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Abstract

We introduce an end-to-end system capa-
ble of named-entity detection, normaliza-
tion and relation extraction for extracting
information about bacteria and their habi-
tats from biomedical literature. Our sys-
tem is based on deep learning, CRF clas-
sifiers and vector space models. We train
and evaluate the system on the BioNLP
2016 Shared Task Bacteria Biotope data.
The official evaluation shows that the joint
performance of our entity detection and re-
lation extraction models outperforms the
winning team of the Shared Task by 19pp
on F-score, establishing a new top score
for the task. We also achieve state-of-
the-art results in the normalization task.
Our system is open source and freely
available at https://github.com/
TurkuNLP/BHE.

1 Introduction

Knowledge about habitats of bacteria is crucial for
the study of microbial communities, e.g. metage-
nomics, as well as for various applications such
as food processing and health sciences. Although
this type of information is available in the biomed-
ical literature, comprehensive resources accumu-
lating the knowledge do not exist (Deléger et al.,
2016).

The BioNLP Bacteria Biotope (BB) Shared
Tasks are organized to provide a common evalua-
tion platform for language technology researchers
interested in developing information extraction
methods adapted for the detection of bacteria and
their physical locations mentioned in the literature.
So far three BB shared tasks have been organized,
the latest in 2016 (BB3) consisting of three main
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subtasks: named entity recognition and catego-
rization (BB3-cat and BB3-cat+ner), event extrac-
tion (BB3-event and BB3-event+ner) and knowl-
edge base extraction. The NER task includes three
relevant entity types: HABITAT, BACTERIA and
GEOGRAPHICAL, the categorization task focuses
on normalizing the mentions to established ontol-
ogy concepts, although GEOGRAPHICAL entities
are excluded from this task, whereas the event ex-
traction aims at finding the relations between these
entities, i.e. extracting in which locations certain
bacteria live in. The knowledge base extraction
task is centered upon aggregating this type of in-
formation from a large text corpus.

In this paper we revisit the BB3 subtasks of
NER, categorization and event extraction, all of
which are essential for building a real-world infor-
mation extraction pipeline. As a result, we present
a text mining pipeline which achieves state-of-the-
art results for the joint evaluation of NER and
event extraction as well as for the categorization
task using the official BB3 shared task datasets and
evaluation tools. Building such end-to-end sys-
tem is important for bringing the results from the
shared tasks to the actual intended users. To our
best knowledge, no such system is openly avail-
able for bacteria habitat extraction.

The pipeline utilizes deep neural networks, con-
ditional random field classifiers and vector space
models to solve the various subtasks and the code
is freely available at https://github.com/
TurkuNLP/BHE. In the following sections we
discuss our system, divided into three modules:
entity recognition, categorization and event ex-
traction. We then analyze the results and finally
discuss the potential future research directions.
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2 Method

2.1 Named entity detection

Detecting the BB3 HABITAT, BACTERIA and GE-
OGRAPHICAL mentions is a standard named entity
recognition task, evaluated based on the correct-
ness of the type and character offsets of the dis-
covered text spans. In our NER pipeline, all doc-
uments are preprocessed following the approach
of Hakala et al. (2016). In brief, we first con-
vert all documents and annotation files from UTF-
8 to ASCII encoding using a modified version
of publicly available tool designed for parsing
PubMed documents (Pyysalo et al., 2013) 1. Next
we split documents into sentences using the Ge-
nia Sentence Splitter (Sætre et al., 2007) and the
sentences are subsequently tokenized and part-of-
speech tagged using the tokenization and POS-
tagging modules in NERsuite 2, respectively.

To detect the entity mentions we use NERsuite,
a named entity recognition toolkit, as it is rela-
tively easy to train on new corpora, yet supports
adding novel user-defined features. In biomedical
NER, NERsuite has been a versatile tool achiev-
ing excellent performance for various entity types
(Ohta et al., 2012; Kaewphan et al., 2014, 2016),
however, it is not capable of dealing with overlap-
ping entities. Therefore, we only use the longest
spans of overlapping annotated entities as our
training data, ignoring embedded entities which
are substrings of the longest spans.

In biomedical NER, domain knowledge such
as controlled vocabularies has been crucial for
achieving high performance. In this work we pre-
pare 3 dictionaries, specific for each entity type.
For BACTERIA, we compile a dictionary of names
exclusively from the NCBI Taxonomy database3

by including all names under bacteria superking-
dom (NCBI taxonomy identifier 2). The scien-
tific names are expanded to include abbreviations
whose genus names are conventionally abbrevi-
ated with the first and/or second alphabet, whereas
the rest of the names, such as species epithet and
strains, remains unchanged. For HABITAT, we
combine all symbols from the OntoBiotope on-
tology 4 and use them without any further mod-
ifications. Similar to HABITAT, we also pre-
pare dictionary for GEOGRAPHICAL by taking all

1https://github.com/spyysalo/nxml2txt
2http://nersuite.nlplab.org/
3https://www.ncbi.nlm.nih.gov/taxonomy
4http://agroportal.lirmm.fr/ontologies/ONTOBIOTOPE

strings under the semantic type geographical area
from UMLS database (version 2016AA) (Boden-
reider, 2004). All dictionaries prepared in this
step are directly provided to NERsuite through the
dictionary-tagging module without any normaliza-
tion. The tagging provides additional features de-
scribing whether the tokens are present in some
semantic categories, such as bacteria names or ge-
ographical places. For GEOGRAPHICAL model,
we also add token-level tagging results for loca-
tion from Stanford NER (SNER) (Finkel et al.,
2005) as binary values to NERsuite; 1 and 0 for
location and non-location, respectively.

Although utilizing dictionary features is benefi-
cial for NER, strict string matching tends to lead
to low coverage, an issue which is also common in
the categorization task. To remedy this problem,
we also generate fuzzy matching features based
on our categorization system (see Section 2.2) by
measuring the maximum similarity of each token
against the NCBI Taxonomy and OntoBiotope on-
tologies for BACTERIA and HABITAT respectively.
Thus, instead of a binary feature denoting whether
a token is present in the ontology or not, a sim-
ilarity score ranging from 0 to 1 is assigned for
each token. This approach is similar to (Kaewphan
et al., 2014), but instead of using word embedding
similarities, our fuzzy matching relies on character
ngrams. We do not use these features for the GEO-
GRAPHICALentities, which are not categorized by
our system.

In the official BB3 evaluation, NER is jointly
evaluated with either categorization or event ex-
traction system. In BB3-cat+ner task, SER (Slot
Error Rate) is used as the main scoring metric,
whereas in BB3-event+ner, participating teams
are ranked based on F-score of extracted rela-
tions. Due to the lack of an official evaluation
on NER for all entities in BB3-event+ner and
for GEOGRAPHICAL in BB3-cat+ner, we use our
own implementation by calculating the F-score
using exact string matching criteria as our main
scoring metric. In this study, we consider BB3-
event+ner as our primary subtask and thus all
hyper-parameters in model selection are optimized
against F-score instead of SER.

2.2 Named entity categorization

In the BB3 categorization subtask each BACTE-
RIA and HABITAT mention has to be assigned to
the corresponding ontology concepts, specifically
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to NCBI Taxonomy and OntoBiotope identifiers
respectively. This task is commonly known as
named entity normalization or entity linking and
various approaches ranging from Levenshtein edit
distances to recurrent neural networks have been
suggested as the plausible solutions (Tiftikci et al.,
2016; Limsopatham and Collier, 2016).

Our categorization method is based on the com-
mon approach of TFIDF weighted sparse vector
space representations (Salton and Buckley, 1988;
Leaman et al., 2013; Hakala, 2015), i.e. the prob-
lem is seen as an information retrieval task where
each concept name in the ontology is considered
a document and the IDF weights are based on
these names. Consequently, each concept name
and each entity mention is represented with a
TFIDF weighted vector and the concept with the
highest cosine similarity is assigned for a given
entity. Whereas these representations are com-
monly formed in a bag-of-words fashion, in our
experiments using character-level ngrams resulted
in better outcome. In the final system we use
ngrams of length 1, 2 and 3 characters. These
ngram lengths produced the highest accuracy on
the official development set for both BACTERIA

and HABITAT entities, each entity type evaluated
separately. The TFIDF vectorization was imple-
mented using the scikit-learn library (Pedregosa
et al., 2011) and default parameter values except
for using the character level ngrams instead of
words.

For both included ontologies we use the pre-
ferred names as well as the listed synonyms to
represent the concepts. Since the task is restricted
to bacteria mentions instead of all organisms, we
also narrow down the NCBI Taxonomy ontology
to cover only the Bacteria superkingdom, i.e. the
categorization system is not allowed to assign tax-
onomy identifiers which do not belong to this su-
perkingdom. Otherwise all concepts from the used
ontologies are included.

As preprocessing steps we use three main ap-
proaches: abbreviation expansion, acronym ex-
pansion and stemming. For stemming we use the
Porter stemmer (Porter, 1980) and stem each to-
ken in the entities and concept names. Accord-
ing to our evaluation this is not beneficial for the
BACTERIA entities and is thus included only for
the HABITAT entities.

In biomedical literature the genus names in
BACTERIA mentions are commonly shortened af-

ter the first mention, e.g. Staphylococcus aureus
is abbreviated as S. aureus, but the NCBI Taxon-
omy ontology does not include these abbreviated
forms as synonyms for the corresponding con-
cepts. Thus, if an entity mention includes a token
with a period in it, we expand the given token by
finding the most common token with the same ini-
tial from all previously mentioned entities of the
same type within the same document.

Another commonly used naming convention for
BACTERIA mentions is forming acronyms, e.g.
lactic acid bacteria is often referred to as LAB.
Consequently, when we detect a BACTERIA men-
tion with less than five characters or written in
uppercase, we try to find the corresponding full
form by generating acronyms for all previously
mentioned BACTERIA entities by simply concate-
nating their initials. However, many BACTERIA

acronyms do not follow this format strictly, e.g
Lactobacillus casei strain Shirota should be short-
ened to LcS instead of LCSS and Francisella tu-
larensis Live Vaccine Strain as LVS instead of
FTLVS. Thus, instead of using strict matching
to find the corresponding full form, we utilize
the same character-level TFIDF representations
as used for the actual categorization for these
acronyms to find the most similar full form. In our
evaluation, using the same approach for HABITAT

entities dramatically decreased the performance
hence was thus not used for this entity type (see
Section 3.2).

Both of these expansion methods have similar
intentions as the preprocessing steps utilized by
the winning system in BB3 (BOUN) by Tiftikci
et al. (2016), but our system uses more relaxed
criteria for finding the full forms and should thus
result in better recall at the expense of precision.

2.3 Event extraction

The BB3-event and BB3-event+ner tasks demand
extraction of undirected binary associations of two
named entities: a BACTERIA entity and either a
HABITAT or a GEOGRAPHICAL entity; and these
relations represent the locations in which bacteria
live. We thus formulate this task as a binary clas-
sification task and assign the label positive if such
relation holds for a given entity pair and negative
otherwise.

To address this task, we present a deep learning-
based relation extraction system that generates
features along the shortest dependency path (SDP)

82



Train Devel Test
Total sentences 527 319 508
Sentences w/examples 158 117 158
Sentences w/o examples 369 202 350
Total examples 524 506 534
Positive examples 251 177 -
Negative examples 273 329 -

Table 1: BB3-event data statistics.

which connects the two candidate entities in the
syntactic parse graph. Many successful relation
extraction systems have been built utilizing SDP
(Cai et al., 2016; Mehryary et al., 2016; Xu et al.,
2015; Björne and Salakoski, 2013; Björne et al.,
2012; Bunescu and Mooney, 2005) since it is
known to contain most of the relevant words for
expressing the relation between the two entities
while excluding less relevant and uninformative
words. Since this approach focuses on a single
sentence parse graph at a time, it is unable to detect
plausible cross-sentence relations, i.e, the cases in
which the two candidate entities belong to differ-
ent sentences. As discussed by Kim et al. (2011),
detecting such relations is a major challenge for
relation extraction systems. We simply exclude
any cross-sentence relations from training, devel-
opment and test sets.5 Table 1 summarizes the
statistics of the data that is used for building our
relation extraction system after removing cross-
sentence relations.

2.3.1 Preprocessing
For preprocessing, we use the preprocessing
pipeline of the TEES system (Björne and
Salakoski, 2013) which automates tokenization,
part-of-speech tagging and sentence parsing.
TEES runs the BLLIP parser (Charniak and John-
son, 2005) with the biomedical domain model cre-
ated by McClosky (2010). The resulting phrase
structure trees are then converted to dependency
graphs (nonCollapsed variant of Stanford Depen-
dency) using the Stanford conversion tool (version
2.0.1) (de Marneffe et al., 2006).

2.3.2 Relation extraction system architecture
The architecture of our deep learning-based rela-
tion extraction system is centered around utiliz-
ing three separate convolutional neural networks
(CNN): for the sequence of words, the sequence of

5Official evaluation results on the development and test
data are of course comparable to those of other systems: any
cross-sentence relations in the development/test data count
against our submissions as false negatives.

POS tags, and the sequence of dependency types
(the edges of the parse graph), along the SDP con-
necting the two candidate entities (see Figure 1).
Even though the parse graph is directed, we re-
gard it as an undirected graph and always traverse
the SDP by starting the path from the BACTERIA

entity mention to the HABITAT/GEOGRAPHICAL,
regardless of the order of their occurrence in the
sentence. Evaluation against the development set
showed that this approach leads to better general-
ization in comparison with simply traversing the
path from the first occurring entity mention to the
second (with/without considering the direction of
the edges).

The structure of each CNN is similar: the words
(or POS tags or dependency types) in the sequence
are mapped into their corresponding vector repre-
sentations using an embedding lookup layer. The
resulting sequence of vectors is then forwarded
into a convolutional layer which creates a convo-
lution kernel that is applied on the layer input over
a single spatial dimension to produce a tensor of
outputs. These outputs are then forwarded to a
max-pooling layer that gathers information from
local features of the SDP. Hence, the three CNNs
produce three vector representations.

Subsequently, the output vectors of the CNNs
and two 1-hot-encoded entity-type vectors are
concatenated. The first entity-type vector repre-
sents the type of the first occurring entity in the
sentence (BACTERIA, HABITAT or GEOGRAPH-
ICAL), and the other is used for the second one.
The resulting vector is then forwarded into a fully
connected hidden layer and finally, the hidden
layer connects to a single-node binary classifica-
tion layer.

For the word features, we use a vector space
model with 200-dimensional word embeddings
pre-trained by Pyysalo et al. (2013). These are
fine-tuned during the training while the POS-tag
and dependency type embeddings are learned from
scratch after being randomly initialized.

Based on experiments on the development set,
we have set the dimensionality of the POS tag em-
beddings to 200, and for dependency types to 300.
For all convolutional layers, the number of filters
has been set to 100 and the window size (filter
length) to 4. Finally, dimensionality of the hid-
den layer has been set to 100.The ReLU activation
function is applied on the output of the convolu-
tional layers while we apply sigmoid activation to
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Figure 1: Proposed network architecture.

the output of the hidden layer.

2.3.3 Training and optimization

We use binary cross-entropy as the objective
function and the Adam optimization algorithm
(Kingma and Ba, 2014) for training the network.
Applying the dropout (Srivastava et al., 2014) with
rate of 50% on the output of the hidden layer is the
only network regularization method used to avoid
overfitting.

When the number of weights in a neural net-
work is high and the training set is very small (e.g.,
there are only 524 examples in the BB3-event
training set), the initial random state of the model
can have a significant impact on the final model
and its generalization performance. Mehryary
et al. (2016) have reported that the F-score on the
development set of BB3-event task can vary up to
9 percentage points based on the different initial
random state of the network.

To overcome this problem, we implement the
simple but effective strategy proposed by them,
which consists of training the neural network
model 15 times with different initial random
states, predicting the development/test set exam-
ples and aggregating the 15 classifiers’ predictions
using a simple voting algorithm.

For each development/test example, the voting
algorithm combines the predictions based on a
given threshold parameter t: the relation is voted

to be positive if at least t classifiers have predicted
it to be positive, otherwise, it will be considered as
a negative. Obviously, the lowest threshold value
(t = 1) produces the highest recall and lowest pre-
cision and the highest threshold (t = 15) produces
the highest precision and lowest recall and the aim
is to find be best threshold value which maximizes
the F-score.

Our experiments on the development set (us-
ing the proposed network architecture) showed
that for the BB3-event task the optimal results
are achieved when we train the networks for 2
epochs and set the threshold value to 4, and for the
BB3-event+ner task, when we train the networks
for 2 epochs and set the threshold value to 3.

3 Results and discussion

3.1 Named entity detection
For the named entity detection task, we obtain
the baseline performance by training NERsuite for
each entity-type independently. As shown in Ta-
ble 2, the F-scores for BACTERIA, GEOGRAPH-
ICAL and HABITAT are 0.713, 0.516 and 0.482
respectively. The baseline performance of HABI-
TAT and GEOGRAPHICAL models is significantly
lower than BACTERIA.

For all entities, adding dictionary features im-
proves the performance of the model. A substan-
tial improvement in F-score is found for GEO-
GRAPHICAL where the performance is increased
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Entity/Experiment Precision Recall F-score
Bacteria
BB3 0.787 0.652 0.713
BB3 + dict 0.833 0.697 0.759
BB3 + tfidf 0.793 0.660 0.720
BB3 + tfidf + dict 0.822 0.717 0.766
BB3 + BB2 + dict 0.902 0.713 0.796
BB3 + BB1 + dict 0.893 0.721 0.798
Habitat
BB3 0.589 0.407 0.482
BB3 + dict 0.649 0.465 0.541
BB3 + tfidf 0.697 0.482 0.570
BB3 + tfidf + dict 0.715 0.520 0.602
BB3 + BB2 + dict 0.560 0.500 0.529
Geographical
BB3 0.667 0.421 0.516
BB3 + dict 0.719 0.605 0.657
BB3 + SNER 0.694 0.658 0.676
BB3 + dict + SNER 0.788 0.684 0.732
BB3 + BB2 + dict 0.903 0.737 0.812

Table 2: The performance of our named entity de-
tection system on BACTERIA, HABITAT and GE-
OGRAPHICAL mentions using internal evaluation
system. The models are evaluated on the BB3 de-
velopment data.

by more than 14pp compared to 6pp and 5pp for
HABITAT and BACTERIA, respectively. Adding
fuzzy matching features further improves the F-
score for HABITAT by more than 12pp compared
to 8pp for BACTERIA. This result shows that hav-
ing both domain knowledge and relaxed matching
criteria can significantly enhance the model per-
formance.

We improve equally the baseline performance
for GEOGRAPHICAL by adding features from
SNER tagging. The increase in F-score, 0.657
versus 0.676, is about the same as independently
adding UMLS-geographical area dictionary fea-
tures. Further increase in F-score is achieved by
combining both features, likely due to the ex-
panded coverage of geographical names.

The BB3 corpus is relatively small in terms of
entity frequency and the number of unique entities.
We explore the possibility of increasing model
performance through adding additional training
data from previously organized BB Shared Tasks
(i.e, BB1 (Bossy et al., 2011) and BB2 (Bossy
et al., 2013)). Annotations for BACTERIA men-
tions are available in both BB1 and BB2 Shared
Tasks and we thus train NERsuite models by
adding these annotations to the training data. The
results show that the models, trained with addi-
tional datasets, achieve higher performance. BB1
provides a slightly better F-score than BB2, 0.798
vs 0.796.

For GEOGRAPHICAL and HABITAT entities,
compatible annotations are only available from
BB2 (Bossy et al., 2013), subtask 2. We thus train
NERsuite for both HABITAT and GEOGRAPHI-
CAL by using combined BB3 and BB2 data. The
result for GEOGRAPHICAL is similar to the one
observed with BACTERIA and additional data can
increase the model F-score by more than 15pp.
However, the result for HABITAT is different as
F-score slightly drops from 0541 to 0.529. The
best NER model for HABITAT thus remains un-
changed.

Finally, we train our final model by combining
training and development datasets and use hyper-
parameters obtained from the best performing sys-
tem on development dataset. The official evalua-
tion of the NER task jointly with either catego-
rization or event extraction system is discussed in
Section 3.2 and Section 3.3, respectively.

3.2 Categorization

To analyze our categorization approaches, we
evaluate their performance on the official develop-
ment set. During the development we used accu-
racy for evaluating the effects of different hyper-
parameters and preprocessing steps. To get com-
parable results to previous systems we, however,
report the results in this paper using the precision
scores from the official evaluation service. As the
used ontologies form hierarchical structures, the
official evaluation penalizes the incorrect predic-
tions based on the distance from the gold standard
annotations, whereas our internal accuracy evalua-
tion measures exact matches. Our accuracy scores
and the official evaluation seem to correlate to the
level that all improvements validated using the ac-
curacy score also improved the performance ac-
cording to the official evaluation.

The performance of our system and various pre-
processing steps are shown incrementally in Ta-
ble 3. As a baseline system we use TFIDF bag-
of-words representations without any of our pre-
processing steps. By simply switching to charac-
ter level representations the precision is increased
by 1.3pp for HABITAT and 14.1pp for BACTERIA

mentions.
Adding the abbreviation expansion step further

improves precision for BACTERIA by 14.1pp, but
does not influence HABITAT entities as most likely
there are no abbreviated mentions in this category.
The acronym expansion has a lesser, but still no-
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ticeable impact and improves precision for BAC-
TERIA by 4.9pp. However, applying this method
to HABITAT entities decreases the performance by
4.5pp and is thus left out in the final system for this
entity type. This is probably due to the fact that we
consider all tokens with less than 5 characters to
be acronyms, which seems to hold for BACTERIA

mentions, but is a bad assumption for HABITAT

entities. The final preprocessing step, stemming,
improves the performance on HABITAT entities by
mere 1.3pp, but has a negative impact on BACTE-
RIA and is left out for this entity type in the final
system.

The results on the official test set are consis-
tently lower than on the development set for both
entity types (see Table 4), suggesting that the
hyperparameters selected based on the develop-
ment set might have been slightly overfit on this
data. However, our system is able to outperform
BOUN (Tiftikci et al., 2016), the winning system
from the BioNLP’16 BB3 Shared Task, by 1pp,
1.5pp and 1.2pp on HABITAT, BACTERIA and all
entities respectively.

Since the BB3 tasks do not evaluate named en-
tity recognition independently, but only in con-
junction with either categorization or event ex-
traction, we also report the official numbers for
the BB-cat+ner task in Table 5. In this com-
bined evaluation our system is not able to reach
the performance level of the state-of-the-art sys-
tem TagIt (Cook et al., 2016), but does outperform
the other systems which participated in the given
subtask.

Our combined system is also performing clearly
worse on the test set than on the development set.
Unfortunately, due to the test set being blinded,
we are unable to specify the exact cause for this.
However, the official evaluation service does pro-
vide relaxed evaluation modes where e.g. entity
boundaries are ignored, i.e. the evaluation fo-
cuses on the categorization task. Based on these
evaluations our categorization system seems to
perform on the same level on both development
and test sets, but the performance of our NER
model drops, especially for the BACTERIA men-
tions. This might be simply due to overfitting on
the development set, but requires further investi-
gation.

Habitat Bacteria Overall
BOW TFIDF 0.634 0.531 0.568
Char TFIDF 0.647 0.672 0.656
+ abbreviations 0.647 0.813 0.705
+ acronyms 0.602 0.862 0.693
+ stemming 0.660 0.858 0.729
Final system 0.660 0.862 0.731

Table 3: Evaluation of our categorization sys-
tem with different preprocessing steps compared
to a baseline system with TFIDF weighted bag-
of-words (unigrams) representations. The scoring
is produced by the official evaluation service. Any
added processing step, which decreases the perfor-
mance is left out for the given entity type for the
following experiments.

Habitat Bacteria Overall
Our system 0.630 0.816 0.691
BOUN 0.620 0.801 0.679

Table 4: Comparison of our entity categoriza-
tion system and the best performing system in
BioNLP’16 BB3 Shared Task on the test set using
the official evaluation service.

Habitat Bacteria Overall
Development set

Our system 0.645 0.377 0.553
TagIt 0.511 0.303 0.439

Test set
Our system 0.804 0.706 0.766
TagIt 0.775 0.399 0.628

Table 5: Official results for the combined evalu-
ation of named entity recognition and categoriza-
tion compared against the state-of-the-art system.
The results are evaluated in slot error rate (SER),
i.e. a smaller value is better. The scores for the
TagIt system are as reported in their paper.

3.3 Event extraction
As discussed earlier, there are two tasks in the
BB3 which involve extracting the relations be-
tween BACTERIA and HABITAT/GEOGRAPHICAL

entities: (1) The BB3-event task, for which all
manually annotated entities are given (even for
the test set). This task aims to assess the per-
formance of relation extraction systems; (2) The
BB3-event+ner task, for which, entities for the test
set are hidden and the aim is assessing the joint
performance of the NER and the relation extrac-
tion systems.

It should be highlighted that the performance
of the NER system has a direct impact on the
relation extraction system and subsequently on
the performance of an end-to-end system for the
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BB3-event+ner task. On one hand, if the NER
system produces extremely low recall outputs, the
relation extraction system will fail to extract some
of the valid relations, simply because it only inves-
tigates the existence of possible relations among
the given entities. On the other hand, if the NER
system provides high recall but very low precision
predictions, this means that words mistakenly de-
tected as valid entities are given to the relation
extraction system. For each given entity, the re-
lation extraction system pairs it with other pro-
vided entities in the sentence and tries to classify
all candidate pairs. Hence, invalid entities will
lead to generation of candidate pairs in which one
or even both of the entities are actually invalid.
Since the relation extraction system is trained on
valid entity pairs, i.e., (BACTERIA,HABITAT) or
(BACTERIA,GEOGRAPHICAL), it can easily pro-
duce a plethora of false-positives and hence, its
precision will dramatically drop.

To summarize, if the NER system performance
is low (low precision and/or low recall), even a
very high-performance relation extraction system
will not be able to compensate. Thus, when build-
ing an end-to-end system, the joint performance
of NER and relation extraction should be assessed
since individual performances do not reflect how
efficiently the system will work in real-world ap-
plications.

The official performance of our relation extrac-
tion system alone when evaluated against the test
set of the BB3-event task is 0.512 measured in F-
score (0.444 recall and 0.605 precision), achieving
the third place among Shared Task participants for
this task.

Dataset Overall Habitat Geography
Development set
With sub-optimal
entities 0.423 0.390 0.576

With optimal
entities 0.429 0.395 0.604

Test set
With sub-optimal
entities 0.372 0.388 0.207

With optimal
entities 0.381 0.386 0.319

Table 6: Combined performance of our named en-
tity recognition and event extraction systems on
the event+ner task reported in F-score as measured
by the official evaluation service.

For the BB3-event+ner task, the official results
on the development and the test set are given in Ta-

ble 6. As discussed earlier, to increase the perfor-
mance of the NER system, we combine the BB3
with older BB datasets. This leads to the best pre-
diction performance (denoted as optimal). Thus,
we report and compare the overall performance
of the end-to-end system when we use these en-
tities. To establish a fair comparison with previ-
ously published systems we also report results for
models trained only on the BB3 (denoted as sub-
optimal). As Table 6 shows, using previous BB-
ST data for training the NER leads to 3pp increase
in F-score of (BACTERIA,GEOGRAPHICAL) rela-
tions on the development set and about 11pp for
the test set, probably due to the drastically in-
creased performance for GEOGRAPHICAL entity
detection. Unfortunately, since there are much
less (BACTERIA,GEOGRAPHICAL) relations than
(BACTERIA,HABITAT) relations in the data, our
approach increases the overall F-score only by 1pp
for the test set.

Table 7 compares the performance of our end-
to-end system with the winning team in the
BB3-event+ner task (LIMSI, developed by Grouin
(2016)). As it can be seen in the table, our sys-
tem outperforms the winning team by 19pp in F-
score, achieving the new state-of-the-art score for
the task. Even if we solely rely on BB3 data for the
NER system, the improvement is 18pp in F-score.
We emphasize that no other data than BB3 is used
for training/optimization of our relation extraction
system in any way.

Teams F-score Recall Precision SER
LIMSI 0.192 0.191 0.193 1.558
Our system 0.381 0.292 0.548 0.891

Table 7: Official evaluation results for BB3-
event+ner test data of our system compared to
LIMSI, the winning team in the Shared Task.

4 Conclusions and future work

In this work, we introduced an open-source end-
to-end system, capable of named-entity detec-
tion/normalization and relation extraction to ex-
tract information about bacteria and their habitats
from text. Our system is trained and evaluated on
the BioNLP Shared Task 2016 Bacteria Biotope
data.

According to the official evaluation, our entity
detection and categorization system would have
achieved the second place in BB3. Compared to
the best performing system on cat+ner, TagIt, we
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consider that our approach on NER can still be
improved, especially for HABITAT entities. First,
we consider employing a post-processing step in
order to recover embedded entities which are not
currently handled by NERsuite. An effective post-
processing step should have a substantial impact
on our NER system as the embedded entities ac-
counted for over 10% of all HABITAT mentions.

Our categorization system outperforms the best
performing system of BB3 by 1.2pp in the offi-
cial evaluation, constituting the new state-of-the-
art for this task. Our system also relies less on
rule-based or heuristic preprocessing steps and
uses the same general approach for both BACTE-
RIA and HABITAT mentions suggesting that it will
be more adaptable for new entity types.

As 9.6% of the HABITAT entities in the official
training set have more than one gold standard on-
tology annotation whereas our current system is
only assigning a single concept for each entity, one
future work direction is to assess different ways of
associating entities with multiple concepts. In the
simplest form this could be implemented by defin-
ing a similarity threshold instead of selecting only
the best matching concept.

Since the character level ngrams resulted in sig-
nificantly better performance than our word level
baseline, the exploration of character level neural
approaches is also warranted for the categorization
task and will be tested in the future.

Official evaluation shows that the joint perfor-
mance of entity detection and relation extraction
of our end-to-end system outperforms the winning
team by 19pp on F-score, establishing a new top
score for the event+ner task. In this work we did
not use previous BB Shared Task data for training
the relation extraction system. However, as a fu-
ture work we would like to investigate the effect
of utilizing previous BB Shared Task data.

As a future work, we would like to run our sys-
tem on large-scale, on all PubMed abstracts and
PubMed Central Open Access full articles to form
a publicly available knowledge base.

We highlight that the methods discussed and
used in this work are not only applicable for BB3
tasks and can be beneficial for other entity detec-
tion/normalization and relation extraction projects
as well.
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Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research 12:2825–2830.

Martin F Porter. 1980. An algorithm for suffix strip-
ping. Program 14(3):130–137.

Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio
Salakoski, and Sophia Ananiadou. 2013. Distribu-
tional semantics resources for biomedical text pro-
cessing. In Proceedings of the 5th International
Symposium on Languages in Biology and Medicine
(LBM 2013). pages 39–44.

Rune Sætre, Kazuhiro Yoshida, Akane Yakushiji,
Yusuke Miyao, Yuichiro Matsubayashi, and Tomoko
Ohta. 2007. AKANE system: protein-protein in-
teraction pairs in BioCreAtIvE2 challenge, PPI-IPS
subtask. In Proceedings of the Second BioCreative
Challenge Workshop. pages 209–212.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval.
Information processing & management 24(5):513–
523.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.

89



Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15:1929–1958.
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