0030
0.05 320 all 0.1 0.8810 1.0 0.9992 0.0018
0.05 640 all 0.1 0.9302 1.0 0.9991 0.0009
0.10 320 17 0.0 0.4981 1.0 0.9888 0.0171
0.10 640 17 0.0 0.6008 1.0 0.9969 0.0117
0.10 160 40 0.0 0.4409 1.0 0.9771 0.0216
0.10 320 40 0.0 0.5432 1.0 0.9891 0.0148
0.10 640 40 0.0 0.6435 1.0 0.9968 0.0099
0.10 320 90 0.0 0.5434 1.0 0.9893 0.0148
0.10 640 90 0.0 0.6436 1.0 0.9968 0.0099
0.10 160 all 0.0 0.4410 1.0 0.9770 0.0216
0.10 320 all 0.0 0.5431 1.0 0.9889 0.0148
0.10 640 all 0.0 0.6438 1.0 0.9972 0.0099

100 200 300 400 500 600
Page size

0.00

0.05

0.10

0.15

0.20

A
v
g
.
d
iff

.

of best features used

6

17

40

90

all

(a) Avg. diff.

100 200 300 400 500 600
Page size

0.2

0.4

0.6

0.8

P
re

ci
si

o
n
@

1
0

of best features used

all

90

40

17

6

(b) Precision@10

Figure 1: The impact of the number of best features selected (with no trimming) and the page size (the
number of search results retrieved from Elasticsearch) on Avg. diff. and Precision@10.

86

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00

0.02

0.04

0.06

0.08

0.10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
ri

m

Precision@10

R
e
q

u
e
st

 a
v
g

.
[s

]

(a) Consecutive querying of 128 queries

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00

0.02

0.04

0.06

0.08

0.10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
e
q

u
e
st

 a
v
g

.
[s

]

T
ri

m

Precision@10

(b) Parallel querying in 4 parallel queues, 32 queries each
(128 queries in total)

Figure 2: The impact of value filtering and the number of retrieved search results on the average request
time. The x-axis shows the average precision, the y-axis the average request time. The size of the points
indicates the number of retrieved results: large = Elasticsearch page size 320, medium = page size 80,
small = 20. The color of the points indicates the trim thresholds: white = 0.00 (no filtering), gray = 0.05,
black = 0.10.

all 400 encoded features) and trimming to only the
90 best query vector values. However, trimming to
as low as 6 values results in a significant increase
in avg. diff. See Figure 1a.

Our methods scores above the MLT baseline in
all of the followed metrics, even with aggressive
high-pass filtering and with a small page size.

We expect that similar setup parameters will
work similarly, at least for general multi-topic text
datasets. Its behaviour for a dramatically different
dataset, such as images instead of texts, or without
normalized feature ranges, cannot be directly in-
ferred and remains to be investigated in our future
work. However, we expect our speed optimization
methods to be applicable in some form, with the
concrete parameters to be validated on the particu-
lar dataset and algorithmic setup.

4.2 Speed Evaluation

Selected results of our speed evaluation are sum-
marized in Table 3. For clarity, we selected only
the configurations using 400 LSA features and
48 Elasticsearch shards, as this setup turned out
to provide the optimal performance on the Elastic-
search cluster and dataset we used according to
the quality evaluation (see Section 4.1), where the
same parameters were used.

The speed of the native Elasticsearch MLT
search is summarized in Table 4. The speed is
comparable to our method when high-pass filtering
is involved.

Figure 2 displays the impact of value filter-
ing and the number of retrieved search results on
the average request time. Comparing consecutive
queries (Figure 2a) with four parallel queries on
the same Elasticsearch cluster configuration (Fig-
ure 2b) shows that at the expense of doubling the
response time, we are able to answer four requests
in parallel.

The best results in Figure 2 are located in the
bottom right corner where the precision is high
and the response time is low. For our dataset and
algorithm (LSA with 400 features), the best overall
results are represented by the largest gray dots, i.e.
retrieving 320 vectors from Elasticsearch while
filtering the query vector to roughly 90 values via
trimming with a threshold of 0.05.

To achieve the optimal results, we suggest re-
trieving as large a set of candidates (Elasticsearch
page size, E) as the response-time constraints al-
low, as the page size seems to have significantly
lower influence on the response time compared to
trimming, while having a significant positive effect
on accuracy.

Our experiments were done on the Wikipedia
dataset. Wikipedia is a multi-topic dataset – arti-
cles are on a wide variety of different topics using
different keywords (names of people, places and
things, etc) and notation (text only articles, articles
on mathematics using formulae, articles on chem-
istry using different formulae, etc) are included.
This provides enough room for the machine learn-
ing algorithms to build features that reflect these

87

Table 3: Results of speed evaluation using 400 LSA features, batches of 128 queries and 48 Elasticsearch
shards. Column Parallel q. shows the number of parallel queries used together, Trim is the threshold for
high-pass filtering of the features, Page is the number of vectors retrieved from Elasticsearch for each
query (see Section 2.2.2), ES avg./std. is the average and standard deviation of the number of seconds
per request Elasticsearch took, Request avg./std. is the average and deviation of the number of seconds
per request including processing overheads, Total time is the total number of seconds for processing all
requests, Vec. size avg./std. is the average/deviation of the number of values in query vectors that passed
high-pass filtering.

Para
llel

q.

Trim Page
ES avg. [s]

ES std
. [s]

Request
avg. [s]

Request
std

. [s]

Total
tim

e [s]

Vec.
siz

e avg.

Vec.
siz

e std
.

1 0.00 20 1.1949 0.0737 1.2418 0.2864 160.760 400.0000 0.0000
1 0.00 80 1.1656 0.0710 1.1829 0.0713 153.246 400.0000 0.0000
1 0.00 320 1.2066 0.0893 1.2494 0.0894 161.783 400.0000 0.0000
1 0.05 20 0.0935 0.0202 0.1013 0.0204 14.521 93.5781 20.9268
1 0.05 80 0.0935 0.0214 0.1119 0.0228 15.898 91.5781 22.9822
1 0.05 320 0.1635 0.1014 0.2085 0.1032 28.360 87.2500 20.6908
1 0.10 20 0.0241 0.0057 0.0320 0.0057 5.574 19.3516 4.4222
1 0.10 80 0.0259 0.0059 0.0435 0.0061 7.107 19.0469 4.3027
1 0.10 320 0.0940 0.0966 0.1383 0.0971 19.357 18.0703 4.7863
4 0.00 20 2.9093 0.3943 2.9325 0.3989 94.750 400.0000 0.0000
4 0.00 80 2.8842 0.2968 2.9211 0.3004 94.548 400.0000 0.0000
4 0.00 320 2.8621 0.2897 2.9439 0.2938 95.290 400.0000 0.0000
4 0.05 20 0.1919 0.0491 0.2094 0.0531 7.212 89.3516 21.9351
4 0.05 80 0.2027 0.0525 0.2327 0.0563 7.948 93.2422 20.6166
4 0.05 320 0.2583 0.0983 0.3442 0.1025 11.538 86.3203 24.1855
4 0.10 20 0.0422 0.0080 0.0550 0.0078 2.253 18.8047 4.4547
4 0.10 80 0.0703 0.0708 0.1151 0.0884 4.174 19.5547 4.2625
4 0.10 320 0.1547 0.1093 0.2468 0.1161 8.411 17.8750 4.4459

16 0.00 20 11.5664 3.2998 11.6019 3.3018 94.480 400.0000 0.0000
16 0.00 80 11.5408 2.6209 11.6033 2.6262 94.535 400.0000 0.0000
16 0.00 320 11.5144 3.7843 11.7623 3.7645 95.112 400.0000 0.0000
16 0.05 20 0.7870 0.1988 0.8116 0.2020 6.896 88.4141 21.6681
16 0.05 80 0.7253 0.2309 0.8802 0.3051 7.463 87.9063 23.1528
16 0.05 320 0.8511 0.2350 1.0453 0.2491 9.332 89.9141 23.0604
16 0.10 20 0.1354 0.0182 0.1660 0.0169 1.625 18.4375 3.9484
16 0.10 80 0.1845 0.0859 0.2613 0.0891 2.400 18.7656 4.8404
16 0.10 320 0.4181 0.1442 0.6213 0.2065 5.416 18.0703 4.3807

unique markers of particular topics and makes par-
ticular features significantly irrelevant for particular
documents in the dataset.

For general multi-topic text datasets, we recom-
mend trimming features values by their absolute
value below 5% of the maximum (i.e. between
−0.05 and 0.05 in our experiments). Trimming
more feature tokens decreases the precision with
almost no influence on the response times, while
keeping more feature tokens in the index has al-
most no positive effect on the precision but slows
down the search significantly.

5 Conclusions

In this paper we have demonstrated a novel method
for the conversion of semantic vectors into a set
of string ‘feature tokens’ that can be subsequently
indexed in a standard inverted-index-based fulltext
search engine, such as Elasticsearch.

Two techniques of feature tokens filtering were
demonstrated to further significantly speed up the
search process, with an acceptably low impact on
the quality of the results.

Using Elasticsearch MLT on document texts as a
baseline, our method performs better than the base-
line on all the followed metrics. With sufficient
query vector feature reduction, our method is faster

88

Table 4: Results of speed evaluation using
the native Elasticsearch More Like This (MLT)
search (no parallel queries) using 48 shards.
max_query_terms is the maximum number of
query terms per query that were selected by Elastic-
search. ES avg./std. is the average and standard
deviation of the number of seconds per request
Elasticsearch took.

System max_query_terms ES avg. [s] ES std. [s]

MLT 17 0.0468 0.0233
MLT 25 0.0595 0.0270
MLT 40 0.0745 0.0322
MLT 90 0.1090 0.0490
MLT 400 0.1458 0.0978

than MLT. With moderate query vector feature re-
duction, we can achieve excellent approximation
of the gold standard while being only marginally
slower than the MLT.

An important conclusion from our experiments
is that the search speed can be improved even with
filtering the query vectors alone and without the
need to trim index vectors. A pleasant practical
consequence of this finding is that a vector search
engine based on our proposed scheme could allow
the users to define the filtering parameters dynami-
cally, at search time rather than at indexing time. In
this way, we let the users choose the approximation
trade-off between the search speed and accuracy,
i.e. use weaker filtering parameters for searches
where accuracy is critical, and more aggressive
filtering where speed is critical.

In our future work we will focus on the valida-
tion of our techniques on different types of data
(such as images or audio data) and different text
representations (such as doc2vec) in specific do-
mains (such as question answering).

Acknowledgments
Funding by TA ČR Omega grant TD03000295 is
gratefully acknowledged.

References
David M. Blei, Andrew Y. Ng, Michael I. Jordan, and

John Lafferty. 2003. Latent Dirichlet Allocation.
Journal of Machine Learning Research 3:993–1022.
http://dl.acm.org/citation.cfm?id=944919.944937.

Leonid Boytsov. 2017. Efficient and Accurate
Non-Metric k-NN Search with Applications to
Text Matching. Thesis proposal, School of

Computer Science, Carnegie Mellon University.
http://boytsov.info/pubs/proposal_boytsov.pdf.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by Latent Semantic Analysis. Jour-
nal of the American Society for Information Science
41(6):391–407.

Christian Digout, Mario A. Nascimento, and Alexan-
dru Coman. 2004. Similarity search and dimen-
sionality reduction: Not all dimensions are equally
useful. In YoonJoon Lee, Jianzhong Li, Kyu-
Young Whang, and Doheon Lee, editors, Proc.
of Database Systems for Advanced Applications:
9th Int. Conf., DASFAA 2004, Jeju Island, Ko-
rea, March 17–19, 2003. Springer, pages 831–842.
https://doi.org/10.1007/978-3-540-24571-1_73.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani.
1999. Similarity search in high dimensions via hash-
ing. In VLDB ’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7–
10, 1999, Edinburgh, Scotland, UK. pages 518–529.
http://www.vldb.org/conf/1999/P49.pdf.

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: The Definitive Guide. O’Reilly Media, Inc.,
1st edition.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. CoRR
abs/1405.4053. http://arxiv.org/abs/1405.4053.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York,
NY, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems. pages 3111–3119.

Jan Rygl, Petr Sojka, Michal Růžička, and Radim
Řehůřek. 2016. ScaleText: The Design of
a Scalable, Adaptable and User-Friendly Docu-
ment System for Similarity Searches: Digging
for Nuggets of Wisdom in Text. In Aleš
Horák, Pavel Rychlý, and Adam Rambousek, ed-
itors, Proceedings of the Tenth Workshop on Re-
cent Advances in Slavonic Natural Language Pro-
cessing, RASLAN 2016. Tribun EU, Brno, pages
79–87. https://nlp.fi.muni.cz/raslan/2016/paper08-
Rygl_Sojka_etal.pdf.

Gerard Salton and Chris Buckley. 1988. Term-
weighting approaches in automatic text retrieval.
Information Processing and Management 24:513–
523.

Gerard Salton, Anita Wong, and Chung-Shu Yang.
1975. A vector space model for automatic index-
ing. Communications of the ACM 18(11):613–620.
https://doi.org/10.1145/361219.361220.

89

Roger Weber and Klemens Böhm. 2000. Trading
quality for time with nearest-neighbor search. In
Carlo Zaniolo, Peter C. Lockemann, Marc H. Scholl,
and Torsten Grust, editors, Proc. of Advances in
Database Technology — EDBT 2000: 7th Int. Conf.
on Extending Database Technology Konstanz, Ger-
many, March 27–31, 2000. Springer, pages 21–35.
https://doi.org/10.1007/3-540-46439-5_2.

Roger Weber, Hans-Jörg Schek, and Stephen Blott.
1998. A quantitative analysis and perfor-
mance study for similarity-search methods in high-
dimensional spaces. In Proc. of the 24rd Inter-
national Conference on Very Large Data Bases.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, VLDB ’98, pages 194–205.
http://dl.acm.org/citation.cfm?id=645924.671192.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and
Michal Batko. 2006. Similarity Search: The Met-
ric Space Approach, volume 32 of Advances in
Database Systems. Springer.

90

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 91–100,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Multi-task Domain Adaptation for Sequence Tagging

Nanyun Peng and Mark Dredze
Human Language Technology Center of Excellence

Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD, 21218
npeng1@jhu.edu, mdredze@cs.jhu.edu

Abstract

Many domain adaptation approaches rely
on learning cross domain shared represen-
tations to transfer the knowledge learned
in one domain to other domains. Tradi-
tional domain adaptation only considers
adapting for one task. In this paper, we
explore multi-task representation learning
under the domain adaptation scenario. We
propose a neural network framework that
supports domain adaptation for multiple
tasks simultaneously, and learns shared
representations that better generalize for
domain adaptation. We apply the pro-
posed framework to domain adaptation
for sequence tagging problems consider-
ing two tasks: Chinese word segmenta-
tion and named entity recognition. Exper-
iments show that multi-task domain adap-
tation works better than disjoint domain
adaptation for each task, and achieves the
state-of-the-art results for both tasks in the
social media domain.

1 Introduction

Many natural language processing tasks have
abundant annotations in formal domain (news ar-
ticles) but suffer a significant performance drop
when applied to a new domain, where only a small
number of annotated examples are available. The
idea behind domain adaptation is to leverage an-
notations from high-resource (source) domains to
improve predictions in low-resource (target) do-
mains by training a predictor for a single task
across different domains.

Domain adaptation work tends to focus on
changes in data distributions, e.g. different
words are used in each domain. Domain adapta-
tion methods include unsupervised (Blitzer et al.,

2006) and supervised (Daumé III, 2007) variants,
depending on whether there exists no or some
training data in the target domain. This paper con-
siders the case of supervised domain adaptation,
where we have a limited amount of target domain
training data, but much more training data in a
source domain.

Work on domain adaptation mostly follows two
approaches: parameter tying (i.e. linking simi-
lar features during learning) (Dredze and Cram-
mer, 2008; Daumé III, 2007, 2009; Finkel and
Manning, 2009; Kumar et al., 2010; Dredze et al.,
2010), and learning cross domain representations
(Blitzer et al., 2006, 2007; Glorot et al., 2011;
Chen et al., 2012; Yang and Eisenstein, 2015).
Often times, domain adaptation is formulated as
learning a single model for the same task across
domains, although with a focus on maximiz-
ing target domain performance. This is simi-
lar in spirit to multi-task learning (MTL) (Caru-
ana, 1997) which jointly learns models for sev-
eral tasks, for example. learning a single data
representation common to each task (Ando and
Zhang, 2005; Collobert et al., 2011; Liu et al.,
2016c; Peng and Dredze, 2016; Yang et al., 2016;
Liu et al., 2016a). Given the similarity between
domain adaptation and MTL, it is natural to ask:
can domain adaptation benefit from jointly learn-
ing across several tasks?

This paper investigates how MTL can in-
duce better representations for domain adaptation.
There are several benefits. First, learning multi-
ple tasks provides more training data for learning.
Second, MTL provides a better inductive learn-
ing bias so that the learned representations bet-
ter generalize. Third, considering several tasks in
domain adaptation opens up the opportunities to
adapt from a different domain and a different task,
a mismatch setting which has not previously been
explored. We present a representation learning

91

framework based on MTL that incorporates pa-
rameter tying strategies common in domain adap-
tation. Our framework is based on a bidirec-
tional long short-term memory network with a
conditional random fields (BiLSTM-CRFs) (Lam-
ple et al., 2016) for sequence tagging. We consider
sequence tagging problem since they are common
in NLP applications and have been demonstrated
to benefit from learning representations (Lample
et al., 2016; Yang et al., 2016; Peng and Dredze,
2016; Ma and Hovy, 2016).

This paper makes the following contributions:

• A neural MTL domain adaptation framework
that considers several tasks simultaneously
when doing domain adaptation.

• A new domain/task mismatch setting: where
you have two datasets from two different, but
related domains and tasks.

• State-of-the-art results on Chinese word seg-
mentation and named entity recognition in
social media data.

2 Model

We begin with a brief overview of our model, and
then instantiate each layer with specific neural ar-
chitectures to conduct multi-task domain adapta-
tion for sequence tagging. Figure 1 summarizes
the entire model presented in this section.

A representation learner that is shared across all
domains and tasks, and learns robust data repre-
sentations for features. This feeds a domain pro-
jection layer, with one projection for each domain
that transforms the learned representations for dif-
ferent domains into the same shared space. As
a result, the final layer of task specific models,
which learns feature weights for different tasks,
can be shared across domains since the learned
representations (features) for different domains
are now in the same space. The framework is flex-
ible in both the number of tasks and domains. In-
creasing the number of domains linearly increases
domain projection parameters, with the number
of other model parameters unchanged. Similarly,
increasing the number of tasks only linearly in-
creases the number of task specific model param-
eters. If there is only one domain, then the frame-
work reduces to a multi-task learning framework,
and similarly, the framework reduces to a standard
domain adaptation framework if there is only one
task.

BiLSTM		

Hidden	Layer	

k	

C(1)	 ……	 C(n-1)	 C(n)	

…
	

…
	

…
	…	

…
	

…
	

…
	

…	

d	

Decoder	for	
Task	one	

…	y1	 yn	

Embeddings	
Lookup	Table	

	

Input	
data	

C(1)	 ……	 C(n-1)	 C(n)	

Projec@on	for		
domain	one	

…	
Decoders	for		

task	T	

…	

…	

Projec@on	for		
domain	N	

……	

…	y1	 yn	

…	
Shared	

Representa@on	
Learner	

Domain	
Projec@ons	

Task	Specific	
Models	

Figure 1: An overview of our proposed model
framework. The bottom layer is shared by all tasks
and domains. The domain projections contain one
projection per domain and the task specific models
(top layer) contain one model per task.

The shared representation learner, domain pro-
jections and task specific models can be instanti-
ated based on the application. In this paper, we fo-
cus on sequence tagging problems. We now intro-
duce our instantiated neural architecture for multi-
task domain adaptation for sequence tagging.

2.1 BiLSTM for representation learning

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is a type of recurrent neural
network (RNN) that models interdependencies in
sequential data. It addresses the vanishing or ex-
ploding gradients (Bengio et al., 1994; Pascanu
et al., 2013) problems of vanilla RNNs by using
a series of gates (input, forget and output gates) to
control how memory is propagated in the hidden
states of the model, and thus effectively captures
long-distance dependencies between the inputs.

Many NLP applications use bi-directional
LSTMs (BiLSTM) (Dyer et al., 2015) to scan both
left-to-right and right-to-left, which capture left
and right context. The hidden vectors produced
by both LSTMs are concatenated to form the final
output vector ht =

−→
ht ⊕ ←−ht . BiLSTMs have be-

come a common building block for learning rep-
resentations in NLP and have achieved impres-
sive performance in problems such as sequence
tagging (Lample et al., 2016; Yang et al., 2016;
Ma and Hovy, 2016), relation classification (Xu
et al., 2015; Zhang et al., 2015), and syntactic
parsing (Kiperwasser and Goldberg, 2016; Cross

92

and Huang, 2016). We use a BiLSTM as our rep-
resentation learner. It produces a hidden vector for
each token in the sentence, which we denote as:

ht = BiLSTM(x1:n, t) (1)

where x1:n denotes the whole input sequence of
length n, and t denotes the t-th position. The rep-
resentation for the whole sequence is thus denoted
as h = h1:n.

2.2 Domain Projections
Domain adaptation requires learning a shared rep-
resentation that generalizes across domains. Ide-
ally, parameter estimation of the BiLSTM should
learn to produce such robust features. However,
this may place a heavy burden on the BiLSTM;
it does not know the identity of each domain yet
must still learns how to map two heterogeneous
input types to the same representation. To re-
duce this burden, we introduce a domain projec-
tion layer, which relies on explicit domain spe-
cific transformation functions to produce shared
representations. We place this transformation be-
tween the representation learner and the task spe-
cific predictor to alleviates pressure on the repre-
sentation learner to learn cross domain representa-
tions. Note that the domain projection layer works
jointly with the representation learner to produce
shared representations. We experiment with two
simple strategies for domain projections which are
based on previous lines of work in domain adapta-
tion.

2.2.1 Domain Masks
The first strategy is inspired by Daumé III (2007)
and Yang and Hospedales (2015), which split the
representations into several regions, with one re-
gion shared among domains, and others specific
for each domain. As a result, the BiLSTM repre-
sentation learner will learn to put the features that
are suitable to be shared across domains into the
shared region, and domain specific features to the
corresponding region for the domain.

We implement this strategy by defining domain
masks md, which is a vector for the dth domain.
The mask md has value 1 for the effective dimen-
sions of domain d and domain shared region, and
0 for all other dimensions. For example, assume
we have two domains and a k dimensional hid-
den vector for features, the first k/3-dimensions is
shared between the two domains, while the k/3+1
to 2k/3 dimensions are used only for domain 1,

and the remaining dimensions for domain 2. The
mask for domain 1 and domain 2 would be:

m1 = [~1,~1,~0], m2 = [~1,~0,~1]. (2)

We can then apply these masks directly to the hid-
den vectors h learned by the BiLSTM to produce
a projected hidden state ĥ:

ĥ = md � h, (3)

where � denotes element-wise multiplication.
Since only a subset of the dimensions are used as
features in each domain, the BiLSTM will be en-
couraged to learn to partition the dimensions of the
output hidden vectors into domains.

Note that in Daumé III (2007), the domain
masks operate on hand engineered features, thus
only affect feature weights. However, here the do-
main masks will change the parameters learned in
BiLSTMs as well, changing the learned features.
Therefore, training data from one domain will also
change the other domains’ representation. When
we jointly train with data from all domains, the
model has to balance the training objectives for all
domains simultaneously.

2.2.2 Linear Projection
The second domain adaptation strategy we explore
is a linear transformation to each domain, denoted
as Td. Given a k-dimensional vector representa-
tion h, Td is a k×k matrix that projects the learned
BiLSTM hidden vector to a common space that
can be used by a shared task specific model. We
use the transformation:

ĥ = Tdh. (4)

We learn Td for each domain jointly with other
model parameters. While this model has greater
freedom in learning representations across do-
mains, it relies on the training data to learn a good
transformation, and does not explicitly partition
the representations into domain regions.

2.3 Task Specific Neural-CRF Models

Multi-task domain adaptation simultaneously con-
siders several tasks adapting domains since the re-
lated tasks would help induce more robust data
representations for domain adaptation. Addition-
ally, it enables leveraging more data to learn better
domain projections. The goal of a task specific
model is to learn parameters to project the shared

93

representations to the desired outputs for the corre-
sponding task. Different tasks that define different
output spaces need separate task specific models.

For our applications to sequence tagging prob-
lems, we choose Conditional Random Fields
(CRFs) (Lafferty et al., 2001) as task specific mod-
els, since it is widely used in previous work and
is shown to benefit from learning representations
(Peng and Dredze, 2015; Lample et al., 2016; Ma
and Hovy, 2016). These “Neural-CRFs” define
the conditional probability of a sequence of labels
given the input as:

p(yk|xk;W) =
∏n

i=1 exp
(
W TF (yk

i−1, y
k
i , ψ(xk))

)
Zk

,

where i indexes the position in the sequence, F is
the feature function, and ψ(xk) defines a transfor-
mation of the original input, in our case ψ(xk) =
BiLSTM(xk). Zk is the partition function de-
fined as:

Zk =
∑
y∈Y

n∏
i=1

exp
(
W TF (yk

i−1, y
k
i , ψ(xk))

)
.

2.3.1 Sharing Task Specific Models
We could create a CRF decoder for each task and
domain. This is the practice of some (Yang and
Hospedales, 2015) who consider domain adapta-
tion, or multi-domain learning, a special case of
MTL, and learn separate models for the same task
from different domains.

Instead, we argue that learning a single model
for a task regardless of the number of domains
draws strong connections to the traditional domain
adaptation literature. It enjoys the benefit of in-
creasing the amount of training data for each task
by considering different domains, and better han-
dles the problem of shifts in data distributions by
explicitly considering different domains. There-
fore, we use a single CRF per task, shared across
all domains.

3 Parameter Estimation

The proposed neural architecture for multi-task
domain adaptation can be trained end-to-end by
maximizing data log-likelihood. As there are
D× T 1 datasets, the final loss function is a linear
combination of the log-likelihood of each dataset.
For simplicity, we give each dataset equal weight
when forming the linear combination.

1D denotes the number of domains and T the number of
tasks

Training Model training is a straightforward ap-
plication of gradient based back-propagation. We
use alternating optimization among each dataset
with stochastic gradient descent (SGD). To pre-
vent training from skewing the model to a specific
dataset due to the optimization order, we subsam-
ple the number of instances used in each epoch
with a fraction λ w.r.t. the smallest dataset size,
which is tuned as a hyper-parameter on develop-
ment data. A separate learning rate is tuned for
each dataset, and we decay the learning rate when
results on development data do not improve af-
ter 5 consecutive epochs. We train for up to 30
epochs and use early stopping (Caruana et al.,
2001; Graves et al., 2013) as measured on devel-
opment data. We select the best model for each
dataset based on hyper-parameter tuning. We use
dropout on the embeddings and the BiLSTM out-
put vectors as in Ma and Hovy (2016).

Initialization We use pre-trained Chinese em-
beddings provided by Peng and Dredze (2015)
with dimension 100. All other model parameters
are initialized uniformly at random in the range of
[−1, 1].

Inference For training the CRFs, we use
marginal inference and maximize the marginal
probabilities of the labels in the training data. At
test time, the label sequence with highest condi-
tional probability y∗ = arg max p(y|x; Ω) is ob-
tained by MAP inference.

Hyper-parameters Our hyper-parameters in-
clude the initial learning rate (per dataset, in the
range of [0.005, 0.01, 0.02]), the dropout rate for
the input embedding and the hidden vectors (in the
range of [0, 0.1, 0.2]), and the subsample coeffi-
cient for each setting (in the range of [5, 10, 15]).
We tune these hyper-parameter using beam search
on development data. For convenience, the em-
bedding and the LSTM hidden vector dimensions
are set to 100 and 150 respectively.

4 Experimental Setup

We test the effectiveness of the multi-task domain
adaptation framework on two sequence tagging
problems: Chinese word segmentation (CWS) and
named entity recognition (NER). We consider two
domains: news and social media, with news the
source domain and social media the target domain.

94

Dataset #Train #Dev #Test

SighanCWS 39,567 4,396 4,278

SighanNER 16,814 1,868 4,636

WeiboCWS 1,600 200 200

WeiboNER 1,350 270 270

Table 1: Datasets statistics.

4.1 Datasets

We consider two domains: news and social me-
dia for the two tasks: CWS and NER. This re-
sults in four datasets: news CWS data comes
from the SIGHAN 2005 shared task (SighanCWS)
(Emerson, 2005), news NER data comes from the
SIGHAN 2006 shared task (SighanNER) (Levow,
2006), social CWS data (WeiboSeg) created by
Zhang et al. (2013), and social NER data (Wei-
boNER) created by Peng and Dredze (2015).

Both SighanCWS and SighanNER contain sev-
eral portions2; we use those for simplified Chi-
nese (PKU and MSR respectively). The datasets
do not have development data, so we hold out the
last 10% of training data for development. Sighan-
NER contains three entity types (person, organiza-
tion and location), while WeiboNER is annotated
with four entity types (person, organization, loca-
tion and geo-political entity), including named and
nominal mentions. To match the two tag sets, we
only use named mentions in WeiboNER and merge
geo-political entities and locations. The 2000 an-
notated instances in WeiboSeg were meant only
for evaluation, so we split the data ourselves us-
ing an 8:1:1 split for training, development, and
test. Hyper-parameters are tuned on the develop-
ment data and we report the precision, recall, and
F1 score on the test portion. Detailed data statis-
tics is shown in Table 1.

4.2 Baselines

We consider two baselines common in domain
adaptation experiments. The first baseline only
considers a single dataset at a time (separate) by
training separate models just on in-domain train-
ing data. The second baseline (mix) uses out-of-
domain training data for the same task by mix-
ing it with the in-domain data. For both the base-
lines, we use the BiLSTM-CRFs neural architec-

2The portions are annotated by different institutes, and
cover both traditional and simplified Chinese

0 200 400 600 800 1000 1200
In-domain Training Data Size

72
74
76
78
80
82
84
86
88

Te
st
 F
1

Separate
Domain Adaptation
Multi-task Domain Adaptation

(a)

0 200 400 600 800 1000 1200
In-domain Training Data Size

20

30

40

50

60

Te
st
 F
1

Separate
Domain Adaptation
Multi-task Domain Adaptation

(b)

Figure 2: The effect of training data size on so-
cial media CWS (top) and NER (bottom) tasks.
With more in-domain training data we see dimin-
ishing returns from domain adaptation. Our pro-
posed multi-task domain adaptation framework is
also applicable for unsupervised domain adapta-
tion (with no in-domain training data).

ture (Lample et al., 2016), which achieved state-
of-the-art results on NER and other sequence tag-
ging tasks (Peng and Dredze, 2016; Ma and Hovy,
2016; Yang et al., 2016).

5 Experimental Results

5.1 Main Results

Table 2 presents the results for domain adaptation
to the target domain (social media) test data . The
baseline method Mix improves over Separate as it
benefits from the increased training data. The sin-
gle task domain adaptation models are a special
case of the proposed multi-task domain adapta-
tion framework: with only one task specific model
in the top layer (CWS or NER). Both of our ap-
proaches (domain mask and linear projection) im-
prove over the baseline methods. Knowing the do-
main of the training data helps the model better
learn effective representations. Finally, we see fur-
ther improvements in the multi-task domain adap-
tation setting. By considering additional tasks in

95

Settings Methods
Datasets CWS NER

Prec Recall F1 Prec Recall F1

Baseline Separate 86.2 85.7 86.0 57.2 42.1 48.5
Mix 87.0 86.1 86.5 60.9 44.0 51.1

Domain Adapt Domain Mask 88.7 87.1 87.9 68.2 48.6 56.8
Linear Projection 88.0 87.5 87.7 73.3 45.8 56.4

Multi-task DA Domain Mask 89.7 88.3 89.0 60.2 52.3 59.9
Linear Projection 89.1 88.6 88.9 68.6 49.5 57.5

Table 2: Test results for CWS and Chinese NER on the target social media domain. The first two rows
are baselines (Section 4.2,) followed by two domain adaptation models that only considers one task a
time. The last two rows are the proposed multi-task domain adaptation framework building upon the two
domain adaptation models, respectively. Domain adaptation models leverage out-of-domain training data
and significantly improve over the Separate baseline, as well as the Mix baseline which trains with the
out-of-domain data without considering domain shift. Multi-task domain adaptation further significantly
improves over traditional domain adaptation on both domain adaptation models and achieved the new
state-of-the-art results on the two tasks.

addition to domains, we achieve new state-of-the-
art results on the two tasks. We compare to the
best published results from Zhang et al. (2013) and
Peng and Dredze (2016) with F1 scores of 87.5%
(CWS) and 55.3% (NER), respectively.

Statistical Significance We measures statistical
significance using McNemars chi-square test (Mc-
Nemar, 1947) for paired significant test. We
treated the predicted spans (not tokens) that agreed
with the ground truth as positive, otherwise nega-
tive. For the NER task, we only count the spans
that corresponds to named entities. We compare
the best baseline (mix) and the two domain adapta-
tion models, as well as between the domain adap-
tation models and their multi-task domain adap-
tation counterpart. Both the domain adaptation
models significantly improved over the mix base-
line (p < 0.01), and the multi-task domain adap-
tation methods significantly improved over their
single task domain adaptation counterpart (p <
0.01). We cannot conduct paired significance tests
with the best published results since we do not
have access to their outputs.

5.2 In-domain Training Data

We also conducted several experiments to show
the flexibility of our multi-task domain adaptation
framework and analyze the behavior of the models
by varying the training data.

We first consider the effect of in-domain train-
ing data size. Figure 2 shows the test F1 for the
Separate baseline which only considers in-domain
training data compared with both a single-task do-

main adaptation model and a multi-task domain
adaptation model. For simplicity, we only show
the curve for the Domain Mask variant. As ex-
pected, we observe diminishing returns with addi-
tional in-domain training data on both tasks, but
domain adaptation and multi-task domain adapta-
tion methods suffer less from the diminishing re-
turn, especially on the NER task (Figure 2a). The
curves for domain adaptation and multi-task do-
main adaptation also appear to be smoother, as
they leverage more data to learn input represen-
tations, and thus are more robust.

When we have no in-domain training data, the
problem reduces to unsupervised domain adap-
tation. Our framework applies here as well,
and multi-task domain adaptation achieves perfor-
mance close to the Separate baseline with only
200 in-domain training examples.

5.3 Model Variations

The multi-task domain adaptation framework is
flexible regarding the number of domains and
tasks, thus the number of datasets. Table 3 shows
the results for several model variations, grouped
by the number of training datasets. With one
dataset, it is just the standard supervised learning
setting, which reduces to our Separate baseline.

With two datasets, the framework can do multi-
task learning (with two datasets from the same do-
main but different tasks), single task domain adap-
tation (with two datasets for the same task but
from different domains), and a novel mismatch
setting (with two datasets from both different do-
mains and different tasks). As shown in the second

96

Dataset Numbers Methods
Datasets CWS NER

Prec Recall F1 Prec Recall F1
One Dataset Separate 86.2 85.7 86.0 57.2 42.1 48.5

Two Datasets
Multi-task 87.7 86.2 86.9 59.1 44.9 51.1
Domain Adaptation 88.7 87.1 87.9 68.2 48.6 56.8
Mismatch 87.8 86.3 87.1 60.8 45.0 51.7

Four Datasets All Multi-task 88.7 87.7 88.2 67.2 48.5 56.4
Multi-task DA 89.7 88.3 89.0 60.2 52.3 59.9

Table 3: Model variations grouped by number of training datesets.

section of Table 3, including additional training
data – no matter from another task, domain or both
– always improves the performance. A hidden fac-
tor not shown in the table is the additional dataset’s
size. For multi-task learning, since we are look
at the social media domain, the additional dataset
size is small. This is probably the reason why the
Mismatch setting leveraging data from a different
task and domain surprisingly outperformed multi-
task learning. Domain adaptation enjoys both the
benefits of a large amount of additional training
data and an aligned task, thus achieving the best
results among the two dataset settings.

When conducting multi-task domain adapta-
tion, we are leveraging four datasets. One concern
is that the performance gains only come from ad-
ditional training data, instead of the deliberately
designed framework (Joshi et al., 2012). We thus
also compare with a strategy which treats the same
task for a different domain as a different task. The
corresponding neural architecture is a shared BiL-
STM with four separate task-specific models: we
call it the All Multi-task setting. The results show
that explicitly modeling data domains gives ex-
tra benefit than blindly throwing in more training
data. We found the same benefits when experi-
menting with three datasets (instead of 2 or 4).

6 Related Work

The previous work on domain adaptation exclu-
sively focused on building a unified model for a
task across domain. However, we argue that a flex-
ible framework for domain adaptation on several
tasks simultaneously would be beneficial. To the
best of our knowledge, the work that is closest to
ours is Yang and Hospedales (2015), which pro-
vided a unified perspective for multi-task learning
and multi-domain learning (a more general case
of domain adaptation) under the same perspective
of representation learning. However, they only fo-
cused on exploring the common ground of multi-

task learning and multi-domain learning, and did
not explore the possibility of having multi-task
learning to help domain adaptation. We briefly
review previous work on domain adaptation and
multi-task learning below.

6.1 Domain Adaptation

In domain adaptation, or more general multi-
domain learning, the goal is to learn a single model
that can produce accurate predictions for multi-
ple domains. An important characteristic of learn-
ing across domains is that each domain represents
data drawn from a different distribution, yet share
many commonalities. The larger the difference be-
tween these distributions, the larger the general-
ization error when learning across domains (Ben-
David et al., 2010; Mansour et al., 2009).

As a result, a long line of work in multi-domain
learning concerns learning shared representations,
such as through identifying alignments between
features (Blitzer et al., 2007, 2006), learning with
deep networks (Glorot et al., 2011), using trans-
fer component analysis (Pan et al., 2011), learning
feature embeddings (Yang and Eisenstein, 2015)
and kernel methods for learning low dimensional
domain structures (Gong et al., 2012), among oth-
ers. Another line sought for feature weight tying
(Dredze and Crammer, 2008; Daumé III, 2007,
2009; Finkel and Manning, 2009; Kumar et al.,
2010; Dredze et al., 2010) to transfer the learned
feature weights across domains.

We combined the two lines and explored joint
learning with multiple tasks.

6.2 Multi-task Learning

The goal of MTL (Caruana, 1997; Ando and
Zhang, 2005) is to improve performance on dif-
ferent tasks by learning them jointly.

With recent progress in deep representation
learning, new work considers MTL with neural
networks in a general framework: learn a shared

97

representations for all the tasks, and then a task
specific predictor. The representations shared by
tasks go from lower level word representations
(Collobert and Weston, 2008; Collobert et al.,
2011), to higher level contextual representations
learned by Recurrent Neural Networks (RNNs)
(Liu et al., 2016b; Yang et al., 2016; Peng et al.,
2017) or other neural architectures (Liu et al.,
2016a; Søgaard and Goldberg, 2016; Benton et al.,
2017). MTL has helped in many NLP tasks,
such as sequence tagging (Collobert et al., 2011;
Peng and Dredze, 2016; Søgaard and Goldberg,
2016; Yang et al., 2016), text classification (Liu
et al., 2016b,a), and discourse analysis (Liu et al.,
2016c).

We expand the spectrum by exploring how
multi-task learning can help domain adaptation.

7 Conclusion

We have presented a framework for multi-task
domain adaptation, and instantiated a neural ar-
chitecture for sequence tagging problems. The
framework is composed of a shared representation
learner for all datasets, a domain projection layer
that learns one projection per domain, and a task-
specific model layer that learns one set of feature
weights per task. The proposed neural architecture
can be trained end-to-end, and achieved the state-
of-the-art results for Chinese word segmentation
and NER on social media domain.

With this framework in mind, there are several
interesting future directions to explore. First, we
considered common domain adaptation schemas
with our domain mask and linear projection. How-
ever, there are many more sophisticated methods
that we can consider integrating into our model
(Blitzer et al., 2007; Yang and Eisenstein, 2015).
Second, we only experimented with sequence tag-
ging problems. However, the proposed framework
is generally applicable to other problems such as
text classification, parsing, and machine transla-
tion. We plan to explore these applications in the
future. Finally, our work draws on two traditions
in multi-domain learning: parameter sharing (on
the task specific models) and representation learn-
ing (the shared representation learner). We plan to
explore how other domain adaptation methods can
be realized in a deep architecture.

References
Rie Kubota Ando and Tong Zhang. 2005. A framework

for learning predictive structures from multiple tasks
and unlabeled data. The Journal of Machine Learn-
ing Research .

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. 2010. A theory of learning from different
domains. Machine learning .

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neu-
ral Networks .

Adrian Benton, Margaret Mitchell, and Dirk Hovy.
2017. Multi-task learning for mental health using
social media text. In Proceedings of EACL.

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In Proceedings of ACL.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of EMNLP.

Rich Caruana. 1997. Multitask learning. Machine
learning .

Rich Caruana, vSteve Lawrence, and Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In Proceedings of
NIPS.

Minmin Chen, Zhixiang Xu, Fei Sha, and Kilian Q
Weinberger. 2012. Marginalized denoising autoen-
coders for domain adaptation. In Proceedings of
ICML.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of EMNLP.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of ACL.

Hal Daumé III. 2009. Bayesian multitask learning with
latent hierarchies. In Proceedings of UAI.

Mark Dredze and Koby Crammer. 2008. Online meth-
ods for multi-domain learning and adaptation. In
Proceedings of EMNLP.

98

Mark Dredze, Alex Kulesza, and Koby Crammer. 2010.
Multi-domain learning by confidence-weighted pa-
rameter combination. Machine Learning .

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL.

Thomas Emerson. 2005. The second international chi-
nese word segmentation bakeoff. In Proceedings of
the fourth SIGHAN workshop on Chinese language
Processing.

Jenny Rose Finkel and Christopher D Manning. 2009.
Hierarchical bayesian domain adaptation. In Pro-
ceedings of NAACL.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of ICML.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grau-
man. 2012. Geodesic flow kernel for unsupervised
domain adaptation. In Proceedings of CVPR.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proceedings of ICASSP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation .

Mahesh Joshi, William W Cohen, Mark Dredze, and
Carolyn P Rosé. 2012. Multi-domain learning:
when do domains matter? In Proceedings of
EMNLP.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics .

Abhishek Kumar, Avishek Saha, and Hal Daume.
2010. Co-regularization based semi-supervised do-
main adaptation. In Proceedings of NIPS.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of ICML.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL.

Gina-Anne Levow. 2006. The third international chi-
nese language processing bakeoff: Word segmen-
tation and named entity recognition. In Proceed-
ings of the Fifth SIGHAN Workshop on Chinese Lan-
guage Processing.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016a.
Deep multi-task learning with shared memory. In
Proceedings of EMNLP.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016b.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of IJCAI.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang Sui.
2016c. Implicit discourse relation classification via
multi-task neural networks. In Proceedings of AAAI.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of ACL.

Yishay Mansour, Mehryar Mohri, and Afshin Ros-
tamizadeh. 2009. Domain adaptation: Learning
bounds and algorithms. In Proceedings of COLT .

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika 12(2):153–157.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and
Qiang Yang. 2011. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural
Networks .

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of ICML.

Nanyun Peng and Mark Dredze. 2015. Named en-
tity recognition for chinese social media with jointly
trained embeddings. In Proceedings of EMNLP.
Lisboa, Portugal.

Nanyun Peng and Mark Dredze. 2016. Improving
named entity recognition for chinese social media
with word segmentation representation learning. In
Proceedings of ACL.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics 5:101–115.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
volume 2, pages 231–235.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng,
and Zhi Jin. 2015. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of EMNLP.

Yi Yang and Jacob Eisenstein. 2015. Unsupervised
multi-domain adaptation with feature embeddings.
In Proceedings of NAACL.

Yongxin Yang and Timothy M Hospedales. 2015. A
unified perspective on multi-domain and multi-task
learning. Proceedings of ICLR .

99

Zhilin Yang, Ruslan Salakhutdinov, and William Co-
hen. 2016. Multi-task cross-lingual sequence tag-
ging from scratch. arXiv preprint arXiv:1603.06270
.

Longkai Zhang, Li Li, Zhengyan He, Houfeng Wang,
and Ni Sun. 2013. Improving chinese word seg-
mentation on micro-blog using rich punctuations. In
Proceedings of ACL.

Shu Zhang, Dequan Zheng, Xinchen Hu, and Ming
Yang. 2015. Bidirectional long short-term memory
networks for relation classification. In Proceedings
of 29th Pacific Asia Conference on Language, Infor-
mation and Computation.

100

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 101–110,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Beyond Bilingual: Multi-sense Word Embeddings using Multilingual
Context

Shyam Upadhyay1 Kai-Wei Chang2 Matt Taddy3 Adam Kalai3 James Zou4

1University of Illinois at Urbana-Champaign, Urbana, IL, USA
2University of Virginia, Charlottesville, VA, USA

3Microsoft Research, Cambridge, MA, USA
4Stanford University, Stanford, CA, USA

upadhya3@illinois.edu, kw@kwchang.net
{taddy,adum}@microsoft.com, jamesyzou@gmail.com

Abstract

Word embeddings, which represent a word
as a point in a vector space, have become
ubiquitous to several NLP tasks. A re-
cent line of work uses bilingual (two lan-
guages) corpora to learn a different vec-
tor for each sense of a word, by ex-
ploiting crosslingual signals to aid sense
identification. We present a multi-view
Bayesian non-parametric algorithm which
improves multi-sense word embeddings
by (a) using multilingual (i.e., more than
two languages) corpora to significantly
improve sense embeddings beyond what
one achieves with bilingual information,
and (b) uses a principled approach to learn
a variable number of senses per word,
in a data-driven manner. Ours is the
first approach with the ability to lever-
age multilingual corpora efficiently for
multi-sense representation learning. Ex-
periments show that multilingual training
significantly improves performance over
monolingual and bilingual training, by al-
lowing us to combine different parallel
corpora to leverage multilingual context.
Multilingual training yields comparable
performance to a state of the art mono-
lingual model trained on five times more
training data.

1 Introduction

Word embeddings (Turian et al., 2010; Mikolov
et al., 2013, inter alia) represent a word as a point
in a vector space. This space is able to capture se-
mantic relationships: vectors of words with sim-
ilar meanings have high cosine similarity (Tur-
ney, 2006; Turian et al., 2010). Use of embed-
dings as features has been shown to benefit sev-

eral NLP tasks and serve as good initializations for
deep architectures ranging from dependency pars-
ing (Bansal et al., 2014) to named entity recogni-
tion (Guo et al., 2014b).

Although these representations are now ubiqui-
tous in NLP, most algorithms for learning word-
embeddings do not allow a word to have differ-
ent meanings in different contexts, a phenomenon
known as polysemy. For example, the word
bank assumes different meanings in financial (eg.
“bank pays interest”) and geographical contexts
(eg. “river bank”) and which cannot be repre-
sented adequately with a single embedding vector.
Unfortunately, there are no large sense-tagged cor-
pora available and such polysemy must be inferred
from the data during the embedding process.

My	interest	lies	in	
History.	

��[��]��
	
�	

Mon	[intérêt]	
réside	dans	
l'Histoire.	

Je	suis	un	grand	
[intérêt]	sur	mes	
économies	de	la	
banque.	

I	got	high	interest	on	my	
savings	from	the	bank.	

���������
���[�]�	

Figure 1: Benefit of Multilingual Information (beyond
bilingual): Two different senses of the word “interest” and
their translations to French and Chinese (word translation
shown in [bold]). While the surface form of both senses are
same in French, they are different in Chinese.

Several attempts (Reisinger and Mooney, 2010;
Neelakantan et al., 2014; Li and Jurafsky, 2015)
have been made to infer multi-sense word rep-
resentations by modeling the sense as a latent
variable in a Bayesian non-parametric framework.
These approaches rely on the ”one-sense per col-
location” heuristic (Yarowsky, 1995), which as-
sumes that presence of nearby words correlate
with the sense of the word of interest. This heuris-
tic provides only a weak signal for sense identifi-
cation, and such algorithms require large amount
of training data to achieve competitive perfor-

101

mance.
Recently, several approaches (Guo et al., 2014a;

Šuster et al., 2016) propose to learn multi-sense
embeddings by exploiting the fact that different
senses of the same word may be translated into
different words in a foreign language (Dagan and
Itai, 1994; Resnik and Yarowsky, 1999; Diab and
Resnik, 2002; Ng et al., 2003). For example, bank
in English may be translated to banc or banque in
French, depending on whether the sense is finan-
cial or geographical. Such bilingual distributional
information allows the model to identify which
sense of a word is being used during training.

However, bilingual distributional signals often
do not suffice. It is common that polysemy for a
word survives translation. Fig. 1 shows an illus-
trative example – both senses of interest get trans-
lated to intérêt in French. However, this becomes
much less likely as the number of languages under
consideration grows. By looking at Chinese trans-
lation in Fig. 1, we can observe that the senses
translate to different surface forms. Note that
the opposite can also happen (i.e. same surface
forms in Chinese, but different in French). Exist-
ing crosslingual approaches are inherently bilin-
gual and cannot naturally extend to include addi-
tional languages due to several limitations (details
in Section 4). Furthermore, works like (Šuster
et al., 2016) sets a fixed number of senses for each
word, leading to inefficient use of parameters, and
unnecessary model complexity.1

This paper addresses these limitations by
proposing a multi-view Bayesian non-parametric
word representation learning algorithm which
leverages multilingual distributional information.
Our representation learning framework is the first
multilingual (not bilingual) approach, allowing us
to utilize arbitrarily many languages to disam-
biguate words in English. To move to multilin-
gual system, it is necessary to ensure that the
embeddings of each foreign language are relat-
able to each other (i.e., they live in the same
space). We solve this by proposing an algorithm
in which word representations are learned jointly
across languages, using English as a bridge. While
large parallel corpora between two languages are
scarce, using our approach we can concatenate
multiple parallel corpora to obtain a large multi-
lingual corpus. The parameters are estimated in

1Most words in conventional English are monosemous,
i.e. single sense (eg. the word monosemous)

a Bayesian nonparametric framework that allows
our algorithm to only associate a word with a new
sense vector when evidence (from either same or
foreign language context) requires it. As a result,
the model infers different number of senses for
each word in a data-driven manner, avoiding wast-
ing parameters.

Together, these two ideas – multilingual dis-
tributional information and nonparametric sense
modeling – allow us to disambiguate multiple
senses using far less data than is necessary for pre-
vious methods. We experimentally demonstrate
that our algorithm can achieve competitive perfor-
mance after training on a small multilingual cor-
pus, comparable to a model trained monolingually
on a much larger corpus. We present an analy-
sis discussing the effect of various parameters –
choice of language family for deriving the multi-
lingual signal, crosslingual window size etc. and
also show qualitative improvement in the embed-
ding space.

2 Related Work

Work on inducing multi-sense embeddings can
be divided in two broad categories – two-staged
approaches and joint learning approaches. Two-
staged approaches (Reisinger and Mooney, 2010;
Huang et al., 2012) induce multi-sense embed-
dings by first clustering the contexts and then
using the clustering to obtain the sense vec-
tors. The contexts can be topics induced us-
ing latent topic models(Liu et al., 2015a,b), or
Wikipedia (Wu and Giles, 2015) or coarse part-
of-speech tags (Qiu et al., 2014). A more recent
line of work in the two-staged category is that
of retrofitting (Faruqui et al., 2015; Jauhar et al.,
2015), which aims to infuse semantic ontologies
from resources like WordNet (Miller, 1995) and
Framenet (Baker et al., 1998) into embeddings
during a post-processing step. Such resources list
(albeit not exhaustively) the senses of a word, and
by retro-fitting it is possible to tease apart the dif-
ferent senses of a word. While some resources like
WordNet (Miller, 1995) are available for many
languages, they are not exhaustive in listing all
possible senses. Indeed, the number senses of a
word is highly dependent on the task and can-
not be pre-determined using a lexicon (Kilgarriff,
1997). Ideally, the senses should be inferred in a
data-driven manner, so that new senses not listed
in such lexicons can be discovered. While re-

102

cent work has attempted to remedy this by using
parallel text for retrofitting sense-specific embed-
dings (Ettinger et al., 2016), their procedure re-
quires creation of sense graphs, which introduces
additional tuning parameters. On the other hand,
our approach only requires two tuning parameters
(prior α and maximum number of senses T).

In contrast, joint learning approaches (Nee-
lakantan et al., 2014; Li and Jurafsky, 2015)
jointly learn the sense clusters and embeddings
by using non-parametrics. Our approach belongs
to this category. The closest non-parametric ap-
proach to ours is that of (Bartunov et al., 2016),
who proposed a multi-sense variant of the skip-
gram model which learns the different number of
sense vectors for all words from a large mono-
lingual corpus (eg. English Wikipedia). Our
work can be viewed as the multi-view extension of
their model which leverages both monolingual and
crosslingual distributional signals for learning the
embeddings. In our experiments, we compare our
model to monolingually trained version of their
model.

Incorporating crosslingual distributional infor-
mation is a popular technique for learning word
embeddings, and improves performance on sev-
eral downstream tasks (Faruqui and Dyer, 2014;
Guo et al., 2016; Upadhyay et al., 2016). However,
there has been little work on learning multi-sense
embeddings using crosslingual signals (Bansal
et al., 2012; Guo et al., 2014a; Šuster et al., 2016)
with only (Šuster et al., 2016) being a joint ap-
proach. (Kawakami and Dyer, 2015) also used
bilingual distributional signals in a deep neural ar-
chitecture to learn context dependent representa-
tions for words, though they do not learn separate
sense vectors.

3 Model Description

Let E = {xe1, .., xei , .., xeNe
} denote the words of

the English side and F = {xf1 , .., xfi , .., xfNf
} de-

note the words of the foreign side of the paral-
lel corpus. We assume that we have access to
word alignments Ae→f and Af→e mapping words
in English sentence to their translation in foreign
sentence (and vice-versa), so that xe and xf are
aligned if Ae→f (xe) = xf .

We define Nbr(x, L, d) as the neighborhood in
language L of size d (on either side) around word
x in its sentence. The English and foreign neigh-
boring words are denoted by ye and yf , respec-

tively. Note that ye and yf need not be translations
of each other. Each word xf in the foreign vocab-
ulary is associated with a dense vector xf in Rm,
and each word xe in English vocabulary admits at
most T sense vectors, with the kth sense vector
denoted as xek.2 As our main goal is to model
multiple senses for words in English, we do not
model polysemy in the foreign language and use a
single vector to represent each word in the foreign
vocabulary.

We model the joint conditional distribution of
the context words ye, yf given an English word xe

and its corresponding translation xf on the parallel
corpus:

P (ye, yf | xe, xf ;α, θ), (1)

where θ are model parameters (i.e. all embed-
dings) and α governs the hyper-prior on latent
senses.

Assume xe has multiple senses, which are in-
dexed by the random variable z, Eq. (1) can be
rewritten,∫

β

∑
z
P (ye, yfz, β | xe, xf , α; θ)dβ

where β are the parameters determining the model
probability on each sense for xe (i.e., the weight
on each possible value for z). We place a Dirich-
let process (Ferguson, 1973) prior on sense assign-
ment for each word. Thus, adding the word-x sub-
script to emphasize that these are word-specific
senses,

P (zx = k | βx) = βxk
∏k−1

r=1
(1− βxr) (2)

βxk | α ind∼ Beta(βxk | 1, α), k = 1, (3)

That is, the potentially infinite number of senses
for each word x have probability determined
by the sequence of independent stick-breaking
weights, βxk, in the constructive definition of the
DP (Sethuraman, 1994). The hyper-prior concen-
tration α provides information on the number of
senses we expect to observe in our corpus.

After conditioning upon word sense, we decom-
pose the context probability,

P (ye, yf | z, xe, xf ; θ) =

P (ye | xe, xf , z; θ)P (yf | xe, xf , z; θ).
2We also maintain a context vector for each word in the

English and Foreign vocabularies. The context vector is used
as the representation of the word when it appears as the con-
text for another word.

103

Both the first and the second terms are sense-
dependent, and each factors as,

P (y |xe, xf , z=k; θ)∝Ψ(xe, z=k, y)Ψ(xf , y)

= exp(yTxek) exp(yTxf) = exp(yT (xek+xf)),

where xek is the embedding corresponding to the
kth sense of the word xe, and y is either ye or yf .
The factor Ψ(xe, z = k, y) use the corresponding
sense vector in a skip-gram-like formulation. This
results in total of 4 factors,

P (ye, yf | z, xe, xf ; θ) ∝ Ψ(xe, z, ye)Ψ(xf , yf)

Ψ(xe, z, yf)Ψ(xf , ye)
(4)

See Figure 2 for illustration of each factor. This
modeling approach is reminiscent of (Luong et al.,
2015), who jointly learned embeddings for two
languages l1 and l2 by optimizing a joint objective
containing 4 skip-gram terms using the aligned
pair (xe,xf)– two predicting monolingual contexts
l1 → l1, l2 → l2 , and two predicting crosslingual
contexts l1 → l2, l2 → l1.

Learning. Learning involves maximizing the
log-likelihood,

P (ye, yf | xe, xf ;α, θ) =∫
β

∑
z
P (ye, yf , z, β | xe, xf , α; θ)dβ

for which we use variational approximation. Let
q(z, β) = q(z)q(β) where

q(z) =
∏
i q(zi) q(β) =

∏V
w=1

∏T
k=1 βwk

(5)
are the fully factorized variational approximation
of the true posterior P (z, β | ye, yf , xe, xf , α),
where V is the size of english vocabulary, and T is
the maximum number of senses for any word. The
optimization problem solves for θ,q(z) and q(β)
using the stochastic variational inference tech-
nique (Hoffman et al., 2013) similar to (Bartunov
et al., 2016) (refer for details).

The resulting learning algorithm is shown as Al-
gorithm 1. The first for-loop (line 1) updates the
English sense vectors using the crosslingual and
monolingual contexts. First, the expected sense
distribution for the current English wordw is com-
puted using the current estimate of q(β) (line 4).
The sense distribution is updated (line 7) using the
combined monolingual and crosslingual contexts

The	bank	paid	me	[interest]	on	my	savings.	

la	banque	m'a	payé	des	[intérêts]	sur	mes	économies.	

Ψ(interest,2,savings)	

Ψ(intérêts,	économies)	

Ψ(interest,2,banque)	 Ψ(intérêts,savings)	

Figure 2: The aligned pair (interest,intérêt) is used to predict
monolingual and crosslingual context in both languages (see
factors in eqn. (4)). We pick each sense (here 2nd) vector for
interest, to perform weighted update. We only model poly-
semy in English.

(line 5) and re-normalized (line 8). Using the up-
dated sense distribution q(β)’s sufficient statistics
is re-computed (line 9) and the global parameter θ
is updated (line 10) as follows,

θ ← θ + ρt∇θ
∑

k|zik>ε

∑
y∈yc

zik log p(y|xi, k, θ)

(6)
Note that in the above sum, a sense participates in
a update only if its probability exceeds a thresh-
old ε (= 0.001). The final model retains sense
vectors whose sense probability exceeds the same
threshold. The last for-loop (line 11) jointly opti-
mizes the foreign embeddings using English con-
text with the standard skip-gram updates.

Disambiguation. Similar to (Bartunov et al.,
2016), we can disambiguate the sense for the word
xe given a monolingual context ye as follows,

P (z | xe, ye) ∝
P (ye | xe, z; θ)

∑
β
P (z | xe, β)q(β)

(7)

Although the model trains embeddings using both
monolingual and crosslingual context, we only use
monolingual context at test time. We found that
so long as the model has been trained with mul-
tilingual context, it performs well in sense dis-
ambiguation on new data even if it contains only
monolingual context. A similar observation was
made by (Šuster et al., 2016).

4 Multilingual Extension

Bilingual distributional signal alone may not be
sufficient as polysemy may survive translation in
the second language. Unlike existing approaches,
we can easily incorporate multilingual distribu-
tional signals in our model. For using languages
l1 and l2 to learn multi-sense embeddings for En-
glish, we train on a concatenation of En-l1 par-
allel corpus with an En-l2 parallel corpus. This
technique can easily be generalized to more than

104

Algorithm 1 Psuedocode of Learning Algorithm

Input: parallel corpus E = {xe1, .., xei , .., xeNe
}

and F = {xf1 , .., xfi , .., xfNf
} and alignments

Ae→f and Af→e, Hyper-parameters α and T ,
window sizes d, d′ .

Output: θ, q(β), q(z)
1: for i = 1 to Ne do . update english vectors
2: w← xei
3: for k = 1 to T do
4: zik ← Eq(βw)[log p(zi = k|, xei)]
5: yc←Nbr(xei ,E,d)∪Nbr(xfi ,F ,d′)∪ {xfi }

where xfi = Ae→f (xei)
6: for y in yc do
7: SENSE-UPDATE(xei , y, zi)

8: Renormalize zi using softmax
9: Update suff. stats. for q(β) like (Bartunov

et al., 2016)
10: Update θ using eq. (6)
11: for i = 1 to Nf do . jointly update foreign

vectors
12: yc←Nbr(xfi ,F ,d) ∪Nbr(xei ,E,d′) ∪ {xei}

where xei = Af→e(x
f
i)

13: for y in yc do
14: SKIP-GRAM-UPDATE(xfi , y)

15: procedure SENSE-UPDATE(xi, y, zi)
16: zik ← zik + log p(y|xi, k, θ)
two foreign languages to obtain a large multilin-
gual corpus.

Value of Ψ(ye, xf). The factor modeling the de-
pendence of the English context word ye on for-
eign word xf is crucial to performance when us-
ing multiple languages. Consider the case of using
French and Spanish contexts to disambiguate the
financial sense of the English word bank. In this
case, the (financial) sense vector of bank will be
used to predict vector of banco (Spanish context)
and banque (French context). If vectors for banco
and banque do not reside in the same space or are
not close, the model will incorrectly assume they
are different contexts to introduce a new sense for
bank. This is precisely why the bilingual mod-
els, like that of (Šuster et al., 2016), cannot be ex-
tended to multilingual setting, as they pre-train the
embeddings of second language before running
the multi-sense embedding process. As a result of
naive pre-training, the French and Spanish vectors
of semantically similar pairs like (banco,banque)
will lie in different spaces and need not be close.
A similar reason holds for (Guo et al., 2014a), as

Corpus Source Lines (M) EN-Words (M)

En-Fr EU proc. ≈ 10 250

En-Zh FBIS news ≈ 9.5 286

En-Es UN proc. ≈ 10 270
En-Fr UN proc. ≈ 10 260
En-Zh UN proc. ≈ 8 230
En-Ru UN proc. ≈ 10 270

Table 1: Corpus Statistics (in millions). Horizontal lines de-
marcate corpora from the same domain.

they use a two step approach instead of joint learn-
ing.

To avoid this, the vector for pairs like banco
and banque should lie in the same space and close
to each other and the sense vector for bank. The
Ψ(ye, xf) term attempts to ensure this by using the
vector for banco and banque to predict the vector
of bank. This way, the model brings the embed-
ding space for Spanish and French closer by using
English as a bridge language during joint training.
A similar idea of using English as a bridging lan-
guage was used in the models proposed in (Her-
mann and Blunsom, 2014) and (Coulmance et al.,
2015). Beside the benefit in the multilingual case,
the Ψ(ye, xf) term improves performance in the
bilingual case as well, as it forces the English and
second language embeddings to remain close in
space.

To show the value of Ψ(ye, xf) factor in our ex-
periments, we ran a variant of Algorithm 1 with-
out the Ψ(ye, xf) factor, by only using monolin-
gual neighborhood Nbr(xfi , F) in line 12 of Al-
gorithm 1. We call this variant ONE-SIDED model
and the model in Algorithm 1 the FULL model.

5 Experimental Setup

We first describe the datasets and the preprocess-
ing methods used to prepare them. We also de-
scribe the Word Sense Induction task that we used
to compare and evaluate our method.

Parallel Corpora. We use parallel corpora in
English (En), French (Fr), Spanish (Es), Russian
(Ru) and Chinese (Zh) in our experiments. Corpus
statistics for all datasets used in our experiments
are shown in Table 1. For En-Zh, we use the FBIS
parallel corpus (LDC2003E14). For En-Fr, we use
the first 10M lines from the Giga-EnFr corpus re-
leased as part of the WMT shared task (Callison-
Burch et al., 2011). Note that the domain from
which parallel corpus has been derived can affect

105

the final result. To understand what choice of lan-
guages provide suitable disambiguation signal, it
is necessary to control for domain in all paral-
lel corpora. To this end, we also used the En-Fr,
En-Es, En-Zh and En-Ru sections of the MultiUN
parallel corpus (Eisele and Chen, 2010). Word
alignments were generated using fast_align
tool (Dyer et al., 2013) in the symmetric intersec-
tion mode. Tokenization and other preprocessing
were performed using cdec 3 toolkit. Stanford
Segmenter (Tseng et al., 2005) was used to pre-
process the Chinese corpora.

Word Sense Induction (WSI). We evaluate our
approach on word sense induction task. In this
task, we are given several sentences showing us-
ages of the same word, and are required to cluster
all sentences which use the same sense (Nasirud-
din, 2013). The predicted clustering is then com-
pared against a provided gold clustering. Note
that WSI is a harder task than Word Sense Disam-
biguation (WSD)(Navigli, 2009), as unlike WSD,
this task does not involve any supervision or ex-
plicit human knowledge about senses of words.
We use the disambiguation approach in eq. (7) to
predict the sense given the target word and four
context words.

To allow for fair comparison with earlier work,
we use the same benchmark datasets as (Bartunov
et al., 2016) – Semeval-2007, 2010 and Wikipedia
Word Sense Induction (WWSI). We report Ad-
justed Rand Index (ARI) (Hubert and Arabie,
1985) in the experiments, as ARI is a more strict
and precise metric than F-score and V-measure.

Parameter Tuning. For fairness, we used five
context words on either side to update each En-
glish word-vectors in all the experiments. In the
monolingual setting, all five words are English;
in the multilingual settings, we used four neigh-
boring English words plus the one foreign word
aligned to the word being updated (d = 4, d′ = 0
in Algorithm 1). We also analyze effect of varying
d′, the context window size in the foreign sentence
on the model performance.

We tune the parameters α and T by maximizing
the log-likelihood of a held out English text.4 The
parameters were chosen from the following values
α = {0.05, 0.1, .., 0.25}, T = {5, 10, .., 30}. All
models were trained for 10 iteration with a decay-

3github.com/redpony/cdec
4first 100k lines from the En-Fr Europarl (Koehn, 2005)

ing learning rate of 0.025, decayed to 0. Unless
otherwise stated, all embeddings are 100 dimen-
sional.

Under various choice of α and T , we identify
only about 10-20% polysemous words in the vo-
cabulary using monolingual training and 20-25%
polysemous using multilingual training. It is evi-
dent using the non-parametric prior has led to sub-
stantially more efficient representation compared
to previous methods with fixed number of senses
per word.

6 Experimental Results

Setting S-2007 S-2010 WWSI avg. ARI SCWS

En-Fr

MONO .044 .064 .112 .073 41.1
ONE-SIDED .054 .074 .116 .081 41.9
FULL .055 .086 .105 .082 41.8

En-Zh

MONO .054 .074 .073 .067 42.6
ONE-SIDED .059 .084 .078 .074 45.0
FULL .055 .090 .079 .075 41.7

En-FrZh

MONO .056 .086 .103 .082 47.3
ONE-SIDED .067 .085 .113 .088 44.6
FULL .065 .094 .120 .093 41.9

Table 2: Results on word sense induction (left four columns)
in ARI and contextual word similarity (last column) in per-
cent correlation. Language pairs are separated by horizontal
lines. Best results shown in bold.

We performed extensive experiments to evalu-
ate the benefit of leveraging bilingual and multi-
lingual information during training. We also ana-
lyze how the different choices of language family
(i.e. using more distant vs more similar languages)
affect performance of the embeddings.

6.1 Word Sense Induction Results.
The results for WSI are shown in Table 2. Recall
that the ONE-SIDED model is the variant of Algo-
rithm 1 without the Ψ(ye, xf) factor. MONO refers
to the AdaGram model of (Bartunov et al., 2016)
trained on the English side of the parallel corpus.
In all cases, the MONO model is outperformed by
ONE-SIDED and FULL models, showing the ben-
efit of using crosslingual signal in training. Best
performance is attained by the multilingual model
(En-FrZh), showing value of multilingual signal.
The value of Ψ(ye, xf) term is also verified by the
fact that the ONE-SIDED model performs worse
than the FULL model.

106

Train S-2007 S-2010 WWSI Avg. ARI
Setting En-FrEs En-RuZh En-FrEs En-FrEs En-FrEs En-RuZh En-FrEs En-RuZh

(1) MONO .035 .033 .046 .049 .054 .049 .045 .044
(2) ONE-SIDED .044 .044 .055 .063 .062 .057 .054 .055
(3) FULL .046 .040 .056 .070 .068 .069 .057 .059

(3) - (1) .011 .007 .010 .021 .014 .020 .012 .015

Table 3: Effect (in ARI) of language family distance on WSI task. Best results for each column is shown in bold. The
improvement from MONO to FULL is also shown as (3) - (1). Note that this is not comparable to results in Table 2, as we use a
different training corpus to control for the domain.

We can also compare (unfairly to our FULL

model) to the best results described in (Bartunov
et al., 2016), which achieved ARI scores of 0.069,
0.097 and 0.286 on the three datasets respectively
after training 300 dimensional embeddings on En-
glish Wikipedia (≈ 100M lines). Note that, as
WWSI was derived from Wikipedia, training on
Wikipedia gives AdaGram model an undue ad-
vantage, resulting in high ARI score on WWSI.
In comparison, our model did not train on En-
glish Wikipedia, and uses 100 dimensional em-
beddings. Nevertheless, even in the unfair com-
parison, it noteworthy that on S-2007 and S-2010,
we can achieve comparable performance (0.067
and 0.094) with multilingual training to a model
trained on almost 5 times more data using higher
(300) dimensional embeddings.

6.2 Contextual Word Similarity Results.

For completeness, we report correlation scores
on Stanford contextual word similarity dataset
(SCWS) (Huang et al., 2012) in Table 2. The
task requires computing similarity between two
words given their contexts. While the bilin-
gually trained model outperforms the monolin-
gually trained model, surprisingly the multilin-
gually trained model does not perform well on
SCWS. We believe this may be due to our param-
eter tuning strategy.5

6.3 Effect of Language Family Distance.

Intuitively, choice of language can affect the result
from crosslingual training as some languages may
provide better disambiguation signals than oth-
ers. We performed a systematic set of experiment
to evaluate whether we should choose languages
from a closer family (Indo-European languages)
or farther family (Non-Indo European Languages)

5Most works tune directly on the test dataset for Word
Similarity tasks (Faruqui et al., 2016)

as training data alongside English.6 To control for
domain here we use the MultiUN corpus. We use
En paired with Fr and Es as Indo-European lan-
guages, and English paired with Ru and Zh for
representing Non-Indo-European languages.

From Table 3, we see that using Non-Indo Eu-
ropean languages yield a slightly higher improve-
ment on an average than using Indo-European lan-
guages. This suggests that using languages from a
distance family aids better disambiguation. Our
findings echo those of (Resnik and Yarowsky,
1999), who found that the tendency to lexicalize
senses of an English word differently in a second
language, correlated with language distance.

6.4 Effect of Window Size.

Figure 3d shows the effect of increasing the
crosslingual window (d′) on the average ARI on
the WSI task for the En-Fr and En-Zh models.
While increasing the window size improves the
average score for En-Zh model, the score for the
En-Fr model goes down. This suggests that it
might be beneficial to have a separate window pa-
rameter per language. This also aligns with the
observation earlier that different language fami-
lies have different suitability (bigger crosslingual
context from a distant family helped) and require-
ments for optimal performance.

7 Qualitative Illustration

As an illustration for the effects of multilingual
training, Figure 3 shows PCA plots for 11 sense
vectors for 9 words using monolingual, bilin-
gual and multilingual models. From Fig 3a, we
note that with monolingual training the senses are
poorly separated. Although the model infers two
senses for bank, the two senses of bank are close
to financial terms, suggesting their distinction was
not recognized. The same observation can be

6 (Šuster et al., 2016) compared different languages but
did not control for domain.

107

(a) Monolingual (En side of En-Zh) (b) Bilingual (En-Zh)

(c) Multilingual (En-FrZh)

0 1 2 3 4

7

7.5

8

8.5
·10−2

window

av
g.

A
R

I

En-Fr
En-Zh

(d) Window size v.s. avg. ARI

Figure 3: Qualitative: PCA plots for the vectors for {apple, bank, interest, itunes, potato, west, monetary, desire} with
multiple sense vectors for apple,interest and bank obtained using monolingual (3a), bilingual (3b) and multilingual (3c) training.
Window Tuning: Figure 3d shows tuning window size for En-Zh and En-Fr.

made for the senses of apple. In Fig 3b, with bilin-
gual training, the model infers two senses of bank
correctly, and two sense of apple become more
distant. The model can still improve eg. pulling
interest towards the financial sense of bank, and
pulling itunes towards apple 2. Finally, in Fig 3c,
all senses of the words are more clearly clustered,
improving over the clustering of Fig 3b. The
senses of apple, interest, and bank are well sepa-
rated, and are close to sense-specific words, show-
ing the benefit of multilingual training.

8 Conclusion

We presented a multi-view, non-parametric word
representation learning algorithm which can
leverage multilingual distributional information.
Our approach effectively combines the bene-
fits of crosslingual training and Bayesian non-
parametrics. Ours is the first multi-sense repre-

sentation learning algorithm capable of using mul-
tilingual distributional information efficiently, by
combining several parallel corpora to obtained a
large multilingual corpus. Our experiments show
how this multi-view approach learns high-quality
embeddings using substantially less data and pa-
rameters than prior state-of-the-art. We also an-
alyzed the effect of various parameters such as
choice of language family and cross-lingual win-
dow size on the performance. While we focused
on improving the embedding of English words in
this work, the same algorithm could learn better
multi-sense embedding for other languages. Ex-
citing avenues for future research include extend-
ing our approach to model polysemy in foreign
language. The sense vectors can then be aligned
across languages, to generate a multilingual Word-
net like resource, in a completely unsupervised
manner thanks to our joint training paradigm.

108

References
Collin F Baker, Charles J Fillmore, and John B Lowe.

1998. The berkeley framenet project. In ACL.

Mohit Bansal, John DeNero, and Dekang Lin. 2012.
Unsupervised translation sense clustering. In
NAACL.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In ACL.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2016. Breaking sticks and am-
biguities with adaptive skip-gram. AISTATS .

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar F Zaidan. 2011. Findings of the 2011
workshop on statistical machine translation. In
WMT Shared Task.

Jocelyn Coulmance, Jean-Marc Marty, Guillaume
Wenzek, and Amine Benhalloum. 2015. Trans-
gram, fast cross-lingual word-embeddings. In
EMNLP.

Ido Dagan and Alon Itai. 1994. Word sense disam-
biguation using a second language monolingual cor-
pus. Computational linguistics .

Mona Diab and Philip Resnik. 2002. An unsupervised
method for word sense tagging using parallel cor-
pora. In ACL.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In NAACL.

Andreas Eisele and Yu Chen. 2010. MultiUN: A mul-
tilingual corpus from united nation documents. In
LREC.

Allyson Ettinger, Philip Resnik, and Marine Carpuat.
2016. Retrofitting sense-specific word vectors using
parallel text. In NAACL.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
NAACL.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In EACL.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. In 1st
RepEval Workshop.

Thomas S Ferguson. 1973. A bayesian analysis of
some nonparametric problems. The annals of statis-
tics .

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014a. Learning sense-specific word embed-
dings by exploiting bilingual resources. In COL-
ING.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014b. Revisiting embedding features for sim-
ple semi-supervised learning. In EMNLP.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A representation learn-
ing framework for multi-source transfer parsing. In
AAAI.

Karl Moritz Hermann and Phil Blunsom. 2014. Mul-
tilingual Distributed Representations without Word
Alignment. In ICLR.

Matthew D Hoffman, David M Blei, Chong Wang, and
John William Paisley. 2013. Stochastic variational
inference. JMLR .

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In ACL.

Lawrence Hubert and Phipps Arabie. 1985. Compar-
ing partitions. Journal of classification .

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
NAACL.

Kazuya Kawakami and Chris Dyer. 2015. Learning to
represent words in context with multilingual super-
vision. ICLR Workshop .

Adam Kilgarriff. 1997. I don’t believe in word senses.
Computers and the Humanities .

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit. vol-
ume 5, pages 79–86.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
EMNLP .

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2015a.
Learning context-sensitive word embeddings with
neural tensor skip-gram model. In IJCAI.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015b. Topical word embeddings. In AAAI.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Workshop on Vector
Space Modeling for NLP.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In NAACL.

109

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM .

Mohammad Nasiruddin. 2013. A state of the
art of word sense induction: A way towards
word sense disambiguation for under-resourced lan-
guages. arXiv preprint arXiv:1310.1425 .

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR) .

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In EMNLP.

Hwee Tou Ng, Bin Wang, and Yee Seng Chan. 2003.
Exploiting parallel texts for word sense disambigua-
tion: An empirical study. In ACL.

Lin Qiu, Yong Cao, Zaiqing Nie, Yong Yu, and Yong
Rui. 2014. Learning word representation consider-
ing proximity and ambiguity. In AAAI.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In NAACL.

Philip Resnik and David Yarowsky. 1999. Distinguish-
ing systems and distinguishing senses: New evalua-
tion methods for word sense disambiguation. NLE
.

Jayaram Sethuraman. 1994. A constructive definition
of dirichlet priors. Statistica sinica .

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A condi-
tional random field word segmenter for sighan bake-
off 2005. In Proc. of SIGHAN.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In ACL.

Peter D. Turney. 2006. Similarity of semantic relations.
Computational Linguistics .

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word em-
beddings: An empirical comparison. In ACL.

Simon Šuster, Ivan Titov, and Gertjan van Noord. 2016.
Bilingual learning of multi-sense embeddings with
discrete autoencoders. In NAACL.

Zhaohui Wu and C Lee Giles. 2015. Sense-aaware se-
mantic analysis: A multi-prototype word represen-
tation model using wikipedia. In AAAI.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In ACL.

110

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 111–120,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

DocTag2Vec: An Embedding Based Multi-label Learning Approach for
Document Tagging

Sheng Chen]∗, Akshay Soni†, Aasish Pappu‡, Yashar Mehdad§
]University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA

†Yahoo Research, Sunnyvale, CA 94089, USA and ‡New York, NY 10036, USA
§Airbnb, San Francisco, CA 94103, USA

chen2832@umn.edu {akshaysoni,aasishkp}@yahoo-inc.com
yashar.mehdad@airbnb.com

Abstract

Tagging news articles or blog posts with
relevant tags from a collection of prede-
fined ones is coined as document tagging
in this work. Accurate tagging of articles
can benefit several downstream applica-
tions such as recommendation and search.
In this work, we propose a novel yet sim-
ple approach called DocTag2Vec to ac-
complish this task. We substantially ex-
tend Word2Vec and Doc2Vec – two pop-
ular models for learning distributed rep-
resentation of words and documents. In
DocTag2Vec, we simultaneously learn the
representation of words, documents, and
tags in a joint vector space during training,
and employ the simple k-nearest neigh-
bor search to predict tags for unseen docu-
ments. In contrast to previous multi-label
learning methods, DocTag2Vec directly
deals with raw text instead of provided
feature vector, and in addition, enjoys ad-
vantages like the learning of tag represen-
tation, and the ability of handling newly
created tags. To demonstrate the effec-
tiveness of our approach, we conduct ex-
periments on several datasets and show
promising results against state-of-the-art
methods.

1 Introduction

Every hour, several thousand blog posts are ac-
tively shared on social media; for example, blog-
ging sites such as Tumblr1 had more than 70 bil-
lion posts by January 2014 across different com-
munities (Chang et al., 2014). In order to reach

∗This work was done when the author was an intern at
Yahoo.

1tumblr.com

right audience or community, authors often as-
sign keywords or “#tags” (hashtags) to these blog
posts. Besides being topic-markers, it was shown
that hashtags also serve as group identities (Bruns
and Burgess, 2011), and as brand labels (Page,
2012). On Tumblr, authors are allowed to create
their own tags or choose existing tags to label their
blog. Creating or choosing tags for maximum out-
reach can be a tricky task and authors may not
be able to assign all the relevant tags. To allevi-
ate this problem, algorithm-driven document tag-
ging has emerged as a potential solution in re-
cent times. Automatically tagging these blogs has
several downstream applications, e.g., blog search,
cluster similar blogs, show topics associated with
trending tags, and personalization of blog posts.
For better user engagement, the personalization al-
gorithm could match user interests with the tags
associated with a blog post.

From machine learning perspective, document
tagging is by nature a multi-label learning (MLL)
problem, where the input space is certain feature
space X of document and the output space is the
power set 2Y of a finite set of tags Y . Given train-
ing data Z ⊂ X × 2Y , we want to learn a func-
tion f : X 7→ 2Y that predicts tags for un-
seen documents. As shown in Figure 1a, during
training a standard MLL algorithm (big blue box)
one typically attempts to fit the prediction func-
tion (small blue box) into feature vectors of doc-
uments and the corresponding tags. Note that fea-
ture vectors are generated separately before train-
ing, and tags for each document are encoded as
a |Y|-dimensional binary vector with one repre-
senting the presence and zero otherwise. In pre-
diction phase, the learned prediction function will
output relevant tags for the input feature vector of
an unseen document. Following such a paradigm,
many generic algorithms have been developed for
MLL (Weston et al., 2011; Prabhu and Varma,

111

Prediction
Function

Multi-Label
Learning

Raw
Document

Feature
Vector

Tags (0-1
vector)

Predicted
Tags

Training

Prediction

(a) standard multi-label learning (b) proposed method (DocTag2Vec)

Figure 1: Comparison of standard multi-label learning framework and the proposed method

2014; Bhatia et al., 2015). With a surge of text con-
tent created by users online, such as blog posts,
Wikipedia entries, etc., the algorithms for docu-
ment tagging has many challenges. Firstly, time
sensitive news articles are generated on a daily ba-
sis, and it is important for an algorithm to assign
tags before they loose freshness. Secondly, new
tagged documents could be fed into the training
system, thus incrementally adapting the system to
new training data without re-training from scratch
is also critical. Thirdly, we might face a very large
set of candidate tags that can change dynamically,
as new things are being invented.

In view of the aforementioned challenges, in
this paper we propose a new and simple ap-
proach for document tagging: DocTag2Vec. Our
approach is motivated by the line of works on
learning distributed representation of words and
documents, e.g., Word2Vec (Mikolov et al., 2013)
and Doc2Vec (a.k.a. Paragraph Vector) (Le and
Mikolov, 2014). Word2Vec and Doc2Vec aim at
learning low-dimensional feature vectors (i.e., em-
beddings) for words and documents from large
corpus in an unsupervised manner, such that sim-
ilarity between words (or documents) can be re-
flected by some distance metric on their embed-
dings. The general assumption behind Word2Vec
and Doc2Vec is that more frequent co-occurrence
of two words inside a small neighborhood of
document should imply higher semantic similar-
ity between them (see Section 2.2 for details).
The DocTag2Vec extends this idea to document
and tag by positing that document and its asso-
ciated tags should share high semantic similar-
ity, which allows us to learn the embeddings of
tags along with documents (see Section 2.3 for
details). Our method has two striking differences
compared with standard MLL frameworks: firstly,
our method directly works with raw text and does
not need feature vectors extracted in advance. Sec-
ondly, our DocTag2Vec produces tag embeddings,
which carry semantic information that are gen-
erally not available from standard MLL frame-

work. During training, DocTag2Vec directly takes
the raw documents and tags as input and learns
their embeddings using stochastic gradient de-
scent (SGD). In terms of prediction, a new doc-
ument will be first embedded using a Doc2Vec
component inside the DocTag2Vec, and tags are
then assigned by searching for the nearest tags
embedded around the document. Overall the pro-
posed approach has the following merits.

• The SGD training supports the incremental
adjustment of DocTag2Vec to new data.

• The prediction uses the simple k-nearest
neighbor search among tags instead of doc-
uments, whose running time does not scale
up as training data increase.

• Since our method represent each individual
tag using its own embedding vector, it it easy
to dynamically incorporate new tags.

• The output tag embeddings can be used in
other applications.

Related Work: Multi-label learning has found
several applications in social media and web, like
sentiment and topic analysis (Huang et al., 2013a),
social text stream analysis (Ren et al., 2014), and
online advertising (Agrawal et al., 2013). MLL
has also been applied to diverse Natural Language
Processing (NLP) tasks. However to the best of
our knowledge we are the first to propose embed-
ding based MLL approach to a NLP task. MLL
has been applied to Word Sense Disambiguation
(WSD) problem for polysemic adjectives (Boleda
et al., 2007). (Huang et al., 2013b) proposed a joint
model to predict sentiment and topic for tweets
and (Surdeanu et al., 2012) proposed a multi-
instance MLL based approach for relation extrac-
tion with distant supervision.

Recently learning embeddings of words and
sentences from large unannotated corpus has
gained immense popularity in many NLP tasks,
such as Named Entity Recognition (Passos et al.,
2014; Lample et al., 2016; Ma and Hovy, 2016),
sentiment classification (Socher et al., 2011; Tang

112

et al., 2014; dos Santos and Gatti, 2014) and sum-
marization (Kaageback et al., 2014; Rush et al.,
2015; Li et al., 2015). Also, vector space modeling
has been applied to search re-targeting (Grbovic
et al., 2015a) and query rewriting (Grbovic et al.,
2015b).

Given many potential applications, document
tagging has been a very active research area. In
information retrieval, it is often coined as content-
based tag recommendation problem (Chirita et al.,
2007), for which numbers of approaches were
proposed, such as (Heymann et al., 2008), (Song
et al., 2008b), (Song et al., 2008a) and (Song et al.,
2011). Personalized tag recommendation is also
studied in the literature (Symeonidis et al., 2008;
Rendle et al., 2009). In machine learning com-
munity, a lot of general MLL algorithms have
been developed, with application to document
tagging, including compressed-sensing based ap-
proach (Hsu et al., 2009), WSABIE (Weston et al.,
2011), ML-CSSP (Bi and Kwok, 2013), LEML
(Yu et al., 2014), FastXML (Prabhu and Varma,
2014), SLEEC (Bhatia et al., 2015) to name a few.

Paper Organization: The rest of the paper
is organized as follows. In Section 2, we first
give a brief review of Word2Vec and Doc2Vec
models, and then present training and prediction
step respectively for our proposed extension, Doc-
Tag2Vec. In Section 3, we demonstrate the effec-
tiveness of our DocTag2Vec approach through ex-
periments on several datasets. In the end, Section
4 is dedicated to conclusions and future works.

2 Proposed Approach

In this section, we present details of DocTag2Vec.
For the ease of exposition, we first introduce
some mathematical notations followed by a brief
review for two widely-used embedding models:
Word2Vec and Doc2Vec.

2.1 Notation

We let V be the size of vocabulary (i.e., set of
unique words), N be the number of documents in
the training set, M be the size of tag set, and K be
the dimension of the vector space of embedding.
We denote the vocabulary asW = {w1, . . . , wV },
set of documents as D = {d1, . . . , dN}, and the
set of tags as T = {t1, . . . , tM}. Each document
d ∈ D is basically a sequence of nd words rep-
resented by (wd

1 , w
d
2 , . . . , w

d
nd

), and is associated
with Md tags Td = {td1, . . . , tdMd

}. Here the sub-

script d of n and M suggests that the number of
word and tag is different from document to docu-
ment. For convenience, we use the shorthand wd

i :
wd

j , i ≤ j, to denote the subsequence of words
wd

i , w
d
i+1, . . . , w

d
j−1, w

d
j in document d. Corre-

spondingly, we denote W = [w1, . . . ,wV] ∈
RK×V as the matrix for word embeddings, D =
[d1, . . . ,dN] ∈ RK×N as the matrix for document
embeddings, and T = [t1, . . . , tM] ∈ RK×M as
the matrix for tag embeddings. Sometimes we may
use the symbol di interchangeably with the em-
bedding vector di to refer to the i-th document,
and use dd to denote the vector representation of
document d. Similar conventions apply to word
and tag embeddings. Besides we let σ(·) be the
sigmoid function, i.e., σ(a) = 1/(1 + exp(−a)).
2.2 Word2Vec and Doc2Vec
The proposed approach is inspired by the work
of Word2Vec, an unsupervised model for learn-
ing embedding of words. Essentially, Word2Vec
embeds all words in the training corpus into a
low-dimensional vector space, so that the seman-
tic similarities between words can be reflected by
some distance metric (e.g., cosine distance) de-
fined on their vector representations. The way to
train Word2Vec model is to minimize the loss
function associated with certain classifier with
respect to both feature vectors (i.e., word em-
beddings) and classifier parameters, such that
the nearby words are able to predict each other.
For example, in continuous bag-of-word (CBOW)
framework, Word2Vec specifically minimizes the
following average negative log probability

∑
d∈D

nd∑
i=1

− log p(wd
i | wd

i−c : wd
i−1, w

d
i+1 : wd

i+c) ,

where c is the size of context window inside
which words are defined as “nearby”. To ensure
the conditional probability above is legitimate,
one usually needs to evaluate a partition func-
tion, which may lead to a computationally
prohibitive model when the vocabulary is large.
A popular choice to bypass such issue is to use
hierarchical softmax (HS) (Morin and Bengio,
2005), which factorizes the conditional proba-
bility into products of some simple terms. The
hierarchical softmax relies on the construction
of a binary tree B with V leaf nodes, each
of which corresponds to a particular word in
the vocabulary W . HS is parameterized by a

113

matrix H ∈ RK×(V−1), whose columns are
respectively mapped to a unique non-leaf node of
B. Additionally, we define Path(w) = {(i, j) ∈
B | edge (i, j) is on the path from root to word w}.
Then the negative log probability is given as

− log p(wd
i | wd

i−c : wd
i−1, w

d
i+1 : wd

i+c)

= − log
∏

(u,v)∈Path(wd
i)

σ
(

child(v) · 〈gd
i ,hv〉

)
= −

∑
(u,v)∈Path(wd

i)

log σ
(

child(v) · 〈gd
i ,hv〉

)
,

gd
i =

∑
−c≤j≤c

j 6=0

wd
i+j ,

where child(u, v) is equal to 1 if v is the left
child of u and 0 otherwise. Figure 2a shows the
model architecture of CBOW Word2Vec. Basi-
cally gd

i is the input feature for HS classifier
corresponding to projection layer in Figure 2a ,
which essentially summarizes the feature vectors
of context words surrounding wd

i , and other op-
tions like averaging of wd

i+j can also be applied.
This Word2Vec model can be directly extended
to Distributed memory (DM) Doc2Vec model by
conditioning the probability of wd

i on d as well as
wd

i−c, . . . , w
d
i+c, which yields

− log p(wd
i | wd

i−c : wd
i−1, w

d
i+1 : wd

i+c, d)

= −
∑

(u,v)∈Path(wd
i)

log σ
(

child(v) · 〈g̃d
i ,hv〉

)
,

(1)

g̃d
i = dd +

∑
−c≤j≤c

j 6=0

wd
i+j . (2)

The architecture of DM Doc2Vec model is il-
lustrated in Figure 2b. Instead of optimizing
some rigorously defined probability function, both
Word2Vec and Doc2Vec can be trained using
other objectives, e.g., negative sampling (NEG)
(Mikolov et al., 2013).

2.3 Training for DocTag2Vec

Our approach, DocTag2Vec, extends the DM
Doc2Vec model by adding another component for
learning tag embeddings. In addition to predict-
ing target word wd

i using context wd
i−c, . . . , w

d
i+c,

as shown in Figure 2c, DocTag2Vec also uses the
document embedding to predict each associated

tag, with hope that they could be closely embed-
ded. The joint objective is given by

∑
d∈D

nd∑
i=1

(
− log p(wd

i | wd
i−c : wd

i−1, w
d
i+1 : wd

i+c, d)

− α
∑
t∈Td

log p(t | d)
)
,

where α is a tuning parameter. As discussed for
Word2Vec, the problem of evaluating costly par-
tition function is also faced by the newly intro-
duced probability p(t|d). Different from the con-
ditional probability of wd

i , the probability p(t|d)
cannot be modeled using hierarchical softmax, as
the columns of parameter matrix do not have one-
to-one correspondence to tags (remember that we
need to obtain a vector representation for each
tag). Motivated by the idea of negative sampling
used in Word2Vec, we come up with the following
objective for learning tag embedding rather than
stick to a proper probability function,

−
∑
t∈Td

log σ (〈dt, tt〉) + r · Et∼p [log σ (−〈dt, t〉)] ,

(3)

where p is a discrete distribution over all tag em-
beddings {t1, . . . , tM} and r is a integer-valued
hyperparameter. The goal of such objective is to
differentiate the tag t from the draws according to
p, which is chosen as uniform distribution for sim-
plicity in our practice. Now the final loss function
for DocTag2Vec is the combination of (1) and (3),

` (W,D,T,H) =
∑
d∈D

nd∑
i=1(

−
∑

(u,v)∈Path(wd
i)

log σ
(
child(v) · 〈g̃d

i ,hv〉
)

︸ ︷︷ ︸
DM Doc2Vec with hierarchical softmax

−

α
∑
t∈Td

log σ (〈dt, tt〉) + r · E [log σ (−〈dt, t〉)]︸ ︷︷ ︸
tag embedding with negative sampling

)

(4)

We minimize ` (W,D,T,H) using stochastic
gradient descent (SGD). To avoid exact calcula-
tion of the expectation in negative sampling, at
each iteration we sample r i.i.d. instances of t
from distribution p, denoted by {t1

p, t
2
p, . . . , t

r
p},

to stochastically approximate the expectation, i.e.,∑r
j=1 log σ(−〈dt, t

j
p〉) ≈ r · E [log σ (−〈dt, t〉)].

114

wd
i-c

wd
i-1
wd

i+1
wd

i+c
... ...

projection

wd
i

(a) CBOW Word2Vec

d wd
i-c

wd
i-1
wd

i+1
wd

i+c
... ...

projection

wd
i

(b) DM Doc2Vec

d

td
1

td
2

td
Md

...

projection

wd
i-c

wd
i-1

wd
i+1

wd
i+c

... ...

projection

wd
i

(c) DocTag2Vec

Figure 2: Model architectures of different embedding approaches

2.4 Prediction for DocTag2Vec
Unlike Word2Vec and Doc2Vec, which only tar-
get on learning high-quality embeddings of words
and documents, DocTag2Vec needs to make pre-
dictions of relevant tags for new documents. To
this end, we first embed the new document via the
Doc2Vec component within DocTag2Vec and then
perform k-nearest neighbor (k-NN) search among
tags. To be specific, given a new document d, we
first optimize the objective (1) with respect to dd

by fixing W and H. Note that this is the stan-
dard inference step for new document embedding
in Doc2Vec. Once dd is obtained, we search for
the k-nearest tags to it based on cosine similarity.
Hence the prediction function is given as

fk(dd) =
{
i |ui is in the largest k entries

of u = TTdd

}
,

(5)

where T is column-normalized version of T. To
boost the prediction performance of DocTag2Vec,
we apply the bootstrap aggregation (a.k.a. bag-
ging) technique to DocTag2Vec. Essentially we
train b DocTag2Vec learners using different ran-
domly sampled subset of training data, resulting
in b different tag predictors f1

k′(·), . . . , f b
k′(·) along

with their tag embedding matrices T1, . . . ,Tb. In
general, the number of nearest neighbors k′ for in-
dividual learner can be different from k. In the end,
we combine the predictions from different models
by selecting from

⋃b
j=1 f

j
k′(dd) the k tags with the

largest aggregated similarities with dd,

f bag
k (dd) =

{
i |ui is in the largest k entries of u,

where ui =
b∑

j=1

I{i ∈ f j
k′(dd)} · 〈tj

i ,dd〉
}
.

3 Experiments

3.1 Datasets
In this subsection, we briefly describe the datasets
included in our experiments. It is worth noting that

DocTag2Vec method needs raw texts as input in-
stead of extracted features. Therefore many bench-
mark datasets for evaluating multi-label learning
algorithms are not suitable for our setting. For the
experiment, we primarily focus on the diversity of
the source of tags, which capture different aspects
of documents. The statistics of all datasets are pro-
vided in Table 1.

Public datasets:

• Wiki10: The wiki10 dataset contains a subset
of English Wikipedia documents, which are
tagged collaboratively by users from the so-
cial bookmarking site Delicious1. We remove
the two uninformative tags, “wikipedia” and
“wiki”, from the collected data.

• WikiNER: WikiNER has a larger set of
English Wikipedia documents. The tags for
each document are the named entities inside
it, which is detected automatically by some
named entity recognition (NER) algorithm.

Proprietary datasets

• Relevance Modeling (RM): The RM dataset
consists of two sets of financial news article
in Chinese and Korean respectively. Each ar-
ticle is tagged with related ticker symbols of
companies given by editorial judgement.

• News Content Taxonomy (NCT): NCT
dataset is a collection of news articles anno-
tated by editors with topical tags from a tax-
onomy tree. The closer the tag is to the root,
the more general the topic is. For such tags
with hierarchical structure, we also evaluate
our method separately for tags of general top-
ics (depth=2) and specific topics (depth=3).

3.2 Baselines and Hyperparameter Setting
The baselines include one of the state-of-the-
art multi-label learning algorithms called SLEEC

1https://del.icio.us/

115

Dataset #training point #testing point #unique tags Avg #tags per document
Wiki10 14095 6600 31177 17.27

WikiNER 89521 10000 67179 22.96
Relevance Modeling (Chinese) 4505 500 391 1.02
Relevance Modeling (Korean) 1292 500 261 1.07

NCT (all) 40305 9546 883 1.88
NCT (general) 39401 9389 294 1.76
NCT (specific) 17278 4509 412 1.41

Table 1: Statistics of datasets

0 1 2 3 4 5 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
re

c
is

io
n
@

k

DocTag2Vec

Doc2Vec

SLEEC

(a) Wiki10

0 1 2 3 4 5 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6

p
re

c
is

io
n
@

k

DocTag2Vec

Doc2Vec

SLEEC

FastEL

(b) WikiNER

0 1 2 3 4 5 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
re

c
is

io
n
@

k

DocTag2Vec

Doc2Vec

SLEEC

(c) RM (Chinese)

0 1 2 3 4 5 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
re

c
is

io
n
@

k

DocTag2Vec

Doc2Vec

SLEEC

(d) RM (Korean)

Figure 3: Precision on Wiki10, WikiNER and Relevance Modeling dataset

(Bhatia et al., 2015), a variant of DM Doc2Vec,
and an unsupervised entity linking system, Fas-
tEL (Blanco et al., 2015), which is specific to
WikiNER dataset. SLEEC is based on non-linear
dimensionality reduction of binary tag vectors,
and use a sophisticated objective function to learn
the prediction function. For comparison, we use
the TF-IDF representation of document as the in-
put feature vector for SLEEC, as it yields better re-
sult than embedding based features like Doc2Vec
feature. To extend DM Doc2Vec for tagging pur-
pose, basically we replace the document d shown
in Figure 2b with tags td1, . . . , t

d
Md

, and train the
Doc2Vec to obtain the tag embeddings. During
testing, we perform the same steps as DocTag2Vec
to predict the tags, i.e., inferring the embedding of
test document followed by k-NN search. FastEL is
unsupervised appproach for entity linking of web-
search queries that walks over a sequence of words
in query and aims to maximize the likelihood of
linking the text span to an entity in Wikipedia.
FastEL model calculates the conditional probabil-
ities of an entity given every substring of the input
document, however avoid computing entit to en-
tity joint dependencies, thus making the process
efficient. We built FastEL model using query logs
that spanned 12 months and Wikipedia anchor text
extracted from Wikipedia dumps dated November
2015. We choose an entity linker baseline because
it is a simple way of detecting topics/entities that
are semantically associated with a document.

Regarding hyperparameter setting, both SLEEC
and DocTag2Vec aggregate multiple learners to
enhance the prediction accuracy, and we set the

number of learners to be 15. For SLEEC, we tune
the rest of hyperparameters using grid search. For
SLEEC and DocTag2Vec, we set the number of
epochs for SGD to be 20 and the window size c to
be 8. To train each individual learner, we randomly
sample 50% training data. In terms of the nearest
neighbor search, we set k′ = 10 for Wiki10 and
WikiNER while keeping k′ = 5 for others. For the
rest of hyperparameters, we also apply grid search
to find the best ones. For DocTag2Vec, we addi-
tionally need to set the number of negative tags r
and the weight α in (4). Typically r ranges from
1 to 5, and r = 1 gives the best performance on
RM and NCT datasets. Empirically good choice
for α is between 0.5 and 5. For FastEL, we con-
sider a sliding window of size 5 over the raw-text
(no punctuations) of document to generate entity
candidates. We limit the number of candidates per
document to 50.

3.3 Results

We use precision@k as the evaluation metric
for the performance. Figure 3 shows the preci-
sion plot of different approaches against choices
of k on Wiki10, WikiNER and RM dataset. On
Wiki10, we see that the precision of our Doc-
Tag2Vec is close to the one delivered by SLEEC,
while Doc2Vec performs much worse. We observe
similar result on WikiNER except for the pre-
cision@1, but our precision catches up as k in-
creases. For RM dataset, SLEEC outperforms our
approach, and we conjecture that such gap is due
to the small size of training data, from which Doc-
Tag2Vec is not able to learn good embeddings. It

116

0 1 2 3 4 5 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
re

c
is

io
n

@
k

DocTag2Vec

DocTag2Vec(incremental)

Doc2Vec

SLEEC

(a) All tags

0 1 2 3 4 5 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
re

c
is

io
n

@
k

DocTag2Vec

DocTag2Vec(incremental)

Doc2Vec

SLEEC

(b) Specific tags

0 1 2 3 4 5 6

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
re

c
is

io
n

@
k

DocTag2Vec

DocTag2Vec(incremental)

Doc2Vec

SLEEC

(c) General tags

Figure 4: Precision on News Content Taxonomy dataset

DocTag2Vec DocTag2Vec (incremental) Doc2Vec SLEEC
NCT (all tags) 0.6702 0.6173 0.6389 0.6524

NCT (specific tags) 0.8111 0.7678 0.7810 0.7624
NCT (general tags) 0.7911 0.7328 0.7521 0.7810

Table 2: Overall Recall on News Content Taxonomy dataset

0 5 10 15

learners

0.54

0.56

0.58

0.6

0.62

0.64

p
re

c
is

io
n

@
1

0 5 10 15

learners

0.3

0.32

0.34

0.36

0.38

p
re

c
is

io
n

@
3

0 5 10 15

learners

0.2

0.22

0.24

0.26

0.28

p
re

c
is

io
n

@
5

DocTag2Vec

Doc2Vec

Figure 5: Precision vs. number of learners on NCT dataset

0 5 10

nearest neighbors

0.61

0.62

0.63

0.64

p
re

c
is

io
n

@
1

0 5 10

nearest neighbors

0.3

0.32

0.34

0.36

0.38

p
re

c
is

io
n

@
3

0 5 10

nearest neighbors

0.15

0.2

0.25

0.3

p
re

c
is

io
n

@
5

DocTag2Vec

Doc2Vec

Figure 6: Precision vs. number of nearest neighbors on NCT dataset

News excerpt Editorial tags
Prediction (top 3)

Predicted tags similarity
The world is definitely getting warmer, according to the U.S. National
Atmospheric and Oceanic Administration. For its annual ”State of the Climate”
report, NOAA for the first time gathered data on 37 climate indicators, such as
air and sea temperatures, sea level, humidity, and snow cover in one place, and
found that, taken together, the measurements show an ”unmistakable upward
trend” in temperature. Three hundred scientists analyzed the information and
concluded it’s ”undeniable” that the planet has warmed since 1980, with the last
decade taking the record for hottest ever recorded.

/Nature & Environment/
Natural Phenomena

/Nature & Environment/
Environment/Climate
Change

1.99

/Science/ Meteorology 0.64

/Nature & Environ-
ment/Natural Phenom-
ena/Weather

0.57

Business software maker Epicor Software Corp. said Thursday that its
second-quarter loss narrowed as revenue climbed. For the April-June quarter,
Epicor’s loss totaled $1 million, or 2 cents per share, compared with a loss of
$6.7 million, or 11 cents per share, in the year-ago quarter. When excluding
one-time items, Epicor earned 13 cents per share, which is what analysts polled
by Thomson Reuters expected. Revenue rose 9 percent to $109.2 million, beating
analyst estimates for $105.2 million.

/Business/Sectors &
Industries/ Information
Technology/Internet
Software & Services

/Finance/Investment &
Company Information

/Finance/Investment &
Company Information/
Company Earnings

2.25

/Finance/Investment &
Company Information 1.23

/Finance/Investment &
Company Information/
Stocks & Offerings

0.32

TicketLiquidator, the leading provider of the world’s most extensive ticket
inventory for hard-to-find, low priced tickets, today announced that tickets are
available for the Orlando Magic vs. Cleveland Cavaliers game on Wednesday,
November 11th at Orlando’s Amway Arena. The much-anticipated matchup
features LeBron James, who is now in the final year of his contract with the
Cavaliers.

/Sports & Recreation/
Baseball

/Sports & Recre-
ation/Basketball 4.07

/Arts & Entertain-
ment/Events/Tickets 3.42

/Sports & Recre-
ation/Baseball 0.96

Table 3: Examples of Better Prediction over Editorial Judgement

is to be noted that SLEEC requires proper features
as input and does not work directly with raw docu-
ments; while DocTag2Vec learns vector represen-

tation of documents that are not only useful for
multilabel learning but also as features for other
tasks like sentiment analysis, hate speech detec-

117

tion, and content based recommendation. We have
demonstrated improvements in all the above men-
tioned use-cases of DocTag2Vec vectors but the
discussion on those is out of the scope of this pa-
per.

For NCT dataset, we also train the DocTag2Vec
incrementally, i.e., each time we only feed 100
documents to DocTag2Vec and let it run SGD, and
we keep doing so until all training samples are pre-
sented. As shown in Figure 4, our DocTag2Vec
outperform Doc2Vec baseline, and delivers com-
petitive or even better precision in comparision
with SLEEC. Also, the incremental training does
not sacrifice too much precision, which makes
DocTag2Vec even appealing. The overall recall of
DocTag2Vec is also slightly better than SLEEC,
as shown in Table 2. Figure 5 and 6 include the
precision plot against the number of learners b and
the number of nearest neighbors k′ for individual
learner, respectively. It is not difficult to see that
after b = 10, adding more learners does not give
significant improvement on precision. For nearest
neighbor search, k′ = 5 would suffice.

3.4 Case Study for NCT dataset

For NCT dataset, when we examine the predic-
tion for individual articles, it turns out surpris-
ingly that there are a significant number of cases
where DocTag2Vec outputs better tags than those
by editorial judgement. Among all these cases, we
include a few in Table 3 showing the superior-
ity of the tags given by DocTag2Vec sometimes.
For the first article, we can see that the three pre-
dicted tags are all related to the topic, especially
the one with highest similarity, /Nature & Environ-
ment/ Environment/Climate Change, seems more
pertinent compared with the editor’s. Similarly, we
predict /Finance/Investment & Company Informa-
tion/Company Earnings as the most relevant topic
for the second article, which is more precise than
its parent /Finance/Investment & Company Infor-
mation. Besides our approach can even find the
wrong tags assigned by the editor. The last piece
of news is apparently about NBA, which should
have the tag /Sports & Recreation/Basketball as
predicted, while the editor annotates them with the
incorrect one, /Sports & Recreation/Baseball. On
the other hand, by looking at the similarity scores
associated with the predicted tags, we can see that
higher score in general implies higher aboutness,
which can also be used as a quantification of pre-

diction confidence.

4 Conclusions and Future Work

In this paper, we present a simple method for
document tagging based on the popular distribu-
tional representation learning models, Word2Vec
and Doc2Vec. Compared with classical multi-
label learning methods, our approach provides
several benefits, such as allowing incremental up-
date of model, handling the dynamical change of
tag set, as well as producing feature representa-
tion for tags. The document tagging can benefit a
number of applications on social media. If the text
content over web is correctly tagged, articles or
blog posts can be pushed to the right users who are
likely to be interested. And such good personal-
ization will potentially improve the users engage-
ment. In future, we consider extending our ap-
proach in a few directions. Given that tagged doc-
uments are often costly to obtain, it would be inter-
esting to extend our approach to a semi-supervised
setting, where we can incorporate large amounts of
unannotated documents to enhance our model. On
the other hand, with the recent progress in graph
embedding for social network (Yang et al., 2016;
Grover and Leskovec, 2016), we may be able to
improve the tag embedding by exploiting the rep-
resentation of users and interactions between tags
and users on social networks.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their encouraging and thoughtful com-
ments.

References

R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013.
Multi-label learning with millions of labels: Recom-
mending advertiser bid phrases for web pages. In
Proceedings of the 22Nd International Conference
on World Wide Web. WWW ’13.

K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain.
2015. Sparse local embeddings for extreme multi-
label classification. In Proceedings of the 28th In-
ternational Conference on Neural Information Pro-
cessing Systems. pages 730–738.

W. Bi and J. Kwok. 2013. Efficient multi-label clas-
sification with many labels. In Proceedings of the
30th International Conference on Machine Learning
(ICML-13). pages 405–413.

118

Roi Blanco, Giuseppe Ottaviano, and Edgar Meij.
2015. Fast and space-efficient entity linking for
queries. In Proceedings of the Eighth ACM Interna-
tional Conference on Web Search and Data Mining.
ACM, pages 179–188.

Gemma Boleda, Sabine Schulte im Walde, and Toni
Badia. 2007. Modelling polysemy in adjective
classes by multi-label classification. In EMNLP-
CoNLL. pages 171–180.

Axel Bruns and Jean E Burgess. 2011. The use of twit-
ter hashtags in the formation of ad hoc publics. In
Proceedings of the 6th European Consortium for Po-
litical Research (ECPR) General Conference 2011.

Yi Chang, Lei Tang, Yoshiyuki Inagaki, and Yan Liu.
2014. What is tumblr: A statistical overview and
comparison. ACM SIGKDD Explorations Newslet-
ter 16(1):21–29.

P.-A. Chirita, S. Costache, W. Nejdl, and S. Handschuh.
2007. P-tag: Large scale automatic generation of
personalized annotation tags for the web. In Pro-
ceedings of the 16th International Conference on
World Wide Web. pages 845–854.

Cı́cero Nogueira dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In COLING. pages 69–78.

M. Grbovic, N. Djuric, V. Radosavljevic, and
N. Bhamidipati. 2015a. Search retargeting using
directed query embeddings. In Proceedings of the
24th International Conference on World Wide Web.
pages 37–38.

M. Grbovic, N. Djuric, V. Radosavljevic, F. Silvestri,
and N. Bhamidipati. 2015b. Context- and content-
aware embeddings for query rewriting in sponsored
search. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. pages 383–392.

A. Grover and J. Leskovec. 2016. Node2vec: Scalable
feature learning for networks. In Proceedings of the
22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16.

P. Heymann, D. Ramage, and H. Garcia-Molina. 2008.
Social tag prediction. In Proceedings of the 31st An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
pages 531–538.

D. J Hsu, S. M Kakade, J. Langford, and T. Zhang.
2009. Multi-label prediction via compressed sens-
ing. In Advances in Neural Information Processing
Systems 22, pages 772–780.

S. Huang, W. Peng, J. Li, and D. Lee. 2013a. Sen-
timent and topic analysis on social media: A multi-
task multi-label classification approach. In Proceed-
ings of the 5th Annual ACM Web Science Confer-
ence. WebSci ’13.

Shu Huang, Wei Peng, Jingxuan Li, and Dongwon Lee.
2013b. Sentiment and topic analysis on social me-
dia: a multi-task multi-label classification approach.
In Proceedings of the 5th annual acm web science
conference. ACM, pages 172–181.

Mikael Kaageback, Olof Mogren, Nina Tahmasebi, and
Devdatt Dubhashi. 2014. Extractive summariza-
tion using continuous vector space models. In Pro-
ceedings of the 2nd Workshop on Continuous Vector
Space Models and their Compositionality (CVSC)
EACL. pages 31–39.

Guillaume Lample et al. 2016. Neural architec-
tures for named entity recognition. arXiv preprint
arXiv:1603.01360 .

Q. V. Le and T. Mikolov. 2014. Distributed represen-
tations of sentences and documents. In ICML. vol-
ume 14, pages 1188–1196.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. arXiv preprint arXiv:1506.01057 .

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. arXiv preprint arXiv:1603.01354 .

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances
in Neural Information Processing Systems 26, pages
3111–3119.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In
AISTATS05. pages 246–252.

Ruth Page. 2012. The linguistics of self-branding and
micro-celebrity in twitter: The role of hashtags. Dis-
course & Communication 6(2):181–201.

Alexandre Passos, Vineet Kumar, and Andrew Mc-
Callum. 2014. Lexicon infused phrase embed-
dings for named entity resolution. arXiv preprint
arXiv:1404.5367 .

Y. Prabhu and M. Varma. 2014. Fastxml: A fast, accu-
rate and stable tree-classifier for extreme multi-label
learning. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. pages 263–272.

Z. Ren, M.-H. Peetz, S. Liang, W. van Dolen, and
M. de Rijke. 2014. Hierarchical multi-label clas-
sification of social text streams. In Proceedings of
the 37th International ACM SIGIR Conference on
Research & Development in Information Re-
trieval. SIGIR ’14.

S. Rendle, L. Balby Marinho, A. Nanopoulos, and
L. Schmidt-Thieme. 2009. Learning optimal rank-
ing with tensor factorization for tag recommenda-
tion. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. pages 727–736.

119

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685 .

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 151–161.

Y. Song, L. Zhang, and C. L. Giles. 2008a. A sparse
gaussian processes classification framework for fast
tag suggestions. In Proceedings of the 17th ACM
Conference on Information and Knowledge Man-
agement. pages 93–102.

Y. Song, L. Zhang, and C. L. Giles. 2011. Automatic
tag recommendation algorithms for social recom-
mender systems. ACM Trans. Web 5(1):4:1–4:31.

Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee,
and C. L. Giles. 2008b. Real-time automatic tag
recommendation. In Proceedings of the 31st An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
pages 515–522.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning. Association
for Computational Linguistics, pages 455–465.

P. Symeonidis, A. Nanopoulos, and Y. Manolopoulos.
2008. Tag recommendations based on tensor di-
mensionality reduction. In Proceedings of the 2008
ACM Conference on Recommender Systems. pages
43–50.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In ACL (1). pages 1555–1565.

J. Weston, S. Bengio, and N. Usunier. 2011. Wsabie:
Scaling up to large vocabulary image annotation.
In Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence - Volume
Volume Three. pages 2764–2770.

Z. Yang, W. W. Cohen, and R. Salakhutdinov. 2016.
Revisiting semi-supervised learning with graph em-
beddings. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016.

H.-F. Yu, P. Jain, P. Kar, and I. S. Dhillon. 2014.
Large-scale multi-label learning with missing labels.
In International Conference on Machine Learning
(ICML). volume 32.

120

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 121–130,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Binary Paragraph Vectors

Karol Grzegorczyk and Marcin Kurdziel
AGH University of Science and Technology

Department of Computer Science
Krakow, Poland

{kgr,kurdziel}@agh.edu.pl

Abstract

Recently Le & Mikolov described two
log-linear models, called Paragraph Vec-
tor, that can be used to learn state-of-
the-art distributed representations of doc-
uments. Inspired by this work, we present
Binary Paragraph Vector models: sim-
ple neural networks that learn short binary
codes for fast information retrieval. We
show that binary paragraph vectors outper-
form autoencoder-based binary codes, de-
spite using fewer bits. We also evaluate
their precision in transfer learning settings,
where binary codes are inferred for doc-
uments unrelated to the training corpus.
Results from these experiments indicate
that binary paragraph vectors can capture
semantics relevant for various domain-
specific documents. Finally, we present
a model that simultaneously learns short
binary codes and longer, real-valued rep-
resentations. This model can be used to
rapidly retrieve a short list of highly rel-
evant documents from a large document
collection.

1 Introduction

One of the significant challenges in contempo-
rary information processing is the sheer volume
of available data. Gantz and Reinsel (2012), for
example, claim that the amount of digital data in
the world doubles every two years. This trend un-
derpins efforts to develop algorithms that can ef-
ficiently search for relevant information in huge
datasets. One class of such algorithms, repre-
sented by, e.g., Locality Sensitive Hashing (In-
dyk and Motwani, 1998), relies on hashing data
into short, locality-preserving binary codes (Wang
et al., 2014). The codes can then be used to group

the data into buckets, thereby enabling sublinear
search for relevant information, or for fast com-
parison of data items. Most of the algorithms from
this family are data-oblivious, i.e. can generate
hashes for any type of data. Nevertheless, some
methods target specific kind of input data, like text
or image.

In this work we focus on learning binary codes
for text documents. An important work in this
direction has been presented by Salakhutdinov
and Hinton (2009). Their semantic hashing
leverages autoencoders with sigmoid bottleneck
layer to learn binary codes from a word-count
bag-of-words (BOW) representation. Salakhutdi-
nov & Hinton report that binary codes allow for
up to 20-fold improvement in document ranking
speed, compared to real-valued representation of
the same dimensionality. Moreover, they demon-
strate that semantic hashing codes used as an ini-
tial document filter can improve precision of TF-
IDF-based retrieval. Learning binary representa-
tion from BOW, however, has its disadvantages.
First, word-count representation, and in turn the
learned codes, are not in itself stronger than TF-
IDF. Second, BOW is an inefficient representa-
tion: even for moderate-size vocabularies BOW
vectors can have thousands of dimensions. Learn-
ing fully-connected autoencoders for such high-
dimensional vectors is impractical. Salakhutdi-
nov & Hinton restricted the BOW vocabulary in
their experiments to 2000 most frequent words.

Binary codes have also been applied to cross-
modal retrieval where text is one of the modalities.
Specifically, Wang et al. (2013) incorporated tag
information that often accompany text documents,
while Masci et al. (2014) employed siamese neural
networks to learn single binary representation for
text and image data.

Recently several works explored simple neural
models for unsupervised learning of distributed

121

representations of words, sentences and docu-
ments. Mikolov et al. (2013) proposed log-
linear models that learn distributed representations
of words by predicting a central word from its
context (CBOW model) or by predicting context
words given the central word (Skip-gram model).
The CBOW model was then extended by Le and
Mikolov (2014) to learn distributed representa-
tions of documents. Specifically, they proposed
Paragraph Vector Distributed Memory (PV-DM)
model, in which the central word is predicted
given the context words and the document vec-
tor. During training, PV-DM learns the word em-
beddings and the parameters of the softmax that
models the conditional probability distribution for
the central words. During inference, word em-
beddings and softmax weights are fixed, but the
gradients are backpropagated to the inferred docu-
ment vector. In addition to PV-DM, Le & Mikolov
studied also a simpler model, namely Paragraph
Vector Distributed Bag of Words (PV-DBOW).
This model predicts words in the document given
only the document vector. It therefore disre-
gards context surrounding the predicted word and
does not learn word embeddings. Le & Mikolov
demonstrated that paragraph vectors outperform
BOW and bag-of-bigrams in information retrieval
task, while using only few hundreds of dimen-
sions. These models are also amendable to learn-
ing and inference over large vocabularies. Origi-
nal CBOW network used hierarchical softmax to
model the probability distribution for the central
word. One can also use noise-contrastive estima-
tion (Gutmann and Hyvärinen, 2010) or impor-
tance sampling (Cho et al., 2015) to approximate
the gradients with respect to the softmax logits.

An alternative approach to learning representa-
tion of pieces of text has been recently described
by Kiros et al. (2015). Networks proposed therein,
inspired by the Skip-gram model, learn to predict
surrounding sentences given the center sentence.
To this end, the center sentence is encoded by an
encoder network and the surrounding sentences
are predicted by a decoder network conditioned
on the center sentence code. Once trained, these
models can encode sentences without resorting to
backpropagation inference. However, they learn
representations at the sentence level but not at the
document level.

In this work we present Binary Paragraph Vec-
tor models, an extensions to PV-DBOW and PV-

DM that learn short binary codes for text docu-
ments. One inspiration for binary paragraph vec-
tors comes from a recent work by Lin et al. (2015)
on learning binary codes for images. Specifically,
we introduce a sigmoid layer to the paragraph vec-
tor models, and train it in a way that encourages
binary activations. We demonstrate that the resul-
tant binary paragraph vectors significantly outper-
form semantic hashing codes. We also evaluate
binary paragraph vectors in transfer learning set-
tings, where training and inference are carried out
on unrelated text corpora. Finally, we study mod-
els that simultaneously learn short binary codes
for document filtering and longer, real-valued rep-
resentations for ranking. While Lin et al. (2015)
employed a supervised criterion to learn image
codes, binary paragraph vectors remain unsuper-
vised models: they learn to predict words in docu-
ments.

2 Binary paragraph vector models

The basic idea in binary paragraph vector models
is to introduce a sigmoid nonlinearity before the
softmax that models the conditional probability of
words given the context. If we then enforce bi-
nary or near-binary activations in this nonlinearity,
the probability distribution over words will be con-
ditioned on a bit vector context, rather than real-
valued representation. The inference in the model
proceeds like in Paragraph Vector, except the doc-
ument code is constructed from the sigmoid acti-
vations. After rounding, this code can be seen as a
distributed binary representation of the document.

In the simplest Binary PV-DBOW model (Fig-
ure 1) the dimensionality of the real-valued doc-
ument embeddings is equal to the length of the
binary codes. Despite this low dimensional rep-
resentation – a useful binary hash will typically
have 128 or fewer bits – this model performed sur-
prisingly well in our experiments. Note that we
cannot simply increase the embedding dimension-

document's
word

sampled
softmax

rounded
sigmoid

embedding
lookup

real-valued
embedding

binary
embedding

document

Figure 1: The Binary PV-DBOW model. Modifi-
cations to the original PV-DBOW model are high-
lighted.

122

ality in Binary PV-DBOW in order to learn better
codes: binary vectors learned in this way would
be too long to be useful in document hashing. The
retrieval performance can, however, be improved
by using binary codes for initial filtering of docu-
ments, and then using a representation with higher
capacity to rank the remaining documents by their
similarity to the query. Salakhutdinov and Hin-
ton (2009), for example, used semantic hashing
codes for initial filtering and TF-IDF for ranking.
A similar document retrieval strategy can be real-
ized with binary paragraph vectors. Furthermore,
we can extend the Binary PV-DBOW model to si-
multaneously learn short binary codes and higher-
dimensional real-valued representations. Specifi-
cally, in the Real-Binary PV-DBOW model (Fig-
ure 2) we introduce a linear projection between the
document embedding matrix and the sigmoid non-
linearity. During training, we learn the softmax
parameters and the projection matrix. During in-
ference, softmax weights and the projection ma-
trix are fixed. This way, we simultaneously obtain
a high-capacity representation of a document in
the embedding matrix, e.g. 300-dimensional real-
valued vector, and a short binary representation
from the sigmoid activations. One advantage of

high-dimensional

embedding low-dimensional

embedding

binary

embedding

linear

projection

rounded

sigmoid
sampled

softmax

embedding

lookup

document
document's

word

Figure 2: The Real-Binary PV-DBOW model.
Modifications to the original PV-DBOW model
are highlighted.

using the Real-Binary PV-DBOW model over two
separate networks is that we need to store only one
set of softmax parameters (and a small projection
matrix) in the memory, instead of two large weight
matrices. Additionally, only one model needs to
be trained, rather than two distinct networks.

Binary document codes can also be learned by
extending distributed memory models. Le and
Mikolov (2014) suggest that in PV-DM, a con-
text of the central word can be constructed by ei-
ther concatenating or averaging the document vec-
tor and the embeddings of the surrounding words.
However, in Binary PV-DM (Figure 3) we always
construct the context by concatenating the relevant
vectors before applying the sigmoid nonlinearity.
This way, the length of binary codes is not tied to

sampled
softmax

rounded
sigmoid

concatenated
context

binary
concatenated

context

document
embedding

lookup

word
embedding

lookup

document

central

word

...

c
o
n
te
xt
 w
o
rd
s

Figure 3: The Binary PV-DM model. Modifi-
cations to the original PV-DM model are high-
lighted.

the dimensionality of word embeddings.
Softmax layers in the models described above

should be trained to predict words in documents
given binary context vectors. Training should
therefore encourage binary activations in the pre-
ceding sigmoid layers. This can be done in several
ways. In semantic hashing autoencoders Salakhut-
dinov and Hinton (2009) added noise to the sig-
moid coding layer. Error backpropagation then
countered the noise, by forcing the activations to
be close to 0 or 1. Another approach was used
by Krizhevsky and Hinton (2011) in autoencoders
that learned binary codes for small images. Dur-
ing the forward pass, activations in the coding
layer were rounded to 0 or 1. Original (i.e. not
rounded) activations were used when backpropa-
gating errors. Alternatively, one could model the
document codes with stochastic binary neurons.
Learning in this case can still proceed with error
backpropagation, provided that a suitable gradi-
ent estimator is used alongside stochastic activa-
tions. We experimented with the methods used in
semantic hashing and Krizhevsky’s autoencoders,
as well as with the two biased gradient estimators
for stochastic binary neurons discussed by Bengio
et al. (2013). We also investigated the slope an-
nealing trick (Chung et al., 2016) when training
networks with stochastic binary activations. From
our experience, binary paragraph vector models
with rounded activations are easy to train and learn
better codes than models with noise-based bina-
rization or stochastic neurons. We therefore use
Krizhevsky’s binarization in our models.

3 Experiments

To assess the performance of binary paragraph
vectors, we carried out experiments on three

123

datasets: 20 Newsgroups1, a cleansed ver-
sion (also called v2) of Reuters Corpus Vol-
ume 12 (RCV1) and English Wikipedia3. As para-
graph vectors can be trained with relatively large
vocabularies, we did not perform any stemming
of the source text. However, we removed stop
words as well as words shorter than two characters
and longer than 15 characters. Results reported
by (Li et al., 2015) indicate that performance of
PV-DBOW can be improved by including n-grams
in the model. We therefore evaluated two vari-
ants of Binary PV-DBOW: one predicting words
in documents and one predicting words and bi-
grams. Since 20 Newsgroups is a relatively small
dataset, we used all words and bigrams from its
documents. This amounts to a vocabulary with
slightly over one million elements. For the RCV1
dataset we used words and bigrams with at least 10
occurrences in the text, which gives a vocabulary
with approximately 800 thousands elements. In
case of English Wikipedia we used words and bi-
grams with at least 100 occurrences, which gives
a vocabulary with approximately 1.5 million ele-
ments.

The 20 Newsgroups dataset comes with refer-
ence train/test sets. In case of RCV1 we used
half of the documents for training and the other
half for evaluation. In case of English Wikipedia
we held out for testing randomly selected 10% of
the documents. We perform document retrieval
by selecting queries from the test set and order-
ing other test documents according to the simi-
larity of the inferred codes. We use Hamming
distance for binary codes and cosine similarity
for real-valued representations. Results are av-
eraged over queries. We assess the performance
of our models with precision-recall curves and
two popular information retrieval metrics, namely
mean average precision (MAP) and the normal-
ized discounted cumulative gain at the 10th result
(NDCG@10) (Järvelin and Kekäläinen, 2002).
The results depend, of course, on the chosen doc-
ument relevancy measure. Relevancy measure for
the 20 Newsgroups dataset is straightforward: a
retrieved document is relevant to the query if they
both belong to the same newsgroup. In RCV1
each document belongs to a hierarchy of topics,

1Available at http://qwone.com/˜jason/
20Newsgroups

2Available at http://trec.nist.gov/data/
reuters/reuters.html

3A snapshot from April 5th, 2016

making the definition of relevancy less obvious.
In this case we adopted the relevancy measure
used by Salakhutdinov and Hinton (2009). That
is, the relevancy is calculated as the fraction of
overlapping labels in a retrieved document and
the query document. Overall, our selection of
test datasets and relevancy measures for 20 News-
groups and RCV1 follows Salakhutdinov and Hin-
ton (2009), enabling comparison with semantic
hashing codes. To assess the relevancy of ar-
ticles in English Wikipedia we can employ cat-
egories assigned to them. However, unlike in
RCV1, Wikipedia categories can have multiple
parent categories and cyclic dependencies. There-
fore, for this dataset we adopted a simplified rel-
evancy measure: two articles are relevant if they
share at least one category. We also removed
from the test set categories with less than 20 doc-
uments as well as documents that were left with
no categories. Overall, the relevancy is measured
over more than 11, 800 categories, making English
Wikipedia harder than the other two benchmarks.

We use AdaGrad (Duchi et al., 2011) for
training and inference in all experiments re-
ported in this work. During training we employ
dropout (Srivastava et al., 2014) in the embedding
layer. To facilitate models with large vocabularies,
we approximate the gradients with respect to the
softmax logits using the method described by Cho
et al. (2015). Binary PV-DM networks use the
same number of dimensions for document codes
and word embeddings.

Performance of 128- and 32-bit binary para-
graph vector codes is reported in Table 1 and
in Figure 4. For comparison we also report per-
formance of real-valued paragraph vectors. Note
that the binary codes perform very well, de-
spite their far lower capacity: on 20 Newsgroups
and RCV1 the 128-bit Binary PV-DBOW trained
with bigrams approaches the performance of the
real-valued paragraph vectors, while on English
Wikipedia its performance is slightly lower. Fur-
thermore, Binary PV-DBOW with bigrams out-
performs semantic hashing codes: comparison of
precision-recall curves from Figures 4a and 4b
with Salakhutdinov and Hinton (2009, Figures 6
& 7) shows that 128-bit codes learned with this
model outperform 128-bit semantic hashing codes
on 20 Newsgroups and RCV1. Moreover, the 32-
bit codes from this model outperform 128-bit se-
mantic hashing codes on the RCV1 dataset, and

124

(a) 20 Newsgroups

10-2 10-1 100

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
P
re
ci
si
o
n

PV-DBOW uni- & bi-grams

PV-DBOW unigrams only

Binary PV-DBOW uni- & bi-grams

Binary PV-DBOW unigrams only

Binary PV-DM

Semantic hashing

10-2 10-1 100

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si
o
n

PV-DBOW uni- & bi-grams

PV-DBOW unigrams only

Binary PV-DBOW uni- & bi-grams

Binary PV-DBOW unigrams only

Binary PV-DM

128 dimensional codes 32 dimensional codes

(b) RCV1

10-2 10-1 100

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

ci
si
o
n

PV-DBOW uni- & bi-grams

PV-DBOW unigrams only

Binary PV-DBOW uni- & bi-grams

Binary PV-DBOW unigrams only

Binary PV-DM

Semantic hashing

10-2 10-1 100

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
ci
si
o
n

PV-DBOW uni- & bi-grams

PV-DBOW unigrams only

Binary PV-DBOW uni- & bi-grams

Binary PV-DBOW unigrams only

Binary PV-DM

128 dimensional codes 32 dimensional codes

(c) English Wikipedia

10−2 10−1 100

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ec

isi
on

PV-DBOW uni- & bi-grams
PV-DBOW unigrams only
Binary PV-DBOW uni- & bi-grams
Binary PV-DBOW unigrams only
Binary PV-DM

10−2 10−1 100

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ec

isi
on

PV-DBOW uni- & bi-grams
PV-DBOW unigrams only
Binary PV-DBOW uni- & bi-grams
Binary PV-DBOW unigrams only
Binary PV-DM

128 dimensional codes 32 dimensional codes

Figure 4: Precision-recall curves for the 20 Newsgroups, RCV1 and the English Wikipedia. Cosine
similarity was used with real-valued representations and the Hamming distance with binary codes. For
comparison we also included semantic hashing results reported by Salakhutdinov and Hinton (2009,
Figures 6 & 7).

125

Code
Model

With 20 Newsgroups RCV1 English Wikipedia
size bigrams MAP NDCG@10 MAP NDCG@10 MAP NDCG@10

128

PV-DBOW
no 0.4 0.75 0.25 0.79 0.25 0.59
yes 0.45 0.75 0.27 0.8 0.26 0.6

Binary no 0.34 0.69 0.22 0.74 0.18 0.48
PV-DBOW yes 0.35 0.69 0.24 0.77 0.18 0.49

PV-DM
N/A

0.41 0.73 0.23 0.78 0.24 0.59
Binary PV-DM 0.34 0.65 0.18 0.69 0.16 0.46

32

PV-DBOW
no 0.43 0.71 0.26 0.75 0.23 0.55
yes 0.46 0.72 0.27 0.77 0.25 0.58

Binary no 0.32 0.53 0.22 0.6 0.16 0.41
PV-DBOW yes 0.32 0.54 0.25 0.66 0.17 0.44

PV-DM
N/A

0.43 0.7 0.23 0.77 0.23 0.55
Binary PV-DM 0.29 0.49 0.17 0.53 0.15 0.41

Table 1: Information retrieval results. The best results with binary models are highlighted.

on the 20 Newsgroups dataset give similar preci-
sion up to approximately 3% recall and better pre-
cision for higher recall levels. Note that the differ-
ence in this case lies not only in retrieval precision:
the short 32-bit Binary PV-DBOW codes are more
efficient for indexing than long 128-bit semantic
hashing codes.

We also compared binary paragraph vectors
against codes constructed by first inferring short,
real-valued paragraph vectors and then using a
separate hashing algorithm for binarization. When
the dimensionality of the paragraph vectors is
equal to the size of binary codes, the number
of network parameters in this approach is sim-
ilar to that of Binary PV models. We exper-
imented with two standard hashing algorithms,
namely random hyperplane projection (Charikar,
2002) and iterative quantization (Gong and Lazeb-
nik, 2011). Paragraph vectors in these experi-
ments were inferred using PV-DBOW with bi-
grams. Results reported in Table 2 show no ben-
efit from using a separate algorithm for binariza-
tion. On the 20 Newsgroups and RCV1 datasets
Binary PV-DBOW yielded higher MAP than the
two baseline approaches. On English Wikipedia
iterative quantization achieved MAP equal to Bi-
nary PV-DBOW, while random hyperplane projec-

tion yielded lower MAP. Some gain in precision of
top hits can be observed for iterative quantization,
as indicated by NDCG@10. However, precision
of top hits can also be improved by querying with
Real-Binary PV-DBOW model (Section 3.2). It is
also worth noting that end-to-end inference in Bi-
nary PV models is more convenient than inferring
real-valued vectors and then using another algo-
rithm for hashing.

Li et al. (2015) argue that PV-DBOW out-
performs PV-DM on a sentiment classification
task, and demonstrate that the performance of PV-
DBOW can be improved by including bigrams in
the vocabulary. We observed similar results with
Binary PV models. That is, including bigrams in
the vocabulary usually improved retrieval preci-
sion. Also, codes learned with Binary PV-DBOW
provided higher retrieval precision than Binary
PV-DM codes. Furthermore, to choose the context
size for the Binary PV-DM models, we evaluated
several networks on validation sets taken out of the
training data. The best results were obtained with
a minimal one-word, one-sided context window.
This is the distributed memory architecture most
similar to the Binary PV-DBOW model.

Hashing algorithm
20 Newsgroups RCV1 English Wikipedia

MAP NDCG@10 MAP NDCG@10 MAP NDCG@10
Random hyperplane projection 0.27 0.53 0.21 0.66 0.16 0.44

Iterative quantization 0.31 0.58 0.23 0.68 0.17 0.46

Table 2: Information retrieval results for 32-bit binary codes constructed by first inferring 32d real-valued
paragraph vectors and then employing a separate hashing algorithm for binarization. Paragraph vectors
were inferred using PV-DBOW with bigrams.

126

3.1 Transfer learning

In the experiments presented thus far we had at
our disposal training sets with documents simi-
lar to the documents for which we inferred binary
codes. One could ask a question, if it is possible
to use binary paragraph vectors without collecting
a domain-specific training set? For example, what
if we needed to hash documents that are not asso-
ciated with any available domain-specific corpus?
One solution could be to train the model with a
big generic text corpus, that covers a wide vari-
ety of domains. Lau and Baldwin (2016) evalu-
ated this approach for real-valued paragraph vec-
tors, with promising results. It is not obvious,
however, whether short binary codes would also
perform well in similar settings. To shed light on
this question we trained Binary PV-DBOW with

10-2 10-1 100

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n

training on the 20 Newsgroups training set

training on English Wikipedia

(a) 20 Newsgroups

10-2 10-1 100

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
ci
si
o
n

training on the RCV1 training set

training on English Wikipedia

(b) RCV1

Figure 5: Precision-recall curves for the base-
line Binary PV-DBOW models and a Binary PV-
DBOW model trained on an unrelated text corpus.
Results are reported for 128-bit codes.

bigrams on the English Wikipedia, and then in-
ferred binary codes for the test parts of the 20
Newsgroups and RCV1 datasets. The results are
presented in Table 3 and in Figure 5. The model
trained on an unrelated text corpus gives lower re-
trieval precision than models with domain-specific
training sets, which is not surprising. However, it
still performs remarkably well, indicating that the
semantics it captured can be useful for different
text collections. Importantly, these results were
obtained without domain-specific finetuning.

MAP NDCG@10
20 Newsgroups 0.24 0.51

RCV1 0.18 0.66

Table 3: Information retrieval results for the Bi-
nary PV-DBOW model trained on an unrelated
text corpus. Results are reported for 128-bit codes.

3.2 Retrieval with Real-Binary models
As pointed out by Salakhutdinov and Hinton
(2009), when working with large text collections
one can use short binary codes for indexing and
a representation with more capacity for ranking.
Following this idea, we proposed Real-Binary PV-
DBOW model (Section 2) that can simultaneously
learn short binary codes and high-dimensional
real-valued representations. We begin evaluation
of this model by comparing retrieval precision of
real-valued and binary representations learned by
it. To this end, we trained a Real-Binary PV-
DBOW model with 28-bit binary codes and 300-
dimensional real-valued representations on the 20
Newsgroups and RCV1 datasets. Results are re-
ported in Figure 6. The real-valued representa-
tions learned with this model give lower precision
than PV-DBOW vectors but, importantly, improve
precision over binary codes for top ranked doc-
uments. This justifies their use alongside binary
codes.

Using short binary codes for initial filtering of
documents comes with a tradeoff between the re-
trieval performance and the recall level. For ex-
ample, one can select a small subset of similar
documents by using 28–32 bit codes and retriev-
ing documents within small Hamming distance
to the query. This will improve retrieval perfor-
mance, and possibly also precision, at the cost of
recall. Conversely, short codes provide a less fine-
grained hashing and can be used to index doc-
uments within larger Hamming distance to the

127

10-2 10-1 100

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
P
re
ci
si
o
n

PV-DBOW

Real-Binary PV-DBOW, real-valued codes

Real-Binary PV-DBOW, binary codes

(a) 20 Newsgroups

10-2 10-1 100

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re
ci
si
o
n

PV-DBOW

Real-Binary PV-DBOW, real-valued codes

Real-Binary PV-DBOW, binary codes

(b) RCV1

Figure 6: Information retrieval results for binary and real-valued codes learned by the Real-Binary PV-
DBOW model with bigrams. Results are reported for 28-bit binary codes and 300d real-valued codes.
A 300d PV-DBOW model is included for reference.

query. They can therefore be used to improve re-
call at the cost of retrieval performance, and pos-
sibly also precision. For these reasons, we evalu-
ated Real-Binary PV-DBOW models with differ-
ent code sizes and under different limits on the
Hamming distance to the query. In general, we
cannot expect these models to achieve 100% re-
call under the test settings. Furthermore, recall
will vary on query-by-query basis. We therefore
decided to focus on the NDCG@10 metric in this
evaluation, as it is suited for measuring model per-
formance when a short list of relevant documents
is sought, and the recall level is not known. MAP
and precision-recall curves are not applicable in

C
od

e
si

ze

R
ad

iu
s NDCG@10

20 NG RCV1 Wikipedia
A B A B A B

28
1 0.79 0.85 0.77 0.85 0.66 0.7

2
0.72 0.8 0.73 0.81 0.62 0.65

24
0.65 0.79 0.7 0.76 0.56 0.59

3 0.63 0.76 0.69 0.74 0.5 0.55

Table 4: Information retrieval results for the Real-
Binary PV-DBOW model. Real-valued represen-
tations have 300 dimensions. (A) Binary codes are
used for selecting documents within a given Ham-
ming distance to the query and real-valued rep-
resentations are used for ranking. (B) For com-
parison, variant A was repeated with binary codes
inferred using plain Binary PV-DBOW and real-
valued representation inferred using original PV-
DBOW model.

these settings.
Information retrieval results for Real-Binary

PV-DBOW are summarized in Table 4. The model
gives higher NDCG@10 than 32-bit Binary PV-
DBOW codes (Table 1). The difference is large
when the initial filtering is restrictive, e.g. when
using 28-bit codes and 1-2 bit Hamming distance
limit. Real-Binary PV-DBOW can therefore be
useful when one needs to quickly find a short list
of relevant documents in a large text collection,
and the recall level is not of primary importance. If
needed, precision can be further improved by us-
ing plain Binary PV-DBOW codes for filtering and
standard DBOW representation for raking (Ta-
ble 4, column B). Note, however, that PV-DBOW
model would then use approximately 10 times
more parameters than Real-Binary PV-DBOW.

4 Conclusion

In this article we presented simple neural net-
works that learn short binary codes for text doc-
uments. Our networks extend Paragraph Vector
by introducing a sigmoid nonlinearity before the
softmax that predicts words in documents. Binary
codes inferred with the proposed networks achieve
higher retrieval precision than semantic hashing
codes on two popular information retrieval bench-
marks. They also retain a lot of their precision
when trained on an unrelated text corpus. Finally,
we presented a network that simultaneously learns
short binary codes and longer, real-valued repre-
sentations.

128

The best codes in our experiments were in-
ferred with Binary PV-DBOW networks. The Bi-
nary PV-DM model did not perform so well. Li
et al. (2015) made similar observations for Para-
graph Vector models, and argue that in distributed
memory model the word context takes a lot of
the burden of predicting the central word from
the document code. An interesting line of future
research could, therefore, focus on models that
account for word order, while learning good bi-
nary codes. It is also worth noting that Le and
Mikolov (2014) constructed paragraph vectors by
combining DM and DBOW representations. This
strategy may proof useful also with binary codes,
when employed with hashing algorithms designed
for longer codes, e.g. with multi-index hash-
ing (Norouzi et al., 2012).

Acknowledgments

This research is supported by National Science
Centre, Poland grant no. 2013/09/B/ST6/01549
“Interactive Visual Text Analytics (IVTA): Devel-
opment of novel, user-driven text mining and vi-
sualization methods for large text corpora explo-
ration.” This research was carried out with the sup-
port of the “HPC Infrastructure for Grand Chal-
lenges of Science and Engineering” project, co-
financed by the European Regional Development
Fund under the Innovative Economy Operational
Programme. This research was supported in part
by PL-Grid Infrastructure.

A Visualization of Binary PV codes

For an additional comparison with semantic hash-
ing, we used t-distributed Stochastic Neighbor
Embedding (van der Maaten and Hinton, 2008) to
construct two-dimensional visualizations of codes
learned by Binary PV-DBOW with bigrams. We
used the same subsets of newsgroups and RCV1
topics that were used by Salakhutdinov and Hin-
ton (2009, Figure 5). Codes learned by Binary
PV-DBOW (Figure 7) appear slightly more clus-
tered.

References
Yoshua Bengio, Nicholas Léonard, and Aaron

Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432 .

(a) A subset of the 20 Newsgroups dataset: green
- soc.religion.christian, red - talk.politics.guns, blue -
rec.sport.hockey, brown - talk.politics.mideast, magenta -
comp.graphics, black - sci.crypt.

(b) A subset of the RCV1 dataset: green - disasters and acci-
dents, red - government borrowing, blue - accounts/earnings,
magenta - energy markets, black - EC monetary/economic.

Figure 7: t-SNE visualizations of 128 dimensional
binary paragraph vector codes; the Hamming dis-
tance was used to calculate code similarity.

Moses S Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory
of computing. ACM, pages 380–388.

Sébastien Jean Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large
target vocabulary for neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing. ACL, volume 1, pages 1–10.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2016. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704 .

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning

129

and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

John Gantz and David Reinsel. 2012. The digital uni-
verse in 2020: Big data, bigger digital shadows, and
biggest growth in the far east. Technical report, IDC.

Yunchao Gong and Svetlana Lazebnik. 2011. Iterative
quantization: A procrustean approach to learning bi-
nary codes. In Computer Vision and Pattern Recog-
nition (CVPR), 2011 IEEE Conference on. IEEE,
pages 817–824.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation princi-
ple for unnormalized statistical models. In Inter-
national Conference on Artificial Intelligence and
Statistics. pages 297–304.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of di-
mensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing. ACM,
pages 604–613.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS)
20(4):422–446.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems.
pages 3294–3302.

Alex Krizhevsky and Geoffrey E Hinton. 2011. Using
very deep autoencoders for content-based image re-
trieval. In Proceedings of the 19th European Sympo-
sium on Artificial Neural Networks. pages 489–494.

Jey Han Lau and Timothy Baldwin. 2016. An em-
pirical evaluation of doc2vec with practical insights
into document embedding generation. In Proceed-
ings of the 1st Workshop on Representation Learning
for NLP. Association for Computational Linguistics,
pages 78–86.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of The 31st International Conference on Ma-
chine Learning. pages 1188–1196.

Bofang Li, Tao Liu, Xiaoyong Du, Deyuan Zhang,
and Zhe Zhao. 2015. Learning document embed-
dings by predicting n-grams for sentiment classi-
fication of long movie reviews. arXiv preprint
arXiv:1512.08183 .

Kevin Lin, Huei Fang Yang, Jen Hao Hsiao, and
Chu Song Chen. 2015. Deep learning of binary hash
codes for fast image retrieval. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition Workshops. pages 27–35.

Jonathan Masci, Michael M Bronstein, Alexander M
Bronstein, and Jürgen Schmidhuber. 2014. Multi-
modal similarity-preserving hashing. IEEE transac-
tions on pattern analysis and machine intelligence
36(4):824–830.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Mohammad Norouzi, Ali Punjani, and David J Fleet.
2012. Fast search in hamming space with multi-
index hashing. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on.
IEEE, pages 3108–3115.

Ruslan Salakhutdinov and Geoffrey E Hinton. 2009.
Semantic hashing. International Journal of Approx-
imate Reasoning 50(7):969–978.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research 15(1):1929–1958.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research 9(Nov):2579–2605.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and
Jianqiu Ji. 2014. Hashing for similarity search: A
survey. arXiv preprint arXiv:1408.2927 .

Qifan Wang, Dan Zhang, and Luo Si. 2013. Semantic
hashing using tags and topic modeling. In Proceed-
ings of the 36th international ACM SIGIR confer-
ence on Research and development in information
retrieval. ACM, pages 213–222.

130

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 131–138,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Representing Compositionality based on Multiple Timescales Gated
Recurrent Neural Networks with Adaptive Temporal Hierarchy for

Character-Level Language Models

Moirangthem Dennis Singh, Jegyung Son, Minho Lee
School of Electronics Engineering
Kyungpook National University

Daegu, South Korea
{mdennissingh,wprud4,mholee}@gmail.com

Abstract

A novel character-level neural language
model is proposed in this paper. The pro-
posed model incorporates a biologically
inspired temporal hierarchy in the archi-
tecture for representing multiple composi-
tions of language in order to handle longer
sequences for the character-level language
model. The temporal hierarchy is intro-
duced in the language model by utilizing
a Gated Recurrent Neural Network with
multiple timescales. The proposed model
incorporates a timescale adaptation mech-
anism for enhancing the performance of
the language model. We evaluate our pro-
posed model using the popular Penn Tree-
bank and Text8 corpora. The experiments
show that the use of multiple timescales
in a Neural Language Model (NLM) en-
ables improved performance despite hav-
ing fewer parameters and with no addi-
tional computation requirements. Our ex-
periments also demonstrate the ability of
the adaptive temporal hierarchies to rep-
resent multiple compositonality without
the help of complex hierarchical architec-
tures and shows that better representation
of the longer sequences lead to enhanced
performance of the probabilistic language
model.

1 Introduction

Language Modeling is a fundamental task central
to Natural Language Processing (NLP) and lan-
guage understanding. A character-level language
model (CLM) can be interpreted as a probability
estimation method for the next character given a
sequence of characters as input. From the per-
spective of sequence generation, predicting one

character at a time has higher importance since
it allows the network to invent novel words and
strings. CLMs are commonly used for modeling
new words and there have been successful tech-
niques that use generative language models (LMs)
based on characters or phonemes (Sutskever et al.,
2011).

Recurrent neural networks have been applied to
CLMs (Sutskever et al., 2011; Graves, 2013). Re-
cently Kim et al. (2016b) introduced a LM with
explicit hierarchical architecture to work at char-
acter levels and word levels. Cooijmans et al.
(2017) introduced recurrent batch normalization
into CLMs which significantly improved the per-
formance. However, since the population statis-
tics are estimated separately for each time step, the
model is computationally intensive particularly for
a CLM where the number of steps are more than
conventional word level LMs. Similarly, Krueger
and Memisevic (2016) introduced regularization
in CLMs using a norm-stabilizer and reported an
increased training time for higher levels of regu-
larization.

In spite of the recent successes, CLMs still have
inferior performance compared to its equivalent
word-level models (Mikolov et al., 2012) since
these LMs need to consider longer history of to-
kens to properly predict the next one. In order
to improve the performance of the CLMs, there
is a need for better representation of the additional
levels of compositionality and the richer discourse
structure found in CLMs.

Heinrich et al. (2012) used multiple timescale
RNNs to learn the linguistic hierarchy for speech
related tasks and Ding et al. (2016) demonstrated
that, during listening to connected speech, cor-
tical activity of different timescales concurrently
tracked the time course of abstract linguistic com-
positionality at different hierarchical levels, such
as words, phrases and sentences. In this work,

131

we propose a character-level recurrent neural net-
work (RNN) LM that employs an adaptive mul-
tiple timescales approach to incorporate tempo-
ral hierarchies in the architecture to enhance the
representation of multiple compositionalities. Our
proposed model includes a novel timescale update
mechanism which enhances the adaptation of the
temporal hierarchy during the learning process.
We build the temporal hierarchical structure us-
ing fast and slow context units to imitate different
timescales. This temporal hierarchy concept is im-
plemented based on the multiple timescales gated
recurrent unit (MTGRU) (Kim et al., 2016a) that
incorporates multiple timescales at different layers
of the RNN.

Our model, inspired by the concept of tempo-
ral hierarchy found in the human brain (Botvinick,
2007; Meunier et al., 2010), demonstrates the abil-
ity to capture multiple compositionalities similar
to the findings of Ding et al. (2016). This bet-
ter representation learning capability enhances the
ability of our model to handle longer sequences
for the CLM. The resulting LM is a much sim-
pler model that does not incorporate explicit hi-
erarchical structures or normalization techniques.
We show that our CLM with the biologically in-
spired temporal hierarchy is able to achieve per-
formance comparable to the existing state-of-the-
art CLMs evaluated over the Penn Treebank (PTB)
and Text8 corpora.

2 Related Works

Recent advances in distributed representation
learning have demonstrated promising results in
language modeling. Distributed representation
learning approaches are a group of methods in
which real-valued vectors are trained to capture
the underlying meaning in the input. Bengio
et al. (2003) demonstrated that the probabilistic
language models can achieve much better gener-
alization.

Out-of-vocabulary words have always been a
problem in language tasks. To address the rare
word problem in language generation, Alexan-
drescu and Kirchhoff (2006) represented a word
as a set of shared factor embeddings. In an-
other approach, Sutskever et al. (2011) introduced
NLMs that incorporated a character-level model
with both input and output as characters. CLMs
are also capable of generating novel words and are
suitable for addressing the rare word problem.

Training a CLM has been a difficult task and
its performance has been lower than the word-
level LMs. Handling longer sequences is criti-
cal to improve the performance of CLMs and it
remains a challenge. Mikolov et al. (2012) pro-
posed an alternative approach, where subword-
level models are trained to benefit from the word-
level LMs. Pachitariu and Sahani (2013) proposed
impulse-response LMs for improving RNN LMs.
Recently, several studies on RNN based CLMs
have been proposed, mostly using the Long short-
term memory (LSTM) (Graves, 2013; Cooijmans
et al., 2017; Zhang et al., 2016), where numer-
ous regularization and normalization techniques
have been applied to enhance the performance of
CLMs. Additionally, weight generation networks
(Ha et al., 2017), hierarchical architectures (Chung
et al., 2017) in conjunction with the normalization
techniques have been proposed to achieve state-of-
the-art performance.

We propose a different approach for our CLM
by using a simpler biologically inspired tem-
poral hierarchy model. Recently, Ding et al.
(2016) demonstrated strong evidence for a neu-
ral tracking of hierarchical linguistic structures in
the brain. The study performed experiments to
determine whether neural representation of lan-
guage (speech) tracks hierarchical linguistic struc-
tures, rather than prosodic and statistical transi-
tional probability cues. In simpler terms, the brain
tracks and represents linguistic structures hierar-
chically. Similar findings have been shown in Me-
unier et al. (2010) and Botvinick (2007), but Ding
et al. (2016) was the first to confirm the same
in the domain of language. The authors hypoth-
esized that concurrent neural tracking of hierar-
chical linguistic structures provides a mechanism
for temporally integrating smaller linguistic units
into larger structures. Therefore, our knowledge
of the hierarchical nature of linguistic structures
and the theory of linguistic compositionality have
been shown to be biologically plausible. Previ-
ous works have applied this hierarchical structure
to RNNs in movement tracking (Paine and Tani,
2004), sensorimotor control systems (Yamashita
and Tani, 2008) and speech recognition (Heinrich
et al., 2012). Based on the above conclusions, we
adopt the multiple timescales concept to imple-
ment the temporal hierarchy architecture for rep-
resenting multiple compositionalities which will
help in handling longer sequences for our CLM.

132

Moreover, Yamashita and Tani (2008) had
tested their model performance over different val-
ues of the timescale τ to investigate the impact
of multiple timescales in RNNs. They showed
that different setting of the timescales significantly
affects the performance and a higher τ -ratio(τ -
slow/τ -fast) improved the performance. In this
spirit, we implement an adaptive timescale up-
date method for better performance compared to
a model with static timescales.

3 Proposed Character-Level Neural
Language Model

A character-level language model (CLM) esti-
mates a probability distribution over wt+1 given
a sequence w1:t = [w1, . . . , wt]. We propose a re-
current neural network based CLM with temporal
hierarchies using a multilayer gated recurrent neu-
ral network. Gated RNNs such as LSTM (Hochre-
iter and Schmidhuber, 1997) and Gated Recurrent
Unit (GRU) (Cho et al., 2014) address the prob-
lem of learning long range dependencies. GRU
and LSTM have been shown to yield comparable
performance (Chung et al., 2014). These gated
recurrent architectures are known to address the
vanishing gradient problem efficiently and multi-
layer architectures are known to be able to learn
expressive and complex features. However, the
phenomenon responsible for these algorithms to
approach human performance on speech and lan-
guage tasks cannot be ascertained owing to our
lack of understanding or insight into the actual
representations that are being learned. However,
due to our lack of understanding or insight into
the actual representations being learned, it is dif-
ficult to ascertain the phenomenon responsible for
these algorithms to approach human performance
on speech and language tasks. Therefore, concur-
rent to the studies of temporal hierarchy in neu-
roscience (Ding et al., 2016), we formulated a hy-
pothesis that multilayer gated recurrent neural net-
works can represent compositional hierarchies in
the learning process that involves a monotonically
increasing timescale hierarchy. We argue that hier-
archical temporal representations capture the lin-
guistic hierarchy of the input and are primarily
responsible for better performance of multilayer
gated recurrent architectures.

We propose a Multiple Timescales Gated Re-
current Unit (MTGRU) with adaptive timescales
for our language model. The MTGRU, which

x1 x2 x3

y1 y2 y3

Input Chars h e l

 e l l Target Chars

Input Layer

Output Layer

Fast Layer

Slow Layer

)(h 1

1
)(h 1

2

)(h 1

3

)(h 2

1

)(h 2

2

)(h 2

3

x4

y4

 l

 o

H
id

d
e
n
 S

ta
te

s

)(h 1

4

)(h 2

4

Figure 1: Proposed character-level neural lan-
guage model.

ht-1 ut

ht

th
~

1/τ

z

r

Figure 2: A Multiple Timescales Gated Recurrent
Unit.

has a temporal hierarchical architecture, is imple-
mented in the framework of a language model
as shown in Figure 1. We find that the multiple
timescales model is primarily responsible for ex-
plicitly guiding each layer of the neural network
to facilitate in learning of features operating over
increasingly slower timescales, corresponding to
subsequent levels in the compositional hierarchy.
The temporal hierarchy in the network is imple-
mented by applying a timescale constant at the end
of a conventional GRU unit, essentially adding an-
other constant gating unit that modulates the mix-
ture of past and current hidden states. In an MT-
GRU, each step takes as input xt,ht−1 and pro-
duces the hidden ht. The time constant τ added
to the activation ht of the MTGRU is shown in
Eq. (1). τ is used to control the timescale of each
GRU cell. Larger τ results in slower cell outputs
but it makes the cell focus on the slow features of
a dynamic sequence input. The MTGRU model is
illustrated in Figure 2.

133

rt = σ(Wxrxt +Whrht−1)
zt = σ(Wxzxt +Whzht−1)
ut = tanh(Wxuxt +Whu(rt � ht−1))

h̃t = ztht−1 + (1− zt)ut

ht = h̃t
1
τ

+ (1− 1
τ
)ht−1

(1)

where σ(·) and tanh(·) are the sigmoid and tan-
gent hyperbolic activation functions, � denotes
the element-wise multiplication operator, and rt,
zt are referred to as reset, update gates respec-
tively. ut and h̃t are the candidate activation and
candidate hidden state of the MTGRU.

We build the multilayer MTGRU-CLM with a
different timescale τ for each layer. Based on
our hypothesis that later layers should learn fea-
tures that operate over slower timescales, we set
larger τ as we go up the layers. We use the bits-
per-character (BPC) as the evaluation metric. The
timescale τ is initialized for each layers at the start
of the training.

We implement the proposed timescale update
mechanism by adaptively increasing the τ dur-
ing the training process as it is known that just
higher τ -ratio, without timescale adaptation, leads
to improved performance (Yamashita and Tani,
2008). As we proceed with the training epochs,
whenever the validation negative log-likelihood
(NLL) (shown in Eq.(2)) stopped decreasing, the
timescale τ is updated. A growth factor is used
to determine the growth rate of the timescales.
We update the timescales only after training has
completed for a particular number of epochs
(max epoch). The timescale update mechanism
is presented in Algorithm 1. In order to prevent
deteriorated performance over large increases in
the timescales, smaller growth factors are set for
the experiments.

− 1
N

N∑
n=1

T∑
t=1

logP
(
wn

t | wn
1 . . . w

n
t−1; θ

)
(2)

where N is the number of training sequences, T is
the length of the nth sequence, θ is the model pa-
rameter, and wn

t is the token at time t of sequence
n and so on.

4 Experiments and Results

We evaluate our CLM on the Penn Treebank
(PTB) corpus (Marcus et al., 1993) and on the

Input: Current Timescale τ
Output: Updated Timescale τ
if current epoch > max epoch then

read growth factor;
if the validation NLL did not decrease
then
τ = τ * growth factor;
return τ ;

else
return τ ;

end
end

Algorithm 1: Timescale adaptation in MTGRU

τ {1.2, 1.3, 1.35, 1.4}
growth factor {1.01, 1.05, 1.1, 1.15}

learning rate {1e-2, 1e-3, 1e-4, 2e-3}
minibatch size {32, 64, 128}

Table 1: Grid of hyperparameters explored in the
experiments.

much larger Text8 corpus (Mahoney, 2009). We
use orthogonal initialization for all the weight ma-
trices and use stochastic gradient descent with gra-
dient clipping at 1.0 and step rule determined by
Adam (Kingma and Ba, 2014). We report the hy-
perparameter values that were explored in our ex-
periments in Table 1. The timescale for the fast
layer is initialized to 1 in all the experiments as
τ = 1 defines the default or the input timescale.

We also conduct an additional experiment for
the comparison of computational efficiency of our
model with normalization based techniques. The
details of all the experiments are described in the
sections below.

4.1 Penn Treebank (PTB) Corpus

The PTB corpus is divided to train, valid, and test
sets following Mikolov and Zweig (2012). For
this experiment we use 600 units in each layer
of the 2 layer MTGRU network. We train on
non-overlapping sequences of length 100 with a
mini-batch size of 64 and a learning rate of 0.002.
We initialize the timescales τ as {1, 1.3} for the
fast and the slow layers respectively. We set the
growth factor to 1.05 with a max epoch of 25.
The size of our model is 3.7M parameters.

We also implemented the batch normalized
gated recurrent unit (BN-GRU) following Cooij-
mans et al. (2017) as a baseline to compare with

134

Model BPC Size
Zhang et al. (2016) 1.49 -

Mikolov et al. (2012) 1.41 -
Krueger and Memisevic (2016) 1.39 4.25M∗

BN-GRU 1.39 4.1M
Mikolov et al. (2012) 1.37 -

Cooijmans et al. (2017) 1.32 4.25M∗

Ha et al. (2017) 1.31 4.25M
MTGRU-CLM 1.27 3.7M
Ha et al. (2017) 1.27 4.91M

Chung et al. (2017) 1.24 5.35M∗

MTGRU-CLM-Adaptive 1.24 3.7M
Ha et al. (2017) 1.22 14.41M

Table 2: Bits-Per-Character on PTB test and size
of the models. MTGRU-CLM and MTGRU-
CLM-Adaptive correspond to our CLMs with a
constant timescale and an adaptive timescales re-
spectively. ∗These are estimated model sizes as
the actual number of parameters is not available in
the literature.

our model. We use early-stopping on validation-
set performance and the resulting model is evalu-
ated over the test set and the results are summa-
rized in Table 2. Our model performed compa-
rable to the current state-of-the-art models with a
test BPC of 1.24. We also illustrate the perfor-
mance of our model in Table 4 under the different
settings of τ and growth factor given in Table 1.

For further analysis, we graph the hidden state
change rate of each layer by measuring the L2 dis-
tance between the past and current hidden states of
the MTGRU-CLM-Adaptive and the GRU CLM,
over the input time steps as shown in Figure 3.
The models are trained on the PTB set with the
same set of parameters. In this graph, “spikes” can
be interpreted as events where the input represen-
tation at each layer is varying significantly. The
first(fast) layer, where the layer of the recurrent
unit is exposed directly to the input (as illustrated
in Fig. 1), the spiking corresponds to each char-
acter of the input. Looking at the second(slow)
layer graph of MTGRU, we can observe the larger
spikes correspond to the end of each word, while
the same is not true in the case of GRU. It is
evident that MTGRU learns better representation
of each word by utilizing the temporal hierarchy
without any explicit architectural hierarchy. These
findings are consistent with the previous studies
on speech where in speech sounds, syllable-level

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

r e c u r r e n t n e u r a l n e two r k s a r e v e r y powe r f u l .

H
ID

D
EN

 S
TA

TE
 C

H
A

N
G

E
R

A
TE

INPUTS

Analysis of GRU Hidden States

Layer 1 Layer 2

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

r e c u r r e n t n e u r a l n e t wo r k s a r e v e r y p owe r f u l .

H
ID

D
EN

 S
TA

TE
 C

H
A

N
G

E
R

A
TE

INPUTS

Analysis of MTGRU Hidden States

Layer 1 Layer 2

Figure 3: Hidden state representation of GRU-
CLM and MTGRU-CLM-Adaptive.

information on short time scale is integrated into
word-level information over a longer time scale
(Yamashita and Tani, 2008; Ding et al., 2016).

4.2 Text8 Corpus

The Text8 corpus consists of 100M characters ex-
tracted from the Wikipedia corpus. We follow
Mikolov and Zweig (2012) and divide the train,
valid, and test sets accordingly in order to compare
with previous works. Since Text8 contains only al-
phabets and spaces, the total number of symbols is
just 27. We use 1200 units in each layer of the 2
layer MTGRU network and it is trained over non-
overlapping sequences of length 180. The mini-
batch size is set to 128 and the learning rate is
0.001. The timescales τ is initialized as {1, 1.3}
for the fast and the slow layers respectively with
a growth factor of 1.05. The max epoch pa-
rameter is set to be 25. The size of this model is
14.5M parameters. The performance of the result-
ing model with early-stopping on validation-set is
shown in Table 3. We also report the performance
of the BN-GRU baseline model on the Text8 cor-
pus. The MTGRU-CLM-Adaptive model obtains
a test BPC of 1.29 which is comparable to the

135

Model BPC Size
Mikolov et al. (2012) 1.54 -
Zhang et al. (2016) 1.49 -

Pachitariu and Sahani (2013) 1.48 -
BN-GRU 1.39 16.1M

Cooijmans et al. (2017) 1.36 16.22M∗

MTGRU-CLM 1.34 14.5M
Chung et al. (2017) 1.32 21M∗

Chung et al. (2017) 1.29 21M∗

MTGRU-CLM-Adaptive 1.29 14.5M

Table 3: Bits-Per-Character on Text8 test and size
of the Models. MTGRU-CLM and MTGRU-
CLM-Adaptive correspond to our CLMs with a
constant timescale and an adaptive timescales re-
spectively. ∗These are estimated parameter sizes
as the actual value is not available in the literature.

Corpus BPC
PTB Corpus 1.26±0.0158
Text8 Corpus 1.31±0.0187

Table 4: Performance of the proposed model under
different timescale updates. These are the perfor-
mance of the model under different settings of τ
and growth factors as shown in Table 1.

current state-of-the-art. The performance of this
model under different τ and growth factor set-
tings given in Table 1 is shown in Table 4.

4.3 Comparison of Computing Efficiency

In order to compare the computation efficiency
of MTGRU with the baselines, we replicated
the Sequential MNIST experiment from Cooi-
jmans et al. (2017) using our implementation
of LSTM, GRU, Batch Normalized (BN)-LSTM,
BN-GRU, MTGRU, and MTGRU-Adaptive fol-
lowing the same experimental conditions. De-
spite the faster convergence of BN-LSTM, BN-
GRU, MTGRU, and MTGRU-Adaptive as illus-

Model Accuracy Train Time
LSTM 98.89% 14 hours
GRU 98.56% 15 hours

BN-LSTM 99.01% 41 hours
BN-GRU 98.97% 43 hours
MTGRU 99.26% 17 hours

MTGRU-Adaptive 99.37% 17 hours

Table 5: Sequential MNIST classification results
with training duration of 100K steps.

0

0.5

1

1.5

2

2.5

3

0
4

2
0

0
8

4
0

0
1

2
6

0
0

1
6

8
0

0
2

1
0

0
0

2
5

2
0

0
2

9
4

0
0

3
3

6
0

0
3

7
8

0
0

4
2

0
0

0
4

6
2

0
0

5
0

4
0

0
5

4
6

0
0

5
8

8
0

0
6

3
0

0
0

6
7

2
0

0
7

1
4

0
0

7
5

6
0

0
7

9
8

0
0

8
4

0
0

0
8

8
2

0
0

9
2

4
0

0
9

6
6

0
0

C
ro

ss
 E

n
tr

o
p

y
Lo

ss

Number of Steps

Comparison of Convergence Speed

BN-LSTM

GRU

LSTM

BN-GRU

MTGRU

MTGRU-Adaptive

Figure 4: Comparison of convergence speed of the
various models for Sequential MNIST classifica-
tion task.

trated in Figure 4, the total time taken to train
100K steps of BN-LSTM, BN-GRU significantly
increased compared to LSTM and GRU while the
training time of MTGRU and MTGRU-Adaptive
remained comparable to GRU as shown in Table 5.
The experiments were performed on one machine
with an Nvidia Titan-X GPU. Moreover, Kim et al.
(2016a) already demonstrated much faster conver-
gence in the case of MTGRU when compared to
GRU in sequence-to-sequence tasks.

5 Discussion

The proposed method based on a biologically in-
spired hierarchical structure can represent multiple
compositions of language by virtue of the adap-
tive multiple timescales in each layer. Sensitiv-
ity of the human brain to the compositional struc-
ture of language was recently confirmed by Ding
et al. (2016). By recording the activity of listeners
brains using magnetoencephalography (MEG), it
was found that the brain activates or spikes when
it is presented with individual words, phrases,
or a whole sentence. We successfully replicated
this property in our model and it achieves signif-
icant performance gains despite having a simpler
structure and lesser number of parameters. Our
model’s ability to represent compositions of lan-
guage at the word level is illustrated in Figure 3.
This illustration validates our hypothesis that mul-
tilayer gated recurrent neural networks can repre-
sent compositional hierarchies similar to the hu-
man brain.

136

The enhanced performance of the proposed
CLM illustrates that our approach can give bet-
ter generalization performance without the help
of complex hierarchical architectures. The re-
sults indicate that the temporal hierarchies with
the adaptive timescale approach can represent the
compositonality better and increases the capabil-
ity of the model to handle longer sequences for the
CLM. The results also demonstrate that our mul-
tilayer MTGRU model with adaptive timescale
performs comparable to the current state-of-the-
art models despite having fewer parameters and
a simpler architecture. The temporal hierarchy
approach eliminates the need for complex struc-
tures and normalization techniques (Cooijmans
et al., 2017; Krueger and Memisevic, 2016; Chung
et al., 2017; Ha et al., 2017) for the LM task,
thereby increasing the computational efficiency of
our model.

6 Conclusion

Our approach incorporates temporal hierarchies
in a character-level NLM to improve the perfor-
mance of the language model without introduc-
ing additional parameters. The proposed approach
takes into account the need for a biologically plau-
sible structure and a model to implement sim-
pler hierarchies for handling different level of lan-
guage compositions in order to tackle the longer
sequences problem in CLMs. Our approach with
adaptive timescales enables a simpler model with
a better representation of language to achieve sig-
nificant performance gains over existing models
with larger complexities and also alleviates the
need of additional computations.

Acknowledgment

This research was supported by ICT R&D pro-
gram of MSIP/IITP [R7124-16-0004, Develop-
ment of Intelligent Interaction Technology Based
on Context Awareness and Human Intention Un-
derstanding] (70%) and by the National Re-
search Foundation of Korea (NRF) grant funded
by the Korea government (MSIP) (No. NRF-
2016M3C1B6929647) (30%).

References
Andrei Alexandrescu and Katrin Kirchhoff. 2006. Fac-

tored neural language models. In Proceedings of
the Human Language Technology Conference of the

NAACL, Companion Volume: Short Papers. Associ-
ation for Computational Linguistics, pages 1–4.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. journal of machine learning research
3(Feb):1137–1155.

Matthew M Botvinick. 2007. Multilevel structure in
behaviour and in the brain: a model of fuster’s hi-
erarchy. Philosophical Transactions of the Royal
Society B: Biological Sciences 362(1485):1615–26.
https://doi.org/10.1098/rstb.2007.2056.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder-decoder for statis-
tical machine translation. CoRR abs/1406.1078.
http://arxiv.org/abs/1406.1078.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2017. Hierarchical multiscale recurrent neural net-
works. In Proceeding of the International Confer-
ence on Learning Representations.

Junyoung Chung, Çaglar Gülçehre, KyungHyun
Cho, and Yoshua Bengio. 2014. Empirical
evaluation of gated recurrent neural networks
on sequence modeling. CoRR abs/1412.3555.
http://arxiv.org/abs/1412.3555.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar
Gülçehre, and Aaron Courville. 2017. Recurrent
batch normalization. In Proceeding of the Interna-
tional Conference on Learning Representations.

Nai Ding, Lucia Melloni, Hang Zhang, Xing Tian, and
David Poeppel. 2016. Cortical tracking of hierarchi-
cal linguistic structures in connected speech. Nature
neuroscience 19(1):158–164.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

David Ha, Andrew Dai, and Quoc V Le. 2017. Hyper-
networks. In Proceeding of the International Con-
ference on Learning Representations.

Stefan Heinrich, Cornelius Weber, and Stefan Wermter.
2012. Adaptive learning of linguistic hierarchy in
a multiple timescale recurrent neural network. In
International Conference on Artificial Neural Net-
works. Springer, pages 555–562.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Minsoo Kim, Moirangthem Dennis Singh, and Minho
Lee. 2016a. Towards abstraction from extraction:
Multiple timescale gated recurrent unit for summa-
rization. ACL 2016 pages 70–77.

137

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016b. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI Press,
pages 2741–2749.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

David Krueger and Roland Memisevic. 2016. Regular-
izing rnns by stabilizing activations. In Proceeding
of the International Conference on Learning Repre-
sentations.

Matt Mahoney. 2009. Large text compression bench-
mark. URL: http://www. mattmahoney. net/text/text.
html .

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

D. Meunier, R. Lambiotte, A. Fornito, K. D. Ersche,
and E. T. Bullmore. 2010. Hierarchical modularity
in human brain functional networks. ArXiv e-prints
.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf) .

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In SLT . pages 234–239.

Marius Pachitariu and Maneesh Sahani. 2013. Reg-
ularization and nonlinearities for neural language
models: when are they needed? arXiv preprint
arXiv:1301.5650 .

Rainer W. Paine and Jun Tani. 2004. Motor primi-
tive and sequence self-organization in a hierarchi-
cal recurrent neural network. Neural Networks
17(89):1291 – 1309. New Developments in Self-
Organizing Systems.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11). pages
1017–1024.

Yuichi Yamashita and Jun Tani. 2008. Emer-
gence of functional hierarchy in a multiple
timescale neural network model: A humanoid
robot experiment. PLoS Comput Biol 4(11):1–18.
https://doi.org/10.1371/journal.pcbi.1000220.

Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin,
Roland Memisevic, Ruslan R Salakhutdinov, and
Yoshua Bengio. 2016. Architectural complexity
measures of recurrent neural networks. In Advances

in Neural Information Processing Systems. pages
1822–1830.

138

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 139–145,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Learning Bilingual Projections of Embeddings
for Vocabulary Expansion in Machine Translation

Pranava Swaroop Madhyastha∗
Department of Computer Science

University of Sheffield
Sheffield, S1 4DP, UK

p.madhyastha@sheffield.ac.uk

Cristina España-Bonet∗
University of Saarland

DFKI, German Research Center
for Artificial Intelligence
Saarbrücken, Germany
cristinae@dfki.de

Abstract

We propose a simple log-bilinear softmax-
based model to deal with vocabulary ex-
pansion in machine translation. Our model
uses word embeddings trained on signif-
icantly large unlabelled monolingual cor-
pora and learns over a fairly small, word-
to-word bilingual dictionary. Given an
out-of-vocabulary source word, the model
generates a probabilistic list of possible
translations in the target language using
the trained bilingual embeddings. We
integrate these translation options into
a standard phrase-based statistical ma-
chine translation system and obtain con-
sistent improvements in translation qual-
ity on the English–Spanish language pair.
When tested over an out-of-domain test-
set, we get a significant improvement of
3.9 BLEU points.

1 Introduction

Data-driven machine translation systems are able
to translate words that have been seen in the train-
ing parallel corpora, however translating unseen
words is still a major challenge for even the best
performing systems. The amount of parallel data
is finite (and sometimes scarce) and, therefore,
word types like named entities, domain specific
content words, or infrequent terms are rare. This
lack of information can potentially result in in-
complete or erroneous translations.

This problem has been actively studied in
the field of machine translation (MT) (Habash,
2008; Daumé III and Jagarlamudi, 2011; Mar-
ton et al., 2009; Rapp, 1999; Dou and Knight,

∗ This work was done while the authors were in
TALP Research Center, Universitat Politècnica de Catalunya,
Barcelona.

2012; Irvine and Callison-Burch, 2013). Lexicon-
based resources have been used for resolving un-
seen content words by exploiting a combination
of monolingual and bilingual resources (Rapp,
1999; Callison-Burch et al., 2006; Zhao et al.,
2015). In this context, distributed word repre-
sentations, or word embeddings (WE), have been
recently applied to resolve unseen word related
problems (Mikolov et al., 2013b; Zou et al., 2013).
In general, word representations capture rich lin-
guistic relationships and several works (Gouws
et al., 2015; Wu et al., 2014) try to use them to im-
prove MT systems. However, very few approaches
use them directly to resolve the out-of-vocabulary
(OOV) problem in MT systems.

Previous research in MT systems suggests that
a significant number of named entities (NE) can
be handled by using simple pre or post-processing
methods, e.g., transliteration techniques (Herm-
jakob et al., 2008; Al-Onaizan and Knight, 2002).
However, a change in domain results in a signif-
icant increase in the number of unseen content
words for which simple pre or post-processing
methods are sub-optimal (Zhang et al., 2012).

Our work is inspired by the recent ad-
vances (Zou et al., 2013; Zhang et al., 2014) in
applications of word embeddings to the task of vo-
cabulary expansion in the context of statistical ma-
chine translation (SMT). Our focus in this paper
is to resolve unseen content words by using con-
tinuous word embeddings on both the languages
and learn a model over a small seed lexicon to
map the embedding spaces. To this extent, our
work is similar to Ishiwatari et al. (2016) where
the authors map distributional representations us-
ing a linear regression method similar to Mikolov
et al. (2013b) and insert a new feature based on
cosine similarity metric into the MT system. On
the other hand, there is a rich body of recent lit-
erature that focuses on obtaining bilingual word

139

embeddings using either sentence aligned or doc-
ument aligned corpora (Bhattarai, 2012; Gouws
et al., 2015; Kočiský et al., 2014). Our approach
is significantly different as we obtain embeddings
separately on monolingual corpora and then use
supervision in the form of a small sparse bilin-
gual dictionary, in some terms similar to Faruqui
and Dyer (2014). We use a simple yet principled
method to obtain a probabilistic conditional dis-
tribution of words directly and these probabilities
allow us to expand the translation model for new
words.

The rest of the paper is organised as follows.
Section 2 presents the log-bilinear softmax model,
and its integration into an SMT system. The ex-
perimental work is described in Section 3. Finally,
we conclude and sketch some avenues for future
work.

2 Mapping Continuous Word Represen-
tations using a Bilinear Model

Definitions. Let E and F be the vocabularies of
the two languages, source and target, and let e ∈ E
and f ∈ F be words in these languages respec-
tively. Let us assume, we have a source word to
target word e → f dictionary. We also assume
that we have access to some kind of distributed
word embeddings in both languages, φs for the
source and φt for the target, where φ(.)→ Rn de-
notes the n-dimensional distributed representation
of the words. The task we are interested in is to
learn a model for the conditional probability distri-
bution Pr(f |e). That is, given a word in a source
language, say English (e), we want to get a condi-
tional probability distribution of all the words in a
foreign language (f).

Log-Bilinear Softmax Model. We formulate
the problem as a bilinear prediction task as pro-
posed by Madhyastha et al. (2014a) and extend
it for the bilingual setting. The proposed model
makes use of word embeddings on both languages
with no additional features. The basic function
is formulated as log-bilinear softmax model and
takes the following form:

Pr(f |e;W) =
exp{φs(e)>Wφt(f)}∑

f ′∈F exp{φs(e)>Wφt(f ′)} (1)

Essentially, our problem reduces to: a) first ob-
taining the corresponding word embeddings of the
vocabularies from both the languages using a sig-

nificantly large monolingual corpus and b) esti-
matingW given a relatively small dictionary. That
is, to learn W we use the source word to target
word dictionary as training supervision. The dic-
tionary can be a true bilingual dictionary or the
word alignments generated by the SMT system,
therefore, no additional resources to the training
parallel corpus are needed.

We learn W by minimizing the negative log-
likelihood of the dictionary using a regularized
(relaxed low-rank regularization based) objective
as: L(W) = −∑e,f log(Pr(f |e;W)) + λ‖W‖p.
λ is the constant that controls the capacity of W .
To find the optimum, we follow previous (Mad-
hyastha et al., 2014b) work and use an optimiza-
tion scheme based on Forward-Backward Splitting
(FOBOS) (Singer and Duchi, 2009).

We experiment with two regularization
schemes, p = 2 or the `2 regularizer and p = ∗
or the `∗ (nuclear norm) regularizer. We find
that both norms have approximately similar
performance, however the trace norm regularized
W has lower capacity and hence, smaller number
of parameters. This is also observed by (Bach,
2008; Madhyastha et al., 2014a,b). In general,
we can apply the ideas used by Mikolov et al.
(2013b) to speed up the training as this model is
equivalent to a softmax model. We can obtain
models with similar properties if we change the
loss from bilinear log softmax to a bilinear margin
based loss. We leave this exploration for future
work.

A by-product of regularizing with `∗ norm is
a lower-dimensional, language aligned, and com-
pressed embeddings for both languages. This is
possible because of the induced low-dimensional
properties of W . That is, assume W has rank k,
where k < n, such that W ≈ UkV

>
k , then the

product:
φs(e)>UkV

>
k φt(f) (2)

gives us φs(e)>Uk and V >k φt(f) compressed em-
beddings with shared properties. These are similar
to the CCA based projections obtained in Faruqui
and Dyer (2014).

Integrating the Probabilistic List into the SMT
System. We integrate the probabilistic list of
translation options into the phrase-based decoder
using the standard log-linear approach (Och and
Ney, 2002). Consider a word pair (e, f), where the
decoder searches for a foreign word f̂ that maxi-

140

Table 1: Top-10 accuracy (in percentage) for bilingual dictionary induction for English–German and
English–French.

Strong supervision Soft supervision

l1 l2 BiSkip BiCVM BiCCA BiVCD Ours-300 Ours-100

en de 79.7 74.5 72.4 62.5 73.8 71.1
en fr 78.9 72.9 70.1 68.8 72.1 69.7

mizes a linear combination of feature functions:

f̂ = argmaxf{
∑
λi log (hi(f, e)) + λoov log (Pr(f, e))}

here, λi is the weight associated with feature
hi(f, e) and λoov is the weight associated with the
unseen word.

3 Empirical Analysis

Quality of the Learned Embeddings. To un-
derstand the performance of the embedding pro-
jections in our model, we perform experiments to
compute the top-10 accuracy of our models in the
same setting provided in Upadhyay et al. (2016)
for cross-lingual dictionary induction1. The eval-
uation task judges how good cross-lingual embed-
dings are at detecting word pairs that are semanti-
cally similar across languages. Similarly to Upad-
hyay et al. (2016), we compare against BiSkip em-
beddings (Luong et al., 2015a), BiCVM (Hermann
and Blunsom, 2014), BiCCA (Faruqui and Dyer,
2014) and BiVCD (Vulic and Moens, 2015). We
experiment with English–German and English–
French language pairs, so that we can induce the
dictionaries for the five systems. As seen in Ta-
ble 1, our full 300-dimensional embeddings per-
form better than the BiCCA-based model, whereas
100-dimensional compressed embedding perform
slightly worse, but still are competitive. Since our
model and BiCCA use similar supervision, we ob-
tain similar results and differ in a similar way to
those that use stronger supervision like BiCVM
and BiSkip based embeddings.

MT Data and System Settings. For estimating
the monolingual WE, we use the CBOW algo-
rithm as implemented in the Word2Vec pack-
age (Mikolov et al., 2013a) using a 5-token win-
dow. We obtain 300 dimension vectors for English
and Spanish from a Wikipedia dump of 2015 and
the Quest data2. The final corpus contains 2.27 bil-

1We also used the script provided here: https://
github.com/shyamupa/biling-survey

2http://statmt.org/˜buck/wmt13qe/
wmt13qe_t13_t2_MT_corpus.tgz

lion tokens for English and 0.84 for Spanish. We
remove any occurrence of sentences from the test
set that are contained in our corpus. The coverage
in our test sets is of 97% of the words.

To train the log-bilinear softmax based model,
we use the dictionary from the Apertium
project3 (Forcada et al., 2011). The dictionary
contains 37651 words, 70% of them are used for
training and 30% as a development set for model
selection. The average precision @1 is 86% for
the best model over the development set.

A state-of-the-art phrase-based SMT system is
trained on the Europarl corpus (Koehn, 2005)
for the English-to-Spanish language pair. We
use a 5-gram language model that is estimated
on the target side of the corpus using interpo-
lated Kneser-Ney discounting with SRILM (Stol-
cke, 2002). Additional monolingual data available
within Quest corpora is used to build a larger lan-
guage model with the same characteristics. Word
alignment is done with GIZA++ (Och and Ney,
2003) and both phrase extraction and decoding
are done with the Moses package (Koehn et al.,
2007). At decoding time, Moses allows to in-
clude additional translation pairs with their associ-
ated probabilities to selected words via xml mark-
up. We take advantage of this feature to add our
probabilistic estimations to each OOV. Since, by
definition, OOV words do no appear in the par-
allel training corpus, they are not present in the
translation model either and the new translation
options only interact with the language model.
The optimization of the weights of the model with
the additional translation options is trained with
MERT (Och, 2003) against the BLEU (Papineni
et al., 2002) evaluation metric on the NewsCom-
mentaries 20124 (NewsDev) set. We test our sys-
tems on the NewsCommentaries 2013 set (New-
sTest) for an in-domain evaluation and on a test set

3The bilingual dictionary can be downloaded here:
http://goo.gl/TjH31q.

4http://www.statmt.org/wmt13/
translation-task.html

141

Table 2: OOVs on the dev and test sets.

Sent. Tokens OOVall OOVCW

NewsDev 3003 72988 1920 (2.6%) 378 (0.5%)
NewsTest 3000 64810 1590 (2.5%) 296 (0.5%)
WikiTest 500 11069 798 (7.2%) 201 (1.8%)

extracted from Wikipedia by Smith et. al. (2010)
for an out-of-domain evaluation (WikiTest).

The domainess of the test set is established with
respect to the number of OOVs. Table 2 shows the
figures of these sets paying special attention to the
OOVs in the basic SMT system. Less than a 3%
of the tokens are OOVs for News data (OOVall),
whereas it is more than a 7% for Wikipedia’s. In
our experiments, we distinguish between OOVs
that are named entities and the rest of content
words (OOVCW). Only about 0.5% (NewsTest)
and 1.8% (WikiTest) of the tokens fall into this
category, but we show that they are relevant for
the final performance.

MT Experiments. We consider two baseline
systems, the first one does not output any trans-
lation for OOVs (noOOV), it just ignores the to-
ken; the second one outputs a verbatim copy of
the OOV as a translation (verbatimOOV). Table 3
shows the performance of these systems under
three widely used evaluation metrics TER (Snover
et al., 2006), BLEU and METEOR (MTR) (Baner-
jee and Lavie, 2005). Including the verbatim copy
improves all the lexical evaluation metrics. Spe-
cially for NEs and acronyms (the 80% of OOVs
in our sets), this is a hard baseline to be compared
to as in most cases the same word is the correct
translation.

We then enrich the systems with information
gathered from the large monolingual corpora in
two ways, using a bigger language model (BLM)
and using our newly proposed log-bilinear model
that uses word embeddings (BWE). BLMs are im-
portant to improve the fluency of the translations,
however they may not be helpful for resolving
OOVs as they can only promote translations avail-
able in the translation model. On the other hand,
BWEs are important to make available to the de-
coder new vocabulary on the topic of the otherwise
OOVs. Given the large percentage of NEs in the
test sets (Table 2), our models add the source word
as an additional option to the list of target words
to mimic the verbatimOOV system.

Table 3 includes seven systems with the addi-

Table 3: Automatic evaluation of the translation
systems defined in Section 3. The best system is
bold-faced (see text for statistical significance).

NewsTest WikiTest
TER BLEU MTR TER BLEU MTR

noOOV 58.21 21.94 45.79 61.26 16.24 38.76
verbatimOOV 57.90 22.89 47.06 58.55 21.90 45.77

BWE 58.33 22.23 45.76 58.38 21.96 44.84
BWECW50 57.66 23.09 47.14 56.19 24.16 48.49
BWECW10 57.85 23.06 47.11 55.64 24.71 49.05
BLM 55.37 25.83 49.19 52.60 30.63 51.04
BLM+BWE 55.89 24.92 47.84 51.02 32.20 52.09
BLM+BWE50 55.55 25.61 49.01 49.50 33.94 54.93
BLM+BWE10 55.31 25.86 49.04 49.12 34.58 55.52

tional monolingual information. Three of them
add, at decoding time, the top-n translation op-
tions given by the BWE for a OOV. BWE sys-
tem uses the top-50 for all the OOVs, BWECW50

also uses the top-50 but only for content words
other than named entities5, and BWECW10 limits
the list to 10 elements. BLM is the same as the
baseline system verbatimOOV but with the large
language model. BLM+BWE, BLM+BWE50 and
BLM+BWE10 combine the three BWE systems
with the large language model.

In the NewsTest, most of unseen words are
named entities and using BWEs to translate them
barely improves the translation. The reason is
that embeddings of related NEs are usually equiv-
alent. This affects the overall integration of the
scores into the decoder and induces ambiguity in
the system. However, we observe that the decoder
benefits from the information on content words,
specially for the out-of-domain WikiTest set. In
this case, given the constrained list of alternative
translations (BWECW10) one achieves 2.75 BLEU
points of improvement.

The addition of the large language model im-
proves the results significantly. When combined
with the BWEs we observe that the BWEs clearly
help in the translation of WikiTest but do not seem
as relevant in the in-domain set. We achieve a sta-
tistically significant improvement of 3.9 points of
BLEU with the BLM and BWE combo system –
BLM+BWE10 with respect to BLM– in WikiTest
(p<0.001); the improvement in the NewsTest is
not statistically significant (p-value=0.29). The
number of translation options in the list is also

5We consider a named entity any word that begins with
a capital letter and is not after a punctuation mark, and any
fully capitalized word.

142

Table 4: Top-n list of translations obtained with
the bilingual embeddings.

GALAXY NYMPHS STUART FOLKSONG

galaxia ninfas William música
planeta ninfa Henry folclore
universo crı́as John literatura
planetas diosa Charles himno
galaxias dioses Thomas folklore
... ... Estuardo (#48) canción (#7)

relevant, and for BLM+BWECW50 we have a sig-
nificant but smaller improvement of 3.3 points on
BLEU in WikiTest. All these results are consistent
among different evaluation metrics.

In order to estimate the relevance of the bilin-
gual embeddings into the final translation, we have
manually evaluated the translation of WikiTest us-
ing the BWECW50 model. For the translation of
the OOVs, we obtain an accuracy of a 68%, that
is, the BWE gives the correct translation option at
least 68% of the times. We note that, even if the
correct translation option is in the translation list
obtained by the BWE, the decoder may choose not
to consider it.

In general, we observe that when our model
fails, in most of the cases, the words in the trans-
lated language happened to be either a multiword
expression or a named entity. In Table 4 we
present some of the these examples. The first two
examples galaxy and nymphs are nouns where we
obtain the first option as the correct translation.
The problem is harder for named entities as we
observe in the table, the name Stuart in English
has William as most probable translation in Span-
ish, the correct translation Estuardo however ap-
pears as the 48th choice. Our model is also un-
able to generate multiword expressions, as shown
in the table for the english word folksong, the cor-
rect translation being canción folk. This would
need two words in Spanish in order to be translated
correctly, however, our model does obtain words:
canción and folclore as the most probable transla-
tion options.

4 Conclusions

We have presented a method for resolving OOVs
in SMT that performs vocabulary expansion by
using a simple log-bilinear softmax based model.
The model estimates bilingual word embeddings
and, as a by-product, generates low-dimensional
compressed embeddings for both languages.The

addition of the new translation options to a mere
1.8% of the words has allowed the system to ob-
tain a relative improvement of a 13% in BLEU
(3.9 points) for out-of-domain data. For in-domain
data, where the number of content words is small,
improvements are more moderate.

The analysis of the results shows how the per-
formance is damaged by not considering multi-
word expressions. The automatic detection of
these elements in the monolingual corpus together
with the addition of one-to-many dictionary en-
tries for learning the W matrix can alleviate this
problem and will be considered in future work.

We also note that this approach can be ex-
tended directly within neural machine translation
systems, where its effects could be even larger
due to the limited vocabulary. While one of the
popular approaches to deal with OOVs is to use
subword units (Sennrich et al., 2016) in order to
resolve of unknown words, dictionary-based ap-
proaches, where an unknown word is translated by
its corresponding translation in a dictionary or a
(SMT) translation table, have also been used (Lu-
ong et al., 2015b). Our method can go further in
the latter direction by learning correspondences of
source and target vocabularies using large mono-
lingual corpora and either a small dictionary or the
word alignments.

References

Yaser Al-Onaizan and Kevin Knight. 2002. Machine
transliteration of names in arabic text. In Pro-
ceedings of the ACL-02 workshop on Computational
approaches to semitic languages. Association for
Computational Linguistics, pages 1–13.

Francis R Bach. 2008. Consistency of the group lasso
and multiple kernel learning. The Journal of Ma-
chine Learning Research 9:1179–1225.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An Automatic Metric for MT Evaluation with Im-
proved Correlation with Human Judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization. Association for Com-
putational Linguistics, Ann Arbor, Michigan, pages
65–72.

Alexandre Klementiev Ivan Titov Binod Bhattarai.
2012. Inducing Crosslingual Distributed Represen-
tations of Words. In Proceedings of COLING 2012.
The COLING 2012 Organizing Committee, Mum-
bai, India, pages 1459–1474.

143

Chris Callison-Burch, Philipp Koehn, and Miles Os-
borne. 2006. Improved Statistical Machine Transla-
tion Using Paraphrases. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association of Computa-
tional Linguistics. HLT-NAACL ’06, pages 17–24.

Hal Daumé III and Jagadeesh Jagarlamudi. 2011. Do-
main adaptation for machine translation by mining
unseen words. In Association for Computational
Linguistics. Portland, OR, pages 407–412.

Qing Dou and Kevin Knight. 2012. Large scale deci-
pherment for out-of-domain machine translation. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, pages 266–
275.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL 2014, April 26-
30, 2014, Gothenburg, Sweden. pages 462–471.

Mikel L Forcada, Mireia Ginestı́-Rosell, Jacob Nord-
falk, Jim ORegan, Sergio Ortiz-Rojas, Juan An-
tonio Pérez-Ortiz, Felipe Sánchez-Martı́nez, Gema
Ramı́rez-Sánchez, and Francis M Tyers. 2011.
Apertium: a free/open-source platform for rule-
based machine translation. Machine translation
25(2):127–144.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. BilBOWA: Fast Bilingual Distributed Rep-
resentations without Word Alignments. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France, 6-11 July
2015. pages 748–756.

Nizar Habash. 2008. Four Techniques for Online
Handling of Out-of-Vocabulary Words in Arabic-
English Statistical Machine Translation. In ACL
2008, Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics. pages
57–60.

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed seman-
tics. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics. As-
sociation for Computational Linguistics, Baltimore,
Maryland, pages 58–68.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III.
2008. Name translation in statistical machine trans-
lation: Learning when to transliterate. In Proceed-
ings of ACL-08: HLT . pages 389–397.

Ann Irvine and Chris Callison-Burch. 2013. Combin-
ing bilingual and comparable corpora for low re-
source machine translation. In Proceedings of the
Eighth Workshop on Statistical Machine Transla-
tion. pages 262–270.

Shonosuke Ishiwatari, Naoki Yoshinaga, Masashi Toy-
oda, and Masaru Kitsuregawa. 2016. Instant transla-
tion model adaptation by translating unseen words in
continuous vector space. In Proceedings of the 17th
International Conference on Intelligent Text Pro-
cessing and Computational Linguistics (CICLing
2016). Konya, Turkey.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Conference Pro-
ceedings: the Tenth Machine Translation Summit.
AAMT, AAMT, Phuket, Thailand, pages 79–86.

Philipp Koehn, Hieu Hoang, Alexandra Birch Mayne,
Christopher Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine
translation. In Annual Meeting of the Association
for Computation Linguistics (ACL), Demonstration
Session. pages 177–180.

Tomáš Kočiský, Karl Moritz Hermann, and Phil Blun-
som. 2014. Learning bilingual word representations
by marginalizing alignments. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Baltimore, Maryland, pages 224–229.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015a. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural
Language Processing. pages 151–159.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the
rare word problem in neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, Beijing, China,
pages 11–19.

Pranava Swaroop Madhyastha, Xavier Carreras, and
Ariadna Quattoni. 2014a. Learning task-specific
bilexical embeddings. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers. Dublin City
University and Association for Computational Lin-
guistics, pages 161–171.

Pranava Swaroop Madhyastha, Xavier Carreras, and
Ariadna Quattoni. 2014b. Tailoring word embed-
dings for bilexical predictions: An experimental
comparison. International Conference on Learning
Representations 2015, Workshop Track .

Yuval Marton, Chris Callison-Burch, and Philip
Resnik. 2009. Improved statistical machine trans-
lation using monolingually-derived paraphrases. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 381–390.

144

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proceedings of Work-
shop at ICLR.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever.
2013b. Exploiting similarities among languages
for machine translation. CoRR abs/1309.4168.
http://arxiv.org/abs/1309.4168.

Franz Josef Och. 2003. Minimum Error Rate Train-
ing in Statistical Machine Translation. In Proceed-
ings of the Association for Computational Linguis-
tics. Sapporo, Japan, pages 160–167.

Franz Josef Och and Hermann Ney. 2002. Discrim-
inative training and maximum entropy models for
statistical machine translation. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Stroudsburg, PA, USA, ACL 2002,
pages 295–302.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A Method for Automatic
Evaluation of Machine Translation. In Proceed-
ings of the Association of Computational Linguis-
tics. pages 311–318.

Reinhard Rapp. 1999. Automatic identification of
word translations from unrelated english and german
corpora. In Proceedings of the 37th annual meeting
of the Association for Computational Linguistics on
Computational Linguistics. Association for Compu-
tational Linguistics, pages 519–526.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. pages 1715–1725.

Yoram Singer and John C Duchi. 2009. Efficient learn-
ing using forward-backward splitting. In Advances
in Neural Information Processing Systems. pages
495–503.

Jason R. Smith, Chris Quirk, and Kristina Toutanova.
2010. Extracting Parallel Sentences from Compara-
ble Corpora Using Document Level Alignment. In
In Proceedings of Human Language Technologies:
The 11th Annual Conference of the North American
Cha pter of the Association for Computational Lin-
guistics (NAACL-HLT 2010). pages 403–411.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study
of Translation Edit Rate with Targeted Human An-
notation. In Proceedings of the Seventh Conference
of the Association for Machine Translation in the
Americas (AMTA 2006). Cambridge, Massachusetts,
USA, pages 223–231.

Andreas Stolcke. 2002. SRILM - An Extensible Lan-
guage Modeling Toolkit. In Proceedings of the Sev-
enth International Conference of Spoken Language
Processing (ICSLP2002). Denver, Colorado, USA,
pages 901–904.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word em-
beddings: An empirical comparison. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany. pages 1661–1670.

Ivan Vulic and Marie-Francine Moens. 2015. Bilingual
Word Embeddings from Non-Parallel Document-
Aligned Data Applied to Bilingual Lexicon Induc-
tion. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Nat-
ural Language Processing of the Asian Federation
of Natural Language Processing, ACL 2015. pages
719–725.

Haiyang Wu, Daxiang Dong, Xiaoguang Hu, Dian-
hai Yu, Wei He, Hua Wu, Haifeng Wang, and Ting
Liu. 2014. Improve Statistical Machine Translation
with Context-Sensitive Bilingual Semantic Embed-
ding Model. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Association for Computational
Linguistics, Doha, Qatar, pages 142–146.

Jiajun Zhang, Shujie Liu, Mu Li, Ming Zhou, and
Chengqing Zong. 2014. Bilingually-constrained
phrase embeddings for machine translation. In Pro-
ceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics, Baltimore, Mary-
land, pages 111–121.

Jiajun Zhang, Feifei Zhai, and Chengqing Zong.
2012. Handling unknown words in statistical ma-
chine translation from a new perspective. In Natu-
ral Language Processing and Chinese Computing,
Springer, pages 176–187.

Kai Zhao, Hany Hassan, and Michael Auli. 2015.
Learning Translation Models from Monolingual
Continuous Representations. In The 2015 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, NAACL HLT 2015. pages
1527–1536.

Will Y. Zou, Richard Socher, Daniel M. Cer, and
Christopher D. Manning. 2013. Bilingual Word Em-
beddings for Phrase-Based Machine Translation. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2013. pages 1393–1398.

145

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 146–156,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with
Frame Embeddings

Teresa Botschen§†, Hatem Mousselly-Sergieh†, Iryna Gurevych§†
§Research Training Group AIPHES

†Ubiquitous Knowledge Processing (UKP) Lab
Department of Computer Science, Technische Universität Darmstadt

www.aiphes.tu-darmstadt.de, www.ukp.tu-darmstadt.de

Abstract

Automatic completion of frame-to-frame
(F2F) relations in the FrameNet (FN)
hierarchy has received little attention, al-
though they incorporate meta-level com-
monsense knowledge and are used in
downstream approaches. We address the
problem of sparsely annotated F2F rela-
tions. First, we examine whether the man-
ually defined F2F relations emerge from
text by learning text-based frame embed-
dings. Our analysis reveals insights about
the difficulty of reconstructing F2F rela-
tions purely from text. Second, we present
different systems for predicting F2F rela-
tions; our best-performing one uses the FN
hierarchy to train on and to ground em-
beddings in. A comparison of systems and
embeddings exposes the crucial influence
of knowledge-based embeddings to a sys-
tem’s performance in predicting F2F rela-
tions.

1 Introduction

FrameNet (FN) (Baker et al., 1998) is a lexical-
semantic resource manually built by FN experts.
It embodies the theory of frame semantics (Fill-
more, 1976): the frames capture units of mean-
ing corresponding to prototypical situations. Be-
sides FN’s definitions of frame-specific roles and
frame-evoking elements that are used for the task
of Semantic Role Labeling, it also contains man-
ual annotations for relations that connect pairs of
frames. There are thirteen frame-to-frame (F2F)
relations of which five are antonym relations (e.g.
Precedes, Is Preceded by). To give an
example, the frame “Waking up” is in relation
Precedes to the frame “Being awake”. Fig-
ure 1 further elaborates this example by demon-

strating relationships to additional frames. Table
1 lists all F2F relation names with the number
of frame pairs for each relation according to the
FN hierarchy, and also restricted counts including
only frame pairs that have lexical units (LU) in the
FN hierarchy (e.g., the frame “Waking up” can be
evoked by the LU “awake.v” of the verb “awake”).
The FN hierarchy, a report version of FN, does
not provide lexical units for 125 frames (e.g., the
frame “Sleep wake cycle” has no LU). In fact,
such frames are used as meta-frames for abstrac-
tion purposes, thus, they exist only to participate
in F2F relations with other frames (Ruppenhofer
et al., 2006). In general, each frame pair is con-
nected via only one F2F relation with occasional
exceptions and the F2F relations situate the frames
in semantic space (Ruppenhofer et al., 2006). F2F
relations are used in the context of other tasks,
such as text understanding (Fillmore and Baker,
2001), paraphrase rule generation for the system
LexPar (Coyne and Rambow, 2009) and recogni-
tion of textual entailment (Aharon et al., 2010).
Furthermore, F2F can be used as a form of com-
monsense knowledge (Rastogi and Van Durme,
2014).

The incompleteness of the FN hierarchy is a
known issue not only at the frame level (Ras-
togi and Van Durme, 2014; Pavlick et al., 2015;
Hartmann and Gurevych, 2013) but also at the

Figure 1: F2F relations example. Gray: FN hier-
archy. White arrows: missing in FN hierarchy.

146

F2F Relation Name Total Restricted
Inherits from 617 383
Is inherited by 617 383
Uses 491 430
Is Used by 490 430
Subframe of 119 29
Has Subframes 117 29
Perspective on 99 15
Is Perspectivized in 99 15
Precedes 79 48
Is Preceded by 79 48
Is Causative of 48 47
See also 41 40
Is Inchoative of 16 16
Sum 2, 912 1, 913

Table 1: F2F relation pair counts and restricted
pair counts of frames with lexical units.

F2F relation level. Figure 1 exemplifies a miss-
ing precedence relation: “Fall asleep” is pre-
ceded by “Being awake” but inbetween yet an-
other frame could be added, e.g. “Biologi-
cal urge” (evoked by the predicate “tired”). Ras-
togi (2014) note a lack of research on automat-
ically enriching the F2F relations, which would
be beneficial given the large number of possible
frame pairs for a relation and their use in other
tasks. The automatic annotation of F2F relations
involves three difficulties accounted for by the na-
ture of FN. First, F2F relation annotations occur
sparsely and for the majority of pairs in each re-
lation there are few instances (see Table 1). Sec-
ond, the relations themselves have no direct lexical
correspondences in text and hence inferring them
from text is not trivial. Third, if a relation involves
a frame that does not have any lexical unit (see
restricted counts in Table 1), this frame does not
occur in text and hence inferring this relation from
text is even more difficult.

To the best of our knowledge there is no work
(a) addressing the emergence of F2F relations
from text data or (b) enriching F2F relations auto-
matically. We aim to address these problems with
the following contributions:
Contributions of the paper
1) We learn text-based frame embeddings and ex-
plore their limitations with respect to F2F relations
to check whether the manually annotated F2F re-
lations can naturally emerge from text. We find
that, concerning the methods we explored, the em-
beddings have difficulties in showing structures di-
rectly corresponding to F2F relations.
2) We transfer the relation prediction task from
research on Knowledge Graph Completion to the

case of FN and present our best-performing sys-
tem for predicting F2F relations. The system in-
volves training on the FN hierarchy and uses em-
beddings also trained on the FN hierarchy.
3) We generically demonstrate the predictions of
our best-performing system for unannotated frame
pairs and suggest its application for automatic FN
completion on the relation level.
Structure of the paper To start with, Section
2 reviews related research including algorithms
and approaches that we will apply to our pur-
poses. Next, Section 3 briefly presents the FN
data that we will work with. Then, the paper is
structured along our contributions: exploration of
F2F relations in frame embedding space (Sec 4)
and F2F Relation Prediction task (Sec 5), includ-
ing a demonstration of predictions for unannotated
frame pairs (Sec 5.3). Finally, Section 6 discusses
our insights and traces options for future work.

2 Related Work

2.1 Frame Embeddings

Frame embeddings for frame identification To
our knowledge, the only approach learning frame
embeddings is a matrix factorization approach in
the context of the task of Frame Identification
(FrameId), which is the first step in FN Semantic
Role Labeling. The state-of-the-art system (Her-
mann et al., 2014) for FrameId projects frames and
predicates with their context words into the same
latent space by using the WSABIE algorithm (We-
ston et al., 2011). Two projection matrices (one for
frames and one for predicates) are learned using
WARP loss and gradient-based updates such that
the distance between the predicate’s latent repre-
sentation and that of the correct frame are min-
imized. Consequently, latent representations of
frames will end up close to each other if they are
evoked by similar predicates and context words.
As the focus of such systems is on the FrameId
task, the latent representations of the frames are
rather a sub-step contributing to FrameId but not
studied further or applied to other tasks. We will
extract these frame embeddings and explore them
with respect to F2F relations.
Word2Vec embeddings The Neural Network
(NN) architecture of the Word2Vec algorithm
(Mikolov et al., 2013a) learns word embeddings
by either predicting a target word given its con-
text words (CBOW model) or by predicting context
words given their target word (skip-gram model).

147

There are different tasks specifically designed
for the evaluation of word embeddings (Mikolov
et al., 2013b). They are formulated as analogy
questions about syntax or semantics of the form
“a is to b as c is to ”. Mikolov (2013b) sug-
gest a vector offset method based on cosine dis-
tance to solve these analogy tasks. This assumes
that relationships are expressed by vector offsets:
given two word pairs (a, b) and (c, d), the ques-
tion is to what extent the relations within the pairs
are similar. We will apply this method to frame
pairs that are connected via F2F relations in order
to find out whether the frame embeddings incor-
porate F2F relations.

There is an interest in abstracting away from
word embeddings towards embeddings for more
coarse grained units: Word2Vec is used to learn
embeddings for senses (Iacobacci et al., 2015) or
for supersenses (Flekova and Gurevych, 2016).
Iacobacci (2015) use the CBOW model on texts
annotated with BabelNet senses (Navigli and
Ponzetto, 2012). Flekova (2016) use the skip-
gram model on texts with mapped WordNet super-
senses (Miller, 1990; Fellbaum, 1990). For evalu-
ation both works are oriented towards Mikolov’s
(2013b) analogy tasks and perform qualitative
analyses for the top k most similar embeddings
for (super)senses or visualize the embeddings in
vector space. To have text-based frame embed-
dings in line with related work, we will also use
the Word2Vec algorithm to learn an additional ver-
sion for frame embeddings.

2.2 Relation Prediction

This task stems from automatic Knowledge Graph
Completion (KGC) and is known as “Link Predic-
tion” (Bordes et al., 2011, 2012, 2013). We will
transfer this task to F2F Relation Prediction for
frame pairs. For this task, knowledge-based em-
beddings are well suited, which are not learned on
text but on triples of a KG.
TransE embeddings We leverage an embedding
learning approach from KGC to obtain embed-
dings for frames and for F2F relations that are
grounded in the FN hierarchy. In translation mod-
els, all entities and relations of the triples of head-
entity, relation and tail-entity (h, r, t) are projected
into one latent vector space such that the relation-
vector connects from the head-vector to the tail-
vector as a translating vector operation. TransE
(Bordes et al., 2013) introduced the idea of mod-

eling relations as translations that operate on the
embeddings of the entities. The model is formu-
lated to minimize | h + r − t | for a training set,
with randomly initialized embeddings. The func-
tion to minimize resembles the idea of the vector
offset by Mikolov (2013b).
Answer selection model Link Prediction is
methodologically related to the key-task of An-
swer Selection from Question Answering (QA).
The task is to rank a set of possible answer can-
didates with respect to a given question (Tan et al.,
2015). State-of-the-art QA models are presented
by (Feng et al., 2015) and by (Tan et al., 2015).
They jointly learn vector representations for both
the questions and the answers. Representations of
the same dimensionality in the same space allow
one to compute the cosine similarity between these
vectors. We will orient ourselves by NN models
for Answer Selection in order to adapt the ideas to
F2F Relation Prediction. In our case, a question
corresponds to a frame pair and an answer corre-
sponds to a F2F relation. Optionally, pretrained
frame embeddings can be used as initialization.

3 Data

Textual data In order to learn frame embed-
dings on textual data with WSABIE or W2V, we
take the FrameNet 1.5 sentences provided by
the Dependency-Parsed FrameNet Corpus (Bauer
et al., 2012) which contains more than 170, 000
sentences annotated manually with frame labels
for 700 frames. We denote a frame as f where
f ∈ Ft the set of frames in the textual data.
Hierarchy data The FN hierarchy lists for each
frame of the overall 1, 019 frames the F2F rela-
tions to other frames. We denote with G the col-
lection of triples (f1, r, f2) (standing for frame
“f1 is in relation r to frame f2”), where f1 and
f2 ∈ Fh the set of frames in the FN hierarchy and
r ∈ R the set of F2F relations. As listed in Ta-
ble 2, there are 2, 912 triples in the FN hierarchy
with 1, 913 triples remaining if considering only
those where both frames have lexical units and

Corpus Frames F2F Relations
FN Hierarchy 1, 019 2, 912

FN Hierarchy restricted 894 1, 913
to frames with LU

Textual data 700 1, 447
FN 1.5 sentences

Table 2: Counts for frames and F2F relations.

148

with 1, 447 triples remaining if considering only
those where both frames occur in the textual data.
We split the obtained triples whose frames have
lexical units into a training and a test set such that
the training set contains the first 70% of all the
triples for each relation.

Table 2 summarizes frame counts per data
source together with counts of F2F relations where
both frames occur in the underlying source.

4 Exploration of Frame Embeddings

We aim at empirically analyzing whether F2F rela-
tions from the FN hierarchy are mirrored in frame
embeddings learned on frame-labeled text in the
context of other tasks. Thus, we want to identify
whether a statistical analysis of text-based frame
embeddings naturally yields the FN hierarchy. In-
deed, the F2F relations are manually annotated by
expert linguists but there is no guarantee that F2F
relations can be observed in text. If these relations
could emerge from raw text it would be reassur-
ing for the definitions of the F2F relations that led
to annotations of frame pairs and furthermore the
annotations could be generated automatically. We
hypothesize that distances and directions between
frame embeddings learned on textual data can cor-
respond to F2F relations. Figure 2 exemplifies
this as known from word embeddings by Mikolov
(Mikolov et al., 2013a): it highlights two frame
pairs that are in the same relation: “Attempt” is
in relation precedes with “Success or failure”
and so is “Existence” in relation precedes with
“Ceasing to be” and the connecting vectors are
about the same direction and length.

Figure 2: Intuition for frame embeddings incorpo-
rating F2F relations in vector space.

4.1 Methods
WSABIE frame embeddings Concerning the ma-
trix factorization approach for learning text-based
frame embeddings, we use the code provided by
(Hartmann et al., 2017) as it is publically avail-
able. It is leaned on Hermann’s (2014) descrip-
tion of their state-of-the-art system and achieves
comparable results on FrameId. Our hyperpa-
rameter choices are oriented towards (Hartmann
et al., 2017): embedding dimension 100, maxi-
mum number of negative samples: 100, epochs:
1000 and initial representation of predicate and
context: concatenation of pretrained dependency-
based word embeddings (Levy and Goldberg,
2014).
Word2Vec frame embeddings Concerning the
NN approach for learning text-based frame em-
beddings, we use the Word2Vec implementation
in the python library gensim (Řehůřek and Sojka,
2010). To obtain frame embeddings we follow the
same steps as if we would learn word embeddings
on FN sentences plus we replace all predicates
with their frames. For instance, in the sequence
“Officials claim that Iran has produced bombs”
the predicates “claim” and “bombs” are replaced
by “STATEMENT” and “WEAPON” respectively.
This procedure corresponds to Flekova’s (2016)
setup for learning supersense embeddings and our
hyperparameter choices are oriented towards their
best performing ones: training algorithm: skip-
gram model, embedding dimension: 300, minimal
word frequency: 10, negative sampling of noise
words: 5, window size 2, initial learning rate:
0.025 and iterations: 10.
Prototypical relation embeddings We denote
learned embeddings with −→e1 (for frame f1). We
use the frame embeddings to infer prototypical
F2F relation embeddings −→er with the vector off-
set method in the following way: we denote with
Ir the relation-specific subset of G with all the in-
stances (f1, r, f2) for this relation (see frame pair
counts in Table 1). The vector offset−−−→oe1,e2 for two
frames (f1, f2) is the difference of their embed-
dings, see Equation 1.

offset{f1, f2} = −→e2 −−→e1 (1)

We denote with Or the relation-specific set of
vector offsets of all (f1, f2) ∈ Ir. We de-
fine the prototypical embedding −→er for a rela-
tion r as the mean over all −−−→oe1,e2 ∈ Or. For
visualizations in vector space we use t-SNE-

149

plots (t-distributed Stochastic Neighbor Embed-
ding (Maaten and Hinton, 2008) algorithm).
Difficulty of associating frame pairs with pro-
totypical relations The association of the embed-
ding of a frame pair −−−→oe1,e2 ∈ Or with the correct
prototypical relation embedding −→er is easier if the
intra-relation variation (i.e. the deviation of frame
pair embeddings from their prototypical embed-
ding) is smaller than the inter-relation variation
(i.e. the distances between prototypical embed-
dings). This means, the association is easier if two
frame pairs which are members of the same F2F
relation, on average, differ less from each other as
they would differ from a member of another rela-
tion. As a way to capture this difficulty of asso-
ciation we compare the mean cosine distance be-
tween all prototypical relations embeddings −→er of
all r ∈ R to the relation-specific mean cosine dis-
tance between the frame pair embeddings in Or

and the prototypical embedding −→er .

4.2 Experiments and Results

Frame embeddings Once the frame embeddings
are learned, we perform a sanity check for frames
and most similar frame embeddings by cosine sim-
ilarity. Checking the top 10 most similar frame
embeddings confirms that known properties from
word or sense embeddings also apply to frame em-
beddings: their top 10 most similar frames are
semantically related, both for frame embeddings
learned with WSABIE and with Word2Vec. This is
exemplified in Table 3 for the two most frequently
occurring frames in the text data evoked by nouns
(“Weapon”) and by verbs (“Statement”). For both
WSABIE and Word2Vec, in many cases the most
similar frames are obviously semantically related
(which we marked in bold), with some exceptions
where it is hard to judge or related via an asso-

Top 10 most similar frames
frame WSABIE Word2Vec
Weapon Substance, Shoot projectiles, Military, Substance,

Manufacturing, Bearing arms, Operational testing,
Toxic substance, Store, Electricity,

Hostile encounter, Process completed state,
Ingredients, Information, Active substance, Range,

Smuggling, Active substance Estimated value,
Cause to make progress

Statement Evidence, Causation, Reveal secret, Telling,
Topic, Chatting, Complaining, Reasoning,

Point of dispute, Request, Communication response,
Text creation, Awareness, Reassuring,

Cognitive connection, Bragging, Questioning,
Make agreement on action, Cogitation

Communication

Table 3: Top 10 most similar frames to two ex-
emplary most frequent frames.

Figure 3: t-SNE plot of embeddings for two most
frequent relations. Small: frame pair embeddings
(offset). Large: prototypical embeddings (mean).

ciation chain. For the frame “Weapon”, the most
similar frames by Word2Vec are weaker compared
to WSABIE, however this does not allow a general
conclusion over all frames learned with Word2Vec
or WSABIE.
F2F relations To check whether the frame embed-
dings directly mirror F2F relations, we measure
the difficulty of associating frame pairs with the
correct prototypical relation embedding.

First, we visualize the frame pair embeddings
in the training set and the inferred prototypical
relation embeddings in vector space with t-SNE-
plots. Figure 3 depicts examples of WSABIE em-
beddings for the most frequently occurring F2F re-
lations inherits from and uses, and shows
that the prototypical embeddings are very close to
each other, whilst there are no separate relation-
specific clusters for frame pairs. Vector space vi-
sualizations of embeddings stemming from both,
Word2Vec and WSABIE, hint that the embeddings
have difficulties in mirroring the F2F relations.

Second, we quantify the insights from the plots
by comparing the distances between all prototyp-
ical embeddings to the mean over all mean dis-
tances between frame pair embeddings and their
prototypical embeddings. Table 4 lists these vec-
tor space (cosine) distances. It shows that the dis-
tance between the prototypical embeddings (inter-
relation) is smaller than that between frame pair
embeddings and corresponding prototypical em-
beddings (intra-relation). In other words, two
frame pairs which are members of the same rela-
tion, on average, differ as much from each other as

150

Mean distances between WSABIE Word2Vec
inter-relation variation 0.73± 0.28 0.76± 0.28
(between prototypes)
intra-relation variation 0.75± 0.04 0.78± 0.05
(between frame pairs
and their prototypes)

Table 4: Cosine distances between the F2F rela-
tion embeddings.

they would differ from a member of another rela-
tion.

To sum up, we find that embeddings of frame
pairs that are in the same relation do not have
a similar vector offset which corresponds to the
F2F relation. The FN hierarchy could not be
reconstructed by the statistical analysis of text-
based embeddings because there is as much intra-
relation variation as inter-relation variation. We
conclude that, concerning the methods we ex-
plored, the frame embeddings learned with WS-
ABIE and Word2Vec have difficulties in showing
structures in vector space corresponding to F2F
relations and that F2F relations might not emerge
purely from textual data. Hence, these text-based
frame embeddings cannot be used as such to reli-
ably infer the correct relation for a frame pair but
might need some advanced learning. In the next
section, we address the prediction of F2F rela-
tions with algorithms involving learning from the
knowledge contained in the FN hierarchy.

5 Frame-to-Frame Relation Prediction

We aim at developing a system for finding the
correct F2F relation given two frames, which can
potentially be used for automatic completion of
the F2F relation annotations in the FN hierarchy.
This task transfers the principles of Link Predic-
tion from KGC to the case of FN. As the pre-
vious experiment suggested that text-based frame
embeddings do not mirror the F2F relations, we
develop a system that learns from the knowl-
edge contained in the FN hierarchy and that uses
pretrained frame embeddings as input representa-
tions. Related work in KGC also demonstrates
the strengths of representations trained directly on
the KG for this task. For our systems involv-
ing learning, we experiment with different em-
beddings as input representations: in addition to
the text-based frame embeddings, we also learn
knowledge-based embeddings for frames and for
F2F relations on the structure of the FN hierarchy
with TransE, an approach well-known from KGC.

We want to quantify which combination of pre-
trained embeddings and system is most promising
for the F2F Relation Prediction task.

5.1 Methods

TransE embeddings In addition to the text-based
frame embeddings, we also learn embeddings for
frames as well as for F2F relations by applying
the well-known translation model TransE. TransE
leverages the structure of the knowledge base,
which is in our case the FN hierarchy with the
collection of the (frame, relation, frame) triples,
and learns low dimensional vector representations
for frames and for F2F relations in the same space.
These embeddings will have the property of be-
ing learned explicitly for incorporating the anno-
tations from the FN hierarchy. Concerning this
knowledge-based approach for learning frame and
F2F relation embeddings, we use an implementa-
tion of TransE provided by (Lin et al., 2015) yield-
ing embeddings of dimension 50.
Neural network for relation selection We pro-
pose a nonlinear model based on NNs to iden-
tify the best F2F relation r between a frame pair
(f1, f2). Figure 4 demonstrates the proposed NN
architecture. Given a training instance, i.e. a triple
(f1, r, f2), we feed a vector representation for each
element into the NN. By default the input vector
representations are initialized randomly but they
can also stem from a pretraining step (more details
in Sec 5.2). Within the NN, the initial vector rep-
resentations of the two frames are combined into
an internal dense layer c, followed by the calcula-
tion of the cosine similarity between this combina-

𝑓2

𝑓1

Positive relation: 𝑟

Embeddings Dense
layer

 cos

 cos

 loss

Negative relation: 𝑟‘

Combination 𝑐: Dense

layer

Figure 4: NN architecture for training on the F2F
Relation Prediction task.

151

tion and the representation for the F2F relation r.
Meanwhile, a negative relation r′ is sampled ran-
domly (by selecting a F2F relation which does not
hold between the two frames) and its vector rep-
resentation is also fed into the NN. The negative
relation is processed as the correct one, yielding
a second cosine similarity. Finally, the NN mini-
mizes the following ranking loss:

loss = max{0,m− cos(c, r) + cos(c, r′)} (2)

m is a margin and cos is the cosine similarity func-
tion. This means, the internal representations are
trained to maximize the similarity between frame
pair and correct relation and to minimize it for the
negative relation. Our hyperparameter choices are:
epochs: 550, size of dense layers: 128, dropout:
0.2, margin: 0.1, activation function: hyperbolic
tangent, batch size: 2, learning rate 0.001.

5.2 Experiments and Results

Given a triple (f3, r, f4) from the test set, we want
to predict the correct relation r for (f3, f4). As
described in Sec 3, 70% of the triples in the FN
hierarchy are used for training. Our systems are:
• 0a): rand.bsl A random guessing baseline

that chooses a relation randomly out of R.
• 0b): maj.bsl Informed majority baseline that

leverages the skewed distribution in the train-
ing set and predicts most frequent relation.
• 1: off A test of the pretrained frame embed-

dings (WSABIE and Word2Vec) as introduced
in Section 4. It computes the vector offset
−−−→oe3,e4 (therefore “off”) between the test frame
embeddings, measures the similarity with the
prototypical mean relation embeddings −→er of
the training set and ranks the relations with
respect to similarity (cosine) to output the
closest one. No further training with respect
to the FN hierarchy.
• 2: reg A test of the pretrained frame embed-

dings (WSABIE and Word2Vec) as introduced
in Section 4 involving training with respect to
the FN hierarchy. It is a multinomial logistic
regression model (therefore “reg”) that trains
the weights and biases on the training triples.
It takes the test frame embeddings e3, e4 as
input and ranks the prediction for a relation
via the softmax function.
• 3: NN NN architecture as described in Sec-

tion 5.1 for training with respect to the FN
hierarchy in the training triples. By de-

fault, it uses randomly initialized input rep-
resentations, but it can also take pretrained
representations as input: (a) the pretrained
frame embeddings (WSABIE and Word2Vec)
and inferred prototypical mean relation em-
beddings as introduced in Section 4 and (b)
the TransE frame and relation embeddings
trained on the training triples from the FN
hierarchy as introduced in Section 5.1.

To evaluate the predictions of our systems for
the F2F Relation Prediction task, we compare the
measurements of accuracy, mean rank of the true
relation and hits amongst the 5 first predictions,
see Table 5.
Accuracy measures the proportion of correctly
predicted relations amongst all predictions.
For the next two measures, not only the one pre-
dicted relation is of interest, but the ranked list of
all relations with the predicted relation at rank 1.
Mean rank measures the mean of the rank of the
true relation label over all predictions, aiming at
low mean rank (best is mr = 1).
Hits@5 measures the proportion of true relation
labels ranked in the top 5.

The random guessing baseline is a weak base-
line that is outperformed by all approaches. The
informed majority baseline, however, is a strong
baseline given the skewed distribution of F2F re-
lations in the FN hierarchy.

A comparison of this strong baseline with sys-
tem 1 using the text-based frame embeddings (WS-
ABIE and Word2Vec) and the similarity with proto-
typical relation embeddings, emphasizes the diffi-
culties of these embeddings for reconstructing the
F2F relations. Concerning accuracy scores, sys-
tem 1 performs slightly better than the strong base-
line but concerning the other two measures, mean
rank and hits at 5, it is the other way round. An-

System Embed. acc ↑ mr ↓ hits@5 ↑
0: rand.bsl - 7.69 6.5 38.46
0: maj.bsl - 22.48 3.27 87.51
1: off WSABIE 25.22 4.50 68.52
1: off Word2Vec 30.61 4.53 66.96
1: off TransE 51.13 2.99 83.30
2: reg WSABIE 35.65 3.14 84.00
2: reg Word2Vec 41.91 2.81 88.00
2: reg TransE 66.61 1.93 93.22
3: NN random 26.89 3.67 77.00
3: NN WSABIE 27.46 3.59 79.98
3: NN Word2Vec 30.55 3.27 82.61
3: NN TransE 67.73 1.83 94.39

Table 5: Performances on relation prediction task.

152

other point made by system 1 is the fact that it does
not involve training on the triples but is still com-
petitive with the strong baseline that leverages the
underlying distribution from the triples. This in-
dicates that to some extent the textual frame em-
beddings still capture useful information for the
F2F Prediction Task. In a further step, we also use
the embeddings pretrained on the F2F relations
of the FN hierarchy (TransE), even if in this set-
ting we do not need to calculate prototypical rela-
tion embeddings as TransE provides embeddings
for frames and relations. Thus, system 1 uses the
TransE embeddings directly to calculate the simi-
larity of the frame embeddings’ vector offset and
the relation embeddings. The large improvement
in all performance measures shows the strength of
knowledge-based embeddings over text-based em-
beddings and confirms the difficulty of text-based
embeddings in reconstructing the F2F relations.

Performance increases with system 2, the soft-
max regression model involving learning. This
shows the effect of training with respect to the F2F
relations. It indicates that training should be in-
volved for leveraging the text-based frame embed-
dings in the F2F Prediction Task. Using embed-
dings pretrained on the F2F relations of the FN
hierarchy (TransE) instead, again leads to a large
improvement in all performance measures. This
confirms that embeddings designed to incorporate
the knowledge from the FN hierarchy are better
suited for the F2F relation prediction task and it
emphasizes the large improvement over the textual
embeddings.

Overall, we achieve best results in all per-
formance measures with system 3, the NN ap-
proach, in combination with the knowledge-based
TransE embeddings as input representations. In-
terestingly, the difference between NN and the re-
gression model is only marginal when using the
TransE embeddings, indicating the crucial influ-
ence of the knowledge-based embeddings and not
necessarily the system. Moreover, when using the
text-based WSABIE and Word2Vec the softmax re-
gression model is stronger than the NN, which
might be due to little training data. Furthermore,
the randomly initialized embeddings for system
3 could be seen as another baseline which is not
only beaten by the knowledge-based TransE em-
beddings but also by the text-based WSABIE and
Word2Vec embeddings in systems 2 and 3. This
again indicates the capability of the textual frame

Figure 5: Relation-specific analysis of the best-
performing model with respect to accuracy.

embeddings of capturing useful information for
the F2F Prediction Task to at least some extent.

The systems could reach higher scores if the
split of the data into training and test triples would
be done random per relation such that the train and
test set have some (random) relation-specific over-
lap in frames on the position f1 in the triple. But
in this case, it would not clear whether the sys-
tems would just perform “lexical memorization”
as pointed out by (Levy et al., 2015) when the test
set contains partial instances that were in the train-
ing set. We leave it for future work to contrast and
explore different splits, e.g., random split, zero-
overlap by relation or by all relations.

To sum up, on the one hand, the results con-
firm the conclusions from the exploration in Sec-
tion 4: the frame embeddings learned on frame-
labeled text in the context of other tasks are not
able to reliably mirror the F2F relations, not even
when used as input representations to a classifier.
On the other hand, our results clearly emphasize
the influence of the knowledge-based embeddings
on the performance of our best-performing sys-
tem. Thus, we propose this NN architecture in
combination with the TransE embeddings as the
first system for automatic F2F relation annotation
for frame pairs in the FN hierarchy.

Figure 5 depicts a relation-specific analysis of
the best-performing model showing good perfor-
mances (above 60% accuracy) for frequent rela-
tions, a drop for the less frequent precedence
relations and no capability at all in predicting in-
frequent relations, such as is Causative of,
see Also and is Inchoative of.

5.3 Demonstration of Predictions

We generically demonstrate the best-performing
system’s prediction for examples of frame pairs
which are not annotated so far. Looking back at

153

(f1, f2) top 3 F2F relation predictions
(Biological urge, Subframe of,
Sleep wake cycle) Inherits from, Uses
(Biological urge, Is Inherited by,
Being awake) Precedes, Is Preceded by
(Biological urge, Is Inherited by,
Fall asleep) Precedes, Is Preceded by

Table 6: F2F relation predictions of best system.

the motivational example from the beginning, Fig-
ure 1 illustrated the incompleteness of the FN hier-
archy at the F2F relation level with the example
of a possibly missing precedence relation from
“Being awake” to “Biological urge” (evoked by
the predicate “tired”). Table 6 displays the top 3
F2F relation predictions for the frame pairs around
“Biological urge” in the figure. The expected F2F
relation (printed bold) is indeed amongst the top
3 predictions of the best performing system for
this example, even for the precedence relation
which is rather underrepresented in the data. If
this system was used to make suggestions to hu-
man expert annotators, they should be informed
about the system being biased against the infre-
quent relations. However, it is hard to do a proper
manual evaluation as judging the suggested re-
lations requires expert knowledge of the defini-
tions and annotation best-practices for the F2F re-
lations. We propose using the best-performing
system for semi-automatic FN completion on the
relation level in cooperation with FN annotation
experts. The system can be used to make reason-
able suggestions of relations for frame pairs and
the final decision could be made by experienced
FN annotators. This would be a first step towards
improving the incompleteness of F2F relation an-
notations in FN, which in turn could improve the
performance in other tasks that take these F2F re-
lations as input.

6 Discussion and Future Work

As the F2F relations of the FN hierarchy did not
emerge from frame embeddings learned on frame-
labeled text, the F2F relations should be seen
as meta-structures not having direct evidence in
text. On the one hand, more advanced approaches
might be needed to distill F2F relations for frames
occurring in raw text, by learning about common-
sense knowledge involving frames, and then infer-
ring the implicit relations. Here, it could also be
helpful to exploit inter-sentential clues e.g., event
chains, to enrich the frame embeddings which so

far are built on sentence-level. On the other hand,
the automatic completion of F2F relations can rely
on knowledge-based embeddings trained on the
hierarchy. To this end, an expert evaluation of
the best-performing system’s predictions for frame
pairs could give clues for further system improve-
ments. It could also yield an expert upper bound
and may pave the way for developing advanced
systems using frame embeddings for the predic-
tion of F2F relations. Finally, we plan to inves-
tigate the case of FN for embeddings learned on
both, frame-labeled texts and F2F relation annota-
tions. By having such a combination, the limita-
tion of the text-based embeddings on frames that
have LUs (and hence occur in text) can be over-
come as the knowledge-based embeddings also
have access to frames without LUs. Last but not
least, for different tasks, different representations
of frames and relations might be better suited: em-
beddings purely learned on text, or embeddings
purely learned on the FN hierarchy, or a combi-
nation of both.

7 Conclusion

We raised the question whether text-based frame
embeddings naturally mirror F2F relations in the
FN hierarchy. We set up the F2F Relation Pre-
diction task as an adaptation of the link prediction
task from KGC to the case of FN. Through this
task, we quantify the ability of systems and em-
beddings to predict F2F relations. The F2F Re-
lation Prediction task addresses the need for auto-
matically completing F2F relations that are used in
down-stream tasks. Our best-performing system
for predicting F2F relations is a NN trained on the
FN hierarchy and uses knowledge-based embed-
dings that by design incorporate the F2F relation.
It can be used to suggest more F2F relation anno-
tations in the FN hierarchy. The comparison of our
different systems and embeddings reveals insights
about the difficulty of reconstructing F2F relations
purely from text. We encourage the development
of advanced systems and embeddings for the F2F
Relation Prediction task.

Acknowledgments

This work has been supported by the DFG-
funded research training group “Adaptive Prepara-
tion of Information form Heterogeneous Sources”
(AIPHES, GRK 1994/1). We also acknowledge
the useful comments of the anonymous reviewers.

154

References

Roni Ben Aharon, Idan Szpektor, and Ido Da-
gan. 2010. Generating Entailment Rules from
FrameNet. In Proceedings of the ACL 2010
Conference Short Papers. Association for
Computational Linguistics, pages 241–246.
http://www.aclweb.org/anthology/P10-2045.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The Berkeley FrameNet Project. In Pro-
ceedings of the 36th Annual Meeting of the Associ-
ation for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics-
Volume 1. Association for Computational Linguis-
tics, Montreal, Quebec, Canada, pages 86–90.
https://doi.org/10.3115/980451.980860.

Daniel Bauer, Hagen Fürstenau, and Owen Ram-
bow. 2012. The Dependency-Parsed FrameNet
Corpus. In Proceedings of the 8th Language
Resources and Evaluation Conference (LREC
2012). Istanbul, Turkey, pages 3861–3867.
http://hdl.handle.net/10022/AC:P:21192.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2012. Joint Learning of Words
and Meaning Representations for Open-Text Se-
mantic Parsing. In Neil D. Lawrence and
Mark Girolami, editors, Proceedings of the Fif-
teenth International Conference on Artificial In-
telligence and Statistics. PMLR, La Palma, Ca-
nary Islands, volume 22 of Proceedings of
Machine Learning Research, pages 127–135.
http://proceedings.mlr.press/v22/bordes12.html.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
relational Data. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26. Curran Associates, Inc., pages 2787–
2795. http://papers.nips.cc/paper/5071-translating-
embeddings-for-modeling-multi-relational-data.pdf.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning Structured Em-
beddings of Knowledge Bases. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial In-
telligence. AAAI Press, AAAI’11, pages 301–306.
http://dl.acm.org/citation.cfm?id=2900423.2900470.

Bob Coyne and Owen Rambow. 2009. LexPar: A
Freely Available English Paraphrase Lexicon Auto-
matically Extracted from FrameNet. In Proceed-
ings of the Third IEEE International Conference
on Semantic Computing (ICSC 2009). pages 53–58.
https://doi.org/10.1109/ICSC.2009.56.

Christiane Fellbaum. 1990. English Verbs as a Se-
mantic Net. International Journal of Lexicography
3(4):278–301. https://doi.org/10.1093/ijl/3.4.278.

Minwei Feng, Bing Xiang, Michael R Glass, Li-
dan Wang, and Bowen Zhou. 2015. Apply-
ing Deep Learning to Answer Selection: A
Study and An Open Task. In 2015 IEEE
Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE, pages 813–820.
https://doi.org/10.1109/ASRU.2015.7404872.

Charles J Fillmore. 1976. Frame Seman-
tics and the Nature of Language. An-
nals of the New York Academy of Sciences
280(1):20–32. https://doi.org/10.1111/j.1749-
6632.1976.tb25467.x.

Charles J Fillmore and Collin F Baker. 2001. Frame
Semantics for Text Understanding. In Proceedings
of WordNet and Other Lexical Resources Workshop,
NAACL.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
Embeddings: A Unified Model for Supersense Inter-
pretation, Prediction, and Utilization. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL 2016). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, volume Volume 1: Long Papers, pages 2029–
2041.

Silvana Hartmann and Iryna Gurevych. 2013.
FrameNet on the Way to Babel: Creating a Bilin-
gual FrameNet Using Wiktionary as Interlingual
Connection. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2013). Association for Computational
Linguistics, Stroudsburg, PA, USA, volume 1, pages
1363–1373.

Silvana Hartmann, Ilia Kuznetsov, Teresa Martin, and
Iryna Gurevych. 2017. Out-of-domain FrameNet
Semantic Role Labeling. In Proceedings of the 15th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL 2017).
Association for Computational Linguistics, pages
471–482.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic Frame Iden-
tification with Distributed Word Representations. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 1448–1458.
http://www.aclweb.org/anthology/P14-1136.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. SensEmbed: Learn-
ing Sense Embeddings for Word and Relational
Similarity. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 95–105.
http://www.aclweb.org/anthology/P15-1010.

155

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, Volume 2: Short Papers. The
Association for Computer Linguistics, pages 302–
308. https://doi.org/10.3115/v1/P14-2050.

Omer Levy, Steffen Remus, Chris Biemann, Ido Da-
gan, and Israel Ramat-Gan. 2015. Do Supervised
Distributional Methods Really Learn Lexical Infer-
ence Relations? In HLT-NAACL. pages 970–976.
https://doi.org/10.3115/v1/N15-1098.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning Entity and Relation
Embeddings for Knowledge Graph Completion. In
AAAI. pages 2181–2187.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research 9(Nov):2579–2605.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. Proceedings of Work-
shop at ICLR .

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT-2013). Asso-
ciation for Computational Linguistics, volume 13,
pages 746–751. https://www.microsoft.com/en-
us/research/publication/linguistic-regularities-in-
continuous-space-word-representations/.

George A Miller. 1990. Nouns in WordNet:
A Lexical Inheritance System. Interna-
tional journal of Lexicography 3(4):245–264.
https://doi.org/10.1093/ijl/3.4.245.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence 193:217–
250. https://doi.org/10.1016/j.artint.2012.07.001.

Ellie Pavlick, Travis Wolfe, Pushpendre Rastogi,
Chris Callison-Burch, Mark Dredze, and Benjamin
Van Durme. 2015. FrameNet+: Fast Paraphras-
tic Tripling of FrameNet. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Short
Papers). Beijing, China, pages 408–413.

Pushpendre Rastogi and Benjamin Van Durme. 2014.
Augmenting FrameNet Via PPDB. In Proceedings
of the Second Workshop on EVENTS: Definition,
Detection, Coreference, and Representation. Asso-
ciation for Computational Linguistics, Baltimore,
Maryland, USA, pages 1–5.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. ELRA, Valletta,
Malta, pages 45–50. http://is.muni.cz/
publication/884893/en.

Josef Ruppenhofer, Michael Ellsworth, Miriam RL
Petruck, Christopher R Johnson, and Jan Schef-
fczyk. 2006. FrameNet II: Extended Theory and
Practice. Distributed with the FrameNet data.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015.
LSTM-based Deep Learning Models for Non-
factoid Answer Selection. arXiv preprint
arXiv:1511.04108 .

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. WSABIE: Scaling Up to Large Vocabulary
Image Annotation. In Proceedings of the Twenty-
Second International Joint Conference on Artifi-
cial Intelligence - Volume Volume Three. AAAI
Press, Barcelona, Catalonia, Spain, IJCAI’11, pages
2764–2770. https://doi.org/10.5591/978-1-57735-
516-8/IJCAI11-460.

156

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 157–167,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Learning Joint Multilingual Sentence Representations
with Neural Machine Translation

Holger Schwenk
Facebook

AI Research
schwenk@fb.com

Matthijs Douze
Facebook

AI Research
matthijs@fb.com

Abstract

In this paper, we use the framework of
neural machine translation to learn joint
sentence representations across six very
different languages. Our aim is that a rep-
resentation which is independent of the
language, is likely to capture the under-
lying semantics. We define a new cross-
lingual similarity measure, compare up to
1.4M sentence representations and study
the characteristics of close sentences. We
provide experimental evidence that sen-
tences that are close in embedding space
are indeed semantically highly related,
but often have quite different structure
and syntax. These relations also hold
when comparing sentences in different
languages.

1 Introduction

It is today common practice to use distributed
representations of words, often called word em-
beddings, in almost all NLP applications. It
has been shown that syntactic and semantic re-
lations can be captured in this embedding space,
see for instance (Mikolov et al., 2013). To pro-
cess sequences of words, ie. sentences or small
paragraphs, these word embeddings need to be
“combined” into a representation of the whole
sequence. Common approaches include: sim-
ple techniques like bag-of-words or some type of
pooling, eg. (Arora et al., 2017), recursive neural
networks, eg. (Socher et al., 2011), recurrent neu-
ral networks, in particular LSTMs, eg. (Cho et al.,
2014), convolutional neural networks, eg. (Col-
lobert and Weston, 2008; Zhang et al., 2015) or
hierarchical approaches, eg. (Zhao et al., 2015).

In some NLP applications, both the input and
output are sentences. A very popular approach
to handle such tasks is the so-called “encoder-

decoder approach”, also named “sequence-to-
sequence learning (seq2seq)”. The main idea is
to first encode the input sentence into an inter-
nal representation, and then to generate the output
sentence from this representation. A very success-
ful application of this paradigm is neural machine
translation (NMT), see for instance (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever
et al., 2014). Current best practice is to use recur-
rent neural networks for the encoder and decoder,
but alternative architectures like convolutional net-
works have been also explored.

The performance of these vanilla seq2seq mod-
els substantially degrades with the sequence
length since it is difficult to encode long sequences
into a single, fixed-size representation. A plausi-
ble solution is the so-called attention mechanism
(Bahdanau et al., 2015): where the generation of
each target word is conditioned on a weighted sub-
set of source words, instead of the full sentence.
NMT has been also extended to handle several
source and/or target languages at once, with the
goal of achieving better translation quality than
with separately trained NMT systems, in particu-
lar for under resourced languages, see for instance
(Dong et al., 2015; Zoph and Knight, 2016; Luong
et al., 2015a; Firat et al., 2016a).

In this work, we aim at learning multilingual
sentence representations, i.e. which are indepen-
dent of the language. Since we have to compare
these representations among each other, for the
same or between multiple languages, we only con-
sider representations of fixed size.

There are many motivations to learn such a mul-
tilingual sentence representation, in particular:

• it is likely to capture the underlying seman-
tics of the sentence (since the meaning is the
only common characteristic of a sentence for-
mulated in several languages);

• it has the potential to transfer many sentence

157

processing applications to other languages
(classification, sentiment analysis, semantic
similarity, etc), without the need for language
specific training data;

• it enables multilingual search;

• such representation could be considered as
sort of a continuous space interlingua.

To train these multilingual sentence embed-
dings we are using the framework of NMT with
multiple encoders and decoders. We first describe
our model in detail, relate it to existing research,
and then present an experimental evaluation.

2 Architecture

We propose to use multiple encoders and de-
coders, one for each source and target language
respectively. The notion of multiple input lan-
guages can be also extended to different modali-
ties, e.g. speech and images. One can also envi-
sion to add classification tasks, in addition to se-
quence generation. Our ultimate goal is to jointly
train this generic architecture on many tasks at
once, to obtain a universal multilingual and -modal
representation (see illustration in Figure 1). To
ease the comparison and search, we are focusing
on representations of fixed-size, independently of
the length of the input (and output) sequence. This
choice has certainly an impact on the performance
for very long sequences, ie. in the order of more
than fifty words, but we argue that such long sen-
tences are probably not very frequent in every day
communication. We would also like to empha-
size that the goal of this work is not to improve
NMT (for multiple languages), but to use the NMT
framework to learn multilingual sentence embed-
dings. Once the system is trained, the decoders

sur une plageen una playa
Un cheval

einem Strand
Ein Pferd aufUn caballoA horse on

a beach

h
o
rs

e

b
ea

ch

Fr

img

De

En

En

A horse on
a beach

Ein Pferd auf
einem Strand

De

Es

n
eg

at
iv

e

n
eu

tr
al

p
o
si

ti
v
e

representation
universal sentence

speech

Figure 1: Generic multilingual and -modal en-
coder/decoder architecture.

are not used any more. This means in particular
that the usual attention mechanism cannot be used
since the attention weights are usually conditioned
on the decoder outputs. A possible solution could
be to condition the attention on the inputs only, for
instance so-called self-attention (Liu et al., 2016)
or inner-attention (Lin et al., 2017).

To fix ideas, let us consider that we have corpora
in L different languages which can be pairwise or
N -way parallel, N ≤ L. This means that our ar-
chitecture is composed of L encoders and L de-
coders respectively. However, this does not mean
that we always provide input to all encoders, or
targets for all decoders, but we change the used
models at each mini-batch. One could for instance
perform one mini-batch with two input languages
and one output language (which requires an 3-way
parallel corpus), and use one (different) input and
output language in the next mini-batch (which re-
quire a bitext). We call this partial training paths.
Note that we can also use monolingual data in this
framework, ie. the input and output language is
identical.

There are many possibilities to define partial
training paths, with 1 < M,N ≤ L.

1:1 translating from one source into one target
language respectively.

M:1 presenting simultaneously several source
languages at the input.

1:N translating from one source language into
multiple target languages.

M:N this is a combination of the preceding two
strategies and the most general approach. Re-
member that not all inputs and outputs need
to be present at each training step.

Our goal is to learn joint sentence representa-
tions, which are as close as possible when sen-
tences are presented in different languages at the
input. If we use 1:1 training, changing the lan-
guage pair at each mini-batch (input and output),
it is quite unlikely that the system would learn a
common joint representation which is independent
of the source language. A variant of 1:1 training is
to always use the same decoder, but many differ-
ent encoders. Since the decoder is shared for all
the input languages, and the capacity of the model
is limited, there’s an incentive for the system to
use the same representations for all the encoders.

158

EN FR ES RUENEN EN

FR ES RU

two−to−one three−to−one

FR ES RU

one−to−one

FR ES RU

one−to−many

EN FR ES RU

average

Figure 2: Possible partial training paths when four languages are available (En, Fr, Es and Ru).
From left: 1:1, 2:1 and 3:1 strategy, using En as common target language.
Right: 1:3 strategy, translating from one source to the three other target languages.

This training strategy only requires bitexts with
one common language (usually English). An im-
portant drawback, however, is that we will not ob-
tain an embedding of this common language since
it is never used at the input.1

Using multiple languages at the input at the
same time and combining the corresponding sen-
tence embeddings, ie. the M:1 strategy, has in
principle the potential to learn joint sentence em-
beddings, if an appropriate technique is used to
combine the individual embeddings. The most
straightforward approach is to average the embed-
dings. This was used for instance in (Firat et al.,
2016b) in a multilingual NMT system with atten-
tion. The joint embedding could be also enforced
by some type of regularizer. Again, having one
dedicated output language makes it impossible to
learn a representation for it.

The 1:N strategy is an interesting extension
of 1:1. The idea is translate from one input lan-
guage simultaneously to all L-1 other languages,
excluding the one at the input (ie. no auto-
encoder). The source and the set of target lan-
guages is changed at each mini-batch. By these
means, every input language has at least one tar-
get language in common with all input languages,
and each target language has at least one input lan-
guage in common. On one hand hand, this strategy
makes it possible to learn sentence embeddings for
all languages, but one the other hand, it requires
L-way parallel training data. Although bitexts are
usually used in MT, there are also several corpora
which can be aligned for more than two languages
(eg. Eurpoarl, TED, UN). Finally, the N:M strat-

1One could also use the common output language at the
input. This corresponds to training an auto-encoder which
is easier than a translation model and may have an negative
impact.

egy is the most generic one which combines all
above techniques. These different training strate-
gies are illustrated in Figure 2 for four languages.

2.1 Related work

The use of multiple encoders and decoders was
first studied in the context of neural MT. Dong
et al. (2015) used multiple decoders, i.e. 1:N
training, to achieve improved NMT performance.
Zoph and Knight (2016) and Firat et al. (2016b),
on the other hand, used multiple encoders, i.e.
M:1 training. It’s not surprising that this comple-
mentarity improves MT quality, in comparison to
one input language only. Many different config-
urations were explored by (Luong et al., 2015a)
for seq2seq models. Firat et al. (2016a) were the
first to use multiple encoders and decoders with a
shared attention mechanism. This approach was
further refined to enable zero-resource NMT (Fi-
rat et al., 2016b). Alternatively, it was proposed to
handle multiple source and target languages with
one encoder and decoder only, using a special to-
ken to indicate the target language (Johnson et
al., 2016) to enable zero-shot NMT. To best of
our knowledge, all these works focus on the im-
provement and extensions of seq2seq modeling,
and fixed-sized vector representations have not an-
alyzed in depth in a multilingual context.

Several publications consider joint representa-
tions in a multimodal context, usually text and
images, for instance (Frome et al., 2013; Ngiam
et al., 2011; Nakayama and Nishida, 2016). The
usual approach is to optimize a distance or correla-
tion between the two representations or predictive
auto-encoders (Chandar et al., 2013). The same
approach was applied to transliteration and cap-
tioning (Saha et al., 2016).

There is a large body of research on sentence

159

representations. Common approaches include:
simple techniques like bag-of-words or some type
of pooling, eg (Arora et al., 2017), recursive NNs,
eg. (Socher et al., 2011), recurrent NNs, in par-
ticular LSTMs, eg. (Cho et al., 2014), convo-
lutional NNs, eg. (Collobert and Weston, 2008;
Zhang et al., 2015) or hierarchical approaches, eg.
(Zhao et al., 2015). In all these works, the sen-
tence representations are learned for one language
only. It is important to note that our multiple en-
coder/decoder architecture and the different train-
ing paths make no assumption on the type of en-
coder and decoder used. In principle, all these sen-
tence representations methods could be used. This
is left for future research.

There are several works on learning multilin-
gual representations at document level (Hermann
and Blunsom, 2014; Zhou et al., 2016b; Pham
et al., 2015). (Hermann and Blunsom, 2014) pro-
posed a compositional vector model to learn doc-
ument level representations. Their model is based
on bag of words/bi-gram composition. (Pham
et al., 2015) directly learn a vector representa-
tions for sentences in the absence of compositional
property. (Zhou et al., 2016b) learn bilingual
document representation by minimizing Euclidean
distance between document representations and
their translation.

Other multilingual sentence representation
learning techniques include BAE (Chandar et al.,
2013) which trains bilingual autoencoders with
the objective of minimizing reconstruction error
between two languages, and BRAVE (Bilingual
paRAgraph VEctors) (Mogadala and Rettinger,
2016) which learns both bilingual word em-
beddings and sentence embeddings from either
sentence-aligned parallel corpora (BRAVE-S), or
label-aligned non-parallel corpora (BRAVE-D).

Finally, many papers address the problem of
learning bi- or multilingual word representations
which are used to perform cross-lingual document
classification. They are trained either on word
alignments or sentence-aligned parallel corpora,
or both. I-Matrix (Klementiev et al., 2012) uses
word alignments to do multi-task learning, where
each word is a single task and the objective is
to move frequently aligned words closer in the
joint embeddings space. DWA (Distributed Word
Alignment) (Kociský et al., 2014) learns word
alignments and bilingual word embeddings simul-
taneously using translation probability as objec-

tive. Without using word alignments, BilBOWA
(Gouews et al., 2014) optimizes both monolin-
gual and bilingual objectives, uses Skip-gram as
monolingual loss, while formulating the bilin-
gual loss as Euclidean distance between bag-of-
words representations of aligned sentences. Un-
supAlign (Luong et al., 2015b) learns bilingual
word embeddings by extending the monolingual
Skip-gram model with bilingual contexts based on
word alignments within the sentence. TransGram
(Coulmance et al., 2015) is similar to (Pham et al.,
2015) but treats all words in the parallel sentence
as context words, thus eliminating the need for
word alignments.

3 Evaluation protocol

An important question is how to evaluate multilin-
gual joint sentence embeddings. Let us first define
some desired properties of such embeddings:

• multilingual closeness: the representations
of the same sentence for different languages
should be as similar as possible;

• semantic closeness: similar sentences
should be also close in the embeddings
space, ie. sentences conveying the same
meaning, but not necessarily the syntactic
structure and word choice;

• preservation of content: sentence represen-
tations are usually used in the context of a
task, eg. classification, multilingual NMT
or semantic relatedness. This requires that
enough information is preserved in the rep-
resentations to perform the task;

• scalability to many languages: it is desir-
able that the metric can be extended to many
languages without important computational
cost or need for human labeling of data.

Two main approaches have been used in the
literature to evaluate multilingual sentence em-
beddings: 1) cross-lingual document classifica-
tion based on the Reuters corpus, first described
in (Klementiev et al., 2012); and 2) cross-lingual
evaluation of semantic textual similarity (in short
STS). This task was first introduced in the 2016
edition of SemEval (Agirre et al., 2016). Both
tasks focus on the evaluation of joint sentence rep-
resentations of two languages only. In the Reuters
task, a document classifier is trained on English

160

sentence representations and then applied to texts
in another language, and in the opposite direc-
tion respectively. STS seeks to measure the de-
gree of semantic equivalence between two sen-
tences (or small paragraphs). Semantic similarity
is expressed by a score between 0 (the two sen-
tences are completely dissimilar) and 5 (the two
sentences are completely equivalent). In 2016, a
cross lingual task was introduced (Es/En) and ex-
tended to two more language pairs in 2017 (Ar/En
and Tr/En).

In this work, we propose an additional evalu-
ation framework for multilingual joint represen-
tations, based on similarity search. Our metric
can be automatically calculated without the need
of new human-labeled data and scaled to many
languages and large corpora. We only need col-
lections of S sentences, and their translations in
L different languages, ie. sp

i , i = 1 . . . S, p =
1 . . . L. Such L-way parallel corpora are freely
available, for instance Europarl2 (20 languages),
the UN corpus, 6 languages (Ziemski et al., 2016),
or TED, 23 languages, (Cettolo et al., 2012).

Algorithm 1 Multilingual similarity search
1: L: number of languages
2: S: number of sentences
3: Epq: error between languages p and q
4: R(sp

i): embedding of a sentence
5: D(): some distance metric
6: for p = 1 . . . L do
7: for q = 1 . . . L, q 6= p do
8: Epq = 0
9: for i = 1 . . . S do

10: if arg min
j=1...S

D(R(sp
i), R(sq

j)) 6= i then

11: Epq + +
12: end if
13: end for
14: end for
15: end for

The details of our approach are given in algo-
rithm 1. The basic idea is to search the closest
sentence in all S sentences, and count an error if
it is not the reference translation. This requires
the calculation of S2 distance metrics and makes
only sense when there are no duplicate sentences
in the corpus. With increasing S it may be also
likely that the corpus contains several alternative
valid translations which could be closer than the

2http://www.statmt.org/europarl/

reference one. This is difficult to handle automat-
ically at large scale and counted as error by our
algorithm.

Similarity search mainly evaluates the multilin-
gual closeness property and can be easily scaled
to many languages. We will report results how the
similarity error rate is influenced by the number of
language pairs and the size of the corpus. We have
compared three distance metrics: L2, inner prod-
uct and cosine. In general, cosine performed best.
Note that all metrics are equivalent if the vectors
are normalized.

4 Experimental evaluation

We have performed all our experiments with the
freely available UN corpus. It contains about 12M
sentences in six languages (En, Fr, Es, Ru, Ar and
Zh). We have used the version which is 6-way par-
allel (about 8.3M sentences). This corpus comes
with a predefined Dev and Test set (4000 sentences
each). We lowercase all texts, limit the length of
the training data to 50 words and use byte-pair en-
coding (BPE) with a 20k vocabulary. BPE allows
to limit the size of the decoder output vocabulary,
it has only a small impact on the sentence length
(≈ +20%) and it showed similar or even superior
performance in NMT in comparison to many other
techniques to limit the size of the output vocabu-
lary (Sennrich et al., 2016). We have also found
that BPE is very robust to spelling errors which is
important when handling informal texts.

4.1 Different network architectures

In this work we only consider stacked LSTMs as
encoders and decoders. In the vanilla seq2seq
NMT model, the last state of the LSTM is used
as sentence representation. There is also evidence
that deeper architectures perform better in NMT
than shallow ones, eg. (Zhou et al., 2016a; Wu et
al., 2016). Following this tendency, we performed
the first set of experiments with stacked LSTMs
with three 512-dimensional hidden layers. Deeper
architectures did not improve the performance.

We then switched to using BLSTMs followed
by max-pooling (element-wise over the sequence
length). We are not aware of works which use
max-pooling in an NMT framework. One is in-
deed tempted to assume that max-pooling makes
it more difficult to create a target sentence which
preserves all information from the source sen-
tence. On the other hand, max-pooling is success-

161

System
Average Similarity Error

efs efsr efsra efsraz
#pairs: 6 10 15 21

One-to-one systems:
efs-r 1.97% - - -
efs-a 2.09% - - -
efsr-a 1.90% 2.40% - -
efsra-z 1.91% 2.26% 2.51% -
One-to-many systems:
efsraz-all 1.70% 1.97% 2.38% 2.59%
One-to-many systems, nhid=1024:
efsraz-all 1.36% 1.64% 1.89% 1.95%

Three layer LSTM, nhid=512
Sentence representation: last LSTM state

System
Average Similarity Error

efs efsr efsra efsraz
#pairs: 6 10 15 21

One-to-one systems:
efs-r 1.11% - - -
efs-a 1.03% - - -
efsr-a 1.11% 1.31% - -
efsra-z 1.01% 1.19% 1.25% –
One-to-many systems:
efsraz-all 0.92% 1.07% 1.15% 1.20%

One layer BLSTM, nhid=512
Sentence representation: max pooling

Table 1: Error rates of similarity search on the UN Dev corpus. Languages are abbreviated with the
following letters: e=English, f=French, s=Spanish, r=Russian, a=Arabic, z=Chinese.

fully used in various sentence classification tasks,
eg. (Conneau et al., 2017). It should be noted that
the final sentence representation has twice the di-
mension of the BLSTM hidden layer.

The word embeddings are of size 384 for all
models. We use vertical dropout with a value of
0.2 and gradients are clipped at 2. The initial
learning rate is set to 0.01 and decreased each time
performance on the Dev data does not improve.
Performance is measured by perplexity for the de-
coders and similarity error at the embedding layer
for the encoders. It is important to note that the
similarity error rate can be only calculated once
the whole development set is processed. Therefore
it is not used to provide gradients to the encoders.
Training is performed for up to five epochs with
a batch size of 96. For the smallest models, one
iteration through the training data takes about 11h.
Most models converge after two to three epochs.

Table 1 summarizes our results on the UN Dev
corpus for several systems using the one-to-one
and one-to-many partial training paths. We com-
pare training of joint representations for three to
six languages using LSTM or BLSTM encoders.
In each column, we give the average similarity er-
ror over all n(n + 1)/2 language pairs. As an ex-
ample, the system trained with En, Fr, Es and Ru
at the input and Ar at the output (“efsr-a” in the
third line), achieves an average similarity error of
1.90% over 6 language pairs3, column “efs”, and
2.40% over 10 languages pairs4, column “efsr”.

3En-Es, En-Fr, Es-En, Es-Fr, Fr-En and Fr-Es.
4En-Es, En-Fr, En-Ru, Es-En, Es-Fr, Es-Ru, Fr-En, Fr-Es,

We can make the following observations. First,
using an BLSTM with max-pooling (Table 1 right)
performs much better than an LSTM and us-
ing the last hidden state as sentence representa-
tion (Table 1 left). This was also observed for
many monolingual tasks, eg. (Conneau et al.,
2017). This is particularly true when the num-
ber of languages is increased. This performance
gain does not result from the increased dimen-
sion of the sentence representation (2×nhid) since
an 1024-dimensional LSTM only achieves 1.36%
(see last line in Table 1 left). Second, increasing
the number of languages for which we seek a joint
sentence embedding does not seem to make the
task harder: the system trained on all languages
achieves the same results (1.01%) on three lan-
guages than when training only on these languages
(1.03%). Third, the one-to-many training strat-
egy (efsraz-all, 0.92%) performs better than 1:1
(efsra-z, 1.01%). In addition, it allows to obtain a
sentence embedding for all languages, while the
common output language is excluded in the 1:1
strategy.

Finally, we have explored whether deep archi-
tectures are needed when using an BLSTM en-
coder and a max-pooling sentence representation
(see Table 2). We found no experimental evidence
that stacking several BLSTM layers is useful.

4.2 Many-to-one training strategies

In this section, we study two M:1 training strate-
gies, namely 2:1 and 3:1. Since the number of

Fr-Ru, Ru-En, Ru-Es and Ru-Fr.

162

Network
LSTM + last BLSTM + max-pooling

3x512 3x1024 1x256 2x256 3x256 1x512 2x512 3x512
1:1, efsra-z 2.51 – 1.44 1.21 1,65 1.25 1.25 1.53
1:M, efsraz-all 2.38 1.89 1.27 1.30 1.53 1.15 1.17 1.30

Table 2: Error rates of similarity search on the UN Dev corpus for five language pairs (efsra). Compari-
sion of LSTMs and BLSTMs of different size and depth.

combinations quickly increases with the number
of input languages, we limit these experiences to
three input languages (system efs-a). In that case,
we have three 1:1 training paths (En→Ar, Fr→Ar
and Es→Ar), three 2:1 training paths (En+Fr→Ar,
En+Es→Ar and Fr+Es→Ar) and one 3:1 configu-
ration (En+Fr+Es→Ar). This is illustrated in Fig-
ure 2. To obtain efficient training, we use homo-
geneous mini-batches, ie. the number of encoders
and decoders is constant. Examples in a mini-
batch are sampled according to a coefficient. In
order to make a fair comparison, these resampling
coefficient were chosen so that each encoders al-
ways sees the same number of sentences (roughly
8.3M). We refer to the different runs with an ID
(first column in Table 3). As an example, for the
experiment with ID l2a, 90% of the mini-batches
are 1:1 and 5% are 2:1. Note that that the 2:1 sam-
ples have a coefficient of 0.05 since two encoders
are simultaneously used.

The first striking result is that presenting all in-

input languages Similarity
ID 1 2 3 Error

One M:1 strategy
1 1 – – 1.03%
2 – 0.5 – 1.85%
3 – – 1 67.9%

Combining 1:1 and 2:1 strategies
12a 0.9 0.05 – 1.09%
12b 0.8 0.10 – 1.16%
12c 0.7 0.15 – 1.15%
12d 0.6 0.20 – 1.13%
12e 0.5 0.25 – 1.22%

Combining 1:1 and 3:1 strategies
13 0.5 – 0.5 1.38%

Combining 1:1, 2:1 and 3:1 strategies
123a 0.33 0.16 0.33 1.39%
123b 0.25 0.25 0.25 1.40%

Table 3: Different M:1 strategies for three input
languages (system efs-a). The baseline with the
1:1 strategy is 1.03% (line with ID 1).

put languages at once and averaging the three sen-
tence representations (3:1, ID 3) does not allow to
learn joint representations. We are however able
to learn joint representations with the 2:1 strat-
egy (ID 2), but the performance is worse than the
1:1 baseline (1.85% versus 1.03%). We are also
tried to alternate between 1:1 and 2:1 mini-batches
with increasing resampling coefficients (ID 12a to
12e). The idea is that each encoder learns to pro-
vide a sentence representation when used alone
and when used with another one. However, we ob-
serve that adding 2:1 training paths is not useful:
the similarity error increases. The same observa-
tion holds when adding 3:1 training paths (ID 13
and 123). Overall, we were not able to improve the
baseline of 1.03% similarity error obtained with a
simple 1:1 training strategy. Therefore, we did not
try the even more complex M:N paths. This failure
could be attributed to the fact that we simply av-
erage multiple sentence representations. In future
research, we will investigate other possibilities, eg.
based on correlation like proposed in (Saha et al.,
2016; Chandar et al., 2016).

Detailed similarity search error rates for all six
languages, including Zh, of our best system are
given in Table 4. Overall, the error rates vary only
slightly from the average of 1.2% although the six
languages differ significantly with respect to mor-
phology, inflection, word order, etc. In particular,
Chinese is handled as well as the other languages.
This is in nice contrast to many other NLP appli-
cation, in particular NMT, for which the perfor-
mances on Chinese are significantly below those
of other languages. All error rates are below 1.7%.

4.3 Large scale out-of domain similarity
search

In this section, we evaluate our sentence represen-
tation on out-of domain data. We are not aware
of another huge corpus which is 6-way parallel for
the same languages than the UN corpus. There-
fore, we have selected the Europarl corpus and
limit our study to three common languages (En,

163

Target language
Src En Fr Es Ru Ar Zh All
En – 1.10 0.70 1.07 1.05 1.15 1.02
Fr 0.97 – 0.95 1.55 1.65 1.68 1.36
Es 0.68 1.10 – 1.20 1.35 1.27 1.12
Ru 0.78 1.52 1.23 – 1.32 1.32 1.23
Ar 0.78 1.52 1.07 1.48 – 1.23 1.22
Zh 0.97 1.55 1.12 1.35 1.30 – 1.26
All 0.83 1.36 1.02 1.33 1.33 1.33 1.20

Table 4: Pair-wise error rates of similarity search
for 6 languages (UN Dev). Training was per-
formed with a one layer BLSTM with 512 hid-
dens, max-pooling and the “efsraz-all” strategy.

Fr and Es). After excluding duplicates and limit-
ing the sentence length to fifty tokens, we dispose
of almost 1.5 million 3-way parallel sentences.

The two training strategies “efsra-z” and
“efsraz-all” achieve the same similarity error rate
of about 7.7%. We argue that this is an interest-
ing result given the size of the corpus (1.46M sen-
tences) and the fact that it contains several sen-
tences which are very similar (e.g. “The ses-
sion resumes on DATE”). Using the last state of
an LSTM 3x512 achieves an error rate of 12.2%.
Evaluating the similarity error requires the calcu-
lation of 1.46M2 distances for each language pair.
This can be very efficiently performed with the
FAISS open-source toolkit (Johnson et al., 2017)
which offers many options to increase the speed
of nearest neighbor search. Its implementation of
brute-force L2 search was sufficient for our pur-
poses.

4.4 Examples of multilingual search

On the next page, we give several examples of
similarity search. For each example, we give the
query and the five closest sentences. Remember
that we use the cosine distance, i.e. the value of 1.0
is a perfect match and smaller values are worse.

The first example in Table 5 shows two simple
query sentences for which four paraphrases were
found in the Europarl corpus. A more complicated
query sentence is used in the second example (see
Table 6). For such longer sentences, it is unlikely
to find several perfect paraphrases in the indexed
corpus. However, the system was able to retrieve
sentences which share a lot of the meaning of the
query: all cover the topic “punishment of (sexual)
crimes, independently of the country the crime is

committed in”. Finally, examples of cross-lingual
similarity search are given in Tables 7 and 8. In the
first example, all five nearest French and Spanish
sentences have very similar cosine distances, and
all are indeed semantically related. Note that the
closest French sentence is not the reference trans-
lation, but it nevertheless covers well the topic (its
English translation is “I should like to make one
remark, however, in response to some of the opin-
ions you have expressed”).

Table 8 gives an example where not all retrieved
sentences have similar cosine distances. The clos-
est sentence is the correct translation, for French
and for Spanish. Both second closest sentences are
well related to the query and also have a cosine
distance close to the best scoring sentence. The
third and following sentences are less related with
the query, which is clearly reflected in the substan-
tially lower cosine distance. It’s interesting to note
that the three closest sentences are all identical, in-
dependently of the language. This can be seen as
experimental evidence of the quality of the multi-
lingual sentence embeddings.

5 Conclusion

We have shown that the framework of NMT with
multiple encoders/decoders can be used to learn
joint fixed-size sentence representations which ex-
hibit interesting linguistic characteristics. We have
explored several training paradigms which corre-
spond to partial paths in the whole architecture.
We have proposed a new evaluation protocol of
multilingual similarity search which easily scales
to many languages and large corpora. We were
able to obtain an average cross-lingual similar-
ity error rate of 1.2% for all 21 languages pairs
between six languages5 which differ significantly
with respect to morphology, inflection, word or-
der, etc. We have also studied the evolution of the
similarity error rate when scaling up to 1.4 million
sentences, drawn from an out-of-domain corpus.

Acknowledgments

We would like to thank Ke Tran (Informatics Insti-
tute University of Amsterdam, m.k.tran@uva.nl)
and Orhan Firat (Middle East Technical Uni-
versity, orhan.firat@ceng.metu.edu.tr, now at
Google) for their help with implementing some of
the algorithms during their internship at Facebook
AI Research in 2016.

5English, French, Spanish, Russian, Arabic and Chinese.

164

Query: All kinds of obstacles must be eliminated. Query: I did not find out why.
D2=0.970245 All kinds of barriers have to be removed. D2=0.913365 I have no idea why.
D3=0.799097 All these things must be stopped. D3=0.913244 I fail to see the connection.
D4=0.794444 All forms of provocation must be avoided. D4=0.906929 I do not understand why.
D5=0.792740 All forms of violence must be prohibited.

Table 5: Five closest sentences found by monolingual similarity search in English. All are some form of
para-phrasing. The closest sentence (distance=1) is always identical to the query and therefore omitted.

Query All citizens who commit sexual crimes against children must be punished, regardless of whether the
crime is committed within or outside the EU.

D2=0.650070 All kinds of sexual abuse of children are criminal and must be seen as the crimes that they are in all Member
States.

D3=0.580904 The perpetration of violence against women is a criminal act, whether in public or in private.
D4=0.565544 The perpetrators of crimes cannot be allowed to believe that they will enjoy impunity, regardless of where

they may reside, be it in Europe, in Africa or in any other part of the world.
D5=0.560186 The impunity of those who commit terrible crimes against their own citizens and against other people re-

gardless of their citizenship must be ended.

Table 6: A more complicated English sentence and the five closest sentences (excluding itself). All cover
the punishment of (sexual) crimes.

EN59104 Query Allow me, however, to comment on certain issues raised by the honourable Members.
FR390378 D1=0.678347 Je voudrais toutefois apporter un commentaire à quelques-uns de vos avis.
FR59104 D2=0.676565 Permettez-moi toutefois de commenter certaines questions soulevées par les députés.
FR431699 D3=0.665086 Je voudrais toutefois formuler un certain nombre de commentaires concernant les remarques de

M. Watson.
FR651418 D4=0.660149 Je voudrais toutefois faire part de quelques remarques qui cadrent très bien avec ce que vous

avez évoqué.
FR269297 D5=0.647646 Je voudrais toutefois m’attarder sur certaines recommandations concrètes qui sont adressées à

la Commission.
ES59104 D1=0.693376 No obstante, permı́tanme comentar ciertas cuestiones planteadas por sus Señorı́as.
ES390378 D2=0.663397 Sin embargo, quisiera añadir algunas observaciones en relación con algunas de las opiniones

que han manifestado.
ES253861 D3=0.648316 Dicho esto, permı́tanme contestar algunos de los asuntos especı́ficos que ustedes han planteado.
ES133167 D4=0.637314 Permı́tanme, no obstante, señalar algunas consideraciones que acaban de exponerse.
ES652101 D5=0.636661 No obstante, permı́tanme que conteste a algunos comentarios que se han realizado.

Table 7: Cross-lingual similarity search. English query and the five closest French and Spanish sen-
tences. We also provide the index of the sentences (reference=59104). All the cosine distances are close
and the sentences are indeed semantically related.

EN77777 Query And yet the report on the fight against racism does not demonstrate that the necessary
conclusions have been drawn.

FR77777 D=0.766306 Pourtant, le rapport sur la lutte contre le racisme n’indique pas que l’on en ait tiré les conclusions
qui s’imposent.

FR1081193 D=0.719267 Ainsi, le rapport sur la lutte contre le racisme n’indique pas que l’on en a tiré les conclusions
qui s’imposent.

FR282752 D=0.483043 Le rapport sur les femmes et le fondamentalisme n’offre toutefois aucune solution à cette
problématique.

ES77777 D=0.781921 Sin embargo, el informe sobre la lucha contra el racismo no muestra que se hayan extraı́do las
conclusiones necesarias.

ES1081193 D=0.735487 Ası́, el informe sobre la lucha contra el racismo no muestra que se hayan extraı́do las conclu-
siones necesarias.

ES282752 D=0.474343 No obstante, el informe acerca de las mujeres y el fundamentalismo no ofrece ninguna solución
para este problema.

Table 8: Cross-lingual similarity search. English query and the three closest French and Spanish
sentences. In both cases, the correct translation was retrieved. The second closest sentences are also
semantically well related to the query. However, the third (and following sentences) only cover some of
the aspects of the query. This is indeed reflected in the lower similarity score.

165

References
Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,

Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. Semeval-2016
task 1: Semantic textual similarity, monolingual and
cross-lingual evaluation. In SemEval workshop.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In ICLR.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In EAMT . pages 261–268.

Sarath Chandar, Mitesh M. Khapra, Hugo Larochelle,
and Balaraman Ravindran. 2016. Correlation neural
networks. Neural Computation 28:257–285.

Sarath Chandar, Mitesh M. Khapra, Balaraman Ravin-
dran, Vikas Raykar, and Amrita Saha. 2013. Multi-
lingual deep learning. In NIPS DL wshop.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. In EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In ICML.
pages 160–167.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In https://
arxiv.org/abs/1705.02364.

J. Coulmance, J.M. Marty, G. Wenzek, and A. Ben-
haloum. 2015. Trans-gram, fast cross-lingual word
embeddings. In EMNLP.

Daxiang Dong, Huan Wu, Wei He, Dianhai Yu, and
Haifeng wang. 2015. Multi-task learning for multi-
ple language translation. In ACL. pages 1723–1732.

Orhan Firat, Kyunghyun Choa, and Yoshua Bengio.
2016a. Multi-way, multilingual neural machine
translation with shared attention mechanism. In
NAACL.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T. Yarman Vural, and Kyunghyun Cho. 2016b.
Zero-resource translation with multi-lingual neural
machine translation. In EMNLP.

Andrea Frome, Grep S. Corrado, Jonathon Shlens,
Samy Bengio, Jeffrey Dean, marc’Aurelio Ranzato,
and Thomas Mikolov. 2013. DeViSa:E a deep
visual-semantic embedding model. In NIPS.

S. Gouews, Y. Bengio, and G. Corrado. 2014. Bilbowa:
Fast bilingual distributed representations without
word alignments. In ICML.

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed seman-
tics. In ACL. pages 58–68.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734 .

Melvin Johnson et al. 2016. Google’s multilin-
gual neural machine translation system: Enabling
zero-shot translation. In https://arxiv.org/
abs/1611.04558.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP. pages
1700–1709.

A. Klementiev, I. Titov, and B. Bhattarai. 2012. In-
ducing crosslingual distributed representations of
words. In Coling.

T. Kociský, K.M. Hermann, and P. Blunsom.
2014. Learning bilingual word representations by
marginalizing alignments. In ACL. pages 224–229.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In ICLR.

Yang Liu, Chenjie Sun, Lei Lin, and Xiaolong Wang.
2016. Learning natural language inference using
bidirectional lstm model and inner-attention. In
https://arxiv.org/abs/1605.09090.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015a. Multi-task se-
quence to sequence learning. In ICLR.

T. Luong, H. Pham, and C.D. Manning. 2015b. Bilin-
gual word representations with monolingual quality
in mind. In ACL workshop on Vector Space Model-
ing for NLP. pages 151–159.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous word
space representations. In NAACL. pages 746–751.

Aditua Mogadala and Achim Rettinger. 2016. Bilin-
gual word embeddings fomr parallel and non-
parallel corpora for cross-language classification. In
NAACL. pages 692–702.

Hideki Nakayama and Noriki Nishida. 2016. Zero-
resource machine translation by multimodal
encoder-decoder network with multimedia pivot. In
https://arxiv.org/abs/1611.04503.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan
Nam, Honglak Lee, and Andrew Y. Ng. 2011. Mul-
timodal deep learning. In ICML.

166

Hieu Pham, Minh-Thang Luong, and Christopher D.
Manning. 2015. Learning distributed representa-
tions for multilingual text sequences. In Workshop
on Vector Space Modeling for NLP.

Amrita Saha, Mitesh M. Kharpa, Sarath Chandar, Ja-
narthanan Rajendran, and Kyunghyun Cho. 2016. A
correlational encoder decoder architecture for pivot
based sequence generation. In https://arxiv.
org/abs/1606.04754.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL. pages 1715–1725.

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS. pages 3104–3112.

Yonghui Wu et al. 2016. Google’s neural machine
translation system: Bridging the gap between human

and machine translation. In https://arxiv.
org/abs/1610.05011.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS. pages 649–657.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. In
https://arxiv.org/abs/1504.05070.

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei
Xu. 2016a. Deep recurrent models with fast-forward
connections for neural machine translation. TACL
4:371–383.

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. 2016b.
Cross-lingual sentiment classification with bilingual
document representation learning. In ACL.

M Ziemski, Marcin Juncys-Dowmunt, and
B. Pouliquen. 2016. The united nations paral-
lel corpus v1.0. In LREC.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In NAACL. pages 30–34.

167

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 168–177,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Transfer Learning for Speech Recognition on a Budget

Julius Kunze1, Louis Kirsch1, Ilia Kurenkov2, Andreas Krug2,
Jens Johannsmeier2, and Sebastian Stober2

1Hasso Plattner Institute, Potsdam, Germany
juliuskunze@gmail.com, mail@louiskirsch.com

2University of Potsdam, Potsdam, Germany
{kurenkov,ankrug,johannsmeier,sstober}@uni-potsdam.de

Abstract

End-to-end training of automated speech
recognition (ASR) systems requires massive
data and compute resources. We explore
transfer learning based on model adaptation
as an approach for training ASR models under
constrained GPU memory, throughput and
training data. We conduct several systematic
experiments adapting a Wav2Letter convo-
lutional neural network originally trained for
English ASR to the German language. We
show that this technique allows faster training
on consumer-grade resources while requiring
less training data in order to achieve the same
accuracy, thereby lowering the cost of train-
ing ASR models in other languages. Model
introspection revealed that small adaptations
to the network’s weights were sufficient for
good performance, especially for inner layers.

1 Introduction

Automated speech recognition (ASR) is the task
of translating spoken language to text in real-time.
Recently, end-to-end deep learning approaches have
surpassed previously predominant solutions based
on Hidden Markov Models. In an influential paper,
Amodei et al. (2015) used convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs)
to redefine the state of the art. However, Amodei
et al. (2015) also highlighted the shortcomings of
the deep learning approach. Performing forward and
backward propagation on complex deep networks in a
reasonable amount of time requires expensive special-
ized hardware. Additionally, in order to set the large
number of parameters of a deep network properly, one
needs to train on large amounts of audio recordings.
Most of the time, the recordings need to be transcribed
by hand. Such data in adequate quantities is currently
available for few languages other than English.

We propose an approach combining two method-
ologies to address these shortcomings. Firstly,
we use a simpler model with a lower resource
footprint. Secondly, we apply a technique called
transfer learning to significantly reduce the amount
of non-English training data needed to achieve
competitive accuracy in an ASR task. We investigate
the efficacy of this approach on the specific example
of adapting a CNN-based end-to-end model originally
trained on English to recognize German speech. In
particular, we freeze the parameters of its lower layers
while retraining the upper layers on a German corpus
which is smaller than its English counterpart.

We expect this approach to yield the following
three improvements. Taking advantage of the
representation learned by the English model will lead
to shorter training times compared to training from
scratch. Relatedly, the model trained using transfer
learning requires less data for an equivalent score than
a German-only model. Finally, the more layers we
freeze the fewer layers we need to back-propagate
through during training. Thus we expect to see a
decrease in GPU memory usage since we do not have
to maintain gradients for all layers.

This paper is structured as follows. Section 2 gives
an overview of other transfer learning approaches
to ASR tasks. Details about our implementation of
the Wav2Letter model and how we trained it can
be found in Section 3. The data we used and how
we preprocessed it is described in Section 4. After
a short introduction of the performed experiments
in Section 5 we present and discuss the results in
Section 6 followed by a conclusion in Section 7.

2 Related Work

Annotated speech data of sufficient quantity and
quality to train end-to-end speech recognizers
is scarce for most languages other than English.
Nevertheless, there is demand for high-quality ASR

168

systems for these languages. Dealing with this issue
requires specialized methods.

One such method, known as transfer learning, is a
machine learning technique for enhancing a model’s
performance in a data-scarce domain by cross-training
on data from other domains or tasks. There are
several kinds of transfer learning. The predominant
one being applied to ASR is heterogeneous transfer
learning (Wang and Zheng, 2015) which involves
training a base model on multiple languages (and
tasks) simultaneously. While this achieves some
competitive results (Chen and Mak, 2015; Knill et al.,
2014), it still requires large amounts of data to yield
robust improvements (Heigold et al., 2013).

In terms of how much data is needed for effective
retraining, a much more promising type of transfer
learning is called model adaptation (Wang and Zheng,
2015). With this technique, we first train a model on
one (or more) languages, then retrain all or parts of it
on another language which was unseen during the first
training round. The parameters learned from the first
language serve as a starting point, similar in effect to
pre-training. Vu and Schultz (2013) applied this tech-
nique by first learning a multilayer perceptron (MLP)
from multiple languages with relatively abundant
data, such as English, and then getting competitive
results on languages like Czech and Vietnamese, for
which there is not as much data available.

The method presented in this paper differs from
Vu and Schultz (2013) in that it does not force the
representation to be compressed into bottleneck
features (Grezl and Fousek, 2008) and use the result
as the output of the pre-trained network. The idea of
freezing only certain layers is another way in which
our approach differs.

3 Model Architecture

One of the reasons Amodei et al. (2015) had to train
their network using many GPUs was its complexity.
It uses both convolutional and recurrent units stacked
in many layers. Recently, a much simpler architecture
called Wav2Letter has been proposed by Collobert
et al. (2016). This model does not sacrifice accuracy
for faster training. It relies entirely on its loss function
to handle aligning the audio and the transcription
sequences while the network itself consists only of
convolutional units.

The resulting shorter training time and lower
hardware requirements make Wav2Letter a solid basis
for all of our transfer learning experiments. Since the
general structure of the network is described in the

original paper, we only mention what is notable in
our adaptation of it in the following. An overview of
their architecture is shown in Figure 1.

Collobert et al. (2016) do not specify the optimizer
they used. We tried several conventional gradient
descent optimizers and achieved best convergence
with Adam (Kingma and Ba, 2014). Hyperparame-
ters were slightly adapted from the defaults given by
Kingma and Ba (2014), that is, we used the learning
rate α= 10−4, β1 = 0.9, β2 = 0.999 and ε= 10−8.
Collobert et al. (2016) note that the choice of acti-
vation function for the inner convolution layers does
not seem to matter. We chose rectified linear units as
our activation function because they have been shown
to work well for acoustic models (Maas et al., 2013).
Weights are initialized Xavier uniformly as introduced
by Glorot and Bengio (2010).

At test time, decoding is performed using a
beam search algorithm based on KenLM (Heafield
et al., 2013). The decoding procedure follows the
TensorFlow implementation based on (Graves, 2012).
A beam is scored using two hyperparameters that
were derived using a local search optimized to yield
the best combined word error rate (WER) and letter
error rate (LER) on the LibriSpeech (Panayotov
et al., 2015) validation set. For the weight of the
language model we chose wlm = 0.8 and a weight
multiplied with the number of vocabulary words in
the transcription wvalid word=2.3.

The CNN was implemented in Keras (Chollet,
2015). The language model and beam search
were done in TensorFlow (Abadi et al., 2015)
and the introspection in NumPy (van der Walt
et al., 2011). The source code can be found at:
https://github.com/transfer-learning-asr/transfer-
learning-asr.

One of the innovations in Collobert et al. (2016)
was the introduction of the AutoSegCriterion (ASG)
loss function. The authors reported it mainly im-
proving the model’s throughput with negligible effect
on WER and LER compared to the Connectionist
Temporal Classification (CTC) loss introduced by
Graves et al. (2006). Since there is currently no
publicly available implementation of this loss function,
we decided to stay with an existing TensorFlow
implementation of the CTC loss instead.

The English model achieved a LER of 13.66%
and WER of 43.58% on the LibriSpeech (Panayotov
et al., 2015) test-clean corpus. This is worse than the
results of Collobert et al. (2016). Since the authors
of that paper did not publish their source code, we

169

Convolution
kw1=48, sw1=2
ic1=128, oc1=250

Convolution
kw2=7, sw2=1

ic2=250, oc2=250

Convolution
kw9=32, sw9=1

ic9=250, oc9=2000

Convolution
kw10=1, sw10=1

ic10=2000, oc10=2000

Convolution
kw11=1, sw11=1

ic11=2000, oc11=29

Convolution
kw4=7, sw4=1

ic4=250, oc4=250

Convolution
kw3=7, sw3=1

ic3=250, oc3=250

Convolution
kw6=7, sw6=1

ic6=250, oc6=250

Convolution
kw8=7, sw8=1

ic8=250, oc8=250

Convolution
kw5=7, sw5=1

ic5=250, oc5=250

Convolution
kw7=7, sw7=1

ic7=250, oc7=250

Baseline System
(English)

Convolution
kw1=48, sw1=2
ic1=128, oc1=250

Convolution
kw2=7, sw2=1

ic2=250, oc2=250

Convolution
kw9=32, sw9=1

ic9=250, oc9=2000

Convolution
kw10=1, sw10=1

ic10=2000, oc10=2000

Convolution
kw11=1, sw11=1

ic11=2000, oc11=33

Convolution
kw4=7, sw4=1

ic4=250, oc4=250

Convolution
kw3=7, sw3=1

ic3=250, oc3=250

Convolution
kw6=7, sw6=1

ic6=250, oc6=250

Convolution
kw8=7, sw8=1

ic8=250, oc8=250

Convolution
kw5=7, sw5=1

ic5=250, oc5=250

Convolution
kw7=7, sw7=1

ic7=250, oc7=250

tr
a
in

 t
o
p

 l
a
ye

rs
 f

o
r

G
e
rm

a
n

 d
a
ta

Adapted System
(German)

kw=kernel width
ic=input channels

sw=stride width
oc=output channels

freeze
weights

of k
bottom
layers

Mel-scaled
spectrogram
(English)

Mel-scaled
spectrogram
(German)

Figure 1: Network architecture adapted from
Collobert et al. (2016).

were not able to reproduce their results reliably. All
of our transfer learning experiments are based on this
model and for our experiments it is assumed that such
a model is already given for the transfer learning task
that is to be performed.

4 Datasets

For training the English model, we used the Lib-
riSpeech corpus (Panayotov et al., 2015). This dataset
consists of about 1000 hours of read speech, sampled
at 16 kHz, from the domain of audio books. This is
the same dataset that was used to train the original

Wav2Letter model.
The German models were trained on several

corpora taken from the Bavarian Archive for Speech
Signals (BAS) (Schiel, 1998; Reichel et al., 2016)
as well as the dataset described in Radeck-Arneth
et al. (2015), which will be referred to as “RADECK”
from now on. Overall, we had a total of 383 hours
of training data, which is only slightly more than one
third of the English corpus. Additional quantitative
information regarding each corpus, as well as any
available references, is given in Table 1. Information
about the kind of recording contained in each corpus
is given in Table 2. It is also important to point out that
some of the corpora pose additional challenges for
speech recognition like partially intoxicated people,
recordings over telephone, and different dialects.

Each German corpus was split into training and
test sets. We grouped the audio by speakers and used
10% of the groups for testing. Therefore, no speaker
appears in both training and test set ensuring that
results are not due to overfitting to certain speakers.
Exceptions to this procedure are: The VM corpora,
which were used exclusively for training because
obtaining a split based on speakers was not trivial
here; SC10, which was used only for testing because
it consists of recordings of speakers with German as
a second language and strong foreign accents with
only 5.8 hours in size; and RADECK, where we used
the original splits.

We also rely on text corpora for the KenLM
decoding step. For the English corpus (Panayotov
et al., 2015), the provided 4-gram model based on all
training transcriptions was used like in the original
Wav2Letter implementation. For the German corpus,
our n-gram model came from a preprocessed version
of the German Wikipedia, the European Parliament
Proceedings Parallel Corpus1, and all the training
transcriptions. Validation and test sets were carefully
excluded.

4.1 Preprocessing

Since the English model was trained on data with
a sampling rate of 16 kHz, the German speech data
needed to be brought into the same format so that
the convolutional filters could operate on the same
timescale. To this end, all data was resampled to 16
kHz. Preprocessing was done using librosa (McFee
et al., 2015) and consisted of applying a Short-time
Fourier transform (STFT) to obtain power level
spectrum features from the raw audio as described

1https://github.com/tudarmstadt-lt/kaldi-tuda-de/

170

Name Size Number of speakers S LER S WER TL LER TL WER

ALC (Schiel et al., 2012) 54.54h 162 13.48% 32.83% 8.23% 21.14%
HEMPEL (Draxler and Schiel, 2002) 14.21h 3909 34.05% 71.74% 19.13% 46.78%
PD1 19.36h 201 21.02% 34.37% 8.32% 11.85%
PD2 4.33h 16 7.60% 19.64% 1.97% 5.96%
RVG-J (Draxler and Schiel, 2002) 46.28h 182 17.43% 39.87% 10.85% 24.92%
SC10 5.80h 70 25.62% 78.82% 17.59% 57.84%
VM1 (Wahlster, 1993) 32.40h 654 - - - -
VM2 (Wahlster, 1993) 43.90h 214 - - - -
ZIPTEL (Draxler and Schiel, 2002) 12.96h 1957 22.87% 62.27% 15.07% 46.25%
RADECK (Radeck-Arneth et al., 2015) 181.96h 180 27.83% 65.13% 20.83% 56.17%

All corpora 415.7h 7545 22.78% 58.36% 15.05% 42.49%

Table 1: Quantitative information on the corpora used to train the German model. References to individual
corpora are given where available. Size and number of speakers refer only to the subsets we used (including
training and test sets). Test set LER and WER are reported for the best transfer learning (TL) model and the
model from scratch (S) after 103h of training.

Name Speech Type Topic Idiosyncrasies

ALC read, spontaneous car control commands, tongue twisters,
answering questions

partially recorded in running car; speakers
partially intoxicated

HEMPEL spontaneous answer: What did you do in the last hour? recorded over telephone
PD1 read phonetically balanced sentences, two

stories: “Buttergeschichte” and “Nordwind
und Sonne”

recordings were repeated until error-free

PD2 read sentences from a train query task recordings were repeated until error-free
RVG-J read, spontaneous numbers, phonetically balanced sentences,

free-form responses to questions
speakers are adolescents mostly between
the ages 13–15

SC10 read, spontaneous phonetically balanced sentences, numbers,
“Nordwind und Sonne”, free dialogue, free
retelling of “Der Enkel und der Grossvater”

multi-language corpus; only German data
was used

VM1 spontaneous dialogues for appointment scheduling multi-language corpus; only German data
was used

VM2 spontaneous dialogues for appointment scheduling,
travel planning and leisure time planning

multi-language corpus; only German data
was used

ZIPTEL read street names, ZIP codes, telephone numbers,
city names

recorded over telephone

RADECK read, semi-spontaneous Wikipedia, European Parliament transcrip-
tions, commands for command-and-control
settings

contains six microphone recordings of each
speech signal

Table 2: Information on the kind of speech data contained in each corpus.

in Collobert et al. (2016). After that, spectrum
features were mel-scaled and then directly fed into the
CNN. Originally, the parameters were set to window
length w = 25ms, stride s = 10ms and number of
components n=257. We adapted the window length
to wnew = 32ms which equals a Fourier transform
window of 512 samples, in order to follow the
convention of using power-of-two window sizes.
The stride was set to snew =8ms in order to achieve
75% overlap of successive frames. We observed that
n = 257 results in many of the components being
0 due to the limited window length. We therefore
decreased the parameter to nnew =128. After the gen-
eration of the spectrograms, we normalized them to
mean 0 and standard deviation 1 per input sequence.

Any individual recordings in the German corpora
longer than 35 seconds were removed due to GPU
memory limitations. This could have been solved
instead by splitting audio files using their word
alignments where provided (and their corresponding
transcriptions), but we chose not to do so since the loss
of data incurred by simply ignoring overly long files
was negligible. Corpora sizes given in Table 1 are after
removal of said sequences. We excluded 1046 invalid
samples in the RADECK corpus due to truncated au-
dio as well as 569 samples with empty transcriptions.

5 Experiments

Given the English model, we froze k of the lower
layers and trained all 11− k layers above with the

171

German corpora. This means the gradient was only
calculated for the weights of those 11−k layers and
gradient descent was then applied to update those as
usual. The process of freezing k layers is visualized in
Figure 1. The transfer training was performed based
on both the original weights as well as a new random
initialization for comparison. Except for changing the
training data, the German corpora introduce four new
class labels äöüß in addition to the original 28 labels.
We set the initial weights and biases of the final
softmax layer for these labels to zero. Additionally, as
a baseline for the performance of a Wav2Letter based
German ASR, we trained one model from scratch on
all German training corpora. For all experiments we
used a batch size of 64, both during training as well
as evaluation.

6 Results and Discussion

As initially hypothesized, transfer learning could give
us three benefits: Reduced computing time, lower
GPU memory requirements and a smaller required
amount of German speech data. In addition to that,
we may find structural similarities between languages
for the ASR task. In the subsequent sections, we
will first report general observations, evaluate each
hypothesis based on the performed experiments and
then analyze the learned weights using introspection
techniques. We report overall test scores and scores
on each test set in the form of WERs and LERs.
Finally, we discuss the language specific assumptions
that were required for the experiments and how
transfer learning may perform on other languages.

6.1 Retaining or reinitializing weights?

When the transfer learning training is performed,
one could either continue training on the existing
weights or reinitialize them. Reusing existing weights
might lead to stochastic gradient descent (SGD)
being stuck in a local minimum, reinitializing may
take longer to converge. For k=8 we compared the
speed of training for both methods. As it can be seen
in Figure 2, using existing weights is much faster
without a decrease in quality.

6.2 Reduced computing time

Given that languages share common features in
their pronunciation, lower layers should contain
common features that can be reused when transferring
the model to a different language. Therefore, we
subsequently froze k layers of the original English
model, choosing a different k in each experiment. Our

0 5 10 15 20 25
Training time in hours

100

150

200

250

300

350

Tr
ai

ni
ng

 lo
ss

Reinitialized weights k = 8
Weights retained k = 8

Figure 2: Comparison of learning curves for 25 hours
of training with either reinitialized or retained weights.
In both cases k=8 layers were frozen.

experiments showed that this assumption is indeed
true, it is sufficient to adjust only at least two layers
for achieving training losses below 100 after 25 hours.
The loss curve for different k can be seen in Figure 3.

0 5 10 15 20 25
Training time in hours

75

100

125

150

175

200

225

250

Tr
ai

ni
ng

 lo
ss

k = 10
k = 9
k = 8
k = 6
k = 0

Figure 3: Learning curves for 25 hours of training
with different numbers k of frozen layers. Note
that due to the decreased time to process a batch
(cf. Figure 4), training models with higher k (more
frozen layers) allows to iterate over the training
data more often in the same amount of time. But
eventually, this does not help to beat the model
with k= 0 which is trained with the fewest dataset
iterations but still at any time achieves the lowest loss.

For bigger k we need to backpropagate through
fewer layers, therefore training time per step (training
one batch) decreases almost monotonically with
k in Figure 4. Despite that boost in training time,
experiments show that loss is almost always smaller
at any given point in time for smaller k. In Figure 3

172

this manifests in k = 0 always having the smallest
training loss. We conclude that in terms of achieving
small loss, there is no reason to favor big values for
k, freezing layers is not necessary.

0 10 20 30 40 50 60
Training time in seconds per step

k = 10

k = 9

k = 8

k = 6

k = 0

Figure 4: The more layers we freeze, the faster one
batch of 64 is trained. Measured over 25h of training
each.

When we compare the best transfer learning model
with k=0 with a German model trained from scratch
in Figure 5, we are able to see huge improvements
in terms of computing time required for achieving
the same loss. We conclude that a good weight
starting configuration from another language’s ASR
is beneficial.

0 20 40 60 80 100
Training time in hours

0

100

200

300

400

500

Tr
ai

ni
ng

 lo
ss

From scratch
Based on English model with k = 0

Figure 5: Applying transfer learning by using the
weights from the English model leads to small losses
more quickly than training from scratch.

6.3 Lower GPU memory requirements
Not only does it matter how long training takes with
given resources, many researchers may also have
only limited GPU memory at disposal. All of our
experiments were performed on a single GeForce
GTX Titan X graphics card, but the more layers k
we freeze, the fewer layers we need to backpropagate
through. Therefore, memory requirements for the
GPU are lower. For a batch size of 64, forward propa-

gation takes less than 3 GB of memory, while training
the whole network requires more than 10.4 GB. In
contrast to that, freezing 8 layers already enables
training with less than 5.5 GB of GPU memory.

6.4 Little German speech data required

We hypothesized that little training data may be
required for the transfer learning task. Additionally to
using the whole 383 hours of data we had available,
we also tried an even more scarce variant. In order to
prevent overfitting, we used a transfer learning model
with k = 8 for our experiments. As it can be seen
in Figure 6, for a model with k=8 that was trained
for 25 hours, the LER using 100 hours of audio is
almost equal to using the complete training data.
Longer training causes overfitting. When using just
20 hours of training data this problem occurs even
earlier. We can conclude that even though training
for just 25 hours works well with only 100 hours of
audio, beyond that overfitting appears nevertheless.

0 10 20 30 40 50
Training time in hours

0.30

0.35

0.40

0.45

0.50

0.55

Le
tte

r E
rro

r R
at

e

All data: 383h
100h
20h

Figure 6: LER as a mean over all test samples for dif-
ferent training set sizes with k = 8 for all experiments

6.5 Model Introspection

When applying transfer learning, it is of interest
how much the model needs to be adapted and which
portions of the model are shared between different
languages. To get insights into those differences, we
compared the learned parameters both between the
English model and adapted German model (for k=0)
as well as between different points in time during
training. Since the output layers of both models do not
use the same number of output features, we excluded
this layer from the comparison. First, we investigated
the distribution of weights and corresponding changes
between the English and adapted model, visualized on
the left side of Figure 7. The plot shows the fraction

173

-7 -1-3-5

Figure 7: Weight distributions of the German and English model (left) and weight difference distributions both
in an early stage and for the final model (right).

of weights in a layer lying in the respective range
of values. Because most of the weights are between
-0.2 and 0.2 (in just 2 bins), we used a log10-scale
for the fraction of weights in each bin. We observed
that the weights of highest absolute values are in
the input and topmost layer. This indicates that the
transformations in the middle layers are smaller than
in the outer ones. Moreover, the weights of each layer
are distributed with a mean value close to zero and
very small variance. Due to the similar distributions,
it is reasonable to compare the weights and their dif-
ferences in the following. Between both models, there
are only minor changes in the weight distributions,
which supports the assumption that transfer learning
is performing well because the English model is a
suitable model for being adapted to German.

Since the adaptation to German is not explainable
based on the distributions, we further investigated the
differences between the individual weights. Therefore,
we determined the absolute distance between weights
as shown in Figure 7 on the right side. In the plot,
we visualize the distribution of weight changes. We
observed only small changes, therefore a log10-scale
is used again. Figure 7 on the right side shows this
analysis for the transfer learning model early in
training as well as the final model after four days. In
the early phase, weights had only been adapted little
with a maximum difference of 0.1, while the final
model weights changed up to 0.36. Additionally, we
observed that the weights changed more in the middle
and top layers earlier, but with progressing training
the input layer experiences more changes. This higher
variability in the outer layers can both be observed

in the weights of each individual model as well as in
their differences. That is an indication that the model
needs to alter the outer layers more than the inner
ones in order to adapt to a particular language.

Finally, we looked into the changes of individual fil-
ters. Due to the large number of neurons, we provide
the complete set of filters from all layers only in the
supplement.2 We present our findings for a selected
set of neurons of the input layer that showed well-
interpretable patterns. The weights of those filters and
their differences between the English and German
model are shown in Figure 8. The top row shows neu-
rons that can be interpreted as detectors for short per-
cussive sounds (e.g. t or k) and the end of high pitched
noise (e.g. s). The bottom neurons might detect rising
or falling pitch in vowels. Of these four filters, the up-
per left differs most between English and German with
a maximum difference of 0.15. This supports that it is
detecting percussive sounds as German language has
considerably stronger pronunciation of corresponding
letters than English. On the other hand, the bottom
row filters experienced less change (both<0.1 max-
imum difference). This supports them being related
to vocal detection since there are few differences in
pronunciation between English and German speakers.

6.6 Overall test set accuracy
All test set LERs and WERs scores are consistent with
the differences of loss in the performed experiments.
After 103 hours of training, the best transfer learning
model is therefore k=0 with a LER of 15.05% and
WER of 42.49% as the mean over all test samples.

2supplements: https://doi.org/10.6084/m9.figshare.5048965

174

0.0 0.20.1 0.150.05

weight difference

-2.4 1.20 0.6-1.2

weight

-1.8 -0.6

Figure 8: Differences in specific filters of the input
layer. Neurons were chosen based on particular
patterns. Each triplet of images shows the weight
differences and the corresponding weights in the
German and English model (from left to right).

The model that has been trained from scratch for
the same amount of time achieves a LER of 22.78%
and WER of 58.36%. Table 1 gives details about the
accuracy on each test set.

Some very high WERs are due to heavy German
dialect that is particularly problematic with numbers,
e.g.

Expected: “sechsundneunzig”
Predicted: “sechs un nmeunsche”
LER 47%, WER 300%, loss: 43.15

This shows, that there is both room for improve-
ment in terms of word compounds as well as ASR
of different dialects where data is even more scarce.

6.7 Accuracy
boost through language model decoding

The original Wav2Letter network did not report on
improvements in LER and WER due to the KenLM
integration. In Table 3 We compared decoding
performed through KenLM scored beam search with
a greedy decoding on the German corpora.

6.8 Transfer learning for other languages

In our speech recognizer, the lower layers of the
network learn phonological features whereas the
higher (deeper) ones map these features onto

LER WER

with LM 15.05% 42.49%
without LM 16.77% 56.14%

Table 3: Comparing LER and WER with and without
KenLM based on model with k=0

graphemes. Thus for ASR these two types of features
clearly matter the most. German and English have
many phonemes and graphemes in common. The
apparent success of our transfer learning approach
was greatly facilitated by these similarities. Not all
languages share as much in terms of these features.
We anticipate that our approach will be less effective
for such pairs. This means we expect the adaptation
to a less similar language to require more data and
training time. We further suspect that differences
in grapheme inventories cause other effects than
differences in phonemes. This is because only the
mapping of phonological features to graphemes has
to be adapted for a different orthography. In contrast,
differences in phoneme inventories require more
changes in features learned at lower layers of the
network. Moreover, there could be differences in the
importance of specific features. For instance, having
vowels in common is potentially more important
for transfer learning than sharing many consonants,
because vowels experience higher variability in pro-
nunciation. At the same time very drastic differences
in orthography could probably trigger a stronger
change of weights in lower network layers. We expect
our transfer learning approach to encounter strong
difficulties sharing knowledge between English and a
logographic language like Mandarin Chinese. Despite
those difficulties, using weights from a pre-trained
ASR-network is a more reasonable initialization than
random weights. This is because very basic audio
features are shared between all languages. Therefore
even for more different language pairs, we expect
transfer learning to decrease the necessary amount
of training data and time.

7 Conclusions

We were able to show that transfer learning using
model adaptation can improve the speed of learning
when only 383 hours of training data are available.
Given an English model, we trained a German model
that outperforms the German baseline model trained
from scratch in the same amount of training time.
Thus, with little time, our approach allows training

175

better models. We showed that the English model’s
weights are a good starting configuration and allow
the transfer learning model to reach smaller training
losses in comparison to a weight reinitialization.
When less GPU memory is available, freezing the
lower 8 layers allows to train batches of 64 with less
than 5.5 GB instead of more than 10.4 GB while still
performing similar after 25 hours of training. Model
introspection determined that lower and upper layers,
in contrast to the layers in the center, need to change
more thoroughly in order to adapt to the new language.

We identified several interesting directions for fu-
ture work. Test accuracy showed that word com-
pounds can be challenging and dialects pose difficul-
ties when little training data is available. GPU memory
consumption could be further reduced by caching the
representation that needs only forward propagation.
An open source version of the ASG loss would en-
able faster training. Finally, future research should
investigate how well this transfer learning approach
generalizes by applying it to more distinct languages.

Acknowledgments

This research was supported by the donation of
a GeForce GTX Titan X graphics card from the
NVIDIA Corporation.

References
Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-scale machine learning on
heterogeneous systems. http://tensorflow.org/.

Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Jingdong Chen,
Mike Chrzanowski, Adam Coates, Greg Diamos,
Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Y. Hannun, Billy Jun,
Patrick LeGresley, Libby Lin, Sharan Narang, An-
drew Y. Ng, Sherjil Ozair, Ryan Prenger, Jonathan
Raiman, Sanjeev Satheesh, David Seetapun, Shubho
Sengupta, Yi Wang, Zhiqian Wang, Chong Wang,
Bo Xiao, Dani Yogatama, Jun Zhan, and Zhenyao Zhu.
2015. Deep speech 2: End-to-end speech recognition
in english and mandarin. CoRR abs/1512.02595.
http://arxiv.org/abs/1512.02595.

Dongpeng Chen and Brian Kan-Wing Mak. 2015.
Multitask learning of deep neural networks for low-
resource speech recognition. IEEE/ACM Trans. Audio,
Speech & Language Processing 23(7):1172–1183.
http://dx.doi.org/10.1109/TASLP.2015.2422573.

François Chollet. 2015. Keras.
https://github.com/fchollet/keras.

Ronan Collobert, Christian Puhrsch, and Gabriel Syn-
naeve. 2016. Wav2letter: an end-to-end convnet-based
speech recognition system. CoRR abs/1609.03193.
http://arxiv.org/abs/1609.03193.

Christoph Draxler and Florian Schiel. 2002. Three New
Corpora at the Bavarian Archive for Speech Signals
– and a First Step Towards Distributed Web-Based
Recording. In Third International Conference on
Language Resources and Evaluation (LREC). Gonzles
Rodriguez, Manual, pages 21–24.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural
networks. In Aistats. volume 9, pages 249–256.

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks, volume 385 of
Studies in Computational Intelligence. Springer.
http://dx.doi.org/10.1007/978-3-642-24797-2.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning.
ACM, pages 369–376.

Frantisek Grezl and Petr Fousek. 2008. Optimizing bottle-
neck features for lvcsr. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pages 4729–4732.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,
and Philipp Koehn. 2013. Scalable modified Kneser-
Ney language model estimation. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics. Sofia, Bulgaria, pages 690–696.

Georg Heigold, Vincent Vanhoucke, Alan Senior, Patrick
Nguyen, M. Ranzato, Matthieu Devin, and Jeffrey
Dean. 2013. Multilingual acoustic models using
distributed deep neural networks. In International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, pages 8619–8623.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Kate Knill, Mark J. F. Gales, Anton Ragni, and
Shakti P. Rath. 2014. Language independent and
unsupervised acoustic models for speech recog-
nition and keyword spotting. In 15th Annual
Conference of the International Speech (INTER-
SPEECH) Communication Association, Singapore,
September 14-18, 2014. pages 16–20. http://www.isca-
speech.org/archive/interspeech 2014/i14 0016.html.

176

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
2013. Rectifier nonlinearities improve neural network
acoustic models. In Proc. ICML. volume 30.

Brian McFee, Colin Raffel, Dawen Liang, Daniel P.W.
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
2015. librosa: Audio and Music Signal Analysis in
Python. In Proceedings of the 14th python in science
conference. pages 18–25.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. LibriSpeech: an ASR
corpus based on public domain audio books. In
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, pages 5206–5210.

Stephan Radeck-Arneth, Benjamin Milde, Arvid Lange,
Evandro Gouvêa, Stefan Radomski, Max Mühlhäuser,
and Chris Biemann. 2015. Open source german distant
speech recognition: Corpus and acoustic model. In In-
ternational Conference on Text, Speech, and Dialogue.
Springer International Publishing, pages 480–488.

Uwe D. Reichel, Florian Schiel, Thomas Kisler, Christoph
Draxler, and Nina Pörner. 2016. The BAS Speech
Data Repository .

Florian Schiel. 1998. Speech and speech-related resources
at BAS. In Proceedings of the First International
Conference on Language Resources and Evaluation.
pages 343–349.

Florian Schiel, Christian Heinrich, and Sabine Barfüsser.
2012. Alcohol language corpus: the first public corpus
of alcoholized German speech. Language resources
and evaluation 46(3):503–521.

Stéfan van der Walt, S. Chris Colbert, and Gaël Varo-
quaux. 2011. The numpy array: a structure for
efficient numerical computation. CoRR abs/1102.1523.
http://arxiv.org/abs/1102.1523.

Ngoc Thang Vu and Tanja Schultz. 2013. Multilingual
multilayer perceptron for rapid language adaptation
between and across language families. In Frédéric
Bimbot, Christophe Cerisara, Cécile Fougeron, Guil-
laume Gravier, Lori Lamel, François Pellegrino, and
Pascal Perrier, editors, INTERSPEECH. ISCA, pages
515–519.

Wolfgang Wahlster. 1993. Verbmobil. In Grundlagen und
Anwendungen der Künstlichen Intelligenz. Springer
Berlin Heidelberg, pages 393–402.

Dong Wang and Thomas Fang Zheng. 2015. Trans-
fer Learning for Speech and Language Processing.
arXiv:1511.06066 [cs] http://arxiv.org/abs/1511.06066.

177

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 178–185,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Gradual Learning of Matrix-Space Models of Language
for Sentiment Analysis

Shima Asaadi∗ and Sebastian Rudolph
Faculty of Computer Science

TU Dresden, Germany
firstname.lastname@tu-dresden.de

Abstract
Learning word representations to capture the
semantics and compositionality of language
has received much research interest in natu-
ral language processing. Beyond the popu-
lar vector space models, matrix representations
for words have been proposed, since then, ma-
trix multiplication can serve as natural com-
position operation. In this work, we investi-
gate the problem of learning matrix representa-
tions of words. We present a learning approach
for compositional matrix-space models for the
task of sentiment analysis. We show that our
approach, which learns the matrices gradually
in two steps, outperforms other approaches and
a gradient-descent baseline in terms of quality
and computational cost.

1 Introduction

Recently, a lot of NLP research has been de-
voted to word representations with the goal to
capture language semantics, compositionality, and
other linguistic aspects. A prominent class of
approaches to produce word representations are
Vector Space Models (VSMs) of language. In
VSMs, a vector representation is created for each
word in the text, mostly based on distributional
information. One of the recent prominent meth-
ods to extract vector representations of words is
Word2vec, introduced by Mikolov et al. (2013a;
2013b). These models measure both syntactic and
semantic aspects of words and also seem to exhibit
good compositionality properties. The principle
of compositionality states that the meaning of a
complex expression can be obtained from combin-
ing the meaning of its constituents (Frege, 1884).
In the Word2vec case and many other VSM ap-
proaches, some vector space operations (such as

∗Supported by DFG Graduiertenkolleg 1763 (QuantLA)

vector addition) are used as composition opera-
tion.

One of the downsides of using vector addi-
tion (or other commutative operations like the
component-wise product) as the compositional-
ity operation is that word order information is
inevitably lost. Alternative word-order-sensitive
compositionality models for word representations
have been introduced, such as Compositional
Matrix-Space Models (CMSMs) (Rudolph and
Giesbrecht, 2010). In such models, matrices in-
stead of vectors are used as word representations
and compositionality is realized via matrix mul-
tiplication. It has been proven that CMSMs are
capable of simulating a wide range of VSM-based
compositionality operations. The question, how-
ever, how to learn suitable word-to-matrix map-
pings has remained largely unexplored with few
exceptions (Yessenalina and Cardie, 2011). The
task is exacerbated by the fact that this amounts to
a non-convex optimization problem, where a good
initialization is crucial for the success of gradient
descent techniques.

In this paper, we address the problem of learn-
ing CMSM in the domain of sentiment analysis.
As has been observed before, the sentiment of a
phrase is very much influenced by the presence
and position of negators and modifiers, thus word
order seems to be particularly relevant for estab-
lishing an accurate sentiment score.

We propose to apply a two-step learning method
where the output of the first step serves as ini-
tialization for the second step. We evaluate the
performance of our method on the task of fine-
grained sentiment analysis and compare it to a
previous work on learning CMSM for sentiment
analysis (Yessenalina and Cardie, 2011). More-
over, the performance of our representation learn-
ing in sentiment composition is evaluated on sen-
timent composition in opposing polarity phrases

178

(Kiritchenko and Mohammad, 2016b).
The rest of the paper is organized as follows.

Section 2 provides the related works. A detailed
description of the approach is presented in Section
3, followed by experiments and discussion in Sec-
tion 4, and the conclusion in the last section.

2 Related Work

Compositional Distributional Semantics: In
compositional distributional semantics, different
approaches for learning word and phrase represen-
tations and ways to compose the constituents are
studied. As an early work in compositional dis-
tributional semantics, Mitchell and Lapata (2010)
propose vector composition models with additive
and multiplicative functions as the composition
operations in semantic VSMs. These models out-
perform non-compositional approaches in seman-
tic similarity of complex expressions. Mikolov
et al. (2013a) propose Word2vec where contin-
uous vector representations of words are trained
through continuous bag-of-words and skip-gram
models. These models are supposed to reflect
syntactic and semantic similarities of words. An
extension to these models is a vector representa-
tion of idiomatic phrases by considering a vec-
tor for each phrase and training Word2vec accord-
ingly (Mikolov et al., 2013b). Moreover, compo-
sitionality is captured in these models by applying
certain mathematical operations on word vectors.

Rudolph and Giesbrecht (2010) introduced
compositional matrix-space models in which
words are represented as matrices, and defined
composition operation as a matrix multiplication
function. Learning such matrix representations
can be done by supervised machine learning al-
gorithms (Yessenalina and Cardie, 2011). Other
approaches using matrices for distributional rep-
resentations of words have been introduced more
recently. Socher et al. (2012) introduce a model in
which a matrix and a vector is assigned to each
word. The vector captures the meaning of the
word by itself and the matrix shows how it modi-
fies the meaning of neighboring words. The model
is learned through recursive neural networks. In
the model of Socher et al. (2013), a unique tensor-
based composition function in a recursive neural
tensor network is introduced which composes all
word vectors. Maillard and Clark (2015) describe
a compositional model for learning adjective-noun
pairs where, first, a vector representation for each

word is trained using a skip-gram model. Then,
adjective matrices are trained in composition to
their nouns, using back-propagation.
Sentiment Analysis: There is a lot of research in-
terest in the sentiment analysis task in NLP. The
task is to classify the polarity of a text (negative,
positive, neutral) or assign a real-valued score,
showing the polarity and intensity of the text.
Some contributions focus on learning sentiment of
a short text based on supervised machine learn-
ing techniques (Yessenalina and Cardie, 2011;
Agrawal and An, 2014). Recent approaches have
focused on learning different types of neural net-
works for sentiment analysis, such as the work
of Socher et al. (2013) which apply recursive neu-
ral tensor networks for both fine-grained and bi-
nary classification of phrases and sentences. Tim-
maraju and Khanna (2015) use recursive-recurrent
neural networks for sentiment classification of
long text, and Hong and Fang (2015) apply long
short-term memory and deep recursive-NNs. In a
very recent work by Wang et al. (2016), convo-
lutional neural networks and recurrent neural net-
works are combined leading to a significant im-
provement in sentiment analysis of short text.
Sentiment Composition: Compositionality in
sentiment analysis is used to compute the sen-
timent of complex phrases and sentences. Re-
cent works of Kiritchenko and Mohammad
(2016a; 2016b) deal with sentiment composition
of phrases. In (Kiritchenko and Mohammad,
2016a), they create a dataset of unigrams, bigrams
and trigrams, which contains phrases with at least
one negative and one positive word. They ana-
lyze the performance of different learning algo-
rithms and word embeddings on the dataset with
different linguistic patterns. In (Kiritchenko and
Mohammad, 2016b), they create a sentiment com-
position lexicon for phrases containing negators,
modals and adverbs with their associated senti-
ment scores, and study the effect of modifiers on
the overall sentiment of phrases.

3 The Approach

Learning appropriate word representations to ex-
tract syntactic and semantic information of com-
positional phrases is a complex task in sentiment
analysis. In order to learn a sentiment-aware
representation model, we propose the following
approach: We use a compositional matrix-space
model, where, as opposed to vector-space models

179

of language, words are represented by matrices.
In the following, we describe the representation
model itself and the training in detail.

3.1 Model Description: Compositional
Matrix-Space Model

Compositional Matrix-Space Models (CMSMs)
consider compositionality in language by the fol-
lowing general idea: the semantic space consists
of quadratic matrices carrying real values. In other
words, the semantics of each word is represented
by a matrix. Then, considering the standard ma-
trix multiplication as the composition operation,
the semantics of phrases are obtained by multi-
plying the word-matrices in the appropriate or-
der (Rudolph and Giesbrecht, 2010). Training
CMSM using machine learning algorithms yields
a type of word embedding for each word, which
is a low-dimensional real-valued matrix. Like for
word embeddings into vector spaces, each ma-
trix representation is supposed to contain syntactic
and semantic information about the word. Since
we consider the task of sentiment analysis, word
embeddings must be trained to contain sentiment-
related information.

More formally, let p = x1 · · ·xk be a phrase
consisting of k words. The CMSM assigns to each
word xj a matrix Wxi ∈ Rm×m. Then the repre-
sentation of p which is the composition of words
in the phrase, is shown as the matrix product of the
words in the same order:

Wp =
k∏

i=1

Wxi = Wx1Wx2 · · ·Wxk

To finally associate a real-valued score to a phrase
p, we map the matrix representation of p to a real
number using two mapping vectors α, β ∈ Rm as
follows:

ωp = α>Wpβ

In our case, the final score ωp is supposed to
indicate the sentiment polarity and strength of the
phrase p.

The learning task is now, given a set of d train-
ing examples (pj , ωj) with 1 ≤ j ≤ d, to find
matrix representation for all words occurring in all
pj , such that ωpj ≈ ωj for all j. Thereby, we fix

α = e1 =

1
0
...
0

 and β = em =

0
...
0
1

 ,

which only moderately restricts the expressivity of
our model as made formally precise in the follow-
ing theorem.

Theorem 1. Given matrices W1, . . . ,W` ∈
Rm×m and vectors α, β ∈ Rm, there are matrices
Ŵ1, . . . , Ŵ` ∈ R(m+1)×(m+1) such that for ev-
ery sequence i1 · · · ik of numbers from {1, . . . , `}
holds

α>Wi1 · · ·Wikβ = e>1 Ŵi1 · · · Ŵikem+1

Proof. If α is the zero vector, all scores will be
zero, so we can let all Ŵh be the (m+1)×(m+1)
zero matrix.

Otherwise let M be an arbitrary m ×m matrix
of full rank, whose first row is α, i.e., e>1 M = α>.
Now, let

Ŵh :=

(
MWhM

−1 MWhβ

0 · · · 0 0

)

for every h ∈ {1, . . . , `}. Then, we obtain

ŴgŴh =

(
MWgWhM

−1 MWgWhβ

0 · · · 0 0

)

for every g, h ∈ {1, . . . , `}. This leads to

e>1 Ŵi1 · · · Ŵikem+1

= e>1 MWi1 · · ·Wikβ

= α>Wi1 · · ·Wikβ

In words, this theorem guarantees that for every
CMSM-based scoring model with arbitrary vec-
tors α and β there is another such model (with
dimensionality increased by one) where α and β
are distinct unit vectors. This justifies our above
mentioned choice.

3.2 Model Training
Since the learning problem for CMSMs is not a
convex problem, it must be trained carefully and
specific attention has to be devoted to a good ini-
tialization (Yessenalina and Cardie, 2011). To this
end, we (1) perform an “informed initialization”
exploiting available scoring information for one-
word phrases (unigrams), (2) apply a first learning
step training only on parts of the matrices and us-
ing scored one- and two-word phrases from our

180

training set, and (3) use the matrices obtained in
this step as initialization for training the full ma-
trices on the full training set.
Initialization: In this step, we first take all the
words in the training data as our vocabulary, cre-
ating quadratic matrices of size m × m with en-
tries from a normal distribution N (0, 0.1). Then,
we consider the words which appear in unigram
phrases pj = x with associated score ωj in the
training set. We exploit the fact that for any matrix
W , computing e>1 Wem extracts exactly the entry
of the first row, last column of W . Hence, we up-
date this entry in every matrix corresponding to a
scored unigram phrase by this value, i.e.:

Wpj =

· · · · ωj
...

. . .
...

· · · · ·

This way, we have initialized the word-to-

matrix mapping such that it leads to perfect scores
on the unigram phrases.
First Learning Step: After initialization, we con-
sider bigram phrases. The sentiment value of a bi-
gram phrase pj = xy is computed by the standard
multiplication of word matrices of its constituents
in the same order and mapping to the real value
using the mapping vectors α = e1 and β = em:

ωj = e>1 WxWyem

=

1
...
0

>x1,1 · · · x1,m

...
. . .

...
xm,1· · ·xm,m

y1,1 · · · y1,m

...
. . .

...
ym,1· · ·ym,m

0

...
1

=

x1,1
...

x1,m

> y1,m

...
ym,m

 =
∑m

i=1 x1,iyi,m

We observe that for bigrams, multiplying the
first row of the first matrix (row vector) with the
last column of the second matrix (column vector)
yields the sentiment score of the bigram phrase.
Hence, as far as the scoring of unigrams and bi-
grams are concerned, only the matrix entries in the
first row and the last column are relevant – thanks
to our specific choice of the vectors α and β.

This observation justifies the next learning step:
we use the unigrams and bigrams in the training
set to learn optimal values for the relevant matrix
entries only.

Second Learning Step: Using the entries ob-
tained in the previous learning step for initializa-
tion, we finally repeat the optimization process,
using the full training set and optimizing all the
matrix values simultaneously.

For both learning steps, we apply the batch gra-
dient descent optimization method on the training
set to minimize the cost function defined as the
summed squared error (SSE):

C(W) =
1
2

d∑
j=1

(ω̂j − ωj)2

Then, update the word matrices as follows:

Wxi = Wxi − η × (
∂C(W)
∂Wxi

+ λWxi)

In order to avoid overfitting in optimization, a
regularization term λWxi is used.

According to Petersen and Pedersen (2012) the
derivative of a phrase with respect to the i-th word-
matrix is computed as follows:

∂ωj

∂Wxi

=
∂(α>Wx1 · · ·Wxi · · ·Wxk

β)
∂Wxi

=

(α>Wx1 · · ·Wxi−1)
>(Wxi+1 · · ·Wxk

β)

If a word xi occurs several times in the phrase,
then the partial derivative of the phrase with re-
spect to Wxi is the sum of partial derivatives with
respect to each occurrence of Wxi .

4 Experiments

We evaluate our approach on two different datasets
which provide short phrases annotated with senti-
ment values. In both cases, we perform a ten-fold
cross-validation.

4.1 Evaluation on Sentiment-Annotated
Phrases from the MPQA Corpus

Experimental Setting: For the first evaluation of
the proposed approach, we use the MPQA cor-
pus1. This corpus contains newswire documents
annotated with phrase-level polarity and intensity.
We extracted the annotated phrases from the cor-
pus documents, obtaining 9501 phrases. We re-
moved phrases with low intensity similar to Yesse-
nalina and Cardie (2011). The levels of polari-

1http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/

181

ties and intensities and their translation into nu-
merical values are as per Table 1. For the eval-
uation, we apply a ten-fold cross-validation pro-
cess on the training data as follows: eight folds
are used as training set, one fold as validation set
and one fold as test set. The initial number of it-
erations in the first learning and second learning
steps are set to T = 200 each, but we stop iterating
when we obtain the minimum ranking loss, e =
1
n

∑
i |ω̂i − ωi|, on the validation set. Finally, we

record the ranking loss of the obtained model for
the test set. The learning rate η and regularization
parameter λ in gradient descent are set to 0.01, by
experiment. The dimension of matrices is set to
m = 3 in order to be able to compare our results to
the approach described by Yessenalina and Cardie
(2011), called Matrix-space OLogReg+BowInit.
We call our approach Gradual Gradient descent-
based Matrix-Space Models (Grad-GMSM). All
implementations have been done in Python 2.7.

Polarity Intensity Score
negative high, extreme −1
negative medium −0.5
neutral medium, high, extreme 0
positive medium 0.5
positive high, extreme 1

Table 1: Phrase polarities and intensities in the
MPQA corpus and their translation into sentiment
scores.

Results and Discussion: In Yessenalina and
Cardie’s Matrix-space OLogReg+BowInit, matri-
ces are initialized with a bag-of-words model.
Then, ordered logistic regression is applied in or-
der to minimize the negative log-likelihood of the
training data, as the objective function. L-BFGS-B
is used as their optimizer. To avoid ill-conditioned
matrices, a projection step is added to matrices
during training, by shrinking the singular value of
matrices to one.

The ranking losses obtained by Yessenalina and
Cardie’s and by our method are shown in Table 2.
As we observe, Grad-GMSM obtained a signifi-
cantly lower ranking loss than Matrix-space OLo-
gReg+BowInit.

Table 3 shows the sentiment scores of some ex-
ample phrases trained using these two methods.
As shown in the table, the two approaches’ results
coincide regarding the order of basic phrases: the
score of “very good” is greater than “good” (and
both are positive) and the score of “very bad” is

Ranking
Method loss
Grad-GMSM 0.3126
Matrix-space OLogReg+BowInit 0.6375

Table 2: Ranking loss of compared methods.

Matrix-space
Phrase Grad-GMSM OLogReg+BowInit
good 0.73 2.81
very good 0.95 3.53
not good −0.43 −0.16
not very good −0.29 0.66
bad −0.80 −1.67
very bad −1.04 −2.01
not bad 0.38 −0.54
not very bad 0.32 −1.36

Table 3: Frequent phrases with average sentiment
scores

less than “bad” (and both are negative). Also,
“not good” is characterized as negative by both
approaches.

On the other hand, there are significant differ-
ences between the two approaches: for example,
our approach characterizes the phrase “not bad”
as mildly positive while their’s associates a neg-
ative score to it, the same discrepancy occurs for
“not very bad”. Intuitively, we tend to agree more
with our method’s verdict on these phrases.

In general, our findings confirm those of Yesse-
nalina and Cardie: “very” seems to intensify the
value of the subsequent word, while the “not” op-
erator does not just flip the sentiment of the word
after it, but also dampens the sentiment of the
words gradually. On the other hand, the scores of
phrases starting with “not very” defy the assump-
tion that the described effects of these operators
can be combined in a straightforward way.

Figure 1 provides a more comprehensive se-
lection of phrases and their associated scores
by our approach. We obtained an average of
ω(very very good) = 1.23, which is greater than
“very good”, and ω(very very bad) = −1.34
less than “very bad”. Therefore, we can also
consider “very very” as an intensifier operator.
Moreover, we observe that the average score of
ω(not really good) = −0.463 is not equal to the
average score of ω(really not good) = −0.572,
which demonstrates that the matrix-based compo-
sitionality operation shows sensitivity to word or-
ders, arguably reflecting the meaning of phrases

182

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

really very bad
very very bad
really bad
very bad
bad
really not good
not really good
not good
not very good
not very bad
not bad
not really bad
really not bad
good
very good
really good
very very good
really very good

Sentiment Score

Range of sentiment scores

Average

Figure 1: The order of sentiment scores for sample phrases (trained on MPQA corpus).

better than any commutative operation could.

Although the training data consists of only the
values of Table 1, the training of the model is done
in a way that sentiment scores for phrases with
more extreme intensity might yield real values
greater than +1 or lower than −1, since we do not
constrain the sentiment scores to [−1,+1]. More-
over, in our experiments we observed that no extra
precautions were needed to avoid ill-conditioned
matrices or abrupt changes in the scores while
training.

To assess the effect of our gradual two-step
training method, we compared the results of Grad-
GMSM against those obtained by random ini-
tialization followed by a single training phase
where the full matrices were optimized (randIni-
GMSM). The results, averaged over 10 runs each,
are reported in Table 4. On top of a significantly
better result in terms of ranking loss, we also ob-
serve faster convergence in Grad-GMSM, since
the lowest ranking loss is obtained on average af-
ter 78 iterations, including both training steps. In
randIni-GMSM, the lowest ranking lost happens
on average after 162 iterations.

To observe the effect of a higher number of di-
mensions on our approach, we repeated the ex-
periments with m = 50, and observed a ranking
loss of e = 0.3125 (i.e., virtually the same as for

Method
Ranking

loss
Total number of

iterations

Grad-GMSM 0.3126 21.1 (Step 1) + 56.5 (Step 2) = 77.6
randIni-GMSM 0.3480 161.5

Table 4: Performance comparison for different
initializations in MPQA

m = 3) and similar values for the number of iter-
ations confirming the observation of Yessenalina
and Cardie, that increasing the number of dimen-
sions does not significantly improve the prediction
quality of the obtained model.

4.2 Evaluation on Sentiment Composition
Lexicon with Opposing Polarity Phrases

Experimental Setting: For the second evalua-
tion of the proposed approach we use the Senti-
ment Composition Lexicon for Opposing Polarity
Phrases (SCL-OPP)2. SCL-OPP consists of 602
unigrams, 311 bigrams, and 265 trigrams, which
are taken from a corpus of tweets, and annotated
with real-valued sentiment scores in the interval
[−1,+1] by Kiritchenko and Mohammad (2016b).
The multi-word phrases contain at least one neg-
ative word and one positive word. Therefore,
we find this lexicon as an interesting and suitable
dataset to evaluate our approach in sentiment pre-

2http://www.saifmohammad.com/WebPages/SCL.html

183

diction of opposing polarity phrases.

In this experiment, we set the dimension of ma-
trices to m = 200 as in (Kiritchenko and Mo-
hammad, 2016b) and T = 50. The learning rate
η and regularization parameter λ in gradient de-
scent are set to 0.1 and 0.01, respectively. In ad-
dition to the ranking loss, we also use the Pearson
correlation coefficient (r) for performance evalu-
ation, which measures the linear relation between
the predicted and the annotated sentiment polarity
of phrases in training data. Again, we apply ten-
fold cross-validation in the same way as described
before and average over ten repeated runs.

Results and Discussion: Kiritchenko and Mo-
hammad (2016b) study different patterns of sen-
timent composition in phrases. They analyze the
efficacy of several supervised and unsupervised
methods on these phrases, and the effect of POS
tags, word vector representations, etc. as their
features in learning sentiment classification and
regression. The word embeddings are obtained
by the Word2vec model. For the task of regres-
sion, RBF kernel-based Support-Vector Regres-
sion (SVR) is applied as a supervised method,
which we call RBF-SVR. RBF-SVR uses all un-
igrams, their sentiment scores, POS tags, and
word embeddings as features during the training.
For composition, they use maximal, average or
concatenation of the embeddings. They perform
learning for trigrams and bigrams separately. The
best results reported by RBF-SVR on bigrams and
trigrams are r = 0.802 and r = 0.753, respec-
tively.

As opposed to the experimental scheme of
RBF-SVR, we apply our regular training proce-
dure on SCL-OPP lexicon. We consider it im-
portant that the learned model generalizes well to
phrases of variable length, hence we consider the
training of one model per phrase length not con-
ducive. Rather, we argue that training CMSM can
and should be done independent of the length of
phrases, by ultimately using the combination of
different length phrases for training and testing.
Also, our approach does not use information ex-
tracted from other resources (such as Word2vec)
nor POS tagging, i.e., we perform a light-weight
training with fewer features. Still, we were able to
obtain Pearson r = 0.759 in the task of regression.

Table 5 presents the results obtained by random
initialization in CMSM and Grad-GMSM on the
SCL-OPP dataset. In both methods we apply early

stopping and perform ten-fold cross-validation. In
Grad-GMSM, the total number of iterations again
includes the iterations in both learning phases, and
still it shows a faster convergence toward mini-
mum ranking loss.

Ranking Pearson Total number
Method loss r of iterations
Grad-GMSM 0.249 0.759 2.5 (Step 1) + 7.7 (Step 2) = 10.2
randIni-GMSM 0.376 0.441 77

Table 5: Performance comparison for different ini-
tializations in SCL-OPP

Finally, we repeated the experiments on the
Grad-GMSM model with values of m, i.e., differ-
ent numbers of dimensions. For each dimension
number, we took the average of 5 runs. As shown
in Table 6, the results do improve only marginally
when increasing m over several orders of magni-
tude. Also the number of required iterations re-
mains essentially the same, except for m = 1,
which does not exploit the matrix properties. We
see that – as opposed to vector space models –
good performance can be achieved already with a
very low number of dimensions.

Number of Ranking Pearson Total number
dimensions loss r of iterations

1 0.441 0.487 20.3
2 0.270 0.728 12.8
3 0.269 0.731 10.6

10 0.266 0.736 12.3
20 0.263 0.741 11.1
50 0.258 0.748 10.6

100 0.253 0.754 9.6
300 0.245 0.763 9.6

Table 6: Performance comparison for different di-
mensions in SCL-OPP

5 Conclusion

In this paper, we addressed the problem of learn-
ing compositional matrix-space models for the
task of sentiment analysis. As opposed to the
standard gradient descent approach, the novelty
of our approach consists in a two-step learning
procedure, where the result of the first step is
used as initialization for the second step. We
showed that with this alternative initialization step
added to the learning process, we get lower rank-
ing loss than (1) a previously described learning
method on CMSM and (2) the standard gradi-
ent descent method starting from a random ini-
tializations. Moreover, we evaluated the perfor-

184

mance of training CMSMs in sentiment prediction
of phrases with opposing polarities and observed
that the model captures compositionality well in
such phrases. Since CMSMs turn out to be very
robust against the choice of dimensionality, we
conclude that choosing low-dimensional matrices
as word representations lead to a reduced training
time and still very good performance. In the fu-
ture, we plan to extensively compare the learning
of word matrix representations with vector space
models in the task of sentiment analysis on several
datasets.

References
Ameeta Agrawal and Aijun An. 2014. Kea: Sentiment

analysis of phrases within short texts. In Preslav
Nakov and Torsten Zesch, editors, Proceedings of
the 8th International Workshop on Semantic Evalu-
ation (SemEval 2014). pages 380–384.

Gottlob Frege. 1884. Die Grundlagen der Arithmetik:
eine logisch-mathematische Untersuchung über den
Begriff der Zahl. Breslau, Germany: W. Koebner.

James Hong and Michael Fang. 2015. Sentiment anal-
ysis with deeply learned distributed representations
of variable length texts. Technical report, Stanford
University.

Svetlana Kiritchenko and Saif M Mohammad. 2016a.
The effect of negators, modals, and degree adverbs
on sentiment composition. In Alexandra Balahur,
Erik van der Goot, Piek Vossen, and Andrés Mon-
toyo, editors, Proceedings of the 7th Workshop on
Computational Approaches to Subjectivity, Senti-
ment and Social Media Analysis (WASSA). pages
43–52.

Svetlana Kiritchenko and Saif M Mohammad. 2016b.
Sentiment composition of words with opposing po-
larities. In Kevin Knight, Ani Nenkova, and Owen
Rambow, editors, Proceedings of North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT 2016). pages 1102–1108.

Jean Maillard and Stephen Clark. 2015. Learning
adjective meanings with a tensor-based skip-gram
model. In Afra Alishahi and Alessandro Mos-
chitti, editors, Proceedings of the Nineteenth Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2015). pages 327–331.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composi-
tionality. In Chris J.C. Burges, Léon Bottou, Max

Welling, Zoubin Ghahramani, and Kilian Q. Wein-
berger, editors, Advances in neural information pro-
cessing systems (NIPS 2013). pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence 34(8):1388–1429.

Kaare B. Petersen and Michael S. Pedersen. 2012. The
Matrix Cookbook. Technical University of Den-
mark. Version 20121115.

Sebastian Rudolph and Eugenie Giesbrecht. 2010.
Compositional matrix-space models of language. In
Jan Hajic, Sandra Carberry, and Stephen Clark, ed-
itors, Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics (ACL
2010). pages 907–916.

Richard Socher, Brody Huval, Christopher D Man-
ning, and Andrew Y Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Jun’ichi Tsujii, James Henderson, and Marius Pasca,
editors, Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL 2012). pages 1201–1211.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the conference on empirical
methods in natural language processing (EMNLP
2013). pages 1631–1642.

Aditya Timmaraju and Vikesh Khanna. 2015. Senti-
ment analysis on movie reviews using recursive and
recurrent neural network architectures. Semantic
Scholar.

Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016.
Combination of convolutional and recurrent neural
network for sentiment analysis of short texts. In
Yuji Matsumoto and Rashmi Prasad, editors, Pro-
ceedings of the 26th International Conference on
Computational Linguistics (COLING 2016). pages
2428–2437.

Ainur Yessenalina and Claire Cardie. 2011. Compo-
sitional matrix-space models for sentiment analy-
sis. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP
2011). pages 172–182.

185

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 186–190,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Improving Language Modeling using
Densely Connected Recurrent Neural Networks

Fréderic Godin, Joni Dambre and Wesley De Neve

IDLab - ELIS, Ghent University - imec, Ghent, Belgium
firstname.lastname@ugent.be

Abstract

In this paper, we introduce the novel con-
cept of densely connected layers into re-
current neural networks. We evaluate
our proposed architecture on the Penn
Treebank language modeling task. We
show that we can obtain similar perplex-
ity scores with six times fewer parame-
ters compared to a standard stacked 2-
layer LSTM model trained with dropout
(Zaremba et al., 2014). In contrast with
the current usage of skip connections, we
show that densely connecting only a few
stacked layers with skip connections al-
ready yields significant perplexity reduc-
tions.

1 Introduction

Language modeling is a key task in Natural Lan-
guage Processing (NLP), lying at the root of many
NLP applications such as syntactic parsing (Ling
et al., 2015), machine translation (Sutskever et al.,
2014) and speech processing (Irie et al., 2016).

In Mikolov et al. (2010), recurrent neural net-
works were first introduced for language model-
ing. Since then, a number of improvements have
been proposed. Zaremba et al. (2014) used a
stack of Long Short-Term Memory (LSTM) lay-
ers trained with dropout applied on the outputs
of every layer, while Gal and Ghahramani (2016)
and Inan et al. (2017) further improved the per-
plexity score using variational dropout. Other im-
provements are more specific to language model-
ing, such as adding an extra memory component
(Merity et al., 2017) or tying the input and out-
put embeddings (Inan et al., 2017; Press and Wolf,
2016).

To be able to train larger stacks of LSTM lay-
ers, typically four layers or more (Wu et al., 2016),

skip or residual connections are needed. Wu et al.
(2016) used residual connections to train a ma-
chine translation model with eight LSTM layers,
while Van Den Oord et al. (2016) used both resid-
ual and skip connections to train a pixel recurrent
neural network with twelve LSTM layers. In both
cases, a limited amount of skip/residual connec-
tions was introduced to improve gradient flow.

In contrast, Huang et al. (2017) showed that
densely connecting more than 50 convolutional
layers substantially improves the image classifica-
tion accuracy over regular convolutional and resid-
ual neural networks. More specifically, they intro-
duced skip connections between every input and
every output of every layer.

Hence, this motivates us to densely connect all
layers within a stacked LSTM model using skip
connections between every pair of layers.

In this paper, we investigate the usage of skip
connections when stacking multiple LSTM layers
in the context of language modeling. When every
input of every layer is connected with every output
of every other layer, we get a densely connected
recurrent neural network. In contrast with the cur-
rent usage of skip connections, we demonstrate
that skip connections significantly improve perfor-
mance when stacking only a few layers. Moreover,
we show that densely connected LSTMs need
fewer parameters than stacked LSTMs to achieve
similar perplexity scores in language modeling.

2 Background: Language Modeling

A language model is a function, or an algo-
rithm for learning such a function, that captures
the salient statistical characteristics of sequences
of words in a natural language. It typically al-
lows one to make probabilistic predictions of the
next word, given preceding words (Bengio, 2008).
Hence, given a sequence of words [w1, ...wT], the

186

goal is to estimate the following joint probability:

Pr(w1, ..., wT) =
T∏

t=1

Pr(wt|wt−1, ..w1) (1)

In practice, we try to minimize the negative log-
likelihood of a sequence of words:

Lneg(θ) = −
T∑

t=1

log(Pr(wt|wt−1, ..w1)). (2)

Finally, perplexity is used to evaluate the perfor-
mance of the model:

Perplexity = exp
(

Lneg(θ)
T

)
(3)

3 Methodology

Language Models (LM) in which a Recur-
rent Neural Network (RNN) is used are called
Recurrent Neural Network Language Models
(RNNLMs) (Mikolov et al., 2010). Although there
are many types of RNNs, the recurrent step can
formally be written as:

ht = fθ(xt, ht−1) (4)

in which xt and ht are the input and the hidden
state at time step t, respectively. The function fθ

can be a basic recurrent cell, a Gated Recurrent
Unit (GRU), a Long Short Term Memory (LSTM)
cell, or a variant thereof.

The final prediction Pr(wt|wt−1, ..w1) is done
using a simple fully connected layer with a soft-
max activation function:

yt = softmax(Wht + b). (5)

Stacking multiple RNN layers To improve per-
formance, it is common to stack multiple recurrent
layers. To that end, the hidden state of a a layer l
is used as an input for the next layer l + 1. Hence,
the hidden state hl,t at time step t of layer l is cal-
culated as:

xl,t = hl−1,t, (6)

hl,t = fθl
(xl,t, hl,t−1). (7)

An example of a two-layer stacked recurrent neu-
ral network is illustrated in Figure 1a.

However, stacking too many layers obstructs
fluent backpropagation. Therefore, skip connec-
tions or residual connections are often added. The
latter is in most cases a way to avoid increasing the

size of the input of a certain layer (i.e., the inputs
are summed instead of concatenated).

A skip connection can be defined as:

xl,t = [hl−1,t; hl−2,t] (8)

while a residual connection is defined as:

xl,t = hl−1,t + hl−2,t. (9)

Here, xl,t is the input to the current layer as de-
fined in Equation 7.

Densely connecting multiple RNN layers In
analogy with DenseNets (Huang et al., 2017), a
densely connected set of layers has skip connec-
tions from every layer to every other layer. Hence,
the input to RNN layer l contains the hidden states
of all lower layers at the same time step t, includ-
ing the output of the embedding layer et:

xl,t = [hl−1,t; ...; h1,t; et]. (10)

Due to the limited number of RNN layers, there
is no need for compression layers, as introduced
for convolutional neural networks (Huang et al.,
2017). Moreover, allowing the final classification
layer to have direct access to the embedding layer
showed to be an important advantage. Hence, the
final classification layer is defined as:

yt = softmax(W [hL,t; ...; h1,t; et]+b). (11)

An example of a two-layer densely connected re-
current neural network is illustrated in Figure 1b.

4 Experimental Setup

We evaluate our proposed architecture on the Penn
Treebank (PTB) corpus. We adopt the standard
train, validation and test splits as described in
Mikolov and Zweig (2012), containing 930k train-
ing, 74k validation, and 82k test words. The
vocabulary is limited to 10,000 words. Out-of-
vocabulary words are replaced with an UNK to-
ken.

Our baseline is a stacked Long Short-Term
Memory (LSTM) network, trained with regular
dropout as introduced by Zaremba et al. (2014).
Both the stacked and densely connected LSTM
models consist of an embedding layer followed
by a variable number of LSTM layers and a sin-
gle fully connected output layer. While Zaremba
et al. (2014) only report results for two stacked

187

RNN

h1,t

RNN

et

h2,t

h2,th2,t−1

h1,t−1 h1,t

yt

Fully Con.

(a) Stacked RNN

RNN

h1,t

RNN

et

h2,t

h2,th2,t−1

h1,t−1 h1,t

yt

Fully Con.

et

h1,tet

RNN

RNN

(b) Densely connected RNN

Figure 1: Example architecture for a model with two recurrent layers.

LSTM layers, we also evaluate a model with three
stacked LSTM layers, and experiment with two,
three, four and five densely connected LSTM lay-
ers. The hidden state size of the densely connected
LSTM layers is either 200 or 650. The size of the
embedding layer is always 200.

We applied standard dropout on the output of
every layer. We used a dropout probability of
0.6 for models with size 200 and 0.75 for mod-
els with hidden state size 650 to avoid overfitting.
Additionally, we also experimented with Varia-
tional Dropout (VD) as implemented in Inan et al.
(2017). We initialized all our weights uniformly
in the interval [-0.05;0.05]. In addition, we used a
batch size of 20 and a sequence length of 35 dur-
ing training. We trained the weights using stan-
dard Stochastic Gradient Descent (SGD) with the
following learning rate scheme: training for six
epochs with a learning rate of one and then ap-
plying a decay factor of 0.95 every epoch. We
constrained the norm of the gradient to three. We
trained for 100 epochs and used early stopping.
The evaluation metric reported is perplexity as de-
fined in Equation 3. The number of parameters re-
ported is calculated as the sum of the total amount
of weights that reside in every layer.

Note that apart from the exact values of some
hyperparameters, the experimental setup is identi-
cal to Zaremba et al. (2014).

5 Discussion

The results of our experiments are depicted in Ta-
ble 1. The first three results, marked with stacked
LSTM (Zaremba et al., 2014), follow the setup of
Zaremba et al. (2014) while the other results are
obtained following the setup described in the pre-
vious section.

The smallest densely connected model which
only uses two LSTM layers and a hidden state size
of 200, already reduces the perplexity with 20%
compared to a two-layer stacked LSTM model
with a hidden state size of 200. Moreover, in-
creasing the hidden state size to 350 to match the
amount of parameters the two-layer densely con-
nected LSTM model contains, does not result in
a similar perplexity. The small densely connected
model still realizes a 9% perplexity reduction with
an equal amount of parameters.

When comparing with Zaremba et al. (2014),
the smallest densely connected model outperforms
the stacked LSTM model with a hidden state size
of 650. Moreover, adding one additional layer is
enough to obtain the same perplexity as the best
model used in Zaremba et al. (2014) with a hid-
den state size of 1500. However, our densely con-
nected LSTM model only uses 11M parameters
while the stacked LSTM model needs six times
more parameters, namely 66M. Adding a fourth
layer further reduces the perplexity to 76.8.

188

Table 1: Evaluation of densely connected recurrent neural networks for the PTB language modeling task.

Name Hidden state size # Layers # Parameters Valid Test

Stacked LSTM
(Zaremba et al., 2014)1

200 2 5M 104.5 100.4
650 2 20M 86.2 82.7

1500 2 66M 82.2 78.4

Stacked LSTM
200 2 5M 105 100.9
200 3 5M 113 108.8
350 2 9M 91.5 87.9

Densely Connected LSTM

200 2 9M 83.4 80.4
200 3 11M 81.5 78.5
200 4 14M 79.2 76.8
200 5 17M 79.7 76.9

Densely Connected LSTM 650 2 23M 81.5 78.9
Dens. Con. LSTM + Var. Dropout 650 2 23M 81.3 78.3

Increasing the hidden state size is less beneficial
compared to adding an additional layer, in terms of
parameters used. Moreover, a dropout probabil-
ity of 0.75 was needed to reach similar perplexity
scores. Using variational dropout with a probabil-
ity of 0.5 allowed us to slightly improve the per-
plexity score, but did not yield significantly better
perplexity scores, as it does in the case of stacked
LSTMs (Inan et al., 2017).

In general, adding more parameters by in-
creasing the hidden state and performing subse-
quent regularization, did not improve the perplex-
ity score. While regularization techniques such
as variational dropout help improving the infor-
mation flow through the layers, densely connected
models solve this by adding skip connections. In-
deed, the higher LSTM layers and the final classi-
fication layer all have direct access to the current
input word and corresponding embedding. When
simply stacking layers, this embedding informa-
tion needs to flow through all stacked layers. This
poses the risk that embedding information will get
lost. Increasing the hidden state size of every layer
improves information flow. By densely connect-
ing all layers, this issue is mitigated. Outputs of
lower layers are directly connected with higher
layers, effectuating efficient information flow.

Comparison to other models In Table 2, we list
a number of closely related models. A densely

1There are no results reported in Zaremba et al. (2014)
for a small network with dropout. These are our own results,
following the exact same setup as for the medium-sized ar-
chitecture.

connected LSTM model with an equal number of
parameters outperforms a combination of RNN,
LDA and Kneser Ney (Mikolov and Zweig, 2012).
Applying Variational Dropout (VD) (Inan et al.,
2017) instead of regular dropout (Zaremba et al.,
2014) can further reduce the perplexity score of
stacked LSTMs, but does not yield satisfactory re-
sults for our densely connected LSTMs. How-
ever, a densely connected LSTM with four lay-
ers still outperforms a medium-sized VD-LSTM
while using fewer parameters. Inan et al. (2017)
also tie the input and output embedding together
(cf. model VD-LSTM+REAL). This is, however,
not possible in densely connected recurrent neural
networks, given that the input and output embed-
ding layer have different sizes.

6 Conclusions

In this paper, we demonstrated that, by simply
adding skip connections between all layer pairs of
a neural network, we are able to achieve similar
perplexity scores as a large stacked LSTM model
(Zaremba et al., 2014), with six times fewer pa-
rameters for the task of language modeling. The
simplicity of the skip connections allows them to
act as an easy add-on for many stacked recurrent
neural network architectures, significantly reduc-
ing the number of parameters. Increasing the size
of the hidden states and variational dropout did not
yield better results over small hidden states and
regular dropout. In future research, we would like
to investigate how to properly regularize larger
models to achieve similar perplexity reductions.

189

Table 2: Comparison to other language models evaluated on the PTB corpus.

Model # Parameters Perplexity Test

RNN (Mikolov and Zweig, 2012) 6M 124.7
RNN+LDA+KN-5+Cache (Mikolov and Zweig, 2012) 9M 92.0

Medium stacked LSTM (Zaremba et al., 2014) 20M 82.7
Densely Connected LSTM (small - 2 layers) 9M 80.4

Char-CNN (Kim et al., 2016) 19M 78.9
Densely Connected LSTM (small - 3 layers) 11M 78.5
Large stacked LSTM (Zaremba et al., 2014) 66M 78.4

Medium stacked VD-LSTM (Inan et al., 2017) 20M 77.7
Densely Connected LSTM (small - 4 layers) 14M 76.8
Large stacked VD-LSTM (Inan et al., 2017) 66M 72.5

Large stacked VD-LSTM + REAL (Inan et al., 2017) 51M 68.5

Acknowledgments

The research activities as described in this pa-
per were funded by Ghent University, imec, Flan-
ders Innovation & Entrepreneurship (VLAIO),
the Fund for Scientific Research-Flanders (FWO-
Flanders), and the EU.

References
Yoshua Bengio. 2008. Neural net language models.

Scholarpedia 3(1):3881. revision #91566.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems.

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and
Laurens van der Maaten. 2017. Densely connected
convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In Proceed-
ings of the International Conference on Learning
Representations.

Kazuki Irie, Zoltán Tüske, Tamer Alkhouli, Ralf
Schlüter, and Hermann Ney. 2016. Lstm, gru, high-
way and a bit of attention: an empirical overview for
language modeling in speech recognition. In Pro-
ceedings of Interspeech.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Lus Marujo,

and Tiago Lus. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the
International Conference on Empirical Methods in
Natural Language Processing.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture
models. In Proceedings of the International Con-
ference on Learning Representations.

Tomas Mikolov, Martin Karafit, Luks Burget, Jan Cer-
nock, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Proceedings
of Interspeech.

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In Proceedings of the IEEE Workshop on Spoken
Language Technology.

Ofir Press and Lior Wolf. 2016. Using the output
embedding to improve language models. CoRR
abs/1608.05859. http://arxiv.org/abs/1608.05859.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the International Confer-
ence on Neural Information Processing Systems.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. 2016. Pixel recurrent neural net-
works. In Proceedings of the 33rd International
Conference on International Conference on Ma-
chine Learning.

Yonghui Wu, Mike Schuster, and Zhifeng Chen
et al. 2016. Google’s neural machine transla-
tion system: Bridging the gap between human
and machine translation. CoRR abs/1609.08144.
http://arxiv.org/abs/1609.08144.

Wojciech Zaremba, Ilya Sutskever, and Oriol
Vinyals. 2014. Recurrent neural net-
work regularization. CoRR abs/1409.2329.
http://arxiv.org/abs/1409.2329.

190

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 191–200,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

NewsQA: A Machine Comprehension Dataset

Adam Trischler∗ Tong Wang∗ Xingdi Yuan∗ Justin Harris

Alessandro Sordoni Philip Bachman Kaheer Suleman

{adam.trischler, tong.wang, eric.yuan, justin.harris,
alsordon, phbachma, kasulema}@microsoft.com

Microsoft Maluuba
Montréal, Québec, Canada

Abstract

We present NewsQA, a challenging ma-
chine comprehension dataset of over
100,000 human-generated question-answer
pairs. Crowdworkers supply questions and
answers based on a set of over 10,000 news
articles from CNN, with answers consisting
of spans of text in the articles. We collect
this dataset through a four-stage process de-
signed to solicit exploratory questions that
require reasoning. Analysis confirms that
NewsQA demands abilities beyond simple
word matching and recognizing textual en-
tailment. We measure human performance
on the dataset and compare it to several
strong neural models. The performance
gap between humans and machines (13.3%
F1) indicates that significant progress can
be made on NewsQA through future re-
search. The dataset is freely available on-
line.

1 Introduction

Almost all human knowledge is recorded in the
medium of text. As such, comprehension of writ-
ten language by machines, at a near-human level,
would enable a broad class of artificial intelligence
applications. In human students we evaluate read-
ing comprehension by posing questions based on a
text passage and then assessing a student’s answers.
Such comprehension tests are objectively gradable
and may measure a range of important abilities,
from basic understanding to causal reasoning to
inference (Richardson et al., 2013). To teach liter-
acy to machines, the research community has taken
a similar approach with machine comprehension
(MC).

∗Equal contribution.

Recent years have seen the release of a host of
MC datasets. Generally, these consist of (docu-
ment, question, answer) triples to be used in a su-
pervised learning framework. Existing datasets
vary in size, difficulty, and collection methodol-
ogy; however, as pointed out by Rajpurkar et al.
(2016), most suffer from one of two shortcomings:
those that are designed explicitly to test compre-
hension (Richardson et al., 2013) are too small
for training data-intensive deep learning models,
while those that are sufficiently large for deep learn-
ing (Hermann et al., 2015; Hill et al., 2016; Bajgar
et al., 2016) are generated synthetically, yielding
questions that are not posed in natural language
and that may not test comprehension directly (Chen
et al., 2016). More recently, Rajpurkar et al. (2016)
proposed SQuAD, a dataset that overcomes these
deficiencies as it contains crowdsourced natural
language questions.

In this paper, we present a challenging new
largescale dataset for machine comprehension:
NewsQA. It contains 119,633 natural language
questions posed by crowdworkers on 12,744 news
articles from CNN. In SQuAD, crowdworkers are
tasked with both asking and answering questions
given a paragraph. In contrast, NewsQA was built
using a collection process designed to encourage
exploratory, curiosity-based questions that may bet-
ter reflect realistic information-seeking behaviors.
Particularly, a set of crowdworkers were tasked
to answer questions given a summary of the arti-
cle, i.e. the CNN article highlights. A separate set
of crowdworkers selects answers given the full arti-
cle, which consist of word spans in the correspond-
ing articles. This gives rise to interesting patterns
such as questions that may not be answerable by
the original article.

As Trischler et al. (2016a), Chen et al. (2016),
and others have argued, it is important for datasets
to be sufficiently challenging to teach models

191

the abilities we wish them to learn. Thus, in
line with Richardson et al. (2013), our goal
with NewsQA was to construct a corpus of chal-
lenging questions that necessitate reasoning-like
behaviors—for example, synthesis of information
across different parts of an article. We designed
our collection methodology explicitly to capture
such questions.

NewsQA is closely related to the SQuAD dataset:
it is crowdsourced, with answers given by spans of
text within an article rather than single words or
entities, and there are no candidate answers from
which to choose. The challenging characteristics
of NewsQA that distinguish it from SQuAD are as
follows:

1. Articles in NewsQA are significantly longer
(6x on average) and come from a distinct do-
main.

2. Our collection process encourages lexical and
syntactic divergence between questions and
answers.

3. A greater proportion of questions requires
reasoning beyond simple word- and context-
matching.

4. A significant proportion of questions have no
answer in the corresponding article.

We demonstrate through several metrics that, con-
sequently, NewsQA offers a greater challenge to
existing comprehension models. Given their simi-
larities, we believe that SQuAD and NewsQA can
be used to complement each other, for instance to
explore models’ ability to transfer across domains.

In this paper we describe the collection method-
ology for NewsQA, provide a variety of statistics to
characterize it and contrast it with previous datasets,
and assess its difficulty. In particular, we measure
human performance and compare it to that of two
strong neural-network baselines. Humans signif-
icantly outperform powerful question-answering
models, suggesting NewsQA could drive further
advances in machine comprehension research.

2 Related Datasets

NewsQA follows in the tradition of several recent
comprehension datasets. These vary in size, diffi-
culty, and collection methodology, and each has its
own distinguishing characteristics.

2.1 MCTest

MCTest (Richardson et al., 2013) is a crowdsourced
collection of 660 elementary-level children’s sto-
ries with associated questions and answers. The sto-
ries are fictional, to ensure that the answer must be
found in the text itself, and carefully limited in lan-
guage and depth. Each question comes with a set of
4 candidate answers that range from single words
to full sentences. Questions are designed to re-
quire rudimentary reasoning and synthesis of infor-
mation across sentences, making the dataset quite
challenging. This is compounded by the dataset’s
size, which limits the training of expressive statis-
tical models. Nevertheless, recent comprehension
models have performed well on MCTest (Sachan
et al., 2015; Wang et al., 2015), including a highly
structured neural model (Trischler et al., 2016a).
These models all rely on access to the small set of
candidate answers, a crutch that NewsQA does not
provide.

2.2 CNN/Daily Mail

The CNN/Daily Mail corpus (Hermann et al., 2015)
consists of news articles scraped from those outlets
with corresponding cloze-style questions. Cloze
questions are constructed synthetically by deleting
a single entity from abstractive summary points
that accompany each article (written presumably
by human authors). As such, determining the cor-
rect answer relies mostly on recognizing textual
entailment between the article and the question.
The named entities within an article are identi-
fied and anonymized in a preprocessing step and
constitute the set of candidate answers; contrast
this with NewsQA in which answers often include
longer phrases and no candidates are given. Perfor-
mance of the strongest models (Kadlec et al., 2016;
Trischler et al., 2016b; Sordoni et al., 2016) on this
dataset now nearly matches that of humans.

2.3 Children’s Book Test

The Children’s Book Test (CBT) (Hill et al., 2016)
was collected using a process similar to that of
CNN/Daily Mail. Text passages are 20-sentence
excerpts from children’s books available through
Project Gutenberg; questions are generated by
deleting a single word in the next (i.e., 21st) sen-
tence. Consequently, CBT evaluates word predic-
tion based on context.

192

2.4 BookTest

Bajgar et al. (2016) convincingly argue that, be-
cause existing datasets are not large enough, we
have yet to reach the full capacity of existing com-
prehension models. As a remedy they present Book-
Test. This is an extension to the named-entity and
common-noun strata of CBT that increases their
size by over 60 times.

2.5 SQuAD

The comprehension dataset most closely related
to NewsQA is SQuAD (Rajpurkar et al., 2016). It
consists of natural language questions posed by
crowdworkers on paragraphs from Wikipedia ar-
ticles with high PageRank score. As in NewsQA,
each answer consists of a span of text from the
related paragraph and no candidates are provided.
SQuAD provides 107,785 question-answer pairs
based on 536 articles. In contrast, our questions are
based on a larger number of articles, i.e. 12,744.

Although SQuAD is a more realistic and more
challenging comprehension task than the other
largescale MC datasets, machine performance has
rapidly improved towards that of humans in re-
cent months. This suggests that new, more difficult
alternatives like NewsQA could further push the
development of advanced MC systems.

3 Collection methodology

We collected NewsQA through a four-stage pro-
cess: article curation, question sourcing, answer
sourcing, and validation. We also applied a post-
processing step to consolidate near-duplicate an-
swers and to merge multiple spans in order to en-
hance the dataset’s usability. These steps are de-
tailed below.

3.1 Article curation

We retrieve articles from CNN using the script cre-
ated by Hermann et al. (2015) for CNN/Daily Mail.
From the returned set of 90,266 articles, we select
12,744 uniformly at random. These cover a wide
range of topics that includes politics, economics,
and current events. Articles are partitioned at ran-
dom into a training set (90%), a development set
(5%), and a test set (5%).

3.2 Question sourcing

It was important to us to collect challenging ques-
tions that could not be answered using straightfor-
ward word- or context-matching. Like Richardson

et al. (2013) we want to encourage reasoning in
comprehension models. We are also interested in
questions that, in some sense, model human curios-
ity and reflect actual human use-cases of informa-
tion seeking. Along a similar line, we consider it an
important (though as yet overlooked) capacity of a
comprehension model to recognize when given in-
formation is inadequate, so we are also interested in
questions that may not have sufficient evidence in
the text. Our question sourcing stage was designed
to solicit questions of this nature, and deliberately
separated from the answer sourcing stage for the
same reason.

Questioners (a distinct set of crowdworkers)
see only a news article’s headline and its sum-
mary points (also available from CNN); they do
not see the full article itself. They are asked to
formulate a question from this incomplete infor-
mation. This encourages curiosity about the con-
tents of the article and prevents questions that are
simple reformulations of sentences in the text. It
also increases the likelihood of questions whose
answers do not exist in the text. We reject ques-
tions that have significant word overlap with the
summary points to ensure that crowdworkers do
not treat the summaries as mini-articles, and fur-
ther discourage this in the instructions. During
collection each Questioner is solicited for up to
three questions about an article. They are provided
with positive and negative examples to prompt and
guide them (detailed instructions are available at
datasets.maluuba.com).

3.3 Answer sourcing

A second set of crowdworkers (Answerers) pro-
vide answers. Although this separation of question
and answer increases the overall cognitive load,
we hypothesized that unburdening Questioners in
this way would encourage more complex ques-
tions. Answerers receive a full article along with
a crowdsourced question and are tasked with de-
termining the answer. They may also reject the
question as nonsensical, or select the null answer
if the article contains insufficient information. An-
swers are submitted by clicking on and highlight-
ing words in the article, while instructions encour-
age the set of answer words to consist of a single
continuous span (an example prompt is given at
datasets.maluuba.com). For each question
we solicit answers from multiple crowdworkers
(avg. 2.73) with the aim of achieving agreement

193

between at least two Answerers.

3.4 Validation

Crowdsourcing is a powerful tool but it is not with-
out peril (collection glitches; uninterested or mali-
cious workers). To obtain a dataset of the highest
possible quality we use a validation process that
mitigates some of these issues. In validation, a
third set of crowdworkers sees the full article, a
question, and the set of unique answers to that
question. We task these workers with choosing the
best answer from the candidate set or rejecting all
answers. Each article-question pair is validated by
an average of 2.48 crowdworkers. Validation was
used on those questions without answer-agreement
after the previous stage, amounting to 43.2% of all
questions.

3.5 Answer marking and cleanup

After validation, 86.0% of all questions in NewsQA
have answers agreed upon by at least two separate
crowdworkers—either at the initial answer sourc-
ing stage or after validation. This improves the
dataset’s quality. We choose to include the ques-
tions without agreed answers in the corpus also, but
they are specially marked. Such questions could be
treated as having the null answer and used to train
models that are aware of poorly posed questions.

As a final cleanup step, if two answer spans are
less than 3 words apart (punctuation is discounted),
we take the start of the first span and the end of
the second span as the new boundary of the an-
swer span. We find that 5.68% of answers consist
of multiple spans, while 71.3% of multi-spans are
within the 3-word threshold. Looking more closely
at the data reveals that the multi-span answers often
represent lists. These may present an interesting
challenge for comprehension models moving for-
ward.

4 Data analysis

We analyze questions and answers in NewsQA to
demonstrate its challenge and usefulness as a ma-
chine comprehension benchmark. Our analysis
focuses on the types of answers that appear in the
dataset and the various forms of reasoning required
to solve it.1

1Additional statistics are available at datasets.
maluuba.com.

Table 1: The variety of answer types appearing in
NewsQA, with proportion statistics and examples.

Answer type Example Proportion (%)

Date/Time March 12, 2008 2.9
Numeric 24.3 million 9.8
Person Ludwig van Beethoven 14.8
Location Torrance, California 7.8
Other Entity Pew Hispanic Center 5.8
Common Noun Phr. federal prosecutors 22.2
Adjective Phr. 5-hour 1.9
Verb Phr. suffered minor damage 1.4
Clause Phr. trampling on human rights 18.3
Prepositional Phr. in the attack 3.8
Other nearly half 11.2

4.1 Answer types
Following Rajpurkar et al. (2016), we categorize
answers based on their linguistic type in Table 1.
This categorization relies on Stanford CoreNLP
to generate constituency parses, POS tags, and
NER tags for answer spans (see Rajpurkar et al.
(2016) for more details). From the table we see
that the majority of answers (22.2%) are common
noun phrases. Thereafter, answers are fairly evenly
spread among the clause phrase (18.3%), person
(14.8%), numeric (9.8%), and other (11.2%) types.

The proportions in Table 1 only account for cases
when an answer span exists. The complement of
this set comprises questions with an agreed null
answer (9.5% of the full corpus) and answers with-
out agreement after validation (4.5% of the full
corpus).

4.2 Reasoning types
The forms of reasoning required to solve NewsQA
directly influence the abilities that models will learn
from the dataset. We stratified reasoning types us-
ing a variation on the taxonomy presented by Chen
et al. (2016) in their analysis of the CNN/Daily
Mail dataset. Types are as follows, in ascending
order of difficulty:

1. Word Matching: Important words in the
question exactly match words in the imme-
diate context of an answer span, such that a
keyword search algorithm could perform well
on this subset.

2. Paraphrasing: A single sentence in the arti-
cle entails or paraphrases the question. Para-
phrase recognition may require synonymy and
world knowledge.

3. Inference: The answer must be inferred from
incomplete information in the article or by rec-

194

ognizing conceptual overlap. This typically
draws on world knowledge.

4. Synthesis: The answer can only be inferred
by synthesizing information distributed across
multiple sentences.

5. Ambiguous/Insufficient: The question has
no answer or no unique answer in the article.

For both NewsQA and SQuAD, we manually la-
belled 1,000 examples (drawn randomly from the
respective development sets) according to these
types and compiled the results in Table 2. Some ex-
amples fall into more than one category, in which
case we defaulted to the more challenging type.
We can see from the table that word matching,
the easiest type, makes up the largest subset in
both datasets (32.7% for NewsQA and 39.8% for
SQuAD). Paraphrasing constitutes a larger propor-
tion in SQuAD than in NewsQA (34.3% vs 27.0%),
possibly a result of the explicit encouragement of
lexical variety in SQuAD question sourcing. How-
ever, NewsQA significantly outnumbers SQuAD
on the distribution of the more difficult forms of
reasoning: synthesis and inference make up a com-
bined 33.9% of the data in contrast to 20.5% in
SQuAD.

5 Baseline models

To benchmark NewsQA for the MC task, we com-
pare the performance of four comprehension sys-
tems: a heuristic sentence-level baseline, two neu-
ral models, and human data analysts. The first neu-
ral model is the match-LSTM (mLSTM) of Wang
and Jiang (2016b). The second is the FastQA
model of Weissenborn et al. (2017). We describe
these models below but omit the personal details
of our analysts.

5.1 Sentence-level baseline

First we investigate a simple baseline that we found
to perform surprisingly well on SQuAD. Given a
document and question, the baseline aims to indi-
cate which sentence contains the answer (rather
indicating the specific answer span). Although
this task is easier, we hypothesized that naive tech-
niques like word-matching would yet be inadequate
if NewsQA required more involved reasoning as in-
tended.

The baseline uses a variation on inverse docu-
ment frequency (idf), which we call inverse sen-

tence frequency (isf).2 Given a sentence Si from
an article and its corresponding question Q, the
isf score is given by the sum of the idf scores of
the words common to Si and Q (each sentence is
treated as a document for the idf computation). The
sentence with the highest isf is taken as the answer
sentence S∗, that is,

S∗ = arg max
i

∑
w∈Si∩Q

idf (w).

5.2 Match-LSTM

The mLSTM model (Wang and Jiang, 2016b) is
straightforward to implement and offers strong,
though not state-of-the-art, performance on the
similar SQuAD dataset. There are three stages in-
volved. First, LSTM networks encode the docu-
ment and question (represented by GloVe word em-
beddings (Pennington et al., 2014)) as sequences of
hidden states. Second, an mLSTM network (Wang
and Jiang, 2016a) compares the document encod-
ings with the question encodings. This network pro-
cesses the document sequentially and at each token
uses an attention mechanism to obtain a weighted
vector representation of the question; the weighted
combination is concatenated with the encoding of
the current token and fed into a standard LSTM.
Finally, a Pointer Network uses the hidden states
of the mLSTM to select the boundaries of the an-
swer span. We refer the reader to Wang and Jiang
(2016a,b) for full details.

5.3 FastQA

We additionally report the results obtained by Weis-
senborn et al. (2017) using their FastQA model,
which was near state-of-the-art on SQuAD at the
time of writing. FastQA first augments the stan-
dard word embeddings with character-based em-
beddings computed using a convolutional network.
These are projected and augmented with word-in-
question features, then fed to a bidirectional LSTM
to encode both the question and document. In
the answer layer, a weighted representation of the
question is combined with the document encod-
ings and fed through a 2-layer feedforward net-
work followed by a softmax layer, which induces a
probability distribution over the document words.
Separate networks point to the answer span’s start
and end. A unique aspect of this model is that

2We also experimented with normalizing the isf score by
sentence length and the performance difference is negligible
(<0.02%).

195

Table 2: Reasoning mechanisms needed to answer questions. For each we show an example question
with the sentence that contains the answer span. Words relevant to the reasoning type are in bold. The
corresponding proportion in the human-evaluated subset of both NewsQA and SQuAD (1,000 samples
each) is also given.

Reasoning Example Proportion (%)
NewsQA SQuAD

Word Matching Q: When were the findings published?
S: Both sets of research findings were published Thursday...

32.7 39.8

Paraphrasing Q: Who is the struggle between in Rwanda?
S: The struggle pits ethnic Tutsis, supported by Rwanda, against ethnic
Hutu, backed by Congo.

27.0 34.3

Inference Q: Who drew inspiration from presidents?
S: Rudy Ruiz says the lives of US presidents can make them positive
role models for students.

13.2 8.6

Synthesis Q: Where is Brittanee Drexel from?
S: The mother of a 17-year-old Rochester, New York high school stu-
dent ... says she did not give her daughter permission to go on the trip.
Brittanee Marie Drexel’s mom says...

20.7 11.9

Ambiguous/Insufficient Q: Whose mother is moving to the White House?
S: ... Barack Obama’s mother-in-law, Marian Robinson, will join the
Obamas at the family’s private quarters at 1600 Pennsylvania Avenue.
[Michelle is never mentioned]

6.4 5.4

it uses beam search to maximize (approximately)
the answer span probability. We refer the reader
to Weissenborn et al. (2017) for full details. Note
that we report results of the “extended” FastQA
model from that work.

6 Experiments

All of our present experiments use the subset of
NewsQA with agreed or validated answers (92,549
samples for training, 5,166 for validation, and
5,126 for testing). We leave the challenge of identi-
fying the unanswerable questions for future work.

6.1 Human performance

We tested four English speakers on a total of 1,000
questions from the NewsQA development set. We
used four performance measures: F1 and exact
match (EM) scores (the same measures used by
SQuAD), as well as BLEU and CIDEr.3 BLEU is a
precision-based metric popular in machine transla-
tion that uses a weighted average of variable length
phrase matches (n-grams) against the reference
sentence (Papineni et al., 2002). CIDEr was de-
signed to correlate better with human judgements
of sentence similarity, and uses tf-idf scores over
n-grams (Vedantam et al., 2015).

As given in Table 3, humans averaged 69.4% F1

3We calculate these two scores using https://github.
com/tylin/coco-caption.

on NewsQA. The human EM scores are relatively
low at 46.5%. These lower scores are a reflection
of the fact that, particularly in a dataset as complex
as NewsQA, there are multiple ways to select se-
mantically equivalent answers, e.g., “1996” versus
“in 1996”. Although these answers are equally cor-
rect they would be measured at 50% F1 and 0%
EM relative to each other. This suggests that sim-
pler automatic metrics are not equal to the task of
complex MC evaluation, a problem that has been
noted in other domains, e.g., dialogue (Liu et al.,
2016). It is for this reason that we consider BLEU
and CIDEr scores, also: humans score 56.0 and
3.596 on these metrics, respectively.

The original evaluation of human performance
on SQuAD compares distinct answers given by
crowdworkers according to EM and F1; for a closer
comparison with NewsQA, we replicated our hu-
man test on the same number of development ques-
tions (1,000) with the same humans. We measured
human answers against the second group of crowd-
sourced responses in SQuAD’s development set,
giving 80.7% F1, 62.5 BLEU, and 3.998 CIDEr.
Note that the F1 score is close to the performance
of 78.9% achieved by the FastQA model and re-
ported in Table 5.

We finally compared human performance on the
answers with crowdworker agreement with and
without validation, finding a difference of only

196

Table 3: Human performance on SQuAD and
NewsQA datasets. The first row is taken from Ra-
jpurkar et al. (2016).

Dataset Exact Match F1 BLEU CIDEr

SQuAD 80.3 90.5 - -
SQuAD (ours) 65.0 80.7 62.5 3.998
NewsQA 46.5 69.4 56.0 3.596

Table 4: Sentence-level accuracy on standard and
artificially-lengthened SQuAD documents.

SQuAD NewsQA

documents 1 5 7 9 1
Avg # sentences 4.9 23.2 31.8 40.3 30.7

isf score 79.6 73.0 72.3 71.0 35.4

1.4% F1. This suggests our validation stage yields
good-quality answers.

6.2 Model performance

6.2.1 ISF sentence selection
As reported in Table 4, the heuristic isf baseline
achieves an impressive 79.6% accuracy in deter-
mining the correct answer sentence for SQuAD’s
development set; however, it reaches only 35.4%
sentence-selection accuracy on NewsQA’s develop-
ment set. Selecting the answer sentence in NewsQA
should be inherently more difficult, since SQuAD
documents are on average 4.9 sentences long, while
NewsQA articles are on average 30.7 sentences.
To eliminate this difference in article length as a
possible cause of the observed performance gap,
we concatenated adjacent SQuAD paragraphs that
come from the same Wikipedia article and ran the
baseline on these lengthened documents. Accuracy
decreases as expected with increased SQuAD docu-
ment length, yet remains significantly higher than
on NewsQA even when the lengthened documents
are longer than the news articles (see Table 4).

6.2.2 Neural models
Performance of the neural baselines is measured by
EM and F1 using the official evaluation script from
SQuAD. Results are listed in Table 5. We see that
on both datasets, FastQA outperforms our imple-
mentation of the mLSTM according to all measures.
Moreover, comparing with Table 3, the gap be-
tween human and FastQA performance on SQuAD
is 1.8% F1 under our evaluation scheme compared
with 13.3% F1 on NewsQA. This suggests a large

margin for improvement remains for machine com-
prehension methods to master NewsQA.

For a finer-grained analysis, we measured our
implementation of mLSTM’s performance on ques-
tions from the human-evaluated portion of the de-
velopment set. We stratified performance accord-
ing to answer type and reasoning type as defined
in Sections 4.1 and 4.2, respectively. Results are
presented in Figure 1.

Answer-type stratification suggests that the
model is better at pointing to named entities com-
pared to other answer types. The reasoning-type
stratification, on the other hand, shows that ques-
tions requiring inference and synthesis are, not sur-
prisingly, most difficult for the model. Consistent
with observations in Table 5, stratified performance
on NewsQA is significantly lower than on SQuAD.
The difference is smallest on word matching and
largest on synthesis. We postulate that the longer
stories in NewsQA make synthesizing information
from separate sentences more difficult, since the rel-
evant sentences may be farther apart. This requires
the model to track longer-term dependencies. The
details of our mLSTM implementation are given in
the Appendix.

7 Conclusion

We have introduced a challenging new comprehen-
sion dataset: NewsQA. We collected the 100,000+
examples of NewsQA using teams of crowdwork-
ers, who variously read CNN articles or highlights,
posed questions about them, and determined an-
swers. Our methodology yields diverse answer
types and a significant proportion of questions that
require some reasoning ability to solve. This makes
the corpus challenging, as confirmed by the large
performance gap between humans and deep neural
models. By its size and complexity, we believe
NewsQA makes a significant extension to the exist-
ing body of comprehension datasets, in particular
complementing SQuAD. We hope that our corpus
will spur further advances in machine comprehen-
sion and foster the development of more literate
machines.

References

Ondrej Bajgar, Rudolf Kadlec, and Jan Kleindienst.
2016. Embracing data abundance: Booktest
dataset for reading comprehension. arXiv preprint
arXiv:1610.00956 .

197

Table 5: Neural model performance on SQuAD and NewsQA. mLSTM results on SQuAD are derived from
our implementation of Wang and Jiang (2016b), and all FastQA results are taken from Weissenborn et al.
(2017).

SQuAD Dev Test

Model F1 EM F1 EM

mLSTM 73.9 63.1 - -
FastQA 78.5 70.3 78.9 70.8

NewsQA Dev Test

Model F1 EM F1 EM

mLSTM 51.0 35.7 50.5 35.4
FastQA 56.1 43.7 56.1 42.8

Date/time

Numeric

Person

Adjective Phrase

Location

Prepositional Phrase

Common Noun Phrase

Other

Other entity

Clause Phrase

Verb Phrase

0 0.175 0.35 0.525 0.7

F1
EM

Word  
Matching

Paraphrasing

Inference

Synthesis

Ambiguous/ 
Insufficient

0 0.15 0.3 0.45 0.6 0.75 0.9

NewsQA
SQuAD

Figure 1: Left: mLSTM performance (F1 and EM) stratified by answer type on the full development set of
NewsQA. Right: mLSTM performance (F1) stratified by reasoning type on the human-assessed subset
on both NewsQA and SQuAD. Error bars indicate performance differences between mLSTM and human
annotators.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pas-
canu, G. Desjardins, J. Turian, D. Warde-Farley, and
Y. Bengio. 2010. Theano: a CPU and GPU math
expression compiler. In In Proc. of SciPy.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the cnn /
daily mail reading comprehension task. In Associa-
tion for Computational Linguistics (ACL).

François Chollet. 2015. keras. https://github.
com/fchollet/keras.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems. pages 1684–1692.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. ICLR .

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547 .

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR .

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:

An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023 .

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310–1318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP. volume 14, pages 1532–43.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 .

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In
EMNLP. volume 1, page 2.

Mrinmaya Sachan, Avinava Dubey, Eric P Xing, and
Matthew Richardson. 2015. Learning answer entail-
ing structures for machine comprehension. In Pro-
ceedings of ACL.

198

Andrew M Saxe, James L McClelland, and Surya Gan-
guli. 2013. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120 .

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245 .

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He,
Philip Bachman, and Kaheer Suleman. 2016a. A
parallel-hierarchical model for machine comprehen-
sion on sparse data. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics.

Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer
Suleman. 2016b. Natural language comprehension
with the epireader. In EMNLP.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. pages 4566–4575.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics. In Proceedings of
ACL, Volume 2: Short Papers. page 700.

Shuohang Wang and Jing Jiang. 2016a. Learning natu-
ral language inference with lstm. NAACL .

Shuohang Wang and Jing Jiang. 2016b. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Fastqa: A simple and efficient neural ar-
chitecture for question answering. arXiv preprint
arXiv:1703.04816 .

199

Appendices

A Implementation details

mLSTM was implemented with the Keras frame-
work (Chollet, 2015) using the Theano (Bergstra
et al., 2010) backend. Word embeddings are initial-
ized using GloVe vectors (Pennington et al., 2014)
pre-trained on the 840-billion Common Crawl cor-
pus. The word embeddings are not updated during
training. Embeddings for out-of-vocabulary words
are initialized with zero.

The training objective is to maximize the log
likelihood of the boundary pointers. Optimiza-
tion is performed using stochastic gradient descent
(with a batch-size of 32) with the ADAM optimizer
(Kingma and Ba, 2015). The initial learning rate
is 0.003. The learning rate is decayed by a factor
of 0.7 if validation loss does not decrease at the
end of each epoch. Gradient clipping (Pascanu
et al., 2013) is applied with a threshold of 5. Pa-
rameter tuning is performed on both models using
hyperopt4. Configuration for the best observed
performance was as follows:

In SQuAD experiments, both the pre-processing
layer and the answer-pointing layer use RNNs with
a hidden size of 150. These settings are consis-
tent with those used by Wang and Jiang (2016b).
In NewsQA experiments, both the pre-processing
layer and the answer-pointing layer use RNNs with
a hidden size of 192.

Model parameters are initialized with either the
normal distribution (N (0, 0.05)) or the orthogonal
initialization (O, Saxe et al. 2013) in Keras. All
weight matrices in the LSTMs are initialized with
O. In the Match-LSTM layer, W q, W p, and W r

are initialized with O, bp and w are initialized with
N , and b is initialized as 1.

In the answer-pointing layer, V and W a are ini-
tialized with O, ba and v are initialized with N ,
and c is initialized as 1.

4https://github.com/hyperopt/hyperopt

200

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 201–210,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Intrinsic and Extrinsic Evaluation of Spatiotemporal Text
Representations in Twitter Streams

Lawrence Phillips and Kyle Shaffer and Dustin Arendt and Nathan Hodas and Svitlana Volkova
Pacific Northwest National Laboratory

Richland, Washington 99354

Abstract

Language in social media is a dynamic
system, constantly evolving and adapting,
with words and concepts rapidly emerg-
ing, disappearing, and changing their
meaning. These changes can be esti-
mated using word representations in con-
text, over time and across locations. A
number of methods have been proposed
to track these spatiotemporal changes but
no general method exists to evaluate the
quality of these representations. Previous
work largely focused on qualitative eval-
uation, which we improve by proposing a
set of visualizations that highlight changes
in text representation over both space and
time. We demonstrate usefulness of novel
spatiotemporal representations to explore
and characterize specific aspects of the
corpus of tweets collected from European
countries over a two-week period centered
around the terrorist attacks in Brussels in
March 2016. In addition, we quantita-
tively evaluate spatiotemporal representa-
tions by feeding them into a downstream
classification task – event type prediction.
Thus, our work is the first to provide both
intrinsic (qualitative) and extrinsic (quan-
titative) evaluation of text representations
for spatiotemporal trends.

1 Introduction

Language in social media presents additional chal-
lenges for textual representations. Being able to
represent texts in social media streams requires a
methodology with the following properties:

1. Capable of handling large amounts of data.
2. In a streaming rather than static fashion.
3. Across many geographic regions.

While there has been some recent work for rep-
resenting change over time in embedding spaces,
these methods largely did not take into account
geographic variation (Costa et al., 2014; Kim
et al., 2014; Kulkarni et al., 2015; Hamilton
et al., 2016b,a). Likewise, papers examining ge-
ographic variations of language tend not to ex-
amine data temporally (Bamman et al., 2014;
Kulkarni et al., 2016; Pavalanathan and Eisen-
stein, 2015; Hovy et al., 2015). Although Kulka-
rni et al. (2016) incorporate temporal informa-
tion, they treat each timestep as a separate corpus,
learning unique representations. We propose two
algorithms to learn spatiotemporal text representa-
tions from large amounts of social media data and
investigate their utility both from a qualitative and
quantitative standpoint.

Indeed, the broader question of how to evalu-
ate the quality of an embedding is one which has
received a great deal of attention (Schnabel et al.,
2015; Gladkova et al., 2016). Previous spatial and
temporal embedding algorithms have been evalu-
ated primarily with qualitative evidence, investi-
gating the ability of the embedding to capture a
small number of known meaning shifts and pro-
viding some form of visualization (Costa et al.,
2014; Kim et al., 2014; Kulkarni et al., 2015, 2016;
Hamilton et al., 2016b,a). While it is important to
capture known changes of interest, without some
form of quantitative evaluation it cannot be known
whether these embedding methods actually pro-
duce good vector spaces. Because of these issues
we not only provide the first spatiotemporal algo-
rithms for learning text embeddings from social
media data, but we also evaluate our embedding
algorithms through a variety of means.

For qualitative evaluation, we develop a set of
novel visualizations1 which allow us to investigate

1Live Demo: https://esteem.labworks.org/

201

word representation shifts across space and time.
In particular, we demonstrate that the model cap-
tures temporal shifts related to events in our corpus
and these shifts vary across distinct countries. For
quantitative evaluation, we estimate the effec-
tiveness of spatiotemporal embeddings through a
downstream event-classification task, demonstrat-
ing that temporal and spatial algorithms vary in
their usefulness. We choose an extrinsic evalu-
ation task rather than the more standard intrin-
sic embedding evaluation because of recent work
demonstrating weak relationships between intrin-
sic measures and extrinsic performance (Schnabel
et al., 2015; Gladkova et al., 2016).

2 Background
Text Representations Most existing algorithms
for learning text representations model the con-
text of words using a continuous bag-of-words ap-
proach (Mikolov et al., 2013a), skip-grams with
negative sampling (Mikolov et al., 2013b), mod-
ified skip-grams with respect to the dependency
tree of the sentence (Levy and Goldberg, 2014),
or optimized ratio of word co-occurrence proba-
bilities (Pennington et al., 2014).

Text representations have been learned mainly
from well-written texts (Al-Rfou et al., 2013).
Only recent work has focused on learning embed-
dings from social media data e.g., Twitter (Pen-
nington et al., 2014). Moreover, most of the
existing approaches learn text embeddings in a
static (batch) setting. Learning embeddings from
streaming social media data is challenging be-
cause of problems such as noise, sparsity, and data
drift (Kim et al., 2014; Kulkarni et al., 2015).

Embedding Evaluation There are two principle
ways one can evaluate embeddings: (a) intrinsic
and (b) extrinsic.
(a) Intrinsic evaluations directly test syntactic

or semantic relationships between the words,
and rely on existing NLP resources e.g.,
WordNet (Miller, 1995) and subjective hu-
man judgements e.g., crowdsourcing or ex-
pert judgment.

(b) Extrinsic methods evaluate word vectors
by measuring their performance when used
for downstream NLP tasks e.g., dependency
parsing, named entity recognition etc. (Pas-
sos et al., 2014; Godin et al., 2015)

Recent work suggests that intrinsic and extrinsic
measures correlate poorly with one another (Schn-

abel et al., 2015; Gladkova et al., 2016). In many
cases we want an embedding not just to capture
relationships within the data, but also to do so in
a way which can be usefully applied. In these
cases, both intrinsic and extrinsic evaluation must
be taken into account.

Temporal Embeddings Preliminary work on
studying changes in text representations over time
has focused primarily on changes over large
timescales (e.g. decades or centuries) and in well-
structured text such as books. For instance, Kim
et al. (2014) present a method to measure change
in word semantics across the 20th century by
comparing each word’s initial meaning with its
meanings in later years. Other work explores a
wider range of corpora (all based on text from
books) and embedding methods and report sim-
ilar qualitative findings (Hamilton et al., 2016b).
What quantitative evidence they do provide is lim-
ited to intrinsic evaluations of word similarities as
well as the model’s ability to recognize a small
set of hand-selected known shifts. One attempt
at learning over time from social media comes
from Costa et al. (2014) that explore a number
of online learning methods for updating embed-
dings across timesteps. They measure the ability
of their temporal embeddings to predict Twitter
hashtags, but do not compare their results against
a non-temporal baseline which makes it difficult to
assess the usefulness of learning temporal embed-
dings. Finally, more recent work learns from Twit-
ter, among other data sources, but presents only
qualitative evaluations (Kulkarni et al., 2015).

Spatial Embeddings Work on incorporating
space into low-dimensional text representations
has been less well researched. Only recent work
presents an approach to train embedding mod-
els independently across a variety of English-
speaking countries as well as US states (Kulkarni
et al., 2016). Their model creates a general embed-
ding space which is shared across all regions, as
well as a region-specific embedding space which
captures local meaning. Although they are able to
report a number of meaning differences captured
by the model, no general quantitative evaluation
is given. The lack of extrinsic evaluation both for
temporal and spatial representations highlights a
major difficulty for future research. Although it
is clear that temporal and spatial patterns can be
captured by distributed text representations, unlike
other approaches, our work is the first to quali-

202

Event Types (A) Clusters Tweets Tweet / Cluster Event Types (B) Clusters Tweets Tweet / Cluster
Arts 321 18,926 144 Politics 329 36,908 270
Business 157 8,961 276 Entertainment 315 18,977 147
Politics 190 18,729 105 Business 208 9,092 97
Justice 138 1,296 27 Crime 175 16,194 233
Conflict 101 1,623 46 Terrorism 97 1,369 41
Life 93 602 20 Transportation 46 196 15
Personnel 53 8,457 412 Celebrity 43 401 22
Contact 28 226 19 Death 35 9,021 646
Transaction 20 175 872 Health 33 178 20
Nature 20 6,960 746 Natural disaster 20 6,953 873

Table 1: Distributions of event types in two annotation schemes: A from Doddington et al. (2004) and B
from Metzler et al. (2012).

tatively and quantitatively evaluate whether these
patterns can be useful in applied tasks.

Event Type Classification To do this, we fo-
cus on event detection, a popular NLP task to de-
tect mentions of relevant real-world events within
text documents. Some earlier efforts include
TABARI (Schrodt, 2001), GDELT (Leetaru and
Schrodt, 2013), TDT (Allan, 2012) challenges,
and the Automatic Content Extraction (ACE) pro-
gram (Doddington et al., 2004). This task can take
the form of summarizing events from text (Kedzie
et al., 2016), querying information on specific
events (Metzler et al., 2012), or clustering together
event mentions (Ritter et al., 2012) that all de-
scribe the same event.

In this work, we focus on building predictive
models to classify event types from raw tweets.
Only limited work in event classification has also
tried to codify events into specific event types,
such as “political” vs. “economic” (Bies et al.,
2016). Because the desired granularity of an
event type can vary depending on the end-task,
we analyze our tweets using modified versions of
event types from the ACE program (Doddington
et al., 2004) and more topical event types defined
by Metzler et al. (2012).

3 Datasets

We make use of three datasets in our experiments.
First, we use a large corpus of European Twitter
data captured over two weeks in order to learn
text representations across time and space. For
our event classification task, we chose a subset of
tweets in the larger corpus which were made by
news accounts. These “news-worthy” tweets were
then manually annotated for event type. To lever-
age the additional available data annotated with
real-world events, we train our models on a larger
event dataset from Wikipedia and then use transfer
learning to apply it to our smaller event data.

Brussels Bombing Twitter Dataset We col-
lected a large sample of tweets (with geo-locations
and language IDs assigned to each tweet) from
240 countries in 66 languages from Twitter. Data
collection lasted two weeks, beginning on March
15th, 2016 and ending March 29th, 2016. Tweets
were filtered based on geo-location and language
tags to include only English-language tweets from
a set of 34 European countries that had at least
10,000 English tweets per day in the corpus. This
resulted in a set of 140M tweets we use to learn
different types of embeddings.

Twitter Event Dataset We selected “news-
worthy” tweets that discuss real-world events from
400M English tweets generated in 240 countries.
Our criterion for selecting ”news-worthy” tweets
was to only select tweets that contain an action
word from the connotation frame lexicon (Rashkin
et al., 2016) and either come from a verified ac-
count, from a news account e.g., @bbc, @wsj,
or contain the hashtag “#breaking” or “#news”.
We identified 600,000 English subject-predicate-
object tuples using SyntaxNet (Andor et al., 2016).

Three annotators labeled event types for all tu-
ples based on two previously defined lists of event
categories: the ACE event categories (Dodding-
ton et al., 2004) and those from a related paper on
querying event types (Metzler et al., 2012). Be-
cause of missing values for the third annotator, we
used Krippendorff’s alpha to judge inter-annotator
agreement (like Fleiss’ kappa, Krippendorff’s al-
pha is ≤ 1 with 1 indicating complete agreement
and 0 indicating random chance). This subset
of labeled clusters without ties have high inter-
annotator agreement: 0.71 and 0.78, respectively.
Finally, we subsampled our “news-worthy” tweets
to match the 34 European countries in the Brussels
dataset. We show the final number of clusters and
tweets per event category in Table 1.

203

Figure 1: Top 10 classes in the Wikipedia event
dataset.

Wikipedia Event Dataset Given the small size
of our Twitter event dataset, we explore additional
resources for training an effective event detec-
tion model. We construct a larger event dataset
by scraping the English language Wikipedia Cur-
rent Events Portal from the time period of January
2010 to October 2016. Each event in this portal
is described in a short summary and is labeled by
date along with a subject heading such as Armed
Conflicts and Attacks. We use these summaries
and headings as training data for a neural network
to be used for transfer learning.

Overall, the Wikipedia event dataset contains
43,098 total event samples and 31 event type
classes. For training, we use the 42,906 samples
that correspond to the ten most frequent classes
within the dataset, approximately 99.5% of the
original data. The distribution of these ten most
frequent classes is shown in Figure 1.

4 Methodology

All embeddings were trained using gensim’s
continuous bag-of-words word2vec algo-
rithm (Řehůřek and Sojka, 2010). All of our
embeddings were 100 dimensional with em-
beddings learned over the full vocabulary. For
evaluation, we limit ourselves to vocabulary
occurring at least 1,000 times in the Brussels
dataset, resulting in a vocabulary size of 36,200.

Temporal Embeddings We build upon the
state-of-the-art algorithm to learn embed-
dings (Mikolov et al., 2013a). In order to learn
embeddings over time we separate our corpus into
8-hour windows, resulting in 45 timesteps. For
each timestep, we train a model using the previous
timestep’s embeddings to initialize the model at
time t+ 1 as shown in Algorithm 1.

This results in an embedding space specific to

Algorithm 1 Temporal Text Representations
1: Initialize W(0) randomly
2: W(0) = LearnEmbeddings(C, t0)
3: for timestep t in T do
4: Initialize W(t) with W(t−1)

5: W(t) = LearnEmbeddings(C, t)

each timestep capturing any change in meaning
which has just occurred. Because timesteps are
connected through initialization, we can examine
how word representations shift over time.

Spatial Embeddings The simplest method for
learning embeddings across countries is to train a
separate set of embeddings for each country in-
dependently as shown in Algorithm 2. We use
these spatial embeddings without time to investi-
gate the ability of this simple method to capture
task-relevant information.

Algorithm 2 Spatial Text Representations
1: for country c in C do
2: Initialize W(c) randomly
3: W(c) = LearnEmbeddings(c, T)

Spatiotemporal Embeddings We train each
spatial region separately, but rather than training
over the entire corpus, we train in 8 hour time
chunks using the previous timestep for initializa-
tion as shown in Algorithm 3.

Algorithm 3 Spatiotemporal Embeddings
1: for country c in C do
2: Initialize W(0)

(c) randomly

3: W(0)

(c) = LearnEmbeddings(c, t0)
4: for timestep t in T do
5: Initialize W(t)

(c) with W(t−1)

(c)

6: W(t)

(c) = LearnEmbeddings(c, t)

Global2Specific Embeddings The disadvan-
tage of training each country’s embeddings in-
dependently is that countries with more tweets
will necessarily possess better learned embed-
dings. We explore an alternative method where
for each timestep, we train a joint embedding us-
ing tweets from all countries and use it to initialize
the country-specific embeddings on the following
timestep as shown in Algorithm 4.

By initializing with joint embeddings, high
quality vectors for infrequent words can be re-
tained across countries. In cases where a coun-
try’s usage for a word does not differ from overall

204

Algorithm 4 Global2Specific Embeddings
1: Initialize G(0) randomly
2: G(0) = LearnEmbeddings(C, t0)
3: for timestep t in T do
4: for country c in C do
5: Initialize W(t)

(c) with G(t−1)

6: W(t)

(c) = LearnEmbeddings(c, t)

7: Initialize G(t) with G(t−1)

8: G(t) = LearnEmbeddings(C, t)

usage, it can still rely on the embeddings learned
from a larger data. If the meaning of a word does
change in a particular country, this will still be
captured as the model learns from that timestep.
Aligning Embeddings Following Hamilton
et al. (2016b), we use Procrustes analysis to
align embeddings across space and time for more
accurate comparison. Procrustes analysis provides
an optimal rotation of one matrix with respect to
a “target” matrix (in this case a word embedding
matrix in the joint space) by minimizing the
sum of squared (Euclidean) distances between
elements in each of the matrices.
Predictive Models for Wikipedia Events We
use subject headings from the Wikipedia event
dataset as noisy labels to train a model to predict
the ten most frequent classes within the dataset.
Weights of the LSTM layer of this model are used
to initialize the LSTM layer in the Twitter event
classification models.

We divide the Wikipedia event dataset using 10-
fold cross-validation, optimizing the network for
F1 score on the validation sets. We searched over
hyper-parameters for dropout on all layers, num-
ber of units in the fully-connected layer, activation
function (rectified linear unit, hyperbolic tangent,
or sigmoid), and batch size using the Hyperas li-
brary.2. The model was trained for 10 epochs,
implemented using Keras.3 Hyperoptimized pa-
rameters were then used to train the model on the
full dataset to be transferred to the event detec-
tion model. We compare the LSTM performance
against three simpler models trained on TFIDF
features using scikit-learn.4

Predictive Models for Twitter Events For each
word in each tweet, we first look up the appro-
priate embedding vector. If a word does not have
a corresponding embedding vector, we create an

2Hyperas: https://github.com/maxpumperla/hyperas
3Keras: https://keras.io/
4Scikit-learn: http://scikit-learn.org/

“average vector” from all the word vectors for the
appropriate embedding type, and use this as the
representation of the word. Preliminary results
indicated that averaging produced better results
than using a zero-vector. These embedding rep-
resentations of tweets are fed to a fully-connected
dense layer of 100 units. This layer is regular-
ized with 30% dropout, and its outputs are then fed
to 100 LSTM units whose weights have been ini-
tialized with the LSTM weights learned from our
Wikipedia neural network. We tried both freez-
ing these weights in the LSTM layer as well as
allowing them to be tuned in the training pro-
cess, and found that further tuning helped model
performance. The output of this LSTM layer is
then fed to another densely connected layer of 128
units regularized with 50% dropout, before pass-
ing these outputs to a final softmax layer to com-
pute class probabilities and final predictions. We
use rectified linear units as the activation func-
tion for both densely connected layers, and use
the Adam optimization algorithm with a learn-
ing rate set to 0.001. We experimented with
various other architectures, including adding 1-
dimensional convolutional and max-pooling lay-
ers between the first dense layer and the LSTM
layer, but did not find these to be advantageous.

Baselines and Evaluation Metrics As a base-
line, we compare our spatiotemporal embeddings
against openly available, pre-trained embeddings
– 300-dimensional Word2Vec embeddings trained
on Google News, and 100-dimensional GloVe em-
beddings trained on 2 billion tweets. In addition,
we evaluate three simpler classifiers on the the
5- and 10-way event classification problems. We
train logistic regression (LR), linear SVM, and a
random forest classifier (RF) with 100 decision
trees on TFIDF features from our labeled Twitter
dataset, and report micro and macro F1 scores over
10-fold c.v. in Table 4 below.

5 Results

Qualitative Evaluation We analyze the results
of temporal embeddings when trained over all
countries of the Brussels dataset in Figure 2. Time
is plotted on the x-axis with every tick indicating a
single 8-hour timestep. The distance between ticks
is proportional to the change in the keyword’s vec-
tor representation (Euclidean distance) during that
time. Vertical gray bars indicate a change greater
than one standard deviation above the mean. For

205

18 18 22 22 22
Date (Mar. 2016)

iran

australia

raid

attacks

salah

british
coast

belgian

reuters

suspect

explosions

forces

wounded

belgium

military

abdeslam

terror

bombing

 Brussels

18 18 22 22
Date (Mar. 2016)

burma
mfa

suspects

suspect

eerie

frederick

salah

constable

fugitive

argentinas

senegal
unites

wounded

diyarbakir
ottoman

niger

brussels

 Abdeslam

Figure 2: Visualizing temporal embeddings: Top-3 similar keywords to the concepts Brussels and Ab-
deslam for each timestamp (similarity is measured using Euclidean distance).

18 18 22 22 22
Date (Mar. 2016)

turkey

fed

brexit

deal
government

federal

energy

agreement
coalition

nato
migration

govt

russia

european

Germany EU

18 18 18 20 20 22 22
Date (Mar. 2016)

turkey

europe
brexit

government

referendum

schools

britain
labour

govt

UK EU

Figure 3: Visualizing spatial (country-specific) embeddings: Top-3 similar keywords to the concept EU
(European Union) for each timestamp (similarity is measured using Euclidean distance).

each timestep, the three most similar keywords are
plotted on the y-axis, with horizontal lines indi-
cating that the keyword was in the top three over
that period. We plot the keywords Brussels as well
as Abdeslam, which is the last name of a suspect
in the 2015 Paris bombing. For both words we
see large shifts in meaning both on March 18th
and 22nd. On March 18th, Salah Abdeslam was
captured in Brussels during a police raid.5 Be-
fore that date, Abdeslam was not widely men-
tioned on Twitter and the meaning of his name was
not well learned. After his capture, Twitter users
picked up the story and the embedding quickly re-
lates Abdeslam to Salah (his first name), suspect,
and wounded. Mention of Salah Abdeslam is also
visible in the most similar keywords to Brussels.
On March 22nd the Brussels bombing occurred.6

and one can see that the embedding of Brussels
quickly shifts, with belgium, terror, and attacks
remaining as the top three similar keywords for all
following timesteps.

To understand how different countries discuss
a global event, we examined keywords of inter-
est and identified for each country the top k most
similar words. Table 2 presents the top-4 similar
words to the keyword Belgium across five coun-
tries in our dataset from the spatial embeddings
learned over all timesteps. Each country refer-

5https://www.theguardian.com/world/2016/mar/18/paris-
attacks-suspect-salah-abdeslam-wounded-in-brussels-terror-
raid-reports

6http://www.bbc.com/news/world-europe-35869254

Belgium France Russia UK
killed terrorism bombers pakistan
attack suspect belgian bombing
isis bombings condolences iraq
pakistan turkey bomber lahore

Table 2: Most similar words to a query word Bel-
gium for country-specific text representations.

ences the bombing which took place on March
22nd, but each country is referring to Belgium
in different ways. Belgium and the UK, for in-
stance, draw parallels to the suicide bombing in
Lahore, Pakistan on March 27th,7 while Brussels
in France and Russia is more linked to the suspect
and bomber of the Brussels attack.

Countries discuss topics in ways that grow more
similar or distant over time. Looking at the key-
words Brussels and Radovan, we calculate the co-
sine distance between the word vectors of any two
countries and plot the three most extreme coun-
try pairs becoming more or less similar over time.
For Brussels, we see that before the terror attack
on the 22nd, there is a great amount of divergence
between countries. After the 22nd, many of these
differences disappear as can be seen in the blue
lines which indicate the three most-converging
country pairs. Belgium itself, however, continues
to diverge from other countries even after the 22nd
as can be seen in the red lines. Another event dur-
ing our corpus was the conviction and sentencing

7http://www.nytimes.com/2016/03/28/world/asia/explosion-
lahore-pakistan-park.html

206

17 18 19 20 21 22 23 24 25 26 27 28 29
Date (Mar. 2016)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
C

os
in

e
D

is
ta

nc
e

Brussels
Belgium:Ireland
Belgium:Portugal
Belgium:Bosnia
Russia:UK
Bosnia:Portugal
Portugal:UK

17 18 19 20 21 22 23 24 25 26 27 28 29
Date (Mar. 2016)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
os

in
e

D
is

ta
nc

e

Radovan
Portugal:UK
Portugal:Spain
Ireland:Portugal
Bosnia:Ireland
Bosnia:Spain
Bosnia:Russia

Figure 4: Converging and diverging country pairs for the keywords Brussels and Radovan. Converging
country pairs (in blue) became more similar over time than other pairs. Diverging country pairs (in red)
became more dissimilar over time.

Embedding A5 (4,325) A10 (5,480) B5 (5,017) B10 (5,940)
Macro Micro Macro Micro Macro Micro Macro Micro

Baseline 1: Word2Vec6 0.64 0.68 0.49 0.62 0.67 0.68 0.45 0.61
Baseline 2: Glove7 (2B tweets) 0.66 0.69 0.46 0.59 0.65 0.66 0.43 0.59
Static (140M tweets; upperbound) 0.81 0.82 0.53 0.69 0.78 0.79 0.53 0.72
Temporal (1.4–4.6M tweets) 0.74 0.76 0.51 0.66 0.75 0.77 0.52 0.67
Spatial (0.2M–81.7M tweets) 0.62 0.66 0.36 0.55 0.65 0.67 0.39 0.57
Spatiotemporal (2K–2.8M tweets) 0.67 0.70 0.41 0.59 0.69 0.71 0.43 0.63
Global2Specific (2K–2.8M tweets) 0.76 0.77 0.46 0.65 0.75 0.77 0.49 0.67

Table 3: Embedding evaluation results (F1) for event detection task (best performance is marked in bold).
Tweets from specific timesteps and countries make use of relevant temporal and spatial embeddings
where applicable.

of Radovan Karadžić who was found guilty on the
24th for, among many other crimes, the Srebrenica
massacre in 1995.8

While the cases listed above represent a num-
ber of real-world events that can be visualized and
captured by the embedding models, we note that
not all events will necessarily be captured in this
same way. For instance, an event discussed many
months in advance, and with many related tweets,
may not see the same shifts that characterize the
examples provided here. Still, our visualization
techniques are able to extract meaningful relations
demonstrating possible utility for social scientists
hoping to better understand their data.

Quantitative Evaluation We investigate which
of our embedding types are most useful for a
downstream event classification task. We present
a performance comparison between using our em-
beddings and using pre-trained Word2Vec and
GloVe embeddings, as well as performance com-
parison between a recurrent neural network and
three other models. The neural network uses the
same batch size, number of epochs, and 10-fold
cross-validation scheme as before. Results from
our experiments are presented in Tables 3, 4 and

8http://www.nytimes.com/2016/03/25/world/europe/radovan-
karadzic-verdict.html

5. We present results of 5- and 10-way classifica-
tion for each of the annotation schemes (A or B),
and denote these as abbreviations of the annotation
letter and number of classes e.g., A5.

Table 4 demonstrates the clear effectiveness of
our LSTM model, which outperforms all other
models in all classification tasks. At minimum, we
see a 4.2% increase in F1 score over the next best
model and in some cases we see an 8.5% increase
in F1 score. While we see the largest gains in
the 5-way classification task, we also see an 8.2%
F1macro increase in the 10-way classification task
for annotation B. This suggests that at least some
of our embeddings are more effective at capturing
information relevant to a downstream classifica-
tion task than other more straightforward linguis-
tic features such as TFIDIF weights. However, this
analysis does not determine whether the increased
predictive power of the LSTM or the increased in-
formation from our embeddings contributes most
to this performance boost.

For a more rigorous analysis of our embedding
types, we compare their effectiveness as inputs
for our LSTM for this event classification task.
This is the first attempt to quantitatively measure
the performance of spatiotemporal embeddings on
a sizable evaluation task made of non-simulated

207

data. In addition to comparing the different types
of embeddings, we also compare our embeddings
against pre-trained static embeddings. Results for
these experiments are given in Table 3. We experi-
mented with increased embedding dimensionality
but find only a modest gain and therefore report
only for our 100-dimension embeddings.

We find that static embeddings trained on the
two-week corpus of Twitter data outperform pre-
trained embeddings (both Word2Vec and GloVe),
even when trained on a much larger quantity of
tweets e.g., 140M vs. the 2B used by GLoVe.
Static embeddings also outperform all spatiotem-
poral embeddings, likely due to the amount of
training data used by each embedding. The spa-
tial algorithm has the worst performance, which
also coincides with the fact that the spatial model
is unable to share information between different
locations. This differs from the temporal, spa-
tiotemporal, and Global2Specific models which
are able to share information across timesteps,
reducing data sparsity somewhat. Although we
find generally lower performance, increased data
may improve the spatiotemporal models and these
models have the additional advantage that they can
be trained online, allowing researchers to study
changes as they occur.

The difficulty for naive spatial embeddings is
countered by our Global2Specific strategy. Recall
that in the training process for these embeddings,
at each timestep a joint embedding is trained us-
ing tweets from all countries. These joint em-
beddings are then used to initialize the embedding
learned for a given country. Intuitively, this initial-
ization should result in better learned embeddings
since it leverages all of the data in the joint space
(140M tweets) as well as spatiotemporal aspects of
the data. While these embeddings do not outper-
form those learned completely in the joint space,
they demonstrate that this training process trans-
fers useful information, outperforming the spatial
and spatiotemporal embeddings.

6 Summary and Discussion

Discourse on social media varies widely over
space and time, thus, any static embedding method
will have difficulty resolving how events influence
discourse. It can be difficult to a priori define an
effective embedding scheme to capture this with-
out explicitly encoding space and time. In demon-
strating the value of spatiotemporal embeddings,

Annotation F1 LR SVM RF LSTM
A5 Macro 0.68 0.72 0.62 0.80

Micro 0.71 0.74 0.66 0.82
A10 Macro 0.42 0.48 0.41 0.53

Micro 0.61 0.64 0.58 0.69
B5 Macro 0.70 0.72 0.64 0.78

Micro 0.72 0.72 0.65 0.79
B10 Macro 0.37 0.45 0.37 0.53

Micro 0.64 0.65 0.59 0.72

Table 4: Results of baseline models and LSTM
trained on static embeddings. Best performance is
marked in bold.

A10 F1 B10 F1
Arts 0.74 Entertainment 0.79
Business 0.73 Politics 0.71
Conflict 0.73 Business 0.73
Justice 0.64 Crime 0.54
Politics 0.53 Terrorism 0.64
Life 0.56 Celebrity 0.39
Personnel 0.49 Death 0.39
Contact 0.36 Transportation 0.44
Nature 0.24 Natural disaster 0.52
Transaction 0.01 Health 0.42

Table 5: Error analysis: classification results (F1
per class) using Global2Specific embeddings.

we can clearly observe the variation in discourse
caused by significant events. We can pinpoint the
event, such as the Brussels bombing, down to the
resolution of our temporal embedding technique –
8 hours, in this case. We also observe general dif-
ferences in how discourse varies over geography.

What previous work has not made clear is
whether spatiotemporal embeddings also have
value in a quantitative sense. Our event classifica-
tion results show that simple spatiotemporal strate-
gies are not necessarily useful. The value of spa-
tiotemporal learning must be weighed against loss
of data when multiple embeddings must be sepa-
rately trained. The success of our Global2Specific
embeddings compared to other strategies demon-
strates that explicitly accounting for this loss of
data is a useful strategy. Future work will need
to investigate whether spatiotemporal embeddings
have value only when trained on very large data or
if better strategies can be incorporated to explicitly
model space and time.

7 Acknowledgments

The authors would like to thank Hannah Rashkin
(University of Washington), Ian Stewart (Georgia
Institute of Technology), Jacob Hunter, Josh Har-
rison, Eric Bell (PNNL) for their support and as-
sistance with this project.

208

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual NLP. Proceedings of CoNNL .

James Allan. 2012. Topic detection and tracking:
event-based information organization, volume 12.
Springer Science & Business Media.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042 .

David Bamman, Chris Dyer, and Noah A Smith. 2014.
Distributed representations of geographically situ-
ated language. In Proceedings of ACL.

Ann Bies, Zhiyi Song, Jeremy Getman, Joe Ellis, Justin
Mott, Stephanie Strassel, Martha Palmer, Teruko
Mitamura, Marjorie Freedman, Heng Ji, and Tim
O’Gorman. 2016. A comparison of event represen-
tations in deft. In Workshop on Events: Definition,
Detection, Coreference, and Representation.

Joana Costa, Catarina Silva, Mário Antunes, and
Bernardete Ribeiro. 2014. Concept drift awareness
in twitter streams. In Proceedings of ICMLA. pages
294–299.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie Strassel, and
Ralph M Weischedel. 2004. The automatic content
extraction (ace) program-tasks, data, and evaluation.
In Proceedings of LREC.

Anna Gladkova, Aleksandr Drozd, and Computing
Center. 2016. Intrinsic evaluations of word embed-
dings: What can we do better? Proceedings of ACL
.

Fréderic Godin, Baptist Vandersmissen, Wesley
De Neve, and Rik Van de Walle. 2015. Named
entity recognition for twitter microposts using dis-
tributed word representations. In Proceedings of
ACL-IJCNLP.

William L Hamilton, Jure Leskovec, and Dan Jurafsky.
2016a. Cultural shift or linguistic drift? comparing
two computational measures of semantic change.
Proceedings of EMNLP .

William L Hamilton, Jure Leskovec, and Dan Jurafsky.
2016b. Diachronic word embeddings reveal statis-
tical laws of semantic change. Proceedings of ACL
.

Dirk Hovy, Anders Johannsen, and Anders Søgaard.
2015. User review sites as a resource for large-scale
sociolinguistic studies. In Proceedings of WWW.
ACM, pages 452–461.

Chris Kedzie, Fernando Diaz, and Kathleen Mckeown.
2016. Real-Time Web Scale Event Summarization
Using Sequential Decision Making. Proceedings of
IJCAI .

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal analysis of lan-
guage through neural language models. Proceed-
ings of ACL .

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015. Statistically significant detec-
tion of linguistic change. In Proceedings of WWW.
pages 625–635.

Vivek Kulkarni, Bryan Perozzi, and Steven Skiena.
2016. Freshman or fresher? quantifying the geo-
graphic variation of language in online social media.
In Proceedings of AAAI-WSM.

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–
2012. In ISA. 4.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of ACL.
pages 302–308.

Donald Metzler, Congxing Cai, and Eduard Hovy.
2012. Structured event retrieval over microblog
archives. Proceedings of NAACL pages 646–655.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ally. In Proceedings of NIPS. pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Alexandre Passos, Vineet Kumar, and Andrew McCal-
lum. 2014. Lexicon infused phrase embeddings for
named entity resolution. In Proceedings of CoNLL.

Umashanthi Pavalanathan and Jacob Eisenstein. 2015.
Confounds and consequences in geotagged twitter
data. In Proceedings of EMNLP.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP. vol-
ume 14, pages 1532–43.

Hannah Rashkin, Sameer Singh, and Yejin Choi. 2016.
Connotation frames: A data-driven investigation. In
Proceedings of ACL.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Workshop on New Challenges for NLP Frameworks.

Alan Ritter, Oren Etzioni, and Sam Clark. 2012. Open
domain event extraction from twitter. In Proceed-
ings of SIGKDD.

209

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
EMNLP.

Philip A Schrodt. 2001. Automated coding of interna-
tional event data using sparse parsing techniques. In
ISA.

210

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 211–218,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Rethinking Skip-thought: A Neighborhood based Approach

Shuai Tang1, Hailin Jin2, Chen Fang2, Zhaowen Wang2, Virginia R. de Sa1

1Department of Cognitive Science, UC San Diego, La Jolla CA 92093, USA
2Adobe Research, 345 Park Ave., San Jose CA 95110, USA

{shuaitang93,desa}@ucsd.edu, {hljin,cfang,zhawang}@adobe.com

Abstract

We study the skip-thought model proposed
by Kiros et al. (2015) with neighborhood
information as weak supervision. More
specifically, we propose a skip-thought
neighbor model to consider the adjacent
sentences as a neighborhood. We train
our skip-thought neighbor model on a
large corpus with continuous sentences,
and then evaluate the trained model on
7 tasks, which include semantic related-
ness, paraphrase detection, and classifica-
tion benchmarks. Both quantitative com-
parison and qualitative investigation are
conducted. We empirically show that, our
skip-thought neighbor model performs as
well as the skip-thought model on evalu-
ation tasks. In addition, we found that,
incorporating an autoencoder path in our
model didn’t aid our model to perform bet-
ter, while it hurts the performance of the
skip-thought model.

1 Introduction

We are interested in learning distributed sentence
representation in an unsupervised fashion. Previ-
ously, the skip-thought model was introduced by
Kiros et al. (2015), which learns to explore the se-
mantic continuity within adjacent sentences (Har-
ris, 1954) as supervision for learning a generic
sentence encoder. The skip-thought model en-
codes the current sentence and then decodes the
previous sentence and the next one, instead of
itself. Two independent decoders were applied,
since intuitively, the previous sentence and the
next sentence should be drawn from 2 different
conditional distributions, respectively.

By posing a hypothesis that the adjacent sen-
tences provide the same neighborhood informa-

tion for learning sentence representation, we first
drop one of the 2 decoders, and use only one de-
coder to reconstruct the surrounding 2 sentences
at the same time. The empirical results show that
our skip-thought neighbor model performs as well
as the skip-thought model on 7 evaluation tasks.
Then, inspired by Hill et al. (2016), as they tested
the effect of incorporating an autoencoder branch
in their proposed FastSent model, we also con-
duct experiments to explore reconstructing the in-
put sentence itself as well in both our skip-thought
neighbor model and the skip-thought model. From
the results, we can tell that our model didn’t bene-
fit from the autoencoder path, while reconstruct-
ing the input sentence hurts the performance of
the skip-thought model. Furthermore, we conduct
an interesting experiment on only decoding the
next sentence without the previous sentence, and
it gave us the best results among all the models.
Model details will be discussed in Section 3.

2 Related Work

Distributional sentence representation learning in-
volves learning word representations and the com-
positionality of the words within the given sen-
tence. Previously, Mikolov et al. (2013b) proposed
a method for distributed representation learning
for words by predicting surrounding words, and
empirically showed that the additive composition
of the learned word representations successfully
captures contextual information of phrases and
sentences. Similarly, Le and Mikolov (2014) pro-
posed a method that learns a fixed-dimension vec-
tor for each sentence, by predicting the words
within the given sentence. However, after train-
ing, the representation for a new sentence is hard
to derive, since it requires optimizing the sentence
representation towards an objective.

Using an RNN-based autoencoder for language

211

representation learning was proposed by Dai and
Le (2015). The model combines an LSTM en-
coder, and an LSTM decoder to learn language
representation in an unsupervised fashion on the
supervised evaluation datasets, and then finetunes
the LSTM encoder for supervised tasks on the
same datasets. They successfully show that learn-
ing the word representation and the composition-
ality of words could be done at the same time in
an end-to-end machine learning system.

Since the RNN-based encoder processes an in-
put sentence in the word order, it is obvious that
the dependency of the representation on the start-
ing words will decrease as the encoder processes
more and more words. Tai et al. (2015) modi-
fied the plain LSTM network to a tree-structured
LSTM network, which helps the model to address
the long-term dependency problem. Other than
modifying the network structure, additional super-
vision could also help. Bowman et al. (2016) pro-
posed a model that learns to parse the sentence at
the same time as the RNN is processing the in-
put sentence. In the proposed model, the super-
vision comes from the objective function for the
supervised tasks, and the parsed sentences, which
means all training sentences need to be parsed
prior to training. These two methods require ad-
ditional preprocessing on the training data, which
could be slow if we need to deal with a large cor-
pus.

Instead of learning to compose a sentence rep-
resentation from the word representations, the
skip-thought model Kiros et al. (2015) utilizes
the structure and relationship of the adjacent sen-
tences in the large unlabelled corpus. Inspired by
the skip-gram model (Mikolov et al., 2013a), and
the sentence-level distributional hypothesis (Har-
ris, 1954), the skip-thought model encodes the cur-
rent sentence as a fixed-dimension vector, and in-
stead of predicting the input sentence itself, the
decoders predict the previous sentence and the
next sentence independently. The skip-thought
model provides an alternative way for unsuper-
vised sentence representation learning, and has
shown great success. The learned sentence repre-
sentation encoder outperforms previous unsuper-
vised pretrained models on 8 evaluation tasks with
no finetuning, and the results are comparable to
supervised trained models. In Triantafillou et al.
(2016), they finetuned the skip-thought models on
the Stanford Natural Language Inference (SNLI)

corpus (Bowman et al., 2015), which shows that
the skip-thought pretraining scheme is generaliz-
able to other specific NLP tasks.

In Hill et al. (2016), the proposed FastSent
model takes summation of the word representa-
tions to compose a sentence representation, and
predicts the words in both the previous sentence
and the next sentence. The results on this seman-
tic related task is comparable with the RNN-based
skip-thought model, while the skip-thought model
still outperforms the FastSent model on the other
six classification tasks. Later, Siamese CBOW
(Kenter et al., 2016) aimed to learn the word rep-
resentations to make the cosine similarity of ad-
jacent sentences in the representation space larger
than that of sentences which are not adjacent.

Following the skip-thought model, we designed
our skip-thought neighbor model by a simple mod-
ification. Section 3 presents the details.

3 Approach

In this section, we present the skip-thought neigh-
bor model. We first briefly introduce the skip-
thought model (Kiros et al., 2015), and then dis-
cuss how to explicitly modify the decoders in the
skip-thought model to get the skip-thought neigh-
bor model.

3.1 Skip-thought Model

In the skip-thought model, given a sentence
tuple (si−1, si, si+1), the encoder computes a
fixed-dimension vector as the representation zi
for the sentence si, which learns a distribution
p(zi|si; θe), where θe stands for the set of parame-
ters in the encoder. Then, conditioned on the rep-
resentation zi, two separate decoders are applied
to reconstruct the previous sentence si−1, and the
next sentence si+1, respectively. We call them
previous decoder p(si−1|zi; θp) and next decoder
p(si+1|zi; θn), where θ· denotes the set of param-
eters in each decoder.

Since the two conditional distributions learned
from the decoders are parameterized indepen-
dently, they implicitly utilize the sentence order
information within the sentence tuple. Intuitively,
given the current sentence si, inferring the pre-
vious sentence si−1 is considered to be different
from inferring the next sentence si+1.

212

Figure 1: The skip-thought neighbor model. The shared parameters are indicated in colors. The blue
arrow represents the dependency on the representation produced from the encoder. For a given sentence
si, the model tries to reconstruct its two neighbors, si−1 and si+1.

3.2 Encoder: GRU

In order to make the comparison fair, we choose
to use a recurrent neural network with the gated
recurrent unit (GRU) (Cho et al., 2014), which is
the same recurrent unit used in Kiros et al. (2015).
Since the comparison among different recurrent
units is not our main focus, we decided to use
GRU, which is a fast and stable recurrent unit. In
addition, Chung et al. (2014) shows that, on lan-
guage modeling tasks, GRU performs as well as
the long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997).

Suppose sentence si contains N words, which
are w1

i , w
2
i , ..., w

N
i . At an arbitrary time step t,

the encoder produces a hidden state hti, and we re-
gard it as the representation for the previous sub-
sequence through time t. At time N , the hidden
state hNi represents the given sentence si, which
is zi. The computation flow of the GRU in our ex-
periments is shown below (omitting the subscript
i) :

[
mt

rt

]
= σ

(
Whht−1 + Wxxt

)
(1)

ĥt = tanh
(
Wxt + U

(
rt � ht−1

))
(2)

ht = (1−mt)� ht−1 + mt � ĥt (3)

where xt is the embedding for the word wti , W·
and U are the parameter matrices, and � is the
element-wise product.

3.3 Decoder: Conditional GRU

The decoder needs to reconstruct the previous sen-
tence si−1 and the next sentence si+1 given the
representation zi. Specifically, the decoder is a re-
current neural network with conditional GRU, and
it takes the representation zi as an additional input
at each time step.

3.4 Skip-thought Neighbor Model

Our hypothesis is that, even without the order in-
formation within a given sentence tuple, the skip-
thought model should behave similarly in terms
of the reconstruction error, and perform similarly
on the evaluation tasks. To modify the skip-
thought model, given si, we assume that infer-
ring si−1 is the same as inferring si+1. If we
define {si−1, si+1} as the two neighbors of si,
then the inferring process can be denoted as sj ∼
p(s|zi; θd), for any j in the neighborhood of si.
The conditional distribution learned from the de-
coder is parameterized by θd.

In experiments, we directly drop one of the two
decoders, and use only one decoder to reconstruct
the previous sentence si−1 and next sentence si+1

at the same time, given the representation zi of si.
Our skip-thought neighbor model can be consid-
ered as sharing the parameters between the previ-
ous decoder and the next decoder in the original
skip-thought model. An illustration is shown in
Figure 1.

The objective at each time step is defined as the
log-likelihood of the predicted word given the pre-
vious words, which is

`ti,j(θe, θd) = log p(wtj |w<tj , zi; θe, θd) (4)

max
θe,θd

∑
i

∑
j∈{i−1,i+1}

∑
t

`ti,j(θe, θd) (5)

where θe is the set of parameters in the encoder,
and θd is the set of parameters in the decoder. The
loss function is summed across the whole training
corpus.

3.5 Skip-thought Neighbor with Autoencoder

Previously, we defined {si−1, si+1} as the two
neighbors of si. In addition, we assume that si
could also be a neighbor of itself. Therefore, the
neighborhood of si becomes {si−1, si, si+1}. In-

213

Model MR CR SUBJ MPQA TREC MSRP (Acc/F1)
SICK

r ρ MSE

uni-N-1200 71.5 78.4 90.1 83.4 85.2 72.1 / 81.7 0.8108 0.7382 0.3498
bi-N-1200 71.9 79.3 90.8 85.2 88.8 72.8 / 81.5 0.8294 0.7594 0.3192

combine-N-1200 73.6 80.2 91.4 85.7 89.0 73.5 / 82.1 0.8381 0.7721 0.3039
uni-skip-1200 72.1 77.8 90.5 84.2 86.0 71.5 / 80.8 0.8196 0.7510 0.3350
bi-skip-1200 72.9 79.3 90.6 85.2 87.6 72.9 / 81.6 0.8264 0.7535 0.3237

combine-skip-1200 74.0 80.4 91.5 86.1 87.8 73.7 / 81.7 0.8312 0.7610 0.3164

uni-N-1200+AE 70.8 75.9 90.4 82.7 87.2 73.3 / 81.7 0.8128 0.7450 0.3493
bi-N-1200+AE 71.1 78.4 90.8 83.7 89.6 73.2 / 81.7 0.8198 0.7572 0.3389

combine-N-1200+AE 72.4 78.6 91.5 84.3 88.7 75.4 / 83.0 0.8347 0.7680 0.3135
uni-skip-1200+AE 68.4 76.5 89.4 81.4 81.6 72.2 / 81.4 0.7888 0.7224 0.3874
bi-skip-1200+AE 70.0 76.4 89.6 81.4 86.0 72.8 / 81.4 0.7908 0.7249 0.3824

combine-skip-1200+AE 71.6 78.0 90.7 83.2 83.2 73.2 / 81.4 0.8086 0.7410 0.3562

uni-N-next-1200 73.3 80.0 90.7 84.9 84.8 73.8 / 81.9 0.8207 0.7512 0.3330
bi-N-next-1200 75.0 80.5 91.1 86.5 87.4 72.3 / 81.3 0.8271 0.7630 0.3223

combine-N-next-1200 75.8 81.8 91.9 86.8 88.6 75.0 / 82.5 0.8396 0.7739 0.3013

Table 1: The model name is given by encoder type - model type - model size with or without autoencoder
branch +AE. Bold numbers indicate the best results among all models. Without the autoencoder branch,
our skip-thought neighbor models perform as well as the skip-thought models, and our “next” models
slightly outperform the skip-thought models. However, with the autoencoder branch, our skip-thought
neighbor models outperform the skip-thought models.

ferring sj ∼ p(s|zi; θd) for any j in the neigh-
borhood of si then involves adding an autoencoder
path into to our skip-thought neighbor model. In
experiments, the decoder in the model is required
to reconstruct all three sentences {si−1, si, si+1}
in the neighborhood of si at the same time. The
objective function becomes

max
θe,θd

∑
i

∑
j∈{i−1,i,i+1}

∑
t

lti,j(θe, θd) (6)

Previously Hill et al. (2016) tested adding an au-
toencoder path into their FastSent model. Their
results show that, with the additional autoencoder
path, the performance on the classification tasks
slightly improved, while there was no significant
performance gain or loss on the semantic related-
ness task.

We tested both our skip-thought neighbor model
and the original skip-thought model with the au-
toencoder path, respectively. The results are pre-
sented in Sections 4, 5 and 6.

3.6 Skip-thought Neighbor with One Target
In our skip-thought neighbor model, for a given
sentence si, the decoder needs to reconstruct the
sentences in its neighborhood {si−1, si+1}, which
are two targets. We denote the inference process
as si → {si−1, si+1}. For the next sentence si+1,

the inference process is si+1 → {si, si+2}. In
other words, for a given sentence pair {si, si+1},
the inference process includes si → si+1 and
si+1 → si.

In our hypothesis, the model doesn’t distinguish
between the sentences in a neighborhood. In this
case, an inference process that includes si → si+1

and si+1 → si is equivalent to an inference pro-
cess with only one of them. Thus, we define a
skip-thought neighbor model with only one target,
and the target is always the next sentence. The ob-
jective becomes

max
θe,θd

∑
i

∑
t

`ti,i+1(θe, θd) (7)

4 Experiment Settings

The large corpus that we used for unsupervised
training is the BookCorpus dataset (Zhu et al.,
2015), which contains 74 million sentences from
7000 books in total.

All of our experiments were conducted in
Torch7 (Collobert et al., 2011). To make the com-
parison fair, we reimplemented the skip-thought
model under the same settings, according to
Kiros et al. (2015), and the publicly available
theano code1. We adopted the multi-GPU train-

1https://github.com/ryankiros/skip-thoughts

214

ing scheme from the Facebook implementation of
ResNet2.

We use the ADAM (Kingma and Ba, 2014) al-
gorithm for optimization. Instead of applying the
gradient clipping according to the norm of the gra-
dient, which was used in Kiros et al. (2015), we di-
rectly cut off the gradient to make it within [−1, 1]
for stable training.

The dimension of the word embedding and the
sentence representation are 620 and 1200. respec-
tively. For the purpose of fast training, all the
sentences were zero-padded or clipped to have the
same length.

5 Quantitative Evaluation

We compared our proposed skip-thought neighbor
model with the skip-thought model on 7 evaluation
tasks, which include semantic relatedness, para-
phrase detection, question-type classification and
4 benchmark sentiment and subjective datasets.
After unsupervised training on the BookCorpus
dataset, we fix the parameters in the encoder, and
apply it as a sentence representation extractor on
the 7 tasks.

For semantic relatedness, we use the SICK
dataset (Marelli et al., 2014), and we adopt the fea-
ture engineering idea proposed by Tai et al. (2015).
For a given sentence pair, the encoder computes a
pair of representations, denoted as u and v, and the
concatenation of the component-wise product u ·v
and the absolute difference |u − v| is regarded as
the feature for the given sentence pair. Then we
train a logistic regression on top of the feature to
predict the semantic relatedness score. The eval-
uation metrics are Pearsons r, Spearmans ρ, and
mean squared error MSE.

The dataset we use for the paraphrase detec-
tion is the Microsoft Paraphrase Detection Corpus
(Dolan et al., 2004). We follow the same feature
engineering idea from Tai et al. (2015) to com-
pute a single feature for each sentence pair. Then
we train a logistic regression, and 10-fold cross
validation is applied to find the optimal hyper-
parameter settings.

The 5 classification tasks are question-type
classification (TREC) (Li and Roth, 2002),
movie review sentiment (MR) (Pang and Lee,
2005), customer product reviews (CR) (Hu and
Liu, 2004), subjectivity/objectivity classification

2https://github.com/facebook/fb.resnet.torch

(SUBJ) (Pang and Lee, 2004), and opinion polar-
ity (MPQA) (Wiebe et al., 2005).

In order to deal with more words besides the
words used for training, the same word expan-
sion method, which was introduced by Kiros et al.
(2015), is applied after training on the BookCor-
pus dataset.

The results are shown in Table 1, where the
model name is given by encoder type - model type
- model size. We tried with three different types
of the encoder, denoted as uni-, bi-, and combine-
in Table 1. The first one is a uni-directional
GRU, which computes a 1200-dimension vector
as the sentence representation. The second one
is a bi-directional GRU, which computes a 600-
dimension vector for each direction, and then the
two vectors are concatenated to serve as the sen-
tence representation. Third, after training the uni-
directional model and the bi-directional model,
the representation from both models are concate-
nated together to represent the sentence, denoted
as combine-.

In Table 1, -N- refers to our skip-thought neigh-
bor model, -N-next- refers to our skip-thought
neighbor with only predicting the next sentence,
and -skip- refers to the original skip-thought
model.

5.1 Skip-thought Neighbor vs. Skip-thought
From the results we show in Table 1, we can tell
that our skip-thought neighbor models perform as
well as skip-thought models but with fewer param-
eters, which means that the neighborhood infor-
mation is effective in terms of helping the model
capture sentential contextual information.

5.2 Skip-thought Neighbor+AE vs.
Skip-thought+AE

For our skip-thought neighbor model, incorporat-
ing an antoencoder (+AE) means that, besides re-
constructing the two neighbors si−1 and si+1, the
decoder also needs to reconstruct si. For the skip-
thought model, since the implicit hypothesis in
the model is that different decoders learn different
conditional distributions, we add another decoder
in the skip-thought model to reconstruct the sen-
tence si. The results are also shown in Table 1.

As we can see, our skip-thought neighbor+AE
models outperform skip-thought+AE models sig-
nificantly. Specifically, in skip-thought model,
adding an autoencoder branch hurts the perfor-
mance on SICK, MR, CR, SUBJ and MPQA

215

dataset. We find that the reconstruction error on
the autoencoder branch decreases drastically dur-
ing training, while the sum of the reconstruction
errors on the previous decoder and next decoder
fluctuates widely, and is larger than that in the
model without the autoencoder branch. It seems
that, the autoencoder branch hurt the skip-thought
model to capture sentential contextual information
from the surrounding sentences. One could vary
the weights on the three independent branches to
get better results, but it is not our main focus in
this paper.

In our skip-thought neighbor model, the inclu-
sion of the autoencoder constraint did not have the
same problem. With the autoencoder branch, the
model gets lower errors on reconstructing all three
sentences. However, it doesn’t help the model to
perform better on the evaluation tasks.

5.3 Increasing the Number of Neighbors

We also explored adding more neighbors into our
skip-thought neighbor model. Besides using one
decoder to predict the previous 1 sentence, and
the next 1 sentence, we expand the neighborhood
to contain 4 sentences, which are the previous 2
sentences, and the next 2 sentences. In this case,
the decoder is required to reconstruct 4 sentences
at the same time. We ran experiments with our
model, and we evaluated the trained encoder on 7
tasks.

There is no significant performance gain or loss
on our model trained with 4 neighbors; it seems
that, increasing the number of neighbors doesn’t
improve the performance, but it also doesn’t hurt
the performance. Our hypothesis is that, recon-
structing four different sentences in a neighbor-
hood with only one set of parameters is a hard task,
which might distract the model from capturing the
sentential contextual information.

5.4 Skip-thought Neighbor with One Target

Compared to the skip-thought model, our skip-
thought neighbor model with one target contains
fewer parameters, and runs faster during training,
since for a given sentence, our model only needs
to reconstruct its next sentence while the skip-
thought model needs to reconstruct its surround-
ing two sentences. The third section in Table 1
presents the results of our model with only one tar-
get. Surprisingly, it overall performs as well as the
skip-thought models as all previous models.

5.5 A Note on Normalizing the
Representation

An interesting observation was found when we
were investigating the publicly available code for
Kiros et al. (2015), which is, during training, the
representation produced from the encoder will be
directly sent to the two decoders, however, after
training, the output from the encoder will be nor-
malized to keep the l2-norm as 1, so the sentence
representation is a normalized vector.

Model
SICK

r ρ MSE

uni-N-1200 0.8174 0.7409 0.3404
bi-N-1200 0.8339 0.7603 0.3102

combine-N-1200 0.8360 0.7645 0.3054
uni-skip-1200 0.8232 0.7493 0.3292
bi-skip-1200 0.8280 0.7526 0.3203

combine-skip-1200 0.8340 0.7600 0.3100

uni-N-1200+AE 0.8210 0.7450 0.3493
bi-N-1200+AE 0.8302 0.7610 0.3169

combine-N-1200+AE 0.8326 0.7621 0.3285
uni-skip-1200+AE 0.7959 0.7255 0.3760
bi-skip-1200+AE 0.7986 0.7282 0.3693

combine-skip-1200+AE 0.8129 0.7400 0.3508

uni-N-next-1200 0.8253 0.7508 0.3245
bi-N-next-1200 0.8296 0.7621 0.3175

combine-N-next-1200 0.8402 0.7706 0.2999

Table 2: Evaluation on SICK dataset without nor-
malizing the representation. Bold numbers indi-
cate the best values among all models.

We conducted experiments on the effect of nor-
malization during the evaluation, and we evaluated
both on our skip-thought neighbor model, and our
implemented skip-thought model. Generally, the
normalization step slightly hurts the performance
on the semantic relatedness SICK task, while it
improves the performance across all the other clas-
sification tasks. The Table 1 presents the results
with the normalization step, and Table 2 presents
the results without normalization on SICK dataset.

6 Qualitative Investigation

We conducted investigation on the decoder in our
trained skip-thought neighbor model.

6.1 Sentence Retrieval

We first pick up 1000 sentences as the query
set, and then randomly pick up 1 million sen-
tences as the database. In the previous section, we

216

i wish i had a better answer to that question .
i wish i knew the answer .
i only wish i had an answer .
i kept my eyes on the shadowed road , watching my every step .
i kept my eyes at my feet and up ahead on the trail .
i kept on walking , examining what i could out of the corner of my eye .
the world prepared to go into its hours of unreal silence that made it seem magical , and it really was .
the world changed , and a single moment of time was filled with an hour of thought .
everything that was magical was just a way of describing the world in words it could n’t ignore .
my phone buzzed and i awoke from my trance .
i flipped my phone shut and drifted off to sleep .
i grabbed my phone and with groggy eyes , shut off the alarm .
i threw my bag on my bed and took off my shoes .
i sat down on my own bed and kicked off my shoes .
i fell in bed without bothering to remove my shoes .

Table 3: In each section, the first sentence is the query, the second one is the nearest neighbor retrieved
from the database, and the third one is the 2nd nearest neighbor. The similarity between every sentence
pair is measure by the cosine similarity in the representation space.

mentioned that normalization improves the perfor-
mance of the model, so the distance measure we
applied in the sentence retrieval experiment is the
cosine distance. Most of retrieved sentences look
semantically related and can be viewed as the sen-
tential contextual extension to the query sentences.
Several samples can be found in Table 3.

6.2 Conditional Sentence Generation

“ i do n’t want to talk about it . ”
“ i ’m not going to let you drive me home . ”
“ hey , what ’s wrong ? ”
i ’m not sure how i feel about him .
i was n’t going to be able to get to the beach .
he was n’t even looking at her .
“ i guess you ’re right . ”

Table 4: Samples of the generated sentences.

Since the models are trained to minimizing the
reconstruction error across the whole training cor-
pus, it is reasonable to analyze the behavior of
the decoder on the conditional sentence genera-
tion. We first randomly pick up sentences from
the training corpus, and compute a representation
for each of them. Then, we greedily decode the
representations to sentences. Table 4 presents the
generated sentences. Several interesting observa-
tions worth mentioning here.

The decoder in our skip-thought neighbor
model aims to minimize the distance of the gen-
erated sentence to two targets, which lead us to

doubt if the decoder is able to generate at least
grammatically-correct English sentences. But, the
results shows that the generated sentences are both
grammatically-correct and generally meaningful.

We also observe that, the generated sentences
tend to have similar starting words, and usually
have negative expression, such as i was n’t, i ’m
not, i do n’t, etc. After investigating the training
corpus, we noticed that this observation is caused
by the dataset bias. A majority of training sen-
tences start with i and i ’m and i was , and there is a
high chance that the negation comes after was and
’m. In addition, the generated sentences rarely are
the sentential contextual extension of their associ-
ated input sentences, which is same for the skip-
thought models. More investigations are needed
for the conditional sentence generation.

7 Conclusion

We proposed a hypothesis that the neighborhood
information is effective in learning sentence rep-
resentation, and empirically tested our hypothesis.
Our skip-thought neighbor models were trained
in an unsupervised fashion, and evaluated on 7
tasks. The results showed that our models per-
form as well as the skip-thought models. Further-
more, our model with only one target performs
better than the skip-thought model. Future work
could explore more on the our skip-thought neigh-
bor model with only one target, and see if the pro-
posed model is able to generalize to even larger

217

corpora, or another corpus that is not derived from
books.

Acknowledgments

We gratefully thank Jeffrey L. Elman, Benjamin
K. Bergen, Seana Coulson, and Marta Kutas for
insightful discussion, and thank Thomas Andy
Keller, Thomas Donoghue, Larry Muhlstein, and
Reina Mizrahi for suggestive chatting. We also
thank Adobe Research Lab for GPUs support, and
thank NVIDIA for DGX-1 trial as well as support
from NSF IIS 1528214 and NSF SMA 1041755.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. 2016. A fast unified model
for parsing and sentence understanding. CoRR
abs/1603.06021.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. CoRR abs/1412.3555.

R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011.
Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop.

Andrew M. Dai and Quoc V. Le. 2015.
Semi-supervised sequence learning. CoRR
abs/1511.01432.

William B. Dolan, Chris Quirk, and Chris Brockett.
2004. Unsupervised construction of large para-
phrase corpora: Exploiting massively parallel news
sources. In COLING.

Zellig S Harris. 1954. Distributional structure. Word
10(2-3):146–162.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In HLT-NAACL.

Sepp Hochreiter and Juergen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9:1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD.

Tom Kenter, Alexey Borisov, and Maarten de Ri-
jke. 2016. Siamese cbow: Optimizing word
embeddings for sentence representations. CoRR
abs/1606.04640.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Skip-thought vectors.
In NIPS.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In COLING.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In LREC.

Tomas Mikolov, Kai Chen, Gregory S. Corrado,
and Jeffrey Dean. 2013a. Efficient estimation
of word representations in vector space. CoRR
abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. CoRR abs/1310.4546.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In ACL.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In ACL.

Eleni Triantafillou, Jamie Ryan Kiros, Raquel Urtasun,
and Richard Zemel. 2016. Towards generalizable
sentence embeddings.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language Resources and Evalu-
ation 39:165–210.

Yukun Zhu, Jamie Ryan Kiros, Richard S. Zemel, Rus-
lan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Aligning books
and movies: Towards story-like visual explanations
by watching movies and reading books. CoRR
abs/1506.06724.

218

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 219–227,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

A Frame Tracking Model
for Memory-Enhanced Dialogue Systems

Hannes Schulz∗ and Jeremie Zumer∗ and Layla El Asri and Shikhar Sharma
Microsoft Maluuba

first.last@microsoft.com

Abstract

Recently, resources and tasks were pro-
posed to go beyond state tracking in dia-
logue systems. An example is the frame
tracking task, which requires recording
multiple frames, one for each user goal
set during the dialogue. This allows
a user, for instance, to compare items
corresponding to different goals. This
paper proposes a model which takes as
input the list of frames created so far
during the dialogue, the current user
utterance as well as the dialogue acts,
slot types, and slot values associated
with this utterance. The model then
outputs the frame being referenced by
each triple of dialogue act, slot type,
and slot value. We show that on the
recently published Frames dataset, this
model significantly outperforms a previ-
ously proposed rule-based baseline. In
addition, we propose an extensive anal-
ysis of the frame tracking task by divid-
ing it into sub-tasks and assessing their
difficulty with respect to our model.

1 Introduction

Conversational agents can seamlessly integrate
into our lives by offering a natural language
interface for complex tasks. However, the com-
plexity of conversations with current slot-filling
dialogue systems is limited. One limitation is
that the user usually cannot refer back to an
earlier state in the dialogue, which is essential
e.g., when comparing alternatives or research-
ing a complex subject.

The recently published Frames dataset (El
Asri et al., 2017) provides 1369 goal-oriented

∗ Both authors contributed equally.

human-human dialogues where the participants
had to decide on a vacation package to pur-
chase. The authors observed that in order to
make up their minds, participants often com-
pared different packages and referred to items
that had been previously discussed during the
dialogue. Current dialogue systems do not
model the dialogue history in a way that a user
can go back-and-forth between the different
things that have been discussed. To address
this shortcoming, El Asri et al. (2017) intro-
duced a new task called frame tracking. Frame
tracking is an extension of the state tracking
(Henderson, 2015; Williams et al., 2016) task.

In a task-oriented dialogue system, the state
tracker keeps track of the user goal. The user
goal is often represented as the set of con-
straints that the user has (e.g., a budget) as
well as the questions that the user has about
the items presented to her by the dialogue sys-
tem (e.g., the price of the vacation package). It
is assumed that the dialogue system only needs
to keep track of the last set of constraints given
by the user. As a consequence, the user can
change her goal during the dialogue but never
come back to a previous goal. Frame track-
ing consists of recording all the different goals
set by the user during the dialogue. This re-
quires creating a new frame for each new user
goal, which is the annotation provided with
the Frames corpus.

A frame tracker needs to be able to assign
each new user utterance to the frames it ref-
erences. This requires understanding which
frame the user is talking about and recognizing
when the user changes her goal, which implies
that a new frame is created. For e.g. compar-
isons, multiple referenced frames need to be
identified. This paper proposes a neural model
that attempts to solve these tasks.

219

id=1
dst city=Mannheim
or city=Melbourne
price=8000USD

id=2
dst city=New York
or city=Melbourne

id=3
(new)

inform(dst city=Mannheim, budget=cheaper, flex=T)

Is there a cheaper package to Mannheim? I’m flexible with the dates.

Figure 1: Illustration of the frame tracking
task. The model must choose, for each slot,
which frame it is referring to, given the set
of available frames, the previous active frame
(bold), and the potential new frame (marked
“(new)”).

We show that the model significantly outper-
forms the baseline proposed by El Asri et al. on
all the tasks required to perform frame tracking
except for when the user switches frames with-
out specifying slots. We also provide an anal-
ysis of frame tracking. In particular, we show
that our model knows what frame anaphora
refer to almost 90% of the time, and which
hotel is being talked about 84.6% of the time.
On the other hand, it does not perform well
on slots which tend to be repeated in many
frames, such as dst city (destination city). It
also has difficulties selecting the right frame
among similar offers introduced in the same
dialogue turn.

2 Frame Tracking: An Extension of
State Tracking

In a goal-oriented dialogue system, the state
tracker records the user goal in a semantic
frame (Singh et al., 2002; Raux et al., 2003;
El Asri et al., 2014; Laroche et al., 2011). The
Dialogue State Tracking Challenge (DSTC)
(Williams et al., 2016) defines this semantic
frame with the following components:

� User constraints: slots which have been
set to a particular value by the user.

� User requests: slots whose values the user
wants to know.

� User’s search method: the user’s way
of searching the database (e.g., by con-
straints or alternatives).

In state tracking, when a new user constraint
is set, it overwrites the previous one in the

frame. In frame tracking, a new user constraint
creates a new frame and thus, there are as
many frames as user goals explored during the
dialogue.

To deal with user goals, two components
specific to this setting were added to a frame,
namely:

� User’s comparison requests: user requests
for this frame and one or more other
frames.

� User’s binary questions: user questions
with slot types and slot values for this
frame and possibly one or more other
frames.

The user’s search method is not part of the
semantic frame defined for frame tracking. In
addition, a frame is also created when the wiz-
ard proposes a vacation package to the user.
This type of frame contains the same compo-
nents as the ones defining a user goal except
that the constraints are set by the wizard and
not the user. A new frame is created so that
if the user wants to consider the package, it is
possible to switch to this frame and consider
it to be the current user goal.

An example of comparison request is “Could
you tell me which of these resorts offers free
wifi?” and an example of binary question is “Is
this hotel in the downtown area of the city?” or
“Is the this trip cheaper than the previous one?”.
A user request only has a slot type, e.g., “Where
is this hotel?” whereas a binary question has
a slot type and a slot value. In other words,
a binary question amounts to a confirmation
and a request, to an open question.

Frames was collected using a Wizard-of-Oz
method (WOz, Kelley, 1984; Rieser et al., 2005;
Wen et al., 2016): for each dialogue a user and
a wizard were paired. The user had a set of
constraints and was tasked with finding a good
vacation package that fits these constraints.
The wizard had access to a database of vacation
packages and helped the user find a suitable
package. The wizards were thus playing the
role of the dialogue system.

Each dialogue turn in the dataset is anno-
tated with the currently active frame, i.e., the
frame that is being currently discussed. The
corpus was annotated in such a way that both
users and wizards could create new frames. On

220

the wizard side, a new frame is created when-
ever the wizard proposes a new package to
the user. However, only the user can switch
the currently active frame, for instance, by
asking questions about a package proposed by
the wizard. The motivation is that the user
should have control of the frame being dis-
cussed throughout the dialogue, the dialogue
system being an assistant to the user.

El Asri et al. (2017) define the frame tracking
task as follows:

For each user turn τ , the full di-
alogue history H = {F1, ..., Fnτ−1} is
available, where Fi is a frame and
nτ−1 is the number of frames created
up to that turn. The following labels
are known for the user utterance uτ
at time τ : dialogue acts, slot types,
and slot values. The task is to pre-
dict if a new frame is created and to
predict the frame or frames that are
referenced in each dialogue act. A
referenced frame can be the currently
active frame or a previous one.

This task is illustrated in Figure 1. We propose
a model that tries to solve this task and analyze
this model’s behavior on several sub-tasks.

3 Related Work

As discussed in the previous section, frame
tracking extends state tracking from only track-
ing the current user goal to tracking all the user
goals that occur during the dialogue.

Recently, several approaches to state track-
ing have attempted to model more complex
behaviors than sequential slot-filling. The clos-
est approach to ours is the Task Lineage-based
Dialog State Tracking (TL-DST) setting pro-
posed by Lee and Stent (2016). TL-DST is a
framework that allows keeping track of multi-
ple tasks across different domains. Similarly to
frame tracking, Lee and Stent propose to learn
a dynamic structure of the dialogue composed
of several frames corresponding to different
tasks. TL-DST encompasses several sub-tasks
among which task frame parsing which con-
sists of assigning a set of new dialogue acts
to frames. This relates to frame tracking ex-
cept that they impose constraints on how a
dialogue act can be assigned to a frame and a

dialogue act can only reference one frame. Lee
and Stent (2016) trained their tracking model
on datasets released for DSTC (DSTC2 and
DSTC3, Henderson et al., 2014b,a) because no
appropriate data for the task was available at
the time. With this data, they could artificially
mix different tasks within one dialogue, e.g.,
looking for a restaurant and looking for a pub,
but they could not study human behavior and
how humans switch between tasks and frames.
Besides, TL-DST allows switching between dif-
ferent tasks but does not allow comparisons
which is an important aspect of frame tracking.

Another related approach was proposed by
Perez and Liu (2016), who re-interpreted the
state tracking task as a question-answering
task. Their state tracker is based on a memory
network (Weston et al., 2014) and can answer
questions about the user goal at the end of
the dialogue. They also propose adding other
skills such as keeping a list of the constraints
expressed by the user during the dialogue. This
work did not attempt to formalize the different
constraints as separate states to record.

Before describing our frame tracking model,
we analyze the frame-switching and frame-
creation behavior in Frames.

4 Analysis of Frame References

4.1 Reasons for Referencing Other
Frames

The Frames dataset contains 19986 turns,
among which 10407 are user turns. In 3785
(36%) of these user turns, the active frame is
changed. When the active frame is not changed,
the user refers to one or more other frames in
7.5% of the turns.

If we consider only inform acts1, a dialogue
system with a traditional state tracker which
tracks only a single semantic frame would be
able to deal with the subset of frame changes
which correspond to overriding an already es-
tablished value (1684 turns or 44% of the turns
where frame changes occur). The remaining
2102 (56%) turns contain switch frame acts
from the user. The switch frame act indi-
cates when a user switches from the currently
active frame to a previously-defined frame. A
switch frame act directly follows one or sev-

1Utterances where the user informs the wizard of
constraints.

221

eral vacation-package offers from the wizard
in 1315 (38%) of the frame-changing turns. In
428 turns, the user selects between multiple
offers made by the wizard and in 887 turns,
she accepts a single offer made by the wizard.
A total of 787 (20%) frame switches are made
to a point in the dialogue which is anterior to
the directly preceding turn. Note that in this
work, we assume that we know the list of all
previous frames at each turn of the dialogue
but a practical dialogue system should gener-
ate this list dynamically during the dialogue.
For this reason, it is crucial to also correctly
interpret the user’s inform acts so that if a
user appeals to an old frame, this frame exists
and is correctly identified.

Most of the turns where the user does not
change the active frame but refers to other
frames contain request compare (asking to
compare different frames, 191), negate (98),
request (28), and request alts (asking for
another package, 17) acts.

4.2 Examples

In this section, we categorize instances of inter-
esting frame-related user behavior and discuss
the resulting requirements for a frame tracker.

� Switching to a frame by mentioning
a slot value. “Oh, the Rome deal sounds
much better!”, “Can you tell me more
about the Frankfurt package?”, “I’ll take
the 13 day trip then!”.
For this case, we need to find which frames
match the identified slot values, for in-
stance, the destination city in the first
example. Since there might be multiple
matching frames, we have to incorporate
recency information as well. In addition,
equivalences have to be taken into account
(13 – thirteen, September – sept, NY –
Big Apple, etc.). Furthermore, in some
cases, we need to learn equivalences be-
tween slots. E.g., the user has a budget,
but the wizard typically only mentions
prices.

� Switching to a frame without refer-
encing it directly, usually by accept-
ing an offer explicitly or implicitly.
“yeah tell me more!”, “yes please”, “Rea-
sonable. any free wifi for the kids?”.
The difficult part here is to identify

whether the user actually accepted an offer
at all, which also modifies the frame if the
user asks follow-up questions in the same
turn like in the third example. Some users
ignore irrelevant wizard offers completely.

� Switching to a frame using anaphora.
“Yeah, how much does the second trip
cost?”, “When is this trip and what is the
price?”, “Give me the first option, thank
you”.
This is a slightly more explicit version of
the previous case, and requires additional
logic to determine the referenced frame
based on recency and other mentioned slot
values.

� Implicit reference for comparisons.
“Do these packages have different depar-
ture dates?”.

� Explicit reference for comparisons.
“Can you compare the price of this and
the one to the package in St. Luis?” (sic)

� Creating a new frame by specifying
a conflicting slot value. “okaaay, how
about to Tijuana then?”, “what’s the
cheapest you got?”, “Can I get a longer
package if I opt for economy first?”
Here, the mentioned slot values need to
be explicitly compared with the ones in
the current frame to identify contradicting
values. The same similarities discussed in
frame switching above must be considered.
The context in which the slot values occur
may be crucial to decide whether this is a
switch to an old frame or the creation of
a new one.

� Creating a new frame with an ex-
plicit reference to a previous one.
“Are there flights from Vancouver leaving
around the same time from another depar-
ture city?”, “I’d like to also compare the
prices for a trip to Kobe between the same
dates.”, “Is there a shorter trip to NY?”.
In these examples, the slots time, date,
and duration depend on references to
frames (the current frame and the NY
frame, respectively).

5 Frame Tracking Model

In the previous section, we identified various
ways employed by the users to reference past
frames or create new ones. In the following sec-
tions, we describe a model for frame tracking,

222

i.e., a model which takes as input the history
of past frames as well as the current user ut-
terance and the associated dialogue acts, and
which outputs the frames references for each
dialogue act.

5.1 Input Encoding

Our model receives three kinds of inputs: the
frames that were created before the current
turn, the current turn’s user dialogue acts with-
out frame references, and the user’s utterance.
We encode these three inputs before passing
them to the network. The frames and the
dialogue acts in particular are complex data
structures whose encodings are crucial for the
model’s performance.

5.1.1 Text Encoding

We encode the user text as well as all the slot
values by tokenizing the strings2 and converting
each token to letter trigrams3. Each trigram
t ∈ T is represented as its index in a trainable
trigram dictionary DT .

5.1.2 Frame Encoding

We encode only the constraints stored in the set
F containing the frames created before the cur-
rent turn. In the Frames dataset, each frame
F ∈ F contains constraints composed of slot-
value pairs, where for one slot s ∈ S multiple
equivalent values (e.g., NY and New York) and
additional negated values (for instance if the
user says that she does not want to go to a
city proposed by the wizard) may be present.
We encode a string representation of the most
recent non-negated value v as described in Sec-
tion 5.1.1. The slot type is encoded as an index
in a slot type dictionary DS . The final frame
encoding is the concatenation of all slot-value
pairs in the frame.

In addition to the encoded frames, we also
provide two vectors to the model: a one-hot
code fc marking the frame that was active
in the last turn (the bold frame in Figure 1)
and a one-hot code fn marking the frame that
will be added if a new frame is created by the
user in this turn (the frame marked “(new)” in
Figure 1).

2using nltk’s TweetTokenizer, www.nltk.org
3E.g., “hello” is converted to #he, hel, ell, llo, lo#

5.1.3 Similarity Encoding
To simplify learning of plain value matching,
we precompute a matrix SL ∈ RN×F , which
contains the normalized string edit distance of
the slot values in the user act to the value of
the same slot in each frame, if present.

5.1.4 Recency Encoding
We also provide the model with information
about the history of the dialogue by marking
recently added as well as recently active frames,
coded as hτd and hτc , respectively, at turn τ . For
a frame f introduced or last active at turn τf ,
we set

hτ· (f) =

0 if τ < τf

1 if τ = τf

γhτ−1· otherwise.

5.1.5 Act Encoding
A dialogue act in the current turn has an act
name a ∈ A and a number of arguments. Each
argument has a slot type s ∈ S and an optional
slot value v. We use a dictionary DA to assign
a unique index to each act a, and use the same
method as described in Section 5.1.2 to encode
slot-value pairs. In addition to the N triples
(a, s, v), we encode every act a separately, since
an act may not have any arguments but still
refer to a frame (cf. frame switching examples
in Section 4.2).

5.2 Output Encoding

For each triple (a, s, v), our model outputs a
multinomial distribution pasv,F over the frames
F ∈ F . Additionally, for each act a ∈ A and
frame F ∈ F , we determine the probability
pa,F that F is referenced by a.

It can be difficult for the model to correctly
predict the cases when the referenced frame is
the currently active frame, especially in situa-
tions where (a) the slot values do not match
and (b) the active frame was changed by an
earlier act within the same turn. To address
this challenge, in the target, we replace all oc-
currences of the active frame with a special
frame with index 0. In the example of Figure 1,
the value flex=T would point to this frame 0
since the active frame is changed by a previous
value, in this case, the budget.

In the loss function, we do not penalize the
model for confusing the active frame and the

223

Frames

Acts

Frame Embedding mF

A
ct

E
m

b
ed

d
in

g
m

a
sv

SM

gc gn

pasv,F

a, s, v
a, s, v

N

|F|
s, v
s, v

s, v
s, v

Recency hτd, h
τ
cUtterance

a
a

gc
pa,F

s, v
s, v

a, s, v

Figure 2: Simplified overview of our model.
N triples of acts a with slot-value arguments
s, v are matched to frames F by computing a
model similarity metric SM . Frames are de-
scribed by their constraints (slot-value pairs
s, v). Together with the current and new frame
indicators (gc, gn), SM represents a multino-
mial distribution pasv,F over the frames F ∈ F .
The same acts a can refer to additional frames
regardless of slot-value arguments, predicted in
pa,F with the help of recency information hτ .

special frame except for switch frame and
frame-creating inform acts, for which we want
the model to predict the referenced frame.

During prediction, we distribute pasv,0 over
F according to the predicted active frame:

gs =

{
1 if a switch frame act is present
0 otherwise

pnew = pasv,|F|+1

pasv,F := pasv,F + pasv,0
(
(1− gs)× pnew

+ gs × pswitch,F

)
,

where pswitch,· is the distribution assigned by
the model to the switch frame act. If no new
frame was predicted and no switch frame act
is present, the remaining probability mass is
assigned to the previously active frame.

5.3 Model Structure

For each user turn, we first embed all dialogue
acts a, slot types s, and letter trigrams t using

the dictionaries DA, DS , and DT , respectively.
We sum the letter trigram embeddings for ev-
ery token to generate trigram hashes (Huang
et al., 2013). A bidirectional GRU (Cho et al.,
2014) rt over the hashes of values and the utter-
ance generates summary vectors for both. The
summary vector is the concatenation of the
final hidden state of the forward and backward
computation.

A second bi-directional GRU rasv computes
a hidden activation for each of the (act, slot,
value) triples in the current turn. We compute
a value summary vector masv by appending
each hidden state of rasv with the utterance
embedding and projecting to a 256-dimensional
space.

For the frames, we proceed in a similar man-
ner, except that the frames do not contain dia-
logue acts nor an utterance, so we use a GRU
rF to compute hidden states for all slot-value
pairs DS [s1], rt(DT [v1])

DS [s2], rt(DT [v2])
. . .

 . (1)

During training, the constraint order within
frames is shuffled. The final hidden of the state
rF is projected to a 256-dimensional space,
resulting in a frame summary vector mF .

By comparing slot values masv mentioned
by the user to the frames mF , and taking into
account the recently-active and recently-added
information, we can determine which frame the
user is referencing. To this end, we compute the
dot-product between masv and mF , resulting
in a model similarity matrix SM ∈ RN×|F|.
It is important to have the user utterance in
the value summary vector because without it,
the comparison with the frames would only
work if slot values were explicitly mentioned,
which is not true in general. Boolean values,
for example, are usually only present implicitly
(cf. Section 4.2). We learn the weights of
a linear combination of the model similarity
matrix with the input SL, yielding the final
similarity matrix S.

Two special cases remain: (1) no match
could be found and (2) a new frame should
be created. To handle these cases, we extend S
with two columns corresponding to the active
frame gc and the new frame gn. Intuitively, gn

224

Accuracy (%)

Lesion Full Acts Only Acts Frames Text hτc hτd fn SL fc

Slot-based 58.3 66 63.7 74.5 65.4 78.8 79.5 64.4 82.7
Act-based 98 98.3 93.9 94.2 89.8 85.8 90.2 97.1 92.8

Table 1: Accuracy when removing model inputs.

is high if no frame matches the user turn and
if there is a strong discrepancy with the active
frame. On the other hand, gc is high only if no
frame matches the user turn. Since again, the
actual user utterance sometimes contains cru-
cial information, we condition gn and gc on the
maximum match with any frame, the match
with the previously active frame, and the user
utterance embedding.

For a user input triple (a, s, v), the slot-based
frame prediction is then computed as

pasv = softmax(gc, Sasv,1, Sasv,2, . . . , (2)
Sasv,|F|, gn).

Finally, we determine the act-based proba-
bility of frame references pa,F . For every pair
(a, F), this probability is computed by a 2 layer
densely connected network conditioned on the
dialogue act, the recency information, and the
user utterance embedding. We also set pa,0 to
1−maxF pa,F to produce an implicit reference
to the active frame by default.

6 Experiments

6.1 Learning Protocol and Metrics

We train the model by splitting the dataset
into 10 folds as described by El Asri et al.
(2017). For each fold, we further split the train-
ing corpus into training and validation sets by
withholding a random selection of 20% of the
dialogues from training. We use the Adam
(Kingma and Ba, 2014) algorithm to minimize
the sum of the loss for pasv and pa,F , with a
learning rate of 10−3. Learning is stopped when
the minimum validation error has not changed
for ten epochs. We compare our model to the
simple rule-based baseline described by El Asri
et al. (2017).

For slot-based predictions (pasv,F), we report
mean accuracy over the ten folds of the Frames
dataset. For act-based predictions (pa,F), i.e.,
we determine for every act a whether the

Accuracy (%)

Ours Baseline

Slot-based 76.43±4.49 61.32±2.19
Act-based 95.66±2.34 66.81±2.58

Table 2: Performance comparison between the
baseline of El Asri et al. (2017) and our model.

Accuracy (%)

Ours Baseline

Frame change (new val) 52.5 4.2
No frame change (new val) 93.8 74.3
Frame change (no offer) 36.4 22.7
Frame change (offer) 67 62.2
request compare 70.5 40.9

Table 3: Partial comparison table of perfor-
mance for different dialogue settings (cf Sec-
tion 4), including frame changes/lack of frame
changes upon the introduction of new values,
as well as when preceded by an offer or not,
demonstrating our model’s improvements over
the baseline.

ground truth set of referenced frames is equal
to the predicted set of referenced frames (with a
cutoff at pa,F = 1

2), and again average accuracy
scores over the ten folds.

Results are summarized in Table 2. Our
model strongly outperforms the baseline both
on references with and without slots. In par-
ticular, we observe that our model excels at
predicting frame references based on acts alone,
while the baseline struggles to solve this task.

6.2 Comparison with the Baseline

We further analyze the difference in perfor-
mance between our frame tracking model and
the rule-based baseline on classes of predictions
on a single fold of the data. We organize the
turns in the test set into 11 classes and measure
performance by computing accuracy only on

225

Accuracy (%)

Ours Baseline

switch frame(dst city) 66.1 21.4
switch frame(duration) 52.6 26.3
inform(seat) 60.0 36.0
request(end date) 66.7 0.0

Table 4: Partial comparison table of act-slot
combinations between our model and the base-
line of (El Asri et al., 2017).

turns that fall into the respective class.
We first observe that the baseline model al-

most completely fails to identify frame changes
when a new value is introduced by a user (4%
accuracy over 303 turns), frame changes as-
sociated with switch frame acts that do not
have slot values, or when a switch frame act
is present in a turn following one that does not
contain an offer act. On the other hand, the
baseline model predicts lacks of frame changes
(74.3% over 1111 instances) and frame changes
after an offer (62.2% over 312 instances) quite
well.

Our model dominates the rule-based base-
line on all classes except for the prediction of
frame changes with switch frame acts that do
not have slot values (4.2% over 24 occurrences).
Partial comparison results are presented in Ta-
ble 3.

Perhaps surprisingly, our model correctly
predicts 70.5% of frames associated with
request compare acts whereas the baseline
only correctly identifies 40.9% of them.

We then computed the accuracy on the set of
unique act and slot combinations in the dataset.
Here, our model outperforms the baseline on
all act-slot pairs with more than 10 occurrences
in the test set. We observe that the base-
line performs quite poorly on switch frames
with dst city (destination city) slots, whereas
our model does not have such a drawback.
The same is true for a switch frame with a
duration or for an inform with a seat (econ-
omy or business flight seat) or even a request
with an end date. Results are presented in
Table 4. We note that our model performs
worse on combinations that should express a
match with a frame whose slot values use very
different spellings (such as rich abbreviations

and synonyms) whereas the baseline model is
the weakest when slot values can be easily con-
fused for values of other slots (e.g. a rating
of 5 (stars) vs. a duration of 5 (days)). Our
model is also currently unable to distinguish
between similar offers introduced in the same
turn.

Code to generate the full set of metrics will
be made available.

6.3 Lesion Studies

To assess which of the features are useful for
the model, we remove the model’s inputs one at
a time and measure the model’s performance.
Results are shown in Table 1. We observe that
the model stops learning (i.e. its performance
does not exceed the baseline’s) on the act-slot-
value triples when any of the input is removed
except for the new frame history, new frame
candidate, and previous frame inputs. Simi-
larly, the model performance suffers when the
new frame candidate, any historical data, or
the frames are removed. We observe that all
the inputs are used by the model in its predic-
tions either for pasv,F or pa, F .

7 Discussion

Our model makes use of the text to correctly
predict the frames associated with acts. De-
pendence on input text means our method is
domain-dependent. The annotation process for
the Frames dataset is costly, so it would be
beneficial if we could transfer learned frame
switching behavior to other domains, possibly
with already existing NLU components. A pos-
sible solution might be to standardize the text
after NLU, and use anonymous placeholders
instead of domain-specific words.

Additionally, our current model assumes a
perfect NLU to provide acts, slots, and values
as inputs. While this is helpful for researching
the frame referencing issues in isolation, both
components should work together. For exam-
ple, currently, we assume that a switch frame
act is correctly identified, but we do not know
the frame the user wants to switch to. In
a more realistic pipeline, these decisions are
closely related and also need to take more of
the dialogue history into account.

226

7.1 Conclusion

In this paper, we provided a thorough analy-
sis of user behavior concerning switching be-
tween different user goals in the Frames dataset.
Based on this analysis, we have designed a
frame tracking model that outperforms the
baseline of El Asri et al. (2017) by almost 20%
relative performance. This model assigns the
dialogue acts of a new user utterance to the
semantic frames created during the dialogue,
each frame corresponding to a goal. We an-
alyzed the strengths and weaknesses of the
rule-based baseline and of our model on dif-
ferent subtasks of frame tracking. Our model
outperforms the baseline on all but one sub-
tasks. We showed that further improvement is
necessary for matching slot values when they
are present in many distinct frames. We have
demonstrated that the frame tracking task can
be performed effectively by learning from data
(our model correctly identifies frame changes
in about 3 out of 4 cases). This represents a
first step toward memory-enhanced dialogue
systems which understand when a user refers
to an older topic in a conversation and which
provide more accurate advice by understanding
the full context of a request.

References

Kyunghyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014. On
the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. arXiv:1409.1259
[cs, stat] .

L. El Asri, H. Schulz, S. Sharma, J. Zumer, J. Har-
ris, E. Fine, R. Mehrotra, and K. Suleman. 2017.
Frames: A Corpus for Adding Memory to Goal-
Oriented Dialogue Systems. arXiv:1704.00057
[cs.CL] https://datasets.maluuba.com/Frames.

Layla El Asri, Remi Lemonnier, Romain Laroche,
Olivier Pietquin, and Hatim Khouzaimi. 2014.
NASTIA: Negotiating Appointment Setting In-
terface. In LREC . pages 266–271.

M. Henderson, B. Thomson, and J. Williams.
2014a. The Third Dialog State Tracking Chal-
lenge. In Proc. of IEEE Spoken Language Tech-
nology .

Matthew Henderson. 2015. Machine learning for
dialog state tracking: A review. In Proc. of
The First International Workshop on Machine
Learning in Spoken Language Processing .

Matthew Henderson, Blaise Thomson, and Ja-
son D. Williams. 2014b. The second dialog state
tracking challenge. In Proc. of SIGDIAL.

Po-Sen Huang, Xiaodong He, Jianfeng Gao,
Li Deng, Alex Acero, and Larry Heck. 2013.
Learning deep structured semantic models for
web search using clickthrough data. In Proc. of
ACM . pages 2333–2338.

John F. Kelley. 1984. An iterative design method-
ology for user-friendly natural language office in-
formation applications. ACM Transactions on
Information Systems (TOIS) 2(1):26–41.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization.
arXiv:1412.6980 [cs.LG] .

Romain Laroche, Ghislain Putois, Philippe Bretier,
Martin Aranguren, Julia Velkovska, Helen
Hastie, Simon Keizer, Kai Yu, Filip Jurci-
cek, Oliver Lemon, and others. 2011. Final
evaluation of classic towninfo and appointment
scheduling systems. Technical report.

Sungjin Lee and Amanda Stent. 2016. Task lin-
eages: Dialog state tracking for flexible interac-
tion. In Proc. of SIGDIAL.

Julien Perez and Fei Liu. 2016. Dialog state track-
ing, a machine reading approach using memory
network. In Proc. of EACL.

Antoine Raux, Brian Langner, Black Alan, and
Maxine Eskenazi. 2003. LET’s GO: Improving
Spoken Dialog Systems for the Elderly and Non-
natives. In Proc. of Eurospeech.

Verena Rieser, Ivana Kruijff-Korbayov, and Oliver
Lemon. 2005. A corpus collection and annota-
tion framework for learning multimodal clarifi-
cation strategies. In SIGdial Workshop on Dis-
course and Dialogue.

Satinder Singh, Diane Litman, Michael Kearns,
and Marilyn Walker. 2002. Optimizing dialogue
management with reinforcement learning: Ex-
periments with the NJFun system. Journal of
Artificial Intelligence Research 16:105–133.

Tsung-Hsien Wen, David Vandyke, Nikola Mrk-
sic, Milica Gasic, Lina M. Rojas-Barahona, Pei-
Hao Su, Stefan Ultes, and Steve Young. 2016.
A Network-based End-to-End Trainable Task-
oriented Dialogue System. arXiv:1604.04562
[cs, stat] .

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv:1410.3916
[cs.AI] .

Jason D. Williams, Antoine Raux, and Matthew
Henderson. 2016. The dialog state tracking chal-
lenge series: A review. Dialogue and Discourse
.

227

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 228–234,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Plan, Attend,
Generate: Character-Level Neural Machine Translation with Planning

Caglar Gulcehre∗
University of Montreal

Francis Dutil∗
University of Montreal

Adam Trischler
Microsoft Research

Yoshua Bengio
University of Montreal

Abstract

We investigate the integration of a plan-
ning mechanism into an encoder-decoder
architecture with attention. We develop a
model that can plan ahead when it computes
alignments between the source and target
sequences not only for a single time-step,
but for the next k timesteps as well by
constructing a matrix of proposed future
alignments and a commitment vector that
governs whether to follow or recompute the
plan. This mechanism is inspired by strategic
attentive reader and writer (STRAW) model,
a recent neural architecture for planning with
hierarchical reinforcement learning that can
also learn higher level temporal abstractions.
Our proposed model is end-to-end trainable
with differentiable operations. We show
that our model outperforms strong baselines
on character-level translation task from
WMT’15 with less parameters and computes
alignments that are qualitatively intuitive.

1 Introduction

Character-level neural machine translation (NMT)
is an attractive research problem (Lee et al., 2016;
Chung et al., 2016; Luong and Manning, 2016)
because it addresses important issues encountered
in word-level NMT. Word-level NMT systems can
suffer from problems with rare words(Gulcehre
et al., 2016) or data sparsity, and the existence of
compound words without explicit segmentation in
certain language pairs can make learning alignments
and translations more difficult. Character-level neural
machine translation mitigates these issues.

In this work we propose integrating a planning
algorithm with the standard encoder-decoder ar-
chitecture for character-level NMT, using planning

∗Equal Contribution

specifically to improve the alignment between source
and target sequences. We cast alignment (also called
attention) as a planning problem, whereas it has
traditionally been treated as a search problem.

The model we propose creates an explicit plan of
source-target alignments to use at future time-steps,
based on its current observation and a summary of its
past actions; it may modify this plan as needed. The
planning mechanism itself is inspired by the strategic
attentive reader and writer (STRAW) of Vezhnevets
et al. (2016).

Our work is motivated by the intuition that,
although natural language (speech and writing) is
generated sequentially because of human physiolog-
ical constraints, it is almost certainly not conceived
word-by-word.

Planning, i.e., choosing some goal along with
candidate macro-actions to arrive at it, is one way
to induce coherence in natural language. Learning
to generate long coherent sequences or how to form
alignments over long source contexts is difficult for
existing models. In the case of machine translation,
performance of encoder-decoder models with atten-
tion deteriorates as sequence length increases (Cho
et al., 2014; Sutskever et al., 2014). This effect can
be more pronounced in character-level NMT, because
the length of sequences in character-level translation
can be much longer than word-level translation. A
planning mechanism could make the decoder’s search
for alignments more tractable and scalable.

Our model is based on the well-known encoder-
decoder framework for NMT. Its encoder is a recur-
rent neural network (RNN) that reads the source (a
sequence of byte pairs representing text in some lan-
guage) and encodes it as a sequence of vector represen-
tations; the decoder is a second RNN that generates the
target translation character-by-character in the target
language. The decoder uses an attention mechanism
to align its internal state to vectors in the source en-
coding that are relevant to the current generation step

228

(see Bahdanau et al. (2015) for the original descrip-
tion). To plan ahead explicitly rather than focusing
primarily on what is relevant at the present time, our
model’s internal state is augmented with (i) an action
plan matrix and (ii) a commitment plan vector. The
action plan matrix is a template of alignments that the
model intends to follow at future time-steps, specif-
ically a sequence of probability distributions over
source tokens. The commitment plan vector governs
whether to recompute the action plan or to continue
following it, and as such models discrete decisions.

Because of computational constraints we here apply
planning only on the input sequence, via searching for
alignments. We find this alignment-based planning to
be helpful in the translation task. For other NLP tasks,
however, planning could be applied explicitly for gen-
eration as well. Recent work by Bahdanau et al. (2016)
on actor-critic methods for sequence prediction, for ex-
ample, can be seen as this kind of generative planning.

We evaluate our model and report results on
character-level translation tasks from WMT’15 for
English to German, English to Finnish, and English to
Czech language pairs. On almost all pairs we observe
improvements over a baseline that represents the
state-of-the-art in neural character-level translation.
In our NMT experiments, our model outperforms the
baseline despite using significantly fewer parameters
and converges faster in training.

2 Planning for Character-level
Neural Machine Translation

We now describe how to integrate a planning
mechanism into a sequence-to-sequence architec-
ture with attention (Bahdanau et al., 2015). Our
model first creates a plan, then computes a soft
alignment based on the plan, and generates at each
time-step in the decoder. We refer to our model as
PAG (Plan-Attend-Generate).

2.1 Notation and Encoder

As input our model receives a sequence of tokens,
X = (x0,··· ,x|X|), where |X| denotes the length of
X. It processes these with the encoder, a bidirectional
RNN. At each input position i we obtain annotation
vector hi by concatenating the forward and backward
encoder states, hi=[h→i ;h←i], where h→i denotes the
hidden state of the encoder’s forward RNN and h←i de-
notes the hidden state of the encoder’s backward RNN.

Through the decoder the model predicts a sequence
of output tokens, Y =(y1,···,y|Y |). We denote by st
the hidden state of the decoder RNN generating the

target output token at time-step t.

2.2 Alignment and Decoder

Our goal is a mechanism that plans which parts of the
input sequence to focus on for the next k time-steps
of decoding. For this purpose, our model computes an
alignment plan matrix At∈Rk×|X| and commitment
plan vector ct ∈ Rk at each time-step. Matrix At

stores the alignments for the current and the next k−1
timesteps; it is conditioned on the current input, i.e.
the token predicted at the previous time-step yt,
and the current context ψt, which is computed from
the input annotations hi. The recurrent decoder
function, fdec-rnn(·), receives st−1, yt, ψt as inputs
and computes the hidden state vector

st=fdec-rnn(st−1,yt,ψt). (1)

Context ψt is obtained by a weighted sum of the
encoder annotations,

ψt=
|X|∑
i

αtihi, (2)

where the soft-alignment vector αt =
softmax(At[0]) ∈ R|X| is a function of the
first row of the alignment matrix. At each time-step,
we compute a candidate alignment-plan matrix Āt

whose entry at the ith row is

Āt[i]=falign(st−1, hj, βit, yt), (3)

where falign(·) is an MLP and βit denotes a summary
of the alignment matrix’s ith row at time t−1. The
summary is computed using an MLP, fr(·), operating
row-wise on At−1: βit=fr(At−1[i]).

The commitment plan vector ct governs whether
to follow the existing alignment plan, by shifting
it forward from t−1, or to recompute it. Thus, ct
represents a discrete decision. For the model to
operate discretely, we use the recently proposed
Gumbel-Softmax trick (Jang et al., 2016; Maddison
et al., 2016) in conjunction with the straight-through
estimator (Bengio et al., 2013) to backpropagate
through ct.1 The model further learns the temperature
for the Gumbel-Softmax as proposed in (Gulcehre
et al., 2017). Both the commitment vector and the
action plan matrix are initialized with ones; this
initialization is not modified through training.

1We also experimented with training ct using REINFORCE
(Williams, 1992) but found that Gumbel-Softmax led to better
performance.

229

Alignment Plan
Matrix

tokens in the
source

steps to plan ahead (k)

At

Commitment plan ct

ht

Tx

Softmax()

+ t

At[0]

yt

st�1

s0t

Figure 1: Our planning mechanism in a sequence-
to-sequence model that learns to plan and execute
alignments. Distinct from a standard sequence-to-
sequence model with attention, rather than using a
simple MLP to predict alignments our model makes
a plan of future alignments using its alignment-plan
matrix and decides when to follow the plan by
learning a separate commitment vector. We illustrate
the model for a decoder with two layers s′t for the first
layer and the st for the second layer of the decoder.
The planning mechanism is conditioned on the first
layer of the decoder (s′t).

Alignment-plan update Our decoder updates its
alignment plan as governed by the commitment plan.
Denoted by gt the first element of the discretized
commitment plan c̄t. In more detail, gt = c̄t[0],
where the discretized commitment plan is obtained by
setting ct’s largest element to 1 and all other elements
to 0. Thus, gt is a binary indicator variable; we refer
to it as the commitment switch. When gt = 0, the
decoder simply advances the time index by shifting
the action plan matrix At−1 forward via the shift
function ρ(·). When gt = 1, the controller reads the
action-plan matrix to produce the summary of the
plan, βit. We then compute the updated alignment
plan by interpolating the previous alignment plan
matrix At−1 with the candidate alignment plan
matrix Āt. The mixing ratio is determined by a
learned update gate ut∈Rk×|X|, whose elements uti
correspond to tokens in the input sequence and are
computed by an MLP with sigmoid activation, fup(·):

uti=fup(hi, st−1),
At[:,i]=(1−uti)�At−1[:,i]+uti�Āt[:,i].

To reiterate, the model only updates its alignment
plan when the current commitment switch gt is
active. Otherwise it uses the alignments planned and
committed at previous time-steps.

Algorithm 1: Pseudocode for updating the
alignment plan and commitment vector.

for j∈{1,···|X|} do
for t∈{1,···|Y |} do

if gt =1 then
ct =softmax(fc(st−1))

βj
t =fr(At−1[j]) {Read alignment plan}

Āt[i]=falign(st−1, hj, β
i
t, yt)

{Compute candidate alignment plan}
uti =fup(hi, st−1, ψt−1) {Compute update gate}
At = (1 − uti)�At−1+uti�Āt

{Update alignment plan}
else

At =ρ(At−1) {Shift alignment plan}
ct =ρ(ct−1) {Shift commitment plan}

end if
Compute the alignment as αt =softmax(At[0])

end for
end for

Commitment-plan update The commitment plan
also updates when gt becomes 1. If gt is 0, the
shift function ρ(·) shifts the commitment vector
forward and appends a 0-element. If gt is 1, the
model recomputes ct using a single layer MLP (fc(·))
followed by a Gumbel-Softmax, and c̄t is recomputed
by discretizing ct as a one-hot vector:

ct=gumbel_softmax(fc(st−1)), (4)

c̄t=one_hot(ct). (5)

We provide pseudocode for the algorithm to
compute the commitment plan vector and the action
plan matrix in Algorithm 2. An overview of the
model is depicted in Figure 1.

2.2.1 Alignment Repeat

In order to reduce the model’s computational cost, we
also propose an alternative approach to computing
the candidate alignment-plan matrix at every step.
Specifically, we propose a model variant that reuses
the alignment from the previous time-step until
the commitment switch activates, at which time
the model computes a new alignment. We call
this variant repeat, plan, attend, and generate
(rPAG). rPAG can be viewed as learning an explicit
segmentation with an implicit planning mechanism
in an unsupervised fashion. Repetition can reduce
the computational complexity of the alignment
mechanism drastically; it also eliminates the need for
an explicit alignment-plan matrix, which reduces the
model’s memory consumption as well. We provide
pseudocode for rPAG in Algorithm 2.

230

Algorithm 2: Pseudocode for updating the repeat
alignment and commitment vector.

for j∈{1,···|X|} do
for t∈{1,···|Y |} do

if gt =1 then
ct =softmax(fc(st−1,ψt−1))
αt =softmax(falign(st−1, hj, yt))

else
ct =ρ(ct−1) {Shift the commitment vector ct−1}
αt =αt−1 {Reuse the old the alignment}

end if
end for

end for

2.3 Training
We use a deep output layer (Pascanu et al., 2013)
to compute the conditional distribution over output
tokens,

p(yt|y<t,x)∝y>t exp(Wofo(st,yt−1,ψt)), (6)

where Wo is a matrix of learned parameters and we
have omitted the bias for brevity. Function fo is an
MLP with tanh activation.

The full model, including both the encoder
and decoder, is jointly trained to minimize the
(conditional) negative log-likelihood

L=− 1
N

N∑
n=1

logpθ(y(n)|x(n)),

where the training corpus is a set of (x(n),y(n)) pairs
and θ denotes the set of all tunable parameters. As
noted in (Vezhnevets et al., 2016), the proposed
model can learn to recompute very often which
decreases the utility of planning. In order to avoid this
behavior, we introduce a loss that penalizes the model
for committing too often,

Lcom =λcom

|X|∑
t=1

k∑
i=0

||1
k
−cti||22, (7)

where λcom is the commitment hyperparameter and
k is the timescale over which plans operate.

3 Experiments

Character-level neural machine translation (NMT)
is an attractive research problem (Lee et al., 2016;
Chung et al., 2016; Luong and Manning, 2016) be-
cause it addresses important issues encountered in
word-level NMT. Word-level NMT systems can suffer
from problems with rare words (Gulcehre et al., 2016)
or data sparsity, and the existence of compound words

without explicit segmentation in some language pairs
can make learning alignments between different lan-
guages and translations to be more difficult. Character-
level neural machine translation mitigates these issues.

In our NMT experiments we use byte pair
encoding (BPE) (Sennrich et al., 2015) for the source
sequence and characters at the target, the same setup
described in Chung et al. (2016). We also use the
same preprocessing as in that work.2 We present
our experimental results in Table 2. Models were
tested on the WMT’15 tasks for English to German
(En→De), English to Czech (En→Cs), and English to
Finnish (En→Fi) language pairs. The table shows that
our planning mechanism improves translation perfor-
mance over our baseline (which reproduces the results
reported in (Chung et al., 2016) to within a small
margin). It does this with fewer updates and fewer
parameters. We trained (r)PAG for 350K updates
on the training set, while the baseline was trained
for 680K updates. We used 600 units in (r)PAG’s
encoder and decoder, while the baseline used 512 in
the encoder and 1024 units in the decoder. In total
our model has about 4M fewer parameters than the
baseline. We tested all models with a beam size of 15.

As can be seen from Table 2, layer normalization
(Ba et al., 2016) improves the performance of PAG
model significantly. However, according to our results
on En→De, layer norm affects the performance of
our rPAG only marginally. Thus, we decided not to
train rPAG with layer norm on other language pairs.

In Table 1, we present the results for PAG using
the biscale decoder.

Table 1: WMT’15 En→De Results

Beam Size Development Test Set

Baseline 8 20.39 20.11
Baseline 24 20.52 20.39
PAG 8 21.19 20.84
PAG 24 21.26 20.98

In Figure 2, we show qualitatively that our model
constructs smoother alignments. At each word that
the baseline decoder generates, it aligns the first few
characters to a word in the source sequence, but for
the remaining characters places the largest alignment
weight on the last, empty token of the source
sequence. This is because the baseline becomes
confident of which word to generate after the first few

2Our implementation is based on the code available at
https://github.com/nyu-dl/dl4mt-cdec

231

(a)

(b) T a t s ä c h l i c h i d e n t i f i z i e r t e n r e p u b l i k a n i s c h e R e c h t s a n w ä l t e i n e i n e m J a h r z e h n t n u r 3 0 0 F ä l l e v o n W a h l b e t r u g i n d e n U S A .

Indeed
,

Republican
lawyers

identified
only
300

cases
of

electoral
fraud

in
the

United
States

in
a

decade
.

(c)

Figure 2: We visualize the alignments learned by PAG in (a) and the biscale baseline model in (b). As depicted,
the alignments learned by PAG look more accurate intuitively and appear smoother than those of the baseline.
The baseline tends to focus too much attention on the last word of the sequence, which is sensible to do on
average because of German’s structure, whereas our model places higher weight on the last word mainly when
it generates a space token.

Model Layer Norm Dev Test 2014 Test 2015

En→De

Baseline 7 21.57 21.33 23.45
Baseline† 7 21.4 21.16 22.1

PAG 7 21.52 21.35 22.21
3 22.12 21.93 22.83

rPAG 7 21.81 21.71 22.45
3 21.67 21.81 22.73

En→Cs

Baseline 7 17.68 19.27 16.98

PAG 7 17.44 18.72 16.99
3 18.78 20.9 18.59

rPAG 7 17.83 19.54 17.79

En→Fi

Baseline 7 11.19 - 10.93

PAG 7 11.51 - 11.13
3 12.67 - 11.84

rPAG 7 11.50 - 10.59

Table 2: The results of different models on WMT’15 task on English to German, English to Czech and English
to Finnish language pairs. We report BLEU scores of each model computed via the multi-blue.perl script. The
best-score of each model for each language pair appears in bold-face. We use newstest2013 as our development
set, newstest2014 as our "Test 2014" and newstest2015 as our "Test 2015" set.

(†) denotes the results of the
baseline that we trained using the hyperparameters reported in (Chung et al., 2016) and the code provided
with that paper. For our baseline, we only report the median result, and do not have multiple runs of our models.

characters, and it generates the remainder of the word
mainly by relying on language-model predictions.
We observe that (r)PAG converges faster with the
help of the improved alignments, as illustrated by the
learning curves in Figure 3.

4 Conclusions and Future Work

In this work we addressed a fundamental issue in
neural generation of long sequences by integrating
planning into the alignment mechanism of sequence-
to-sequence architectures. We proposed two different
planning mechanisms: PAG, which constructs explicit
plans in the form of stored matrices, and rPAG, which
plans implicitly and is computationally cheaper. The

232

50 100 150 200 250 300 350 400

100x Updates

102

6 × 101

2 × 102

3 × 102
N

LL
PAG
PAG + LayerNorm
rPAG
rPAG + LayerNorm
Baseline

Figure 3: Learning curves for different models on
WMT’15 for En→De. Models with the planning
mechanism converge faster than our baseline (which
has larger capacity).

(r)PAG approach empirically improves alignments
over long input sequences. We demonstrated our
models’ capabilities through results on character-level
machine translation, an algorithmic task, and question
generation. In machine translation, models with
planning outperform a state-of-the-art baseline on
almost all language pairs using fewer parameters.
As a future work, we plan to test our planning
mechanism at the outputs of the model and other
sequence to sequence tasks as well.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E

Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450 .

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh
Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2016. An actor-critic algorithm for se-
quence prediction. arXiv preprint arXiv:1607.07086 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
2015. Neural machine translation by jointly learning
to align and translate. International Conference on
Learning Representations (ICLR) .

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432 .

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 .

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio.
2016. A character-level decoder without explicit
segmentation for neural machine translation. arXiv
preprint arXiv:1603.06147 .

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing the
unknown words. arXiv preprint arXiv:1603.08148 .

Caglar Gulcehre, Sarath Chandar, and Yoshua Bengio.
2017. Memory augmented neural networks with worm-
hole connections. arXiv preprint arXiv:1701.08718 .

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical
reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144 .

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2016. Fully character-level neural machine transla-
tion without explicit segmentation. arXiv preprint
arXiv:1610.03017 .

Minh-Thang Luong and Christopher D Manning. 2016.
Achieving open vocabulary neural machine translation
with hybrid word-character models. arXiv preprint
arXiv:1604.00788 .

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712 .

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio. 2013. How to construct deep recurrent
neural networks. arXiv preprint arXiv:1312.6026 .

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems.
pages 3104–3112.

Alexander Vezhnevets, Volodymyr Mnih, John Agapiou,
Simon Osindero, Alex Graves, Oriol Vinyals, and
Koray Kavukcuoglu. 2016. Strategic attentive writer
for learning macro-actions. In Advances in Neural
Information Processing Systems. pages 3486–3494.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning 8(3-4):229–256.

233

A Qualitative Translations from both Models

In Table 3, we present example translations from our model and the baseline along with the ground-truth. 3

Table 3: Randomly chosen example translations from the development-set.

Groundtruth Our Model (PAG + Biscale) Baseline (Biscale)

1 Eine republikanische Strategie , um der
Wiederwahl von Obama entgegenzutreten

Eine republikanische Strategie gegen die
Wiederwahl von Obama

Eine republikanische Strategie zur Bekämp-
fung der Wahlen von Obama

2 Die Führungskräfte der Republikaner recht-
fertigen ihre Politik mit der Notwendigkeit
, den Wahlbetrug zu bekämpfen .

Republikanische Führungspersönlichkeiten
haben ihre Politik durch die Notwendigkeit
gerechtfertigt , Wahlbetrug zu bekämpfen .

Die politischen Führer der Republikaner
haben ihre Politik durch die Notwendigkeit
der Bekämpfung des Wahlbetrugs gerecht-
fertigt .

3 Der Generalanwalt der USA hat eingegriffen
, um die umstrittensten Gesetze auszusetzen .

Die Generalstaatsanwälte der Vereinigten
Staaten intervenieren , um die umstrittensten
Gesetze auszusetzen .

Der Generalstaatsanwalt der Vereinigten
Staaten hat dazu gebracht , die umstrittensten
Gesetze auszusetzen .

4 Sie konnten die Schäden teilweise begrenzen Sie konnten die Schaden teilweise begrenzen Sie konnten den Schaden teilweise begrenzen
.

5 Darüber hinaus haben Sie das Recht von
Einzelpersonen und Gruppen beschränkt ,
jenen Wählern Hilfestellung zu leisten , die
sich registrieren möchten .

Darüber hinaus begrenzten sie das Recht
des Einzelnen und der Gruppen , den
Wählern Unterstützung zu leisten , die sich
registrieren möchten .

Darüber hinaus unterstreicht Herr Beaulieu
die Bedeutung der Diskussion Ihrer Be-
denken und Ihrer Familiengeschichte mit
Ihrem Arzt .

3These examples are randomly chosen from the first 100 examples of the development set. None of the authors of this paper can
speak or understand German.

234

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 235–240,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Does the Geometry of Word Embeddings Help Document Classification?
A Case Study on Persistent Homology Based Representations

Paul Michel∗
Carnegie Mellon University
pmichel1@cs.cmu.edu

Abhilasha Ravichander∗
Carnegie Mellon University
aravicha@cs.cmu.edu

Shruti Rijhwani∗
Carnegie Mellon University
srijhwan@cs.cmu.edu

Abstract

We investigate the pertinence of meth-
ods from algebraic topology for text data
analysis. These methods enable the de-
velopment of mathematically-principled
isometric-invariant mappings from a set of
vectors to a document embedding, which
is stable with respect to the geometry of
the document in the selected metric space.
In this work, we evaluate the utility of
these topology-based document represen-
tations in traditional NLP tasks, specifi-
cally document clustering and sentiment
classification. We find that the embed-
dings do not benefit text analysis. In fact,
performance is worse than simple tech-
niques like tf-idf, indicating that the ge-
ometry of the document does not provide
enough variability for classification on the
basis of topic or sentiment in the chosen
datasets.

1 Introduction

Given a embedding model mapping words to n di-
mensional vectors, every document can be repre-
sented as a finite subset of Rn. Comparing doc-
uments then amounts to comparing such subsets.
While previous work shows that the Earth Mover’s
Distance (Kusner et al., 2015) or distance between
the weighted average of word vectors (Arora et al.,
2017) provides information that is useful for clas-
sification tasks, we wish to go a step further and
investigate whether useful information can also be
found in the ‘shape’ of a document in word em-
bedding space.

Persistent homology is a tool from algebraic
topology used to compute topological signatures
(called persistence diagrams) on compact metric

∗*The indicated authors contributed equally to this work.

spaces. These have the property of being sta-
ble with respect to the Gromov-Haussdorff dis-
tance (Gromov et al., 1981). In other words, com-
pact metric spaces that are close, up to an isometry,
will have similar embeddings. In this work, we ex-
amine the utility of such embeddings in text clas-
sification tasks. To the best of our knowledge, no
previous work has been performed on using topo-
logical representations for traditional NLP tasks,
nor has any comparison been made with state-of-
the-art approaches.

We begin by considering a document as the set
of its word vectors, generated with a pretrained
word embedding model. These form the metric
space on which we build persistence diagrams, us-
ing Euclidean distance as the distance measure.
The diagrams are a representation of the docu-
ment’s geometry in the metric space. We then per-
form clustering on the Twenty Newsgroups dataset
with the features extracted from the persistence
diagram. We also evaluate the method on senti-
ment classification tasks, using the Cornell Sen-
tence Polarity (CSP) (Pang and Lee, 2005) and
IMDb movie review datasets (Maas et al., 2011).

As suggested by Zhu (2013), we posit that the
information about the intrinsic geometry of doc-
uments, found in the persistence diagrams, might
yield information that our classifier can leverage,
either on its own or in combination with other rep-
resentations. The primary objective of our work
is to empirically evaluate these representations in
the case of sentiment and topic classification, and
assess their usefulness for real-world tasks.

2 Method

2.1 Word embeddings

As a first step we compute word vectors for
each document in our corpus using a word2vec
(Mikolov et al., 2013) model trained on the Google

235

News dataset1. In addition to being a widely used
word embedding technique, word2vec has been
known to exhibit interesting linear properties with
respect to analogies (Mikolov et al., 2013), which
hints at rich semantic structure.

2.2 Gromov-Haussdorff Distance
Given a dictionary of word vectors of dimension
n, we can represent any document as a finite subset
of Rn. The Haussdorff distance gives us a way to
evaluate the distance between two such sets. More
precisely, the Haussdorff distance dH between two
finite subsets A,B of Rn is defined as:

dH(A,B) = max(sup
a∈A

d(a,B), sup
b∈B

d(b, A))

where d(x, Y) = infy∈Y ‖x − y‖2 is the distance
of point x from set Y .

However, this distance is sensitive to transla-
tions and other isometric2 transformations. Hence,
a more natural metric is the Gromov-Haussdorff
distance (Gromov et al., 1981), simply defined as

dGH(A,B) = inf
f∈En

dH(A, f(B))

where En is the set of all isometries of Rn.
Figure 1 provides an example of practical

Gromov-Haussdorff (GH) distance computation
between two sets of three points each. Both sets
are embedded in R2 (middle panel) using isome-
tries i.e the distance between points in each set is
conserved. The Haussdorff distance between the
two embedded sets corresponds to the length of
the black segment. The GH distance is the min-
imum Haussdorff distance under all possible iso-
metric embeddings.

We want to compare documents based on their
intrinsic geometric properties. Intuitively, the GH
distance measures how far two sets are from being
isometric. This allows us to define the geometry
of a document more precisely:

Definition 1 (Document Geometry) We say that
two documents A, B have the same geometry if
dGH(A,B) = 0, ie if they are the same up to an
isometry.

Mathematically speaking, this amounts to defin-
ing the geometry of a document as its equivalence
class under the equivalence relation induced by the
GH distance on the set of all documents.

1https://code.google.com/archive/p/word2vec/
2f : Rn −→ Rn is isometric if it is distance preserving,

ie ∀x, y ∈ Rn, ‖f(x)−f(y)‖2 = ‖x−y‖2. Rotations, trans-
lations and reflections are examples of (linear) isometries.

Figure 1: Gromov-Haussdorff distance between
two sets (red, green). The black bar represents the
actual distance (given that the isometric embed-
ding is optimal).

Comparison to the Earth Mover Distance :
Kusner et al. (2015) proposed a new method for
computing a distance between documents based
on an instance of the Earth Mover Distance (Rub-
ner et al., 1998) called Word Mover Distance
(WMD). While WMD quantifies the total cost of
matching all words of one document to another,
the GH distance is the cost, up to an isometry, of
the worst-case matching.

2.3 Persistence diagrams

Efficiently computing the GH distance is still an
open problem despite a lot of recent work in this
area (Mémoli and Sapiro, 2005; Bronstein et al.,
2006; Mémoli, 2007; Agarwal et al., 2015).

Fortunately, Carrière et al. (2015) provides us
with a way to derive a signature which is stable
with respect to the GH distance. More specifi-
cally, given a finite point cloud A ⊂ Rn, the per-
sistence diagram of the Vietori-Rips filtration on
A, Dg(A), can be computed. This approach is
inspired by persistent homology, a subfield of al-
gebraic topology.

The rigorous definition of these notions is not
the crux of this paper and we will only present
them informally. The curious reader is invited to
refer to Zhu (2013) for a short introduction. More
details are in Delfinado and Edelsbrunner (1995);
Edelsbrunner et al. (2002); Robins (1999).

A persistence diagram is a scatter plot of 2-D
points representing the appearance and disappear-
ance of geometric features3 under varying reso-
lutions. This can be imagined as replacing each
point by a sphere of increasing radius.

We use the procedure described in Carrière et al.

3such as connected components, holes or empty hulls

236

Figure 2: Method Pipeline

(2015) to derive fixed-sized vectors from persis-
tence diagrams. These vectors have the follow-
ing property: if A and B are two finite sub-
sets of Rn, Dg(A) and Dg(B) are their persis-
tence diagrams, N = max(|Dg(A)|, |Dg(B)|)
and VA, VB ∈ R

N(N−1)
2 , then

‖VA − VB‖2 6
√

2N(N − 1)dGH(A,B)

In other words, the resulting signatures VA and VB

are stable with respect to the GH distance. The
size of the vectors are dependent on the underlying
sets A and B. However, as is argued in Carrière
et al. (2015), we can truncate the vectors to a di-
mension fixed across our dataset while preserving
the stability property (albeit losing some of the
representative ability of the signatures).

3 Experiments

3.1 Experiments
The pipeline for our experiments is shown in Fig-
ure 2. In order to build a persistence diagram,
we convert each document to the set of its word
vectors. We then use Dionysus (Morozov, 2008–
2016), a C++ library for computing persistence di-
agrams, and form the signatures described in 2.3.
We will subsequently refer to these diagrams as
Persistent Homology (PH) embeddings. Once we
have the embeddings for each document, they can
be used as input to standard clustering or classifi-
cation algorithms.

As a baseline document representation, we use
the average of the word vectors for that document
(subsequently called AW2V embeddings).

For clustering, we experiment with K-means
and Gaussian Mixture Models (GMM) on a sub-
set4 of the Twenty Newsgroups dataset. The sub-
set was selected to ensure that most documents
are from related topics, making clustering non-
trivial, and the documents are of reasonable length
to compute the representation.

4alt.atheism, sci.space and talk.religion.misc categories

For classification, we perform both sentence-
level and document-level binary sentiment classi-
fication using logistic regression on the CSP and
IMDb corpora respectively.

4 Results

4.1 Hyper-parameters

Our method depends on very few hyper-
parameters. Our main choices are listed below.

Choice of distance We experimented with both
euclidean distance and cosine similarity (angular
distance). After preliminary experiments, we de-
termined that both performed equally and hence,
we only report results with the euclidean distance.

Persistence diagram computation The hyper-
parameters of the diagram computation are mono-
tonic and mostly control the degree of approxima-
tion. We set them to the highest values that al-
lowed our experiment to run in reasonable time5.

4.2 Document Clustering

We perform clustering experiments with the base-
line document features (AW2V), tf-idf and our PH

signatures. Figure 3 shows the B-Cubed preci-
sion, recall and F1-Score of each method (metrics
as defined in Amigó et al. (2009)). To further as-
sess the utility of PH embeddings, we concatenate
them with AW2V to obtain a third representation,
AW2V+PH.

With GMM and AW2V+PH, the F1-Score of
clustering is 0.499. In terms of F1 and precision,
we see that tf-idf representations perform better
than PH, for reasons that we will discuss in later
sections. In terms of recall, PH as well as AW2V

perform fairly well. Importantly, we see that all
the metrics for PH are significantly above the ran-
dom baseline, indicating that some valuable infor-
mation is contained in them.

4.3 Sentiment Classification

4.3.1 Sentence-Level Sentiment Analysis
We evaluate our method on the CSP dataset6. The
results are presented in Table 1. For comparison,
we provide results for one of the state of the art
models, a CNN-based sentence classifier (Kim,

5Selected such that the computation of the diagram of the
longest file in the training data took less than 10 minutes.

6For lack of a canonical split, we use a random 10% of
the dataset as a test set

237

Figure 3: Results for clustering on 3 subclasses of the Twenty Newsgroups dataset

Model Accuracy
CNN Non-Static 81.5%
PH + LogReg 53.19%
AW2V + LogReg 77.13%
AW2V + PH + LogReg 77.13%

Table 1: Performance on the CSP dataset

Model Accuracy
Paragraph Vector 92.58%
PH + LogReg 53.16%
AW2V + LogReg 82.94%
AW2V + PH + LogReg 83.08%

Table 2: Performance on the IMDb dataset

2014). We observe that by themselves, PH em-
beddings are not useful at predicting the sentiment
of each sentence. AW2V gives reasonable perfor-
mance in this task, but combining the two repre-
sentations does not impact the accuracy at all.

4.3.2 Document-Level Sentiment Analysis

We perform document-level binary sentiment clas-
sification on the IMDb Movie Reviews Dataset
(Maas et al., 2011). We use sentence vectors in
this experiment, each of which is the average of
the word vectors in that sentence. The results are
presented in Table 2. We compare our results with
the paragraph-vector approach (Le and Mikolov,
2014). We observe that PH embeddings perform
poorly on this dataset. Similar to the CSP dataset,
AW2V embeddings give acceptable results. The
combined representation performs slightly better,
but not by a margin of significance.

5 Discussion and Analysis

As seen in Figure 3, the PH representation does
not outperform tf-idf or AW2V, and in fact often
doesn’t perform much better than chance.

One possible reason is linked to the nature of
our datasets: the computation of the persistence
diagram is very sensitive to the size of the docu-
ments. The geometry of small documents, where
the number of words is negligible with respect
to the dimensionality of the word vectors, is not
very rich. The resulting topological signatures are
very sparse, which is a problem for CSP as well
as documents in IMDb and Twenty Newsgroups
that contain only one line. On the opposite side of
the spectrum, persistence diagrams are intractable
to compute without down-sampling for very long
documents (which in turn negatively impacts the
representation of smaller documents).

We performed an additional experiment on a
subset of the IMDb corpus that only contained
documents of reasonable length, but obtained sim-
ilar results. This indicates that the poor perfor-
mance of PH representations, even when com-
bined with other features (AW2V), cannot be ex-
plained only by limitations of the data.

These observations lead to the conclusion that,
for these datasets, the intrinsic geometry of doc-
uments in the word2vec semantic space does not
help text classification tasks.

6 Related Work

Learning distributed representations of sentences
or documents for downstream classification and
information retrieval tasks has received recent at-
tention owing to their utility in several applica-
tions, be it representations trained on the sen-

238

tence/paragraph level Le and Mikolov (2014);
Kiros et al. (2015) or purely word vector based
methods Arora et al. (2017).

Document classification and clustering (Willett,
1988; Hotho et al., 2005; Steinbach et al., 2000;
Huang, 2008; Xu and Gong, 2004; Kuang et al.,
2015; Miller et al., 2016) and sentiment classifi-
cation (Nakagawa et al., 2010; Kim, 2014; Wang
and Manning, 2012) are relatively well studied.

Topological data analysis has been used for var-
ious tasks such as 3D shapes classification (Chazal
et al., 2009) or protein structure analysis (Xia and
Wei, 2014). However, such techniques have not
been used in NLP, primarily because the theory is
inaccessible and suitable applications are scarce.
Zhu (2013) offers an introduction to using per-
sistent homology in NLP, by creating represen-
tations of nursery-rhymes and novels, as well as
highlights structural differences between child and
adolescent writing. However, these techniques
have not been applied to core NLP tasks.

7 Conclusion

Based on our experiments, using persistence di-
agrams for text representation does not seem to
positively contribute to document clustering and
sentiment classification tasks. There are certainly
merits to the method, specifically its strong math-
ematical foundation and its domain-independent,
unsupervised nature. Theoretically, algebraic
topology has the ability to capture structural con-
text, and this could potentially benefit syntax-
based NLP tasks such as parsing. We plan to in-
vestigate this connection in the future.

Acknowledgments

This work was supported in part by the Defense
Advanced Research Projects Agency (DARPA)
Information Innovation Office (I2O) under the
Low Resource Languages for Emergent Incidents
(LORELEI) program issued by DARPA/I2O un-
der Contract No. HR0011-15-C-0114. The views
expressed are those of the authors and do not re-
flect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

We are grateful to Matt Gormley, Hyun Ah
Song, Shivani Poddar and Hai Pham for their sug-
gestions on the writing of this paper as well as to
Steve Oudot for pointing us to helpful references.
We would also like to thank the anonymous ACL
reviewers for their valuable suggestions.

References
Pankaj K Agarwal, Kyle Fox, Abhinandan Nath, Anas-

tasios Sidiropoulos, and Yusu Wang. 2015. Com-
puting the gromov-hausdorff distance for metric
trees. In International Symposium on Algorithms
and Computation. Springer, pages 529–540.

Enrique Amigó, Julio Gonzalo, Javier Artiles, and
Felisa Verdejo. 2009. A comparison of extrinsic
clustering evaluation metrics based on formal con-
straints. Information retrieval 12(4):461–486.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In International Conference on Learning
Representations. To Appear.

Alexander M Bronstein, Michael M Bronstein,
and Ron Kimmel. 2006. Efficient computation
of isometry-invariant distances between surfaces.
SIAM Journal on Scientific Computing 28(5):1812–
1836.

Mathieu Carrière, Steve Y Oudot, and Maks Ovs-
janikov. 2015. Stable topological signatures for
points on 3d shapes. In Computer Graphics Forum.
Wiley Online Library, volume 34, pages 1–12.

Frédéric Chazal, David Cohen-Steiner, Leonidas J
Guibas, Facundo Mémoli, and Steve Y Oudot. 2009.
Gromov-hausdorff stable signatures for shapes using
persistence. In Computer Graphics Forum. Wiley
Online Library, volume 28, pages 1393–1403.

Cecil Jose A Delfinado and Herbert Edelsbrunner.
1995. An incremental algorithm for betti numbers
of simplicial complexes on the 3-sphere. Computer
Aided Geometric Design 12(7):771–784.

Herbert Edelsbrunner, David Letscher, and Afra
Zomorodian. 2002. Topological persistence and
simplification. Discrete and Computational Geome-
try 28(4):511–533.

Mikhael Gromov, Jacques Lafontaine, and Pierre
Pansu. 1981. Structures métriques pour les variétés
riemanniennes .

Andreas Hotho, Andreas Nürnberger, and Gerhard
Paaß. 2005. A brief survey of text mining. In Ldv
Forum.

Anna Huang. 2008. Similarity measures for text doc-
ument clustering. In Proceedings of the sixth new
zealand computer science research student confer-
ence (NZCSRSC2008), Christchurch, New Zealand.
pages 49–56.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In In EMNLP.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems.
pages 3294–3302.

239

Da Kuang, Jaegul Choo, and Haesun Park. 2015. Non-
negative matrix factorization for interactive topic
modeling and document clustering. In Partitional
Clustering Algorithms, Springer, pages 215–243.

Matt J Kusner, Yu Sun, Nicholas I Kolkin, Kilian Q
Weinberger, et al. 2015. From word embeddings
to document distances. In ICML. volume 15, pages
957–966.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-
26 June 2014. pages 1188–1196.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Portland, Oregon, USA, pages
142–150. http://www.aclweb.org/anthology/P11-
1015.

Facundo Mémoli. 2007. On the use of gromov-
hausdorff distances for shape comparison .

Facundo Mémoli and Guillermo Sapiro. 2005. A the-
oretical and computational framework for isometry
invariant recognition of point cloud data. Founda-
tions of Computational Mathematics 5(3):313–347.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Timothy A Miller, Dmitriy Dligach, and Guergana K
Savova. 2016. Unsupervised document classifica-
tion with informed topic models. ACL .

Dmitriy Morozov. 2008–2016. Dyonisus : a c++ li-
brary for computing persistent homology. http:
//mrzv.org/software/dionysus/.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kuro-
hashi. 2010. Dependency tree-based sentiment
classification using crfs with hidden variables.
In Human Language Technologies: The 2010
Annual Conference of the North American Chapter
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’10, pages 786–794.
http://dl.acm.org/citation.cfm?id=1857999.1858119.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
ACL.

Vanessa Robins. 1999. Towards computing homology
from finite approximations. In Topology proceed-
ings. volume 24, pages 503–532.

Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas.
1998. A metric for distributions with applications to
image databases. In Computer Vision, 1998. Sixth
International Conference on. IEEE, pages 59–66.

Michael Steinbach, George Karypis, Vipin Kumar,
et al. 2000. A comparison of document clustering
techniques. In KDD workshop on text mining.

Sida Wang and Christopher D. Manning. 2012.
Baselines and bigrams: Simple, good sentiment
and topic classification. In Proceedings of the
50th Annual Meeting of the Association for Com-
putational Linguistics: Short Papers - Volume
2. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’12, pages 90–94.
http://dl.acm.org/citation.cfm?id=2390665.2390688.

Peter Willett. 1988. Recent trends in hierarchic docu-
ment clustering: a critical review. Information Pro-
cessing & Management 24(5):577–597.

Kelin Xia and Guo-Wei Wei. 2014. Persistent ho-
mology analysis of protein structure, flexibility, and
folding. International journal for numerical meth-
ods in biomedical engineering 30(8):814–844.

Wei Xu and Yihong Gong. 2004. Document
clustering by concept factorization. In Pro-
ceedings of the 27th Annual International ACM
SIGIR Conference on Research and Devel-
opment in Information Retrieval. ACM, New
York, NY, USA, SIGIR ’04, pages 202–209.
https://doi.org/10.1145/1008992.1009029.

Xiaojin Zhu. 2013. Persistent homology: An introduc-
tion and a new text representation for natural lan-
guage processing. In Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence.

240

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 241–251,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Adversarial Generation of Natural Language

Sandeep Subramanian♠∗ Sai Rajeswar♠∗ Francis Dutil♠
Christopher Pal ♣♠ Aaron Courville♠†

♠MILA, Université de Montréal ♣École Polytechnique de Montréal †CIFAR Fellow
{sandeep.subramanian.1,sai.rajeswar.mudumba,aaron.courville}@umontreal.ca,

frdutil@gmail.com, christopher.pal@polymtl.ca

Abstract

Generative Adversarial Networks (GANs)
have gathered a lot of attention from the
computer vision community, yielding im-
pressive results for image generation. Ad-
vances in the adversarial generation of nat-
ural language from noise however are not
commensurate with the progress made in
generating images, and still lag far be-
hind likelihood based methods. In this
paper, we take a step towards generating
natural language with a GAN objective
alone. We introduce a simple baseline that
addresses the discrete output space prob-
lem without relying on gradient estima-
tors and show that it is able to achieve
state-of-the-art results on a Chinese poem
generation dataset. We present quantita-
tive results on generating sentences from
context-free and probabilistic context-free
grammars, and qualitative language mod-
eling results. A conditional version is also
described that can generate sequences con-
ditioned on sentence characteristics.

1 Introduction

Deep neural networks have recently enjoyed some
success at modeling natural language (Mikolov
et al., 2010; Zaremba et al., 2014; Kim et al.,
2015). Typically, recurrent and convolutional
language models are trained to maximize the
likelihood of observing a word or character
given the previous observations in the sequence
P (w1 . . . wn) = p(w1)

∏n
i=2 P (wi|w1 . . . wi−1).

These models are commonly trained using a tech-
nique called teacher forcing (Williams and Zipser,
1989) where the inputs to the network are fixed
and the model is trained to predict only the next

∗Indicates first authors. Ordering determined by coin flip.

item in the sequence given all previous observa-
tions. This corresponds to maximum-likelihood
training of these models. However this one-step
ahead prediction during training makes the model
prone to exposure bias (Ranzato et al., 2015; Ben-
gio et al., 2015). Exposure bias occurs when
a model is only trained conditioned on ground-
truth contexts and is not exposed to its own er-
rors (Wiseman and Rush, 2016). An important
consequence to exposure bias is that generated se-
quences can degenerate as small errors accumu-
late. Many important problems in NLP such as
machine translation and abstractive summariza-
tion are trained via a maximum-likelihood train-
ing objective (Bahdanau et al., 2014; Rush et al.,
2015), but require the generation of extended se-
quences and are evaluated based on sequence-level
metrics such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004).

One possible direction towards incorporating a
sequence-level training objective is to use Gener-
ative Adversarial Networks (GANs) (Goodfellow
et al., 2014). While GANs have yielded impres-
sive results for modeling images (Radford et al.,
2015; Dumoulin et al., 2016), advances in their
use for natural language generation has lagged be-
hind. Some progress has been made recently in
incorporating a GAN objective in sequence mod-
eling problems including natural language gen-
eration. Lamb et al. (2016) use an adversarial
criterion to match the hidden state dynamics of
a teacher forced recurrent neural network (RNN)
and one that samples from its own output distri-
bution across multiple time steps. Unlike the ap-
proach in Lamb et al. (2016), sequence GANs (Yu
et al., 2016) and maximum-likelihood augmented
GANs (Che et al., 2017) use an adversarial loss
at outputs of an RNN. Using a GAN at the out-
puts of an RNN however isn’t trivial since sam-
pling from these outputs to feed to the discrimi-

241

nator is a non-differentiable operation. As a re-
sult gradients cannot propagate to the generator
from the discriminator. Yu et al. (2016) use policy
gradient to estimate the generator’s gradient and
(Che et al., 2017) present an importance sampling
based technique. Other alternatives include RE-
INFORCE (Williams, 1992), the use of a Gumbel
softmax (Jang et al., 2016) and the straighthrough
estimator (Bengio et al., 2013) among others.

In this work, we address the discrete output
space problem by simply forcing the discriminator
to operate on continuous valued output distribu-
tions. The discriminator sees a sequence of proba-
bilities over every token in the vocabulary from the
generator and a sequence of 1-hot vectors from the
true data distribution as in Fig. 1. This technique
is identical to that proposed by Gulrajani et al.
(2017), which is parallel work to this. In this paper
we provide a more complete empirical investiga-
tion of this approach to applying GANs to discrete
output spaces. We present results using recurrent
as well as convolutional architectures on three lan-
guage modeling datasets of different sizes at the
word and character-level. We also present quanti-
tative results on generating sentences that adhere
to a simple context-free grammar (CFG), and a
richer probabilistic context-free grammar (PCFG).
We compare our method to previous works that
use a GAN objective to generate natural language,
on a Chinese poetry generation dataset. In addi-
tion, we present a conditional GAN (Mirza and
Osindero, 2014) that generates sentences condi-
tioned on sentiment and questions.

2 Generative Adversarial Networks

GANs (Goodfellow et al., 2014) are a general
framework used in training generative models by
formulating the learning process as a two player
minimax game as formulated in the equation be-
low. A generator network G tries to generate sam-
ples that are as close as possible to the true data
distribution P (x) of interest from a fixed noise
distribution P (z). We will refer to the samples
produced by the generator as G(z). A discrimina-
tor network is then trained to distinguish between
G(z) and samples from the true data distribution
P (x) while the generator network is trained us-
ing gradient signals sent by the discriminator by
minimizing log(1 −D(G(z))). Goodfellow et al.
(2014) have shown that, with respect to an opti-
mal discriminator, the minimax formulation can

be shown to minimize the Jensen Shannon Diver-
gence (JSD) between the generator’s output distri-
bution and the true data distribution.

min
G

max
D

V (D,G) = E
x∼P (x)

[logD(x)]

+ E
z∼P (z)

[log(1−D(G(z)))]

However, in practice, the generator is trained to
maximize log(D(G(z))) instead, since it provides
stronger gradients in the early stages of learning
(Goodfellow et al., 2014).

GANs have been reported to be notoriously
hard to train in practice (Arjovsky and Bottou,
2017) and several techniques have been proposed
to alleviate some of the complexities involved in
getting them to work including modified objec-
tive functions and regularization (Salimans et al.,
2016; Arjovsky et al., 2017; Mao et al., 2016; Gul-
rajani et al., 2017). We discuss some of these prob-
lems in the following subsection.

Nowozin et al. (2016) show that it is possible
to train GANs with a variety of f-divergence mea-
sures besides JSD. Wasserstein GANs (WGANs)
(Arjovsky et al., 2017) minimize the earth mover’s
distance or Wasserstein distance, while Least
Squared GANs (LSGANs) (Mao et al., 2016)
modifies replaces the log loss with an L2 loss.
WGAN-GP (Gulrajani et al., 2017) incorporate a
gradient penalty term on the discriminator’s loss
in the WGAN objective which acts as a regular-
izer. In this work, we will compare some of these
objectives in the context of natural language gen-
eration.

2.1 Importance of Wasserstein GANs
Arjovsky and Bottou (2017) argue that part of
the problem in training regular GANs is that it
seeks to minimize the JSD between the G(z)
and P (x). When the generator is trying to op-
timized log(1 − D(G(z))), the gradients that it
receives vanish as the discriminator is trained to
optimality. The authors also show that when
trying to optimize the more practical alternative,
−log(D(G(z))), the generator might not suffer
from vanishing gradients but receives unstable
training signals. It is also important to consider
the fact that highly structured data like images and
language lie in low-dimensional manifolds (as is
evident by studying their principal components).
Wassterstein GANs (Arjovsky et al., 2017) over-
come some of the problems in regular GAN train-

242

ing by providing a softer metric to compare the
distributions lying in low dimensional manifolds.
A key contribution of this work was identifying
the importance of a lipschitz constraint which is
achieved by clamping the weights of the discrim-
inator to lie in a fixed interval. The lipschitz
constraint and training the discriminator multiple
times for every generator gradient update creates a
strong learning signal for the generator.

Gulrajani et al. (2017) present an alternative to
weight clamping that they call a gradient penalty
to enforce lipschitzness since model performance
was reported to be highly sensitive to the clamp-
ing hyperparameters. They add the following
penalty to the discriminator training objective -
(||OG(z)D(G(z))||2 − 1)2. A potential concern
regarding our strategy to train our discriminator
to distinguish between sequence of 1-hot vectors
from the true data distribution and a sequence of
probabilities from the generator is that the discrim-
inator can easily exploit the sparsity in the 1-hot
vectors to reach optimality. However, Wasster-
stein distance with a lipschitz constraint / gradi-
ent penalty provides good gradients even under an
optimal discriminator and so isn’t a problem for
us in practice. Even though it is possible to ex-
tract some performance from a regular GAN ob-
jective with the gradient penalty (as we show in
one of our experiments), WGANs still provide bet-
ter gradients to the generator since the discrimina-
tor doesn’t saturate often.

3 Model architecture

Let z ∼ N (0, I) be the input to our generator
network G from which we will attempt to gener-
ate natural language. For implementation conve-
nience, the sample z is of shape n × d where n
is the length of sequence and d is a fixed length
dimension of the noise vector at each time step.
The generator then transforms z into a sequence of
probability distributions over the vocabulary G(z)
of size n×k where k is the size of our true data dis-
tribution’s vocabulary. The discriminator network
D is provided with fake samples G(z) and sam-
ples from the true data distribution P (x). Sam-
ples from the true distribution are provided as a
sequence of 1-hot vectors with each vector serv-
ing as an indicator of the observed word in the
sample. As described in section 2, the discrimi-
nator is trained to discriminate between real and
fake samples and the generator is trained to fool

Figure 1: Model architecture

the discriminator as in Fig. 1.
We investigate recurrent architectures as in

(Lamb et al., 2016; Yu et al., 2016; Che et al.,
2017) and convolutional architectures in both the
generator as well as the discriminator. The follow-
ing subsections detail our architectures.

3.1 Recurrent Models

Recurrent Neural Networks (RNNs), particu-
larly Long short-term memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Networks (Cho et al., 2014) are power-
ful models that have been successful at modeling
sequential data (Graves and Schmidhuber, 2009;
Mikolov et al., 2010). They transform a sequence
of input vectors x = x1 . . . xn into a sequence
of hidden states h = h1 . . . hn where each hid-
den state maintains a summary of the input up un-
til then. RNN language models are autoregres-
sive in nature since the input to the network at
time t depends on the output at time t − 1. How-
ever, in the context of generating sequences from
noise, the inputs are pre-determined and there is
no direct correspondence between the output at
time t − 1 and the input at time t this fundamen-
tally changes the auto-regressiveness of the RNN.
The RNN does however carry forward informa-
tion about its output at time t through subsequent
time steps via its hidden states h as evident from
its recurrent transition function. In order to incor-
porate an explicit dependence between subsequent
RNN outputs, we add a peephole connection be-
tween the output probability distribution yt−1 at
time t−1 and the hidden state ht at time t as show
in the LSTM equations below. Typical RNN lan-

243

guage models have a shared affine transformation
matrix Wout that is shared across time all steps
that projects the hidden state vector to a vector of
the same size as the target vocabulary to generate a
sequence of outputs y = y1 . . . yt. Subsequently a
softmax function is applied to each vector to turn it
into a probability distribution over the vocabulary.

yt = softmax(Woutht + bout),

During inference, an output is sampled from the
softmax distribution and becomes the input at the
subsequent time step. While training the inputs
are pre-determined. In all of our models, we
perform greedy decoding where we always pick
argmax yt. When using the LSTM as a discrim-
inator we use a simple binary logistic regression
layer on the last hidden state hn to determine the
probability of the sample being from the genera-
tor’s data distribution or from the real data distri-
bution. P (real) = σ(Wpredhn + bpred).

The LSTM update equations with an output
peephole are :

it = σ(Wxixt + Whiht−1 + Wpiyt−1 + bi)
ft = σ(Wxfxt + Whfht−1 + Wpfyt−1 + bf)
ot = σ(Wxoxt + Whoht−1 + Wpoyt−1 + bo)
ct = tanh(Wxcxt + Whcht−1 + Wpcyt−1 + bc)
ct = ft � ct−1 + it � ct

ht = ot � tanh(ct),

where σ is the element-wise sigmoid function, �
is the hadamard product, tanh is the element-wise
tanh function. W· and b· are learn-able parame-
ters of the model and it, ft, ot and ct constitute the
input, forget, output and cell states of the LSTM
respectively.

3.2 Convolutional Models
Convolutional neural networks (CNNs) have also
shown promise at modeling sequential data us-
ing 1-dimensional convolutions (Dauphin et al.,
2016; Zhang et al., 2015). Convolution filters are
convolved across time and the input dimensions
are treated as channels. In this work, we explore
convolutional generators and discriminators with
residual connections (He et al., 2016).

Gulrajani et al. (2017) use a convolutional
model for both the generator and discriminator.
The generator consists of 5 residual blocks with
2 1-D convolutional layers each. A final 1-D con-
volution layer transforms the output of the resid-

ual blocks into a sequence of un-normalized vec-
tors for each element in the input sequence (noise).
These vectors are then normalized using the soft-
max function. All convolutions are ’same’ con-
volutions with a stride of 1 followed by batch-
normalization (Ioffe and Szegedy, 2015) and the
ReLU (Nair and Hinton, 2010; Glorot et al., 2011)
activation function without any pooling so as to
preserve the shape of the input. The discrimina-
tor architecture is identical to that of the generator
with the final output having a single output chan-
nel.

3.3 Curriculum Learning

In likelihood based training of generative language
models, models are only trained to make one-step
ahead predictions and as a result it is possible to
train these models on relatively long sequences
even in the initial stages of training. However, in
our adversarial formulation, our generator is en-
couraged to generate entire sequences that match
the true data distribution without explicit supervi-
sion at each step of the generation process. As
a way to provide training signals of incremen-
tal difficulty, we use curriculum learning (Bengio
et al., 2009) and train our generator to produce se-
quences of gradually increasing lengths as training
progresses.

4 Experiments & Data

GAN based methods have often been critiqued for
lacking a concrete evaluation strategy (Salimans
et al., 2016), however recent work (Wu et al.,
2016) uses an annealed importance based tech-
nique to overcome this problem.

In the context of generating natural language,
it is possible to come up with a simpler approach
to evaluate compute the likelihoods of generated
samples. We synthesize a data generating distri-
bution under which we can compute likelihoods in
a tractable manner. We propose a simple evalua-
tion strategy for evaluating adversarial methods of
generating natural language by constructing a data
generating distribution from a CFG or P−CFG.
It is possible to determine if a sample belongs to
the CFG or the probability of a sample under a
P−CFG by using a constituency parser that is pro-
vided with all of the productions in a grammar.
Yu et al. (2016) also present a simple idea to esti-
mate the likelihood of generated samples by using
a randomly initialized LSTM as their data gener-

244

ating distribution. While this is a viable strategy
to evaluate generative models of language, a ran-
domly initialized LSTM provides little visibility
into the complexity of the data distribution itself
and presents no obvious way to increase its com-
plexity. CFGs and PCFGs however, provide ex-
plicit control of the complexity via their produc-
tions. They can also be learned via grammar in-
duction (Brill, 1993) on large treebanks of natural
language and so the data generating distribution is
not synthetic as in (Yu et al., 2016).

Typical language models are evaluated by mea-
suring the likelihood of samples from the true
data distribution under the model. However, with
GANs it is impossible to measure likelihoods un-
der the model itself and so we measure the like-
lihood of the model’s samples under the true data
distribution instead.

We divide our experiments into four categories:

• Generating language that belongs to a toy
CFG and an induced PCFG from the Penn
Treebank (Marcus et al., 1993).

• Chinese poetry generation with comparisons
to (Yu et al., 2016) and (Che et al., 2017).

• Generated samples from a dataset consisting
of simple English sentences, the 1-billion-
word and Penn Treebank datasets.

• Conditional GANs that generate sentences
conditioned on certain sentence attributes
such as sentiment and questions.

4.1 Simple CFG
We use a simple and publicly available CFG1 that
contains 248 productions. We then generate two
sets of data from this CFG - one consisting of sam-
ples of length 5 and another of length 11. Each
set contains 100,000 samples selected at random
from the CFG. The first set has a vocabulary of
36 tokens while the second 45 tokens. We eval-
uate our models on this task by measuring the
fraction of generated samples that satisfy the rules
of the grammar and also measure the diversity in
our generated samples. We do this by generating
1,280 samples from noise and computing the frac-
tion of those that are valid under our grammar us-
ing the Earley parsing algorithm (Earley, 1970). In
order to measure sample diversity, we simply the

1http://www.cs.jhu.edu/˜jason/465/
hw-grammar/extra-grammars/holygrail

count the number of unique samples; while this as-
sumes that all samples are orthogonal it still serves
as a proxy measure of the entropy. We compare
various generator, discriminator and GAN objec-
tives on this problem.

4.2 Penn Treebank PCFG

To construct a more challenging problem than a
simple CFG, we use sections 0-21 of the WSJ sub-
section of the Penn Treebank to induce a PCFG
using simple count statistics of all productions.

P (A→ BC) =
count(A→ BC)
count(A→ ∗)

We train our model on all sentences in the treebank
and restrict the output vocabulary to the top 2,000
most frequently occurring words. We evaluate our
models on this task by measuring the likelihood of
a sample using a Viterbi chart parser (Klein and
Manning, 2003). While such a measure mostly
captures the grammaticality of a sentence, it is still
a reasonable proxy of sample quality.

4.3 Chinese Poetry

Zhang and Lapata (2014) present a dataset of Chi-
nese poems that were used to evaluate adversarial
training methods for natural language in (Yu et al.,
2016) and (Che et al., 2017). The dataset consists
of 4-line poems with a variable number of charac-
ters in each line. We treat each line in a poem as a
training example and use lines of length 5 (poem-
5) and 7 (poem-7) with the train/validation/test
split2 specified in (Che et al., 2017). We use
BLEU-2 and BLEU-3 to measure model perfor-
mance on this task. Since there is no obvious ”tar-
get” for each generated sentence, both works re-
port corpus-level BLEU measures using the entire
test set as the reference.

4.4 Language Generation

We generate language from three different datasets
of varying sizes and complexity. A dataset com-
prising simple English sentences3 which we will
henceforth refer to as CMU−SE, the version of
the Penn Treebank commonly used in language
modeling experiments (Zaremba et al., 2014) and
the Google 1-billion word dataset (Chelba et al.,

2http://homepages.inf.ed.ac.uk/mlap/
Data/EMNLP14/

3https://github.com/clab/sp2016.
11-731/tree/master/hw4/data

245

2013). We perform experiments at generating lan-
guage at the word as well as character-level. The
CMU−SE dataset consists of 44,016 sentences
with a vocabulary of 3,122 words, while the Penn
Treebank consists of 42,068 sentences with a vo-
cabulary of 10,000 words. We use a random sub-
set of 3 million sentences from the 1-billion word
dataset and constrain our vocabulary to the top
30,000 most frequently occurring words. We use
a curriculum learning strategy in all of our LSTM
models (with and without the output peephole con-
nection) that starts training on sentences of length
5 at the word level and 13 for characters and in-
creases the sequence length by 1 after a fixed num-
ber of epochs based on the size of the data. Con-
volutional methods in (Gulrajani et al., 2017) are
able to generate long sequences even without a
curriculum, however we found it was critical in
generating long sequences with an LSTM.

Figure 2: Negative log-likelihood of generated
samples under the PCFG using an LSTM trained
with the WGAN-GP, GAN-GP and a standard
MLE objective on the PTB dataset

4.5 Conditional Generation of Sequences
GANs are able to leverage explicit condition-
ing on high-level attributes of data (Mirza and
Osindero, 2014; Gauthier, 2014; Radford et al.,
2015) to generate samples which contain these at-
tributes. Recent work (Hu et al., 2017) generates
sentences conditioned on certain attributes of lan-
guage such as sentiment using a variational au-
toencoders (VAEs) (Kingma and Welling, 2013)
and holistic attribute discriminators. In this paper,
we use two features inherent in language - sen-
timent and questions. To generate sentences that
are questions, we use the CMU−SE dataset and
label sentences that contain a ”?” as being ques-
tions and the rest as been statements. To generate
sentences of positive and negative sentiment we
use the Amazon review polarity dataset collected

in (Zhang et al., 2015) and use the first 3 million
short reviews with a vocabulary of the top 4,000
most frequently occurring words. Conditioning on
sentence attributes is achieved by concatenating a
single feature map containing either entirely ones
or zeros to indicate the presence or absence of the
attribute as in (Radford et al., 2015) at the out-
put of each convolutional layer. The conditioning
is done on both the generator and the discrimina-
tor. We experiment with conditional GANs using
only convolutional methods since methods adding
conditioning information has been well studied in
these architectures.

4.6 Training

All models are trained using the back-propagation
algorithm updating our parameters using the
Adam optimization method (Kingma and Ba,
2014) and stochastic gradient descent (SGD) with
batch sizes of 64. A learning rate of 2 × 10−3,
β1 = 0.5 and β2 = 0.999 is used in our LSTM
generator and discriminators while convolutional
architectures use a learning rate of 1× 10−4. The
noise prior and all LSTM hidden dimensions are
set to 128 except for the Chinese poetry genera-
tion task where we set it to 64.

5 Results and Discussion

Table. 1 presents quantitative results on generat-
ing sentences that adhere to the simple CFG de-
scribed in Section 4.1. The Acc column computes
the accuracy with which our model generates sam-
ples from the CFG using a sample of 1,280 gen-
erations. We observe that all models are able to
fit sequences of length 5 but only the WGAN,
WGAN-GP objectives are able to generalize to
longer sequences of length 11. This motivated us
to use only the WGAN and WGAN-GP objectives
in our subsequent experiments. The GAN-GP cri-
terion appears to perform reasonably as well but
we restrict our experiments to use the WGAN and
WGAN-GP criteria only. GANs have been shown
to exhibit the phenomenon of ”mode dropping”
where the generator fails to capture a large fraction
of the modes present in the data generating distri-
bution (Che et al., 2016). It is therefore important
to study the diversity in our generated samples.
The Uniq column computes the number of unique
samples in a sample 1,280 generations serves as a
rough indicator of sample diversity. The WGAN-
GP objective appears to encourage the generation

246

Gen Disc Objective Length 5 Length 11
Acc (%) Uniq Acc (%) Uniq

LSTM LSTM GAN 99.06 0.913 0 0.855
LSTM LSTM LSGAN 99.45 0.520 0 0.855
LSTM LSTM WGAN 93.98 0.972 98.04 0.924

LSTM-P LSTM WGAN 97.96 0.861 99.29 0.653
LSTM LSTM WGAN-GP 99.21 0.996 96.25 0.992
CNN CNN WGAN-GP 98.59 0.990 97.01 0.771

LSTM-P LSTM GAN-GP 98.68 0.993 96.32 0.995

Table 1: Accuracy and uniqueness measure of samples generated by different models. LSTM, LSTM-P
refers to the LSTM model with the output peephole and the WGAN-GP and GAN-GP refer to models
that use a gradient penalty in the discriminator’s training objective

Models Poem 5 Poem 7
BLEU-2 BLEU-3 BLEU-2 BLEU-3

Val Test Val Test Val Test Val Test
MLE (Che et al., 2017) - 0.693 - - - 0.318 - -

Sequence GAN (Yu et al., 2016) - 0.738 - - - - - -
MaliGAN-basic (Che et al., 2017) - 0.740 - - - 0.489 - -
MaliGAN-full (Che et al., 2017) - 0.762 - - - 0.552 - -

LSTM (ours) 0.840 0.837 0.427 0.372 0.660 0.655 0.386 0.405
LSTM Peephole (ours) 0.845 0.878 0.439 0.363 0.670 0.670 0.327 0.355

Table 2: BLEU scores on the poem-5 and poem-7 datasets

of diverse samples while also fitting the data dis-
tribution well.

Fig. 2 shows the negative-log-likelihood of gen-
erated samples using a LSTM architecture using
the WGAN-GP, GAN-GP and MLE criteria. All
models used an LSTM generator. The sequence
length is set to 7 and the likelihoods are evaluated
at the end of every epoch on a set of 64 samples.

Table. 2 contains quantitative results on the Chi-
nese poetry generation dataset. The results indi-
cate that our straightforward strategy to overcome
back-propagating through discrete states is com-
petitive and outperforms more complicated meth-
ods.

Table. 5 contains sequences generated by
our model conditioned on sentiment (posi-
tive/negative) and questions/statements. The
model is able to pick up on certain consistent pat-
terns in questions as well as when expressing sen-
timent and use them while generating sentences.

Tables 3 and 4 contain sequences generated at
the word and character-level by our LSTM and
CNN models. Both models are able to produce re-
alistic sentences. The CNN model with a WGAN-

GP objective appears to be able to maintain con-
text over longer time spans.

6 Conclusion and Future work

In conclusion, this work presents a straightforward
but effective method to train GANs for natural lan-
guage. The simplicity lies in forcing the discrimi-
nator to operate on continuous values by present-
ing it with a sequence of probability distributions
from the generator and a sequence of 1-hot vec-
tors corresponding to data from the true distribu-
tion. We propose an evaluation strategy that in-
volves learning the data distribution defined by a
CFG or PCFG. This lets us evaluate the likeli-
hood of a sample belonging to the data generating
distribution. The use of WGAN and WGAN-GP
objectives produce realistic sentences on datasets
of varying complexity (CMU-SE, Penn Treebank
and the 1-billion dataset). We also show that it is
possible to perform conditional generation of text
on high-level sentence features such as sentiment
and questions. In future work, we would like to ex-
plore GANs in other domains of NLP such as non
goal-oriented dialog systems where a clear train-

247

Level Method 1-billion-word

Word

LSTM

An opposition was growing in China .
This is undergoing operation a year .
It has his everyone on a blame .
Everyone shares that Miller seems converted President as Democrat .
Which is actually the best of his children .
Who has The eventual policy and weak ?

CNN

Companies I upheld , respectively patented saga and Ambac.
Independence Unit have any will MRI in these Lights
It is a wrap for the annually of Morocco
The town has Registration matched with unk and the citizens

Character CNN

To holl is now my Hubby ,
The gry timers was faller
After they work is jith a
But in a linter a revent

Table 3: Word and character-level generations on the 1-billion word dataset

Level Model PTB CMU-SE

Word

LSTM

what everything they take everything away
from .

<s>will you have two moment ? </s>

may tea bill is the best chocolate from
emergency .

<s>i need to understand deposit length .
</s>

can you show show if any fish left inside . <s>how is the another headache ? </s>
room service , have my dinner please . <s>how there , is the restaurant popular this

cheese ? </s>

CNN

meanwhile henderson said that it has to
bounce for.

<s>i ’d like to fax a newspaper . </s>

I’m at the missouri burning the indexing
manufacturing and through .

<s>cruise pay the next in my replacement .
</s>
<s>what ’s in the friday food ? ? </s>

Table 4: Word level generations on the Penn Treebank and CMU-SE datasets

POSITIVE NEGATIVE
best and top notch newtonmom . usuall the review omnium nothing non-

functionable
good buy homeostasis money well spent
kickass cosamin of time and fun . extreme crap-not working and eeeeeew
great britani ! I lovethis. a horrible poor imposing se400
QUESTION STATEMENT
<s>when ’s the friday convention on ? </s> <s>i report my run on one mineral . </s>
<s>how many snatched crew you have ? </s> <s>we have to record this now . </s>
<s>how can you open this hall ? </s> <s>i think i deeply take your passenger

.</s>

Table 5: Coditional generation of text. Top row shows generated samples conditionally trained on ama-
zon review polarity dataset with two attributes ’positive’ and ’negative’. Bottom row has samples condi-
tioned on the ’question’ attribute

248

ing and evaluation criterion does not exist.

Acknowledgements

The Authors would like to thank Ishaan Gulrajani,
Martin Arjovsky, Guillaume Lample, Rosemary
Ke, Juneki Hong and Varsha Embar for their ad-
vice and insightful comments. We are grateful to
the Fonds de Recherche du Québec – Nature et
Technologie for their financial support. We would
also like to acknowledge NVIDIA for donating a
DGX-1 computer used in this work.

Appendix

We demonstrate that our approach to solve the
problem of discrete outputs produces reasonable
outputs even when applied to images. Fig-
ure 3 shows samples generated on the bina-
rized MNIST dataset (Salakhutdinov and Murray,
2008). We used a generator and discriminator ar-
chitecture identical to (Radford et al., 2015) with
the WGAN-GP criterion. The generator’s outputs
are continuous while samples from the true data
distribution are binarized.

Figure 3: Binarized MNIST samples using a
DCWGAN with gradient penalty

249

References
Martin Arjovsky and Léon Bottou. 2017. Towards

principled methods for training generative adversar-
ial networks. In NIPS 2016 Workshop on Adversar-
ial Training. In review for ICLR. volume 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems. pages 1171–1179.

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432 .

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning. ACM, pages 41–48.

Eric Brill. 1993. Automatic grammar induction and
parsing free text: A transformation-based approach.
In Proceedings of the workshop on Human Lan-
guage Technology. Association for Computational
Linguistics, pages 237–242.

Tong Che, Yanran Li, Athul Paul Jacob, Yoshua
Bengio, and Wenjie Li. 2016. Mode regularized
generative adversarial networks. arXiv preprint
arXiv:1612.02136 .

Tong Che, Yanran Li, Ruixiang Zhang, R Devon
Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Ben-
gio. 2017. Maximum-likelihood augmented discrete
generative adversarial networks. arXiv preprint
arXiv:1702.07983 .

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005 .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Yann N Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2016. Language modeling with
gated convolutional networks. arXiv preprint
arXiv:1612.08083 .

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex
Lamb, Martin Arjovsky, Olivier Mastropietro, and
Aaron Courville. 2016. Adversarially learned infer-
ence. arXiv preprint arXiv:1606.00704 .

Jay Earley. 1970. An efficient context-free parsing al-
gorithm. Communications of the ACM 13(2):94–
102.

Jon Gauthier. 2014. Conditional generative adversar-
ial nets for convolutional face generation. Class
Project for Stanford CS231N: Convolutional Neural
Networks for Visual Recognition, Winter semester
2014(5):2.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Ais-
tats. volume 15, page 275.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems. pages 2672–2680.

Alex Graves and Jürgen Schmidhuber. 2009. Offline
handwriting recognition with multidimensional re-
current neural networks. In Advances in neural in-
formation processing systems. pages 545–552.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron Courville. 2017. Im-
proved training of wasserstein gans. arXiv preprint
arXiv:1704.00028 .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pages
770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Controllable
text generation. arXiv preprint arXiv:1703.00955 .

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 .

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144 .

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware neural language
models. arXiv preprint arXiv:1508.06615 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

250

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Dan Klein and Christopher D Manning. 2003. A pars-
ing: fast exact viterbi parse selection. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Lin-
guistics on Human Language Technology-Volume 1.
Association for Computational Linguistics, pages
40–47.

Alex M Lamb, Anirudh Goyal ALIAS PARTH
GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. 2016. Professor
forcing: A new algorithm for training recurrent net-
works. In Advances In Neural Information Process-
ing Systems. pages 4601–4609.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop. Barcelona, Spain, volume 8.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK
Lau, and Zhen Wang. 2016. Least squares
generative adversarial networks. arXiv preprint
ArXiv:1611.04076 .

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech. volume 2, page 3.

Mehdi Mirza and Simon Osindero. 2014. Condi-
tional generative adversarial nets. arXiv preprint
arXiv:1411.1784 .

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10). pages 807–814.

Sebastian Nowozin, Botond Cseke, and Ryota
Tomioka. 2016. f-gan: Training generative neural
samplers using variational divergence minimization.
In Advances in Neural Information Processing Sys-
tems. pages 271–279.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Alec Radford, Luke Metz, and Soumith Chintala.
2015. Unsupervised representation learning with
deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434 .

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732 .

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685 .

Ruslan Salakhutdinov and Iain Murray. 2008. On the
quantitative analysis of deep belief networks. In
Proceedings of the 25th international conference on
Machine learning. ACM, pages 872–879.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In Advances
in Neural Information Processing Systems. pages
2226–2234.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation 1(2):270–280.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-
search optimization. CoRR abs/1606.02960.
http://arxiv.org/abs/1606.02960.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and
Roger Grosse. 2016. On the quantitative analysis
of decoder-based generative models. arXiv preprint
arXiv:1611.04273 .

Lantao Yu, Weinan Zhang, Jun Wang, and Yong
Yu. 2016. Seqgan: sequence generative adver-
sarial nets with policy gradient. arXiv preprint
arXiv:1609.05473 .

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems. pages 649–657.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
EMNLP. pages 670–680.

251

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 252–256,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Deep Active Learning for Named Entity Recognition
Yanyao Shen

UT Austin
Austin, TX 78712

shenyanyao@utexas.edu

Hyokun Yun
Amazon Web Services

Seattle, WA 98101
yunhyoku@amazon.com

Zachary C. Lipton
Amazon Web Services

Seattle, WA 98101
liptoz@amazon.com

Yakov Kronrod
Amazon Web Services

Seattle, WA 98101
kronrod@amazon.com

Animashree Anandkumar
Amazon Web Services

Seattle, WA 98101
anima@amazon.com

Abstract

Deep neural networks have advanced the
state of the art in named entity recogni-
tion. However, under typical training pro-
cedures, advantages over classical meth-
ods emerge only with large datasets. As
a result, deep learning is employed only
when large public datasets or a large bud-
get for manually labeling data is available.
In this work, we show that by combining
deep learning with active learning, we can
outperform classical methods even with
a significantly smaller amount of training
data.

1 Introduction

Over the past several years, a series of papers have
used deep neural networks (DNNs) to advance the
state of the art in named entity recognition (NER)
(Collobert et al., 2011; Huang et al., 2015; Lam-
ple et al., 2016; Chiu and Nichols, 2015; Yang
et al., 2016). Historically, the advantages of deep
learning have been less pronounced when work-
ing with small datasets. For instance, on the pop-
ular CoNLL-2003 English dataset, the best DNN
model outperforms the best shallow model by only
0.4%, as measured by F1 score, and this is a small
dataset containing only 203,621 words. On the
other hand, on the OntoNotes-5.0 English dataset,
which contains 1,088,503 words, a DNN model
outperforms the best shallow model by 2.24%
(Chiu and Nichols, 2015).

In this work, we investigate whether we can
train DNNs using fewer samples under the ac-
tive learning framework. Active learning is the
paradigm where we actively select samples to be
used during training. Intuitively, if we are able to
select the most informative samples for training,

we can vastly reduce the number of samples re-
quired. In practice, we can employ Mechanical
Turk or other crowdsourcing platforms to label the
samples actively selected by the algorithm. Re-
ducing sample requirements for training can lower
the labeling costs on these platforms.

We present positive preliminary results demon-
strating the effectiveness of deep active learn-
ing. We perform incremental training of DNNs
while actively selecting samples. On the stan-
dard OntoNotes-5.0 English dataset, our approach
matches 99% of the F1 score achieved by the
best deep models trained in a standard, supervised
fashion despite using only a quarter

2 NER Model Description

We use CNN-CNN-LSTM model from Yun
(2017) as a representative DNN model for NER.
The model uses two convolutional neural networks
(CNNs) (LeCun et al., 1995) to encode charac-
ters and words respectively, and a long short-
term memory (LSTM) recurrent neural network
(Hochreiter and Schmidhuber, 1997) as a decoder.
This model achieves the best F1 scores on the
OntoNotes-5.0 English and Chinese dataset, and
its use of CNNs in encoders enables faster training
as compared to previous work relying on LSTM
encoders (Lample et al., 2016; Chiu and Nichols,
2015). We briefly describe the model:

Data Representation We represent each input
sentence as follows. First, special [BOS] and
[EOS] tokens are added at the beginning and the
end of the sentence, respectively. In order to batch
the computation of multiple sentences, sentences
with similar length are grouped together into buck-
ets, and [PAD] tokens are added at the end of sen-
tences to make their lengths uniform inside of the

252

Formatted Sentence [BOS] Kate lives on Mars [EOS] [PAD]
Tag O S-PER O O S-LOC O O

Table 1: Example formatted sentence. To avoid clutter, [BOW] and [EOW] symbols are not shown.

bucket. We follow an analogous procedure to rep-
resent the characters in each word. For example,
the sentence ‘Kate lives on Mars’ is formatted as
shown in Table 1. The formatted sentence is de-
noted as {xij}, where xij is the one-hot encoding
of the j-th character in the i-th word.

Character-Level Encoder For each word i, we
use CNNs to extract character-level features wchar

i

(Figure 1). We apply ReLU nonlinearities (Nair
and Hinton, 2010) and dropout (Srivastava et al.,
2014) between CNN layers, and include a residual
connection between input and output of each layer
(He et al., 2016). So that our representation of the
word is of fixed length, we apply max-pooling on
the outputs of the topmost layer of the character-
level encoder (Kim, 2014).

wchar
2

h
(2)
21 h

(2)
22 h

(2)
23 h

(2)
24 h

(2)
25 h

(2)
26 h

(2)
27

h
(1)
21 h

(1)
22 h

(1)
23 h

(1)
24 h

(1)
25 h

(1)
26 h

(1)
27

x21 x22 x23 x24 x25 x26 x27

[BOW] K a t e [EOW] [PAD]

max pooling

Figure 1: Example CNN architecture for Character-level En-
coder with two layers.

Word-Level Encoder To complete our rep-
resentation of each word, we concatenate its
character-level features with wemb

i , a latent word
embedding corresponding to that word:

wfull
i :=

(
wchar

i ,wemb
i

)
.

In order to generalize to words unseen in the train-
ing data, we replace each word with a special
[UNK] (unknown) token with 50% probability
during training, an approach that resembles the
word-drop method due to Lample et al. (2016).

Given the sequence of word-level input features
wfull

1 ,wfull
2 , . . . ,wfull

n , we extract word-level repre-
sentations hEnc

1 ,hEnc
2 , . . . ,hEnc

n for each word po-
sition in the sentence using a CNN. In Figure 2,

we depict an instance of our architecture with two
convolutional layers and kernels of width 3. We
concatenate the representation at the l-th convolu-
tional layer h(l)

i , with the input features wfull
i :

hEnc
i =

(
h(l)

i ,wfull
i

)

hEnc
1 hEnc

2 hEnc
3 hEnc

4 hEnc
5 hEnc

6 hEnc
7

h
(2)
1 h

(2)
2 h

(2)
3 h

(2)
4 h

(2)
5 h

(2)
6 h

(2)
7

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4 h

(1)
5 h

(1)
6 h

(1)
7

wfull
1 wfull

2 wfull
3 wfull

4 wfull
5 wfull

6 wfull
7

[BOS] Kate lives on Mars [EOS] [PAD]

Figure 2: Example CNN architecture for Word-level Encoder
with two layers.

Tag Decoder The tag decoder induces a prob-
ability distribution over sequences of tags, con-
ditioned on the word-level encoder features:
P
[
y2, y3, . . . , yn−1 |

{
hEnc

i

}]
1. We use an LSTM

RNN for the tag decoder, as depicted in Figure 3.
At the first time step, the [GO]-symbol is pro-
vided as y1 to the decoder LSTM. At each time
step i, the LSTM decoder computes hDec

i+1, the hid-
den state for decoding word i + 1, using the last
tag yi, the current decoder hidden state hDec

i , and
the learned representation of next word hEnc

i+1. Us-
ing a softmax loss function, yi+1 is decoded; this
is further fed as an input to the next time step.

While it is computationally intractable to find
the best sequence of tags with an LSTM decoder,
Yun (2017) reports that greedily decoding tags
from left to right often yields performance supe-
rior to chain CRF decoder (Lafferty et al., 2001),
for which exact inference is tractable.

1y1 and yn are ignored because they correspond to aux-
iliary words [BOS] and [EOS]. If [PAD] words are intro-
duced, they are ignored as well.

253

S-PER O O S-LOC

y2 y3 y4 y5

hDec
1 hDec

2 hDec
3 hDec

4 hDec
5

y1 y2 y3 y4

[GO] S-PER O O

hEnc
2 hEnc

3 hEnc
4 hEnc

5

Kate lives on Mars

Figure 3: LSTM architecture for Tag Decoder.

3 Active Learning

As with most tasks, labeling data for NER usually
requires manual annotations by human experts,
which are costly to acquire at scale. Active learn-
ing seeks to ameliorate this problem by strategi-
cally choosing which examples to annotate, in the
hope of getting greater performance with fewer
annotations. To this end, we consider the follow-
ing setup for interactively acquiring annotations.
The learning process consists of multiple rounds:
At the beginning of each round, the active learn-
ing algorithm chooses sentences to be annotated
up to the predefined budget. After receiving anno-
tations, we update the model parameters by train-
ing on the augmented dataset, and proceeds to the
next round. We assume that the cost of annotating
a sentence is proportional to the number of words
in the sentence, and that every word in the selected
sentence needs to be annotated; the algorithm can-
not ask workers to partially annotate the sentence.

While various existing active learning strategies
suit this setup (Settles, 2010), we explore the un-
certainty sampling strategy, which ranks unlabeled
examples in terms of current model’s uncertainty
on them, due to its simplicity and popularity. We
consider three ranking methods, each of which can
be easily implemented in the CNN-CNN-LSTM
model as well as most common models for NER.

Least Confidence (LC): This method sorts ex-
amples in descending order by the probability of
not predicting the most confident sequence from
the current model (Lewis and Gale, 1994; Culotta
and McCallum, 2005):

1− max
y1,...,yn

P [y1, . . . , yn | {xij}] . (1)

Since exactly computing (1) is not feasible with
the LSTM decoder, we approximate it with the

probability of a greedily decoded sequence.
Maximum Normalized Log-Probability

(MNLP): Our preliminary analysis revealed that
the LC method disproportionately selects longer
sentences. Note that sorting unlabeled examples
in descending order by (1) is equivalent to sorting
in ascending order by the following scores:

max
y1,...,yn

P [y1, . . . , yn | {xij}]

⇔ max
y1,...,yn

n∏
i=1

P [yi | y1, . . . , yn−1, {xij}]

⇔ max
y1,...,yn

n∑
i=1

log P [yi |y1, . . . , yn−1, {xij}] . (2)

Since (2) contains summation over words, LC
method naturally favors longer sentences. Be-
cause longer sentences require more labor for an-
notation, however, we find this undesirable, and
propose to normalize (2) as follows, which we call
Maximum Normalized Log-Probability method:

max
y1,...,yn

1
n

n∑
i=1

log P [yi | y1, . . . , yn−1, {xij}] .

Bayesian Active Learning by Disagreement
(BALD): We also consider the Bayesian met-
ric proposed by Gal et al. (2017). Denote
P1,P2, . . .PM as models sampled from the pos-
terior. Then, one measure of our uncertainty on
the ith word is fi, the fraction of models which
disagreed with the most popular choice:

fi = 1−maxy

∣∣{m : argmaxy′ Pm [yi = y′] = y
}∣∣

M
,

where |·| denotes cardinality of a set. We normal-
ize this by the number of words as 1

n

∑n
j=1 fj , and

sort sentences in decreasing order by this score.
Following Gal et al. (2017), we used Monte Carlo
dropout (Gal and Ghahramani, 2016) to sample
from the posterior, and set M as 100.

4 Experiments

We use OntoNotes-5.0 English and Chinese data
(Pradhan et al., 2013) for our experiments. The
training datasets contain 1,088,503 words and
756,063 words respectively. State-of-the-art mod-
els trained the full training sets achieve F1 scores
of 86.86 and 75.63 on the test sets (Yun, 2017).

254

0 20 40 60 80

70

75

80

85

Percent of words annotated

Te
st

F1
sc

or
e

MNLP
LC

BALD
RAND

Best Deep Model
Best Shallow Model

(a) OntoNotes-5.0 English

0 20 40 60 80 100

65

70

75

Percent of words annotated

Te
st

F1
sc

or
e

MNLP
LC

BALD
RAND

Best Deep Model
Best Shallow Model

(b) OntoNotes-5.0 Chinese

Figure 4: F1 score on the test dataset, in terms of the number of words labeled.

nw bc tc wb bn mz
0

100

200

300

400

500

#

half_data, F1=85.10
no_nw_data, F1=81.49
nw_only_data, F1=82.08

Figure 5: Genre distribution of top 1,000 sentences chosen
by an active learning algorithm

Comparisons of selection algorithms We em-
pirically compare selection algorithms proposed
in Section 3, as well as uniformly random base-
line (RAND). All algorithms start with an iden-
tical 1% of original training data and a randomly
initialized model. In each round, every algorithm
chooses sentences from the rest of the training data
until 20,000 words have been selected, adding this
data to its training set. Then, the algorithm up-
dates its model parameters by stochastic gradient
descent on its augmented training dataset for 50
passes. We evaluate the performance of each al-
gorithm by its F1 score on the test dataset.

Figure 4 shows results. All active learning al-
gorithms perform significantly better than the ran-
dom baseline. Among active learners, MNLP
slightly outperformed others in early rounds. Im-
pressively, active learning algorithms achieve 99%
performance of the best deep model trained on
full data using only 24.9% of the training data on
the English dataset and 30.1% on Chinese. Also,
12.0% and 16.9% of training data were enough
for deep active learning algorithms to surpass the
performance of the shallow models from Pradhan
et al. (2013) trained on the full training data.

Detection of under-explored genres To better
understand how active learning algorithms choose
informative examples, we designed the following
experiment. The OntoNotes datasets consist of
six genres: broadcast conversation (bc), braod-
cast news (bn), magazine genre (mz), newswire
(nw), telephone conversation (tc), weblogs (wb).
We created three training datasets: half-data,
which contains random 50% of the original train-
ing data, nw-data, which contains sentences only
from newswire (51.5% of words in the original
data), and no-nw-data, which is the complement
of nw-data. Then, we trained CNN-CNN-LSTM
model on each dataset. The model trained on
half-data achieved 85.10 F1, significantly outper-
forming others trained on biased datasets (no-nw-
data: 81.49, nw-only-data: 82.08). This showed
the importance of good genre coverage in training
data. Then, we analyzed the genre distribution of
1,000 sentences MNLP chose for each model (see
Figure 5). For no-nw-data, the algorithm chose
many more newswire (nw) sentences than it did
for unbiased half-data (367 vs. 217). On the other
hand, it undersampled newswire sentences for nw-
only-data and increased the proportion of broad-
cast news and telephone conversation, which are
genres distant from newswire. Impressively, al-
though we did not provide the genre of sentences
to the algorithm, it was able to automatically de-
tect underexplored genres.

5 Conclusion

We proposed deep active learning algorithms
for NER and empirically demonstrated that they
achieve state-of-the-art performance with much
less data than models trained in the standard su-
pervised fashion.

255

References
Jason PC Chiu and Eric Nichols. 2015. Named en-

tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
AAAI. volume 5, pages 746–51.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems. pages 1019–1027.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani.
2017. Deep bayesian active learning with image
data. arXiv preprint arXiv:1703.02910 .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pages
770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

John Lafferty, Andrew McCallum, Fernando Pereira,
et al. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proceedings of the eighteenth international
conference on machine learning, ICML. volume 1,
pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 .

Yann LeCun, Yoshua Bengio, et al. 1995. Convolu-
tional networks for images, speech, and time series.
The handbook of brain theory and neural networks
3361(10):1995.

David D Lewis and William A Gale. 1994. A sequen-
tial algorithm for training text classifiers. In Pro-
ceedings of the 17th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval. Springer-Verlag New York, Inc.,
pages 3–12.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference
on machine learning (ICML-10). pages 807–814.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In CoNLL.
pages 143–152.

Burr Settles. 2010. Active learning literature survey.
University of Wisconsin, Madison 52(55-66):11.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Zhilin Yang, Ruslan Salakhutdinov, and William Co-
hen. 2016. Multi-task cross-lingual sequence tag-
ging from scratch. arXiv preprint arXiv:1603.06270
.

Hyokun Yun. 2017. Design choices for named entity
recognition. Manuscript in preparation.

256

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 257–264,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Learning when to skim and when to read

Alexander R. Johansen and Richard Socher
Salesforce Research, Palo Alto, CA, USA

{ajohansen,rsocher}@salesforce.com

Abstract

Many recent advances in deep learning
for natural language processing have come
at increasing computational cost, but the
power of these state-of-the-art models is
not needed for every example in a dataset.
We demonstrate two approaches to re-
ducing unnecessary computation in cases
where a fast but weak baseline classier and
a stronger, slower model are both avail-
able. Applying an AUC-based metric to
the task of sentiment classification, we
find significant efficiency gains with both
a probability-threshold method for reduc-
ing computational cost and one that uses a
secondary decision network. 1

1 Introduction

Deep learning models are getting bigger, better
and more computationally expensive in the quest
to match or exceed human performance (Wu et al.,
2016; He et al., 2015; Amodei et al., 2015; Sil-
ver et al., 2016). With advances like the sparsely-
gated mixture of experts (Shazeer et al., 2017),
pointer sentinel (Merity et al., 2016), or atten-
tion mechanisms (Bahdanau et al., 2015), models
for natural language processing are growing more
complex in order to solve harder linguistic prob-
lems. Many of the problems these new models
are designed to solve appear infrequently in real-
world datasets, yet the complex model architec-
tures motivated by such problems are employed
for every example. For example, fig. 1 illustrates
how a computationally cheap model (continuous
bag-of-words) represents and clusters sentences.

1Blog post with interactive plots is available at
https://metamind.io/research/learning-when-to-skim-and-
when-to-read

positive description

(more figurative language)

Complex linguistics

(negations, contrastive

conjunctions)

Simple positive description

(lots of adjectives)

Simple negative description

(lots of adjectives)

t-SNE Bag-of-words: Sentiment Analysis

negative description

(more figurative language)

True negative
False negative
True positive
False positive

Figure 1: Illustration with t-SNE (van der Maaten
and Hinton, 2008) of the activations of the last
hidden layer in a computationally cheap bag-of-
words (BoW) model on the binary Stanford Sen-
timent Treebank (SST) dataset (Socher et al.,
2013). Each data point is one sentence, while the
plot has been annotated with qualitative descrip-
tions.

Clusters with simple syntax and semantics (“sim-
ple linguistic content”) tend to be classified cor-
rectly more often than clusters with difficult lin-
guistic content. In particular, the BoW model is
agnostic to word order and fails to accurately clas-
sify sentences with contrastive conjunctions.

This paper starts with the intuition that exclu-
sively using a complex model leads to inefficient
use of resources when dealing with more straight-
forward input examples. To remedy this, we pro-
pose two strategies for reducing inefficiency based
on learning to classify the difficulty of a sentence.
In both strategies, if we can determine that a sen-
tence is easy, we use a computationally cheap bag-
of-words (“skimming”). If we cannot, we default

257

BoW: Accuracy by probability on validation set

Accuracy per bin

Accuracy above threshold

Probability threshold

A
cc

ur
ac

y

Figure 2: Accuracy for thresholding on binary
SST. Probability thresholds are the maximum of
the probability for the two classes. The green
bars corresponds to accuracy for each probability
bucket (examples within a given probability span,
e.g. 0.5 < Pr(Y |X, θBoW) < 0.55), while the
orange curve corresponds the accuracy of all ex-
amples with a probability above a given threshold
(e.g. Pr(Y |X, θBoW) < 0.7).

to an LSTM (reading). The first strategy uses the
probability output of the BoW system as a con-
fidence measure. The second strategy employs a
decision network to learn the relationship between
the BoW and the LSTM. Both strategies increase
efficiency as measured by an area-under-the-curve
(AUC) metric.

2 When to skim: strategies

To keep total computation time down, we investi-
gate cheap strategies based on the BoW encoder.
Where the probability thresholding strategy is a
cost-free byproduct of BoW classification and the
decision network strategy adding a small addi-
tional network.

2.1 Probability strategy

Since we use a softmax cross entropy loss func-
tion, our BoW model is penalized more for con-
fident but wrong predictions. We should thus ex-
pect that confident answers are more likely cor-
rect. Figure 2 investigates the accuracy by thresh-
olding probabilities empirically on the SST based
on the BoW outputs, strengthening such hypothe-
sis. The probability strategy uses a threshold τ to
determine which model to use, such that:

ŶPr(Y |X,θBoW)>τ = arg max
Y

Pr(Y |X, θBoW)

ŶPr(Y |X,θBoW)<τ = arg max
Y

Pr(Y |X, θLSTM)

BoW: Data distributions on validation set

Amount of data per bin

Accumulative data

Probability threshold

A
m

ou
nt

 o
f d

at
a

Figure 3: Histogram showing frequency of each
BoW probability bin on the SST validation set.
The line represents the cumulative frequency, or
the fraction of data for which the expensive LSTM
is triggered given a probability threshold.

SST Valid BoW 82%
True False

LSTM
88%

True 76% 12%
False 6% 6%

Table 1: Confusion matrix for the BoW and the
LSTM, where True means that the given model
classifies correctly.

where Y is the prediction, X the input, θBoW the
BoW model and θLSTM the LSTM model. The
LSTM is used only when the probability of the
BoW is below the threshold. Figure 3 illustrates
how much data is funneled to the LSTM when in-
creasing the probability threshold, τ .

2.2 Decision network
In the probability strategy we make our decision
based on the expectation that the more powerful
LSTM will do a better job when the bag-of-words
system is in doubt, which is not necessarily the
case. Section 2.1 illustrates the confusion matrix
between the BoW and the LSTM. It turns out that
the LSTM is only strictly better 12% of the time,
whereas 6% of the sentences neither the BoW or
the LSTM is correct. In such case, there is no rea-
son to run the LSTM and we might as well save
time by only using the BoW.

2.2.1 Learning to skim, the setup
We propose a trainable decision network that is
based on a secondary supervised classification
task. We use the confusion matrix between the
BoW and the LSTM from Section 2.1 as labels.
We consider the case where the LSTM is correct
and the BoW is wrong as the LSTM class and all

258

Model Cost per sample
Bag-of-words (BoW) 0.16 ms
LSTM 1.36 ms

Table 2: Computation time per sample for each
model, with batch size 64.

Figure 4: We train both models (BoW and LSTM)
on “model train”, then generate labels and train
the decision network on “decision train” and lastly
fine tune the models on the full train set. The full
validation set is used for validation.

other combinations as the BoW class.
However, the confusion matrix on the train set

is biased due to the models overfitting—which is
why cannot co-train the decision network and our
models (BoW, LSTM) on the same data. Instead
we create a new held-out split for training the de-
cision network in a way that will generalize to the
test set. We split the training set into a model train-
ing set (80% of training data) and a decision train-
ing set (remaining 20% of training data). We first
train the BoW and the LSTM models on the model
training set, generate labels for the decision train-
ing set and train the decision network on the deci-
sion training set, and lastly fine-tune the BoW and
the LSTM on the original full training set while
holding the decision network fixed. We find that
the decision network will still generalize to mod-
els that are fine-tuned on the full training set. The
entire pipeline is illustrated in 4.

3 Related Work

The idea of penalizing computational cost is not
new. Adaptive computation time (ACT) (Graves,
2016) employs a cost function to penalize addi-
tional computation and thereby complexity. Con-
currently with our work, two similar methods
have been developed to choose between compu-
tationally cheap and expensive models. Odena
et al. (2017) propose the composer model, which
chooses between computationally inexpensive and

Model selection method on validation set

A
cc

ur
ac

y
in

 %

Saved time in % over LSTM

Decision network strategy

Probability thresholding strategy

Ratio between LSTM and BoW

Figure 5: Model usage strategies plotted with
thresholds for the probability and decision net-
work strategies chosen to save a given fraction
of computation time. The curve stops at around
90% savings as this represents using only the BoW
model. The dashed red line represents the naı̈ve
approach of using the BoW and LSTM models at
random with a fixed ratio.

expensive layers. To model the compute versus
accuracy tradeoff they use a test-time modifiable
loss function that resembles our probability strat-
egy. The composer model, similar to our deci-
sion network, is not restrained to the binary choice
of two models. Further, their model, similar to
our decision network, does not have the draw-
backs of probability thresholding, which requires
every model of interest to be sequentially evalu-
ated. Instead, it can in theory support a multi-class
setting; choosing from several networks Boluk-
basi et al. (2017) similarly use probability output
to choose between increasingly expensive models.
They show results on ImageNet (Deng et al., 2009)
and provides encouraging time-savings with mini-
mal drop in performance. This further suggest that
the probability thresholding strategy is a viable al-
ternative to exclusively using SoTA models.

4 Results

4.1 Model setup
The architecture and training details of all mod-
els are all available in section 5. In table 2 is an
overview of the computational cost of our mod-
els. Our dataset is the binary version of the Stan-

259

Strategy Validation AUC Test AUC
Naı̈ve ratio 84.84 83.77
Probability thresholding µ = 86.03, σ = 0.3 µ = 85.49, σ = 0.3
Decision network µ = 86.13, σ = 0.3 µ = 85.49, σ = 0.3

Table 3: Results for each decision strategy. The AUC is the mean value of the curve from 5. Each model
is trained ten times with different initialization, and results are reported as mean and standard deviation
over the ten runs.

ford Sentiment Treebank (SST), where “very posi-
tive” is combined with “positive”, “very negative”
is combined with “negative” and all “neutral” ex-
amples are removed.

4.2 Benchmark model
To compare the two decision strategies we eval-
uate the trade-off between speed and accuracy,
shown in fig. 5. Speedup is gained by using the
BoW more frequently. We vary the probability
threshold in both strategies and compute the frac-
tion of samples dispatched to each model to cal-
culate average computation time. We measure the
average value of the speed-accuracy curve, a form
of the area-under-the-curve (AUC) metric.

To construct a baseline we consider a naı̈ve ra-
tio between the two models, i.e. let Yratio be the
random variable to represent the average accuracy
on an unseen sample. Then Yratio has the following
properties:{

Pr(Yratio = ABoW) = α

Pr(Yratio = ALSTM) = 1− α (1)

Where A is the accuracy and α ∈ [0, 1] is the pro-
portion of data used for BoW. According to the
definition of the expectation of the random vari-
able, we have the expected accuracy be:

E(Yratio) =
∑

Pr(Yratio = y)× y (2)

= α×ABoW + (1− α)×ALSTM (3)

We calculate the cost of our strategy and bench-
mark ratio in the following manner.

Cstrategy = CBoW + (1− α)× CLSTM (4)

Cratio = α× CBoW + (1− α)× CLSTM (5)

Where C is the cost. Notice that the decision net-
work is not a byproduct of BoW classification and
requires running a second MLP model, but for
simplicity we consider the cost equivalent to the
probability strategy.

4.3 Quantitative results

In fig. 5 and Table 3 we find that using either
guided strategy outperforms the naı̈ve ratio bench-
mark by 1.72 AUC.

4.4 Qualitative results

One might ask why the decision network is per-
forming equivalently to the computationally sim-
ple probability thresholding technique. In 5 we
have provided illustrations for qualitative analysis
of why that might be the case. For example, A1
provides a t-SNE visualization of the last hidden
layer in the BoW (used by both policies), from
which we can assess that the probability strategy
and the decision network follow similar predictive
patterns. There are a few samples where the prob-
abilities assigned by both strategies differ signifi-
cantly; it would be interesting to inspect whether
or not these have been clustered differently in the
extra neural layers of the decision network. To-
wards that end, A2 is a t-SNE plot of the last hid-
den layer of the decision network. What we hope
to see is that it learns to cluster when the LSTM is
correct and the BoW is incorrect. However, from
the visualization it does not seem to learn the ten-
dencies of the LSTM. As we base our decision net-
work on the last hidden state of the BoW, which is
needed to reach a good solution, the decision net-
work might not be able to discriminate where the
BoW could not or it might have found the local
minimum of imitating BoW probabilities too com-
pelling. Furthermore, learning the reasoning of
the LSTM solely by observing its correctness on
a slim dataset could be too weak of a signal. Co-
training the models in similar fashion to (Odena
et al., 2017) might have yielded better results.

5 Conclusion

We have investigated if a cheap bag-of-words
model can decide when samples, in binary senti-
ment classification, are easy or difficult. We found
that a guided strategy, based on a bag-of-words

260

neural network, can make informed decisions on
the difficulty of samples and when to run an ex-
pensive classifier. This allow us to save computa-
tional time by only running complex classifiers on
difficult sentences. In our attempts to build a more
general decision network, we found that it is diffi-
cult to use a weaker network to learn the behavior
of a stronger one by just observing its correctness.

References
D. Amodei, R. Anubhai, E. Battenberg, C. Case,

J. Casper, B. Catanzaro, J. Chen, M. Chrzanowski,
A. Coates, G. Diamos, E. Elsen, J. Engel, L. Fan,
C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGres-
ley, L. Lin, S. Narang, A. Ng, S. Ozair, R. Prenger,
J. Raiman, S. Satheesh, D. Seetapun, S. Sen-
gupta, Y. Wang, Z. Wang, C. Wang, B. Xiao,
D. Yogatama, J. Zhan, and Z. Zhu. 2015. Deep
speech 2: End-to-end speech recognition in en-
glish and mandarin. CoRR abs/1512.02595.
http://arxiv.org/abs/1512.02595.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
Machine Translation by Jointly Learning to Align
and Translate. In ICLR.

T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama.
2017. Adaptive neural networks for fast
test-time prediction. CoRR abs/1702.07811.
http://arxiv.org/abs/1702.07811.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. 2009. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR.

F. Gers, J. Schmidhuber, and F. Cummins. 2000.
Learning to forget: Continual prediction with lstm.
Neural Comput. 12(10):2451–2471.

A. Graves. 2012. Neural networks. In Supervised Se-
quence Labelling with Recurrent Neural Networks,
Springer Berlin Heidelberg, pages 15–35.

A. Graves. 2016. Adaptive computation time for re-
current neural networks. CoRR abs/1603.08983.
http://arxiv.org/abs/1603.08983.

K. He, X. Zhang, S. Ren, and J. Sun. 2015. Deep
residual learning for image recognition. CoRR
abs/1512.03385. http://arxiv.org/abs/1512.03385.

S. Hochreiter and J. Schmidhuber. 1997. Long Short-
Term Memory. Neural Computation 9(8):1735–
1780.

D. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

S. Merity, C. Xiong, J. Bradbury, and R. Socher.
2016. Pointer sentinel mixture models. CoRR
abs/1609.07843. http://arxiv.org/abs/1609.07843.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013.
Efficient Estimation of Word Representations in
Vector Space. In ICLR (workshop).

A. Odena, D. Lawson, and C. Olah. 2017. Chang-
ing model behavior at test-time using reinforcement
learning. arXiv preprint arXiv:1702.07780 .

J. Pennington, R. Socher, and C. D. Manning. 2014.
Glove: Global vectors for word representation. In
EMNLP.

D. Ruck, S. Rogers, M. Kabrisky, M. Oxley, and
B. Suter. 1990. The multilayer perceptron as an ap-
proximation to a bayes optimal discriminant func-
tion. Neural Networks, IEEE Transactions on
1(4):296–298.

M. Schuster and K. Paliwal. 1997. Bidirectional re-
current neural networks. Signal Processing, IEEE
Transactions .

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis,
Q. Le, G. Hinton, and J. Dean. 2017. Outrageously
large neural networks: The sparsely-gated mixture-
of-experts layer. CoRR abs/1701.06538.

D. Silver, A. Huang, C. Maddison, A. Guez,
L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis. 2016.
Mastering the game of Go with deep neural net-
works and tree search. Nature 529(7587):484–489.
https://doi.org/10.1038/nature16961.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning,
A. Ng, and C. Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In EMNLP.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. 2014. Dropout: a simple way
to prevent neural networks from overfitting. Journal
of Machine Learning Research 15(1):1929–1958.

L. van der Maaten and G. Hinton. 2008. Visualizing
data using t-sne. Journal of Machine Learning Re-
search 9(Nov):2579–2605.

Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson,
X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil,
W. Wang, C. Young, J. Smith, J. Riesa, A. Rud-
nick, O. Vinyals, G. Corrado, M. Hughes, and
J. Dean. 2016. Google’s neural machine trans-
lation system: Bridging the gap between human
and machine translation. CoRR abs/1609.08144.
http://arxiv.org/abs/1609.08144.

261

Supplementary material

Visualizations

t-SNE plots for the qualitative analysis section.

t-SNE BoW with probability outputs
Very confident
Confident
Doubtful
Very doubtful

(a) Probability

t-SNE BoW with decision network labels
BoW
LSTM

(b) Decision Network

Figure A1: t-SNE plot of the last hidden layer of the BoW model. The probabilities are colored by the
confidence of the probability strategy. The colors in the decision network plot are the predictions of
which model should be used at a given threshold of the decision network.

Model training

All models are optimized with Adam (Kingma and Ba, 2014) with a learning rate of 5× 10−4. We train
our models with early stopping based on maximizing accuracy of all models, except the decision network
where we maximize the AUC as described in section 4.2. We use SST subtrees in both the model and
decision train splits and for training both models.

Model illustration: The bag of words (BoW)

As shown in fig. A3, the BoW model’s embeddings are initialized with pretrained GloVe (Pennington
et al., 2014) vectors, then updated during training. The embeddings are followed by an average-pooling
layer (Mikolov et al., 2013) and a two layer MLP (Ruck et al., 1990) with dropout of p = 0.5 (Srivastava
et al., 2014). The network is first trained on the model train dataset (80% of training data, as shown
in fig. 4) until convergence (early stopping, at max 50 epochs) and afterwards on the full train dataset
(100% of training data) until convergence (early stopping, at max 50 epochs).

Model illustration: The LSTM

The LSTM is visualized in fig. A3. The LSTM’s word embeddings are initialized with GloVe (Penning-
ton et al., 2014). Instead of updating the embeddings, as is done in the BoW, we apply a trainable projec-
tion layer. We find that this reduces overfitting. After the projection layer a bi-directional (Schuster and
Paliwal, 1997) recurrent neural network (Graves, 2012) with long short-term memory cells (Hochreiter
and Schmidhuber, 1997; Gers et al., 2000) is applied, followed by concatenated mean- and max-pooling
of the hidden states across time. We then employ a two layer MLP (Ruck et al., 1990) with dropout of
p = 0.5 (Srivastava et al., 2014). The network is first trained on the model train dataset (80% of training
data) until convergence (early stopping, max 50 epochs) and afterwards on the full train dataset (100%
of training data) until convergence (early stopping, max 50 epochs).

262

t-SNE decision network with BoW vs LSTM comparison

Only LSTM correct

Only BoW correct

Both wrong

Both correct

Figure A2: We compare the predictions of the BoW and the LSTM to assess when one might be more
correct than the other. We train the decision network to separate the yellows (only LSTM correct) from
the rest. This plot enables us to evaluate if the model is able to learn the relationship between the
correctness of the two models, even though it only has access to the BoW model.

Model illustration: The Decision Network
The decision network is pictured in fig. A4, it inherits all but the output layer of the BoW model trained
on the model train dataset, without dropouts. The layers originating from the BoW are not updated
during training. We find that it overfits if we allow such. From the last hidden layer of the BoW model,
a two layer MLP (Ruck et al., 1990) with dropout of p = 0.5 (Srivastava et al., 2014) is applied on top.

The network is trained on the decision train portion of the dataset (20% of training data) until conver-
gence. We use early stopping by measuring the AUC metric between the BoW and LSTM trained only
on the model train dataset.

263

(a) LSTM (b) Bag of words

Figure A3: Visualization of the BoW and LSTM model. Green refers to initialization by GloVe and
updating during training. Grey is randomly initialized and updated during training. Turquoise means
fixed GloVe vectors.

Figure A4: Architecture of the decision network. Turquoise boxes represent layers shared with the BoW
model trained on the model train dataset and not updated during decision model training.

264

Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 265–275,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Learning to Embed Words in Context for Syntactic Tasks

Lifu Tu Kevin Gimpel Karen Livescu

Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA

{lifu,kgimpel,klivescu}@ttic.edu

Abstract

We present models for embedding words
in the context of surrounding words. Such
models, which we refer to as token em-
beddings, represent the characteristics of
a word that are specific to a given con-
text, such as word sense, syntactic cat-
egory, and semantic role. We explore
simple, efficient token embedding models
based on standard neural network archi-
tectures. We learn token embeddings on a
large amount of unannotated text and eval-
uate them as features for part-of-speech
taggers and dependency parsers trained on
much smaller amounts of annotated data.
We find that predictors endowed with to-
ken embeddings consistently outperform
baseline predictors across a range of con-
text window and training set sizes.

1 Introduction

Word embeddings have enjoyed a surge of popu-
larity in natural language processing (NLP) due to
the effectiveness of deep learning and the avail-
ability of pretrained, downloadable models for
embedding words. Many embedding models have
been developed (Collobert et al., 2011; Mikolov
et al., 2013; Pennington et al., 2014) and have been
shown to improve performance on NLP tasks, in-
cluding part-of-speech (POS) tagging, named en-
tity recognition, semantic role labeling, depen-
dency parsing, and machine translation (Turian
et al., 2010; Collobert et al., 2011; Bansal et al.,
2014; Zou et al., 2013).

The majority of this work has focused on a sin-
gle embedding for each word type in a vocab-
ulary.1 We will refer to these as type embed-

1A word type is an entry in a vocabulary, while a word
token is an instance of a word type in a corpus.

dings. However, the same word type can exhibit a
range of linguistic behaviors in different contexts.
To address this, some researchers learn multiple
embeddings for certain word types, where each
embedding corresponds to a distinct sense of the
type (Reisinger and Mooney, 2010; Huang et al.,
2012; Tian et al., 2014). But token-level linguis-
tic phenomena go beyond word sense, and these
approaches are only reliable for frequent words.

Several kinds of token-level phenomena relate
directly to NLP tasks. Word sense disambigua-
tion relies on context to determine which sense is
intended. POS tagging, dependency parsing, and
semantic role labeling identify syntactic categories
and semantic roles for each token. Sentiment anal-
ysis and related tasks like opinion mining seek to
understand word connotations in context.

In this paper, we develop and evaluate models
for embedding word tokens. Our token embed-
dings capture linguistic characteristics expressed
in the context of a token. Unlike type embeddings,
it is infeasible to precompute and store all possi-
ble (or even a significant fraction of) token em-
beddings. Instead, our token embedding models
are parametric, so they can be applied on the fly to
embed any word in its context.

We focus on simple and efficient token em-
bedding models based on local context and stan-
dard neural network architectures. We evaluate
our models by using them to provide features for
downstream low-resource syntactic tasks: Twitter
POS tagging and dependency parsing. We show
that token embeddings can improve the perfor-
mance of a non-structured POS tagger to match
the state of the art Twitter POS tagger of Owoputi
et al. (2013). We add our token embeddings to
Tweeboparser (Kong et al., 2014), improving its
performance and establishing a new state of the
art for Twitter dependency parsing.

265

2 Related Work

The most common way to obtain context-sensitive
embeddings is to learn separate embeddings for
distinct senses of each type. Most of these meth-
ods cluster tokens into senses and learn vectors
for each cluster (Vu and Parker, 2016; Reisinger
and Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Chen et al., 2014; Piña and Johansson, 2015;
Wu and Giles, 2015). Some use bilingual infor-
mation (Guo et al., 2014; Šuster et al., 2016; Go-
nen and Goldberg, 2016), nonparametric methods
to avoid specifying the number of clusters (Nee-
lakantan et al., 2014; Li and Jurafsky, 2015), topic
models (Liu et al., 2015), grounding to Word-
Net (Jauhar et al., 2015), or senses defined as sets
of POS tags for each type (Qiu et al., 2014).

These “multi-type” embeddings are restricted to
modeling phenomena expressed by a single clus-
tering of tokens for each type. In contrast, token
embeddings are capable of modeling information
that cuts across phenomena categories. Further,
as the number of clusters grows, learning multi-
type embeddings becomes more difficult due to
data fragmentation. Instead, we learn parametric
models that transform a type embedding and those
of its context words into a representation for the
token. While multi-type embeddings require more
data for training, parametric models require less.

There is prior work in developing representa-
tions for tokens in the context of unsupervised
or supervised training, whether with long short-
term memory (LSTM) networks (Kågebäck et al.,
2015; Ling et al., 2015; Choi et al., 2016; Mela-
mud et al., 2016), convolutional networks (Col-
lobert et al., 2011), or other architectures. How-
ever, learning to represent tokens in supervised
training can suffer from limited data. We instead
focus on learning token embedding models on un-
labeled data, then use them to produce features for
downstream tasks. So we focus on efficient archi-
tectures and unsupervised learning criteria.

The most closely related work consists of ef-
forts to train LSTMs to represent tokens in context
using unsupervised training objectives. Kawakami
and Dyer (2015) use multilingual data to learn to-
ken embeddings that are predictive of their trans-
lation targets, while Melamud et al. (2016) and
Peters et al. (2017) use unsupervised learning
with monolingual sentences. We experiment with
LSTM token embedding models as well, though
we focus on different tasks: POS tagging and de-

pendency parsing. We generally found that very
small contexts worked best for these syntactic
tasks, thereby limiting the usefulness of LSTMs
as token embedding models.

3 Token Embedding Models

We assume access to pretrained type embeddings.
Let W denote a vocabulary of word types. For
each word type x ∈ W , we denote its type embed-
ding by vx ∈ Rd.

We define a word sequence x =
〈x1, x2, ..., x|x|〉 in which each entry xj is a
word type, i.e., xj ∈ W . We define a word token
as an element in a word sequence. We consider
the class of functions f that take a word sequence
x and index j of a particular token in x and output
a vector of dimensionality d′. We will refer to
choices for f(x, j) as encoders.

3.1 Feedforward Encoders

Our first encoder is a basic feedforward neural
network that embeds the sequence of words con-
tained in a window of text surrounding word j.
We use a fixed-size window containing word j,
the w′ words to its left, and the w′ words to its
right. We concatenate the vectors for each word
type in this window and apply an affine transfor-
mation followed by a nonlinearity:

fFF(x, j) =

g
(
W (D)[vxj−w′ ; vx(j−w′)+1

; ...; vxj+w′] + b(D)
)

where g is an elementwise nonlinear function
(e.g., tanh), W (D) is a d′ by d(2w′+1) parameter
matrix, semicolon (;) denotes vertical concatena-
tion, and b(D) ∈ Rd′ is a bias vector. We assume
that x is padded with start-of-sequence and end-
of-sequence symbols as needed. The resulting d′-
dimensional token embedding can be transformed
by additional nonlinear layers.

This encoder does not distinguish word j other
than by centering the window at its position. It
is left to the training objectives to place empha-
sis on word j as needed (see Section 3.3). Vary-
ing w′ will influence the phenomena captured by
this encoder, with smaller windows capturing sim-
ilarity in terms of local syntactic category (e.g.,
noun vs. verb) and larger windows helping to dis-
tinguish word senses or to identify properties of
the discourse (e.g., topic or style).

266

3.2 Recurrent Neural Network Encoders

The above feedforward DNN encoder will be
brittle with large window sizes. We therefore
also consider encoders based on recurrent neu-
ral networks (RNNs). RNNs have recently en-
joyed a great deal of interest in the deep learn-
ing, speech recognition, and NLP communi-
ties (Sundermeyer et al., 2012; Graves et al., 2013;
Sutskever et al., 2014), most frequently used with
“gated” connections like long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000).

We use an LSTM to encode the sequence of
words containing the token and take the final hid-
den vector as the d′-dimensional encoding. While
we can use longer sequences, such as the sentence
containing the token (Kawakami and Dyer, 2015),
we restrict the input sequence to a fixed-size con-
text window around word j, so the input is identi-
cal to that of the feedforward encoder above. For
the syntactic tasks we consider, we did not find
large context windows to be helpful.

3.3 Training

We consider unsupervised ways to train the en-
coders described above. Throughout training for
both models, the type embeddings are kept fixed.
We assume that we are given a corpus X =
{x(i)}|X|i=1 of unannotated word sequences.

One widely-used family of unsupervised crite-
ria is that of reconstruction error and its variants.
These are used when training autoencoders, which
use an encoder f to convert the input x to a vec-
tor followed by a decoder g that attempts to re-
construct the input from the vector. The typical
loss function is the squared difference between the
input and reconstructed input. We use a general-
ization that is sensitive to the position of elements.
Since our primary interest is in learning useful rep-
resentations for a particular token in its context,
we use a weighted reconstruction error:

lossWRE(f, g,x, j) =
|x|∑
i=1

ωi ‖g(f(x, j))i − vxi‖22
(1)

where g(f(x, j))i is the subvector of g(f(x, j))
corresponding to reconstructing vxi , and where ωi

is the weight for reconstructing the ith entry.
For our feedforward encoder f , we use anal-

ogous fully-connected layers in the decoder g,
forming a standard autoencoder architecture. To

train the LSTM encoder, we add an LSTM de-
coder to form a sequence-to-sequence (“seq2seq”)
autoencoder (Sutskever et al., 2014; Li et al., 2015;
Dai and Le, 2015). That is, we use one LSTM as
the encoder f and another LSTM for the decoder
g, initializing g’s hidden state to the output of f .
Since we use the same weighted reconstruction er-
ror described above, the decoder must output a sin-
gle vector at each step rather than a distribution
over word types. So we use an affine transforma-
tion on the LSTM decoder hidden vector at each
step in order to generate the output vector for each
step. Reconstruction error has efficiency advan-
tages over log loss here in that it avoids the costly
summation over the vocabulary.

4 Qualitative Analysis

Before discussing downstream tasks, we perform
a qualitative analysis to show what our token em-
bedding models learn.

4.1 Experimental Setup

We train a feedforward DNN token embedding
model on a corpus of 300,000 unlabeled English
tweets. We use a window size w′ = 3 for the
qualitative results reported here; for downstream
tasks below, we will vary w′. For training, we use
our weighted reconstruction error (Eq. 1). The en-
coder uses one hidden layer of size 512 followed
by the token embedding layer of size d′ = 256.
The decoder also uses a single hidden layer of size
512. We use ReLU activations except the final en-
coder/decoder layers which use linear activations.

In preliminary experiments we compared 3
weighting schemes for ω in the objective: for to-
ken index j, “uniform” weighting sets ωi = 1 for
all i; “focused” sets ωj = 2 and ωi = 1 for i 6= j;
and “tapered” sets ωj = 4, ωj±1 = 3, ωj±2 = 2,
and 1 otherwise. The non-uniform schemes place
more emphasis on reconstructing the target token,
and we found them to slightly outperform uniform
weighting. Unless reported otherwise, we use fo-
cused weighting for all experiments below.

We train using stochastic gradient descent with
momentum for 1 epoch, saving the model that
reaches the best objective value on a held-out val-
idation set of 3,000 unlabeled tweets. For the type
embeddings used as input to our token embedding
model, we train 100-dimensional skip-gram em-
beddings on 56 million English tweets using the
word2vec toolkit (Mikolov et al., 2013).

267

Q my first one was like 2 minutes long and has Q jus listenin 2 mr hudson and drake crazyness
1 my fav place- was there 2 years ago and am 1 @mention deaddddd u go 2 mlk high up n
2 thought it was more like 2 either way , i 2 only a cups tho tryin 2 feed the whole family
3 to backup everything from 2 years before i 3 bored on mars i kum down 2 earth ... yupp !!
4 i slept for like 2 sec lol . freakin chessy 4 i miss you i trying 2 looking oud my mind girl
Q the lines : i am so thrilled about this . may Q fighting off a headache so i can work on my
1 and work . i am so glad you asked . let 1 im on my phone so i cant see who @mention
2 i was so excited to sleep in tomorrow 2 did some things that hurt so i guess i was doing
3 @mention that is so funny ! i know which 3 my phone keeps beeping so i know ralph must
4 little girl ! i was so touched when she called 4 randomly obsessed with this song so i bought it

Table 1: Query tokens of two polysemous words and their four nearest neighboring tokens. The target
token is underlined and the encoder context (3 words to either side) is shown in bold. See text for details.

4.2 Nearest Neighbor Analysis

We inspect the ability of the encoder to distin-
guish different senses of ambiguous types. Table 1
shows query tokens (Q) followed by their four
nearest neighbor tokens (with the same type), all
from our held-out set of 3,000 tweets. We choose
two polysemous words that are common in tweets:
“2” and “so”. As queries, we select tokens that ex-
press different senses. The word “2” can be both a
number (left) and a synonym of “to” (right). The
word “so” is both an intensifier (left) and a con-
nective (right). We find that the nearest neighbors,
though generally differing in context words, have
the same sense and same POS tag.

In Table 2 we consider nearest neighbors that
may have different word types from the query
type. For each query word, we permit the near-
est neighbor search to consider tokens from the
following set: {“4”, “for”, “2”, “to”, “too”, “1”,
“one”}. In the first two queries, we find that tokens
of “4” have nearest neighbors with different word
types but the same syntactic category. That is, to-
kens of different word types are more similar to
the query than tokens of the same type. We see this
again with neighbors of “2” used as a synonym for
“to”. The encoder appears to be doing a kind of
canonicalization of nonstandard word uses, which
suggests applications for token embeddings in nor-
malization of social media text (Clark and Araki,
2011). See neighbor 8, in which “too” is under-
stood as having the intended meaning despite its
misleading surface form.

4.3 Visualization

In order to gain a better qualitative understand-
ing of the token embeddings, we visualize the
learned token embeddings using t-SNE (Maaten
and Hinton, 2008). We learn token embeddings
as above except with w′ = 1. Figure 1 shows
a two-dimensional visualization of token embed-

Q masters swimmers annual swim 4 your heart !
1 so many miles loking for her and handing
2 off to the rehearsal space for a weekend long
3 on the inauguration for your enjoyment
Q #canucks now have a 4 point lead on the
1 way lol . it’s the 1 mile trail and then you
2 my first one was like 2 minutes long and
3 my fav place- was there 2 years ago and
Q jus listenin 2 mr hudson and drake crazyness
1 @mention deaddddd u go 2 mlk high up n bk
2 only a cups tho tryin 2 feed the whole family
3 are ya’ll listening to the annointed one ? he’s on
4 @mention well could u come to mrs wilsons for
5 i’m bored on mars i kum down 2 earth ... yupp !!
6 i am listening to amar prtihibi - black
7 about neopets and listening to yelle (URL
8 high ritee now - - bout too troop to the crib

Table 2: Nearest neighbors for token embeddings,
where we consider neighbors that may have differ-
ent word types from that in the query token. See
text for details.

dings for the word type “4”. For this visualiza-
tion, we embed tokens in the POS-annotated tweet
datasets from Gimpel et al. (2011) and Owoputi
et al. (2013), so we have their gold standard POS
tags. We show the left and right context words
(using w′ = 1) along with the token and its gold
standard POS tag. We find that tokens of “4” with
the same gold POS tag are close in the embed-
ded space, with prepositions appearing in the up-
per part of the plot and numbers appearing in the
lower part.

5 Downstream Tasks

We evaluate our token embedding models on
two downstream tasks: POS tagging and depen-
dency parsing. Given an input sequence x =
〈x1, x2, ..., xn〉, we want to predict its tag se-
quence and dependency parse. We focus on Twit-
ter since there is limited annotated data but abun-
dant unlabeled data for training token embeddings.

268

1.64 1.66 1.68 1.70 1.72 1.74

4.55

4.60

4.65

4.70

4.75

4.80

wearin 4_P the

god 4_P deliverance

effect 4_P <@MENTION>

november 4_$??!!
, 4_$ of

looking 4_P a

lookn 4_P it

up 4_P no
officer 4_P #1

with 4_$ swangas

down 4_P halloween
like 4_$ flats

, 4_$,

<@MENTION> 4_$ pages

Figure 1: t-SNE visualization of token embeddings for word type “4”. Each point shows the left and right
context words (w′ = 1) for the token along with the gold standard POS tag following an underscore (“ ”).
The tag “P” is preposition and “$” is number. Following the t-SNE projection, points were subsampled
for this visualization for clarity.

5.1 Part-of-Speech Tagging

Baseline We use a simple feedforward DNN as
our baseline tagger. It is a local classifier that pre-
dicts the tag for a token independently of all other
predictions for the tweet. That is, it does not use
structured prediction. The input to the network is
the type embedding of the word to be tagged con-
catenated with the type embeddings ofw words on
either side. The DNN contains two hidden layers
followed by one softmax layer. Figure 2(a) shows
this architecture forw = 1 when predicting the tag
of 4 in the tweet thanks 4 follow. We concatenate
a 10-dimensional binary feature vector computed
for the word being tagged (Table 3).2

We train the tagger by minimizing the log loss
(cross entropy) on the training set, performing
early stopping on the validation set, and reporting
accuracy on the test set. We consider both learn-
ing the type embeddings (“updating”) and keeping

2The definition of punctuation is taken from Python’s
string.punctuation.

x begins with @ and |x| > 1
x begins with # and |x| > 1
lowercase(x) is rt (retweet indicator)
x matches URL regular expression
x only contains digits
x contains $
x is : (colon)
x is . . . (ellipsis)
x is punctuation and |x| = 1 and x is not : or $
x is punctuation and |x| > 1 and x is not . . .

Table 3: Rules for binary feature vector for word
x. If multiple rules apply, the first has priority. The
tagger uses this feature vector only for the word to
be tagged; the parser uses one for the child and
another for the parent in the dependency arc under
consideration.

them fixed. When we update the embeddings we
include an `2 regularization term penalizing the di-
vergence from the initial type embeddings.

Token Embedding Tagger When using token
embeddings, we concatenate the d′-dimensional
token embedding to the tagger input. The rest of

269

(a) Baseline DNN Tagger

Baseline Tagger

Input

hidden

layers

output probability for each tag

thanks 4 follow

… …

 binary feature vector

(b) Token Embedding Tagger

Token Embedding Tagger

Input

hidden

layers

output probability for each tag

4

… … …

 binary feature vector

 token

embedding

thanks 4 follow

hidden layers

Figure 2: (a) Baseline DNN tagger, (b) tagger aug-
mented with token embeddings.

the architecture is the same as the baseline tagger.
Figure 2(b) shows the model when using type em-
bedding window size w = 0 and token embedding
window size w′ = 1.

While training the DNN tagger with the token
embeddings, we do not fine-tune the token embed-
ding encoder parameters, leaving them fixed.

5.2 Dependency Parser

Baseline As our baseline, we use a simple DNN
to do parent prediction independently for each
word. That is, we use a local classifier that
scores parents for a word. To infer a parse at
test time, we independently choose the highest-
scoring parent for each word. We also use our
classifier’s scores as additional features in Twee-
boParser (Kong et al., 2014).

Our parent prediction DNN has two hidden lay-
ers and an output layer with 1 unit. This unit corre-
sponds to a value S(xi, xj) that serves as the score
for a dependency arc with child word xi and parent
word xj . The input to the DNN is the concatena-
tion of the type embeddings for xi and xj , the type
embeddings of w words on either side of xi and
xj , the features for xi and xj from Table 3, and
features for the pair, including relative positions,
direction, and distance (shown in Table 4).3

3When considering the root attachment (i.e., xj is the wall
symbol $), the type embeddings for xj and its neighbors are
all zeroes, the feature vector for xj is all zeroes, and the de-
pendency pair features are all zeroes except the first and last.

For a sentence of length n, the loss function we
use for a single arc (xi, xj) follows:

lossarc(xi, xj) =

− S(xi, xj) + log

 n∑
k=0,k 6=i

exp{S(xi, xk)}

(2)

where k = 0 indicates the root attachment for xi.
We sum over all possible parents even though the
model only computes a score for a binary deci-
sion.4 Where head(xi) returns the annotated par-
ent for xi, the loss for a sequence x is:

n∑
i=1

lossarc(xi, head(xi)) (3)

After training, we predict the parent for a word xi

as follows:

head(xi) = argmax
k 6=i

S(xi, xk) (4)

Token Embedding Parser For the token em-
bedding parser, we use the d′-dimensional token
embeddings for xi and xj . We simply concate-
nate the two token embeddings to the input of the
DNN parser. When xj = $, the token embedding
for xj is all zeroes. The other parts of the input
are the same as the baseline parser. While training
this parser, we do not optimize the token embed-
ding encoder parameters. As with the tagger, we
tune over the decision to keep type embeddings
fixed or update them during learning, again using
`2 regularization when doing so. We tune this de-
cision for both the baseline parser and the parser
that uses token embeddings.

6 Experimental Setup

For training the token embedding models, we
mostly use the same settings as in Section 4.1 for
the qualitative analysis. The only difference is that
we train the token embedding models for 5 epochs,
again saving the model that reaches the best ob-
jective value on a held-out set of 3,000 unlabeled
tweets. We also experiment with several values for
the context window size w′ and the hidden layer
size, reported below.

4We found this to work better than only summing over the
exponentiated scores of an arc or no arc for the pair 〈xi, xj〉.

270

i
n

j
n ∆ = 1 ∆ = 2 3 ≤ ∆ ≤ 5 6 ≤ ∆ ≤ 10 ∆ ≥ 11 i < j i > j xj is wall symbol

Table 4: Dependency pair features for arc with child xi and parent xj in an n-word sentence and where
∆ = |i− j|. The final feature is 1 if xj is the wall symbol ($), indicating a root attachment for xi. In that
case, all features are zero except for the first and last.

6.1 Part-of-Speech Tagging
We use the annotated tweet datasets from Gimpel
et al. (2011) and Owoputi et al. (2013). For train-
ing, we combine the 1000-tweet OCT27TRAIN set
and the 327-tweet OCT27DEV development set.
For validation, we use the 500-tweet OCT27TEST

test set and for final testing we use the 547-tweet
DAILY547 test set. The DNN tagger uses two hid-
den layers of size 512 with ReLU nonlinearities
and a final softmax layer of size 25 (one for each
tag). The input type embeddings are the same as
in the token embedding model. We train using
stochastic gradient descent with momentum and
early stopping on the validation set.

6.2 Dependency Parsing
We use data from Kong et al. (2014), dividing their
717 training tweets randomly into a 573-tweet
train set and a 144-tweet validation set. We use
their 201-tweet TEST-NEW as our test set. Kong
et al. annotated whether particular tokens are con-
tained in the syntactic structure of each tweet (“to-
ken selection”). We use the same automatic token
selection (TS) predictions as they did, which are
97.4% accurate. We use a pipeline architecture
in which unselected tokens are not considered as
possible parents when performing the summation
in Eq. 2 or the argmax in Eq. 4.

Like Kong et al., we use gold standard POS
tags and gold standard TS during training and
tuning. For final testing on TEST-NEW, we use
automatically-predicted POS tags and automatic
TS (using their same automatic predictions for
both). Like them, we use attachment F1 score (%)
for evaluation. Our DNN parsers use two hidden
layers of size 1024 with ReLU nonlinearities. The
final layer has size 1 (the score S(xi, xj)). We
train using SGD with momentum.

7 Results

7.1 Part-of-Speech Tagging
We first train our baseline tagger without the bi-
nary feature vector using different amounts of
training data and window sizes w ∈ {0, 1, 2, 3}.
Figure 3 shows accuracies on the validation set.

percentage of all training data(%)

20 40 60 80

a
c
c
u
ra

c
y

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Baseline(0)

Baseline(1)

Baseline(2)

Baseline(3)

TokenEmbedding(0+1)

TokenEmbedding(0+2)

TokenEmbedding(0+3)

Figure 3: Tagging results. “Baseline(w)” refers
to the baseline tagger with context of ±w words;
“TokenEmbedding(w+w′)” refers to the token em-
bedding tagger with tagger context of ±w words
and token embedding context of ±w′ words.

When using only 10% of the training data, the
baseline tagger with w = 0 performs best. As the
amount of training data increases, the larger win-
dow sizes begin to outperform w = 0, and with
the full training set, w = 1 performs best.

Figure 3 also shows the results of our token em-
bedding tagger for w = 0 and w′ ∈ {1, 2, 3}.5
We see consistent gains when using token embed-
dings, higher than the best baseline window for all
values of w′, though the best performance is ob-
tained with w′ = 1. When using small amounts of
data, the baseline accuracy drops when increasing
w, but the token embedding tagger is much more
robust, always outperforming the w = 0 baseline.

We then perform experiments using the full
training set, showing results in Table 5. For all
experiments with the baseline DNN tagger, we fix

5We used focused weighting for the results in Figure 3
using ωj = 2, but found slightly more stable results by in-
creasing ωj to 3, still keeping the other weights to 1. Our
final tagging results use ωj = 3.

271

val. test
(1) Baseline 88.4 88.9
(1) + DNN TE +1.6 +0.9
(2) Baseline + updating 89.4 89.4
(2) + DNN TE +0.6 +0.5
(3) Baseline + features 89.2 89.3
(3) + DNN TE* +0.6 +0.3
(3) + DNN TE +1.2 +1.2
(3) Baseline + features 89.2 89.3
(3) + seq2seq TE* -0.6 -1.0
(3) + seq2seq TE +1.3 +1.0

Table 5: Tagging accuracies (%) on validation
(OCT27TEST) and test (DAILY547) sets. Accu-
racy deltas are always relative to the respective
baseline in each section of the table. “updating”
= updates type embeddings during training, “fea-
tures” = uses binary feature vector for center word,
* = omits center word type embedding.

val. test
(4) Baseline + all features 92.1 92.2
(4) + updating 92.2 92.4
(4) + DNN TE + without updating 92.4 92.8
Owoputi et al. 91.6 92.8

Table 6: Tagging accuracies (%) on validation
(OCT27TEST) and test (DAILY547) sets using all
features: Brown clusters, tag dictionaries, name
lists, and character n-grams. Last row is best re-
sult from Owoputi et al. (2013).

w = 1; when using token embeddings, we fix
w = 0 and w′ = 1. We also consider updating the
initial word type embeddings during tagger train-
ing (“updating”) and using the binary feature vec-
tor for the center word (“features”).

Using token embeddings consistently outper-
forms using type embeddings alone. On the test
set, we see gains from token embeddings across all
settings, ranging from 0.5 to 1.2. The gains from
DNN and seq2seq token embeddings are similar
(possibly because we again use w = 0 and w′ = 1
for the latter). The baseline taggers improve sub-
stantially by updating type embeddings or adding
features (settings (2) or (3)), but adding token
embeddings still yields additional improvements.
When we use token embeddings but remove the
type embedding for the word being tagged (de-
noted “*”), DNN TEs can still improve over the
baseline, though seq2seq TEs yield lower accu-
racy. This suggests that the seq2seq TE model is
focusing on other information in the window that
is not necessarily related to the center word.

Comparison to State of the Art. Owoputi et al.
(2013) achieve 92.8% on this train/test setup, us-

ing structured prediction and additional features
from annotated and curated resources. We add
several additional features inspired by theirs. We
use features based on their generated Brown clus-
ters, namely, binary vectors representing indica-
tors for cluster string prefixes of length 2, 4, 6, and
8. We add tag dictionary features constructed from
the Wall Street Journal portion of the Penn Tree-
bank (Marcus et al., 1993). We use the concate-
nation of the binary tag vectors for the three most
common tags in the tag dictionary for the word be-
ing tagged. We use the 10-dimensional binary fea-
ture vector and a binary feature indicating whether
the word begins with a capital letter. All features
above are used for the center word as well as one
word to the left and one word to the right.

We add several more features only for the word
being tagged. We use name list features, adding a
binary feature for each name list used by Owoputi
et al. (2013), where the feature indicates member-
ship on the corresponding name list of the word
being tagged. We also include character n-gram
count features for n ∈ {2, 3}, adding features for
the 3,133 bi/trigrams that appear 3 or more times
in the tagging training data.

After adding these features, we increase the hid-
den layer size to 2048. We use dropout, using a
dropout rate of 0.2 for the input layer and 0.4 for
the hidden layers. The other settings remain the
same. The results are shown in Table 6. Our new
baseline tagger improves from 89.2% to 92.1% on
validation, and improves further with updating.

We then add DNN token embeddings to this
new baseline. When doing so, we set w = 0,
as in all earlier experiments. We add two sets of
DNN token embedding features to the tagger, one
with w′ = 1 and another with w′ = 3. The re-
sults improve by 0.4 over the strongest baseline
on the test set, matching the accuracy of Owoputi
et al. (2013). This is notable since they used struc-
tured prediction while we use a simple local clas-
sifier, enabling fast and maximally-parallelizable
test-time inference.

7.2 Dependency Parsing

We show results with our head predictors in Ta-
ble 7. The baseline head predictor actually does
best with w = 0. The predictors with token em-
beddings are able to leverage larger context: with
DNN token embeddings, performance is best with
w′ = 1 while with seq2seq token embeddings,

272

w or w′ Baseline DNN TE seq2seq TE
0 75.8 - -
1 75.4 77.8 77.8
2 73.2 77.3 77.9
3 72.3 77.2 76.9

Table 7: Attachment F1 (%) on validation set us-
ing different models and window sizes. For TE
columns, the input does not include any type em-
beddings at all, only token embeddings. Best re-
sult in each column is in boldface.

performance is strong with w′ = 1 and 2. When
using token embeddings, we actually found it ben-
eficial to drop the center word type embedding
from the input, only using it indirectly through the
token embedding functions. We use w = −1 to
indicate this setting.

The upper part of Table 8 shows the results
when we simply use our parsers to output the
highest-scoring parents for each word in the test
set. Token embeddings are more helpful for
this task than type embeddings, improving perfor-
mance from 73.0 to 75.8 for DNN token embed-
dings and improving to 75.0 for the seq2seq token
embeddings.

We also use our head predictors to add a
new feature to TweeboParser (Kong et al., 2014).
TweeboParser uses a feature on every candidate
arc corresponding to the score under a first-order
dependency model trained on the Penn Treebank.
We add a similar feature corresponding to the arc
score under our model from our head predictors.
Because TweeboParser results are nondeterminis-
tic, presumably due to floating point precision, we
train TweeboParser 10 times for both its baseline
configuration and all settings using our additional
features, using TweeboParser’s default hyperpa-
rameters each time. We report means and standard
deviations.

The final results are shown in the lower part
of Table 8. While adding the feature from the
baseline parser hurts performance slightly (80.6→
80.5), adding token embeddings improves perfor-
mance. Using the feature from our DNN TE head
predictor improves performance to 81.5, establish-
ing a new state of the art for Twitter dependency
parsing.

8 Conclusion

We have presented a simple and efficient way of
learning representations of words in their con-
texts using unlabeled data, and have shown how

(1) Baseline parser (w = 0) 73.0
(1) + DNN TE (w = −1, w′ = 1) 75.8
(1) + seq2seq TE (w = −1, w′ = 1) 75.0
(1) + seq2seq TE (w = −1, w′ = 2) 74.2
(2) Kong et al. 80.6 ± 0.25
(2) + Baseline parser (w = 0) 80.5 ± 0.30
(2) + DNN TE (w = −1, w′ = 1) 81.5 ± 0.25
(2) + seq2seq TE (w = −1, w′ = 1) 81.0 ± 0.17
(2) + seq2seq TE (w = −1, w′ = 2) 80.9 ± 0.33

Table 8: Dependency parsing unlabeled attach-
ment F1 (%) on test (TEST-NEW) sets for baseline
parser and results when augmented with token em-
bedding features. Following Kong et al., we report
three significant digits.

they can be used to improve syntactic analysis
of Twitter. Qualitatively, our token embeddings
are shown to encode sense and POS information,
grouping together tokens of different types with
similar in-context meanings. Quantitatively, us-
ing token embeddings in simple predictors con-
sistently improves performance, even rivaling the
performance of strong structured prediction base-
lines. Our code and trained token embedding mod-
els are publicly available at the authors’ websites.
Future work includes further exploration of token
embedding models, unsupervised objectives, and
their integration with supervised predictors.

Acknowledgments

We thank the anonymous reviewers, Chris Dyer,
and Lingpeng Kong. We also thank the develop-
ers of Theano (Theano Development Team, 2016)
and Lasagne (Dieleman et al., 2015) as well as
NVIDIA Corporation for donating GPUs used in
this research.

References
Mohit Bansal, Kevin Gimpel, and Karen Livescu.

2014. Tailoring continuous word representations for
dependency parsing. In Proc. of ACL.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proc. of EMNLP.

Heeyoul Choi, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Context-dependent word representa-
tion for neural machine translation. arXiv preprint
arXiv:1607.00578 .

Eleanor Clark and Kenji Araki. 2011. Text normal-
ization in social media: progress, problems and ap-
plications for a pre-processing system of casual En-
glish. Procedia-Social and Behavioral Sciences 27.

273

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research 12.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised sequence learning. In Advances in NIPS.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Ol-
son, Søren Kaae Sønderby, Daniel Nouri, Daniel
Maturana, Martin Thoma, Eric Battenberg, Jack
Kelly, et al. 2015. Lasagne: First release.
http://dx.doi.org/10.5281/zenodo.27878.

Felix A. Gers, Jürgen Schmidhuber, and Fred Cum-
mins. 2000. Learning to forget: Continual predic-
tion with LSTM. Neural Computation 12(10).

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for Twitter: annotation, features, and experiments.
In Proc. of ACL.

Hila Gonen and Yoav Goldberg. 2016. Semi super-
vised preposition-sense disambiguation using mul-
tilingual data. In Proc. of COLING.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proc. of ICASSP.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embed-
dings by exploiting bilingual resources. In Proc. of
COLING.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9(8).

Eric Huang, Richard Socher, Christopher D. Manning,
and Andrew Ng. 2012. Improving word represen-
tations via global context and multiple word proto-
types. In Proc. of ACL.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proc. of NAACL-HLT .

Mikael Kågebäck, Fredrik Johansson, Richard Johans-
son, and Devdatt Dubhashi. 2015. Neural context
embeddings for automatic discovery of word senses.
In Proc. of NAACL-HLT .

Kazuya Kawakami and Chris Dyer. 2015. Learning to
represent words in context with multilingual super-
vision. In Proc. of ICLR Workshop.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A dependency parser for
tweets. In Proc. of EMNLP.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proc. of EMNLP.

Jiwei Li, Thang Luong, and Dan Jurafsky. 2015. A
hierarchical neural autoencoder for paragraphs and
documents. In Proc. of ACL.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proc. of EMNLP.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015. Topical word embeddings. In Proc. of
AAAI.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research 9.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics 19(2).

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional LSTM. In Proc. of
CoNLL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in NIPS.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proc. of EMNLP.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proc. of NAACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proc. of EMNLP.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In Proc. of ACL.

Luis Nieto Piña and Richard Johansson. 2015. A sim-
ple and efficient method to generate word sense rep-
resentations. In Proc. of RANLP.

Lin Qiu, Yong Cao, Zaiqing Nie, and Yong Rui. 2014.
Learning word representation considering proximity
and ambiguity. In Proc. of AAAI.

274

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proc. of NAACL.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Proc. of Interspeech.

Simon Šuster, Ivan Titov, and Gertjan van Noord. 2016.
Bilingual learning of multi-sense embeddings with
discrete autoencoders. In Proc. of NAACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in NIPS.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints abs/1605.02688.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proc. of COLING.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semisupervised learning. In Proc. of ACL.

Thuy Vu and D. Stott Parker. 2016. k-embeddings:
Learning conceptual embeddings for words using
context. In Proc. of NAACL-HLT .

Zhaohui Wu and C. Lee Giles. 2015. Sense-aware se-
mantic analysis: A multi-prototype word represen-
tation model using Wikipedia. In Proc. of AAAI.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proc. of
EMNLP.

275

Author Index

Řehůřek, Radim, 81

Anandkumar, Animashree, 252
Arendt, Dustin, 201
Asaadi, Shima, 178

Bachman, Philip, 15, 191
Bajgar, Ondrej, 69
Bengio, Yoshua, 228
Bhattacharyya, Pushpak, 37
Botschen, Teresa, 146
Bowman, Samuel, 75
Brarda, Sebastian, 75

Chang, Kai-Wei, 101
Chang, Ming-Wei, 57
Chen, Sheng, 111
Cheri, Joe, 37
Courville, Aaron, 241

Dambre, Joni, 186
De Neve, Wesley, 186
de Sa, Virginia, 211
Douze, Matthijs, 157
Dredze, Mark, 91
Dreyer, Markus, 48
Dutil, Francis, 228, 241

El Asri, Layla, 219
España-Bonet, Cristina, 139

Fan, Xing, 48
Fang, Chen, 211

Gamallo, Pablo, 1
Gao, Jianfeng, 57
Gimpel, Kevin, 26, 265
Godin, Fréderic, 186
Grzegorczyk, Karol, 121
Gulcehre, Caglar, 15, 228
Gurevych, Iryna, 146

Harris, Justin, 191
Hodas, Nathan, 201
Horn, Franziska, 10
Huang, Po-Sen, 57

Jin, Hailin, 211
Johannsmeier, Jens, 168
Johansen, Alexander, 257

Kadlec, Rudolf, 69
Kalai, Adam, 101
Kirsch, Louis, 168
Kleindienst, Jan, 69
Kronrod, Yakov, 252
Krug, Andreas, 168
Kunze, Julius, 168
Kurdziel, Marcin, 121
Kurenkov, Ilia, 168

Lee, Minho, 131
Liang, Dongyun, 43
Lipton, Zachary, 252
Livescu, Karen, 265

Madhyastha, Pranava Swaroop, 139
Mathias, Lambert, 48
McAllester, David, 26
Mehdad, Yashar, 111
Michel, Paul, 235
Moirangthem, Dennis Singh, 131
Monti, Emilio, 48
Mousselly Sergieh, Hatem, 146

Novotný, Vít, 81

Onishi, Takeshi, 26

Pal, Chris, 241
Pappu, Aasish, 111
Peng, Nanyun, 91
Phillips, Lawrence, 201
Pomikálek, Jan, 81

Růžička, Michal, 81
Rajeswar, Sai, 241
Ravichander, Abhilasha, 235
Rijhwani, Shruti, 235
Rudolph, Sebastian, 178
Rygl, Jan, 81

Schulz, Hannes, 219

277

Schwenk, Holger, 157
Shaffer, Kyle, 201
Sharma, Shikhar, 219
Shen, Yanyao, 252
Shen, Yelong, 57
Socher, Richard, 257
Sojka, Petr, 81
Son, Jegyung, 131
Soni, Akshay, 111
Sordoni, Alessandro, 15, 191
Stober, Sebastian, 168
Subramanian, Sandeep, 15, 241
Suleman, Kaheer, 191

Taddy, Matt, 101
Tang, Shuai, 211
Trischler, Adam, 15, 191, 228
Tu, Lifu, 265

Upadhyay, Shyam, 101

Volkova, Svitlana, 201

Wang, Hai, 26
Wang, Tong, 15, 191
Wang, Zhaowen, 211

Xu, Weiran, 43

Yeres, Philip, 75
Yuan, Xingdi, 15, 191
Yun, Hyokun, 252

Zhang, Saizheng, 15
Zhao, Yinge, 43
Zou, James, 101
Zumer, Jeremie, 219

	Program
	Sense Contextualization in a Dependency-Based Compositional Distributional Model
	Context encoders as a simple but powerful extension of word2vec
	Machine Comprehension by Text-to-Text Neural Question Generation
	Emergent Predication Structure in Hidden State Vectors of Neural Readers
	Towards Harnessing Memory Networks for Coreference Resolution
	Combining Word-Level and Character-Level Representations for Relation Classification of Informal Text
	Transfer Learning for Neural Semantic Parsing
	Modeling Large-Scale Structured Relationships with Shared Memory for Knowledge Base Completion
	Knowledge Base Completion: Baselines Strike Back
	Sequential Attention: A Context-Aware Alignment Function for Machine Reading
	Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines
	Multi-task Domain Adaptation for Sequence Tagging
	Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
	DocTag2Vec: An Embedding Based Multi-label Learning Approach for Document Tagging
	Binary Paragraph Vectors
	Representing Compositionality based on Multiple Timescales Gated Recurrent Neural Networks with Adaptive Temporal Hierarchy for Character-Level Language Models
	Learning Bilingual Projections of Embeddings for Vocabulary Expansion in Machine Translation
	Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings
	Learning Joint Multilingual Sentence Representations with Neural Machine Translation
	Transfer Learning for Speech Recognition on a Budget
	Gradual Learning of Matrix-Space Models of Language for Sentiment Analysis
	Improving Language Modeling using Densely Connected Recurrent Neural Networks
	NewsQA: A Machine Comprehension Dataset
	Intrinsic and Extrinsic Evaluation of Spatiotemporal Text Representations in Twitter Streams
	Rethinking Skip-thought: A Neighborhood based Approach
	A Frame Tracking Model for Memory-Enhanced Dialogue Systems
	Plan, Attend, Generate: Character-Level Neural Machine Translation with Planning
	Does the Geometry of Word Embeddings Help Document Classification? A Case Study on Persistent Homology-Based Representations
	Adversarial Generation of Natural Language
	Deep Active Learning for Named Entity Recognition
	Learning when to skim and when to read
	Learning to Embed Words in Context for Syntactic Tasks

