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Abstract

The goal of active learning is to minimise
the cost of producing an annotated dataset,
in which annotators are assumed to be per-
fect, i.e., they always choose the correct la-
bels. However, in practice, annotators are
not infallible, and they are likely to assign
incorrect labels to some instances. Proac-
tive learning is a generalisation of active
learning that can model different kinds of
annotators. Although proactive learning
has been applied to certain labelling tasks,
such as text classification, there is little
work on its application to named entity
(NE) tagging. In this paper, we propose
a proactive learning method for produc-
ing NE annotated corpora, using two an-
notators with different levels of expertise,
and who charge different amounts based
on their levels of experience. To opti-
mise both cost and annotation quality, we
also propose a mechanism to present mul-
tiple sentences to annotators at each itera-
tion. Experimental results for several cor-
pora show that our method facilitates the
construction of high-quality NE labelled
datasets at minimal cost.

1 Introduction

Manually annotating a dataset with NEs is both
time-consuming and costly. Active learning, a
semi-supervised machine learning algorithm, aims
to address such issues (Lewis, 1995; Settles,
2010). Instead of asking annotators to label the
whole dataset, active learning methods present
only representative and informative instances to
annotators. Through iterative application of this
process, a high-quality annotated corpus can be

produced in less time and at lower cost than tra-
ditional annotation methods.

There are two strong assumptions in active
learning: (1) instances are labelled by experts,
who always produce correct annotations and are
not affected by the tedious and repetitive nature
of the task; (2) all annotators are paid equally, re-
gardless of their annotation quality or level of ex-
pertise. However, in practice, it is highly unlikely
that all annotators will assign accurate labels all
of the time. For example, especially for complex
annotation tasks, some labels are likely to be as-
signed incorrectly (Donmez and Carbonell, 2008,
2010; Settles, 2010). Furthermore, if annotation is
carried out for long periods of time, tiredness and
reduced concentration may ensue (Settles, 2010),
which can lead to annotation errors. An additional
issue is that different annotators may have varying
levels of expertise, which could make them reluc-
tant to annotate certain cases, and they may assign
incorrect labels in other cases. It is also possible
that an inexperienced annotator may assign ran-
dom labels.

To address the above-mentioned assumptions,
proactive learning has been proposed to model dif-
ferent types of experts (Donmez and Carbonell,
2008, 2010). Proactive learning assumes that (1)
not all annotators are perfect, but that there is
at least one “perfect” expert and one less expe-
rienced or “fallible” annotator; (2) as the perfect
expert always provides correct answers, their time
is more expensive than that of the fallible annota-
tor. The annotation process in proactive learning
is similar to traditional active learning. At each
iteration, annotators will be asked to tag an unla-
belled instance, the result of which will be added
to the labelled dataset. However, the difference
with proactive learning is that, in order to reduce
annotation cost, an appropriate annotator is cho-
sen to label each selected instance. For example, if
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there is a high probability that the fallible annota-
tor will provide the correct label for an unlabelled
instance, then proactive learning will send this in-
stance to be annotated by fallible annotator. This
aims to ensure a simultaneous saving of costs and
maintenance of the quality of the data.

Proactive learning has been used for several
annotation tasks, such as binary and multi-class
text classification, and parsing (Donmez and Car-
bonell, 2008, 2010; Olsson, 2009). In contrast,
this paper proposes a proactive learning method
for NE tagging, i.e., a sequence labelling task.

Similarly to other efforts that have used proac-
tive learning, our method models two annotators:
a reliable one and a fallible one, who have differ-
ent probabilities of providing correct labels. The
reliable annotator is much more likely to produce
correct annotations, but their time is expensive.
In contrast, the fallible annotator is likely to as-
sign incorrect annotations more often, but charges
less for their services. It should be noted that the
characteristics of our reliable expert are different
from those proposed in previous work (Donmez
and Carbonell, 2008, 2010). Specifically, in the
conventional proactive learning, the reliable ex-
pert is assumed to be perfect, i.e., he/she always
provides correct annotations. However, in prac-
tice, such an assumption is too strong, especially
for NE annotation. Therefore, we assume that the
reliable expert is not perfect, but that he/she has
a higher expertise level in the target domain, and
has a very low error rate. In order to determine an
appropriate annotator for each sentence, we cal-
culate the probability that an annotator will assign
the correct sequence of labels in a selected unla-
belled sentence. Furthermore, at each iteration, we
use a batch sampling mechanism to select several
sentences for annotators to label (instead of select-
ing only a single sentence), which optimises both
cost and performance.

For evaluation purposes, we simulate the two
annotators by using two machine-learning based
NER methods, namely LSTM-CRF (Lample et al.,
2016) as the reliable expert, and CRF (Lafferty
et al., 2001) as the fallible expert. We then ap-
ply our method to three corpora from different do-
mains: ACE2005 (Walker et al., 2006) for general
language entities, COPIOUS—an in-house corpus
of biodiversity entities1, and GENIA (Kim et al.,
2003)—a corpus of biomedical entities. Our ex-

1The corpus is available upon request.

perimental results demonstrate that by using the
proposed method, we can obtain a high-quality la-
belled corpus at a lower cost than current baseline
methods.

The contributions of our work are as follows.
Firstly, we have modified the conventional proac-
tive learning method to ensure its suitability for
a sequence labelling task. Secondly, in con-
trast to previous work, which selects a single in-
stance for each annotator at each iteration (Don-
mez and Carbonell, 2008, 2010; Moon and Car-
bonell, 2014), our method selects multiple sen-
tences for presentation to annotators. Thirdly, by
applying our method to a number of different cor-
pora, we demonstrate that our method is general-
isable to different domains.

2 Methodology

The proposed proactive learning for NE tagging
is outlined in Algorithm 1. As an initial step,
the performance of each expert is estimated based
on a benchmark dataset (see Section 2.1). Sub-
sequently, at each iteration, all sentences in the
unlabelled dataset are sorted according to an ac-
tive learning criterion. The top-N most informa-
tive sentences are then used as input to the batch
sampling step. In this step, a batch of sentences
is divided into two sets to be distributed to the re-
liable and fallible experts, respectively. Sentences
distributed to the fallible experts are not only infor-
mative, but there is also a high probability that the
expert will provide correct labels for them. Mean-
while, only those sentences that are estimated to
be too difficult for the fallible expert to annotate
will be sent to the reliable expert. By applying
this process, annotation cost can be reduced. Fur-
ther details about the batch sampling algorithm are
presented in Section 2.2.

In Algorithm 1, ULr is the set of selected un-
labelled sentences assigned to the reliable expert
and ULf is the set assigned to the fallible expert.
Lr, Lf are the annotated results of ULr, ULf .

2.1 Expert performance estimation

As mentioned above, our method assumes that
there are two types of experts. One is reliable,
who has a higher probability of assigning the cor-
rect sequence of labels for a sentence, and has
a high cost for their time. The other expert is
fallible, meaning that they may assign a higher
proportion of incorrect labels for a sequence, but
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Algorithm 1: Proactive Learning for NER
Input: a labelled dataset L, an unlabelled dataset UL, a

test dataset T , a budget B, a reliable expert er

with cost Cr for each sentence, a fallible expert
ef with cost Cf , the current cost C

Output: a labelled dataset L
1 Estimate the performance of each expert as described in

Section 2.1;
2 while C < B do
3 Train a named entity recognition model M on L;
4 Sort all sentences in the unlabelled dataset

according to an active learning criterion;
5 Select the top N sentences;
6 ULr, ULf =

BatchSampling(M, top N sentences);
7 Lr, Lf ← er and ef annotate ULr and ULf

respectively;
8 L = L ∪ Lr ∪ Lf ;
9 UL = UL− ULr − ULf ;

10 C = C + Cr ∗ |Lr|+ Cf ∗ |Lf |;
11 end

charges less for their time. The likely anno-
tation quality of each expert is estimated based
on two different probabilities: the class probabil-
ity, p(label|expert, c) and the sentence probabil-
ity p(CorrectLabels|expert,x).

2.1.1 Class probability
The class probability, p(label|expert, c), is the
probability that an expert provides a correct la-
bel when annotating a named entity of class c.
This probability is obtained by asking both the re-
liable and fallible experts to annotate a benchmark
dataset and calculating F1 scores for each of them
against the gold standard annotations.

2.1.2 Sentence probability
The sentence probability is the probability that an
expert provides a sequence of correct labels for a
sentence x.

We firstly compute the probability for each to-
ken in the sentence by combining the class proba-
bility and the likelihood that an expert provides a
correct label for the token xi, as shown in Equa-
tion 1. The equation is inspired by Moon and Car-
bonell (2014), who used it for a classification task.

p(CorrectLabel|expert,xi) =
|C|∑
c

p(c|xi) ∗ p(label|expert, c) (1)

C is the set of all entity labels and the label O.
p(c|xi) is the probability that a token xi is an
entity of class c, which is predicted by an NER
model.

Algorithm 2: Batch Sampling
Input: a named entity recognition model M , top-N

sentences selected according to an active
learning criterion

Output: ULr , ULf

1 ULr = ∅;
2 ULf = ∅;
3 while Batch Size do

// Stage 1
4 foreach sentence x do
5 if p(CorrectLabels|fallible,x) > α then
6 ULf = ULf ∪ {x};
7 BatchSize = BatchSize - 1
8 end
9 end

// Stage 2
10 if Batch Size 6= 0 then
11 Sort the remaining sentences according to a

re-ranking criterion;
12 Calculate threshold β;
13 foreach sentence x do
14 if Batch Size 6= 0 then
15 if diff(reliable, fallible,x) < β

then
16 ULf = ULf ∪ {x};
17 else
18 ULr = ULr ∪ {x};
19 end
20 BatchSize = BatchSize - 1;
21 end
22 end
23 end
24 end

Given the probabilities that an expert will pro-
vide correct labels for each tokens in a sentence,
the sentence probability is calculated by averag-
ing all of these probabilities, as presented in Equa-
tion 2.

p(CorrectLabels|expert,x) =∑|x|
i p(CorrectLabel|expert,xi)

|x| (2)

|x| is the length of the sentence x.

2.2 Batch sampling

Instead of asking annotators to label only one sen-
tence at each iteration, it is more efficient to ask
them to annotate several sentences. To facilitate
this, we propose a batch sampling algorithm that
can select a set of sentences and assign them to
appropriate annotators (see Algorithm 2).

The input of the algorithm is a set of sentences
in the unlabelled dataset that are considered to
be the most informative ones, based on an active
learning criterion (as described in line 5 of Algo-
rithm 1).
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This batch sampling process is divided into two
stages. In the first stage, unlabelled sentences for
which the sentence probability for the fallible ex-
pert is higher than a threshold α, will be assigned
to the fallible expert. Otherwise, the sentence
will be passed to the second stage. In the second
stage, we firstly reorder sentences according to a
re-ranking criterion, as shown in Equation 3. The
intuition behind this re-ranking step is that in order
to save on annotation costs, we set a high priority
for sentences to be assigned to the fallible expert
in certain cases. Specifically, for sentences that are
informative and for which there is a small differ-
ence between the sentence probabilities for the re-
liable and fallible experts, we favour the selection
of the fallible one.

ReRankingCriterion =
ActiveLearningCriterion(x)
diff(reliable, fallible,x)

(3)

For an unlabelled sentence x, the difference be-
tween the sentence probabilities for the two ex-
perts is calculated as shown in Equation 4.

diff(reliable, fallible,x)
= |p(CorrectLabels|reliable,x)
− p(CorrectLabels|fallible,x)| (4)

If the above difference is not significant, i.e., it is
less than a threshold β, x will be distributed to the
fallible expert. Otherwise, x will be assigned to
the reliable expert.

Equations (5) - (7) describe the estimation of
the threshold β, in which xi is the ith sentence in
the top-N sentences selected by an active learn-
ing criterion. γ is a parameter that controls the
value of the threshold β. γ ranges from 0 to 1. If
γ = 0, no sentences will be given to the fallible ex-
pert to annotate. If γ = 1, the fallible expert will
label all the BatchSize sentences. It should be
noted that β is a dynamic threshold, which is recal-
culated based on the difference between diffmax

and diffmin at each iteration.

diffmin = minN
i (diff(reliable, fallible,xi))

(5)

diffmax = maxN
i (diff(reliable, fallible,xi))

(6)

β = diffmin + γ(diffmax − diffmin) (7)

3 Experiments

3.1 Dataset

We have applied our method to three different cor-
pora: (1) ACE2005 (Walker et al., 2006) which in-
cludes named entities for the general domain, e.g.,
person, location, and organisation; (2) COPIOUS
that includes five categories of biodiversity enti-
ties, such as taxon, habitat, and geographical loca-
tion; (3) GENIA (Kim et al., 2003), a biomedical
named entity corpus.

Table 1 shows the entity classes and the number
of entities of each class that are annotated in the
three corpora. As shown in the table, for the GE-
NIA corpus, we combined the DNA and RNA en-
tities into a single named entity class. Meanwhile,
for ACE2005, although top-level entity classes are
divided into a number of different subtypes, we
only considered the top-level classes, as shown in
the table.

For active and proactive learning experiments,
1% and 20% of sentences of each corpus were
used as the initial labelled set and the test set, re-
spectively. The remaining 79% of sentences were
regarded as unlabelled data.

3.2 Expert simulation

We simulated the reliable and fallible experts
by using two machine learning models: LSTM-
CRF (Lample et al., 2016)—a neural network
NER and CRF (Lafferty et al., 2001). To evaluate
the performance of the two models, we conducted
preliminary experiments, by firstly trained the two
models on 80% of the labelled corpora and subse-
quently testing them on the remaining 20% of the
data.

Word embeddings As the three corpora belong
to three different domains, we used three corre-
sponding pre-trained word embeddings as input to
the LSTM-CRF model.

• ACE2005: GoogleNews vectors2, which in-
clude approximately 100 billion words.

• COPIOUS: we applied word2vec to the En-
glish subset of the Biodiversity Heritage Li-
brary3 to learn vectors for biodiversity enti-
ties. The set has approximately 26 million
pages with more than 8 billion words.

2http://code.google.com/archive/p/word2vec/
3http://www.biodiversitylibrary.org/
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Corpus Entity Labelled Unlabelled Test Total

ACE2005

Person (PER) 291 22853 5179 28323
Organization (ORG) 36 4554 690 5280
Geo-Political Entity (GPE) 21 5813 1360 7194
Location (LOC) 7 760 168 935
Facility (FAC) 5 1136 227 1368
Weapon (WEA) 8 609 178 795
Vehicle (VEH) 7 640 123 770

COPIOUS

Habitat 23 619 366 1008
Taxon 116 4485 1728 6329
Person 24 768 258 1050
Geographical Location (GeoLoc) 42 4373 1942 6357
Temporal Expression (TempExp) 20 904 358 1282

GENIA
DNA&RNA 88 6592 1757 8437
Cell 133 9623 2437 12193
Protein 316 24940 6402 31658

Table 1: Statistic information of the three corpora

• GENIA: word vectors trained on a combina-
tion of PubMed, PMC and English Wikipedia
texts (Pyysalo et al., 2013).

CRF features To train the CRF model, we used
CRF++4 and employed following features: word
base, lemma, part-of-speech tag and chunk tag of a
token. We also used unigram and bigram features
that combine the features of the previous, current
and following token.

As illustrated in Table 2, the LSTM-CRF model
is mostly more precise and achieves wider cover-
age than CRF. We therefore selected LSTM-CRF
to simulate the reliable expert and CRF to simulate
the fallible expert.

Corpus CRF LSTM-CRF
Pre. Re. F1 Pre. Re. F1

ACE2005 73.89 65.07 69.20 75.69 74.11 74.89
COPIOUS 81.01 48.58 60.74 77.18 74.77 75.96
GENIA 73.90 64.52 68.89 75.41 73.91 74.66

Table 2: Performance of CRF and LSTM-CRF on
the three corpora

The reliable expert (the LSTM-CRF model) was
trained on 80% of the labelled data, while the falli-
ble one (the CRF model) was trained on 60%. The
F1 scores of the reliable and fallible experts when
applied to the test dataset are presented in Table 3.

Corpus Fallible Reliable
ACE2005 61.19 74.89
COPIOUS 50.92 75.96
GENIA 57.67 74.66

Table 3: F1 scores of each expert on the three cor-
pora

4https://taku910.github.io/crfpp/

The class probability of each expert is pre-
calculated based on the the F1 score of each class
that an expert can achieve on the 1% initial la-
belled set. Meanwhile, the sentence probability of
each expert is estimated at each iteration.

3.3 Active learning criteria

Various active learning criteria were investigated
using the three corpora. We firstly estimated
the performance (F1 score) of a supervised NER
model by using CRF++ and the above-mentioned
features. We then compared the performance of
each active learning criterion with that of the su-
pervised model. If the performance of one crite-
rion approximates that of the supervised with the
least number of iterations, we consider the crite-
rion as the best one for proactive learning experi-
ments.

We experimented with the following criteria:
least confidence (Culotta and McCallum, 2005),
normalized entropy (Kim et al., 2006), MMR
(Maximal Marginal Relevance) (Kim et al., 2006),
density (Settles and Craven, 2008) when using fea-
ture vectors and word embeddings, and the com-
bination of least confidence and density criterion.
Equation 8 describes the combination criterion
used in our experiments. In this equation, UL is
the current unlabelled dataset, xu is the uth un-
labelled sentence in UL, the parameter λ = 0.8,
and the similarity score (Settles and Craven, 2008)
were calculated by using feature vectors.

x∗ = arg max
x

(λ ∗ Least Confidence(x)

+ (1− λ)
1
|UL|

|UL|∑
u=1

similarity(x,xu)) (8)
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Corpus Entity Class Best Criterion

ACE2005

PER Density (w2v)
ORG Density (f2v)
GPE Entropy
LOC Least Confidence
FAC Longest
WEA MMR
VEH Longest

(Overall) Entropy

COPIOUS

Habitat Density (f2v)
Taxon Entropy
Person Density (f2v)
GeoLoc Entropy

TempExp Least Confidence
(Overall) Entropy

GENIA

Protein Entropy
Cell LC+Density (f2v)

DNA&RNA Entropy
(Overall) Entropy

Table 4: The best active learning criteria on the
three corpora

We also implemented two baseline criteria. The
first one is random selection, in which a batch of
sentences is selected randomly at each iteration.
The second one, namely longest, is a criterion that
selects the longest sentences to be labelled.

Among these criteria, we selected the best crite-
rion for further experiments. The best criterion is
the one that produced competitive or better perfor-
mance (F-score) than that of a supervised learn-
ing method with the least number of training in-
stances. We report these criteria for each entity
class as well as for the overall corpus in Table 4.
In this table, Density (f2v) and Density (w2v) rep-
resent the density criteria when using feature and
word vectors, respectively. Entropy is the normal-
ized entropy. LC+Density is the combined crite-
rion, described in Equation 8. As shown in the
table, the best criteria at the level of individual
classes are diverse. However, overall, normalized
entropy is the best criterion for all three corpora.
We therefore selected this criterion in our proac-
tive learning experiments.

3.4 Proactive learning results

Our method was evaluated on the test datasets of
the three corpora mentioned in Section 3.1. For
all experiments with proactive learning, we used
the following settings: α = 0.975, γ = 0.05,
N = 200, and the annotation costs are 3 and 1
per sentence for the reliable and fallible experts,
respectively.

3.4.1 BatchSize

We investigated different values of BatchSize
including 20, 10, 5, and 1. The results when
BatchSize is 1 was not shown in Figure 1 as our
method always selects the fallible expert at ev-
ery iteration, which results in a performance that
is inferior to the baselines. For the GENIA cor-
pus, the F-scores are comparable, regardless of the
BatchSize used. Meanwhile, for the ACE2005
corpus, the F-scores are the highest when the batch
size is 20. In contrast, for the COPIOUS corpus,
the best scores are obtained with a batch size of
10.

3.4.2 Comparison with baselines
Figure 2 compares the experimental results of the
two baseline methods (Reliable andFallible) and
the best performance of the proposed proactive
learning method (PA) with batch sizes of 20, 10,
and 5, respectively, on the three corpora. Reliable
refers to a baseline in which we only select the re-
liable expert at each iteration. Similarly, only the
fallible expert was selected in the Fallible exper-
iments.

It can be seen that the performance of the three
models is comparable between ACE2005 and the
COPIOUS corpus. For these two corpora, PA
outperformed the two baselines. In most cases,
by using PA, better F-scores are obtained at the
same cost as the two baselines. Both PA and
Reliable performance is increased when the to-
tal cost is increased. Meanwhile, for the Fallible
model, the performance stabilises at a lower level
than the other methods when cost rises above a
certain level.

Regarding the GENIA corpus, PA acheived a
higher performance than Reliable, but a lower
performance than Fallible in the range of costs
from 0 to approximately 3,500. This can be partly
explained by the fact that there are only three NE
classes in this corpus. Hence, the annotation task
is simpler than for the the other corpora, even for
the fallible expert. However, when the cost is
greater than 3,500, the performance of Fallible
becomes stable, while the performance of PA
continues to increase.

We also investigated the number of times that
each expert was selected during the iterative pro-
cess of PA. The results are shown in Figure 3.
PA (Reliable) and PA (Fallible) correspond to
number of times that the reliable and fallible ex-
pert respectively, were selected in PA, while
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Figure 1: Pro-active learning results on the three corpora when using different BatchSize

Figure 2: The best pro-active learning results on the three corpora in comparison to the baselines

Reliable corresponds to the number of times that
the reliable expert was selected in Reliable base-
line experiment. The figure illustrates that the
number of times that the fallible expert is selected
grows continually as the number of iterations in-
creases. This shows that our method can effec-
tively distribute appropriate unlabelled sentences
to the fallible expert, in order to save on annota-
tion costs.

4 Related work

4.1 Active learning for NER

Active learning aims to decrease annotation cost,
whilst maintaining acceptable quality of annotated
data. To achieve this, the method iteratively se-
lects the most informative sentences to be anno-
tated from an unlabelled data set.

One of the most common selection criteria used
in applying active learning to the task of NE la-
belling is the uncertainty-based criterion. This cri-
terion assumes that the most uncertain sentence

is the most useful instance for learning an NER
model. There are several ways to implement this,
such as least confidence (Culotta and McCallum,
2005)–the lower the probability of a sequence of
labels, the less confidence the model, and en-
tropy (Kim et al., 2006) that can measure the un-
certainty of a probability distribution. Some other
criteria are a diversity measurement (Kim et al.,
2006) and a density criterion (Settles and Craven,
2008).

4.2 Cost-sensitive active learning

Cost-sensitive active learning is a type of active
learning method that considers the annotation cost,
e.g., budget, time or effort required to complete the
annotation process (Olsson, 2009). Since proac-
tive learning also models the reliability or exper-
tise of each annotator in addition to the annotation
cost, it can be considered as another case of cost-
sensitive active learning.

Donmez and Carbonell (2008, 2010) investi-
gated proactive learning for binary classification.
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Figure 3: Number of times that each expert is selected in PA and Reliable models

They predicted the probability that a reluctant or-
acle refuses to annotate an instance and the prob-
ability that a fallible oracle assigns a random la-
bel to an instance. Each oracle charges a dif-
ferent amount for their efforts. They also pro-
posed a model that assigns different costs to unla-
belled instances according to their annotation diffi-
culty. For the multi-class classification task, Moon
and Carbonell (2014) used the same approach but
they had multiple experts, each of whom is spe-
cialised for each class. Kapoor et al. (2007) pro-
posed a decision-theoretic method for the task of
voice mail classification. They defined a criterion
named “expected value-of-information” that com-
bines the misclassification risk with the labelling
cost.

Cost-sensitive active learning was also applied
to part-of-speech (POS) tagging (Haertel et al.,
2008). In this work, an hourly cost measurement
was determined and a linear regression model
was trained to predict the annotation cost. Hwa
(2000) aimed to reduce the manual effort for a
parsing task by using tree entropy cost. Mean-
while, Baldridge and Osborne (2004) measured
the total annotation cost to create a treebank by
using unit cost and discriminant cost.

5 Conclusion and future work

Our work constitutes the first attempt to use proac-
tive learning method for named entity labelling.
We simulated the behaviour of reliable and fal-
lible experts having different levels of expertise
and different costs. To save annotation costs and
to ensure acceptable quality of the resulting an-
notated data, the method favours the selection of
the fallible expert. In order to increase efficiency,
we also proposed a batch sampling algorithm to
select more than one sentence in each iteration.

Experimental results for three corpora belonging
to different domains demonstrate that the employ-
ment of non-perfect experts can help to build gold
standard dataset at reasonable cost. Moreover, our
method performed well across the three different
corpora, demonstrating the generality of our ap-
proach.

A potential limitation of our approach is that
the initial step is reliant on the availability of a
gold standard corpus to estimate the experts’ per-
formance. However, for some domains, it may be
difficult to obtain such a dataset. Therefore, as
future work, we will explore how we can assess
experts’ performance without the need for gold-
standard labelled data.

As a further extension to our work, we will
explore the deployment of our method on crowd
sourcing platforms, such as CrowdFlower5 and
Amazon Mechanical Turk6. These platforms al-
low annotations to be obtained from non-expert
annotators in a rapid and cost-effective man-
ner (Snow et al., 2008). These non-experts can be
treated as non-perfect annotators in our proposed
proactive learning method.
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