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Abstract

We propose a novel attention mecha-
nism for a Convolutional Neural Net-
work (CNN)-based Drug-Drug Interaction
(DDI) extraction model. CNNs have been
shown to have a great potential on DDI ex-
traction tasks; however, attention mecha-
nisms, which emphasize important words
in the sentence of a target-entity pair, have
not been investigated with the CNNs de-
spite the fact that attention mechanisms
are shown to be effective for a general do-
main relation classification task. We eval-
uated our model on the Task 9.2 of the
DDIExtraction-2013 shared task. As a re-
sult, our attention mechanism improved
the performance of our base CNN-based
DDI model, and the model achieved an
F-score of 69.12%, which is competitive
with the state-of-the-art models.

1 Introduction

When drugs are concomitantly administered to
patients, the effects of the drugs may be en-
hanced or weakened, which may cause side ef-
fects. These kinds of interactions are called Drug-
Drug Interactions (DDIs). Several drug databases,
such as DrugBank (Law et al., 2014), Therapeu-
tic Target Database (Yang et al., 2016), and Phar-
mGKB (Thorn et al., 2013), have been provided
to summarize drug and DDI information for re-
searchers and professionals; however, many newly
discovered or rarely reported interactions are not
covered in the databases, and they are still buried
in biomedical texts. Therefore, studies on auto-
matic DDI extraction that extract DDIs from texts
are expected to support maintenance of databases
with high coverage and quick update to help med-
ical experts deepen their understanding of DDIs.

For the DDI extraction, deep neural network-
based methods have recently drawn a considerable

attention (Liu et al., 2016; Zhao et al., 2016; Sahu
and Anand, 2017). Deep neural networks have
been widely used in the NLP field. They show
high performance on several NLP tasks without
requiring manual feature engineering. Convolu-
tional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) are often employed for
the network architectures. Among these, CNNs
have an advantage that they can be easily paral-
lelized and the calculation is thus fast with recent
Graphical Processing Units (GPUs).

Liu et al. (2016) showed that CNN-based model
can achieve a high accuracy on the task of DDI
extraction. Sahu and Anand (2017) proposed an
RNN-based model with attention mechanism to
tackle the DDI extraction task and show the state-
of-the-art performance. The integration of an at-
tention mechanism into a CNN-based relation ex-
traction is proposed by Wang et al. (2016). This
is applied to a general domain relation extrac-
tion task SemEval 2010 Task 8 (Hendrickx et al.,
2009). Their model showed the state-of-the-art
performance on the task. CNNs with attention
mechanisms, however, are not evaluated on the
task of DDI extraction.

In this study, we propose a novel attention
mechanism that is integrated into a CNN-based
DDI extraction model. The attention mecha-
nism extends attention mechanism by Wang et al.
(2016) in that it deals with anonymized entities
separately from other words and incorporates a
smoothing parameter. We implement a CNN-
based relation extraction model and integrate the
novel mechanism into the model. We evaluate our
model on the Task 9.2 of the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013).

The contribution of this paper is as follows.
First, this paper proposes a novel attention mech-
anism that can boost the performance on CNN-
based DDI extraction. Second, the DDI extrac-
tion model with the attention mechanism achieves
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Figure 1: Overview of our model

the performance with an F-score of 69.12% that is
competitive with other state-of-the-art DDI extrac-
tion models when we compare the performance
without negative instance filtering (Chowdhury
and Lavelli, 2013).

2 Methods

We propose a novel attention mechanism for a
CNN-based DDI extraction model. We illus-
trate the overview of the proposed DDI extraction
model in Figure 1. The model extracts interactions
from sentences with drugs are given. In this sec-
tion, we first present preprocessing of input sen-
tences. We then introduce the base CNN model
and explain the attention mechanism. Finally, we
explain the training method.

2.1 Preprocessing

Before processing a drug pair in a sentence, we re-
place the mentions of the target drugs in the pair
with “DRUG1” and “DRUG2” according to their
order of appearance. We also replace other men-
tions of drugs with “DRUGOTHER”.

Table 1 shows an example of preprocessing
when an input sentence Exposure to oral S-
ketamine is unaffected by itraconazole but greatly
increased by ticlopidine is given with a target en-
tity pair. By performing preprocessing, it is pos-
sible to prevent the DDI extraction model to be

specialized for the surface forms of the drugs in
a training data set and to perform DDI extraction
using the information of the whole context.

2.2 Base CNN model
The base CNN model for extracting DDIs is one
by Zeng et al. (2014). In addition to their original
objective function, we employ an ranking-based
objective function by dos Santos et al. (2015). The
model consists of four layers: embedding, convo-
lution, pooling, and prediction layers. We show
the CNN model at the bottom half of Figure 1.

2.2.1 Embedding layer
In the embedding layer, each word in the input
sentence is mapped to a real-valued vector repre-
sentation using an embedding matrix that is ini-
tialized with pre-trained embeddings. Given an
input sentence S = (w1, · · · , wn) with drug en-
tities e1 and e2, we first convert each word wi into
a real-valued vector ww

i by an embedding matrix
W emb ∈ Rdw×|V | as follows:

ww
i = W embvwi , (1)

where dw is the number of dimensions of the word
embeddings, V is the vocabulary in the training
data set and the pre-trained word embeddings, and
vwi is a one hot vector that represents the index
of word embedding in W emb. vwi thus extracts
the corresponding word embedding from W emb.
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Entity1 Entity2 Preprocessed input sentence
S-ketamine itraconazole Exposure to oral DRUG1 is unaffected by DRUG2 but greatly

increased by DRUGOTHER.
S-ketamine ticlopidine Exposure to oral DRUG1 is unaffected by DRUGOTHER but

greatly increased by DRUG2.
itraconazole ticlopidine Exposure to oral DRUGOTHER is unaffected by DRUG1 but

greatly increased by DRUG2.

Table 1: An example of preprocessing on the sentence “Exposure to oral S-ketamine is unaffected by
itraconazole but greatly increased by ticlopidine” for each target pair.

The word embedding matrix W emb is fine-tuned
during training.

We also prepare dwp-dimensional word position
embeddings wp

i,1 and wp
i,2 that correspond to the

relative positions from first and second target en-
tities, respectively. We concatenate the word em-
bedding ww

i and these word position embeddings
wp
i,1 and wp

i,2 as in the following Equation (2), and
we use the resulting vector as the input to the sub-
sequent convolution layer:

wi = [ww
i ; wp

i,1; w
p
i,2]. (2)

2.2.2 Convolution layer
We define a weight tensor for convolution as
W conv

k ∈Rdc×(dw+2dwp)×k and we represent the j-
th column of W conv

k as W conv
k,j ∈R(dw+2dwp)×k.

Here, dc denotes the number of filters for each
window size, k is a window size, and K is a set
of the window sizes of the filters. We also intro-
duce zi,k that is concatenated k word embeddings:

zi,k = [wT
bi−(k−1)/2c; . . . ; w

T
bi−(k+1)/2c]

T. (3)

We apply the convolution to the embedding matrix
as follows:

mi,j,k = f(W conv
k,j � zi,k + b), (4)

where � is an element-wise product, b is the bias
term, and f is the ReLU function defined as:

f(x) =

{
x, if x > 0
0, otherwise.

(5)

2.2.3 Pooling layer
We employ the max pooling (Boureau et al., 2010)
to convert the output of each filter in the convolu-
tion layer into a fixed-size vector as follows:

ck = [c1,k, · · · , cdc,k], cj,k = max
i
mi,j,k. (6)

We then obtain the dp-dimensional output of this
pooling layer, where dp equals to dc×|K|, by con-
catenating the obtained outputs ck for all the win-
dow sizes k1, · · · , kK(∈ K):

c = [ck1 ; . . . ; cki
; . . . ; ckK

]. (7)

2.2.4 Prediction layer
We predict the relation types using the output of
the pooling layer. We first convert c into scores
using a weight matrix W pred ∈ Ro×dp :

s = W predc, (8)

where o is the total number of relationships to be
classified and s = [s1, · · · , so]. We then employ
the following two different objective functions for
prediction.

Softmax We convert s into the probability of
possible relations p by a softmax function:

p = [p1, · · · , po], pj =
exp (sj)∑o
l=1 exp (sl)

. (9)

The loss function Lsoftmax is defined as in the
Equation (10) when the gold type distribution y
is given. y is a one-hot vector where the proba-
bility of the gold label is 1 and the others are 0.

Lsoftmax = −
∑

y log p (10)

Ranking We employ the ranking-based objec-
tive function following dos Santos et al. (2015).
Using the scores s in the Equation (8), the loss is
calculated as follows:

Lranking = log(1 + exp(γ(m+ − sy))
+ log(1 + exp(γ(m− + sc)), (11)

where m+ and m− are margins, γ is a scaling fac-
tor, y is a gold label, and c ( 6= y) is a negative la-
bel with the highest score in s. We set γ to 2, m+

to 2.5 and m− to 0.5 following dos Santos et al.
(2015).
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Figure 2: Workflow of DDI extraction

2.3 Attention mechanism
Our attention mechanism is based on the input at-
tention by Wang et al. (2016)1. The proposed at-
tention mechanism is different from the base one
in that we prepare separate attentions for enti-
ties and we incorporate a bias term to adjust the
smoothness of attentions. We illustrate the atten-
tion mechanism at the upper half of Figure 1.

We define the word index of the first and second
target drug entities in the sentence as e1 and e2,
respectively. We also denote by E = {e1, e2} the
set of indices and by j ∈ {1, 2} the index of the
entities. We calculate our attentions using these:

βi,j = wej ·wi (12)

αi,j =

{
exp (βi,j)∑

1≤l≤n,l/∈E exp (βl,j)
, if i /∈ E

adrug, otherwise
(13)

αi =
αi,1 + αi,2

2
+ bα. (14)

Here, adrug is an attention parameter for entities
and bα is the bias term. adrug and bα are tuned
during training. If we set E to empty and bα to
zero, the attention will be the same as one by Wang
et al. (2016). We incorporate the attentions αi into
the CNN model by replacing the Equation (4) with
the following equation:

mi,j,k = f(W conv
j � zi,kαi + b). (15)

2.4 Training method
We use L2 regularization to avoid over-fitting.
We use the following objective functions L′∗
(L′softmax or L′ranking) by incorporating the L2
regularization on weights to the Equation (10).

L′∗ = L∗ + λ(||W emb||2F + ||W conv||2F (16)

+||W pred||2F )
1We do not incorporate the attention-based pooling in

Wang et al. (2016). We leave this for future work.

Here, λ is a regularization parameter and || · ||F
denotes the Frobenius norm. We update all the
parameters including the weights W emb, W conv,
and W pred, biases b and bα, and the attention pa-
rameter adrug to minimize L′∗. We use the adap-
tive moment estimation (Adam) (Kingma and Ba,
2015) for the optimizer. We randomly shuffle
training data set and divide them into mini-batch
samples in each epoch.

3 Experimental settings

We illustrate the workflow of the DDI extraction
in Figure 2. As preprocessing, we performed word
segmentation of the input sentences using the GE-
NIA tagger (Tsuruoka et al., 2005). In this section,
we explain the settings for the data sets, tasks, ini-
tial embeddings, and hyper-parameter tuning.

3.1 Data set

We used the data set from the DDIExtraction-2013
shared task (SemEval-2013 Task 9) (Segura Bed-
mar et al., 2013; Herrero-Zazo et al., 2013) for the
evaluation. This data set is composed of docu-
ments annotated with drug mentions and their re-
lationships. The data set consists of two parts:
MEDLINE and DrugBank. MEDLINE consists of
abstracts in PubMed articles, and DrugBank con-
sists of the descriptions of drug interactions in the
DrugBank database. This data set annotates the
following four types of interactions.

• Mechanism: A sentence describes phar-
macokinetic mechanisms of a DDI, e.g.,
“Grepafloxacine may inhibit the metabolism
of theobromine.”

• Effect: A sentence represents the effect of a
DDI, e.g., “Methionine may protect against
the ototoxic effects of gentamicin.”
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Train Test
DrugBank MEDLINE DrugBank MEDLINE

No. of documents 572 142 158 33
No. of sentences 5,675 1,301 973 326
No. of pairs 26,005 1,787 5,265 451
No. of positive DDIs 3,789 232 884 95
No. of negative DDIs 22,216 1,555 4,381 356
No. of Mechanism pairs 1,257 62 278 24
No. of Effect pairs 1,535 152 298 62
No. of Advice pairs 818 8 214 7
No. of Int pairs 179 10 94 2

Table 2: Statistics for the DDIExtraction-2013 shared task data set

Parameter Value
Word embedding size 200
Word position embeddings size 20
Convolutional window size [3, 4, 5]
Convolutional filter size 100
Initial learning rate 0.001
Mini-batch size 100
L2 regularization parameter 0.0001

Table 3: Hyperparamters

Counts
Sentences 1,404
Pairs 4,998
Mechanism pairs 232
Effect pairs 339
Advice pairs 132
Int pairs 48

Table 4: Statistics of the development data set

• Advice: A sentence represents a recommen-
dation or advice on the concomitant use of
two drugs, e.g., “Alpha-blockers should not
be combined with uroxatral.”

• Int: A sentence simply represents the occur-
rence of a DDI without any information about
the DDI, e.g., “The interaction of omeprazole
and ketoconazole has established.”

The statistics of the data set is shown in Table 2.
As shown in this table, the number of pairs that
have no interaction (negative pairs) is larger than
that of pairs that have interactions (positive pairs).

3.2 Task settings
We followed the task setting of Task 9.2 in the
DDIExtraction-2013 shared task (SemEval task

9). The task is to classify a given pair of drugs
into the four interaction types or no interaction.
We evaluated the performance with precision (P),
recall (R), and F-score (F) on each interaction type
as well as micro-averaged precision, recall, and F-
score on all the interaction types. We used the of-
ficial evaluation script provided by the task orga-
nizers and report the averages of 10 runs. Please
note that we took averages of precision, recall and
F-scores individually, so F-scores cannot be calcu-
lated from precision and recall.

3.3 Initializing embeddings
Skip-gram (Mikolov et al., 2013) was employed
for the pre-training of word embeddings. We used
2014 MEDLINE/PubMed baseline distribution,
and the size of vocabulary was 1,630,978. The em-
bedding of the drugs, i.e., “DRUG1”, “DRUG2”
and “DRUGOTHER” are initialized with the pre-
trained embedding of the word “drug”. The em-
beddings of training words that did not appear in
the pre-trained embeddings, as well as the word
position embeddings, are initialized with the ran-
dom values drawn from a uniform distribution and
normalized to unit vectors. Words whose frequen-
cies are one in the training data were replaced with
an “UNK” word during training, and the embed-
ding of words in the test data set that did not ap-
pear in both training and pre-trained embeddings
were set to the embedding of the “UNK” word.

3.4 Hyperparameter tuning
We split the official training data set into two parts:
training and development data sets. We tuned the
hyper-parameters on the development data set on
the softmax model without attentions. Table 3
shows the best hyperparameters on the softmax
model without attentions. We applied the same
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Type P (%) R (%) F (%)
Softmax without attention

Mechanism 76.24 (±4.48) 57.58 (±4.41) 65.31 (±1.76)
Effect 67.84 (±3.56) 63.61 (±4.95) 65.39 (±1.38)
Advice 82.26 (±7.04) 66.65 (±9.07) 72.75 (±2.72)
Int 78.99 (±6.87) 33.55 (±2.62) 47.05 (±1.71)
All (micro) 73.69 (±3.00) 59.92 (±3.73) 65.93 (±1.21)

Softmax with attention
Mechanism 76.34 (±4.20) 64.43 (±5.72) 67.86 (±4.10)
Effect 66.84 (±3.12) 65.98 (±2.63) 65.58 (±2.09)
Advice 80.98 (±6.14) 70.83 (±2.72) 76.28 (±1.40)
Int 73.21 (±6.30) 38.44 (±9.82) 46.11 (±3.96)
All (micro) 73.74 (±1.88) 63.05 (±1.39) 67.94 (±0.70)

Ranking without attention
Mechanism 78.41 (±3.99) 58.17 (±5.10) 66.51 (±2.61)
Effect 68.16 (±3.30) 65.75 (±3.22) 66.80 (±1.46)
Advice 84.49 (±3.55) 67.14 (±4.68) 74.61 (±1.82)
Int 73.95 (±7.09) 33.43 (±1.18) 45.91 (±1.23)
All (micro) 74.79 (±2.41) 60.99 (±2.65) 67.10 (±1.09)

Ranking with attention
Mechanism 80.75 (±2.76) 61.09 (±3.03) 69.45 (±1.45)
Effect 69.73 (±2.64) 66.63 (±2.93) 68.05 (±1.29)
Advice 83.86 (±2.29) 71.81 (±2.61) 77.30 (±1.13)
Int 74.20 (±8.95) 33.02 (±1.40) 45.50 (±1.51)
All (micro) 76.30 (±2.18) 63.25 (±1.71) 69.12 (±0.71)

Table 5: Performance of softmax/ranking CNN models with and without our attention mechanism. The
highest scores are shown in bold.

hyperparameters to the other models. The statis-
tics of our development data set is shown in Ta-
ble 4. We set the sizes of the convolution windows
to [3, 4, 5] that are the same as in Kim (2014). We
chose the word position embedding size from {10,
20, 30, 40, 50}, the convolutional filter size from
{10, 50, 100, 200}, the learning rate of Adam from
{0.01, 0.001, 0.0001}, the mini-batch size from
{10, 20, 50, 100, 200}, and the L2 regularization
parameter λ from {0.01, 0.001, 0.0001, 0.00001}.

4 Results

In this section, we first summarize the perfor-
mance of the proposed models and compare the
performance with existing models. We then com-
pare attention mechanisms and finally illustrate
some results for the analysis of the attentions.

4.1 Performance analysis

The performance of the base CNN models with
two objective functions, as well as with or with-
out the proposed attention mechanism, is summa-

rized in Table 5. The incorporation of the atten-
tion mechanism improved the F-scores by about
2 percent points (pp) on models with both ob-
jective functions. Both improvements were sta-
tistically significant (p < 0.01) with t-test. This
shows that the attention mechanism is effective
for both models. The improvement of F-scores
from the least performing model (softmax objec-
tive function without our attention mechanism)
to the best performing model (ranking objective
function with our attention mechanism) is 3.19 pp
(69.12% versus 65.93%), and this shows both ob-
jective function and attention mechanism are key
to improve the performance. When looking into
the individual types, ranking function with our at-
tention mechanism archived the best F-scores on
Mechanism, Effect, Advice, while the base CNN
model achieved the best F-score on Int.

4.2 Comparison with existing models

We show comparison with the existing state-of-
the-art models in Table 6. We mainly compare
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Methods P (%) R (%) F (%)
No negative instance filtering

CNN (Liu et al., 2016) 75.29 60.37 67.01
MCCNN (Quan et al., 2016) - - 67.80
SCNN (Zhao et al., 2016) 68.5 61.0 64.5
Joint AB-LSTM (Sahu and Anand, 2017) 71.82 66.90 69.27
Proposed model 76.30 63.25 69.12

With negative instance filtering
FBK-irst (Chowdhury and Lavelli, 2013) 64.6 65.6 65.1
Kim et al. (2015) - - 67.0
CNN (Liu et al., 2016) 75.72 64.66 69.75
MCCNN (Quan et al., 2016) 75.99 65.25 70.21
SCNN (Zhao et al., 2016) 72.5 65.1 68.6
Joint AB-LSTM (Sahu and Anand, 2017) 73.41 69.66 71.48

Table 6: Comparison with existing models

P (%) R (%) F (%)
No attention 74.79 (±2.41) 60.99 (±2.65) 67.10 (±1.09)
Input attention by Wang et al. (2016) 73.48 (±1.96) 59.58 (±1.51) 65.77 (±0.80)
Our attention 76.30 (±2.66) 63.25 (±2.59) 69.12 (±0.71)
Our attention without separate attentions adrug 74.03 (±2.11) 63.30 (±2.41) 68.17 (±0.71)
Our attention without the bias term bα 71.56 (±2.18) 64.19 (±2.21) 67.62 (±0.96)

Table 7: Comparison of attention mechanisms on CNN models with ranking objective function

the performance without negative instance filter-
ing, which omits some apparent negative instance
pairs with rules (Chowdhury and Lavelli, 2013),
since we did not incorporate it. We also show the
performance of the existing models with negative
instance filtering for reference.

In the comparison without negative instance fil-
tering, our model outperformed the existing CNN
models (Liu et al., 2016; Quan et al., 2016; Zhao
et al., 2016). The model was competitive with
Joint AB-LSTM model (Sahu and Anand, 2017)
that was composed of multiple RNN models.

When considering negative instance filtering,
our model showed lower performance than the
state-of-the-art. However we believe we can get
similar performance with theirs if we incorporate
negative instance filtering. Still, the model outper-
formed several models such as Kim et al. (2015),
Chowdhury and Lavelli (2013) and SCNN model
even if we consider negative instance filtering.

4.3 Comparison of attention mechanisms

We compare the proposed attention mechanism
with the input attention of Wang et al. (2016) to
show the effectiveness of our attention mecha-
nism. Table 7 shows the comparison of the atten-

tion mechanisms. We also show the base CNN-
based model with ranking loss for reference, and
the results of ablation tests. As is shown in the ta-
ble, the attention mechanism by Wang et al. (2016)
did not work in DDI extraction. However, our
attention improved the performance. This result
shows that the proposed extensions are crucial for
modeling attentions in DDI extraction. The abla-
tion test results show that both extensions to our
attention mechanism, i.e., separate attentions for
entities and incorporation of the bias term, are ef-
fective for the task.

4.4 Visual analysis

Figure 3 shows visualization of attentions on
some sentences with DDI pairs using our atten-
tion mechanism. In the first sentence, “DRUG1”
and “DRUG2” have a Mechanism interaction. The
attention mechanism successfully highlights the
keyword “concentration”. In the second sentence,
which have an Effect interaction, the attention
mechanism put high weights on “increase” and
“effects”. The word “necessary” has a high weight
on the third sentence with an Advice interaction.
For an Int interaction in the last sentence, the word
“interaction” is most highlighted.
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Figure 3: Visualization of attention

5 Related work

Various feature-based methods have been pro-
posed during and after the DDIExtraction-2013
shared task (Segura Bedmar et al., 2013). Björne
et al. (2013) tackled with DDI extraction using
Turku Event Extraction System (TEES), which is
an event extraction system based on the Support
Vector Machines (SVMs). Thomas et al. (2013)
and Chowdhury and Lavelli (2013) proposed two-
phase processing models that first detected DDIs
and then classified the extracted DDIs into one of
the four proposed types. Thomas et al. (2013) used
the ensembles of several kernel methods, while
Chowdhury and Lavelli (2013) proposed hybrid
kernel-based approach with negative instance fil-
tering. The negative instance filtering is employed
by all the subsequent models except for ours. Kim
et al. (2015) proposed a two-phase SVM-based
approach that employed a linear SVM with rich
features including word features, word pairs, de-
pendency relations, parse tree structures, and noun
phrase-based constraint features. Our model does
not use features and instead employs CNNs.

Deep learning-based models recently domi-
nated the DDI extraction task. Among these,
CNN-based models have been often employed and
RNNs has received less attention. Liu et al. (2016)
built a CNN-based model on word embedding and
word position embeddings. Zhao et al. (2016) pro-
posed Syntax CNN (SCNN) that employs syntax
word embeddings with the syntactic information
of a sentence as well as features of POS tags and
dependency trees. Liu et al. (2016) tackled DDI
extraction using Multi-Channel CNN (MCCNN)
that enables the fusion of multiple word embed-
dings. Our work is different from theirs in that we
employed an attention mechanism.

As for RNN-based approach, Sahu and Anand
(2017) proposed an RNN-based model named
Joint AB-LSTM (Long Short-Term Memory).

Joint AB-LSTM is composed of the concatenation
of two RNN-based models: bidirectional LSTM
(Bi-LSTM) and attentive pooling Bi-LSTM. The
model showed the state-of-the-art performance on
the DDIExtraction-2013 shared task data set. Our
model is a single model with a CNN and attention
mechanism, and it performed comparable to theirs
as shown in Table 6.

Wang et al. (2016) proposed muli-level atten-
tion CNNs and applied it to a general domain rela-
tion classification task SemEval 2010 Task 8 (Hen-
drickx et al., 2009). Their attention mechanism
improved the macro F1 score by 1.9pp (from
86.1% to 88.0%), and their model achieved the
state-of-the-art performance on the task.

6 Conclusions

In this paper, we proposed a novel attention mech-
anism for the extraction of DDIs. We built base
CNN-based DDI extraction models with two dif-
ferent objective functions, softmax and ranking,
and we incorporated the attention mechanism into
the models. We evaluated the performance on the
Task 9.2 of the DDIExtraction-2013 shared task,
and we showed that both attention mechanism and
ranking-based objective function are effective for
the extraction of DDIs. Our final model achieved
an F-score of 69.12% that is competitive with the
state-of-the-art model when we compared the per-
formance without negative instance filtering.

As future work, we would like to incorporate an
attention mechanism in the pooling layer (Wang
et al., 2016) and adopt negative instance filter-
ing (Chowdhury and Lavelli, 2013) for the fur-
ther performance improvement and fair compari-
son with the state-of-the-art methods.
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