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Introduction to TextGraphs-11

Welcome to TextGraphs, the workshop on Graph-based Methods for Natural Language Processing. The
eleventh edition of the workshop is being organized on August 3, 2017, in conjunction with the 55th
Annual Meeting of the Association for Computational Linguistics (ACL-2017), being held in Vancouver
in Canada.

For the past eleven years, the workshops in the TextGraphs series have published and promoted the
synergy between the field of Graph Theory (GT) and Natural Language Processing (NLP). The target
audience of our workshop has comprised of researchers working on problems related to either Graph
Theory or graph-based algorithms applied to Natural Language Processing, social media, and the
Semantic Web.

The TextGraphs workshop series addresses a broad spectrum of research areas within NLP. This
is because, besides traditional NLP applications like parsing, word sense disambiguation, semantic
role labeling, and information extraction, graph-based solutions also target web-scale applications
like information propagation in social networks, rumor proliferation, e-reputation, language dynamics
learning, and future events prediction, to name a few. Following this tradition, this year’s TextGraphs
also presents research from diverse topics such as semantics, word embeddings, text coherence, multi-
lingual applications and summarization.

Previous editions of TextGraphs have featured special themes, such as “Cognitive and Social Dynamics
of Languages in the framework of Complex Networks" and “Large Scale Lexical Acquisition and
Representation". For TextGraphs 2017, we set a special focus on the usage of graph-based methods
to interpret deep learning models for NLP tasks. Though deep learning models have displayed state-of-
the-art performance on many NLP tasks, they are often criticized for not being interpretable (due to their
various layers and large number of parameters). Through our theme, we hoped to spur a discussion on
the development of methods for reasoning and interpretation of the layers used in deep learning models,
given that a neural network is, from one point of view, nothing but a graph.

We are pleased to have two excellent invited speakers for this year’s event. We thank Apoorv Agarwal
and Michael Strube for their enthusiastic acceptance of our invitation. We also thank Verisk for
sponsoring an invited speaker and the best paper award. Finally, we are thankful to the members of
the program committee for their valuable and high quality reviews. All submissions have benefited from
their expert feedback. Their timely contribution was the basis for accepting an excellent list of papers
and making this edition of TextGraphs a success.

Martin Riedl, Swapna Somasundaran, Goran Glavaš and Ed Hovy
TextGraphs-11 Organizers
July 2017
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Nikola Ljubešić, University of Zagreb, Croatia
Héctor Martínez Alonso, Inria & University Paris Diderot, France
Gabor Melli, VigLink, USA
Rada Mihalcea, University of Michigan, USA
Alessandro Moschitti, University of Trento, Italy
Animesh Mukherjee, IIT Kharagpur, India
Vivi Nastase, Fondazione Bruno Kessler, Italy
Roberto Navigli, “La Sapienza” University of Rome, Italy
Alexander Panchenko, Univeristät Hamburg, Germany
Simone Paolo Ponzetto, University of Mannheim, Germany
Steffen Remus, Univeristät Hamburg, Germany
Stephan Roller, UT Austin, USA
Shourya Roy, Xerox Research, India
Josef Steinberger, University of West Bohemia, Czech Republic
Anders Søgaard, University of Copenhagen, Denmark
Jan Šnajder, University of Zagreb, Croatia
Kateryna Tymosenko, University of Trento, Italy
Aline Villavicencio, F. University of Rio Grande do Sul, Brazil
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Abstract
Authorship attribution is a natural lan-
guage processing task that has been widely
studied, often by considering small or-
der statistics. In this paper, we explore a
complex network approach to assign the
authorship of texts based on their meso-
scopic representation, in an attempt to cap-
ture the flow of the narrative. Indeed, as
reported in this work, such an approach
allowed the identification of the dominant
narrative structure of the studied authors.
This has been achieved due to the abil-
ity of the mesoscopic approach to take
into account relationships between differ-
ent, not necessarily adjacent, parts of the
text, which is able to capture the story
flow. The potential of the proposed ap-
proach has been illustrated through prin-
cipal component analysis, a comparison
with the chance baseline method, and net-
work visualization. Such visualizations re-
veal individual characteristics of the au-
thors, which can be understood as a kind
of calligraphy.

1 Introduction

The ever increasing availability of public content
on the Internet – including books, tweets, and blog
posts – has implied in many new developments
in several natural language processing (NLP) ar-
eas such as machine translation, sentiment analy-
sis, and authorship attribution. Recently, advance-
ments in the latter task have been achieved by
using complex networks (Antiqueira et al., 2006;
Amancio et al., 2011; Lahiri and Mihalcea, 2013;
Marinho et al., 2016; Akimushkin et al., 2017).

The network models used in many of these
works are based on word co-occurrence. In this

approach, each distinct word is represented by
a node, and edges connect adjacent words. Al-
though this networked representation has proven
successful in many tasks, it is not without its share
of problems. Co-occurrence networks do not por-
tray the topical structure found in many texts and
are usually devoid of community structure (de Ar-
ruda et al., 2016). In order to overcome this dis-
advantage, some techniques have been devoted to
the mesoscopic representation of texts (de Arruda
et al., 2016, 2017). de Arruda et al. (2017) pro-
posed a novel networked model, in which each
node represents a respective set of consecutive
paragraphs, while weighted edges express the sim-
ilarity between nodes. Their proposed network is
able to extract the organization and flow of text
by effectively capturing the similarity between the
blocks of text. In addition, their method was em-
ployed to distinguish between real and shuffled
texts. However, mesoscopic networks have not
been applied to tackle other NLP tasks.

Most researchers in the field of authorship at-
tribution assume that each author has a signature
(known as authorial fingerprint) that distinguishes
his/her writing from the others (Juola, 2006). So
inspired, we decided to test the hypothesis that
these authorial fingerprints are also visible at a
mesoscopic scale. At this scale, distinctive graph-
ical patterns of the course of the text emerge, akin
to a “discourse calligraphy” of the author. Thus,
in order to classify texts according to their author-
ship, we created mesoscopic networks from texts
and employed a set of topological measurements.
In particular, the main goal of this paper is to probe
whether the authors’ writing styles correlate with
the story flow of their books.

This paper is structured as follows: Section 2
briefly describes the problem and some com-
plex network approaches for authorship attribu-
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tion. The process to create mesoscopic networks
is explained in Section 3. In addition, we also de-
scribe the dataset, the selected measurements and
the machine learning algorithms in Section 3. The
obtained results are reported in Section 4. Finally,
Section 5 outlines our conclusions and prospects
for future work.

2 Related Work

Authorship attribution methods attempt to find
the most likely author of a document (Sta-
matatos, 2009). Since the seminal work conducted
by Mosteller and Wallace (1964), authorship at-
tribution has been a widely studied problem and
several different approaches have been proposed.
One of the first approaches consisted in analyzing
the frequency of common words, such as to or the,
in order to classify political essays according to
their authorship (Mosteller and Wallace, 1964).

Since then, Mosteller and Wallace (1964)’s
method has been enhanced to incorporate differ-
ent attributes capable of qualifying writing styles.
These include lexical, character, syntactic, and se-
mantic features (Stamatatos, 2009). Simple lexical
and character features (e.g. frequency and bursti-
ness of words and characters, average lengths of
texts, and others) have been used in several works,
as reported by Grieve (2007), Koppel et al. (2009),
and Stamatatos (2009). Most of these works have
achieved good results by using, for example, the
frequency of stopwords. Examples of syntactic
information include the frequencies of POS tags
and constituency-based parsing tree rules (Baayen
et al., 1996; Gamon, 2004; Hirst and Feiguina,
2007). Finally, semantic features can be extracted
from semantic dependency graphs and from the
semantic roles associated with some words (Ga-
mon, 2004; Argamon et al., 2007).

The usage of network analysis in authorship at-
tribution has already been studied from different
perspectives. Antiqueira et al. (2006), one of the
first works in the area, extracted some measure-
ments from co-occurrence networks and discov-
ered that these could be used to characterize the
writing style of authors. Amancio et al. (2011)
combined network measurements with the distri-
bution of words to characterize the authorship of
several books. Lahiri and Mihalcea (2013) car-
ried out an in-depth authorship attribution study
using more than 100 features extracted from co-
occurrence networks. They found that local fea-

tures (those extracted from individual nodes) out-
perform global features in the authorship attribu-
tion problem.

Apart from using traditional network measure-
ments, the frequency of network motifs involving
three nodes (Milo et al., 2002) was found useful
to characterize the writing style (Marinho et al.,
2016). Instead of considering the text as a static
structure, Akimushkin et al. (2017) studied the
topology evolution of co-occurrence networks ex-
tracted from different sections of the text. Unlike
most of the previous mentioned works, in which
stopwords are usually removed, Segarra et al.
(2013) proposed an authorship attribution method
based on networks formed only by stopwords.

3 Methods

In this section, we describe the process to create
mesoscopic networks from raw texts. We also de-
tail the network measurements and machine learn-
ing methods.

3.1 Mesoscopic Approach

There are several ways to represent texts as com-
plex networks, such as co-occurrence, syntactic,
semantic or similarity networks (Mihalcea and
Radev, 2011; Cong and Liu, 2014). In this study,
we adopt the mesoscopic network approach pro-
posed by de Arruda et al. (2017). Such networks
are able to represent the text unfolding along time,
which is normally overlooked by traditional ap-
proaches. Moreover, these networks were used
to classify documents between real and shuffled
texts, using only simple statistics. The high accu-
racy rate obtained in that classification task led us
to infer that mesoscopic networks are able to rep-
resent structural aspects of real texts, such as the
organization and development of the author’s idea.

In order to create the network from a given
text (T ), some preprocessing steps can be ap-
plied. In our study, we removed the stopwords,
and the remaining words were lemmatized. Fig-
ure 1 illustrates the methodology used to create
mesoscopic networks. In the first step, shown
in Figure 1(a), the text is partitioned into a set
of paragraphs, T = (p0, p1, p2, · · · ), where pi

is a sequence of the preprocessed words belong-
ing to the same paragraph i. Different from the
co-occurrence networks, where nodes represent
words, in mesoscopic networks nodes encompass
sequences of ∆ consecutive paragraphs. More
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Text (T) Network (weighted)

Bla bla bla bla
bla bla bla bla bla
bla bla bla bla bla
bla bla bla bla.

Bla bla bla bla
bla bla bla bla bla
bla bla bla bla bla
bla bla bla bla.

Bla bla bla bla
bla bla bla bla bla
bla bla bla bla bla
bla bla bla bla.

Bla bla bla bla
bla bla bla bla bla
bla bla bla bla bla
bla bla bla bla.

Bla bla bla bla
bla bla bla bla bla
bla bla bla bla bla
bla bla bla bla.

Bla bla bla bla
bla bla bla bla bla
bla bla bla bla bla
bla bla bla bla.

p1

p2

p3

p4

p5

p6

Windows of paragraphs

p1 + p2

p2 + p3

p3 + p4

p4 + p5

p5 + p6

tf-idf

(a) (b) (c) (d)

tfidf(p1+p2,T)

tfidf(p2+p3,T)

tfidf(p3+p4,T)

tfidf(p4+p5,T)

tfidf(p5+p6,T)

Network (unweighted)

(e)

Figure 1: Illustration of the mesoscopic approach proposed by de Arruda et al. (2017). First, the text T
is divided into subsequent paragraphs (a). Overlapping windows with ∆ = 2 paragraphs are shown in
(b). Then, the tf-idf map is computed for all windows (c). Each pair of nodes (windows) i and j is now
connected by an edge, weighted by the cosine similarity between their respective tf-idf maps (d). Next,
in the network pruning phase, the edges with the lowest weights are removed until the network reaches
a given average degree 〈k〉. The network in (e) illustrates the obtained unweighted mesoscopic network
with 〈k〉 = 2.

specifically, each possible subsequent set with ∆
paragraphs, W ∆

i = (pi, pi+1, · · · , pi+∆−1), rep-
resents a network node, as shown in Figure 1(b).

So as to account for the importance of the words
in a given paragraph, we applied the tf-idf (Man-
ning and Schütze, 1999) statistics, which was orig-
inally proposed to quantify the importance of a
given word w in a document d given a corpus D.
A tf-idf(w, d,D) map is computed as

tf-idf(w, d,D) =
fw,d

n
× log

(
|D|
dw

)
, (1)

where fw,d is the frequency of word w in the doc-
ument d, n is the total number of words in the
document d, |D| represents the total number of
documents and dw is the number of documents
in which w occurs at least once. In order to ap-
ply the tf-idf measurement, we considered all the
possible windows of subsequent paragraphs, W ∆

i ,
as the set of documents D (see Figure 1(c)). Fi-
nally, for each pair of nodes i and j, a respective
edge is created and its weight is calculated accord-
ing to the cosine similarity between tf-idf(W ∆

i , T )
and tf-idf(W ∆

j , T ), where tf-idf(W ∆
i , T ) is a tf-

idf vector of all words, computed from a given set
of paragraphs W ∆

i . This step is illustrated in Fig-
ure 1(d).

In order to convert the network from weighted
to unweighted, the edges with the lowest weights
can be removed, as described in Section 3.2. It
should be noted that edges originating from adja-

cent paragraphs tend to have higher weights be-
cause of the implied overlap. Figure 1(e) shows
an example of unweighted network. In our exper-
iment, we set ∆ = 20, as empirically determined
elsewhere (de Arruda et al., 2017).

3.2 Network Pruning
Mesoscopic networks are complete weighted
graphs, i.e. every node is connected to every other
node (Newman, 2010). In this paper, we repeat-
edly removed the edges with the lowest weights
until each network reached a fixed network aver-
age degree 〈k〉. The average degree of a network
g, with E edges and N nodes, is defined as

〈k〉 =
2 ∗ E

N
. (2)

We used several values of 〈k〉, ranging from 5 to
50, by steps of 5.

3.3 Network Measurements
The following network measurements were ex-
tracted from the networks1. Most of these mea-
surements (apart from assortativity) apply to a sin-
gle node. So, in order to obtain more global char-
acterization, we calculated the average, standard
deviation and skewness (third moment) of each
distribution. The obtained statistics from these
distributions were then used as features in the ma-
chine learning methods.

1For most of these measurements, we used the Igraph
software package (Csardi and Nepusz, 2006)
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Degree: The degree quantifies the number of
connections of a node (Costa et al., 2007). Even
though the average degree of all networks is the
same as a consequence of network pruning, the
degree of each node may still vary inside the net-
work. Therefore, we used the standard deviation
and skewness of this measurement, disregarding
the average.

Average Degree of Neighbors: The average de-
gree of neighbors (Pastor-Satorras et al., 2001)
quantifies how well connected are the neighbors
of a node.

Assortativity: As described by Newman (2003),
the assortativity quantifies how likely it is for a
given node to connect to other nodes with simi-
lar degree. Lower than zero values of assortativ-
ity are obtained when a node tends to connect to
others with very different degrees. When a node
connects only to others with the same degree, the
assortativity becomes one. Null assortativity indi-
cates that there is no correlation.

Clustering Coefficient: This measurement re-
flects how well interconnected are the neighbors
of a given node (Watts and Strogatz, 1998).

Accessibility (h = {2, 3}): The accessibility of
a node i is based on Shannon’s entropy (Shannon
and Weaver, 1963) of the probability of accessing
nodes at the hth concentric level, centered at i, by
a given dynamics starting at that node (Travençolo
and Costa, 2008). Here, we adopted the self-
avoiding random walk as the reference dynamics.

Symmetry (h = {2, 3, 4}): This measure-
ment (Silva et al., 2016b), obtained for each node
i, quantifies the symmetry of the topology around
i. It can be understood as a normalization of
the accessibility, and includes two components:
backbone, where edges between nodes from the
same concentric level are discarded, and merged,
where nodes that share edges in the same level are
merged.

Network visualization can provide means to
better understand the structure of a given book’s
story by organizing, into an embedding space, the
topology of the obtained network. We applied a vi-
sualization methodology based on force-directed
graph drawing (Silva et al., 2016a). Specifically,
this method is based on the Fruchterman and Rein-
gold (1991) (FR) algorithm, which simulates a
system of particles, which attract and repel one an-
other. The attractive force, fa, reflects the node
connectivity, while the repulsive force, fr, acts

between all pair of nodes. A gravitational force,
fg, can also be added. We adopted fa = 0.0002,
fr = 1.25, and fg = 0.001.

3.4 Machine Learning Methods

Several classifiers — Decision Trees, Random
Forest, kNN, Logistic Regressors, SVM, Naive
Bayes (Duda et al., 2000) — were tested in or-
der to choose the most adequate. Support Vec-
tor Machines (SVM) and Random Forest were se-
lected. We used the Linear SVM implementa-
tion (with default parameters), and Random Forest
with 50 trees, both available at Scikit-learn (Pe-
dregosa et al., 2011). We employed the leave-one-
out cross-validation technique, in which only one
dataset instance is used as test while all the others
are taken for training the classifier. Feature selec-
tion was attempted, but no particular subset of fea-
tures stood out. Therefore, all measurements were
considered.

4 Results and Discussion

In this section, we describe the selected dataset
and present the obtained results organized in two
parts: (i) the complete set of authors; and (ii) four
authors representing major types of works.

4.1 Dataset

In order to investigate whether authors can be dis-
tinguished by the story flow in their works, we
created mesoscopic networks from several texts.
Our dataset is composed of 100 English texts writ-
ten by 20 distinct authors (five texts per author)
extracted from Machicao et al. (2016). The se-
lected 20 authors are: Andrew Lang, Arthur Co-
nan Doyle, B. M. Bower, Bram Stoker, Charles
Darwin, Charles Dickens, Edgar Allan Poe, H. G.
Wells, Hector H. Munro (Saki), Henry James, Her-
man Melville, Horatio Alger, Jane Austen, Mark
Twain, Nathaniel Hawthorne, P. G. Wodehouse,
Richard Harding Davis, Thomas Hardy, Washing-
ton Irving, and Zane Grey. The whole dataset was
obtained from the Project Gutenberg repository2.
The complete list of used texts is available at this
link 3.

4.2 Complete Set of Authors

In the first experiment, we used all the books by
all 20 authors, yielding the results presented in Ta-

2Project Gutenberg - https://www.gutenberg.org/
3https://goo.gl/2pJJHG
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ble 1. Remarkably, though the chance baseline
for this experiment is only 5% (each author has
the same probability of being randomly selected),
our best result was as high as 35%. Moreover, 17
(48.5%) out of the 35 books correctly classified
by our method were written by only 4 authors:
namely Andrew Lang, B. M. Bower, Hector H.
Munro (Saki), and Henry James

Table 1: Accuracy rate in discriminating the au-
thorship of texts.

Average Degree Random Forest SVM
〈k〉 = 5 10% 12%
〈k〉 = 10 18% 14%
〈k〉 = 15 22% 25%
〈k〉 = 20 25% 24%
〈k〉 = 25 21% 17%
〈k〉 = 30 21% 23%
〈k〉 = 35 16% 17%
〈k〉 = 40 16% 23%
〈k〉 = 45 18% 25%
〈k〉 = 50 16% 20%
All combined 26% 35%

We also performed a pairwise classification.
The obtained results were compared with a tra-
ditional approach usually employed in the litera-
ture, the analysis of the most frequent words. For
this experiment, we used the original texts of each
book, extracted the frequency of the 20 most fre-
quent words, and then used a SVM classifier. Fig-
ure 2 shows the accuracies for the traditional fea-
tures, and Figure 3 illustrates the pairwise classifi-
cation accuracies when mesoscopic networks were
used to model each text, we did not select a single
average degree 〈k〉, but rather we combined all the
degrees listed in Table 1. The accuracies were ob-
tained with the SVM classifier.

A careful examination of Figure 2 and 3 reveals
that for some cases, except the squares with lighter
colors, our results are on par with those obtained
with the frequency of the 20 most frequent words
(mainly stopwords). Moreover, our method even
achieved higher accuracies in some combinations.
See, for example, authors Grey and Munro, for
which 7 and 6, respectively, of our results were
better than the traditional approach. One thing that
we should note, and which will be revisited in the
following subsection, is the fact that it is hard for
mesoscopic networks to distinguish Edgar Allan
Poe from Charles Darwin. In this case, we ob-

tained an accuracy rate of 50%, contrasted to 80%
achieved by the other approach.

4.3 Small Set of Authors

Out of the 20 authors considered in the previ-
ous subsection, we selected four authors, namely
Charles Darwin, Thomas Hardy, Edgar Allan Poe,
and Mark Twain. They were chosen because two
of them have several novels (Thomas Hardy and
Mark Twain), Edgar Allan Poe is best known for
writing short stories and Charles Darwin wrote
about his scientific theories and observations. The
now obtained accuracy rate in classifying them
was enhanced to 65% (Random Forests) and 50%
(SVM) by using the mesoscopic representation,
contrasted to the chance baseline of 25% obtained
for four authors. The Principal Component Anal-
ysis (PCA) (Jolliffe, 2002) considering these four
authors is presented in Figure 4.

The PCA results indicate a clear partitioning be-
tween the groups of books associated to each au-
thor. Remarkably, one of Thomas Hardy’s book
(A Changed Man and Other Tales) resulted be-
tween those of Edgar Allan Poe and Charles Dar-
win. Such a good partitioning is a consequence of
the quite different mesoscopic networks obtained
for these authors, as depicted in Figure 5.

The mesoscopic networks presented in Fig-
ure 5 unveil interesting aspects, including an unex-
pected similarity to intricate calligraphic shapes.
Note that the books which contain tales or short
stories, such as those by Edgar Allan Poe, as well
as the book A Changed Man and Other Tales,
present a similar chain-like topology with a few
cycles. Moreover, most of these cycles appear at a
relatively small scale. Interestingly, the scientific
books of Charles Darwin also present this chain-
like structure, which is probably related to the na-
ture of his writings, describing his theories, obser-
vations, and findings.

It is clear, visually, that the other books present
more complex stories, where paragraphs (nodes)
from different parts of the book sharing similar
content resulted in intersections. For example,
the book Adventures of Huckleberry Finn tells the
story of Huckleberry Finn traveling down the Mis-
sissippi river. During most of the book, he goes
through different small adventures along the river.
Another interesting point is that this book ends in
a similar setting as it begins, when Huckleberry
Finn returns to his city, which is reflected in the
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0.8 1

0.8

Figure 2: Accuracy rate (from 0 to 1) in the pairwise classification using the frequency of the 20 most
frequent words.

respective return of the unfolding trajectory to its
beginning. It is important to highlight that a full
visual analysis with all the 20 authors was beyond
the scope of this experiment. Our primary goal
was to perform a preliminary investigation of the
books through geometrical approaches.

5 Conclusion

Complex network methods have been applied with
growing success to several natural language pro-
cessing tasks. In some of these approaches, a
chunk of text is represented as a co-occurrence
network, which reflects the syntactic relationship
between words (Cancho and Solé, 2001). Al-
though this is a well-known representation, it is
not without its share of problems. Those net-
works, for example, are unable to represent the
topical structure found in many texts. So as to
overcome such a limitation, a mesoscopic repre-
sentation has been recently proposed (de Arruda
et al., 2017). The main goal of that approach
was to take into account the semantical relation-
ship between chunks of text. More specifically, the
network nodes correspond to texts from consecu-

tive paragraphs, while the edges are weighted by
the similarity between the respective texts. Statis-
tics of some local topological measurements were
used to characterize books’ mesoscopic networks.
We tested the hypothesis that such a representation
is useful at assigning the authorship to documents.
In particular, we advocated that fingerprints left by
each author are visible at a mesoscopic scale.

The obtained accuracy rates, which in one case
surpassed by 40 percentage points the chance
baseline, suggest that the proposed approach is ca-
pable of revealing writing styles characteristics. In
addition, we performed an alternative classifica-
tion, in which all pairs of distinct authors were
considered. In some cases our method provided
better results than those obtained with traditional
features. Such a result indicates that features ob-
tained from mesoscopic networks can be used as
a complement to more traditional features of texts.
In order to better understand the unfolding of texts,
we selected authors whose works include short
stories, novels, and scientific writing. A set of
topological features was estimated and PCA pro-
jected. Interestingly, in this projected space, a
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Figure 3: Accuracy rate (from 0 to 1) in the pairwise classification using network features extracted from
mesoscopic networks.

Figure 4: PCA of the books written by Charles
Darwin, Thomas Hardy, Edgar Allan Poe, and
Mark Twain.

book of tales written by Thomas Hardy resulted
closer to Edgar Allan Poe’s books, which are also
composed of short stories. Even more surprising,
the patterns obtained by the visualization resulted
quite representative of the different types of works,
suggesting a “calligraphy”. Such visualizations
reveal intricate discourse patterns in the books.

The goal of this paper was not to provide state-
of-the-art results for authorship attribution, given
that most traditional approaches in the literature
have achieved results as high as 90% (Grieve,
2007; Koppel et al., 2009). Instead, we report an
approach that can be used to obtain novel stylo-
metric features, as well as to complement tradi-
tional methods.

Future works could apply a similar approach to
other related tasks — such as authorship verifica-
tion, plagiarism detection, and topic segmentation
— and also extend the mesoscopic representation
to include different granularity levels, such as sen-
tences or chapters. Another possibility is to inves-
tigate the relationship between the emotional con-
tent of a text and its topology.
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(2) The Expression of the Emotions in Man and Animals, (3) Geological Observations on South America,
(4) The Different Forms of Flowers on Plants of the Same Species, and (5) Volcanic Islands. Thomas
Hardy: (1) A Changed Man; and Other Tales, (2) A Pair of Blue Eyes, (3) Far from the Madding Crowd,
(4) Jude the Obscure, and (5) The Hand of Ethelberta. Edgar Allan Poe: The Works of Edgar Allan Poe -
Volume (1) to (5). Mark Twain: (1) Adventures of Huckleberry Finn, (2) The Adventures of Tom Sawyer,
(3) The Prince and the Pauper, (4) A Connecticut Yankee in King Arthur’s Court, and (5) Roughing It.
The bluish nodes represent the windows formed by paragraphs from the beginning of the book and the
greenish ones represent the windows formed by paragraphs from the end of the book. The order of the
windows can be seen in the legend, where N represents the last window.
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Abstract

Word senses are not static and may
have temporal, spatial or corpus-specific
scopes. Identifying such scopes might
benefit the existing WSD systems largely.
In this paper, while studying corpus spe-
cific word senses, we adapt three existing
predominant and novel-sense discovery al-
gorithms to identify these corpus-specific
senses. We make use of text data available
in the form of millions of digitized books
and newspaper archives as two different
sources of corpora and propose automated
methods to identify corpus-specific word
senses at various time points. We con-
duct an extensive and thorough human
judgment experiment to rigorously evalu-
ate and compare the performance of these
approaches. Post adaptation, the output of
the three algorithms are in the same for-
mat and the accuracy results are also com-
parable, with roughly 45-60% of the re-
ported corpus-specific senses being judged
as genuine.

1 Introduction
Human language is neither static not uniform. Al-
most every individual aspect of language includ-
ing phonological, morphological, syntactic as well
as semantic structure can exhibit differences, even
for the same language. These differences can be
influenced by a lot of factors such as time, loca-
tion, corpus type etc. However, in order to suit-
ably understand these differences, one needs to be
able to analyze large volumes of natural language
text data collected from diverse corpora. It is only
in this Big Data era that unprecedented amounts of
text data have become available in the form of mil-
lions of digitized books (Google Books project),

newspaper documents, Wikipedia articles as well
as tweet streams. This huge volume of time and
location stamped data across various types of cor-
pora now allows us to make precise quantitative
linguistic predictions, which were earlier observed
only through mathematical models and computer
simulations.
Scope of a word sense: One of the fundamental
dimensions of language change is shift in word us-
age and word senses (Jones, 1986; Ide and Vero-
nis, 1998; Schütze, 1998; Navigli, 2009). A word
may possess many senses; however, not all of the
senses are used uniformly; some are more com-
mon than the others. This particular distribution
can be heavily dependent on the underlying time-
period, location or the type of corpora. For ex-
ample, let us consider the word “rock”. In books,
it is usually associated with the sense reflected by
the words ‘stone, pebble, boulder’ etc., while if we
look into newspapers and magazines, we find that
it is mostly used in the sense of ‘rock music’.
Motivation for this work: The world of technol-
ogy is changing rapidly, and it is no surprise that
word senses also reflect this change. Let us con-
sider the word “brand”. This word is mainly used
for the ‘brand-name’ of a product. However, it has
now become a shorthand reference to the skills,
actions, personality and other publicly perceived
traits of individuals or for characterizing reputa-
tion, public face of the whole group or companies.
The rise of social media and the ability to self-
publish and self-advertise undoubtedly led to the
emergence of this new sense of “brand”. To fur-
ther motivate such cross corpus sense differences,
let us consider the word ’relay’. A simple Google
search in the News section produces results that
are very different from those obtained through a
search in the Books section (See Fig 1). In this
paper, we attempt to automatically build corpus-
specific contexts of a target word (for e.g., relay in
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(a) (b)

Figure 1: Google search results for the word ’relay’ using (a) Google News and (b) Google Books.

this case) that can appropriately discriminate the
two different senses of the target word – one of
which is more relevant for the News corpus (con-
text words extracted by one of our adapted meth-
ods: team, race, event, races, sprint, men, events,
record, run, win) while the other is more rele-
vant for the Books corpus (context words extracted
by one of our adapted methods: solenoid, trans-
former, circuitry, generator, diode, sensor, transis-
tor, converter, capacitor, transformers). Since the
search engine users mostly go for generic search
without any explicit mention of book or news, the
target word along with a small associated con-
text vector might help the search engine to retrieve
document from the most relevant corpora automat-
ically. We believe that the target and the automat-
ically extracted corpus-specific context vector can
be further used to enhance (i) semantic and per-
sonalized search, (ii) corpora-specific search and
(iii) corpora-specific word sense disambiguation.
It is an important as well as challenging task to
identify predominant word senses specific to var-
ious corpora. While the researchers have started
exploring the temporal and spatial scopes of word
senses (Cook and Stevenson, 2010; Gulordava and
Baroni, 2011; Kulkarni et al., 2015; Jatowt and
Duh, 2014; Mitra et al., 2014; Mitra et al., 2015),
corpora-specific senses have remained mostly un-
explored.
Our contributions: Motivated by the above
applications, this paper studies corpora-specific
senses for the first time and makes the following
contributions 1 : (i) we take two different meth-

1The code and evaluation results are available at: http:

//tinyurl.com/h4onyww

ods for novel sense discovery (Mitra et al., 2014;
Lau et al., 2014) and one for predominant sense
identification (McCarthy et al., 2004) and adapt
these in an automated and unsupervised manner
to identify corpus-specific sense for a given word
(noun), and (ii) perform a thorough manual eval-
uation to rigorously compare the corpus-specific
senses obtained using these methods. Manual
evaluation conducted using 60 candidate words
for each method indicates that ∼45-60% of the
corpus-specific senses identified by the adapted al-
gorithms are genuine. Our work is a unique contri-
bution since it is able to adapt three very different
types of major algorithms suitably to identify cor-
pora specific senses.

Key observations: For manual evaluation of the
candidate corpus-specific senses, we focused on
two aspects – a) sense representation, which tells if
the word cluster obtained from a method is a good
representative of the target word, and b) sense dif-
ference, which tells whether the sense represented
by the corpus-specific cluster is different from all
the senses of the word in the other corpus. Some
of our important findings from this study are: (i)
the number of candidate senses produced by Mc-
Carthy et al. (2004) is far less than the two other
methods, (ii) Mitra et al. (2014) produces the best
representative sense cluster for a word in the time
period 2006-2008 and McCarthy et al. (2004) pro-
duces the best representative sense cluster for a
word in the time period 1987-1995, (iii) Mitra
et al. (2014) is able to identify sense differences
more accurately in comparison to the other meth-
ods, (iv) considering both the aspects together,
McCarthy et al. (2004) performs the best, (v) for
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the common results produced by Lau et al. (2014)
and Mitra et al. (2014), the former does better
sense differentiation while the latter does better
overall.

2 Related Work
Automatic discovery and disambiguation of word
senses from a given text is an important and chal-
lenging problem, which has been extensively stud-
ied in the literature (Jones, 1986; Ide and Vero-
nis, 1998; Schütze, 1998; Navigli, 2009; Kilgar-
riff and Tugwell, 2001; Kilgarriff, 2004). Only re-
cently, with the availability of enormous amounts
of data, researchers are exploring temporal scopes
of word senses. Cook and Stevenson (2010) use
corpora from different time periods to study the
change in the semantic orientation of words. Gu-
lordava and Baroni (2011) use two different time
periods in the Google n-grams corpus and detect
semantic change based on distributional similar-
ity between word vectors. Kulkarni et al. (2015)
propose a computation model for tracking and de-
tecting statistically significant linguistic shifts in
the meaning and usage of words. Jatowt and
Duh (2014) propose a framework for exploring
semantic change of words over time on Google
n-grams and COHA dataset. Lau et al. (2014)
propose a fully unsupervised topic modelling-
based approach to sense frequency estimation,
which was used for the tasks of predominant sense
learning, sense distribution acquisition, detecting
senses which are not attested in the corpus, and
identifying novel senses in the corpus which are
not captured in the sense inventory. Two recent
studies by Mitra et al. (2014; 2015) capture tem-
poral noun sense changes by proposing a graph
clustering based framework for analysis of di-
achronic text data available from Google books
as well as tweets. quantify semantic change by
evaluating word embeddings against known his-
torical changes. Lea and Mirella (2016) develop
a dynamic Bayesian model of diachronic meaning
change. Pelevina (2016) develops an approach
which induces a sense inventory from existing
word embeddings via clustering of ego-networks
of related words.

Cook et al. (2013) induce word senses and then
identify novel senses by comparing two differ-
ent corpora: the ‘focus corpora’ (i.e., a recent
version of the corpora) and the ‘reference cor-
pora’ (older version of the corpora). Tahmasebi
et al. (2011), propose a framework for tracking

senses in a newspaper corpus containing articles
between 1785 and 1985. Phani et al. (2012) study
11 years worth Bengali newswire that allows them
to extract trajectories of salient words that are of
importance in contemporary West Bengal. Few
works (Dorow and Widdows, 2003; McCarthy et
al., 2004) have focused on corpus-specific sense
identification. Our work differs from these works
in that we capture the cross corpus-specific sense
differences by comparing the senses of a partic-
ular word obtained across two different corpora.
We adapt three state-of-the-art novel and predom-
inant sense discovery algorithms and extensively
compare their performances for this task.

3 Dataset Description

To study corpora-specific senses, we consider
books and newspaper articles as two different cor-
pora sources. We compare these corpora for the
same time-periods to ensure that the sense differ-
ences are obtained only because of the change in
corpus and not due to the difference in time. A
brief description of these datasets is given below.
Books dataset: The books dataset is based on the
Google Books Syntactic n-grams corpus (Gold-
berg and Orwant, 2013), consisting of time-
stamped texts from over 3.4 million digitized En-
glish books, published between 1520 and 2008.
For our study, we consider Google books data for
the two time periods 1987−1995 and 2006−2008.
Newspaper dataset: For the Newspaper dataset,
we consider two different data sources. The first
dataset from 1987− 1995 contains articles of var-
ious newspapers2. The other dataset from 2006 −
2008 is gathered from the archives of The New
York Times.

4 Proposed framework

To identify corpus-specific word senses, we aim at
adapting some of the existing algorithms, which
have been utilized for related tasks. In principle,
we compare all the senses of a word in one cor-
pus against all the senses of the same word in an-
other corpus. We, therefore, base this work on
three different approaches, Mitra et al. (2014), Lau
et al. (2014) and McCarthy et al. (2004), which
could be adapted to find word senses in different
corpora in an unsupervised manner. Next, we dis-
cuss these methods briefly followed by the pro-

2https://catalog.ldc.upenn.edu/LDC93T3A
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posed adaptation technique and generation of the
candidate set.

4.1 Mitra’s Method

Mitra et al. (2014) proposed an unsupervised
method to identify noun sense changes over time.
They prepare separate distributional-thesaurus-
based networks (DT) (Biemann and Riedl, 2013)
for the two different time periods. Once the DTs
have been constructed, Chinese Whispers (CW)
algorithm (Biemann, 2006) is used for inducing
word senses over each DT. For a given word, the
sense clusters across two time-points are com-
pared using a split-join algorithm.
Proposed adaptation: In our adaptation, we ap-
ply the same framework but over the two dif-
ferent corpora sources in the same time pe-
riod. So, for a given word w that appears
in both the books and newspaper datasets, we
get two different set of clusters, B and N ,
respectively for the two datasets. Accord-
ingly, let B = {sb1, sb2, . . . , sb|B|} and N =
{sn1, sn2, . . . , sn|N |}, where sbi (snj) denotes a
sense cluster for w in the books (news) dataset.

A corpus-specific sense will predominantly be
present only in that specific corpus and will be ab-
sent from the other corpus. To detect the book-
specific sense for the word w, we compare each of
the |B| book clusters against all of the |N | news-
paper clusters. Thus, for each cluster sbi, we iden-
tify the fraction of words that are not present in
any of the |N | newspaper clusters. If this value
is above a threshold, we call sbi a book-specific
sense cluster for the word w. This threshold has
been set to 0.8 for all the experiments, as also re-
ported in Mitra et al. (2014).

We also apply the multi-stage filtering3 to ob-
tain the candidate words as mentioned in their pa-
per, except that we do not filter the top 20% and
bottom 20% of the words. We believe that remov-
ing the top 20% words would deprive us of many
good cases. To take care of the rare words, we con-
sider only those corpus-specific clusters that have
≥ 10 words .

The number of candidate words obtained after
this filtering are shown in Table 1. Figure 2 (a,b)
illustrates two different sense clusters of the word
‘windows’ - one specific to books corpus and an-
other specific to newspaper corpus, as obtained us-

3majority voting after multiple runs of CW and POS tags
‘NN’ and ‘NNS’

ing Mitra’s method. The book-specific sense cor-
responds to ‘an opening in the wall or roof of a
building’. The newspaper-specific sense, on the
other hand, is related to the computing domain,
suggesting Windows operating system.

Table 1: Number of candidate corpus-specific senses using
Mitra’s method after multi-stage filtering

1987-1995 2006-2008
Books 32036 30396

Newspapers 18693 20896

4.2 McCarthy’s Method

McCarthy et. al. (2004) developed a method to
find the predominant sense of target word w in a
given corpora. The method requires the nearest
neighbors to the target word, along with the distri-
butional similarity score between the target word
and its neighbors. It then assigns a prevalence
score to each of the WordNet synset wsi of w by
comparing this synset to the neighbors of w. The
prevalence score PSi for the synset wsi is given
by

PSi =
∑

nj∈Nw

dss(w, nj)× wnss(wsi, nj)∑
wsi′

wnss(wsi′ , nj)
(1)

where Nw denotes the set of neighbors of w
and dss(w, nj) denotes the distributional sim-
ilarity between word w and its neighbors nj .
wnss(wsi, nj) denotes the WordNet similarity be-
tween the synset wsi and the word nj , and is given
by

wnss(wsi, nj) = max
nsx∈senses(nj)

ss(wsi, nsx)

(2)
where ss(wsi, nsx) denotes the semantic similar-
ity between WordNet synsets wsi and nsx. We use
Lin Similarity measure to find similarity between
two WordNet synsets.
Proposed adaptation: In our adaptation to Mc-
Carthy’s method to find corpus-specific senses,
we use the DT networks constructed for Mitra’s
method to obtain the neighbors as well as distribu-
tional similarity between a word and its neighbors.
We then obtain the prevalence score for each sense
of the target word for both the corpora sources
separately, and normalize these scores so that the
scores add up to 1.0 for each corpus. We call these
as normalized prevalence score (NPS).

We call a sense wsi as corpora specific if its
NPSi is greater than an upper threshold in one
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(a) (c) (e)

(b) (d) (f)

Figure 2: Examples of corpora-specific sense clusters obtained for (a,b) ‘windows’ using Mitra’s method for (books, news)
during 1987-1995, (c,d) ‘lap’ using McCarthy’s method for (books, news) during 2006-2008 and (e,f) ‘lime’ using Lau’s method
for (books, news) during 2006-2008.

corpus and less than a lower threshold in the other
corpus. We use 0.4 as the upper threshold and 0.1
as the lower threshold for our experiments. After
applying this threshold, the number of candidate
words are shown in Table 2.

Table 2: Number of candidate corpus-specific senses using
McCarthy’s method.

1987-1995 2006-2008
Books 97 95

Newspapers 117 97

For the purpose of distributional visualization
of the senses, we denote a word sense wsi using
those neighbors of the word, which make the high-
est contribution to the prevalence score PSi. Fig-
ure 2 (c, d) illustrates two sense clusters of the
word ‘lap’ thus obtained - one specific to books
corpus and another specific to newspaper corpus.
The book-specific sense corresponds to ‘the top
surface of the upper part of the legs of a person
who is sitting down’. The news-specific sense,
on the other hand corresponds to ‘a complete trip
around a race track that is repeated several times
during a competition’.

4.3 Lau’s Method
We also adapt the method described in Lau et
al. (2014) to find corpus specific word senses.
Their method uses topic modeling to estimate
word sense distributions and is based on the word
sense induction (WSI) system described in Lau et

al. (2012). The system is built around a Hierar-
chical Dirichlet Process (HDP) (Teh et al., 2006),
which optimises the number of topics in a fully-
unsupervised fashion over the training data. For
each word, they first induce topics using HDP.
The words having the highest probabilities in each
topic denote the sense cluster. The authors treat
the novel sense identification task as identifying
sense clusters that do not align well with any of the
pre-existing senses in the sense inventory. They
use topic-to-sense affinity to estimate the similar-
ity of a topic to the set of senses given as

ts− affinity(tj) =
∑S

i Sim(si, tj)∑T
l

∑S
k Sim(sk, tl)

(3)

where T and S represent the number of topics
and senses respectively, and Sim(si, tj) is defined
as

Sim(si, tj) = 1− JS(Si||Tj) (4)
where Si and Tj denote the multinomial distri-
butions over words for sense si and topic tj .
JS(X, Y ) stands for Jensen-Shannon divergence
between distributions X and Y .
Proposed adaptation: In our adaptation to their
method to find corpus-specific senses, for a target
word, a topic is called corpus-specific if its word
distributions are very different from all the topics
in the other corpus. We therefore compute simi-
larity of this topic to all the topics in other corpus
and if the maximum similarity is below a thresh-
old, this topic is called as corpus-specific. We use
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Equation 4 to compute the similarity between two
topics ti and tj as Sim(ti, tj).

Since Lau’s method is computationally expen-
sive to run over the whole vocabulary, we run
it only for those candidate words, which were
flagged by Mitra’s method. We then use a thresh-
old to select only those topics which have low sim-
ilarity to all the topics in the other corpus. We
use 0.35 as the threshold for all the 4 cases ex-
cept for news-specific senses in 2006-2008, where
a threshold of 0.2 was used. The number of
candidate corpus-specific senses thus obtained are
shown in Table 3. Note that a word may have mul-
tiple corpus-specific senses.

Table 3: Number of candidate words using Lau’s method.

1987-1995 2006-2008
Books 6478 4339

Newspapers 23587 1944

Figure 2(e,f) illustrates the two different word
clusters of the word ‘lime’ - one specific to the
books corpus and another specific to the newspa-
per corpus, as obtained by applying their method.
The book-specific sense corresponds to ‘mineral
and industrial forms of calcium oxide’. The news-
specific sense, on the other hand, is related to
‘lemon, lime juice’.

5 Evaluation Framework and Results
In this section, we discuss our framework for eval-
uating the candidate corpus-specific senses ob-
tained from the three methods. We perform man-
ual evaluations using an online survey4 among
∼ 27 agreed participants (students, researchers,
professors, technical persons) with age between
18-34 years. We randomly selected 60 candidate
corpus-specific senses (combining both corpora
sources) from each of the three methods (roughly
30 words from each time period). Each participant
was given a set of 20 candidate words to evalu-
ate; thus each candidate sense was evaluated by 3
different annotators. In the survey, the candidate
word was provided with its corpus-specific sense
cluster (represented by word-clouds of the words
in the cluster) and all the sense clusters in the other
corpus.
Questions to the participants: The participants
were asked two questions. First, whether the can-
didate corpus-specific sense cluster is a good rep-
resentative sense of the target word? and sec-

4http://tinyurl.com/zd2hmef

ond, whether the sense represented by the corpus-
specific cluster is different from all the senses
of the word in the other corpus? The partici-
pants could answer the first question as ‘Yes’ or
‘No’ and this response was taken as a measure
of “sense representation” accuracy of the under-
lying scheme. If this answer is ‘No’, the answer
to the second response was set as ‘NA’. If this an-
swer is ‘Yes’, they would answer the second ques-
tion as ‘Yes’ or ‘No’, which was taken as a mea-
sure of “discriminative sense detection” accuracy
of the underlying method for comparing the senses
across the two corpora. The overall confidence of
a method was obtained by combining the two re-
sponses, i.e., whether both the responses are ‘Yes’.
The accuracy values are computed using majority
voting, where we take the output as ‘Yes’ if ma-
jority of the responses are in agreement with the
system and average accuracy, where we find the
fraction of responses that are in agreement with
the system. Since each case is evaluated by 3 par-
ticipants, micro- and macro-averages will be sim-
ilar.
Accuracy results: Table 4 shows the accuracy fig-
ures for the underlying methods. Mitra’s and Mc-
Carthy’s methods perform better for sense repre-
sentation, and Mitra’s method performs very well
for discriminative sense detection. For discrimi-
native sense detection, there were a few undecided
cases5. As per overall confidence, we observe that
McCarthy’s method performs the best. Note that
the number of candidate senses returned by Mc-
Carthy were much less in comparison to the other
methods. Mitra’s method performs comparably
for both the time periods, while Lau’s method per-
forms comparably only for 2006-2008.
Inter-annotator agreement: The inter-annotator
agreement for the three methods using Fleiss’
kappa is shown in Table 6. We see that the inter-
annotator agreement for Question 2 is much less
in comparison to that for Question 1. This is quite
natural since Question 2 is much more difficult to
answer than Question 1 even for humans.
Comparison among methods: Further, we
wanted to check the relative performance of the
three approaches on a common set of words. Mc-
Carthy’s output did not have any overlap with the
other methods but for Lau and Mitra, among the

5This happens when one of the three annotators responded
the first question as ‘No’, thus leaving only two valid re-
sponses for the second question. If both responses do not
match, majority voting will remain undecided.
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Table 4: Accuracy figures for the three methods from manual evaluation.

Sense Representation Sense Discrimination Overall Confidence
Method Time-period Majority voting Average Majority voting Average Undecided Majority voting Average

Lau 1987-1995 46.67% 60.0% 40.0% 61.82% 33.33% 30.0% 37.78%
2006-2008 70.0% 67.78% 50.0% 63.93% 23.33% 43.33% 44.44%

McCarthy 1987-1995 76.67% 77.78% 66.67% 78.57% 20.0% 56.67% 61.11%
2006-2008 66.67% 68.89% 53.33% 55.0% 6.67% 46.67% 48.89%

Mitra 1987-1995 75.0% 76.19% 73.91% 66.2% 17.86% 50.0% 50.0%
2006-2008 87.5% 80.21% 60.0% 57.47% 6.25% 44.79% 46.88%

Table 5: Comparison of accuracy figures for 30 overlap words between Lau and Mitra.

Sense Representation Sense Discrimination Overall Confidence
Method Majority voting Average Majority voting Average Undecided Majority voting Average

Lau 50.0% 53.33% 65.38% 55.56% 13.33% 26.67% 26.67%
Mitra 90.0% 84.44% 50.0% 48.89% 13.33% 41.11% 43.33%

Table 6: Fleiss’ kappa for the three methods

Lau McCarthy Mitra
Question 1 0.40 0.31 0.41
Question 2 0.19 0.12 0.12

words selected for manual evaluation, 30 words
were common. We show the comparison results
in Table 5. While Lau performs better on discrim-
inative sense detection accuracy, Mitra performs
much better overall.

6 Discussion

In this section, we discuss the results further by
analyzing some of the responses. In Table 7, we
provide one example entry each for all the three
possible responses for the three methods.
Lau’s method: In Lau’s method, consider the
word ‘navigation’. Its news-specific sense clus-
ter corresponds to a device to accurately ascertain-
ing one’s position and planning and following a
route. The sense clusters in books corpus relate
to navigation as a passage for ships among other
senses and are different from the news-specific
sense. The participants accordingly evaluated it
as a news-specific sense. For the word ‘fencing’,
the book-specific cluster corresponds to the sense
of fencing as a sports in which participants fight
with swords under some rules. We can see that
the first sense cluster from news corpus has a sim-
ilar sense and accordingly, it was not judged as
a corpus-specific sense. Finally, the book-specific
cluster of ‘stalemate’ does not denote any coherent
sense, as also judged by the evaluators.
McCarthy’s method: In McCarthy’s method,
consider the word ‘pisces’. The book-specific
cluster corresponds to the 12th sign of the zodiac

in astrology. None of the clusters in the news
corpus denote this sense and it was evaluated as
book-specific. For the word ‘filibuster’, the news-
specific sense corresponds to an adventurer in a
private military action in a foreign country. We can
see that the cluster in the other corpus has the same
sense and was not judged as corpus-specific. The
news-specific sense cluster for the word ‘agora’
does not correspond to any coherent sense of the
word and was accordingly judged.

Mitra’s method: Finally, coming to Mitra’s
method, consider the word ‘chain’. Its news-
specific cluster corresponds to the sense of a series
of establishments, such as stores, theaters, or ho-
tels, under a common ownership or management.
The sense clusters in books corpus, on the other
hand, relate to chemical bonds, series of links of
metals, polymers, etc. Thus, this sense of ‘chain’
was evaluated as news-specific. Take the word ‘di-
vider’. Its book-specific cluster corresponds to an
electrical device used for various measurements.
We can see that some of the clusters in the news
corpus also have a similar sense (e.g., ‘pulses, am-
plifiers, proportional, pulse, signal, frequencies,
amplifier, voltage’). Thus, this particular sense
of ‘divider’ was not judged as a corpus-specific
sense. Finally, the news-specific cluster of the
word ‘explanations’ does not look very coherent
and was judged as not representing a sense of ex-
planations.

In general, corpus-specific senses, such as ‘nav-
igation’ as ‘gps, device, software’ being news-
specific, ‘pisces’ as ‘12th sign of the zodiac’ being
book-specific and ‘chain’ as ‘series of establish-
ment’ being news-specific look quite sensible.
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Table 7: Example cases from the evaluation: First column mentions the method name, which corpus-specific, time-period and
the candidate word. Second column mentions the responses to the two questions. Corpus-specific sense cluster is shown in
third column and fourth column shows the sense clusters in the other corpus, separated by ‘##’.

Description Response Corpus-specific sense cluster Sense clusters in other corpus
Lau, News,
2006-2008,
navigation

Yes, Yes devices, gps, systems, company, mobile,
portable, device, software, oriental, steam, co.,
peninsular, market, personal, products, ports,
tomtom, car, digital, . . .

company, river, commerce, steam, act, system, free, mississippi, . . . ## spend, academic,
according, activities, age, area, artistic, athletic, . . . ## engaged, devoted, literary, agri-
cultural, intellectual, devote, interest, occupied, . . . ## pleasures, nature, mind, literature,
amusements, . . .

Lau, Book,
2006-2008,
fencing

Yes, No riding, dancing, taught, exercises, boxing,
drawing, horses, archery, study, horsemanship,
music, swimming, wrestling, schools, . . .

team, club, olympic, school, women, sport, sports, gold, . . . ## border, miles, barriers,
build, billion, congress, bill, illegal, . . . ## security, wire, area, park, construction, fence,
property, city, . . .

Lau, Book,
1987-1995,
stalemate

No, NA york, break, hansen, south, front, hill, turned,
bloody, north, western, provide, knopf, talbott,
breaking, . . .

political, government, minister, president, prime, opposition, coalition, aimed, . . . ## bud-
get, house, congress, federal, tax, bush, white, senate, . . . ## war, military, ended, presi-
dent, states, talks, peace, conflict, . . .

McCarthy,
Book,
2006-2008,
pisces

Yes , Yes scorpio, aquarius, libra, aries, sagittarius,
leo, cancer, constellation, constellations, orion,
capricornus, scorpius, perseus, uranus, pluto,
auriga, andromeda, bootes, ophiuchus, . . .

protocol, putt, shootings, aspect, golf, yes, relationships, onset, . . . ## tablets, economist,
guides, realist, officer, attorney, trustees, chairmen, . . . ## hearings, bottom, peak, surface,
floors, floor, walls, berm, . . .

McCarthy,
News,
2006-2008,
filibuster

Yes, No rebellion, insurgency, combat, decision, cam-
paign, crackdown, determination, objections,
crusade, amendments, offensive, wars, interfer-
ence, assault, violation, battle, dishonesty, . . .

pirates, raiders, invaders, adventurers, bandits, smugglers, freebooters, privateers, vikings,
robbers, corsairs, outlaws, buccaneers, rebels, traders, marauders, tribesmen, brigands,
slavers, insurgents, . . .

McCarthy,
News,
1987-1995,
agora

No, NA opinions, restriction, appetite, rubric, pandions,
authorizations, nato, delegations, bannockburn,
dm, ceding, resolve, industrialization, cry, mir-
acle, gop, shortage, navy, yes, multimedia, . . .

marketplace, plaza, courtyard, acropolis, stadium, precinct, sanctuary, pompeii, piazza,
auditorium, temple, synagogues, basilica, synagogue, cemeteries, arena, gymnasium,
palace, portico, amphitheatre, . . .

Mitra,
News,
2006-2008,
chain

Yes, Yes carrier, empire, business, retailer, bank, sup-
plier, franchise, franchises, corporation, firms,
brands, distributor, firm, seller, group, orga-
nization, lender, conglomerate, provider, busi-
nesses, manufacturer, giant, company, . . .

fiber, filament, polymer, hydrocarbon, . . . ## network, mesh, lattice, . . . ## ladder, hier-
archy, . . . ## subunit, molecules, protein, macromolecules, molecule, subunits, receptor,
chains, . . . ## bracelet, necklaces, earrings, brooch, necklace, bracelets, pendant, rosary,
. . . ## pin, knot, noose, girdle, knob, scarf, leash, pulley, . . . ## bond, bonds, . . . ## never,
still, fast, . . . ## non, . . . ## proton, . . . ## test, four, per, triple, ten, multi, two, square
. . . ## air, neck, computer, under, cigar, bank, load, pressure, . . .

Mitra,
Book,
1987-1995,
divider

Yes, No potentiometer, voltmeter, oscilloscope, convert-
ers, oscillator, connector, amplifier, filtering,
coupler, filter, microphone, accelerator, reflec-
tor, relay, signal, probe, regulator, preamplifier,
oscillators, array, multiplier, . . .

pulses, amplifiers, proportional, pulse, signal, frequencies, amplifier, voltage, . . . ## chip,
circuits, circuitry, clock, arrays, . . . ## chambers, wall, junction, openings, barriers, di-
viders, semiconductor, wires, . . . ## below, level, above, deviation, . . . ## truck, planes,
plane, van, motorists, lanes, . . . ## addresses, . . . ## along, gate, stone, gates, fence, . . . ##
modes, widths, rotation, projection, form, densities, model . . .

Mitra,
News,
1987-1995,
explana-
tions

No, NA way, qualities, phrases, indications, impression,
manner, experience, wisdom, assumption, view,
judgments, rumors, sentences, . . .

causes, evidence, . . . ## theses, motivations, judgements, analyses, inferences, answers,
definitions, predictions, . . . ## proxy, blame, accounting, reasons, accounting, blamed,
remedies, compensates, . . .

Table 8: Results for different thresholds of McCarthy’s method to make a total of 50 words. Each cell represents the total
number of words (number of candidate words chosen for a threshold + number of candidate words from the previous thresholds
= total number of candidate words) (overall confidence).

Upper Threshold
0.45 0.40 0.35

Lower
Threshold

0.05 69 (2) (50%) 105 (2 + (2)) (50%) 152 (2 + (4)) (33.33%)
0.10 267 (6 + (2)) (62.5%) 406 (4 + (10)) (50.0%) 615 (6 + (16)) (45.45%)
0.15 587 (10 + (8)) (66.67%) 891 (6 + (24)) (56.67%) 1442 (12 + (38)) (54.0%)

7 Parameter Tuning

To make our experiments more rigorous, we per-
formed parameter tuning on Lau’s and McCarthy’s
method to find the optimal accuracy value. We de-
cided to select 50 words from each method to eval-
uate. 11 words out of these are from the time pe-
riod 1987–1995 and the rest from the time period
2006–2008.

Lau’s method: For Lau’s method, the thresholds
represent maximum similarity. So, a lower value
will be more restrictive as compared to a higher
value. We selected three thresholds (0.30, 0.35,
0.40) for Lau’s method for our experiment. Ta-
ble 9 shows the total number of candidate words,
words selected and average accuracy (overall con-

fidence) of each threshold. First, we randomly
selected 0.26% words from the most restrictive
threshold (i.e., 0.30). For the next threshold (0.35),
since it contains all the words of the lower thresh-
old (0.30), we we randomly selected 0.26% words
from the remaining 3715 words. We did the same
for the threshold 0.40 again. Using the 50 words
thus obtained, we performed the evaluation. We
used the same evaluation method as outlined in
Section 5.

McCarthy’s method: For McCarthy’s method,
we have an upper and a lower threshold. A higher
value for upper threshold and/or a lower value for
lower threshold, would mean that it is more re-
strictive. Thus, a value of 0.45 for upper threshold
and 0.05 for lower threshold would be the most
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restrictive in our set of thresholds. The total num-
ber of words, the number of words selected for
evaluation and overall confidence are shown in Ta-
ble 8. We used the same technique as we applied
for Lau’s method to evaluate a total of 50 words.

We can see that a higher value (less restrictive)
of the threshold provides better results in case of
Lau. For McCarthy, we infer that a higher value
(more restrictive) of upper threshold and a higher
value (less restrictive) of the lower threshold is op-
timal.

Table 9: Average accuracy for different threshold values in
Lau’s method.

Threshold 0.30 0.35 0.40
Total Words 11537 15252 19745

Words Selected 30 9 + (30) 11 + (39)
Average 16.67% 28.2% 32.0 %

8 Conclusions and future work

To summarize, we adapted three different meth-
ods for novel and predominant sense detection
to identify cross corpus-specific word senses. In
particular, we used multi-stage filtering to restrict
the candidate senses by Mitra’s method, used JS
similarity across the sense clusters of two differ-
ent corpora sources in Lau’s method and used
thresholds on the normalized prevalence score as
well as the concept of denoting sense cluster us-
ing the most contributing neighbors in McCarthy’s
method. From the example cases, it is quite
clear that after our adaptations, the outputs of the
three proposed methods have very similar formats.
Manual evaluation results were quite decent and in
most of the cases, overall confidence in the meth-
ods was around 45-60%. There is certainly scope
in future for using advanced methods for compar-
ing sense clusters, which can improve the accuracy
of discriminative sense detection by these algo-
rithms. Further, it will also be interesting to look
into novel ways of combining results from differ-
ent approaches.
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Pavel Rychlý and Adam Kilgarriff. 2007. An efficient al-
gorithm for building a distributional thesaurus (and other
sketch engine developments). In proceedings of ACL,
poster and demo sessions, 41–44, Prague, Czech Repub-
lic.

Pelevina Maria, Nikolay Arefyev, Chris Biemann, and
Alexander Panchenko. 2016. Making sense of word em-
beddings. In Proceedings of the 1st Workshop on Rep-
resentation Learning for NLP, pp. 174-183. Berlin, Ger-
many

Roberto Navigli. 2009. Word sense disambiguation: a sur-
vey. ACM Computing Surveys, 41(2):1–69.

Samuel Brody and Mirella Lapata. 2009. Bayesian word
sense induction. In Proceedings of the 12th Conference
of the European Chapter of the Association for Compu-
tational Linguistics, EACL ’09, pages 103–111, Strouds-
burg, PA, USA. Association for Computational Linguis-
tics.

Shanta Phani, Shibamouli Lahiri, and Arindam Biswas.
2012. Culturomics on a bengali newspaper corpus. In
Proceedings of the 2012 International Conference on
Asian Language Processing, IALP ’12, pages 237–240,
Washington, DC, USA. IEEE Computer Society.

Sunny Mitra, Ritwik Mitra, Martin Riedl, Chris Biemann,
Animesh Mukherjee and Pawan Goyal. 2014. That’s
sick dude!: Automatic identification of word sense change
across different timescales. In proceedings of ACL, 1020–
1029, Baltimore, USA.

Sunny Mitra, Ritwik Mitra, Suman Kalyan Maity, Mar-
tin Riedl, Chris Biemann, Pawan Goyal and Animesh
Mukherjee. 2015. An automatic approach to identify
word sense changes in text media across timescales. JNLE
Special issue on ‘Graph methods for NLP’ (forthcoming).

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and Steven
Skiena. 2015. Statistically significant detection of lin-
guistic change. CoRR, abs/1411.3315.

Xuchen Yao and Benjamin Van Durme. 2011. Nonpara-
metric bayesian word sense induction. In Proceedings
of TextGraphs-6: Graph-based Methods for Natural Lan-
guage Processing, TextGraphs-6, pages 10–14, Strouds-
burg, PA, USA.

Xuerui Wang, Andrew Mccallum. 2006. Topics over time: a
non-Markov continuous-time model of topical trends. In
proceedings of KDD, 424–433, Philadelphia, PA, USA.

Yee Whye Teh and Michael I. Jordan and Matthew J. Beal
and David M. Blei 2006. Hierarchical dirichlet processes.
Journal of the American statistical association, 101(476).

Yoav Goldberg, Jon Orwant. 2013. A dataset of syntactic-
ngrams over time from a very large corpus of English
books. In proceedings of the Joint Conference on Lexical
and Computational Semantics (*SEM), 241–247, Atlanta,
GA, USA.

20



Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing, ACL 2017, pages 21–29,
Vancouver, Canada, August 3, 2017. c©2017 Association for Computational Linguistics

Merging knowledge bases in different languages

Jerónimo Hernández-González
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Abstract

Recently, different systems which learn
to populate and extend a knowledge base
(KB) from the web in different languages
have been presented. Although a large set
of concepts should be learnt independently
from the language used to read, there are
facts which are expected to be more eas-
ily gathered in local language (e.g., cul-
ture or geography). A system that merges
KBs learnt in different languages will ben-
efit from the complementary information
as long as common beliefs are identified,
as well as from redundancy present in
web pages written in different languages.
In this paper, we deal with the problem
of identifying equivalent beliefs (or con-
cepts) across language specific KBs, as-
suming that they share the same ontol-
ogy of categories and relations. In a case
study with two KBs independently learnt
from different inputs, namely web pages
written in English and web pages writ-
ten in Portuguese respectively, we report
on the results of two methodologies: an
approach based on personalized PageR-
ank and an inference technique to find
out common relevant paths through the
KBs. The proposed inference technique
efficiently identifies relevant paths, outper-
forming the baseline (a dictionary-based
classifier) in the vast majority of tested cat-
egories.

1 Introduction

In the last few decades, the machine learning com-
munity has launched different research projects
to take advantage of the massive source of infor-
mation which has become the web, and of the

people who build it up. Among others, informa-
tion extraction systems (IES) which use the text
found in webpages to extract, validate and incor-
porate beliefs to a structured knowledge base have
been developed (e.g., YAGO (Suchanek et al.,
2008), NELL (Mitchell et al., 2015) or Knowledge
Vault (Dong et al., 2014)). Such knowledge bases
(KBs) store facts about the real world, which are
represented as entities and relationship among en-
tities. The reliability of a fact, inferred from the
web, is at first questionable due to the noisy in-
formation available on the Web. This difficulty is
usually overcome by relying on data redundancy
from multiple Web pages. Requiring higher de-
grees of redundancy to incorporate beliefs to the
KB help to improve the quality of the learnt KB.

In the long run, having two such IES, run-
ning independently, tend to generate equivalent
KBs, even if they gather information from differ-
ent webpages, in different time or using different
terminology. However, if those two systems ex-
tract (and store) facts from Web pages written in
different languages, it can be hard to automatically
identify redundant facts, or to automatically merge
such KBs. Let us assume an English KB contain-
ing the concept of the city of Sao Carlos as a be-
lief and, also, a Portuguese KB with the equivalent
concept represented in Portuguese as São Carlos.
Let us assume also that, in the Portuguese KB, São
Carlos is linked to the concept Paulo Altomani, the
major of the city. Combining both KBs and iden-
tifying the equivalence between Sao Carlos (en)
and São Carlos (pt) can help to automatically pop-
ulate the English KB adding the fact that Paulo Al-
tomani is the mayor of Sao Carlos (en).

In this paper we deal with the problem of
merging KBs learnt in different languages. This
task consists of ontology alignment and equivalent
concept matching. We use graph-based inference
techniques to deal with the problem of identifying
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equivalent entities in different KBs assuming that,
in spite of being learnt independently, they share a
common ontology. The contributions of this work
are as follows:

• An approach to multi-lingual KB merging
based on Personalized PageRank

• A path-based graph inference approach that
shows promising results when compared to
Personalized PageRank.

• An empirical analysis by means of a case
study. When graph connectivity is enhanced
by means of a SVO corpus, results stand out.

In the remainder of this paper we first provide
a formal description of the problem, which is for-
mulated as an inference problem. Then, the pro-
posed solutions are presented. In Section 4, the
different approaches are tested in a case study with
two KBs independently learnt by NELL (Mitchell
et al., 2015) from English and Portuguese web-
pages respectively. Next, their behavior is dis-
cussed. The paper finishes with conclusions and
ideas for future work.

2 Framework

Consider a Knowledge Base (KB) K as a tuple
(O, Ic, Ir, S). The ontology O is represented by
a 4-tuple (C,HC , R,HR), where HC codifies the
hierarchy among categories c ∈ C (e.g., the cate-
gory city is a specification of the category place)
and, similarly, HR codifies the hierarchy among
relation-types r(c1, c2) ∈ R with c1, c2 ∈ C (e.g.,
locatedAt(city, country) is more general than cap-
italOf (city, country)). Ic and Ir are the sets of en-
tities and relationships, respectively, that populate
the KB. Thus, an instance (e, c) ∈ Ic assigns en-
tity e to category c ∈ C (e.g., (Pittsburgh, city) or
(USA, country)) and each instance (e1, r, e2) ∈ Ir
is a relation of type r which associates two entities,
e1 and e2, with (e1, c1) ∈ Ic, (e2, c2) ∈ Ic and
r(c1, c2) ∈ R (e.g., (Pittsburgh, locatedAt, USA)).
S involves the literal strings which are used to re-
fer to the entities. Two —or more— literal strings
s1 and s2 (s1 6= s2) can refer to the same entity e
((s1, e) ∈ S ∧ (s2, e) ∈ S), and the same literal
string s can refer to two different entities e1 and e2
as well ((s, e1) ∈ S ∧ (s, e2) ∈ S with e1 6= e2).
For example, the literal strings “Steal City” and
“Pittsburgh” can refer to the concept Pittsburgh,
whereas “New York” could refer to both NYC and
New York State.

Graph representation. In this paper, a graph
representation of the KB is used and the prob-
lem of merging KBs in different languages is han-
dled as a graph inference problem. Each entity e
is represented as a node. Each relation instance
(e1, r, e2) ∈ Ir is represented by an edge of type r
between the nodes representing entities e1 and e2.
Similarly, for each (s, e) ∈ S, string s is repre-
sented as a node and an edge of type canReferTo
links it to entity e. In the remaining of the paper,
the terms “nodes” and “entities”, on the one hand,
and “relation” and “edge types”, on the other, are
interchangeably used.

2.1 Inferring entity-equivalence across KBs
in different languages

For the sake of simplicity, let us follow the ex-
ample of our case study to describe the problem
of merging two KBs which share the same ontol-
ogy structure (categories and relation types) but
which have been learnt (populated) in different
languages. Given both KBs, Ken = (O, Ien

c , Ien
r )

and Kpt = (O, Ipt
c , I

pt
r ), in English and Por-

tuguese respectively, the merging process K∗ =
merge(Ken,Kpt) consists mainly of the union of
both sets of entities I∗c = Ipt

c ∪ Ien
c , where only

an instance of the equivalent entities across lan-
guages (e.g., New York or Nova Iorque) remains.
As a consequence of this first step, the sets of
relation instances I∗r = Ipt

r ∪ Ien
r is similarly

merged: two relation instances in different lan-
guages, (een1 , r, e

en
2 ) and (ept

1 , r, e
pt
2 ), are equiva-

lent if their relation type r ∈ R is the same and
the associated entities are fused in I∗c (een1 ∼ ept

1

and een2 ∼ ept
2 ). To avoid losing information,

per-language literal string sets (Sen, Spt) are kept
linked to the corresponding entities in I∗c .

The key step is, therefore, the identification of
equivalent entities across languages. Let us in-
troduce the relation types (een, equivalentTo, ept),
which connects two entities in different language
specific KBs, and (sen, canBeTranslatedAs, spt),
which relates two literal strings which are the
translation of each other in the different languages.
Thus, the originally independent language specific
KBs become connected and the problem of find-
ing equivalent entities across languages can be re-
formulated as inferring the existence of equiva-
lentTo relationships (edges) between pairs of en-
tities (nodes) in different KBs (subgraphs).
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3 Methods

In this study, we make use of inference techniques
over graphs to find equivalent entities in different
language KBs: a Personalized PageRank (PPR)
(Haveliwala, 2002) based approach and another
one based on Path Ranking Algorithm (PRA) (Lao
and Cohen, 2010). Both techniques produce clas-
sification models which, given a new pair of enti-
ties, predict whether or not an equivalentTo rela-
tionship is suitable among them.

3.1 Personalized PageRank based approach

In the context of webpage ranking, Personalized
PageRank (Haveliwala, 2002) was designed to
bias the result of the original PageRank algo-
rithm (Page et al., 1999) to make it topic-sensitive.
It can be seen as a similarity measure that charac-
terizes the neighborhood of a node X in a graph.
Formally, it estimates a probability distribution
over the nodes of the graph. Considering X as
the source node of a random walk, it estimates
the probability of reaching node Y after w ran-
dom steps. At time t, the next step follows one of
the out-edges of current node Xt with equal prob-
ability (1− α) · 1

|Xt| (where |Xt| is the out-degree
of node Xt) or jumps back to the source node X
with probability α. The stationary probability dis-
tribution is usually approximated by sampling a
number n of random walks with probability α of
restarting at source node X . The probability as-
signed to node Y is the proportion of walks which
finish at Y .

In the context of this work, PPR has been used
to measure similarity between nodes. Assuming
that two equivalent entities in different language
subgraphs (L1 and L2) will be highly connected
through a number of different paths, the equiva-
lent entity eL2

t is expected to be assigned a high
probability by a PPR with origin at entity eL1

o .
Using PPR to estimate the probability distribution
p(·|eL1

o ), a classification model is built by impos-
ing three conditions: (1) the predicted equivalent
entity belongs to a different language subgraph
(eL2

t : L1 6= L2), (2) the category of both the
source and target entities is the same or compat-
ible (both are in the same hierarchical line inHC):

(eL1
o , co) ∈ IL1

c ∧ (eL2
t , ct) ∈ IL2

c :

co, ct ∈ C ∧ (co = ct ∨ co HC−−⇀↽−− ct)

and (3) the probability of the predicted entity ex-
ceeds threshold h ≤ p(eL2

t |eL1
o ).

3.2 Path Ranking algorithm based approach

The Path Ranking algorithm (Lao and Cohen,
2010) transforms the task of inferring new rela-
tionships of type r between pairs of entities into a
binary classification problem: given a new pair of
nodes, is a relationship of type r suitable between
them? To do so, it generates, in two steps, a train-
ing matrix from which any type of classifier can
be learnt. The pairs of nodes already connected
by a relationship of type r are positive pairs or
examples in this approach. During the first step,
paths (sequence of relation types, r1, r2, . . . , rp)
commonly connecting the nodes of the positive
pairs are identified by running a number of ran-
dom walks of limited length. In the second step,
a training matrix is built such that each identified
path constitutes a feature (column) and each pair
is a positive example (row). Each cell (i, j) of the
matrix is assigned the probability of reaching the
target node eit of the i-th pair using a random walk
that follows the sequence of relation types of the
j-th path with origin at node eio.

Departing from the original design, the genera-
tion of paths has been adapted to take advantage
of the particularities of our application. First of
all, note that every path which connects two nodes
in different language subgraphs, een and ept, in-
cludes an equivalentTo or canBeTranslatedAs re-
lation type. Note also that, assuming a common
ontology for both KBs, the relation types and cat-
egories are the same in both languages. The idea
behind the original PRA —i.e., certain relation-
ships (or paths) can be particularly relevant for de-
termining the equivalence of entities of a specific
category— is extended to the multi-language con-
text by looking for relevant paths which appear
replicated in both language subgraphs. Suppose
that there is a Di Blassio entity in both languages
and an equivalentTo relationship links them. Sup-
pose also that there are (Di Blassio, isMayorOf,
New York City) and (Di Blassio, isPrefeitoDe,
Cidade de Nova Iorque) relationships in English
and Portuguese subgraphs respectively. Knowing
that (New York City, Cidade de Nova Iorque) are
equivalent, isMayorOf can be considered as a rele-
vant path (of length one) to predict the equivalence
of cities. Intuitively, a person cannot be mayor of
different cities.
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Our search for relevant paths starts, for each
positive pair, with a breadth-first search from the
source node eL1

o looking for nodes eL1
b with an

across-language edge (edge type equivalentTo or
canBeTranslatedAs). For each of these nodes,
the node eL2

b at the other extreme of the across-
language relationship is taken. Then, the path fol-
lowed to reach eL1

b from eL1
o is reversed. If the

reversed path connects eL2
b to the target node eL2

t

of the corresponding positive pair, the whole path
from eL1

o to eL2
t is kept for evaluation. The rel-

evance of a path (r1, r2, . . . , rp) is measured as
the probability of reaching the target node follow-
ing a random walk (through relationships of types
r1, r2, . . . ) starting at source node, or in the oppo-
site direction. Thus, the most relevant path always
leads to the opposite node of the pair, and only
to it. Uninformative paths, those whose rates are
below the average, are filtered out. With the re-
maining relevant paths, a training matrix is built in
the same way as the original PRA.

4 Experiments

A complete set of experiments has been designed
to test the performance of both approaches in the
task of identifying equivalent concepts across lan-
guages. A baseline based on dictionary transla-
tions is used to put these results in context.

4.1 Knowledge bases

The knowledge bases used in these experiments
correspond to the 970th and 110th iterations of
the English and Portuguese versions of NELL, re-
spectively. As aforementioned, a graph is obtained
from each KB drawing a node for each entity and
literal string and a labeled edge for each relation-
ship among entities. Moreover, edges of type can-
ReferTo link each entity with its literal strings. We
found out that many entities in both KBs are iso-
lated, i.e., they have no relationship. For these ex-
periments, all the isolated nodes have been pruned
from the graphs as our techniques cannot deal with
them: both presented techniques make use of the
relationships among entities to perform. The re-
sulting graph is used below in a first set of experi-
ments.

As previously mentioned, both PPR and PRA-
based techniques make use of relationships and,
in fact, they need well connected graphs to per-
form correctly. However, the graphs obtained
from NELL KBs are quite sparse (see Table 1 for

English
Category GRAPH 1 GRAPH 2

animal 13.32 ± 47.12 392.02 ± 1859.43
country 22.65 ± 68.60 289.97 ± 970.55

city 5.00 ± 22.31 134.72 ± 1176.05
movie 1.60 ± 1.69 88.95 ± 891.37
person 2.99 ± 6.76 244.10 ± 1394.07
writer 2.72 ± 4.75 43.50 ± 419.41
actor 2.19 ± 2.12 77.21 ± 819.10
sport 19.94 ± 132.71 256.49 ± 1430.06

all 4.48 ± 28.95 275.49 ± 1715.53

Portuguese
Category GRAPH 1 GRAPH 2

animal 1.57 ± 1.17 27.23 ± 58.58
pais 5.04 ± 15.99 180.79 ± 820.71

cidade 1.71 ± 4.33 32.03 ± 135.13
filme 1.33 ± 0.79 34.77 ± 177.64

pessoa 1.18 ± 0.66 16.62 ± 101.67
escritor 1.15 ± 0.46 6.40 ± 12.04

ator 1.67 ± 1.41 6.96 ± 11.40
esporte 3.88 ± 6.31 26.98 ± 83.30

all 1.81 ± 3.93 51.26 ± 199.03

Table 1: For each language and category, mean
out-degree value and associated standard deviation
of the nodes of that category in the (first) graph,
without isolated nodes, and in the (second) graph,
fed with SVO-inferred relationships before prun-
ing. The last row sums up all the categories.

its mean out-degree). An enhanced connectivity
among entities is achieved considering a SVO cor-
pus. A SVO consists of statistics about the pres-
ence of a triplet subject-verb-object in a text cor-
pus usually crawled from the Web. In this study,
Wijaya and Mitchell (2016) method to map verbs
found in a corpus to relationships of a given struc-
tured KB has been used. It explores a SVO corpus
looking for verbs which can be used to represent
the different relation types r ∈ R of an ontology
O. Given the returned set of representative verbs
for a specific relation type r, pairs of literal strings
s1, s2 ∈ S which appear linked by means of one or
more representative verbs in the SVO corpus can
be considered as evidence of a r relationship. In
practice, all the entities which can be referred to
by s1 and s2 are connected by means of an edge
of type r. As can be observed in Table 1, connec-
tivity is largely enhanced. On average, the num-
ber of edges connecting each node has increased
although, according to the related standard devia-
tions, the behavior is not uniform. The graph re-
sulting from this enhancing process is used in a
second set of experiments.

Note that the enhancement with SVO-inferred
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English
Category UNPROCESSED GRAPH 1 GRAPH 2

animal 12,436 (36) 591 (23) 746 (27)
country 6,031 (106) 443 (93) 460 (93)

city 18,893 (460) 4,437 (237) 5,311 (263)
movie 7,008 (42) 712 (38) 831 (38)
person 6,693 (403) 2,898 (395) 3,050 (399)
writer 18,911 (61) 1,707 (39) 2,143 (40)
actor 28,361 (512) 794 (139) 1,421 (167)
sport 5,022 (109) 205 (66) 381 (75)

all 1,909,339 (4,126) 66,239 (2,112) 96,086 (2,331)

Portuguese
Category UNPROCESSED GRAPH 1 GRAPH 2

animal 101 (36) 63 (14) 97 (35)
pais 153 (106) 94 (87) 136 (103)

cidade 5,767 (460) 483 (138) 1,404 (282)
filme 368 (42) 64 (25) 132 (40)

pessoa 621 (403) 611 (304) 614 (376)
escritor 114 (61) 26 (23) 63 (37)

ator 1,870 (512) 129 (36) 793 (208)
esporte 153 (109) 34 (29) 125 (94)

all 30,401 (4,126) 5,119 (1,827) 12,930 (2,565)

Table 2: For each language subgraph and cate-
gory, the number of entities and, from these, the
number of entities contained in a positive pair are
shown. The three columns show counts, from left
to right, for (1) the unprocessed graph, (2) the first
graph, without isolated nodes, and (3) the second
graph, fed with SVO-inferred relationships before
pruning. The last row sums up all the categories.

relationships reduces the number of isolated nodes
and, therefore, the number of pruned entities de-
creases. Table 2 reflects the effect of this enhance-
ment, in terms of the number of remaining entities,
on the pruning process. In the case of English, the
second graph (with SVO-inferred relationships) is
almost a 50% larger than the first graph. The Por-
tuguese subgraph, in turn, grows 2.5 times.

4.2 Bridges among both language-specific
KBs

Two different strategies have been carried out in
this study to generate an initial set of equivalentTo
relationships. On the one hand, a costly man-
ual introduction of equivalence relationships was
carried out. This procedure, although costly, pro-
vides highly reliable instances of the relationship.
Around 400 fully reliable relationships were thus
generated. On the other hand, entities which have
the same name (simple matching), in spite of hav-
ing been learnt in different languages, and belong
to compatible categories have been considered as
equivalent pairs. Both conditions are fulfilled by

up to 4, 000 pairs of entities, among which equiv-
alentTo edges have been added. Although the evi-
dence may be strong, this automatically generated
set of equivalentTo edges could involve mislead-
ing information. For example, using this approach
a hypothetical entity referring to the renowned ma-
chine learning researcher (Michael Jordan, pes-
soa) in Portuguese could be connected to the for-
mer basketball player (Michael Jordan, athlete) in
English. The pruning process explained above af-
fects these entities too, as shown in Table 2.

Connectivity among language subgraphs at the
level of literal strings (relation type canBeTrans-
latedAs) is achieved by means of a dictionary.
A list of string translations has been generated
combining terms found in WordNet (de Paiva and
Rademaker, 2012; Fellbaum, 1998) and transla-
tions on demand making use of the Google Trans-
late API 1. In total, 1.4 million string translations
have been obtained. These translations are used to
connect nodes representing literal strings in both
language subgraphs by means of edges of type
canBeTranslatedAs.

4.3 Training examples

Standard supervised classification takes advantage
of a fully labeled dataset with examples of all the
classes. They are necessary to train the classifica-
tion models as well as to evaluate them. The clas-
sification task at hand is a weakly supervised clas-
sification problem (Hernández-González et al.,
2016); specifically, a positive-unlabeled classifi-
cation problem (Calvo et al., 2007) where only
positive examples are available for training: the
pairs of entities related by a equivalentTo relation-
ship. No negative example, understood as a pair of
nodes in different language subgraphs which are
not suitable to hold an equivalentTo relationship,
is available.

However, in this context, safe procedures for
generating negative examples can be figured out.
Figure 1 graphically describes the procedure fol-
lowed in this study, which is based on the as-
sumption that an entity has only one equiva-
lent entity in the opposite language KB. Thus,
the source node of a positive pair is not equiv-
alent to any node in the opposite subgraph dif-
ferent from the corresponding target node. For-
mally, each (eL1

o ,equivalentTo, eL2
t ) relationship

already present in the KB is individually consid-

1https://cloud.google.com/translate/
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c:country:
USA

c:pais:
EUA

equivalentTo

c:language:
english

c:country:
UK

c:country:
mexico

speaks speaks
border
With

c:veiculo:
carro

c:pais:
brasil

exporta

exporta

notEquivalentTo

notEquivalentTo

Figure 1: Generation of negative examples: given
a positive pair, (USA, EUA), a walk is launched
until an entity with the same category is reached:
e.g., (Mexico,Country) by (USA, borderWith, Mex-
ico). Obtained negative example: (Mexico, EUA).

ered. For entity eL2
t , other entities eL2

t′ with the
same or a compatible category are identified in the
same language subgraph L2. A negative exam-
ple (eL1

o ,notEquivalentTo, eL2
t′ ) is then built using

the original entity eL1
o and any compatible neigh-

bor eL2
t′ . For instance, as displayed in Fig. 1,

knowing that USA is equivalent to the Portuguese
EUA, Mexico is reached from node USA through
their common relationship (borderWith), thus gen-
erating a negative example (Mexico, notEquiva-
lentTo, EUA). The same procedure can be carried
out in the opposite direction: fixing eL2

t and look-
ing for compatible entities eL1

o′ in the neighbor-
hood of eL1

o . For each positive pair, up to 2 nega-
tive pairs among all the negative examples gener-
ated in both directions are randomly selected.

4.4 Experimental settings

In addition to both described techniques, a classi-
fier exclusively based on a dictionary is also con-
sidered. It predicts an equivalence if the nodes of
the query pair represent entities with literal strings
which are the translation of each other. Given that
a dictionary is probably the simplest solution to
deal with this problem, it has been used in this pa-
per as a baseline.

The PPR method has been configured for these
experiments with 2,000 random walks of length
5 to estimate the probability distribution, using a
probability of restart equal to 0.01. Regarding our
PRA-based technique, the breadth-first search is
carried out to a depth of 2. These values have been
selected within a 20×5-fold cross validation. PPR
and the baseline do not need a training step and the
results are calculated over the whole training set.
For each category, PRA learns a logistic regres-
sion classifier (its implementation in Weka (Frank

et al., 2016)), which is evaluated in a 10 × 5-fold
cross validation. Remember that positive pairs are
equivalentTo relationships, which are also repre-
sented in the graph. The edges of the graph cor-
responding to training examples are removed for
training and testing.

The PPR and PRA-based approaches, together
with the baseline, have been applied over graphs
1 and 2 (without and with SVO-inferred rela-
tionships, respectively). As our PRA-based ap-
proach learns a classifier per category, a diverse
set of eight categories has been selected to test the
proposals and report their performance: animal,
country, city, movie, person, writer, actor and
sport. In Figure 2, precision-recall (PR) curves
are used to describe the results in the first graph.
Each subfigure displays the results for one of the
selected categories. Following the same layout,
Figure 3 shows the results in the second graph.
Note that results in figures 2 and 3 are not directly
comparable as they have been obtained from train-
ing sets of different sizes (see in Table 2 the num-
ber of positive entities remaining after pruning in
graphs 1 and 2).

5 Discussion

The performance of the different techniques has
been assessed for eight categories using two
graphs of different sparsity. Results show the com-
petitiveness of the solution based exclusively on a
dictionary as well as the outstanding performance
of our PRA-based proposal. As expected for an
inference technique that intensively explores the
graph looking for relevant paths, the use of the
more dense SVO+pruned graph enhances the per-
formance of the PRA-based proposal. The behav-
ior of PPR is less regular and changes considerably
among categories.

The dictionary connects, across languages, lit-
eral strings, which can be used to refer to differ-
ent entities. This may affect the precision of the
dictionary approach: more than one node may be
reached following the across-language path can-
ReferTo+canBeTranslatedAs+canReferTo from a
single source node. To alleviate this effect, our im-
plementation only predicts a positive equivalence
if both nodes of a query pair have the same cate-
gory. As observed in figures 2 and 3, this baseline
reaches precision values equal to 1 for all the cat-
egories with the exception of country and person.
Moreover, the size of the dictionary determines the
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Figure 2: PR curves comparing both proposals with the dictionary as a baseline. Each figure displays
the results of the three approaches with the examples of a specific category using the first graph.

maximum recall that this classifier can show be-
fore a sharp drop in precision. Thus, this approach
is very competitive in categories where our dic-
tionary translates many of the pairs (e.g., sport),
its performance is limited in categories where few
pairs are translated (e.g., movie).

The results of the PPR approach are difficult to
interpret; no clear pattern is observed. The incor-
poration of new relationships from the SVO cor-
pus does not enhance its results. Quite the op-
posite, it seems to harm the results in categories
such as country or writer. This incorporation in-
creases the number of edges among entities of the
same language subgraph (see Table 1), while the
across language connections remain the same. In-
tuitively, the probability of a random walk mov-
ing across language subgraphs decreases. And this
crossing movement is indispensable for the PPR
approach to succeed. In categories such as ani-
mal or sport, the behavior of the PPR approach
matches that of the dictionary. The short path
canReferTo+canBeTranslatedAs+canReferTo usu-
ally has few instantiations, easily leading from
source to target node. Only in a few categories
is the PPR approach able to overcome the base-
line and, in these cases, the PRA-based approach
usually outperforms it. Our PRA-based technique
also imitates the dictionary approach. Intuitively,
the translation path is usually considered as rel-
evant by this technique. However, even a more
complete dictionary would still lack precision in
certain cases. According to its unquestionable
enhanced performance, our PRA-based technique
solves this problem probably relying on both the
dictionary and other relevant paths. Specifically, it

is able to overcome the baseline when the dictio-
nary is not completely precise (categories country
and person). Finally, only the PRA-based tech-
nique clearly improves with the new SVO-inferred
edges (categories animal, writer and movie).

A strategy for generating the initial equiva-
lentTo relationships (Section 4.2) is the simple
matching of entity names in the different lan-
guages. This already covers 403 out of 621 en-
tities of category person in Portuguese. This rate
is lower in category writer, although the same be-
havior would be expected since in both categories
proper nouns, which are rarely translated, are used
to name entities. There are two possibilities for
the remaining entities: they are represented in En-
glish with a different name or they do not overlap.
We carried out a manual inspection of these enti-
ties (219 in the case of person) to gain insight, re-
vealing that the majority of them have Portuguese
names, and those with English names do not ap-
pear in the English KB. Only a few cases have
been found where a possible equivalence is present
in the KBs with a slightly different name (e.g.,
Max Nicholson in English and Dr. Max Nichol-
son in Portuguese). This observation supports the
idea that entities in this kind of categories, which
use proper nouns, are usually complementary if
an equivalence with exactly the same name is not
found. In this context, the recall of the simple
matching approach is expected to stand out. Our
PRA-based solution would still be competitive in
these categories assessing equivalences for entities
with slightly different names.

The lower the number of training positive pairs
for a category (Tab. 2), the worse the results of
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Figure 3: PR curves comparing both proposals with the dictionary as a baseline. Each figure displays
the results of the three approaches with the examples of a specific category using the (second) graph
pruned after populating it with new relationships inferred from a SVO corpus.

the PRA-based technique (see results for animal,
movie, writer and sport). The inclusion of the rela-
tionships derived from the SVO corpus involves a
considerably larger number of positive pairs in all
the categories. The performance gain is notewor-
thy in three of them: animal, movie and writer.
However, a larger number of examples does not
explain the enhanced performance shown by the
PRA-based approach, for example, in the animal
category. A more densely connected graph is ex-
pected to benefit our PRA-based approach, al-
though a larger set of edges does not directly im-
ply a better performance. For example, despite
the fact that the category sport shows one of the
largest out-degree averages (see Tab. 1), the PRA-
based classifier can neither overcome the base-
line nor the PPR approach (even using the SVO-
enlarged graph). Not only does the PRA-based ap-
proach require a large number of relationships, it
also requires relevant paths. However, it is more
likely to find a relevant path in densely connected
graphs, such as that obtained after the massive in-
corporation of relationships from the SVO corpus.
That explains the enhanced performance of our
PRA-based method in categories writer, animal
and movie regarding the results in the first graph
without SVO-inferred relationships.

It can be agreed that the larger the number
of merged KBs, the more the information which
such a multi-lingual system can take advantage
of. The approaches proposed in this study are
designed to deal with two language subgraphs.
However, applying the proposed methodology by
means of pairwise comparisons, along with the

transitive property, a larger set of equivalent en-
tities will probably be found. For example, if New
York City is equivalent to Cidade de Nova Iorque
(pt) and Cidade de Nova Iorque (pt) is equivalent
to Ciudad de Nueva York (es), New York City is
equivalent to Ciudad de Nueva York (es). When-
ever the KBs learnt in the different languages are
diverse enough —although partial intersection is
necessary—, the probability of finding this type of
triangulations rises with the number of KBs.

6 Conclusions

In this paper, we deal with the problem of merg-
ing two knowledge bases learnt from text writ-
ten in different languages. Two strategies have
been designed and compared with a baseline ex-
clusively based on a dictionary. The proposed so-
lution based on the path ranking algorithm outper-
forms the baseline and a second proposal based on
personalized PageRank.

The PRA-based approach efficiently finds rele-
vant paths between positive pairs of entities. The
relevance of a path between two nodes is measured
according to the number of entities reached fol-
lowing the path, in both directions. According to
the experimental results, it identifies relevant paths
in the majority of tested categories, specifically
when a more densely connected graph is used.

For future work, taking the KB merging pro-
cess as a chance for improvement, an approach to
co-reference resolution could be to identify enti-
ties which have two or more equivalent entities in
the opposite language subgraph. The categories of
two equivalent entities could also be reassessed if
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these are not coincident. If this proposal is inte-
grated into the iterative learning process of NELL,
it will benefit from new entities and relationships
at each new iteration, possibly leading to the dis-
covery of new relevant paths. Before, as NELL
currently allows its ontology to evolve, these pro-
posals should be adapted to deal with unaligned
ontologies, similar to what Delli Bovi et al. (2015)
or Dutta et al. (2014) do.
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Abstract

Word embeddings are high-dimensional
vector representations of words and are
thus difficult to interpret. In order to deal
with this, we introduce an unsupervised
parameter free method for creating a hi-
erarchical graphical clustering of the full
ensemble of word vectors and show that
this structure is a geometrically meaning-
ful representation of the original relations
between the words. This newly obtained
representation can be used for better un-
derstanding and thus improving the em-
bedding algorithm and exhibits semantic
meaning, so it can also be utilized in a va-
riety of language processing tasks like cat-
egorization or measuring similarity.

1 Introduction

There are different ways to assess word embed-
dings (Yaghoobzadeh and Schütze, 2016). While
some authors focus on general properties, as for
example Levy et al. (2015) or Hashimoto et al.
(2016), most evaluations are with respect to spe-
cific tasks. Examples of the latter include the
works by Baroni et al. (2014), Schnabel et al.
(2015), or Rothe and Schütze (2016), to name but
a few. The objective of this paper is to intro-
duce a method for getting a grasp of the global
structure of embeddings, which is different from
general schemes for dimensionality reduction like
t-SNE (Maaten and Hinton, 2008), the methods
summarized by Van Der Maaten et al. (2009), or
visualization interfaces such as Roleo (Sayeed
et al., 2016) and GoWvis (Tixier et al., 2016). The
method presented here is a specific way of cluster-
ing (a field nicely reviewed by Jain et al. (1999))
that works particularly well for the current objec-
tive.

We present a global analysis of the statistical
properties of the embedding space. This is based
on the output of the well-known word2vec pro-
gram (Mikolov et al., 2013), using the example
of the dataset published alongside the source code
on the web1, which was generated with the skip-
gram model with negative sampling. This dataset
was trained on parts of the English Google news
corpus and consists of 3,000,000 words with 300-
dimensional embedding vectors. First, densities
in the embedding space will be explored. Based
on that a parameter free hierarchical graph-based
clustering approach is developed that is the basis
of a tool that allows to explore the neighborhood
of a term of interest.

The paper is structured as follows: After a quick
discussion of statistical properties of the dataset,
the concept of the graphical neighborhood hierar-
chy is explained. Specific properties of the result-
ing graphs are brought into the context of pecu-
liarities of the dataset for showing that this repre-
sentation is particularly well-suited. Finally, the
semantic properties of the graphs are briefly eval-
uated.

2 Properties of Embedding Spaces

First, a look at global statistics of the dataset lays
a basis for justifying later choices and interpreting
the hierarchy. Herein, special care must be taken
with respect to effects of the high dimensionality.

The distribution of the values of single vector
components all look very similar and peak clearly
at the origin, but they exhibit relatively heavy tails.
The distribution of the L2-norm2 of the embedding
vectors can be seen in fig. 1, both for all and rare
words, where the latter are those that are not found

1https://code.google.com/archive/p/
word2vec/

2For a discussion of the choice of distance function, see
section 3.2 below.
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in the 1 billion word corpus (Chelba et al., 2013).
Even though the curves show a drop at the origin
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Figure 1: Probability densities for finding a word
vector with the given norm, for all and rare words
(left axis, density for rare words rescaled for re-
flecting proportion) and plot of the resulting aver-
age density at the respective distance to the origin
(right axis).

and a clear peak at slightly above one, they are
mostly a consequence of the high dimensionality
of the embedding space. This becomes apparent
in the plot of the actual average density (words per
volume) at a given distance from the origin (also
fig. 1), which decreases very rapidly and mono-
tonically. It can be concluded that embedding vec-
tors are highly concentrated around the origin, but
that common words tend to lie at an intermediate
distance to the origin and do not fully follow the
general distribution.

Next, a principle component analysis can be
done in order to evaluate how isotropic the dataset
actually is. It reveals that the largest and smallest
eigenvalues are only about an order of magnitude
apart and that the top 20 percent of eigenvalues
account for roughly 50 percent of the total vari-
ance in the dataset. While this is clearly not fully
isotropic, there appear to be no directions that are
completely superfluous. For the global picture, ap-
proximate isotropy is thus a fairly reasonable as-
sumption.

To complete the general statistical exploration
of the embedding space we want to look at spe-
cific word classes (common nouns, verbs and ad-
jectives) versus other words that belong to none of
these classes. We also want to explore the impact
of the word frequency on the position in the em-
bedding space. Figure 2 gives the results. The first
– however non-surprising – observation is that the
center of the embedding space is made up of low
frequency words that are not nouns, verbs or ad-
jectives. These three POS classes densely popu-

late the surface of a 300 dimensional sphere in a
distance of three to four from the center of the em-
bedding space. Exploring this rim in more detail
is most interesting for applications. For this we
will develop a parameter free method to study the
vicinity of a word of interest to the user of the tool.
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Figure 2: Probability density for finding an em-
bedding vector of a word of given frequency and a
given L2-norm and thus distance from the origin.
Note that the density is given in log-scale.

3 Nearest Neighbor Graph

Consider a set of embedding vectors W that is
equipped with a distance function d : W ×W →
R+

0 . The nearest neighbor graph (NNG) on W
is a directed weighted graph where each vertex v
has outdegree one and is connected to its nearest
neighbor w = arg minw′ d(v, w′), with the weight
corresponding to the distance. In case of ambi-
guity, the nearest neighbor has to be selected via
additional criteria or randomly. Note that the near-
est neighbor relation need not be reciprocal. The
k-NNG which incorporates the notion of k near-
est neighbors can be defined in a similar way, but
it lacks most of the nice properties of the simple
NNG, some of which will be discussed next.

Naive implementations for nearest neighbor
search scale quadratically with the number n =
|W| of nodes, however, O(n log n)-solutions are
available (Sankaranarayanan et al., 2007), whose

31



efficiency depends on the dimensionality of W .
Thus, in particular for high-dimensional spaces,
approximate nearest neighbor search may be much
more efficient (Muja and Lowe, 2009).

3.1 Clusters
Here, the weakly connected components of an
NNG are denoted as clusters. That is to say, there
is a path between every two vertices within a clus-
ter, if the direction of the edges is ignored. It can
readily be seen that each cluster must have exactly
one cluster root, which is a pair of vertices that see
each other as their nearest neighbor. Apart from
that, there cannot be any cycles in a cluster, so it
can be considered as two trees each of which is
rooted in one vertex of the cluster root. This tree-
like and very clear structure of the clusters makes
them interesting for our purposes. Example clus-
ters extracted from the NNG of the word2vec
dataset are depicted in fig. 5, which will be dis-
cussed below.

3.2 Choice of Distance Function
The particular choice of a distance function d may
drastically affect the form of an NNG. In general,
it is advantageous if d has the properties of an ac-
tual metric, because then it corresponds closely to
the human notion of a distance which makes it eas-
ier to interpret the results.

For a variety of additional reasons, here, the
classical Euclidean distance

dE(v, w) :=
√∑

i

(vi − wi)2 (1)

is chosen. Most importantly, dE is invariant under
orthogonal transformations (rotating and flipping),
which goes well with the apparent isotropy of the
embedding space. With this distance function, no
particular component or direction is given more at-
tention than another. Besides that, the Euclidean
distance is relatively cheap and easy to compute
and there is a lot of literature on specialized meth-
ods for finding NNGs with this metric. Further-
more, dE is loosely related to the cosine similarity
that is used as the main ingredient during the train-
ing of the embedding mapping.

4 Neighborhood Hierarchy

By means of an NNG, the local structure between
the words within each of its clusters can be un-
derstood fairly well, but any information about

the relationship between different clusters is com-
pletely lost. In order to deal with that, the sim-
ple NNG can be extended via a neighborhood hi-
erarchy (NH), which adds information about the
neighborhood relation between clusters, clusters
of cluster and so on. A sketch of the first two lev-
els of such a hierarchy is given in fig. 3. Each clus-
ter is equipped with what could be called a macro
vertex, which might for example be the mean of
the vertices in the cluster, the center of the cluster
root, or the most frequent (and thus hopefully most
important) word in the cluster. Then the NNG of
the macro vertices can be determined. This leads
to new clusters, new macro vertices, another NNG
and so forth, till the top level is reached, which
contains only one cluster of macro vertices. In or-
der to make the whole hierarchy browsable, the
macro vertices can be given a clearer meaning by
assigning one representative word to each of them.
This word might for example be the nearest one to
the macro vertex or the most frequent word in the
cluster.

While the nearest neighbor relationship alone
is somewhat problematic, as small changes in
the dataset may result in huge differences in the
cluster layout (in particular in high-dimensional
spaces), the hierarchy smooths this effect away to
some degree, as lower-level flipping between clus-
ters will probably not affect higher level clusters.

(a) 1st level (words)

(b) 2nd level (macro vertices)

Figure 3: Sketch of a cluster hierarchy. The mas-
sive dots are the centers of mass of the clusters of
small dots and form a cluster themselves.

5 Hierarchy of Vector Embeddings

The method from the previous section can now be
applied to the set of embedding vectors. The word
vectors form clusters and the macro vertices in-
troduced above can be seen as generic or in some
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way paraphrasing terms for the words in their clus-
ter (see section 6 for semantic evaluation), under
the given premise that similar words are mapped
to nearby vectors. The NH produces a partitioning
of the vector space in the spirit of a Voronoi dia-
gram at various levels of coarseness and can thus
be used to navigate through the otherwise hard to
grasp high-dimensional space.

5.1 General Properties of the Hierarchy
The NH of the word2vec dataset has a total of
six levels. The first level contains the words them-
selves, higher levels comprise macro vertices as
described above. General properties of the graphs
on the different levels are given in table 1. In ac-
cordance with the hierarchical structure, the num-
ber of words and thus the number of clusters de-
crease exponentially.

Typical characteristics of the graphs are
strongly influenced by the fact that the graphs are
NNGs. As each cluster has one root and each of
the n vertices has out-degree one, the reciprocity

r :=
#reciprocal edges

n
(2)

is proportional to the inverse of the average num-
ber of words per cluster. The more elaborate mea-
sure of reciprocity ρ introduced by Garlaschelli
and Loffredo (2004) reduces to

ρ =
r(n− 1)− 1

n− 2
≈

n�1
r (3)

and is thus almost the same as r for the larger
graphs. Note that the expression (3) is not defined
for the sixth level. ρ is rather low compared to
other natural networks, but interestingly it lies just
in the range of other word networks (Garlaschelli
and Loffredo, 2004).

Here, the depth d of the graphs for a specific
leaf is the number of edges between the leaf and
the respective cluster root. The average of d over
all leafs and the maximum value of d are presented
in table 1. While max(d) decreases exponentially,
possibly in accordance with the shrinking of the
cluster size, particularly the constancy of the mid-
level ∅d is striking and a sign of two contrary pro-
cesses. The longer connections on the lower levels
are compensated for by more small connections,
or, in other words, the smaller high-level clusters
are more regular in terms of their depths.

On all levels, the NNGs appear to be scale
free (Barabási and Bonabeau, 2003), with the con-
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Figure 4: Log-log scatter plot of the number of
times a first-level vertex has a particular indegree.
While this point cannot be represented in the chart,
there are about 1.8× 106 vertices with an indegree
of 0 in the NNG.

level 1 2 3 4 5 6

# words 3·106 99,884 6750 540 55 2
# clusters 99,884 6750 540 55 2 1
∅ w./cl. 30.0 14.8 12.5 9.8 27.5 2.0
r 0.067 0.14 0.16 0.20 0.073 1.0
ρ 0.067 0.14 0.16 0.20 0.055 –
∅ d 6.6 2.5 2.5 2.5 2.4 –
max(d) 25 16 10 6 4 –

Table 1: General properties of the NH of the
word2vec dataset. In the third row, the aver-
age number of words per cluster is given. See sec-
tion 5.1 for definitions of the other quantities.

straint that the higher-level graphs contain too lit-
tle vertices for making a definite statement about
that. Exemplarily, this feature can be seen for the
first-level graph in fig. 4. Scale freeness is pri-
marily associated to processes in which new ver-
tices are attached preferably to those existing ver-
tices that already have a large indegree. In the
current context this sheds a light on the behav-
ior of the learning algorithm, specifically because
scale freeness is encountered on all levels. A pos-
sible interpretation is that the algorithm leads to
a multi-level attaching of words and groups of
words while trying to put similar words as close
to each other as possible. Interestingly, different
semantic networks exhibit the scale-free property,
too (Steyvers and Tenenbaum, 2005).

5.2 Examples of Clusters

Examples of first-level clusters extracted from the
word2vec dataset can be found in fig. 5. At this
point, only the surface can be scratched, because
there are thousands of such clusters and many of
them are interesting in some way.

The dataset contains a pretty raw set of words;
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Figure 5: Example clusters from actual dataset,
with cluster roots marked gray. The most frequent
word of the cluster is chosen as the macro vertex
and given in the description.

proper names, capitalized or inflected words, mis-
spellings, or fillers have not been stripped from
the data. From the context-based training method
(Mikolov et al., 2013) it can be expected that syn-
tactically similar words end up close to each other,
which is indeed seen in the NH, as in fig. 5c, where
fillers and certain discourse items, all of them cap-
italized, form a cluster. This might also explain
that only plural forms have gathered in fig. 5a.
While this often means that connected items are
also semantically similar, antonyms like “drops”
and “skyrockets” in fig. 5b are frequently close
to each other due to their similar syntactic roles.
Despite such problems, it must be stressed that
fig. 5 is not the result of extensive cherry picking,
but that semantically meaningful clusters are the
rule, even if the large number of proper names and

more or less meaningless padding words some-
times shadow the more interesting clusters.

After this glance at some first-level clusters, an
example of the actual hierarchy is shown in fig. 6.
On the lowest levels, the words are closely related
to their neighbors and the words in their parent
clusters, just as it has been the case in fig. 5. This
is still the case on the next levels, but, in general,
the higher one gets in the hierarchy, the looser the
connection to the words on the lower levels, be-
cause a lot of words are collected beneath a spe-
cific high-level word and not all of them can be
equally suitable. In the specific situation in fig. 6,
the words on the third level are mostly related to fi-
nance and economy and the same accounts for the
fourth level, with more and more rather unspecific
words in between. Revealing this is just what the
hierarchy is good for: The fact that “index”-related
words are collected in the “financial region” of the
embedding space is not self-evident. If the em-
beddings would not have been trained on a news
corpus but on scientific resources, the position of
the word “index” would very likely be a different
one.

Here, the primary purpose of the NH is getting a
better understanding of embeddings and the mean-
ing of the relations in the NH must therefore not
be over-interpreted, because they explicitly have
to be left as unaltered as possible for making them
good representatives of the raw dataset. Specific
relations can often (see below) but not necessar-
ily be transferred into a semantic order, as can ex-
emplarily be seen in fig. 5a, where kinship rela-
tions are not organized as one would probably put
them. However, this is what the dataset looks like
in terms of geometrical neighborhood. If certain
words are positioned in a different way from what
could be expected, this does not mean that the
clustering went wrong, but rather that something
interesting happened in the embedding space.

5.3 Geometry of Clusters

The neighborhood relation gives a good view of
the relative positioning of the words, but the ge-
ometry of the clusters and their orientation in the
vector space is mostly veiled. Luckily, certain
statistics reveal that there is much regularity in the
shape of the clusters, so that the cluster alone con-
tains enough information for telling where a spe-
cific word is likely to be found.

For each pair of embedding vector v and the
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Figure 6: Example of relations between clusters on the three lowest levels of the hierarchy. The dashed
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Lines ending in a circle indicate the connection between macro vertices and their clusters.

respective nearest neighbor w, the radiality R ∈
[−1, 1] of this nearest neighbor relation can be de-
fined as the normalized scalar product between v
and the difference vector between w and v via

R :=
v · (w − v)
|v||w − v| . (4)

Positive values of R mean, that w lies farther away
from the origin than v, while negative values im-
ply the opposite. In fig. 7, the probability density
for finding a certain value for R is shown. It can be
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Figure 7: Radiality R, as defined in (4).

concluded that for the data at hand, the neighbor-
hood relation on all levels strongly tends to point
“inward”, i.e. towards the origin of the embedding
space. In other words, it is almost certain, that the
nearest neighbor of a word vector lies closer to the
origin of the coordinate system than the word vec-
tor itself. On this basis and as the clusters are ba-
sically trees that grow away from the cluster root,
it can be expected that the cluster roots typically
lie near to the origin, compared to the other ver-
tices in the respective cluster. This can be checked
by plotting the probability density for finding a

cluster with a given percentage of vertices that are
farther away from the origin than the cluster root
(Figure 8). As expected, in most clusters the ma-
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Figure 8: Probability density for finding clusters
where the given percentage of vertices lie farther
away from the origin than the cluster root.

jority of vertices tends to lie farther outside than
the cluster root. Nevertheless, the probability den-
sity shows little bumps around fractions of small
integers like 1

3 , 1
2 , or 2

3 . These are mostly due to
small clusters, for which the position of the cluster
root within the cluster seems to be less predictable.
However, these clusters contain only a small frac-
tion of all words and their structure is easy to
understand anyway. If only relatively large clus-
ters are taken into account, the probability density
peaks much more strongly around the value 1.

Taking all this into account, and even though
there is no notion of geometry in the NNG, the
meaning of clusters like those in fig. 5 becomes
much more transparent: The root is very likely the
closest vertex to the origin and the other vertices
are successively farther outside. For example,
the representation vectors of the words “falling”,
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“Falling”, “Plummeting”, and “Plunging” have an
increasing L2-norm or distance from the origin
and they form a chain in the graph in fig. 5b. Only
a bit additional information about the position of
the root is thus sufficient for getting an idea of the
position and orientation of the whole cluster.

6 Evaluation

The focus of this paper is on the analysis of em-
beddings. Nevertheless, as already mentioned
above, the findings presented in the previous sec-
tions indicate that the NH might be used for NLP
tasks beyond visualization of word embeddings or
other large high-dimensional datasets, because the
neighborhood and macro vertex relations appear
to be connected to semantical relations between
the words, particularly on the lower levels. Pos-
sible tasks that directly come to mind are mea-
suring relatedness or similarity, various kinds of
tagging, and classification. In contrast to typi-
cal semantical frameworks like WordNet (Miller,
1995) or FrameNet (Baker et al., 1998) whose
creation requires extensive human resources, the
NH can be created without expert knowledge in a
very short time and has the capability of including
much more words.

Zesch and Gurevych (2007) analyze graphs ex-
tracted from Wikipedia3 and summarize a variety
of methods for evaluating semantical relations. In
this spirit and for a first and quick quantitative
view at the NH, similarity between neighbors in
the graph and between words and their macro ver-
tex are tested by calculating the respective Wu-
Palmer similarity scores (Wu and Palmer, 1994)
on WordNet (Miller, 1995). Other scores basi-
cally lead to similar results and are thus not dis-
cussed in more detail. Because the number of
words in WordNet is much smaller than that in the
dataset under consideration, the analysis is limited
to those words that can be found in both datasets,
which amounts to 54,586 words. For that to be
possible, a NH of these words alone is used, which
is distinct from the full hierarchy discussed above.
The usefulness of these results for a much smaller
dataset can be justified by envisioning that the
sparser NNG must roughly be a skeleton of the
full graph for geometrical reasons and must thus
be related to the latter. Besides that, quantifying
similarity on the smaller graph is interesting in its
own right.

3http://www.wikipedia.org

The results for the first four levels of the NH
are shown in fig. 9. Intuitively, the semantic rela-
tions between neighbors or words and macro ver-
tices are expected to be stronger, if more “proba-
bility mass” can be found on the right side of the
plot, because then more relations correspond to a
higher similarity. In order to clarify the meaning
of the curves, a baseline curve is added that corre-
sponds to an equivalent evaluation of random word
pairs.

Both the neighborhood relation and the macro
vertex assignment yield noticeably better results
than the baseline. In accordance with earlier re-
marks, the curves confirm that the semantical sig-
nificance of the hierarchy is much higher on the
lower levels. While the first and the second level
appear to exhibit a large amount of meaningful re-
lations, the higher levels are not much better than
the baseline.
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Figure 9: Evaluation of similarity. The curves
represent the probability density of finding a cer-
tain Wu-Palmer similarity between the respective
words. The baseline peaks at (0,6.8) but is cut off
for clarity of the other curves.

7 Conclusion and Outlook

In this paper we have presented a general graph-
based method for the analysis of embedding
spaces. At the heart lies a neighborhood hier-
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archy (NH), a parameter free, flexible and gen-
eral concept for clustering data in arbitrary spaces,
which eliminates the problem of interpreting high-
dimensional vectors while preserving the most im-
portant geometric information. In order to get a
better understanding of the data, a variety of sta-
tistical properties of word embeddings has been
evaluated. First evidence of the semantic signifi-
cance of the NH has been established by relating
it to WordNet data.

This method of analysis will allow researchers
to interactively explore the neighborhood relations
in an embedding space. This will enable them not
only to get a better intuition of the structure of em-
bedding spaces but will also give them new ideas
on how to incorporate embeddings in natural lan-
guage processing tasks like information extraction
or other tasks that require semantic knowledge.
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Abstract

In this paper, we propose a novel method
for multimodal word embedding, which
exploit a generalized framework of multi-
view spectral graph embedding to take into
account visual appearances or scenes de-
noted by words in a corpus. We evalu-
ated our method through word similarity
tasks and a concept-to-image search task,
having found that it provides word repre-
sentations that reflect visual information,
while somewhat trading-off the perfor-
mance on the word similarity tasks. More-
over, we demonstrate that our method cap-
tures multimodal linguistic regularities,
which enable recovering relational simi-
larities between words and images by vec-
tor arithmetic.

1 Introduction

Word embedding plays important roles in the field
of Natural Language Processing (NLP). Many ex-
isting studies use word vectors for various down-
stream NLP tasks, such as text classification,
Part-of-Speech tagging, and machine translation.
One of the most famous approaches is skip-gram
model (Mikolov et al., 2013), which is based on a
neural network, and its extensions have also been
widely studied as well.

There are alternative approaches depending on
a spectral graph embedding framework (Yan et al.,
2007; Huang et al., 2012) for word embedding.
For examples, Dhillon et al. (2015) proposed a
method based on Canonical Correlation Analysis
(CCA) (Hotelling, 1936), while a PCA based word
embedding method was proposed in Lebret and
Collobert (2014).

∗ This work was partially supported by grants from Japan
Society for the Promotion of Science KAKENHI (16H02789)
to HS.

In recent years, many researchers have been
actively studying the use of multiple modalities
in the fields of both NLP and computer vision.
Those studies combine textual and visual informa-
tion to propose methods for image-caption match-
ing (Yan and Mikolajczyk, 2015), caption gen-
eration (Kiros et al., 2014), visual question an-
swering (Antol et al., 2015), quantifying abstract-
ness (Kiela et al., 2014) of words, and so on.

As for word embedding, multimodal versions of
word2vec (Mikolov et al., 2013) have been pro-
posed in Lazaridou et al. (2015) and Kottur et al.
(2016). The first one jointly optimize the objec-
tive of both skip-gram model and a cross-modal
objective across texts and images, and the latter
uses abstract scenes as surrogate labels for captur-
ing visually grounded semantic relatedness. More
recently, Mao et al. (2016) proposed a multimodal
word embedding methods based on a recurrent
neural network to learn word vectors from their
newly proposed large scale image caption dataset.

In this paper, we introduce a new spectral graph-
based method of multimodal word embedding.
Specifically, we extend Eigenwords (Dhillon et al.,
2015), a CCA-based method for word embedding,
by applying a generalized framework of spectral
graph embedding (Nori et al., 2012; Shimodaira,
2016). Figure 1 shows a schematic diagram of our
method.

In the rest of this paper, we call our method
Multimodal Eigenwords (MM-Eigenwords).
The most similar existing method is Multimodal
Skip-gram model (MMskip-gram) (Lazaridou
et al., 2015), which slightly differ in that our
model can easily deal with many-to-many rela-
tionships between words in a corpus and their
relevant images, while MMskip-gram only con-
siders one-to-one relationships between concrete
words and images.

Using a corpus and datasets of image-word rela-
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Figure 1: Our proposed method extends a CCA-
based method of word embedding by means of
multi-view spectral graph embedding frameworks
of dimensionality reduction to deal with visual in-
formation associated with words in a corpus.

tionships, which are available in common bench-
mark datasets or on online photo sharing services,
MM-Eigenwords jointly learns word vectors on
a common multimodal space and a linear map-
ping from a visual feature space to the multimodal
space. Those word vectors also reflect similarities
between words and images.

We evaluated the multimodal word representa-
tions obtained by our model through word sim-
ilarity task and concept-to-image search, having
found that our model has ability to capture both
semantic and word-to-image similarities. We also
found that our model captures multimodal linguis-
tic regularities (Kiros et al., 2014), whose exam-
ples are shown in Figure 2b.

2 Multi-view Spectral Graph Embedding

A spectral graph perspective of dimensionality re-
duction was first proposed in Yan et al. (2007),
which showed that several major statistical meth-
ods for dimensionality reduction, such as PCA and
Eigenmap (Belkin and Niyogi, 2003), can be writ-
ten in a form of graph embedding frameworks,
where data points are nodes and those points have
weighted links between other points. Huang et al.
(2012) extended this work for two-view data with
many-to-many relationships (or links) and showed
that their two-view graph embedding framework
includes CCA, one of the most popular method
for multi-view data analysis, as its special cases.

However, available datasets may have more than
two views with complex graph structures, which
are unmanageable for CCA or Multiset CCA (Ket-
tenring, 1971) whose inputs must be fed in the
form of n-tuples.

Shimodaira (2016) further generalized the
graph embedding frameworks to deal with many-
to-many relationships between any number of
views, and Nori et al. (2012) also proposed an
equivalent method for multimodal relation predic-
tion in social data. This generalized framework
is used to extend Eigenwords for cross-lingual
word embedding (Oshikiri et al., 2016), where vo-
cabularies and contexts of multiple languages are
linked through sentence-level alignment. Our pro-
posed method also makes use of the framework
of Shimodaira (2016) to extend Eigenwords for
multimodal word embedding.

3 Eigenwords (One Step CCA)

Canonical Correlation Analysis (Hotelling, 1936)
is a multivariate analysis method for finding
optimal projections of two sets of data vec-
tors by maximizing the correlations. Apply-
ing CCA to pairs of raw word vectors and raw
context vectors, Eigenwords algorithms attempt
to find low-dimensional vector representations of
words (Dhillon et al., 2015). Here we explain the
simplest version of Eigenwords called One Step
CCA (OSCCA).

We have a corpus consisting of T tokens;
(ti)i=1,...,T , and the vocabulary consisting of V
word types; {vi}i=1,...,V . Each token ti is drawn
from this vocabulary. We define a word matrix
V ∈ {0, 1}T×V whose i-th row encodes the to-
ken ti by 1-of-V representation; the j-th element
is 1 if the word type of ti is vj , 0 otherwise.

Let h be the size of context window. We de-
fine context matrix C ∈ {0, 1}T×2hV whose i-th
row represents the surrounding context of the to-
ken ti with concatenated 1-of-V encoded vectors
of (ti−h, . . . , ti−1, ti+1, . . . , ti+h).

We apply CCA to T pairs of row vectors of V
and C. The objective function of CCA is con-
structed using V⊤V, V⊤C, C⊤C which rep-
resent occurrence and co-occurrence counts of
words and contexts. In Eigenwords, however, we
use CV V ∈ RV×V

+ , CV C ∈ RV×2hV
+ , CCC ∈

R2hV×2hV
+ with the following preprocessing of

these matrices before constructing the objective
function. First, centering-process of V and C is
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Figure 2: Examples of word-to-image search (a) and demonstrations of vector arithmetics between words
and images (b). We chose η = 106 in these examples.

omitted, and off-diagonal elements of C⊤C are
ignored for simplifying the computation of in-
verse matrices. Second, we take the square root
of the elements of these matrices for “squash-
ing” the heavy-tailed word count distributions. Fi-
nally, we obtain vector representations of words as
C−1/2

V V (u1, . . . , uK), where u1, . . . , uK ∈ RV are
left singular vectors of C−1/2

V V CV C C−1/2
CC corre-

sponding to the K largest singular values.
For the fast and scalable computation, Dhillon

et al. (2015) employed the method of Halko et al.
(2011) which use random projections to compute
singular value decomposition of large matrices.

4 Multimodal Eigenwords

In this section, we introduce Multimodal Eigen-
words (MM-Eigenwords) by extending the CCA
based model of Eigenwords to obtain multimodal
representations across words and images.

Suppose we have Nvis images, and each image
is associated with multiple tags (or words). These
associations are denoted by w̃ij ≥ 0 (1 ≤ i ≤
V, 1 ≤ j ≤ Nvis), whose value represents the
strength of a relationship between the i-th word
and the j-th image. In this study, for example,
w̃ij = 1 if the j-ith image has the i-th word as
its tag, whereas w̃ij = 0 otherwise, and we de-
fine a matrix W̃V X = (w̃ij). In addition, we de-
note a image feature matrix by Xvis ∈ RNvis×pvis

and its i-th row vector xi, as well as row vec-
tors of V, C by vi, ci respectively. Here, the
goal of MM-Eigenwords is to obtain multimodal
representations by extending the CCA in Eigen-
words with generalized frameworks of multi-view
spectral graph embedding (Nori et al., 2012; Shi-
modaira, 2016), which include CCA as their spe-
cial cases. In these frameworks, our goal can be at-

tained by finding an optimal linear mappings to the
K-dimensional multimodal space AV , AC , Avis

that minimize the following objective with a scale
constraint.

T∑
i=1

∥viAV − ciAC∥2
2

+
T∑

i=1

Nvis∑
j=1

ηwij∥viAV − xjAvis∥2
2, (1)

where wij = (VW̃V X)ij , and the multimodal
term coefficient η ≥ 0 determines to which extent
the model reflects the visual information. Consid-
ering a scale constraint, Eq. (1) can be reformu-
lated as follows:

We first define some matrices

X =

V O O
O C O
O O Xvis

 ,W =

 O IT WV X

IT O O
W⊤

V X O O

 ,

M = diag(W1),A⊤ = (A⊤
V ,A⊤

C ,A⊤
vis),WV X = (ηwij),

then the optimization problem of Eq. (1) can be
written as

max
A

Tr
(
A⊤X⊤WXA

)
subject to A⊤X⊤MXA = IK . (2)

Similar to Eigenwords, we squash X⊤WX and
X⊤MX in Eq. (2) by replacing them with H, G
respectively, which are defined as follows.

H =

 O CV C ηCV V W̃V XXvis

C⊤V C O O

ηX⊤
visW̃

⊤
V XCV V O O

 ,

G =

(
GV V O O
O CCC O
O O Gvis

)
,

41



where diag(v) is a diagonal matrix aligning v as
its diagonal elements, sqrt(·) represents element-
wise square root, the vectors m, n are defined as
m = sqrt(V⊤1), n = ηW̃V X1, ◦ represents
element-wise product, and

GV V = CV V + diag(m ◦ n),

Gvis = ηX⊤
visdiag(W̃

⊤
V Xm)Xvis.

Consequently, our final goal here is to find
an optimal linear mapping which maxi-
mizes Tr(A⊤HA) subject to A⊤GA = IK ,
and this problem reduces to a general-
ized eigenvalue problem Ha = λGa.
Hence, we can obtain the optimal solution as
Â
⊤

= (Â
⊤
V , Â

⊤
C , Â

⊤
vis) = G−1/2(u1, . . . , uK),

where u1, . . . , uK are eigenvectors of
(G−1/2)⊤HG−1/2 for the K largest eigenvalues.
Note that we obtain the word representations
as the rows of ÂV , as well as a linear mapping
from the visual space to the common multimodal
space Âvis, and that when visual data Xvis is
omitted from the model, Eq. (2) is equivalent to
CCA, namely, the ordinary Eigenwords. There
are several ways to solve a generalized eigenvalue
problem. In this study, we employed a randomized
method for a generalized Hermitian eigenvalue
problem proposed in Saibaba et al. (2016).

Silberer and Lapata (2012) also uses CCA to
obtain multimodal representations, which asso-
ciates term-document matrix representing word
occurrences in documents and perceptual matrix
containing scores on feature norms (or attributes)
like “is brown”, “has fangs”, etc. This model is
not considering any recent developments in word
embedding. In addition, the feature norms are
expensive to obtain, and hence we cannot expect
them for a large number vocabularies. Besides,
images relevant to a given word are more easy to
collect.

5 Experiments

5.1 Dataset
In our experiment, we used English Wikipedia
corpus (2016 dump)1, which consists of ap-
proximately 3.9 billion tokens. We first used
the script provided by Mahoney2 to clean up
the original dump. Afterward, we applied
word2phrase (Mikolov et al., 2013) to the original

1https://dumps.wikimedia.org/enwiki/
2http://mattmahoney.net/dc/textdata.html

corpus twice with a threshold value 500 to obtain
multi-term phrases.

As for visual data, we downloaded images from
the URLs in the NUS-WIDE image dataset (Chua
et al., 2009), which also provides Flickr tags of
each image. Although Flickr tags associated with
each image could be very noisy and have vary-
ing abstractness, they provides a rich source of
many-to-many relationships between images and
words. Since we were interested in investigating if
the large, but noisy web data would play a role as
a helpful source for multimodal word representa-
tions, we omitted preprocessing like manually re-
moving noisy tags or highly abstract tags.

The images were converted to 4096-dim fea-
ture vectors using the Caffe toolkit (Jia et al.,
2014), together with a pre-trained3 AlexNet
model (Krizhevsky et al., 2012). These feature
vectors are the output of the fc7 layer on the
AlexNet. We randomly selected 100k images for
a training set.

5.2 Word Similarity Task

We compared MM-Eigenwords against Eigen-
words and skip-gram model through word simi-
larity tasks, a common evaluation method of vec-
tor word representations. In our experiments, we
used MEN (Bruni et al., 2014), SimLex (Hill et al.,
2015), and another semantic similarity (Silberer
and Lapata, 2014) denoted as SemSim, which pro-
vide 3000, 999, and 7576 word pairs respectively.
These datasets provide manually scored word sim-
ilarities, and the last one also provides visual sim-
ilarity scores of word pairs denoted as VisSim.
As for model-generated word vectors, the seman-
tic similarity between two word vectors was mea-
sured by cosine similarity, and we quantitatively
evaluated each embedding method by calculating
Spearman correlation between model-based and
human annotated scores.

5.3 Concept-to-Image Search

We also evaluated the accuracy of concept-to-
image search to investigate the extent to which our
multimodal word representations reflect visual in-
formation. In this experiment, we used 81 man-
ually annotated concepts provided in NUS-WIDE
dataset as queries. In addition, we randomly se-
lected 10k images which are absent during the
training phase as test-images and used Âvis to

3
https://github.com/BVLC/caffe/tree/master/models/
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Word Simliarity Task Concept-to-Image Search
Method η MEN SimLex SemSim VisSim P@1 P@5 P@10

Skip-gram 0.77 0.40 0.67 0.54
Eigenwords 0.75 0.45 0.68 0.58
MM-Eigewords 0.01 0.77 0.41 0.71 0.57 0.21 0.23 0.22
MM-Eigewords 0.1 0.78 0.38 0.72 0.57 0.14 0.14 0.14
MM-Eigewords 1 0.74 0.34 0.72 0.57 0.12 0.14 0.14
MM-Eigewords 104 0.66 0.21 0.37 0.34 0.44 0.39 0.37
MM-Eigewords 106 0.61 0.20 0.29 0.29 0.53 0.47 0.49

Table 1: Spearman correlations between word similarities based on the word vectors and that of the
human annotations, and the right part shows the accuracies of concept-to-image search evaluated by
precision@k.

project them to the textual space, on which top-
match images were found by cosine similarities
with the query vectors. We evaluated the accu-
racies of image search by precision at 1, 5, and
10, averaged over all query concepts, while vary-
ing the value of the multimodal term coefficient η
in Eq. (1).

6 Results

For Eigenwords and MM-Eigenwords, we set the
number of word types to V ≈ 140k, including 30k
most frequent vocabularies, words in the bench-
marks, and Flickr tags associated with training-
images, and we set the number of power itera-
tion to 3. As for skip-gram model, we set the
subsampling threshold to 10−5, number of neg-
ative examples to 5, and training iterations to 5.
In addition we fixed the dimensionality of word
vectors to K = 500, and the context window
size to h = 4 for every methods. As mentioned
in Section 1, one of the most related methods is
MMSkip-gram, against which we should compare
MM-Eigenwords. However, since we could not
find its code nor implement it by ourselves, a com-
parative study with MMSkip-gram is not included
in this paper.

Table 1 shows the results of the word similarity
tasks. As we can see in the table, with smaller
η, the performance on word-similarity tasks of
MM-Eigenwords is similar to that of Eigenwords
or skip-gram model, whereas poor results on the
concept-to-image search task. On the other hand,
larger η helps improve the performance on the
concept-to-image search while sacrificing the per-
formances on the word similarity tasks. These
results implies that too strongly associated visual
information can distort the semantic structure ob-
tained from textual data. Despite some similar ex-

isting studies showed positive results with auxil-
iary visual features (Lazaridou et al., 2015; Kiela
and Bottou, 2014; Hill et al., 2014), our results
achieved less improvements in the word-similarity
tasks, indicating negative transfer of learning.

However, the visual informative word vectors
obtained by our method enable not only word-to-
word but also word-to-image search as shown in
Figure 2a, and the many-to-many relationships be-
tween images and a wide variety of tags fed to
our model contributed to the plausible retrieval re-
sults with the sum of two word vectors as their
queries (e.g. “bird” + “flying” ≈ images of flying
birds). Moreover, the word vectors learned with
our model capture multimodal linguistic regulari-
ties (Kiros et al., 2014). We show some examples
of our model in Figure 2b.

7 Conclusion

In this paper, we proposed a spectral graph-based
method of multimodal word embedding. Our ex-
perimental results showed that MM-Eigenwords
captures both semantic and text-to-image similari-
ties, and we found that there is a trade-off between
these two similarities.

Since the framework we used can be adopted
to any number of views, we could further extend
our method by considering image caption datasets
through employing document IDs like Oshikiri
et al. (2016) in our future works.
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Abstract

This paper introduces a new, graph-
based view of the data of the FrameNet
project, which we hope will make it eas-
ier to understand the mixture of seman-
tic and syntactic information contained in
FrameNet annotation. We show how En-
glish FrameNet and other Frame Semantic
resources can be represented as sets of in-
terconnected graphs of frames, frame ele-
ments, semantic types, and annotated in-
stances of them in text. We display ex-
amples of the new graphical representation
based on the annotations, which combine
Frame Semantics and Construction Gram-
mar, thus capturing most of the syntax and
semantics of each sentence. We consider
how graph theory could help researchers
to make better use of FrameNet data for
tasks such as automatic Frame Semantic
role labeling, paraphrasing, and transla-
tion. Finally, we describe the develop-
ment of FrameNet-like lexical resources
for other languages in the current Multilin-
gual FrameNet project. which seeks to dis-
cover cross-lingual alignments, both in the
lexicon (for frames and lexical units within
frames) and across parallel or comparable
texts. We conclude with an example show-
ing graphically the semantic and syntactic
similarities and differences between paral-
lel sentences in English and Japanese. We
will release software for displaying such
graphs from the current data releases.

1 Overview

In this paper, we provide a new graph-based dis-
play of FrameNet annotation, which we hope will
make the complex data model of FrameNet more

accessible to a variety of users. We begin with
a brief introduction to the Frame Semantics and
the FrameNet project and their underlying graph
structures. Section 3 illustrates how annotation
maps words in sentences to nodes in FrameNet,
showing the struture of a sentence in the new graph
representation. Sect. 4 discusses how the graph
representation could help NLP developers, partic-
ularly w.r.t. automatic semantic role labeling. In
Sect. 5, we introduce the Multilingual FrameNet
project, and what comparisons of frame structures
across languages might reveal by way of another
example sentence in the new format, then discuss
our conclusions and acknowledge support for our
work.

2 Frame Semantics and English
FrameNet

The FrameNet Project [Fillmore and Baker, 2010,
Ruppenhofer et al., 2016] at the International
Computer Science Institute (ICSI) is an ongoing
project to produce a lexicon of English that is
both human- and machine-readable, based on the
theory of Frame Semantics developed by Charles
Fillmore and colleagues [Fillmore, 1997] and sup-
ported by annotating corpus examples of the lexi-
cal items. Although FrameNet (FN) is a lexical re-
source, it is organized not around words, but rather
the roughly 1,200 semantic frames [Fillmore,
1976]: characterizations of events, relations, states
and entities which are the conceptual basis for un-
derstanding the word senses, called lexical units
(LUs). Frames are distinguished by the set of roles
involved, known as frame elements (FEs). Defin-
ing individual lexical units relative to semantic
frames provides a crucial level of generalization
for their meaning and use. Much of the informa-
tion in FN is derived from the more than 200,000
manually annotated corpus sentences; annotators
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not only mark the target word which evokes the
frame, but also those phrases which are syntac-
tically related to the target word and express its
frame elements. FN covers roughly 13,500 LUs,
and provides very rich syntagmatic information
about the combinatorial possibilities of each LU.
Each frame averages about 10 frame elements, and
the same frame can be evoked by words (or mul-
tiword expressions) of any part of speech.

FrameNet frames are connected by eight
types of relations, including full inheritance (IS-
A relation) in which all core FEs are inher-
ited, weaker forms of inheritance (called Us-
ing and Perspective on), and relations between
statives, inchoatives, and causatives. Most
frames are linked in a single large lattice (an-
alyzed in Valverde-Albacete [2008]). The full
graph is difficult to render, but can be browsed
at https://framenet.icsi.berkeley.
edu/fndrupal/FrameGrapher

Animate_being

Sentient

Human

Artifact

Structure

Body_of_water

Running_water

Living_thing Location

Region Point Line

Landform

Physical_entity

[...] Physical_object

Body_part Container

Figure 1: (Partial) FrameNet semantic type hierar-
chy

2.1 Semantic types and their hierarchy

FrameNet also has a small hierarchy of seman-
tic types which can be marked on Frames, FEs
and LUs; a portion is shown in Fig. 1. Many
of the semantic types in FrameNet are similar to
nodes in widely used ontologies, but they are lim-
ited to those which are linguistically important; for
example, most agent FEs (not only those called
“Agent”, but all those descended from the AGENT

FE in the high-level frame Intentionally act) have
the semantic type SENTIENT (Non-sentient ac-
tants receive the FE CAUSE).1 Some semantic

1Matching FE semantic types to fillers is complicated by
phenomena such as metonymy (The White house announced
today . . . ) and personification (She still runs good, but even-
tually she’ll need new tires.), not fully addressed in FN.

types add information which cross-cuts the frame
hierarchy; e.g., POSITIVE JUDGEMENT and NEG-
ATIVE JUDGEMENT are used to separate those
LUs in the frames Judgement, Judgement com-
munication and Judgement direct address that
have positive affect from those with negative af-
fect.

3 Frame Semantic and Construction
Grammar representation of sentence
meaning

The development of Frame Semantics has gone
hand in hand with the development of Construc-
tion Grammar, by Fillmore and a wide range
of colleagues (Michaelis [2010],Feldman et al.
[2010]). FrameNet annotators not only mark
which spans of the corpus sentences instantiate
which Frame Elements, but also the phrase type
(PT) of the constituent that covers that span2 and
the grammatical function (GF, a.k.a. grammatical
relation) between that constituent and the target in-
stance of the lexical unit as a coextensive set of
spans on three annotation “layers”. Additional in-
formation is added on other “layers” indicating the
presence of copulas and other support verbs, the
antecedents of relative clauses, etc. This syntac-
tic information, based on Construction Grammar,
can be combined with the FE labels to form a joint
syntactico-semantic representation of much of the
meaning of a sentence. In graph terms, the annota-
tion process creates a mapping between the string
of characters in the sentence and (1) nodes repre-
senting frame elements in the frame hierarchy and
(2) nodes representing parts of constructions in the
Construction Grammar hierarchy.

We illustrate this with an example sentence ex-
tracted from a TED talk entitled “Do schools kill
creativity?” by Ken Robinson3: The thing they
were good at in school wasn’t valued, or was actu-
ally stigmatized. The graph representation derived
from FrameNet annotation is shown in Fig. 2.4

In this figure, the nodes of the graph are
syntactico-semantic entities (solid borders) or se-
mantic entities (dotted borders) and the words of
the sentence are the terminal nodes of the graph (in
boxes). Each edge specifies the relationship be-
tween nodes, solid black for syntactico-semantic

2Most FEs are in fact constituents.
3https://www.ted.com/talks/ken_

robinson_says_schools_kill_creativity?
4For methods for producing such graphs, see Ellsworth

and Janin [2007].
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Figure 2: Graph of Frame Semantic Annotation of Example English Sentence

relations, and dashed red for purely semantic re-
lations. The graph is organized so that higher
nodes syntactically subsume lower nodes and ar-
rows point from semantic heads to semantic sub-
ordinates. The graph is close to being a tree,
like conventional constituent parses, but contains a
few semantic edges that cross the syntactic edges,
shown with the indexes 1, 2, and 3 (bare numbers
with dashed arcs) which refer to the non-adjacent
nodes NP[1], NP[2], and NP[3] respectively.

The nodes and edges have features represent-
ing the full annotation of the sentence. The large
ovals represent semantics via the names of evoked
frames: Entity, Expertise, Judgement (twice),
Locative relation Local by use, and Negation.
Though not shown in this graph, each frame in-
stance is also linked to the frame hierarchy graph
(Sec. 2). The edges descending from the frames
semantically represent the relations described by
Frame Elements in the same hierarchy. The dot-
ted lines pointing to dotted nodes are links into the
semantic type hierarchy (Sec. 2.1). The syntactic
features of the non-terminal nodes are summarized
by Phrase Type (PT) labels (S, N, NP, V, VP, PP,
etc. with their conventional meanings) and part-of-
speech (not shown). Other features on the edges
are syntactico-semantic categories: T (target, the
word(s) that evokes the frame), RelC (relative
clause), Ant. (antecedent of relative clause), Head
(syntactic and semantic head), Sem H (semantic
head), and Supp (support, a syntactic head).

4 Applications of FrameNet data as a
graph

The ability to separate syntactic and semantic de-
pendency is potentially of use in many tasks in-
volving FrameNet data, including automatic se-
mantic role labeling (ASRL), inferencing, lan-
guage generation, and cross-linguistic compari-
son. Because of the clear representation of syn-
tactic and semantic dependency in the graph (dis-
played in Fig. 2 by vertical position, arrow direc-
tion, and non-local edges), many tasks should be
able to use the graph even without special pro-
cessing for the subtypes of edges, e.g. for relative
clauses as seen under NP[3]. To find out the over-
all meaning of this sentence, one can start from the
“S” node and follow the edges marked “Head” or
“Sem H” to the two instances of the Judgement
frame. From there, the application can drill fur-
ther down as needed, into the frame hierarchy, the
semantic type hierarchy, or the fillers of the frame
roles.

One task in particular that could use the full
power of such graphs is automatic semantic role
labeling (ASRL). The high cost of expert semantic
annotation has spurred interest in building ASRL
systems. Much of this has been based on the Prop-
Bank [Palmer et al., 2005] style of annotation, but
work on Frame Semantic role labelers has contin-
ued, with increasing success (Das et al. [2014],
Roth and Lapata [2015]). These improvements
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Figure 3: Frame Semantic Annotation of Equivalent Japanese Sentence

generally reflect the effort those researchers have
made to understand the FrameNet data in depth,
including dependencies between semantic roles
within a frame, propagation of semantic types
across frames, and dependencies between syntax
and semantics in a specific sentence. When Frame
Element annotation is treated simply as indepen-
dent tags for machine learning (even if syntactic
information is imported from other sources), the
learning algorithms are starved of the information
needed to make smarter generalizations about the
large proportion of the syntactic information about
each lexical unit that is predictable from other lex-
ical units in the frame, other related frames, or
structures of the language as a whole, such as pas-
sivization and relative clause structure. The cur-
rent distribution format of the FrameNet data does
not make this clear. Since FrameNet data is basi-
cally discrete and categorial, treating it as an in-
terlocking set of graphs should enable better use
of all the information, explicit and implicit, in
FrameNet.

5 Multilingual FrameNet

The development of the FrameNet resource at
ICSI has inspired the creation of a number of
Frame Semantics-based projects for other lan-
guages: efforts on Spanish, German, Japanese,
Chinese, Swedish, Brazilian Portuguese, and

French have all received substantial funding, pri-
marily from their national or provincial govern-
ments. The basic research question is: to what ex-
tent are the semantic frames universal and to what
extent are they language-specific? Even if equiva-
lent frames exist in two languages, how much of
the frame structure will be preserved in transla-
tion? If a different frame is used, is it a near neigh-
bor via frame relations in one or both of the lan-
guages? These questions have also been discussed
by, e.g. Boas [2009], Čulo [2013], and Čulo and
de Melo [2012].

The sentence in Fig. 2 is part of an experiment
in annotation of parallel texts; TED talks were
chosen because translations are freely available
in all of these languages. The TED talk trans-
lations are done by volunteers, so they may not
be of professional quality, but this is a common
situation on the web today, which NLP research
has to deal with. In general the TED talk transla-
tions tend to be fairly ”literal”, so we would expect
that the frames would be very similar across lan-
guages. However, frame differences occur even
here. E.g, in the graph of the Japanese translation
of this sentence (shown in Fig. 3), the first con-
junct has the Judgement frame like the English,
but the second instance of Judgement in English
is translated by the frame Labeling in Japanese.
Here the agent of the labeling is the school, pre-
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sumably metonymic for either the faculty, the stu-
dents, or both.5 Thus, the graph representation of
the FrameNet data helps to make clear which parts
of the sentences to compare across languages. We
hope that ultimately such comparisons will lead to
graph-based MT systems that can transfer mean-
ing at a deeper level.

One of the goals of the Multilingual FrameNet
project is to quantify the patterns of frame occur-
rence across varied languages. The new annota-
tion of parallel texts has just begun, so we the
number of instances of frames is still small, but we
can report some suggestive results based on com-
paring the annotation of verbs of motion in two
texts. One is the TED talk, where we have an-
notation for English and Brazilian Portuguese; the
other is a chapter of the Sherlock Holmes story
”The Hound of the Baskervilles”, translated by
professional translators, where we compare anno-
tation in English and Spanish. (We some annota-
tion previously on these texts in English, Spanish,
Japanese and German, but not Portuguese.)

Name Lang Same Partial Diff. Tot.
TED EN-PT 38 4 22 64
Hound EN-ES 33 3 23 59

Table 1: Frame similarity and difference across
parallel texts

Table 1 gives the counts for instances of verbs
of motion in two texts, showing cases where the
aligned verbs are the same or different across
languages. We had hypothesized that the pro-
fessional, literary translations of the ”Hound”
text would have more cross-linguistic differences,
while that the volunteer translations of the TED
talks would be more often frame-preserving. The
counts shown here conform to that expectation,
but the differences are not conclusive.

6 Conclusion

FrameNet data is extremely rich, but not usu-
ally presented in a form that is easy for use in
NLP. There are clear advantages to viewing the
FrameNet annotation data as a graph that sepa-
rates out entities (nodes) from relations (edges)
and clarifies which information is semantic, syn-
tactic, or both. The semantic information can be

5The content of the negative judgement is also made ex-
plicit in the phrase headed by to, literally something like
“they wind up being branded as ‘no good’.”

cleanly integrated with FrameNet’s already elab-
orate graph of frames and semantic types, while
generalizations over syntactic information should
enable improved use of FrameNet annotation in
ASRL training and cross-linguistic comparison.
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Abstract

In this work, we aim at developing an ex-
tractive summarizer in the multi-document
setting. We implement a rank based sen-
tence selection using continuous vector
representations along with key-phrases.
Furthermore, we propose a model to
tackle summary coherence for increas-
ing readability. We conduct experiments
on the Document Understanding Confer-
ence (DUC) 2004 datasets using ROUGE
toolkit. Our experiments demonstrate that
the methods bring significant improve-
ments over the state of the art methods in
terms of informativity and coherence.

1 Introduction

The task of automatic document summarization
aims at finding the most relevant informations in
a text and presenting them in a condensed form.
A good summary should retain the most important
contents of the original document or a cluster of
documents, while being coherent, non-redundant
and grammatically readable. There are two types
of summarizations: abstractive summarization and
extractive summarization. Abstractive methods,
which are still a growing field are highly complex
as they need extensive natural language genera-
tion to rewrite the sentences. Therefore, research
community is focusing more on extractive sum-
maries, which selects salient (important) sentences
from the source document without any modifica-
tion to create a summary. Summarization is classi-
fied as single-document or multi-document based
upon the number of source document. The infor-
mation overlap between the documents from the
same topic makes the multi-document summariza-
tion more challenging than the task of summariz-
ing single documents.

One crucial step in generating a coherent sum-
mary is to order the sentences in a logical manner
to increase the readability. A wrong order of sen-
tences convey entirely different idea to the reader
of the summary and also make it difficult to under-
stand. In a single document, summary information
can be presented by preserving the sentence posi-
tion in the original document. In multi-document
summarization, the sentence position in the origi-
nal document does not provide clue to the sentence
arrangement. Hence it is a very challenging task to
perform the arrangement of sentences in the sum-
mary.

2 Related Work

During a decade, several extractive approaches
have been developed for automatic summary gen-
eration that implement a number of machine learn-
ing, graph-based and optimization techniques.
LexRank (Erkan and Radev, 2004) and TextRank
(Mihalcea and Tarau, 2004) are graph-based meth-
ods of computing sentence importance for text
summarization. The RegSum system (Hong and
Nenkova, 2014) employs a supervised model for
predicting word importance. Treating multi-
document summarization as a submodular maxi-
mization problem has proven successful by (Lin
and Bilmes, 2011). Unfortunately, none of the
above systems care about the coherence of the fi-
nal extracted summary.

In very recent works using neural network,
(Cheng and Lapata, 2016) proposed an attentional
encoder-decoder and (Nallapati et al., 2017) used
a simple recurrent network based sequence clas-
sifier to solve the problem of extractive summa-
rization. However, they are limited to single
document settings, where sentences are implic-
itly ordered according to the sentence position.
(Parveen and Strube, 2015; Parveen et al., 2015)
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proposed graph-based techniques to tackle coher-
ence, which is also limited to single document
summarization. Moreover, a recent work (Wang
et al., 2016) actually proposed a multi-document
summarization system that combines both coher-
ence and informativeness but this system is limited
to syntactic linkages between entities.

In this paper, we implement a rank based sen-
tence selection using continuous vector represen-
tations along with key-phrases. We also model the
coherence using semantic relations between enti-
ties and sentences to increase the readability.

3 Sentence Extraction

We here successively describe each of the steps
involved in the sentence extraction process such
as sentence ranking, sentence clustering, and sen-
tence selection.

3.1 Preprocessing

Our system first takes a set of related texts as input
and preprocesses them which includes tokeniza-
tion, Part-Of-Speech (POS) tagging, removal of
stopwords and Lemmatization. We use NLTK
toolkit1 to preprocess each sentence to obtain a
more accurate representation of the information.

3.2 Sentence Similarity

We take the pre-trained word embeddings2

(Mikolov et al., 2013) of all the non stopwords in
a sentence and take the weighted vector sum ac-
cording to the term-frequency (TF ) of a word(w)
in a sentence(S). Where, E is the word embed-
ding model and idx(w) is the index of the word
w. More formally, for a given sentence S in the
document D, the weighted sum becomes,

S =
∑
w∈S

TF (w, S) · E[idx(w)]

Then we calculate cosine similarity between the
sentence vectors obtained from the above equation
to find the relative distance between Si and Sj .
We also calculate NESim(Si, Sj) by finding the
Named Entities present in Si and Sj using NLTK
Toolkit, then calculating their overlap.

CosSim(Si, Sj) =
Si · Sj

||Si|| ||Sj ||
1http://www.nltk.org/
2https://code.google.com/archive/p/word2vec/

NESim(Si, Sj) =
|NE(Si) ∩NE(Sj)|

min(|NE(Si)|, |NE(Sj)|)

Sim(Si, Sj) = λ ·NESim(Si, Sj) +
(1− λ) · CosSim(Si, Sj) (1)

The overall similarity calculation involves both
CosSim(Si, Sj) and NESim(Si, Sj) where,
0 ≤ λ ≤ 1 decides the relative contributions of
them to the overall similarity computation. This
standalone similarity function will be used in this
work with different λ values to accomplish differ-
ent tasks.

3.3 Sentence Ranking

In this section, we rank the sentences by applying
TextRank algorithm (Mihalcea and Tarau, 2004)
which involves constructing an undirected graph
where sentences are vertices, and weighted edges
are formed connecting sentences by a similarity
metric. TextRank determines the similarity based
on the lexical overlap between two sentences.
However, this algorithm has a serious drawback:
If two sentences are talking about the same topic
without using any overlapped words, there will be
no edge between them. Instead, we use the con-
tinuous skip-gram model introduced by (Mikolov
et al., 2013) to measure the semantic similarity
along with the entity overlap. We use the similar-
ity function described in Equation (1) by setting
λ = 0.3.

After we have our graph, we can run the main
algorithm on it. This involves initializing a score
of 1 for each vertex, and repeatedly applying the
TextRank update rule until convergence. The up-
date rule is:

Rank(Si) = (1− d) + d ∗∑
Sj∈N(Si)

Sim(Si, Sj)∑
Sk∈N(Sj)

Sim(Sj , Sk)
Rank(Sj)

Where, Rank(Si) indicates the importance
score assigned to sentence Si. N(Si) is the set
of neighboring sentences of Si, and 0 ≤ d ≤ 1 is
a dampening factor, which the literature suggests
its setting to 0.85. After reaching convergence, we
extract the sentences along with TextRank scores.
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3.4 Sentence Clustering

The sentence clustering step allows us to group
similar sentences. We use a hierarchical agglom-
erative clustering (Murtagh and Legendre, 2014)
with a complete linkage criteria. This method pro-
ceeds incrementally, starting with each sentence
considered as a cluster, and merging the pair of
similar clusters after each step using bottom up ap-
proach. The complete linkage criteria determines
the metric used for the merge strategy. In com-
puting the clusters, we use the similarity function
described in Equation (1) with λ = 0.4. We set
a similarity threshold (τ = 0.5) to stop the clus-
tering process. If we cannot find any cluster pair
with a similarity above the threshold, the process
stops, and the clusters are released. The clusters
may be small, but are highly coherent as each sen-
tence they contain must be similar to every other
sentence in the same cluster.

This sentence clustering step is very important
due to two main reasons, (1) Selecting at most
one sentence from each cluster of related sen-
tences will decrease redundancy from the sum-
mary side (2) Selecting sentences from the diverse
set of clusters will increase the information cover-
age from the document side as well.

3.5 Sentence Selection

In this work, we use the concept-based ILP frame-
work introduced in (Gillick and Favre, 2009) with
some suitable changes to select the best subset of
sentences. This approach aims to extract sentences
that cover as many important concepts as possi-
ble, while ensuring the summary length is within
a given budgeted constraint. Unlike (Gillick and
Favre, 2009) which uses bigrams as concepts, we
use keyphrases as concepts. Keyphrases are the
words or phrases that represent the main topics of
a document. Sentences containing the most rel-
evant keyphrases are important for the summary
generation. We extracted the keyphrases from
the document cluster using RAKE3 (Rose et al.,
2010). We assign a weight to each keyphrase us-
ing the score returned by RAKE.

Let wi be the weight of keyphrase i and ki

a binary variable that indicates the presence of
keyphrase i in the extracted sentences. Let lj be
the number of words in sentence j, sj a binary
variable that indicates the presence of sentence j
in the extracted sentence set and L the length limit

3https://github.com/aneesha/RAKE

for the set. Let Occij indicate the occurrence of
keyphrase i in sentence j, the ILP formulation is,

Maximize : (
∑

i

wiki+
∑

j

Rank(Sj)·sj) (2)

Subject to :
∑

j

ljsj ≤ L (3)

sjOccij ≤ ki, ∀i, j (4)

∑
j

sjOccij ≥ ki, ∀i (5)

∑
j∈gc

sj ≤ 1, ∀gc (6)

ki ∈ {0, 1} ∀i (7)

sj ∈ {0, 1} ∀j (8)

We try to maximize the weight of the
keyphrases (2) in the extracted sentences, while
avoiding repetition of those keyphrases (4, 5) and
staying under the maximum number of words al-
lowed for the sentence extraction (3).

In addition to (Gillick and Favre, 2009), we put
some extra features like maximizing the sentence
rank scores returned from the sentence ranking
section. In order to ensure only one sentence per
cluster in the extracted sentences we add an ex-
tra constraint (6). In this process, we extract the
optimal combination of sentences that maximize
informativity while minimizing redundancy (Fig-
ure 1 illustrates our sentence extraction process in
brief).

4 Sentence Ordering

Classic reordering approaches include inferring
order from weighted sentence graph (Barzilay
et al., 2002), or perform a chronological ordering
algorithm (Cohen et al., 1999) that sorts sentences
based on timestamp and position.

We here propose a simple greedy approach to
sentence ordering in multi-document settings. Our
assumption is that a good sentence order implies
the similarity between all adjacent sentences since
word repetition (more specifically, named entity
repetition) is one of the formal sign of text coher-
ence (Barzilay et al., 2002). We define coherence
of document D which consists of sentences from
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System Models R-1 R-2 R-SU4 Coherence

Baseline LexRank 35.95 7.47 12.48 0.39
GreedyKL 37.98 8.53 13.25 0.46

State-of-the-art Submodular 39.18 9.35 14.22 0.51
ICSISumm 38.41 9.78 13.31 0.44

Proposed System ILPRankSumm 39.45 10.12 14.09 0.68

Table 1: Results on DUC 2004 (Task-2) for the baseline, state-of-the-art and our system.

Figure 1: Sentence Extraction Process

S1 to Sn in the following equation. For calculat-
ing Sim(Si , Si+1), we use the similarity function
described in equation (1) with λ = 0.5, giving the
named entities a little more preference.

Coherence(D) =
∑n−1

i=1 Sim(Si , Si+1)
n− 1

We propose a greedy algorithm for placing a
sentence in a document based on the coherence
score we discussed above4. At the beginning, we
randomly select a sentence from the extracted sen-
tences without any position information and place
the sentence in the ordered set D. We then incre-
mentally add each extracted sentences to the doc-
ument set D using Algorithm (1) to get the final
order of summary sentences.

4Note that, we didn’t take any position information of the
original sentences to be extracted from the document.

Algorithm 1: Place a sentence to a document
Procedure SentencePositioning(D, Sn)

Data: Input document D which is assumed sorted.
New sentence Sn which we will place in the
document D.

Result: Return new document Dn after placing the
sentence Sn.

t← 1;
Cohmax ← 0 ;
Dtmp ← D ;
l← DocLength(D) ;
while t ≤ l + 1 do
⇒Place the Sn in tth position of Dtmp ;
Cohtmp ← Coherence(Dtmp);
if Cohtmp > Cohmax then

Dn ← Dtmp;
Cohmax ← Cohtmp;
⇒ Remove Sn from the tth position of

the document Dtmp ;
end
t← t + 1;

end
return Dn;

5 Evaluation

We evaluate our system ILPRankSumm (ILP
based sentence selection with TextRank for Ex-
tractive Summarization) using ROUGE5 (Lin,
2004) on DUC 2004 (Task-2, Length limit(L) =
100 words). However, ROUGE scores are biased
towards lexical overlap at surface level and insen-
sitive to summary coherence. Moreover, sophis-
ticated coherence evaluation metrics are seldom
adopted for summarization thus many of the previ-
ous systems used human evaluation for measuring
readability. For this reason, we evaluate our sum-
mary coherence using (Lapata and Barzilay, 2005)
(Barzilay and Lapata, 2008) which defines coher-
ence probabilities for an ordered set of sentences.

5.1 Baseline Systems

We compare our system with baseline (LexRank,
GreedyKL) and state of the art systems (Submod-
ular, ICSISumm). LexRank(Erkan and Radev,
2004) represents input texts as graph where nodes

5ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000
-f A -p 0.5 -t 0
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are the sentences and the edges are formed be-
tween two sentences if the cosine similarity is
above a certain threshold. Sentence importance
is calculated by running the PageRank algorithm
on the graph. GreedyKL (Haghighi and Vander-
wende, 2009) iteratively selects the next sentence
for the summary that will minimize the KL diver-
gence between the estimated word distributions.
(Lin and Bilmes, 2011) treat the document sum-
marization problem as maximizing a Submod-
ular function under a budget constraint. They
achieved a near-optimal information coverage and
non-redundancy using a modified greedy algo-
rithm. On the other hand, ICSISumm (Gillick and
Favre, 2009) employs a global linear optimization
framework, finding the globally optimal summary
rather than choosing sentences according to their
importance in a greedy fashion.

The summaries generated by the baselines and
the state-of-the-art extractive summarizers on the
DUC 2004 dataset were collected from (Hong
et al., 2014).

5.2 Results
Our results include R-1, R-2, and R-SU4, which
counts matches in unigrams, bigrams, and skip-
bigrams respectively. The skip-bigrams allow four
words in between. According to Table 1, R-1, R-
2 scores obtained by our system outperform all
the baselines and state of the art systems on DUC
2004 datasets. One of the main reasons of get-
ting the improved R-1 and R-2 score is the use
of keyphrases. Moreover, there is no significant
difference between our proposed system and sub-
modular in case of R-SU4. We also get better co-
herence probability because of our sentence order-
ing technique. The system’s output for a randomly
selected document set (e.g. d30015t) from DUC
2004 is shown in Table 2.

5.3 Limitations
One of the essential properties of the text summa-
rization systems is the ability to generate a sum-
mary with a fixed length (DUC 2004, Task-2:
Length limit = 100 words). According to (Hong
et al., 2014) all the summarizer from the previous
research either truncated the summary to 100th

word, or removed the last sentence from the sum-
mary set. In this paper, we follow the second one
to produce grammatical summary. However, the
first one produces a certain ungrammatical sen-
tence, later one can lose a lot of information in

Summary Generated (After Sentence Extraction)
But U.S. special envoy Richard Holbrooke said the
situation in the southern Serbian province was as bad
now as two weeks ago. A Western diplomat said up to
120 Yugoslav army armored vehicles, including tanks,
have been pulled out. On Sunday,Milosevic met with
Russian Foreign Minister Igor Ivanov and Defense
Minister Igor Sergeyev, Serbian President Milan
Milutinovic and Yugoslavia’s top defense officials.
To avoid such an attack, Yugoslavia must end the
hostilities, withdraw army and security forces, take
urgent measures to overcome the humanitarian crisis,
ensure that refugees can return home and take part
in peace talks, he said.

Summary Generated (After Sentence Ordering)
On Sunday, Milosevic met with Russian Foreign
Minister Igor Ivanov and Defense Minister Igor
Sergeyev, Serbian President Milan Milutinovic and
Yugoslavia’s top defense officials. But U.S. special
envoy Richard Holbrooke said the situation in the
southern Serbian province was as bad now as two
weeks ago. A Western diplomat said up to 120
Yugoslav army armored vehicles, including tanks,
have been pulled out. To avoid such an attack,
Yugoslavia must end the hostilities, withdraw army
and security forces, take urgent measures to
overcome the humanitarian crisis, ensure that
refugees can return home and take part in peace talks,
he said.

Table 2: System’s output (100 words) for the doc-
ument set d30015t from DUC 2004.

the worst case, if the sentences are long. We more
focus on the grammaticality of the final summary.

6 Conclusion and Future Work

In this work, we implemented an ILP based sen-
tence selection along with TextRank scores and
key phrases for extractive multi-document sum-
marization. We further model the coherence to in-
crease the readability of the generated summary.
Evaluation results strongly indicate the benefits of
using continuous word vector representations in
all the steps involved in the overall system. In fu-
ture, we will focus on jointly extracting the sen-
tences to maximize informativity and readability
while minimizing redundancy using the same ILP
model. Moreover, we will also try to propose a
solution for the length limit problem.
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Abstract

In this paper, we present an empirical
study of email classification into two main
categories “Business” and “Personal”. We
train on the Enron email corpus, and test
on the Enron and Avocado email corpora.
We show that information from the email
exchange networks improves the perfor-
mance of classification. We represent the
email exchange networks as social net-
works with graph structures. For this
classification task, we extract social net-
works features from the graphs in addi-
tion to lexical features from email content
and we compare the performance of SVM
and Extra-Trees classifiers using these fea-
tures. Combining graph features with lex-
ical features improves the performance on
both classifiers. We also provide manually
annotated sets of the Avocado and Enron
email corpora as a supplementary contri-
bution.

1 Introduction

Email has quickly become a crucial communica-
tion medium for both individuals and organiza-
tions. Kiritchenko and Matwin (2011) show that
a typical user daily receives 40-50 emails. Be-
cause of its popularity, different research problems
related to email classification tasks have arisen.
These tasks include spam-filtering, assigning pri-
ority to messages, and foldering messages ac-
cording a user-specified strategy (Klimt and Yang,
2004). In spite of the popularity of email, many
classification tasks have been hampered due the
lack of availability of task-related data, due to
the privacy issues surrounding email. However,
two large data sets are available. First, a large
dataset of real emails, the Enron corpus, was made

publicly available by the Federal Energy Regula-
tory Commission (FERC) during the legal inves-
tigation of the company’s collapse. Second, in
February 2015, the Linguistic Data Consortium
distributed a data set of emails from an anonymous
defunct information technology company referred
as Avocado (Oard et al., 2015).

In this paper, we present an empirical study on
email classification into two categories: Business
and Personal. We train only on the Enron corpus,
but test on both the Enron and Avocado corpora
for this classification task in order to investigate
how dependent on the training corpus the learned
models are. In addition, we provide new annotated
datasets based on the two corpora 1.

We manually annotated datasets based on the
Enron and Avocado corpora for this classification
task. We use lexical features as well as social net-
work features extracted from the email exchange
network of both Enron and Avocado. The ex-
periments show that when the social network fea-
tures combined with lexical features outperforms
the lexical features alone.
We first present some related work on both the En-
ron and Avocado corpora (Section 2). Then in Sec-
tion 3, we describe the datasets and the annotation
scheme used in this paper. We discuss lexical fea-
tures in Section 4, and show how to extract social
network features from the email exchange in Sec-
tion 5. Finally, we present some experiments with
different settings (Section 6). The experiments
show that adding features extracted from graphs
of the email exchange to the lexical features im-
proves the classification performance.

1http://www.cs.columbia.edu/˜sakhar/
resources.html
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2 Related Work

Since the Enron corpus has been made publicly
available, many researchers have worked on the
Enron corpus with different tasks. To our knowl-
edge, the previous effort most closely related to
this paper is that of Jabbari et al. (2006). They re-
leased a large set of manually annotated emails,
in which they categorize a subset of more than
12,000 Enron emails into two main categories:
“Business” and “Personal” and then into sub-
categories “Core Business” and “Close Personal”.
These sub-categories represent the two main cate-
gories respectively. The “Core Business” category
has more than 4,500 emails while the “Close Per-
sonal” has more than 1,800. We compare our data
to their data in detail in Section 3.

Agarwal et al. (2012) released a gold standard
of the Enron power hierarchy and predict the dom-
inance relations between two employees using the
degree centrality of the email exchange network.
They released this gold standard of the Enron cor-
pus with thread structure as a MongoDB database.
Hardin et al. (2014) study the relation between six
social network centrality measures and the hierar-
chal ranking of Enron employees.

Mitra and Gilbert (2013) study gossip in the En-
ron corpus. They use the data set in Jabbari et al.
(2006) to study the proportion of gossip in busi-
ness and personal emails and find that gossip ap-
pears in both personal and business emails and at
all levels of the organizational hierarchy. They use
an NER classifier to label person names in emails
then classify emails mentioning a person not in the
recipient list nor the sender as gossip.

A related task is to predict the recipient of an
email. Graus et al. (2014) propose a generative
model to predict the recipient of an email using the
email communication graph and the email content.
The model is trained on Enron and tested on Avo-
cado. The full enterprise email exchange network
is used to build the communication graph as a di-
rected graph, as we do in Section 5. They report
that the optimal performance is achieved by com-
bining the communication graph and email con-
tent.

3 Datasets and Annotation Scheme

As a part of the work in this paper, we have used
the Amazon Mechanical Turk (AMTurk) crowd-
sourcing platform to annotate a subset of the En-
ron corpus. In addition, due to license constraints,

we have in-house annotated a subset of the Avo-
cado corpus. We use these two sets as well as the
dataset distributed by Jabbari et al. (2006) (which
we refer to as the “Sheffield set”) for the classifi-
cation task in this paper.

3.1 Labeling
Unlike Jabbari et al. (2006), we are interested in
maintaining the thread structure of emails (for fu-
ture work). Annotators were given email threads
of various lengths and asked to annotate each
email in the thread and to annotate the thread as
a whole. However, classifying email content into
business and personal can be a subjective task. For
example, if an email talks about an invitation to a
picnic for the employees families, one annotator
might label this email as business email with the
perspective that it talks about a business-related
event. On the other hand, another annotator might
have a perspective that this is personal event even
though it is organized by the company.

We have provided instructions for the annota-
tors to annotate each email with one of the follow-
ing labels and criteria:

1. Business: The content of the message is
clearly professional (even if the language
used is very friendly) and it does not contain
any personal content; it should be related to
the company work.

2. Somehow Business: The main purpose of the
message is professional but it has some per-
sonal parts.

3. Mixed: the content of the message belongs to
two or more of the categories (typically be-
cause the sender combines different content
in one email).

4. Somehow Personal: The main purpose of the
message is personal but it has some business-
related content.

5. Personal: The content of the message is
clearly personal (even if the language used is
very formal) and it does not contain any pro-
fessional part.

6. Cannot Determine: If the there is no enough
content to determine the category.

We added some detailed instructions to deal with
certain cases:
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Threads Emails
Set Business Personal Total Business Personal Total

EnronT 3,101 (82.8%) 642 (17.2%) 3,743 9,145 (86.7%) 1,401 (13.3%) 10,546
Sheffieldall NA NA NA 9,857 (75.7%) 3,168 (24.3%) 13,025
Sheffieldsub NA NA NA 4,525 (73.7%) 1,611 (26.3%) 6,136

Enron∩A NA NA NA 2,513 (88%) 342 (12%) 2,855 (88.6%)
Enron∩D NA NA NA NA NA 367 (11.4%)
Enron∩ NA NA NA NA NA 3,222
Enron∪ NA NA NA 16,223 (79.7%) 4,126 (20.3%) 20,349

Table 1: Summary of the Enron datasets

• If a message is about a social event inside
the company, such as celebrating a new baby
of an employee, or a career promotion, it
belongs to the second category (“somehow
business”).

• If a message is about a social event outside
the company but still related to the company,
such as a picnic (usually family members
are invited), it belongs to the fourth category
(“somehow personal”).

• If a message is about a social event which is
not related to the company such as a char-
ity but company employees are encouraged
to participate, it belongs to the fourth cate-
gory (“somehow personal”).

• If a message is too short to determine its cate-
gory (or even empty), it should have the same
category as the message it is responding to, or
the message it is forwarding.

• If a message is ambiguous, try to read other
messages in the thread to clarify.

• If a message is spam or in the rare case that
the first message of a thread is very short or
empty, say “cannot determine”.

3.2 Annotators
In the AMTurk task (i.e. Enron), each email thread
was annotated by three different turkers. The
group of turkers differs from a thread to another.
We first ran several batches on AMTurk in which
we assigned 5 annotators to each HIT; by studying
the resulting data sets, we found that 3 annotators
is sufficient and less costly, and most of the data
was annotated using 3 Turkers.

To determine the consensus label, we give each
of the categories in the above list a numerical label
between 1 and 6, with 6 being “cannot determine”
and otherwise a larger number indicating that the

email is more personal. First, we discard any “can-
not determine” label. Therefore, if there is one
or more labels other than “cannot determine” we
limit voting to these labels. If all labels are “can-
not determine”, the result of voting is “cannot de-
termine” too. Then, we compute the majority vote
of all labels from the three turkers, in case of ties,
we take the floor of the mean of ties. For instance,
if the labels are {1, 2, 6} the majority vote result
is {1, 2}. The mean is 1.5 and the floor is 1. Thus,
the final label is 1. There are 5,372 (50.8%) emails
in which all annotators gave the same label. The
number of emails for each category with consen-
sus among all annotators as follows:

Business 4,882
Somehow Business 17

Mixed 8
Somehow Personal 438

Personal 0
Cannot Determine 27

The average standard deviation of ordinal values
(i.e. 1: business, 2: Somehow Business ... etc)
in Enron emails = 0.37. For computing the aver-
age of standard deviation, we exclude any “Cannot
Determine” label before computing the standard
deviation per email, and if the email has less than
two labels other than “Cannot Determine”, we ex-
clude that email too. We do so because “Cannot
Determine” has no actual ordinal value.

For the annotation of the Avocado corpus, we
hired two in-house undergraduate students to an-
notate two overlapping subsets of the Avocado
corpus, using the same instructions as we gave the
Turkers. The licensing conditions for this corpus
appear to prohibit using AMTurk. In case of dis-
agreement in Avocado∪ (described in 3.4), we ar-
bitrarily choose the first annotator’s label for con-
sistency, unless the first is “cannot determine”, in
which case we choose the second. The average
standard deviation of ordinal values (i.e. 1: busi-
ness, 2: Somehow Business ... etc) in Avocado
emails = 0.08. Since we have only two annota-
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tors, we exclude any email labeled “Cannot De-
termine” by any annotator. The inter-annotator
agreement in Avocado emails κ = 0.58 (Cohen’s
kappa). 2

The complex labeling scheme described here
will be useful for different tasks in the future.
However, for the goal of this paper, we aim to
group these labels into binary classes: business
and personal. Therefore, we normalize the labels
as follows: we group “Business” and “Somehow
Business” into one category “Business”, and “Per-
sonal”, “Somehow Personal” and “Mixed” into
one category “Personal”. “Cannot Determine” re-
mains the same.

Finally we exclude emails with labels other than
“Business” or “Personal” (i.e. emails labeled as
“Cannot determine”). These emails are discarded
in both training and evaluation. This label is very
rare; it occurs only 0.26% of the time in the Enron
data, and 0.38% in the Avocado data.

3.3 Enron Datasets

The annotated emails by turkers are a subset of the
Enron corpus released by Agarwal et al. (2012),
which has more than 36,000 threads and 270,000
emails. We choose this version of Enron because
it maintains the thread structure of emails. From
this collection, we have randomly sampled total of
3,941 threads with different numbers of emails per
thread (2, 3, 4, and 5). The total number of emails
is 10,573. We exclude 198 threads (5%) and 27
additional emails (0.26%) labeled as “Cannot de-
termine”. The sample has 3,222 emails overlap-
ping with the Sheffield set of Jabbari et al. (2006)
(after excluding “Cannot determine” emails). We
also exclude all emails in the Sheffield set that we
could not match with an email in (Agarwal et al.,
2012). After obtaining the final labels as described
in 3.2, we got 3,743 threads and 10,546 emails la-
beled as either “Business” or “Personal” from the
Enron corpus. Table 1 shows the summary of the
Enron datasets with the following notations:

• EnronT : The threads and emails obtained
from AMTurk as in 3.2.

• Sheffieldall: All the Sheffield set except those
that we could not match in (Agarwal et al.,
2012).

2we treat classes as completely different categories when
computing Cohen’s kappa

• Sheffieldsub: A subsample of the the
Sheffield set (“Business Core” and “Personal
Close”).

• Enron∩A: The intersection between EnronT

and Sheffieldall in which both agree in labels.

• Enron∩D: The intersection between EnronT

and Sheffieldall in which disagree in labels.

• Enron∩: The intersection between EnronT

and Sheffieldall.

• Enron∪: Sheffieldall ∪ (EnronT − Enron∩).
In case of disagreement, we use Sheffieldall

labels.

3.4 Avocado Datasets
The Avocado Email Collection has 62,278 threads
and 937,958 emails.

We have randomly sampled total of 2,000
threads and 5,339 emails from the Avocado cor-
pus with different number of emails per thread as
in Enron.

As described in Section 3.2, each annotator la-
beled 1,200 threads, with 400 threads in common.
The first annotator has 3,197 emails, while the sec-
ond has 3,207, and 1,065 emails are in common.
After obtaining the final labels as described in Sec-
tion 3.2, we got total of 1,976 threads and 5,280
emails labeled as either “Business” or “Personal”
from the Avocado corpus. Table 2 shows the sum-
mary of the Avocado datasets with the following
notations:

• Avocado1: The threads and emails labeled by
the first annotator as in 3.2.

• Avocado2: The threads and emails labeled by
the second annotator as in 3.2.

• Avocado∩A: The intersection between
Avocado1 and Avocado2 in which both agree
in labels.

• Avocado∩D: The intersection between
Avocado1 and Avocado2 in which they
disagree in labels.

• Avocado∩: The intersection between
Avocado1 and Avocado2.

• Avocado∪: All the threads and emails la-
beled as in 3.2: Avocado1 ∪ (Avocado2 −
Avocado∩). In case of disagreement, we use
Avocado1 labels.
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Threads Emails
Set Business Personal Total Business Personal Total

Avocado1 1,087 (91.2%) 105 (8.8%) 1,192 2,927 (92.1%) 251 (7.9%) 3,178
Avocado2 1,035 (88.1%) 140 (11.9%) 1,175 2,851 (90.5%) 298 (9.5%) 3,149

Avocado∩A 340 (91.6%) 31 (8.4%) 371 (94.9%) 948 (93.3%) 68 (6.7%) 1,016 (97%)
Avocado∩D NA NA 20 (5.1%) NA NA 31 (3%)
Avocado∩ NA NA 391 NA NA 1,047
Avocado∪ 340 (91.7%) 31 (8.4%) 1,976 4,826 (91.4%) 454 (8.6%) 5,280

Table 2: Summary of the Avocado datasets

3.5 Train, Development and Test Sets

For the binary classification task in this paper, only
emails are used as data points. We defer the clas-
sification of threads to future work. We use three
datasets for the experiments, namely: Enron∪,
Enron∩A, and Avocado∪ (described in Section 3.3
and Section 3.4). Enron∪ and Enron∩A are di-
vided into into train, development and test sets
with 50%, 25% and 25% of the emails respec-
tively. Avocado∪ is divided equally into devel-
opment and test sets (since we will not train on
Avocado). For the rest of this paper, we refer to
the train, development and test sets by subscripts
tr, dev, and tes respectively.

4 Lexical and Local Features

For the classification task, we use pre-trained
GloVe embedding vectors as lexical features
(Pennington et al., 2014). There are various word
vector sets available online, each trained from
different corpora and embedded into various
dimension sizes.
We use GloVe pre-trained word vector sets such
that each email is represented by a vector of a
fixed number of dimensions equal to the dimen-
sionality of GloVe word vector set. We average
all word vectors in the email using the pre-trained
word vectors as follows:

ej =
∑n

i fej ,vivi∑n
i fej ,vi

Here, fej ,vi is the frequency of the word cor-
responding to vector vi in email ej , vi is the word
embedding vector in GloVe set. Both the body and
subjects are included in the email content.
In addition to the contextual features, we use the
number of recipient and the length of the email (in
words) as meta-information that can be extracted
from the email locally without looking at the email
exchange network.

5 Social Network Features

The email exchange network can be represented as
social networks with different structures. One pos-
sible structure is to represent the email exchange
network as a bipartite graph with two disjoint sets
of nodes, emails and employees (i.e. email ad-
dresses) such that edges connect emails with em-
ployees, as edges between an email and employees
exist if and only if their email address appears as
either the sender or a recipient in that email; we
refer to this structure as the email-centered net-
work. Another structure is a graph (not necessarily
bipartite) whose nodes represent employees (i.e.
email addresses) and whose edges represent email
communication such that and edge exists if there
is a least one email has been exchanged between
the two end nodes; we refer to this structure as
the address-centered network. Figure 1 illustrates
these two types of graphs. In both graphs we nor-
malize multiple email addresses belonging to the
same person into one email address (node).

For each corpus (i.e. Enron and Avocado),
we construct directed and undirected graphs from
these two networks (i.e. email-centered and
address-centered). In directed graphs, each edge
has a source and destination node, which shows
explicitly the directionality of the email (i.e.
sender and recipients), while in undirected graphs,
the directionality of communication is not re-
flected within edges. In the case of the address-
centered graph, the edge weight reflects the num-
ber of emails that have been exchanged between
the two ends and the direction; in the case of the
email-centered network, the weights are always 1.
Different features from these types of graphs can
be extracted.

We use the whole exchange network, includ-
ing all labeled and unlabeled emails to build these
graphs. We include features from both the sender
and the recipients (either in the “to” or “cc” list
). In case of the email has multiple recipients, we
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Figure 1: Email Exchange graph

In-degree;,†,w,u indeg(v) =
∑
u∈V Au,v

where: Au,v is the weight of edge from u to v
Out-degree ;,†,w,u outdeg(v) =

∑
u∈V Av,u

where: Av, u is the weight of edge from v to u
Degree ;,�,†,w,u deg(v) = indeg(v) + outdeg(v)

# common neighbors �,†,u |⋃r∈rec Γ(s) ∩ Γ(r)|

where: rec is the list of recipients
s is the sender

# Sender’s triangles �,†,u 1
2

∑
v∈Γ(s) |Γ(s) ∩ Γ(v)|

where: s is the sender

Jaccard’s coefficient �,†,u |⋃r∈rec Γ(s)∩Γ(r)|
|⋃r∈rec Γ(s)∪Γ(r)|
where: rec is the list of recipients

s is the sender

Fraction of triangles �,†,u 2 |⋃r∈rec Γ(s)∩Γ(r)|∑
v∈Γ(s) |Γ(s)∩Γ(v)|

where: rec is the list of recipients
s is the sender

In-degree centrality ;,†,w indeg(u)
|V |−1

Out-degree centrality ;,†,w outdeg(u)
|V |−1

Degree centrality ;,�,†,w,u deg(u)
|V |−1

Betweenness centrality ;,�,†,‡, w, u ∑
s,t∈V

σ(s,t|v)
σ(s,t)

where: σ(s, t) is the number of shortest paths between s and t
σ(s, t|v) is the number of these paths that pass through v

Eigenvector centrality ;,�,†,‡,u For a node v: xv
where: x is the eigenvector corresponding to the largest eigenvalue of A

Ax = λx

Closeness centrality ;,�,‡,w,u |V |−1∑
u∈V d(v,u)

where: d(v, u) is the shortest-path distance between v and u.

Auth Score ;,�,†,‡,w,u The authority score for a node using HITS algorithm (Kleinberg, 1999)
Hub Score ;,�,†,‡,w,u The hub score for a node using HITS algorithm.

; Extracted from directed graphs.
� Extracted from undirected graphs.
† Features of senders/recipients in the Address-centered network.
‡ Features of emails in the Email-centered network.
w Uses edge weights.
u All edge weights are considered equal to 1.

Table 3: Social Network Features. A: the adjacency matrix for a graph (weighted or unweighted), Γ(v):
The set of neighbors of the node v

.

average the value corresponding to each feature.
Table 3 summarizes the social network features.

6 Experiments

In this section, we present empirical results on the
email classification task by conducting different
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Classifier Parameter Parameter Space

SVM
γ 10−4,−3,−2,−1,0

kernel rbf, linear
C 1, 10, 100, 1000

Extra-Trees
# trees 10, 20, 30, 50, 100, 200

Split Criteria Gini, Entropy
Min Sample 1, 3, 10

Both Class-weights {B:1, P:1}, {P:1, B:2}
{P:1, B:3}, balanced

Table 4: Grid-search parameter space. B: Busi-
ness, P: Personal. Balanced: class weights are ad-
justed inversely proportional to class frequencies
in the training set

experiments on lexical and social network feature
sets. We use three metrics to measure the per-
formance, namely: accuracy score, Business F-1
score and Personal F-1 score. We are mainly in-
terested in improving the Personal F-1 score since
it is the minority class. We compare the per-
formance of SVM classifiers and extremely ran-
domized trees (commonly known as Extra-Trees)
(Geurts et al., 2006) as implemented in the scikit-
learn python library (Pedregosa et al., 2011). We
tune the hyper-parameters using grid-search with
3-fold cross-validation on the training set. Table
4 shows the grid-search space for the two clas-
sifiers. As a preprocessing step, we apply loga-
rithmic transformation on the network and meta-
information feature values to be approximately
normal in distribution. Then, all feature values
(i.e. lexical, network and meta-info) are standard-
ized to have zero-mean and unit-variance.

Vector Set Accuracy (%) F-1 B (%) F-1 P (%)
BOW 92.3 95.6 71.2

6B.50d 93.0 95.9 75.7
6B.100d 93.0 95.9 75.5
6B.200d 95.0 97.1 80.0
27B.25d 94.5 96.8 80.0
27B.50d 94.3 96.7 79.2

27B.100d 95.0 97.1 80.7
27B.200d 93.7 96.3 77.6
42B.300d 95.4 97.3 83.1
840B.300d 95.1 97.2 80.5

Table 5: Results from different GloVe word vector
sets and a BOW model as a baseline trained on
Enron∩A tr and tested on Enron∩A dev.

6.1 Obtaining Best GloVe Vector Set
First, in order to obtain the GloVe vector set that
maximizes the performance, we experiment with

different GloVe pre-trained vectors as lexical fea-
tures (meta-information features are not included).
Table 5 shows the results of classification of dif-
ferent GloVe pre-trained vector sets trained on
Enron∩A tr and tested on Enron∩A dev. In addi-
tion, a bag-of-words (BOW) model is shown as a
baseline. In this model, we represent each email
as a vector of frequencies (term counts), then we
select the top 500 words using χ2 feature selec-
tion method. In all models (i.e. GloVe vectors and
BOW), we use SVM classifiers and we tune pa-
rameters using grid-search.
The results show that, in general, more train-
ing data is better, and more dimensions are bet-
ter. However, the best set is the 300-dimensional
42B.300d which is trained on a large 42 billion
token corpus, rather than the larger 840 B words-
based embeddings. We use these embeddings in
all further experiments.

6.2 Experiments with Different Features and
Sets

In this subsection, we perform experiments
with different models tested on Enron∪ dev and
Avocado∪ dev. We assume that the ultimate appli-
cation of our work is a setting in which we train
models on a company (i.e. Enron) and apply it to
another company (i.e. Avocado).

First, we tune the hyper-parameters using grid-
search with 3-fold cross-validation on Enron∪ tr

and Enron∩A tr three times: first, using network
and meta-information features only, second, using
lexical (embedding) features only, third, using all
features.

Then, we select the best SVM and Extra-trees
models with the lexical features only and the mod-
els with all features. We apply a paired t-test
on the personal F-1 scores of of the models (i.e.
SVM and Extra-trees models with lexical features
only and with all features) using 10-fold cross-
validation.

The results of the paired t-test show that the im-
provement obtained from adding the network fea-
tures is statistically significant on Enron∪ tr (p <
0.05), but not on Enron∩A tr (p > 0.05) using both
SVM and Extra-trees classifiers.

For evaluating how well the models will per-
form in an intra-corpus setting, we test on
Enron∪dev, using models trained on Enron∪tr with
different classifiers and feature sets. Table 6 sum-
marizes the intra-corpus results. These results
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Business Personal
Trained on Classifier features Accuracy F-1 Recall Precision F-1 Recall Precision

Enron∪ tr

SVM
Net 83.6 89.4 87.2 91.7 64.0 70.0 58.9

Lexical 90.2 93.8 92.4 95.1 77.7 81.9 73.9
All * 90.0 93.5 91.1 96.1 78.1 85.9 71.7

Extra-Trees
Net 87.2 92.0 92.9 91.2 68.1 65.7 70.6

Lexical 88.9 93.1 95.3 91.0 70.5 64.2 78.3
All 91.3 94.7 97.1 92.4 76.9 69.4 86.1

Table 6: Results of different classifiers tested on Enron∪ dev. Net features include meta-information
features

Business Personal
Trained on Classifier features Accuracy F-1 Recall Precision F-1 Recall Precision

Enron∪ tr

SVM
Net 85.7 92.1 89.9 94.3 26.7 34.3 21.9

Lexical 89.2 93.9 89.9 98.2 53.0 80.1 39.6
All 90.2 94.5 91.7 97.5 52.6 71.6 41.5

Extra-Trees
Net 91.1 95.3 97.6 93.1 17.5 12.4 29.8

Lexical 92.0 95.7 94.8 96.5 52.9 58.7 48.2
All 92.3 95.8 95.6 96.1 51.2 52.7 49.8

Enron∩A tr

SVM
Net 89.2 95.8 95.6 96.1 51.2 52.7 49.8

Lexical 94.3 96.9 97.3 96.5 60.7 57.7 64.1
All * 95.0 97.3 98.2 96.5 63.0 56.2 71.5

Extra-Trees
Net 92.0 95.9 99.5 92.5 3.7 2.0 23.5

Lexical 93.7 96.7 98.9 94.6 43.2 31.3 69.2
All 93.8 96.7 99.0 94.6 43.2 30.8 72.1

Table 7: Results of different classifiers tested on Avocado∪ dev. Net features include meta-information
features

Business Personal
Trained on Tested on Accuracy F-1 Recall Precision F-1 Recall Precision
Enron∪ tr Enron∪ ts 91.2 94.4 92.1 96.7 79.9 87.5 73.5

Enron∩A tr Avocado∪ ts 93.5 96.4 96.9 96.0 64.7 62.1 67.7

Table 8: Applying best models on test sets. Both models are SVM classifiers trained with all features.

show that adding network features helps in retriev-
ing more personal emails (increasing the personal
recall) when using both classifiers. In addition, it
is clear from the results that the network features
are more effective with Extra-Trees since adding
them improves all the scores.

To evaluate the cross-corpora performance,
we test on Avocado∪ dev using different models
trained on Enron∪ tr and Enron∩A tr. Table 7
summarizes the cross-corpora results. We use
Enron∩ Atr in this experiment to test how well
a model performs on another corpus when train-
ing on a dataset with few but high-confidence
labels, in comparison with training on a larger
dataset with labels of lesser confidence. The re-
sults show that a model trained on a large dataset
with lesser confidence labels (i.e. Enron∪ tr ) us-
ing lexical feature alone can retrieve many per-
sonal emails, but with a poor precision. Unlike
the intra-corpus setting, adding network features

always increases the personal precision but de-
creases the personal recall. However, the best per-
formance as measured by f-measure is achieved by
combining the network and lexical features, and
using SVMs, which is the same best configuration
as in the intra-corpus evaluation setting. For the
inter-corpora evaluation, the best result is achieved
using the smaller training corpus with higher qual-
ity labels.

In both settings (i.e. intra-corpus and cross-
corpora), Extra-Trees classifiers suffer in retriev-
ing personal emails causing a decrease in the F-
1 personal score in comparison with SVM classi-
fiers.

6.3 Performance on the test set

Finally, we select the models with the high-
est F-1 score each both task (intra-corpus and
cross-corpora), and then we test these models on
Enron∪ ts and Avocado∪ ts. Table 8 shows the per-
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formance of the best models on the test sets. The
results show that in an intra-corpus setting, we can
achieve a high personal F-1 score. Also, it is pos-
sible to get a good performance on a corpus (i.e.
Avocado) when training on another one (Enron).

7 Conclusion and Future Work

In this paper, we have shown that classifying
emails into business and personal can be predicted
with good performance using conventional clas-
sifiers trained with pre-trained word embeddings
that are available online. We performed different
experiments on two corpora, Enron and Avocado.
The cross-corpora results show that it is possible to
classify emails of a company using models trained
on another company with a good performance. In
addition, we have shown that including features
obtained from the graphs representing the email
exchange network improves the classification per-
formance.

We observe that the percentage of personal
email decreases from 20% (in Enron) to less than
10% (in Avocado). It is not clear whether this is
due to the nature of two companies or due to the
spread of free email services such as Hotmail and
Gmail.

In the future, we plan to experiment with adding
more network features that can capture more
global network features using approaches such as
graph spectral analysis and graph kernels.
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Abstract

Derivational nouns are widely used in San-
skrit corpora and is a prevalent means
of productivity in the language. Cur-
rently there exists no analyser that iden-
tifies the derivational nouns. We pro-
pose a semi supervised approach for iden-
tification of derivational nouns in San-
skrit. We not only identify the deriva-
tional words, but also link them to their
corresponding source words. The nov-
elty of our work is primarily in its de-
sign of the network structure for the task.
The edge weights are featurised based on
the phonetic, morphological, syntactic and
the semantic similarity shared between the
words to be identified. We find that our
model is effective for the task, even when
we employ a labelled dataset which is only
5 % to that of the entire dataset.

1 Introduction

Derivational affixes are a prevalent means of vo-
cabulary expansion used in natural languages.
Derivational affixes are non meaning preserving
affixes, that when applied to a word induce a new
word. The affixes signify one or possibly more
than one semantic senses that is passed onto the
new derived word (Marchand, 1969). For exam-
ple, the noun ‘driver’ is derived from the verb
‘drive’ and the adverb ‘boldly’ is derived from
‘bold’, where the derivational affixes ‘-er’ and ‘-
ly’ are used. However, affixes that modify only
the morphological or syntactic role of a word in
its usage are not considered derivational, but as in-
flectional (Faruqui et al., 2016).

Whenever a new word comes into existence in
a language, all of its derived forms are potent to
be part of the language’s vocabulary as well. But,

whenever a derived word is used in conversation,
a human does not require an explicit knowledge
about the derived word to infer its meaning. The
knowledge about the source word and the affix is
sufficient for her to infer the derived word’s mean-
ing. For example, if a new country is formed with
name nauratia, an English speaker can infer the
meaning for the word nauratian as “a person re-
siding in nauratia”, in spite of never hearing the
derived word previously. Similarly, It is desirable
to identify a derived word and link it to its cor-
responding source word computationally. It is of
great practical value if we can obtain a semantic
word representation for a derived word from the
semantic word representation of its source word.
It is often the case that corpus evidence for the
source word might be abundant, but the corpus
evidence for all the possible derived words need
not be available readily (Cotterell and Schütze,
2017). Lazaridou et al. (2013) proposed multi-
ple approaches, all being modifications of Compo-
sitional Distributional Semantic Model (CDSM)
(Mitchell and Lapata, 2010), for obtaining the se-
mantic word representations for a derived word
by combining the representations for source word
representation and the representation of the affix .

Identifying derived words from a corpus is chal-
lenging. Usage of pattern matching approaches
in strings are often inept for the task. Tasks that
rely on string matching approaches alone, often
result in a large number of false positives. For ex-
ample, while the word ‘postal’ is generated from
‘post’, the word ‘canal’ is not generated from
‘can’. String matching approaches often result in
low recall as well, due to the variations in patterns
in the derived and source word pairs, even for the
same affix. Both ‘postal’ and ‘minimal’ are de-
rived using the affix ‘al’, but the source word for
postal is ‘post’, while the source word for mini-
mal is ‘minimum’. Soricut and Och (2015), re-
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cently proposed an approach for analysis and in-
duction of morphology in words using word em-
beddings. But, the authors find that their approach,
though effective for inflectional affixes, has limita-
tions with derivational affixes.

In this work, we propose an approach for anal-
ysis of derivational nouns in Sanskrit. The rules
for generation of derivational nouns are well doc-
umented in the ancient grammar treatise on San-
skrit, As. t.ādhyāyı̄. In fact, it can be observed that
the grammar treatise has devoted about a 1115
of 4000 rules for dealing with derivational nouns,
which is indicative of the prevalence of deriva-
tional noun usage in Sanskrit. Currently, there ex-
ists no analyser for Sanskrit that deals with the
derived words. This leads to issues with large
scale processing of texts in Sanskrit. The recent
surge in digitising attempts of ancient manuscripts
in Sanskrit, like the Digital Corpus of Sanskrit,
The Sanskrit Library, GRETIL, etc. provides us
with abundance of unlabeled data. But, lack of
labeled data and other resources led us to develop-
ment of a semi supervised approach for identifica-
tion and analysis of derived words in Sanskrit. We
use the Modified Adsorption algorithm (Talukdar
and Crammer, 2009), a variant of the label prop-
agation algorithm for the task. In this task, we
effectively combine the diverse features ranging
from rules in As. t.ādhyāyı̄, variable length character
n-grams learnt from the data using Adaptor gram-
mar (Johnson et al., 2007) and word embeddings
for the candidate words using word2vec (Mikolov
et al., 2013).

The novel contributions of our task are:
1. We propose a semi-supervised framework us-

ing Modified adsorption for identification of
derived words and their corresponding source
words for Sanskrit.

2. We are able to scale our approach onto unla-
belled data by using a small set of labelled data.
We find that our model is effective even under
experimental settings where we use a labelled
dataset of 5 % size as that of the entire dataset.
In other words, we we can label upto 20 times
more data than the labeled data we have, and
we perform a human evaluation to validate our
claim on the unlabeled datasets.

3. By leveraging on the rules from As. t.ādhyāyı̄, we
not only find different pattern differences be-
tween the source and derived word pairs, but
we also group patterns that are likely to emerge
from the same affixes. Currently, given a pat-

tern we can narrow down the possible affixes
for a pair to a maximum of 4 candidates from a
set of 137 possible affixes.

2 Challenges in Sanskrit Derivational
Nouns

In this section, we discuss the challenges in identi-
fying the derivational nouns computationally. The
section uses some terms, which bear technical def-
initions as used in the lingusitic discipline of San-
skrit. Table 1, gives the definitions for all such
technical terms that we use in this paper. Here, we
attempt to build a semi supervised model that can
identify usage of derived words in a corpus and
map them to their corresponding source words.
Here, we are specifically interested in the usage
of secondary derivative affixes in Sanskrit, known
as Taddhita. ‘Taddhita’ refers to the process of
derivation of a ‘prātipadika’ from a ‘prātipadika’.
In Sanskrit, a ‘prātipadika’ may refer to a noun or
an adjective. Hence, Taddhita covers non-category
changing derivations, and can be recursive as well
(Bhate, 1989).

The derivation procedure proceeds by use of af-
fixation on a word where the affix modifies the
source word to form a derived word. While some
affixes substantially modify the derived word from
its source word, some other affixes tend to form
minimal variation. In fact, the variations need not
occur only at the word boundary but also at inter-
nal portions of a word. Table 2 illustrates some
cases which are discussed here. In case of ‘up-
agu’, the derived word gets an internal change and
forms ‘aupagava’. But in case of ‘dand. a’, ‘dand. in’
is derived, where no internal modifications occur.

In Sanskrit, there are 137 affixes used in Tad-
dhita. The edit distance between the source
and derived words due to the patterns tends to
vary from 1 to 6. For example, consider the
word ‘rāvan. i’ derived from ‘rāvan. a’, where the
edit distance between the words is just 1. But,
‘Āśvalāyana’ derived from ‘aśvala’ has an edit dis-
tance of 6. Since, the possible variations that can
be expected are quite high, this might lead to a
large candidate space when the said patterns are
used for matching the words. Additionally, a num-
ber of affixes used in taddhita are used for other
purposes as well. For example, kr.danta, nouns de-
rived from verbs, share some of the affixes with
taddhita. In Table 2, ‘stutya’, a kr. t, derived from
‘stu’ follows similar pattern as with the derivation
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Term Definition
prātipadika A prātipadika is a technical term which is used to collectively address nouns and adjectives in

Sanskrit. In Sanskrit, both nouns and adjectives belong to the same category
taddhita Set of secondary derivative affixes i.e. affixes used for deriving a prātipadika from an existing

prātipadika. Incidentally the prātipadikas so derived are also called as taddhita (or taddhitānta)
kr.t Set of primary derivative affixes used for deriving a prātipadika from a verbal roots.
kr.danta Prātipadikas derived from verbal roots by affixing primary derivative suffixes (kr.t) are called

kr.danta.
vr.ddhi The sounds ‘ā’, ‘ai’ and ‘au’ are designated as vr. ddhi. In taddhita, it is observed that the

first occurrence of a vowel in words often gets transformed to one of the vr. ddhi vowels. This
operation is also termed as vr. ddhi.

gun. a The sounds‘a’,‘e’ and ‘o’ are called as gun. a. Whenever the gun. a operation is invoked in, the
mentioned vowels will be replaced in place of other vowels.

Table 1: Technical terms in Sanskrit and their definitions

of ‘dāks.hin. ātya’, a taddhita word, derived from
‘daks.hin. ā’. Now, ‘kālaśa’ is derived from ‘kalaśa’,
where only an internal change is visible. But the
similar pattern between ‘karan. a’ (Instrument) and
‘kāran. a’ (Reason) is a mere coincidence.

We can find that for deriving the word
‘vainateya’ (Son of Vinatā) from vinatā (Wife of
sage Kaśyapa, a mythological character), the ‘ā’
at the end gets replaced with ‘eya’, and an internal
modification happens from ‘i’ to ‘ai’. So ([i→ai],
[ā→ eya]) is a valid pattern transformation. Simi-
larly, gāṅgeya (Son of the river Ganges) is formed
from the word gaṅgā (River Ganges). The pat-
tern ([a→ā], [ā→eya]) is followed. We could find
more than 400 different such patterns induced by
the 137 affixes.

With our knowledge from As. t.ādhyāyı̄, we can
abstract out some of the regularities in the modi-
fications made, especially those happening at the
internal portions of a word. We see those modifi-
cations as result of specific operations performed
on the word. In this work, we consider two such
operations, important for taddhita which we de-
fine now.

Vr.ddhi - The sounds ‘ā’, ‘ai’ and ‘au’ are des-
ignated as vr. ddhi. In taddhita, it is observed that
the first occurrence of a vowel in words often gets
transformed to one of the vr. ddhi vowels. This op-
eration is also termed as vr. ddhi. In Table 2, upagu,
pramukha, aśvala and kalaśa are some taddhita
words that show vr. ddhi of its words. The opera-
tion is not exclusive to taddhita and occurs in other
instances as well. sr. , kr. are some examples.

Gun. a - The sounds ‘a’,‘e’ and ‘o’ are called as
gun. a. Whenever the gun. a operation is invoked in
As. t.ādhyāyı̄, the mentioned vowels will be replaced
in place of other vowels. In case of ‘aupagava’, at
a certain point of derivation, it takes the form ‘au-

pagu a’, and the ‘u’ gets converted to ‘o’ by virtue
of gun. a, finally resulting in aupagava. This oper-
ation is called gun. a. It is important to note that,
the pattern ‘ava’ in the derived form instead of ‘u’
in the source word is result of the transformation
sequence u → o → av → ava, which would not
have been possible without applying the gun. a op-
eration. For the complete derivation procedure of
the derivational noun ‘aupagava’ from upagu as
prescribed in As. t.ādhyāyı̄, please refer to Table 1
in Krishna and Goyal (2015).

We define the character sequence which gets
modified or eliminated from the source word dur-
ing the derivation as ‘source pattern’ or ‘sp’, and
the character pattern that appears in the derived
word is termed as ‘end-pattern’ or ‘ep’. The pat-
terns contain all the other changes apart from gun. a
and vr.ddhi. With this knowledge, now if we look
into the patterns ([i→ai], [ā→ eya]) and ([a→ā],
[ā→ eya]), we can abstract the first component in
both the pattern transformations as vr.ddhi opera-
tion. For, vinatā and gaṅgā the source pattern (sp)
is the phoneme ‘ā’. The end pattern for both the
words is the phoneme ‘eya’. With this abstraction,
we narrow down the pattern variations to about
70 end-patterns (ep). We originally had 400 pat-
terns altogether but now we group the possible
(derived word, source word) pairs based on their
end-pattern only. Thus such a pair can only be-
long to one of the 70 possible end-patterns. Table
2 shows the end-patterns for the taddhita words
provided in it.

3 Method

We define our task over a dataset of finite set
of vocabulary C. We enumerate all the possible
70 end-patterns as mentioned in Section 2, that
can be applied on a source word. With the ex-
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Word Derived Word Type ep
upagu (Name of a person) aupagava (male offspring of Upagu) Taddhita a
śiva (Name of a Hindu god) śaiva (male offspring of śiva) Taddhita a
rāvan. a (A mythological character) rāvan. i (male offspring of Rāvan. a) Taddhita i
tila (Sesame) Tilya (Which is beneficial to sesame) Taddhita ya
pramukha (Prominent) prāmukhya (Prominence) Taddhita ya
dand. a (Stick) dand. in (One who carries stick) Taddhita in
sr. (To go) sārin (One who moves) Kr.t –
kr. (To do) kāraka (One who does) Kr.t –
aśva (Horse) aśvaka (bad horse) Taddhita ka
aśvala (Holy priest of King Janaka) āśvalāyana (male offspring of aśvala) Taddhita āyana
stu (To praise) stutya (Worthy of praise) Kr.t –
daks.hin. ā (South direction) dāks.hin. ātya (Southern) Taddhita –
kalaśa (Pitcher) kālaśa (related to Pitcher) Taddhita a
karan. a (Instrument) kāran. a (Reason) Random –

Table 2: Derivational nouns and their corresponding source words in Sanskrit. Additionally, possible
cases of false positives that follow similar patterns to derivational nouns are provided as well

tracted patterns, we identify word pairs wpi =
(wj , wk) ∈ C2 and represent each such pair as a
tuple twpi = 〈wj , wk, sp, ep, vr.ddhi = o, gun.a =
p, awpi1 , awpi2 , awpi3〉, where o, p ∈ {0, 1} and
sp, ep are the source pattern in wj and the end-
pattern added to the derived word wk respectively.
The variables o, p assume the value 1 if the pattern
is considered to be obtained only after the applica-
tion of the corresponding operation. For each wpi,
we encode a vector awpi1 ∈ {0, 1}|A1|, where A1

is the set of all rules in As. t.ādhyāyı̄ relevant for
derivational nouns and awpi,l = 1 indicates that
the rule l is applicable to the word pair. Simi-
larly, the vector awpi2 ∈ [0, 1]|A2| represents prob-
ability value for each of the variable length char-
acter n-grams in A2 learnt from Adaptor gram-
mar (Johnson et al., 2007). awpi3 represents a
word embedding for wj in A3 obtained using
word2vec (Mikolov et al., 2013). For example, the
word ‘dand. in’, derived from ‘dand. a’ can be repre-
sented as a tuple 〈dand.a, dand. in, a, in, vr.ddhi =
0, gun.a = 0, awpi1 , awpi2 , awpi3〉.

With the extracted pairs Wcandidates ⊆ C2, we
propose a binary relevance model that trains a sep-
arate classifier for every unique end-pattern.

We use Modified Adsorption (MAD) algorithm,
a graph based semi-supervised approach for our
task (Talukdar and Crammer, 2009). MAD fits to
our requirements specifically on two aspects. Pri-
marily the semi supervised setting helps us to use
minimal set of labelled nodes as seed nodes and
incorporate other unlabeled nodes into the system.
The objective function penalises the results when

similar nodes are assigned with different labels.
Unlike other semi-supervised algorithms (Zhu and
Ghahramani, 2002; Zhou et al., 2003), MAD al-
lows us to design the network structure explicitly
as required. In MAD, every node has a label as-
sociated with it and is seen as a distribution of the
labels rather than a binary assignment. The un-
labeled nodes initially have no label assignments,
but as the algorithm is executed, every node is up-
dated with a distribution of the labels in the la-
bel space. The seed nodes are also allowed to
be provided with a label distribution rather than
hard-assigned labels. In MAD(G,Vseed), the al-
gorithm inputs a graph structure G(V,E,W ) and
additionally a seed distribution, Vseed, for the seed
nodes in the vertex set, Vseed ⊆ V . The algorithm
outputs a label distribution V , for every v ∈ V .

For our setting, we find that Wcandidates =
U ∪ S ∪ G, where U is the set of unlabelled
nodes, S is the set of seed nodes used as la-
belled nodes for training and G is the set of gold
nodes which is used as the test data for evalua-
tion of the model1. For the system a node ob-
tained from U and G are indistinguishable. Also,
all the three sets are mutually disjoint. For ev-
ery end-pattern, epi, we construct a classifier
MADi = {MADi1(Gi1,Si)|MADi2(Gi2,Vi1)
|MADi3(Gi3,Vi2)}, where Gik is a graph
Gik(Vi, Eik,Wik), and ‘|’ is the pipe symbol sig-
nifying that, the output at the left of the operator is
used as input to the right of the operator. Note that

1We follow the same naming conventions as Faruqui et al.
(2016) wherever possible
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Figure 1: Graph structure for the end-pattern
‘ya’. The nodes are possible candidate pairs in
Wcandidates. Nodes in grey denote seed nodes,
where they are marked with their class label. The
Nodes in white are unlabelled nodes.

the vertex set Vi remains the same for all the three
graphs Gi1, Gi2, Gi3. Also, Vik is the label dis-
tribution output for MADi(k) and the seed label
distribution for MADi(k+1) . Figure 1 shows the
graph structure Gik, for the epi = ya. Our clas-
sifier is a sequential pipeline of 3 graphs, where
each graph structure uses label distribution from
previous MAD run as its seed. We provide our
manually labelled seed set only for the MAD run
on MADi1. In MADi, the vertex set Vi remains
same in all the runs and is essentially a set of all
word pairs that follow a certain end-pattern epi.

In our approach, the network structure is in-
fluenced by the edge sets {Ei1, Ei2, Ei3} and the
corresponding weight sets {Wi1,Wi2,Wi3}, and
both are decided by 3 different set of attributes
A1,A2,A3 that provide the adjacency and the
weights for the relation between the nodes. We ex-
plain how the edge set and weight set are defined
in each of the phases.

3.1 Phase 1: As. t.ādhyāyı̄ rules

As. t.ādhyāyı̄ is a grammar treatise on Sanskrit with
about 4000 rules, estimated to be written some-
where between fourth century BC and sixth cen-
tury BC by Pān. ini. About 1115 rules of the 4000
in As. t.ādhyāyı̄, i.e., more than 25 % of the rules, are
devoted to affixation of derivational nouns. The
rules related to Taddhita either are string rewrit-
ing rules, conditional rules, or attribute assignment
rules (Krishna and Goyal, 2015). Table 3 illustrate
some of the rules related to Taddhita, the sense
they carry and effect on source word due to the

affixation. We consider only the conditional rules
used by Pān. ini for the task, which can further be
sub-categorised as given below.
1. Phonological and phonemic - Pān. ini uses pres-

ence of certain phonological or phonemic en-
tity in the source word as a condition for affix-
ation. For example, the rule ‘A.4.1.95 - ata iñ’,
states that a lemma ending in ‘a’ will be given
the affix ‘iñ’ when the affix is used to denote
the sense of patronymy.

2. Morphological and lexical properties - Pān. ini
incorporates a predefined set of lexical lists like
gan. apāt.ha where words that are suitable for
similar affixal treatment are grouped together.
For example, the rule ‘A 4.1.112’ in Table 2,
states to apply the affix ‘an. ’ to all the words in
the lexical list headed by ‘Śiva’.

3. Semantic and pragmatic - As. t.ādhyāyı̄ which
was intended for human usage, relies on se-
mantic and pragmatic conditions as well. We
use additional lexical lists instead of the seman-
tic and pragmatic aspects for the purpose. For
example, the rule ‘A.4.2.16‘ applies to those
words that signify ‘food that is processed or
prepared’. Here Pān. ini does not enumerate list
of such foods, but just mentions the quality.
In Phase 1 we consider all the rules that deal

with any of the phonological, phonemic, morpho-
logical and some of the semantic properties. We
do not consider the pragmatic conditional rules.
Each rule is considered a separate attribute at
Phase 1 and the collection is represented as A1.
We define the vertex score ℘k, for vk ∈ Vi with
the tuple tk, the weight set Wi1 and edge set Ei1

as follows.

℘k =
|A1|∑
l=1

ak1,l (1)

W
vk,vj

i1 =
∑|A1|

l=1 ak1,l · aj1,l

max(℘k, ℘j)
(2)

E
vk,vj

i1 =

{
1 W

vk,vj

i1 > 0
0 W

vk,vj

i1 = 0
(3)

In Equation 1, ak1,l is a component of the vec-
tor ak1 ∈ A∞, which indicates whether the ‘lth’
rule in our filtered set of As. t.ādhyāyı̄ rules is ap-
plicable for the word pair represented as the node
vk ∈ Vi and ak1 is part of the tuple tk. A source
word might satisfy multiple rules and only one of
the rules will emerge as the final rule that gets
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Rule No Rule Semantic Relation Source Word Derived Word
4.1.95 ata iñ Patronym daśaratha dāśarathi
4.1.112 śivādibhyo’n. Patronym śiva śaiva
4.1.128 catakāya airak Patronym catakā cātakaira
4.2.16 sam. skr.tam. bhaks.āh. Processed kalaśa kālaśāh.

Table 3: conditional rules related to selection of suitable affix for derivational nouns from As. t.ādhyāyı̄.

applied (Scharf, 2009). Rules that carry differ-
ent affixes might find the eligibility for a given
pair. For example, consider the rules ‘A.4.1.95’
and ‘A.4.1.112’. For the word ‘Śiva’ both the rules
apply, and both the affixes iñ and an. find eligibil-
ity to be applied. But, according to As. t.ādhyāyı̄,
Śiva will get an. (Krishna and Goyal, 2015). But,
in this setting we keep all the attributes that the
word qualifies to. The complete derivation history
of a word needs to be examined in order to iden-
tify the exact rule that can be applied, which is a
challenging task by itself.

We consider all the rules that are relevant to
an end-pattern and we form an edge between two
nodes, if the source words in both the nodes share
at least one of the listed property.

3.2 Phase 2: Character ngrams similarity by
Adaptor grammar

Pān. ini had an obligation to maintain brevity, as his
grammar treatise was supposed to be memorised
and recited orally by humans (Kiparsky, 1994). In
As. t.ādhyāyı̄, Pān. ini uses character sub-strings of
varying lengths as conditional rules for checking
the suitability of application of an affix. We exam-
ine if there are more such regularities in the form
of variable length character n-grams that can be
observed from the data, as brevity is not a con-
cern for us. Also, we assume this would compen-
sate for the loss of some of the information which
Pān. ini originally encoded using pragmatic rules.
In order to identify the regularities in pattern in the
words, we follow a grammar framework called as
Adaptor grammar (Johnson et al., 2007). Adaptor
grammar is a non-parametric Bayesian approach
for learning productions for a Probabilistic Con-
text Free Grammar (PCFG). In the grammar, we
provide a skeletal grammar structure, along with
the non-terminals to be used in the grammar. The
grammar learns the productions and the probabil-
ities associated with each of the productions from
the observed data. The productions are variable
length character n-grams.

The grammar learns a distribution over trees

rooted at each of the adapted non-terminal (Zhai
et al., 2014; Krishna et al., 2016). In Listing 1,
‘Word’ and ‘Stem’ are non-terminals, which are
adapted. The non-terminal ‘Suffix‘ consists of the
set of various end-patterns. In this formalism, the
grammar can only capture sequential aspects in the
words and hence attributes like vr.ddhi that happen
at the internal of the word, non-sequental to rest of
the modified pattern, need not be effectively cap-
tured in the system.

Word→ Stem Suffix
Word→ Stem
Stem→ Chars
Suffix→ a|ya|.....|Ayana
Listing 1: Skeletal CFG for the Adaptor grammar

The setA2 captures all the variable length char-
acter n-grams learnt as the productions by the
grammar along with the probability score associ-
ated with the production. We form an edge be-
tween two nodes in Gi2, if there exists an entry
in A2, which are present in both the nodes. We
sum the probability value associated with all such
character n-grams common to the pair of nodes
vj , vk ∈ Vi, and calculate the edge score τj,k. If
the edge score is greater than zero, we find the sig-
moid of the value so obtained to assign the weight
to the edge. Equation 4 uses the Iverson bracket
(Knuth, 1992) to show the conditional sum opera-
tion. The equation essentially makes sure that the
probabilities associated with only those character
n-grams gets summed, which is present in both the
nodes. We define the edge score τj,k, weight set
Wi2 and Edge set Ei2 as follows.

τj,k =
|A2|∑
l=1

ak2,l[ak2,l = aj2,l] (4)

E
vk,vj

i2 =

{
1 τj,k > 0
0 τj,k = 0

(5)

W
vk,vj

i2 =

{
σ(τj,k) τj,k > 0
0 τj,k = 0

(6)

As mentioned, we use the label distribution per
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node obtained from phase 1 as the seed labels in
this setting.

3.3 Phase 3: Semantic Word vectors

In phase 3, we try to leverage the similarity be-
tween word embeddings (Mikolov et al., 2013)
to propagate the labels. Due to limited resources
at our disposal, we find it difficult to train word
embeddings for Sanskrit. We resort to finding
synonyms of words using the digitised version of
Monier-Williams Sanskrit-English dictionary and
then use the corresponding pre-trained English
word vectors for the task. We find the word vec-
tors only for the source words as the dictionary
entries for derived words are even scarcer to ob-
tain. Since we perform only a dictionary lookup
for finding the synonyms of a word, we do not
get embeddings for named entities from the dic-
tionary. A given word might have multiple senses
in English and hence multiple English synonyms.
In such cases, we find all possible similarity scores
and take the maximum score among them.

We use cosine similarity between the word vec-
tors as the edge weight in this phase. For each
node, for which we were able to obtain a word
vector, we find its cosine similarity with that of
every other node in the graph for which there ex-
ists a word vector. We find that our graph struc-
ture Gi3 for many end-patterns results in multi-
ple disconnected components, as not all words in
Wcandidates has an entry in the dictionary. We as-
sign teleportation probability to every node in the
graph in order to handle this issue.

4 Experiments

We explain the experimental settings and evalua-
tion parameters for our model in this section.

4.1 Dataset

We use multiple lexicons and corpora to obtain
our vocabulary C. We use IndoWordNet (Kulka-
rni et al., 2010), the Digital Corpus of San-
skrit2, a digitised version of the Monier Williams3

Sanskrit-English dictionary, a digitised version
of the Apte Sanskrit-Sanskrit Dictionary (Goyal
et al., 2012) and we also utiilise the lexicon em-
ployed in the Sanskrit Heritage Engine (Goyal and
Huet, 2016). We obtained close to 170,000 unique
word lemmas from the combined resources.

2http://kjc-sv013.kjc.uni-heidelberg.de/dcs/
3http://www.sanskrit-lexicon.uni-koeln.de/monier/

Obtaining Ground Truth Data - For our clas-
sifier MAD, we obtain the seed labels S and the
gold labels G from a digitised version of Apte
Sanskrit-Sanskrit dictionary. The dictionary has
preserved the etymological information of the en-
tries in the dictionary. For each end-pattern we
filtered out the pair of words which are related by
Taddhita affixes. Seed nodes for the negative class
were obtained using candidate pairs which were
either marked as kr. danta words in the Apte Dic-
tionary or were found in the dictionary, but are not
related to each other. Additionally, we manually
tagged some word pairs so as to obtain a balanced
set of labels. We narrowed to 11 separate end-
patterns for which we have at least 100 candidate
pairs and have at least 5 % of word pairs as seed
nodes in comparison to the the size of the candi-
date pairs for the end-pattern. Table 4 shows the
statistics related to each of the 11 end-patterns on
which we have performed our experiments.

4.2 Baselines
We propose the following systems as the compet-
ing systems. We use label propagation (Zhu and
Ghahramani, 2002) as a strong baseline and we
also compare the output at each of the phase as
separate baseline systems. Altogether we compare
four systems as follows:
1. Label Propagation (LPi) - We propose a la-

bel propagation based semi supervised classi-
fier (Pedregosa et al., 2011) for each of the end-
pattern. For each node, we find the top K simi-
lar nodes and assign edges to only those nodes,
where K is a user given parameter. The sim-
ilarity is obtained from a feature vector that
defines a node, with features from the first 2
phases incorporated into a single feature vec-
tor. We do not use the word embeddings from
Phase 3 directly, but find the cosine similarity
between the embeddings of the words and per-
form a weighted sum with the similarity score
obtained from the similarity obtained from the
combined feature vector.

2. MADB1i - We report the performance of
the system MADB1i = {MADi1(Gi1,Si)},
where we define the network structure only
based on the Phase 1 in Section 3

3. MADB2i - We report the performance of
the system MADB2i = {MADi1(Gi1,Si)|
MADi2(Gi2,Vi1)}, where we define the set-
tings for MADi1,MADi2 based on the de-
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End-pattern Wcandidates Seed S Gold Labels G Recall Precision Accuracy
a 2500 350 88 0.77 0.72 73.86
aka 1200 120 30 0.67 0.77 73.33
in 1656 270 68 0.82 0.74 76.47
ya 1566 258 64 0.72 0.7 70.31
i 1455 166 42 0.52 0.55 54.76
ika 803 122 30 0.6 0.69 66.67
tā 644 34 12 0.5 0.6 58.33
la 360 48 12 0.67 0.8 75
tva 303 22 12 0.67 0.8 75
īya 244 40 12 0.67 0.67 66.67
eya 181 34 12 0.83 0.71 75

Table 4: Recall (R), Precision (P) and Accuracy (A) for the candidate nodes evaluated on the gold labels.

scription in Phase 1 and Phase 2 respectively,
as defined in Section 3

4. MADi - This is the proposed system, as de-
fined in Section 3

4.3 Results
Table 4 shows the final results of our proposed sys-
tem MADi, for each of the 11 end patterns. We
report the Precision, Recall and Accuracy for each
of the classifier w.r.t the true class. Our results are
calculated based on the predictions over the test
data in G. Seven of Eleven patterns have an ac-
curacy above 70 %. End-pattern ‘i’ is reported to
perform the least among the 11 patterns provided.
We find that the average degree forGi1 for the pat-
tern ‘i’ is about 77.62, much higher than the macro
average degree for Gi1 for all the patterns, which
is 43.86. This is primarily due to the restrictive na-
ture of node selection that is employed for the pat-
tern ‘i’ as per As. t.ādhyāyı̄. We have selected only
those nodes which have the vr. ddhi attribute set to
1 and only those source words which end in ‘a’.
This has led to higher average degree among the
nodes that got filtered as per As. t.ādhyāyı̄ rules. In
order to keep uniform settings for all the systems,
we do not deviate from the design. But, for pat-
tern ‘i’,when we randomly down-sample the num-
ber of neighbours to 44 (to match with the macro
average), the accuracy increases to 61.9 %.

Table 5 shows the results for the competing sys-
tems. We compare the performance of 5 end-
patterns, selected based on the vertex set size Vi1.
Our proposed system, MADi performs the best
for all the 5 patterns. Interestingly, MADB2i is
the second best-performing system in all the cases
beating LPi. For the pattern ‘aka’, the share of
word vectors available was < 10% overall. So,
in effect, only one of the false positive nodes got
the true negative label, after the third step is per-
formed. Thus the recall remains the same after

Pattern System P R A

a

MAD 0.72 0.77 73.86
MADB2 0.68 0.68 68.18
MADB1 0.49 0.52 48.86
LP 0.55 0.59 55.68

aka

MAD 0.77 0.67 73.33
MADB2 0.71 0.67 70
MADB1 0.43 0.4 43.33
LP 0.75 0.6 70

in

MAD 0.74 0.82 76.47
MADB2 0.67 0.70 67.65
MADB1 0.51 0.56 51.47
LP 0.63 0.65 63.23

ya

MAD 0.7 0.72 70.31
MADB2 0.61 0.62 60.94
MADB1 0.53 0.59 53.12
LP 0.56 0.63 56.25

i

MAD 0.55 0.52 54.76
MADB2 0.44 0.38 45.24
MADB1 0.3 0.29 30.95
LP 0.37 0.33 38.09

Table 5: Comparative performance of the four
competing models.

both the steps.
In Label Propagation, we experimented with

the parameter K with different values, K ∈
{10, 20, 30, 40, 50, 60}, and found that K = 40,
provides the best results for 3 of the 5 end-patterns.
We find that for those 3 patterns (‘a’,‘in’,‘i’), the
entire vertex set has vr.ddhi attribute set to the same
value. For the other two (‘ya’,‘aka’),K = 50 gave
the best results. Here, the vertex set has nodes
where the vr.ddhi attribute is set to either of the
values. We report the best result for each of the
system in Table 5.

4.4 Evaluation for Unlabeled Nodes
In order to evaluate the effectiveness of our sys-
tem, we pick nodes from unlabelled set U and
evaluate the word-pairs based on human evalua-
tion. We take top 5 unlabeled nodes predicted as
taddhita and top 3 unlabelled nodes predicted as
not taddhita from each of the the 11 end-patterns.
We collate the predictions and divide them into
3 lists of 22 entries each, as the remaining 22 of
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the original 88 were filtered out. Seven experts,
with background in Sanskrit linguistics labelled
the dataset, of which one of the expert evaluator
is an author. We divide the set of 66 nodes into
3 mutually disjoint sets, and each set is evaluated
by 3 experts. We altogether receive 9 impressions
of which the author evaluator and one of the other
expert evaluator performed 2 impressions each. In
case of a conflict, we go with the majority votes for
each of the set. Since the entries are selected from
the top scoring nodes, we expected the results to
be better than the macro-average performance of
the system. We find that the evaluation of our sys-
tem provides a precision of 0.84, recall of 0.91 and
an accuracy 81.82 micro averaged over the 66 pre-
dictions.

5 Related Work
Computational analysis of derivational word
forms is gaining some traction in the NLP commu-
nity. Lazaridou et al. (2013) used CDSM (Mitchell
and Lapata, 2010) for derivational nouns, origi-
nally designed to learn representation for phrases.
Cotterell and Schütze (2017), extended the con-
cept of CDSM for derivational word forms with
neural models. The authors put forward the idea
of jointly handling the segmentation of words into
morphemes and semantic synthesis of the word
forms to improve the performance of a system for
both the tasks. Bhatia et al. (2016), does not make
a distinction of inflected word-forms or deriva-
tional affixes, but their work can be employed to
learn embeddings for a word-form from its mor-
phemes.

Soricut and Och (2015) introduced an unsuper-
vised method of inducing affixal transformations
between words using word embeddings. Faruqui
et al. (2016) further propose a semi supervised
graph based approach for morpho-syntactic lex-
icon induction. The authors show the effective-
ness of their model for inflectional morphology
over multiple languages. In Sanskrit, Krishna and
Goyal (2015) automated the derivation of Tad-
dhita, where the authors follow an object oriented
framework. Deo (2007) have preformed an in
depth linguistic analysis of inheritance network
used by Pān. ini in handling affixation in Taddhita.

6 Discussion

In Sanskrit, multiple affixes may give rise to sim-
ilar patterns. In fact, an affix in Sanskrit contains

two parts, where one part pertains to the pattern
to be induced, and other is a marker which gets
elided before the affixation. The presence of the
marker, termed as ‘it’ marker, also plays a role
in determining the type of rules that get triggered
during the derivation. For example, consider the
word ‘prāmukhya’ derived from ‘pramukha’ and
the word ‘sodarya’ from ‘sodara’. Both the words
have the same end-pattern ‘ya’. However, only
in the case of the former, vr. ddhi operation takes
place but not in the latter. Now, affixes that carry
the same pattern might differ by the ‘it’ markers.
Now, by encoding every candidate word pairs with
the suitability of rules of As. t.ādhyāyı̄ inA1, we can
narrow down the possible candidates for the af-
fix to at most 4 candidates of the 137 possible af-
fixes. In order to disambiguate further, we require
semantic and pragmatic level information, which
is currently unavailable. In this work, we only
consider the derivations in taddhita, as we find
that jointly modelling a system for both kr. danta
and taddhita is challenging. The rule arrangement
for kr. danta is different from that of taddhita in
As. t.ādhyāyı̄, thus we require a different model de-
sign for organising the rules in A1, i.e., the phase
1 in Section 3. Hence, in this work we restrict
ourselves to resolving taddhita nouns, which is the
larger section in As. t.ādhyāyı̄ among the two.

7 Conclusion

In this work, we developed a graph based semi
supervised approach for analysis of derivative
nouns in Sanskrit. We successfully integrate the
rules from As. t.ādhyāyı̄, variable length character
n-grams learnt from Adaptor grammar and word
embeddings to build a 3 step sequential pipeline
for the task. We find that our work outperforms
label propagation, which primarily shows the ef-
fect of explicit design of network structure. We
find that using the label distribution outputs at each
phase, for the input at the successive phases im-
prove the results of the model. Our work will be
beneficial to the Sanskrit Computational Linguis-
tic community for analysis of derivational words
in the digitised ancient manuscripts, as no other
analyser in Sanskrit currently handles derivational
nouns. Our work doubles as a tool for pedagogy,
as we are able to abstract out regularities between
the patterns and narrow down the possible affix
candidates for a word pair to four.
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Abstract

Coherence is a crucial feature of text be-
cause it is indispensable for conveying its
communication purpose and meaning to
its readers. In this paper, we propose an
unsupervised text coherence scoring based
on graph construction in which edges are
established between semantically similar
sentences represented by vertices. The
sentence similarity is calculated based on
the cosine similarity of semantic vectors
representing sentences. We provide three
graph construction methods establishing
an edge from a given vertex to a pre-
ceding adjacent vertex, to a single simi-
lar vertex, or to multiple similar vertices.
We evaluated our methods in the docu-
ment discrimination task and the insertion
task by comparing our proposed methods
to the supervised (Entity Grid) and unsu-
pervised (Entity Graph) baselines. In the
document discrimination task, our method
outperformed the unsupervised baseline
but could not do the supervised baseline,
while in the insertion task, our method out-
performed both baselines.

1 Introduction

Coherence plays an important role in a text be-
cause it enables a text to convey its communi-
cation purpose and meaning to its readers (Bam-
berg, 1983; Grosz and Sidner, 1986). Coherence
also decreases reading time as a more coherent
text is easier to read with less reader’s cognitive
load (Todirascu et al., 2016). While there is no
single agreed definition of coherence, we can com-
pile several definitions of coherence and note its
important aspects.

First, a text is coherent if it can convey its
communication purpose and meaning to its read-
ers (Wolf and Gibson, 2005; Somasundaran et al.,
2014; Feng et al., 2014). Second, a text needs
to be integrated as a whole, rather than a series
of independent sentences (Bamberg, 1983; Gar-
ing, 2014). It means that sentences in the text are
centralised around a certain theme or topic, and
are arranged in a particular order in terms of log-
ical, spatial, and temporal relations. Third, every
sentence in a coherent text has relation(s) to each
other (Halliday and Hasan, 1976; Grosz and Sid-
ner, 1986; Mann and Thompson, 1988; Wolf and
Gibson, 2005). It suggests that a text exhibits dis-
course/rhetorical relation and cohesion. Fourth,
text coherence is greatly influenced by the pres-
ence of a certain organisation in the text (Pers-
ing et al., 2010; Somasundaran et al., 2014). The
organisation helps readers to anticipate the up-
coming textual information. Although a well-
organised text is highly probable to be coherent,
only the organisation does not constitute coher-
ence. Textual organisation concerns the structural
formation and logical development of a text, while
lexical and semantic continuity is also indispens-
able for coherent text (Feng et al., 2014). Fifth,
it is easier to read a coherent text than its less
coherent counterpart (Garing, 2014). Thus when
writing a text, it is not enough to only revise the
text with careful editing and proofreading from the
lexical, or grammatical aspect. Coherence aspect
also should be taken into account in revising the
text (Bamberg, 1983; Garing, 2014).

There are studies on computational modelling
of text coherence based on the supervised learning
approach, such as the Entity Grid model (Barzi-
lay and Lapata, 2008). The Entity Grid model
has been further extended into the Role Matrix
model (Lin et al., 2011; Feng et al., 2014). How-
ever, these models have a few drawbacks. First,
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department trial Microsoft evidence competitors markets products brands case Netscape software

S1 S O S X O − − − − − −
S2 − − O − − X S O − − −
S3 − − S O − − − − S O O

Table 1: Entity Grid example

Entity Grid using co-reference resolution has a
bias towards the original ordering of text when
comparing a text with its permutated counterparts.
The co-reference resolution module is trained on
well-formed texts; thus it does not perform very
well for ill-organised texts. The methods utilis-
ing a discourse parser for modelling text coher-
ence (Lin et al., 2011; Feng et al., 2014) have the
same problem. Second, the supervised model of-
ten suffers from data sparsity, domain dependence,
and computational cost for training. To allevi-
ate these problems in the supervised model, Guin-
audeau and Strube (2013) proposed an unsuper-
vised coherence model known as the Entity Graph
model.

The Entity Grid, Role Matrix, and Entity Graph
model assumed coherence was achieved by lo-
cal cohesion, i.e. repeated mentions of the same
entities constitute cohesion. However, they did
not capture the contribution of related-yet-not-
identical entities (Petersen et al., 2015). To our
best knowledge, the closest study addressing this
problem was done by Li and Hovy (2014). The
key idea of Li and Hovy (2014) is to learn a
distributed sentence representation which captures
the underlying semantic relations between consec-
utive sentences. To tackle these limitations of the
past research, we present an unsupervised text co-
herence model that captures the contribution of
related-yet-not-identical entities.

The rest of this paper is organised as follows.
Section 2 describes related work; Section 3 intro-
duces our proposed unsupervised method to mea-
sure text coherence from a semantic similarity per-
spective; Section 4 describes experimental results;
then followed by the conclusion in Section 5.

2 Related work

This section provides an overview of existing co-
herence scoring models, both supervised and un-
supervised. Entity Grid is considered as a super-
vised baseline in this paper. On the other hand,
Entity Graph is selected as an unsupervised base-
line.

S1[(The Justice Department)S is conducting an (anti-
trust trial)O against (Microsoft Corp.)X with (evidence)X
that (the company)S is increasingly attempting to crush
(competitors)O.] S2[(Microsoft)O is accused of try-
ing to forcefully buy into (markets)X where (its own
products)S are not competitive enough to unseat (es-
tablished brands)O.] S3[(The case)S revolves around
(evidence)O of (Microsoft)S aggressively pressuring
(Netscape)O into merging (browser software)O.]

Figure 1: Part of an example text from (Barzilay
and Lapata, 2008)

2.1 Entity Grid

The Entity Grid model focused on the evaluation
of local cohesion developed on top of the Cen-
tering theory (Barzilay and Lapata, 2008). The
key idea of the Centering theory is that the dis-
tribution of entities in coherent texts exhibits cer-
tain regularities (Grosz et al., 1995). The text is
said to be less coherent if it exhibits many atten-
tion shifts, i.e. frequent changes in attention (cen-
tre) (Grosz et al., 1995). However, if the centre
of attention has smooth transitions, it will be more
coherent, e.g. when sentences in a text mentioning
the same entity. Barzilay and Lapata (2008) pro-
posed a computational model by representing text
as a matrix called Entity Grid in which the col-
umn corresponds to entities, the row corresponds
to sentences in the text, and the cell denotes the
role of the entity in the sentence. The role of an
entity is defined as one of S(subject), O(object), or
X(neither). The cell is filled with “−” if the en-
tity is not mentioned in the sentence. If the entity
serves multiple roles in the sentence, the priority
order would be S, O, and then X. They consider
co-referent noun phrases as an entity. As an ex-
ample, the text in Figure 1 is transformed into the
Entity Grid as in Table 1. The bracketed words in
Figure 1 are recognised as the entities in Table 1.

Also, they differentiate salient entities. An en-
tity is considered salient if it occurs at least t times
in the text. The text is further encoded into a fea-
ture vector, denoting the probability of local en-
tity transitions (Barzilay and Lapata, 2008), for ex-
ample the probability of bigram transition {S,−}
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S1 S2 S3

3 2 3
1

2 2

1 3 2
3
2

3 2 2

Figure 2: Example of bipartite graph

corresponding Table 1 is 2/22. As the feature vec-
tor for a text can be different with another text,
the pattern of these feature vectors would reflect
text coherence. Because the Entity Grid model
is based on the Centering theory, it only captures
the local relationship of text. Lin et al. (2011) and
Feng et al. (2014) tried to tackle this limitation by
filling the cell in the grid with the discourse role of
the sentence in which the entity appears.

2.2 Entity Graph

To tackle the disadvantages of the supervised co-
herence model, Guinaudeau and Strube (2013)
proposed a graph model to measure text coher-
ence. Graph data structure allows us to relate non-
adjacent sentences, spanning globally in the text
to reflect global coherence as opposed to the lo-
cal coherence of the Entity Grid model. A text is
represented as a directed bipartite graph. The first
partition is a sentence partition in which each ver-
tex represents a sentence. The second partition is
a discourse partition in which each vertex repre-
sents an entity. The weighted edge between a sen-
tence vertex and an entity vertex is established if
the entity is mentioned in the sentence. A weight
is assigned to each edge based on entity’s role in
the sentence: 3 for a subject entity, 2 for an object
entity, and 1 for others. Figure 2 shows an exam-
ple of the bipartite graph transformation from the
text in Figure 1.

This directed bipartite graph is further trans-
formed into a directed projection graph in which
a vertex represents a sentence, and a directed
weighted edge is established between vertices if
they share same entities. The direction of the edge
corresponds to the surface sequential order of the
sentences within the text. For example, a ver-
tex which represents the second sentence can only
have outgoing edges to third, fourth, but not to the
first sentence. There are three projection methods,
PU , PW , and PAcc depending on the weighting
scheme of edges. PU assigns a binary weight to

S1

S2

S3

1

1

0.5

S1

S2

S3

1

1

1

S1

S2

S3

6

6

5.5

PU PW PAcc

Figure 3: Example of projection graphs

each edge: one for the edge connecting two sen-
tences sharing at least one entity in common and
zero for others. PW assigns the number of shared
entities between connected sentences to each edge
as its weight. PAcc calculates an edge weight by
accumulating the products of the weights of edges
sharing an entity in the bipartite graph over the
shared entities by the connected two sentences.
The weight of the edge established between sen-
tence si and sj is calculated by

Wij =
∑

e∈Eij

bw(e, si) · bw(e, sj), (1)

where Eij is the set of entities shared by si and
sj and bw(e, s) is a weight of the edge between
entity e and sentence s in the bipartite graph. Fur-
thermore, the edge weight in the projection graph
can be normalised with dividing by the distance
between the sentences, i.e. |j − i|.

Figure 3 shows the projection graph trans-
formed from Figure 2 after the normalisation. To
measure text coherence by the projection graph,
Guinaudeau and Strube (2013) used the average
OutDegree of every vertex in the projection graph.
The OutDegree of a vertex is defined as the sum-
mation of the weight of outgoing edges leaving the
vertex.
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3 Constructing semantic similarity
graphs

As mentioned in Section 1, a text is coherent if
it can convey its communication purpose to read-
ers, integrated as a whole, cohesive, well organ-
ised, and easy to read. We would like to approach
coherence from the cohesion perspective. We ar-
gue that coherence of a text is built by cohesion
among its sentences. We call our method as Se-
mantic Similarity Graph.

Our proposed method employs an unsupervised
learning approach. The unsupervised approach
suffers less from data sparsity, domain depen-
dence, and computational cost for training which
often arise in the supervised approach. We encode
a text into a graph G(V,E), where V is a set of
vertices and E is a set of edges in the graph. The
vertex vi ∈ V represents the i-th sentence si in the
text, and the weighted directed edge ei,j ∈ E rep-
resents a semantic relation from the i-th to the j-th
sentences. In what follows, the term “edge” refers
to the weighted directed edge.

As stated by Halliday and Hasan (1976), co-
hesion is a matter of lexicosemantics. Our
method projects a sentence into a vector repre-
sentation using pre-trained GloVe word vectors1

by Pennington et al. (2014). A sentence con-
sists of multiple words {w1, w2, · · · , wM} where
each of them is mapped into a vector space, i.e.
{ ~w1, ~w2, · · · , ~wM}. A sentence s can be encoded
as a vector ~s by taking the average of consisting
word vectors. Formally, a sentence vector ~s is de-
scribed as

~s =
1
M

M∑
k=1

~wk,

where M denotes the number of words in the sen-
tence.

We propose three methods for constructing a
graph from a text based on semantic similarity be-
tween sentence pairs in the text. Given a certain
sentence vertex in the graph, how to decide its
counterpart vertices for establishing edges is the
crucial point. The following subsections describe
each method to decide a counterpart vertex.

3.1 Preceding adjacent vertex (PAV)
People read a text from the beginning to the end
and understand a particular part of the text based

1We use word vectors trained on Wikipedia 2014 + Giga-
word 5, 6B tokens 400K vocab, uncased, 100d. The resource
is available at https://nlp.stanford.edu/projects/glove/

for i← 2 to N do
if sim(si, si−1) > 0 then

creates edge ei,i−1 with sim(si, si−1) as the weight
else

for j ← i− 2 to 1 do
if sim(si, sj) > 0 then

creates edge ei,j with sim(si, sj) as the weight
break

Figure 4: Graph construction algorithm with sim-
ilarity of PAV

on information provided in the preceding part.
When they do not understand a particular part,
people look backwards for what they have missed.
We mimic this reading process into graph con-
struction that is reflected in the algorithm in Fig-
ure 4, where N is the number of sentences in the
text to be processed.

First we define a similarity measure sim(si, sj)
of a pair of sentences si and sj as

sim(si, sj) = α uot(si, sj) + (1− α) cos(~si,~sj),

where uot is the number of unique overlapping
terms between the sentences si and sj divided by
the number of unique terms in the two sentences;
cos(~si,~sj) is a cosine similarity of the sentence
vectors; α is a balancing factor ranging over [0,1].

The algorithm constructs a graph by establish-
ing a weighted directed edge from each sentence
vertex to the preceding adjacent sentence vertex
(PAV) if the sim value between the current and the
preceding adjacent vertices exceeds zero; other-
wise, the algorithm tries to establish an edge to the
next closest preceding vertex with non-zero sim
value. The established edge is assigned the sim
value as its weight.

3.2 Single similar vertex (SSV)

Cohesion between two sentences si and sj means
that we need to know si in order to understand sj

or vice versa (Halliday and Hasan, 1976). In this
sense, we interpret cohesion as a semantic depen-
dency among sentences. We simulate the semantic
dependency with the semantic similarity between
sentences. Since the dependency could happen in
both direction, we allow edges to the following
vertices as well as preceding vertices.

In the previous method, “precedence” and “ad-
jacency” are the important constraints for estab-
lishing the edges in graph construction. This
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Figure 5: Example of semantic similarity graphs

method discards these constraints and establishes
edges based on only the semantic similarity be-
tween sentences. However, the edges are still di-
rected and weighted. Also, only a single outgoing
edge is allowed from every vertex in the graph.

We cast semantic dependency task into an infor-
mation retrieval task. When establishing an edge
from a certain sentence vertex, we search for the
most similar sentence in the text. The similarity
measure between two sentences si and sj is cal-
culated based on the cosine similarity of their se-
mantic vectors. An edge is established from the
sentence vertex in question to the most similar sen-
tence vertex with the weight calculated by

weight(ei,j) =
cos(~si,~sj)
|i− j| . (2)

This weight calculation takes into account the dis-
tance between two sentences, i.e. we prefer a
closer counterpart.

3.3 Multiple similar vertex (MSV)

In the previous method, we allowed only a sin-
gle outgoing edge for every sentence vertex in the
graph. Here we discard the singular condition and
allow multiple outgoing edges for every vertex.
Instead of choosing the most similar sentence in
the text, we choose multiple sentences that exceed
a certain threshold (θ) in terms of cosine similar-
ity with the sentence in question. Edges are es-
tablished for all vertex pairs with the edge weight
given in Equation (2).

Figure 5 shows an example of semantic similar-
ity graphs constructed by three proposed methods
for the text shown in Figure 6. The parameters
for the PAV and MSV-based methods are the opti-
mal value in the evaluation experiment that is de-

scribed in the next section, and the insertion sen-
tence (I) was placed in the correct position (B).

3.4 Text coherence measure
From a constructed graph by one of the three
methods explained in the preceding subsections,
text coherence measure tc is calculated by averag-
ing averaged weight of outgoing edges from every
vertex in the graph as

tc =
1
N

N∑
i=1

1
Li

Li∑
k=1

weight(eik),

whereN is the number of sentences in the text and
Li is the number of outgoing edges from the vertex
vi. Li is always one for the PAV and SSV based
graph construction, since we allow only a single
outgoing edge from every vertex in the graph in
these methods. A larger tc value denotes a more
coherent text.

The proposed models have two significant dif-
ferences from the Entity Graph model, our direct
competitor. First, the Entity Graph model only
allows establishing outgoing edges in the follow-
ing direction, i.e. from the vertex vi to the ver-
tex vj , where i < j. On the other hand, the pro-
posed models except for the PAV based graph con-
struction allow edges in both directions. Second,
the Entity Graph model only measures coherence
based on shared entities between sentences with
respect to their syntactic role. This is also the case
for the Entity Grid model. The proposed models
measure text coherence based on the similarity be-
tween semantic vectors of sentences; hence we can
take into account related-yet-not-identical entities.

4 Evaluation and results

We evaluate the proposed methods on two exper-
imental tasks: the document discrimination task
and insertion task. All stop words are removed
from the texts in this experiment, while lemmati-
sation is not employed.

The performance of the proposed methods is
also compared with our reimplementation of En-
tity Grid (Barzilay and Lapata, 2008) and Entity
Graph (Guinaudeau and Strube, 2013). The ex-
perimental settings for each method are described
below.

PAV The balancing factor α ranges over
[0.0, 0.1, 0.2, · · · , 1.0].

SSV There is no particular parameter to set.

80



MSV The cosine similarity threshold θ ranges
over [−1.0, 0.1, 0.2, · · · , 0.9].

Entity Grid The optimal value for transition
length three (bigram and trigram) is used.
In document discrimination task, we imple-
ment the Entity Grid model with and with-
out saliency. An entity is judged as salient
if it is mentioned in the text at least twice.
Saliency is not employed in the insertion task
because the texts in the insertion task are rel-
atively short and an entity is not mentioned
many times.

Entity Graph We implemented three projection
methods with normalisation: PU , PW , and
PAcc.

Co-reference resolution is not employed to
avoid bias as mentioned by Nahnsen (2009). How-
ever, we follow the suggestion by Eisner and Char-
niak (2011) to consider all nouns (including non-
head nouns) as entities in our experiment. The
role of each entity is extracted using the depen-
dency parser in Stanford CoreNLP toolkit (Man-
ning et al., 2014).

4.1 Document discrimination task
4.1.1 Data
In the document discrimination task, sentences in
a text are randomly permutated to generate another
text; the task is to identify the original text given a
pair of the original and the randomised one. The
result is considered successful if the original is
identified with the strictly higher coherence value.
The performance is measured by accuracy, i.e. the
ratio of successfully identified pairs to all pairs in
the test set.

Our data came from a part of the English WSJ
text in OntoNotes Release 5.0 (LDC2013T19).
Half of the data is used for training while an-
other half is used for testing. For each instance
in both training and testing data, at most 20 ran-
dom permutations were created. Detail of the data
is shown in Table 2.

4.1.2 Result and discussion
Table 3 shows the result of the document discrimi-
nation task of each method with the various exper-
imental settings.

Entity Grid without saliency performed the best
(0.845), followed by Entity Grid with saliency
(0.837), PAV (0.774, α = 0.4), MSV (0.741,

# text # sent. # token # perm.

training 686 23.7 510.9 13,660
testing 683 24.4 521.4 13,586

Table 2: Data for the document discrimination task
(The columns “# sent.” and “# token” denote the average

number of sentences and tokens in a text respectively.)

Proposed method Setting Accuracy

PAV α = 0.0 0.767
α = 0.1 0.771
α = 0.2 0.773
α = 0.3 0.774
α = 0.4 0.774
α = 0.5 0.771
α = 0.6 0.770
α = 0.7 0.766
α = 0.8 0.759
α = 0.9 0.747
α = 1.0 0.657

SSV 0.676
MSV θ = −1.0 0.741

θ = 0.1 0.741
θ = 0.2 0.739
θ = 0.3 0.735
θ = 0.4 0.733
θ = 0.5 0.730
θ = 0.6 0.710
θ = 0.7 0.696
θ = 0.8 0.696
θ = 0.9 0.611

Supervised baseline

Entity Grid w/o saliency 0.845
w/ saliency 0.837

Unsupervised baseline

Entity Graph PU 0.652
PW 0.716
PAcc 0.725

Table 3: Result of the document discrimination
task

θ = 0.1), Entity Graph (0.725), then SSV (0.676).
The performances of PAV and MSV are increas-
ing over changes of parameter until at certain point
becomes steadily decreasing. We performed the
McNemar test in R to find out that the difference
in accuracy between every pair of methods is sta-
tistically significant at p < 0.05. Contrary to
Barzilay and Lapata (2008), the saliency factor did
not work effectively for Entity Grid in our data.
The PAV and MSV based-method performed bet-
ter than Entity Graph. This result suggests that
coherence is not only the matter of surface over-
lapping of entities and their syntactic roles, but se-
mantic similarity between sentences also should
be taken into account. This also confirms that
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SSV MSV E-Grid E-Graph

PAV 10,049 11,998 10,109 10,626
SSV − 10,153 9,052 9,507
MSV − − 9,483 10,246
E-Grid − − − 10,189
E-Graph − − − −

Table 4: Number of the same judgements between
two methods in the document discrimination task

the semantic relation between adjacent sentences
(local coherence) is more important for coherence
than semantic relation between long-distance sen-
tences in the document discrimination task.

We also calculated the number of the same
judgement between all pairs of methods (questions
that are answered correctly and incorrectly by both
methods in the pair). Table 4 shows the number
of the same judgement between every pair of the
methods. We found out the PAV–MSV pair shares
the largest number of the same judgement (11,998,
88.3%). The MSV-based method establishes an
edge between sentences whenever their similarity
exceeds the threshold. However, it has relatively
many same judgements with PAV. This implies the
local coherence is sufficient enough to solve the
document discrimination task.

4.2 Insertion task

4.2.1 Data
In the insertion task described in Barzilay and La-
pata (2008), the coherence measure is evaluated
based on to what extent the measure can estimate
the original sentence position in a text from which
one sentence is taken out randomly. The coher-
ence measure of the text with a taken-out sentence
inserted at the original position, i.e. the original
text, is expected to be the highest value among
other values of text with the sentence inserted at
a wrong position.

We argue, however, adopting the TOEFL R© iBT
insertion type question is more suitable for this
kind of task than using the artificially generated
texts by sentence deletion. The TOEFL R© insertion
type question aims at measuring test takers’ abil-
ity to understand the text coherence. Test takers
are given a coherent text with an insert-sentence.
The task is to find the best place to insert the
insert-sentence. To the best of our observation, the
texts in the TOEFL R© iBT insertion type question
are coherent even before the insert-sentence is in-
serted. An example of the TOEFL R© iBT insertion

(A) S1[The raising of livestock is a major economic ac-
tivity in semiarid lands, where grasses are generally the
dominant type of natural vegetation.] (B) S2[The conse-
quences of an excessive number of livestock grazing in an
area are the reduction of the vegetation cover and tram-
pling and pulverization of the soil.] (C) S3[This is usually
followed by the drying of the soil and accelerated erosion.]
(D)

Question:
Insert the following sentence into one of (A)-(D).
I[This economic reliance on livestock in certain regions
makes large tracts of land susceptible to overgrazing.]

Figure 6: Example of the TOEFL R© iBT insertion
type question (Education Testing Service, 2007)

type question is shown in Figure 6.
In the following evaluation, a method is judged

as a success if it assigns the highest coherence
value to the text formed by inserting the insert-
sentence at the correct insertion position. We do
not allow tie values and judge it as fail even though
the correct position has the highest tie value.

We collected 104 insertion type questions from
various TOEFL R© iBT preparation books. The av-
erage number of sentences in a text is 7.05 (SD:
standard deviation=1.85); the average number of
tokens in a text is 139.8 (SD=43.7). As the data
size is relatively small, we adopted the one-held-
out cross validation for the Entity Grid model. The
same rank is assigned to incorrect insertion posi-
tions when training the Entity Grid model. We
did not adopt the Entity Grid model considering
saliency since each text is relatively short in this
data thus term frequency (saliency) tends to be low
for all terms.

4.2.2 Result and discussion
Table 5 shows the result of the insertion task of
each method with the various experimental set-
tings. Our proposed methods showed good perfor-
mance, particularly the PAV-based graph construc-
tion method outperformed both baselines: Entity
Grid and Entity Graph. The PAV method obtained
the best performance at α = 0.0, while MSV
method performed best at θ = 0.8. However, the
McNemar test revealed that the difference in ac-
curacy between every pair of methods was not sta-
tistically significant at p < 0.05. This is probably
due to the limited size of the insertion data com-
pared with the document discrimination task.

There are two questions correctly answered and
31 questions incorrectly answered by all meth-
ods. These two correctly answered questions have
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Proposed method Setting Accuracy

PAV α = 0.0 0.356
α = 0.1 0.337
α = 0.2 0.327
α = 0.3 0.327
α = 0.4 0.317
α = 0.5 0.327
α = 0.6 0.308
α = 0.7 0.279
α = 0.8 0.317
α = 0.9 0.337
α = 1.0 0.212

SSV 0.346
MSV θ = −1.0 0.298

θ = 0.1 0.298
θ = 0.2 0.298
θ = 0.3 0.298
θ = 0.4 0.298
θ = 0.5 0.279
θ = 0.6 0.269
θ = 0.7 0.317
θ = 0.8 0.327
θ = 0.9 0.067

Supervised baseline

Entity Grid w/o saliency 0.346

Unsupervised baseline

Entity Graph PU 0.192
PW 0.222
PAcc 0.260

Table 5: Result of the insertion task

similar characteristics, having word overlaps and
synonyms across adjacent sentences. These ques-
tions also tend to contain more common words.
On the other hand, the failed questions tend to
contain more uncommon words, technical terms
and named entities. Although the successful ques-
tions also contain named entities, they were men-
tioned more frequently in the texts as opposed to
the failed questions. Therefore we suspected the
limited coverage of our GloVe dictionary and in-
vestigated the proportion of the out of vocabulary
(OOV) ratio of the texts. Among all of the ques-
tions, there are 32 out of 104 questions includ-
ing the OOV words; each question contains one
to three OOV words in type/in token. All meth-
ods failed in 15 out of these 32 questions but suc-
ceeded in the rest 17. This fact suggests that OOV
words are not necessarily the main reason for fail-
ures in the insertion task.

Comparing the parameters (α of PAV and θ of
MSV) in Table 3 and Table 5, they are different
to achieve the best performance in two different
datasets. In the PAV-based method, there is no
significant difference in the average uot value of

every pair of adjacent two sentences between the
datasets. We also calculated the cosine similar-
ity of every pair of adjacent two sentences to find
more similar adjacent sentences in the insertion
task data than in the document discrimination task
data; 90% of the adjacent sentence similarities lies
in 0.3 ∼ 0.6 in the document discrimination task,
while it ranges 0.5 ∼ 0.9 in the insertion task
data. This difference suggests that the uot factor
helps relatively more in the document discrimina-
tion task for the PAV-based method, while it has
less impact in the insertion task. This explains the
difference α values of PAV across the two tasks.

To investigate the difference of the parameter θ
in the MSV-based model, we calculated the co-
sine similarity of every sentence pair in the text.
In both datasets, more than 90% of the sentence
similarities lies in 0.5 ∼ 1.0. When the simi-
larity is transformed into the edge weight by di-
viding by the sentence distance, the difference be-
comes apparent; while 86.6% of the edge weights
in the document discrimination task lies less than
0.2, the edge weights scatter over 0 ∼ 1.0 in the
insertion task. This happens because the average
length of the texts in the document discrimination
task is longer than that of the insertion task. Un-
less setting a low threshold (θ), the MSV-based
model hardly establishes edges between sentence
vertices. In other words, establishing edges be-
tween distant sentences would contribute to the
performance of these tasks.

SSV MSV E-Grid E-Graph

PAV 75 79 57 66
SSV − 84 58 67
MSV − − 54 65
E-Grid − − − 69
E-Graph − − − −

Table 6: Number of the same answers between
two methods in the insertion task

Table 6 shows the number of the same answers
between every pair of the methods. The SSV–
MSV pair shares the most same answers in the in-
sertion task among all pairs (84, 80.8%), followed
by the PAV–MSV pair (79, 76.0%), then PAV–
SSV pair (75, 72.1%). The PAV-based method
performs best without considering the overlapping
terms between the adjacent sentences (uot) by set-
ting α = 0. In this case, the PAV-based method is
almost similar to the SSV-based method except for
allowing only backwards edges. However, Table 6
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shows the PAV-based method answered differently
from the SSV-based method in almost 30% ques-
tions. To further investigate the difference, we fo-
cused on the questions that were answered incor-
rectly by the PAV-based method but answered cor-
rectly by the SSV-based method. There are 14 of
such questions, in which the SSV-based method
tends to establish edges between distant sentences;
the average distance between sentence vertices is
2.8 (SD = 0.7). This suggests that the SSV-
based method could capture distant sentence re-
lations contributing to text coherence more appro-
priately than the PAV-based method.

We also investigated 11 questions that were an-
swered incorrectly by the PAV-based method but
answered correctly by the MSV-based method. In
these questions, the MSV-based method tends to
establish more edges than the PAV-based method.
The average number of outgoing edges from a sen-
tence vertex in the graph constructed by the MSV-
based method is 2.5 (SD = 1.8). In addition, the
MSV-based method tends to establish edges be-
tween distant sentences as well as the SSV-based
method; the average distance between sentence
vertices is 2.6 (SD = 0.9). This suggests that
the MSV-based method also could capture many
distant sentence relations contributing to text co-
herence more appropriately than the PAV-based
method.

Although the PAV-based method performs best
with the present data, which considers only local
cohesion between adjacent sentences, we need to
introduce a more refined mechanism for incorpo-
rating distant sentence relations than the current
SSV and MSV-based methods, as we showed that
long-distance relations could contribute in deter-
mining text coherence. The representation of sen-
tences and calculation of similarity between sen-
tences would be direct targets of the refinement.

5 Conclusion

This paper presented three novel unsupervised text
coherence scoring methods, in which text coher-
ence is regarded to be realised by cohesion of sen-
tences in the text and the cohesion is represented
in a graph structure corresponding to the text. In
the graph structure, a vertex corresponds to a sen-
tence in the text, and an edge represents a semantic
relationship between corresponding sentences. As
cohesion is a matter of lexicosemantics, sentences
are transformed into semantic vector representa-

tions, and their similarity is calculated based on
the cosine similarity between the vectors. Edges
between sentence vertices are established based on
the similarity and distance between the sentences.
We presented three methods to construct a graph:
the PAV, SSV, and MSV-based methods.

We evaluated the proposed methods in the doc-
ument discrimination task and the insertion task.
Our best performing method (PAV) outperformed
the unsupervised baseline (Entity Graph) but not
the supervised baseline (Entity Grid) in the docu-
ment discrimination task. The difference was sta-
tistically significant at p < 0.05. In the inser-
tion task, our best performing method (PAV) out-
performed both supervised and unsupervised base-
lines, but the difference is not statistically signifi-
cant at p < 0.05. We argue that further experiment
is necessary with a larger size of data in the inser-
tion task.

Our experimental result showed that our best
proposed method (PAV) performed 0.774 in accu-
racy in the document discrimination task, but only
performed 0.356 in the insertion task. There is a
big gap in their performance between two tasks.
The error analysis revealed a possibility to im-
prove the performance by introducing a more re-
fined representation of sentence vectors and calcu-
lation in semantic the similarity between sentences
for capturing distant relations between sentences.
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