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Introduction

The 6th Workshop on Vision and Language 2017 (VL’17) took place in Valencia as part of EACL’17. The
workshop is organised by the European Network on Integrating Vision and Language which is funded as
a European COST Action. The VL workshops have the general aims: to provide a forum for reporting
and discussing planned, ongoing and completed research that involves both language and vision; and
to enable NLP and computer vision researchers to meet, exchange ideas, expertise and technology, and
form new research partnerships.

Research involving both language and vision computing spans a variety of disciplines and applications,
and goes back a number of decades. In a recent scene shift, the big data era has thrown up a multitude
of tasks in which vision and language are inherently linked. The explosive growth of visual and textual
data, both online and in private repositories by diverse institutions and companies, has led to urgent
requirements in terms of search, processing and management of digital content. Solutions for providing
access to or mining such data effectively depend on the connection between visual and textual content
being made interpretable, hence on the ’semantic gap’ between vision and language being bridged.

One perspective has been integrated modelling of language and vision, with approaches located at
different points between the structured, cognitive modelling end of the spectrum, and the unsupervised
machine learning end, with state-of-the-art results in many areas currently being produced at the latter
end, in particular by deep learning approaches.

Another perspective is exploring how knowledge about language can help with predominantly visual
tasks, and vice versa. Visual interpretation can be aided by text associated with images/videos and
knowledge about the world learned from language. On the NLP side, images can help ground language in
the physical world, allowing us to develop models for semantics. Words and pictures are often naturally
linked online and in the real world, and each modality can provide reinforcing information to aid the
other.

We would like to thank all the people who have contributed to the organisation and delivery of this
workshop: the authors who submitted high quality papers; the programme committee for their prompt
and effective reviewing; our keynote speakers; the ACL 2017 organising committee, and future readers
of these proceedings for your shared interest in this exciting area of research.

April 2017,
Anja Belz, Erkut Erdem, Katerina Pastra and Krystian Mikolajczyk
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Abstract

We motivate and describe a new freely
available human-human dialogue data
set for interactive learning of visually
grounded word meanings through osten-
sive definition by a tutor to a learner. The
data has been collected using a novel,
character-by-character variant of the DiET
chat tool (Healey et al., 2003; Mills
and Healey, submitted) with a novel task,
where a Learner needs to learn invented
visual attribute words (such as “burchak”
for square) from a tutor. As such, the
text-based interactions closely resemble
face-to-face conversation and thus contain
many of the linguistic phenomena encoun-
tered in natural, spontaneous dialogue.
These include self- and other-correction,
mid-sentence continuations, interruptions,
overlaps, fillers, and hedges. We also
present a generic n-gram framework for
building user (i.e. tutor) simulations from
this type of incremental data, which is
freely available to researchers. We show
that the simulations produce outputs that
are similar to the original data (e.g. 78%
turn match similarity). Finally, we train
and evaluate a Reinforcement Learning di-
alogue control agent for learning visually
grounded word meanings, trained from the
BURCHAK corpus. The learned policy
shows comparable performance to a rule-
based system built previously.

1 Introduction

Identifying, classifying, and talking about objects
and events in the surrounding environment are
key capabilities for intelligent, goal-driven sys-
tems that interact with other humans and the exter-

T(utor): it is a ... [[sako]] burchak.
L(earner): [[suzuli?]]
T: no, it’s sako
L: okay, i see.

(a) Dialogue Example from the corpus

(b) The Chat Tool Window during dialogue in (a) above

Figure 1: Example of turn overlap + subsequent
correction in the BURCHAK corpus (‘sako’ is the
invented word for red, ‘suzuli’ for green and ‘bur-
chak’ for square)

nal world (e.g. robots, smart spaces, and other au-
tomated systems). To this end, there has recently
been a surge of interest and significant progress
made on a variety of related tasks, including gen-
eration of Natural Language (NL) descriptions of
images, or identifying images based on NL de-
scriptions (Bruni et al., 2014; Socher et al., 2014;
Farhadi et al., 2009; Silberer and Lapata, 2014;
Sun et al., 2013). Another strand of work has
focused on incremental reference resolution in a
model where word meaning is modeled as clas-
sifiers (the so-called Words-As-Classifiers model
(Kennington and Schlangen, 2015)).

However, none of this prior work focuses on
how concepts/word meanings are learned and
adapted in interactive dialogue with a human, the
most common setting in which robots, home au-
tomation devices, smart spaces etc. operate, and,
indeed the richest resource that such devices could
exploit for adaptation over time to the idiosyn-
crasies of the language used by their users.

Though recent prior work has focused on the
problem of learning visual groundings in interac-
tion with a tutor (see e.g. (Yu et al., 2016b; Yu et
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al., 2016a)), it has made use of hand-constructed,
synthetic dialogue examples that thus lack in vari-
ation, and many of the characteristic, but conse-
quential phenomena observed in naturalistic dia-
logue (see below). Indeed, to our knowledge, there
is no existing data set of real human-human dia-
logues in this domain, suitable for training multi-
modal conversational agents that perform the task
of actively learning visual concepts from a human
partner in natural, spontaneous dialogue.

(a) Multiple Dialogue Actions in one turn
L: so this shape is wakaki?
T: yes, well done. let’s move to the color.

So what color is this?
(b) Self-Correction

L: what is this object?
T: this is a sako ... no no ... a suzuli burchak.

(c) Overlapping
T: this color [[is]] ... [[sa]]ko.
L: [[su]]zul[[i?]]
T: no, it’s sako.
L: okay.

(d) Continuation
T: what is it called?
L: sako
T: and?
L: aylana.

(e) Fillers
T: what is this object?
L: a sako um... sako wakaki.
T: great job.

Table 1: Dialogue Examples in the Data (L for the
learner and T for the tutor)

Natural, spontaneous dialogue is inherently in-
cremental (Crocker et al., 2000; Ferreira, 1996;
Purver et al., 2009), and thus gives rise to dialogue
phenomena such as self- and other-corrections,
continuations, unfinished sentences, interruptions
and overlaps, hedges, pauses and fillers. These
phenomena are interactionally and semantically
consequential, and contribute directly to how di-
alogue partners coordinate their actions and the
emergent semantic content of their conversation.
They also strongly mediate how a conversational
agent might adapt to their partner over time. For
example, self-interruption, and subsequent self-
correction (see example in table 1.b) as well as
hesitations/fillers (see example in table 1.e) aren’t

simply noise and are used by listeners to guide
linguistic processing (Clark and Fox Tree, 2002);
similarly, while simultaneous speech is the bane of
dialogue system designers, interruptions and sub-
sequent continuations (see examples in table 1.c
and 1.d) are performed deliberately by speakers to
demonstrate strong levels of understanding (Clark,
1996).

Despite this importance, these phenomena are
excluded in many dialogue corpora, and glossed
over/removed by state of the art speech recog-
nisers (e.g. Sphinx-4 (Walker et al., 2004) and
Google’s web-based ASR (Schalkwyk et al.,
2010); see Baumann et al. (2016) for a compari-
son). One reason for this is that naturalistic spo-
ken interaction is excessively expensive and time-
consuming to transcribe and annotate on a level of
granularity fine-grained enough to reflect the strict
time-linear nature of these phenomena.

In this paper, we present a new dialogue data set
- the BURCHAK corpus - collected using a new
incremental variant of the DiET chat-tool (Healey
et al., 2003; Mills and Healey, submitted)1, which
enables character-by-character, text-based interac-
tion between pairs of participants, and which cir-
cumvents all transcription effort as all this data,
including all timing information at the character
level is automatically recorded.

The chat-tool is designed to support, elicit, and
record at a fine-grained level, dialogues that re-
semble the face-to-face setting in that turns are:
(1) constructed and displayed incrementally as
they are typed; (2) transient; (3) potentially over-
lapping as participants can type at the same time;
(4) not editable, i.e. deletion is not permitted - see
Sec. 3 and Fig. 2. Thus, we have been able to col-
lect many of the important phenomena mentioned
above that arise from the inherently incremental
nature of language processing in dialogue - see ta-
ble 1.

Having presented the data set, we then go on to
introduce a generic n-gram framework for build-
ing user simulations for either task-oriented or
non-task-oriented dialogue systems from this data-
set, or others constructed using the same tool. We
apply this framework to train a robust user model
that is able to simulate the tutor’s behaviour to in-
teractively teach (visual) word meanings to a Re-
inforcement Learning dialogue agent.

1Available from https://sites.google.com/
site/hwinteractionlab/babble
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(a) Chat Client Window (Tutor: “it is a ...”, Learner:
“suzuli?”, Tutor: “sako burch” )

(b) Task Panel for Tutor (Learner only sees the object)

Figure 2: Snapshot of the DiET Chat tool, the Tu-
tor’s Interface

2 Related Work

In this section, we will present an overview of rel-
evant data-sets and techniques for Human-Human
dialogue collection, as well as approaches to user
simulation based on realistic data.

2.1 Human-Human Data Collection

There are several existing corpora of human-
human spontaneous spoken dialogue, such as
SWITCHBOARD (Godfrey et al., 1992), and the
British National Corpus, which consist of open,
unrestricted telephone conversations between peo-
ple, where there are no specific tasks to be
achieved. These datasets contain many of the in-
cremental dialogue phenomena that we are inter-
ested in, but there is no shared visual scene be-
tween participants, meaning we cannot use such
data to explore learning of perceptually grounded
language. More relevant is the MAPTASK cor-
pus (Thompson et al., 1993), where dialogue par-
ticipants both have maps which are not shared.
This dataset allows investigation of negotiation di-
alogue, where object names can be agreed, and
so does support some work on language ground-
ing. However, in the MAPTASK, grounded word
meanings are not taught by ostensive definition as
is the case in our new dataset.

We further note that the DiET Chat Tool
(Healey et al., 2003; Mills and Healey, submitted)
while designed to elicit conversational structures
which resemble face-to-face dialogue (see exam-
ples in table 1), circumvents the need for the very
expensive and time-consuming step of spoken dia-
logue transcription, but nevertheless produces data
at a very fine-grained level. It also includes tools
for creating more abstract (e.g. turn-based) repre-
sentations of conversation.

2.2 User Simulation

Training a dialogue strategy is one of the funda-
mental tasks of the user simulation. Approaches
to user simulation can be categorised based on the
level of abstraction at which the dialogue is mod-
eled: 1) the intention-level has become the most
popular user model that predicts the next possi-
ble user dialogue action according to the dialogue
history and the user/task goal (Eckert et al., 1997;
Asri et al., 2016; Cuayáhuitl et al., 2005; Chan-
dramohan et al., 2012; Eshky et al., 2012; Ai
and Weng, 2008; Georgila et al., 2005); 2) on
the word/utterance-level, instead of dialogue ac-
tion, the user simulation can also be built for pre-
dicting the full user utterances or a sequence of
words given specific information (Chung, 2004;
Schatzmann et al., 2007b); and 3) on the semantic-
level, the whole dialogue can be modeled as a se-
quence of user behaviors in the semantic represen-
tation (Schatzmann et al., 2007a; Schatzmann et
al., 2007c; Kalatzis et al., 2016).

There are also some user simulations built on
multiple levels. For instance, Jung et al. (2009)
integrated different data-driven approaches on in-
tention and word levels to build a novel user sim-
ulation. The user intent simulation is for gener-
ating user intention patterns, and then a two-phase
data-driven domain-specific user utterance simula-
tion is proposed to produce a set of structured ut-
terances with sequences of words given a user in-
tent and select the best one using the BLEU score.
The user simulation framework we present below
is generic in that one can use it to train user simula-
tions on a word-by-word, utterance-by-utterance,
or action-by-action levels, and it can be used
for both goal-oriented and non-goal-oriented do-
mains.
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3 Data Collection using the DiET Chat
Tool and a Novel Shape and Colour
Learning Task

In this section, we describe our data collection
method and process, including the concept learn-
ing task given to the human participants.

The DiET experimental toolkit This is a
custom-built Java application (Healey et al., 2003;
Mills and Healey, submitted) that allows two or
more participants to communicate in a shared
chat window. It supports live, fine-grained and
highly local experimental manipulations of ongo-
ing human-human conversation (see e.g. (Eshghi
and Healey, 2015)). The variant we use here sup-
ports text-based, character-by-character, interac-
tion between pairs of participants, and here we use
it solely for data-collection, where everything that
the participants type to each other passes through
the DiET server, which transmits the utterance to
the other clients on the character level and all are
displayed on the same row/track in the chat win-
dow (see Fig. 2a) - this means that when partic-
ipants type at the same time in interruptions and
turn overlaps, their utterances will be all jumbled
up (see Fig. 1b). To simulate the transience of
speech in face-to-face conversation with its char-
acteristic phenomena, all utterances in the chat
window fade out after 1 second. Furthermore, like
in speech, deletes are not permitted: if a charac-
ter is typed, it cannot be deleted. The chat-tool
is thus designed to support, elicit, and record at
a fine-grained level, dialogues that resemble face-
to-face dialogue in that turns are: (1) constructed
and displayed incrementally as they are typed; (2)
transient; (3) potentially overlapping; (4) not ed-
itable, i.e. deletion is not permitted.

Task and materials The learning/tutoring task
given to the participants involves a pair of partici-
pants who talk about visual attributes (e.g. colour
and shape) through a sequence of 9 visual objects,
one at a time. The objects are created based on a 3
x 3 visual attribute matrix (including 3 colours and
3 shapes (see Fig.2b)). This task is assumed in a
second-language learning scenario, where each vi-
sual attribute, instead of standard English words,
is assigned to a new unknown word in a made-
up language, e.g. “sako” for red and “burchak” for
square: participants are not allowed to use any of
the usual colour and shape words from the English
language. We design the task in this way to col-

lect data for situations where a robot has to learn
the meaning of human visual attribute terms. In
such a setting the robot has to learn the perceptual
groundings of words such as “red”. However, hu-
mans already know these groundings, so to collect
data about teaching such perceptual meanings, we
invented new attribute terms whose groundings the
Learner must discover through interaction.

The overall goal of the task is for the learner to
identify the shape and colour of the presented ob-
jects correctly for as many objects as possible. So
the tutor initially needs to teach the learner about
these using the presented objects. For this, the tu-
tor is provided with a visual dictionary of the (in-
vented) colour and shape terms (see Fig. 2), but
the learner only ever sees the object itself. The
learner will thus gradually learn these and be able
to identify them, so that initiative in the conversa-
tion tends to be reversed on later objects, with the
learner making guesses and the tutor either con-
firming these or correcting them.

Participants Forty participants were recruited
from among students and research staff from var-
ious disciplines at Heriot-Watt University, includ-
ing 22 native speakers and 18 non-native speakers.

Procedure The participants in each pair were
randomly assigned to experimental roles (Tutor vs.
Learner). They were given written instructions
about the task and had an opportunity to ask ques-
tions about the procedure. They were then seated
back-to-back in the same room, each at a desk
with a PC displaying the appropriate task window
and chat client window (see Fig.2). They were
asked to go through all visual objects in at most
30 minutes and then the Learner was assessed to
check how many new colour and shape words they
had learned. Each participant was paid 10.00 for
participation. The best performing pair was also
given a 20 Amazon Voucher as prize.

4 The BURCHAK Corpus Statistics

4.1 Overview

Using the above procedure, we have collected 177
dialogues (each about one visual object) with a to-
tal of 2454 turns, where a turn is defined2 as a se-
quence of consecutive characters typed by a single
participant with a delay of no more than 1100 ms

2Note that the definition of a ‘turn’ in an incremental sys-
tem is somewhat arbitrary.
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between the characters. Figure 4a shows the dis-
tribution of dialogue length (i.e. number of turns)
in the corpus. where the average number of turns
per dialogue is 13.86.

4.2 Incremental Dialogue Phenomena
As noted, the DiET Chattool is designed to elicit
and record conversations that resemble face-to-
face dialogue. In this paper, we report specifi-
cally on a variety of dialogue phenomena that arise
from the incremental nature of language process-
ing. These are the following:

• Overlapping: where interlocutors
speak/type at the same time (i.e. the
original corpus contains over 800 overlaps),
leading to jumbled up text on the DiET
interface (see Fig. 1);

• Self-Correction: a kind of correction that
is performed incrementally in the same turn
by a speaker; this can either be conceptual,
or simply repairing a misspelling or mis-
pronunciation.

• Self-Repetition: the interlocutor repeats
words, phrases, even sentences, in the same
turn.

• Continuation (aka Split-Utterance): the in-
terlocutor continues the previous utterance
(by herself or the other) where either the sec-
ond part, or the first part or both are syntacti-
cally incomplete.

• Filler: allows the interlocutor to further plan
her utterance while keeping the floor. These
can also elicit continuations from the other
(Howes et al., 2012). This is performed using
tokens such as ‘urm’, ‘err’, ‘uhh’, or ‘. . . ’.

For annotating self-corrections, self-repetitions
and continuations we have loosely followed proto-
cols from Purver et al. (2009; Colman and Healey
(2011). Figure 4d shows how frequently these
incremental phenomena occur in the BURCHAK
Corpus. This figure excludes Overlaps which were
much more frequent: 800 in total, which amounts
to about 4.5 per dialogue.

4.3 Cleaning up the data for the User
Simulation

For the purpose of the annotation of Dialogue Ac-
tions, subsequent training of the user simulation,
and the Reinforcement Learning described below,
we cleaned up the original corpus as follows: 1)

we fixed the spelling mistakes which were not re-
paired by the participants themselves; 2) we also
removed snippets of conversation where the par-
ticipants had misunderstood the task (e.g. trying to
describe the objects or where they had used other
languages) (see Figure 3); as well as 3) remov-
ing emoticons (which frequently occurs in the chat
tool).

T: the word for the color is similar to the word
for Japanese rice wine. except it ends in o.

L: sake?
T: yup, but end with an o.
L: okay, sako.

Figure 3: Example of Dialogue Snippet with the
misunderstanding of the task

We trained a simulated tutor based on this
cleaned up data (see below, Section 5).

4.4 Dialogue Actions and their frequencies

The cleaned up data was annotated for the follow-
ing dialogue actions:

• Inform: the action to inform the correct at-
tribute words of an object to the partner, in-
cluding statement, question-answering, cor-
rection, , e.g. “this is a suzuli burchak” or
“this is sako”;

• Acknowledgment: the ability to process
confirmations from the tutor/the learner, e.g.
“Yes, it’s a square”.

• Rejection: the ability to process negations
from the tutor, e.g. “no, it’s not red”;

• Asking: the action to ask WH or polar
questions requesting correct information, e.g.
“what colour is this?” or “is this a red
square?”.

• Focus: the action to switch the dialogue topic
onto specific objects or attributes, e.g. “let’s
move to shape now”;

• Clarification: the action to clarify the cat-
egories for particular attribute names, e.g.
“this is for color not shape”;

• Checking: the action to check whether the
partner understood, e.g. “get it?”;

• Repetition: the action to request Repetitions
to double-check the learned knowledge, e.g.
“can you repeat the color again?”;
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• Offer-Help: the action to help the partner an-
swer questions, occurs frequently when the
learner cannot answer it immediately, e.g. “L:
it is a ... T: need help? L: yes. T: a sako bur-
chak.”;

Fig. 4c shows how often each dialogue action
occurs in the data set; and Fig. 4b shows the fre-
quencies of these actions by the learner and the
tutor individually in each dialogue turn. In con-
trast with a lot of previous work which assumes a
single action per turn, here we get multiple actions
per turn (see Table 1) In terms of the Learner be-
havior, the learner mostly performs a single action
per turn. On the other hand, although the majority
of the dialogue turns on the tutor side also have a
single action, about 22.59% of the dialogue turns
perform more than one action.

5 TeachBot User Simulation

Here we describe the generic user simulation
framework, based on n-grams, for building user
simulation from this type of incremental corpus.
We apply this framework to train a TeachBot user
simulator that is used to train a RL interactive con-
cept learning agent, both here, and in future work.
The model is here trained from the cleaned up ver-
sion of the corpus.

5.1 The N-gram User Simulation

The proposed user model is a compound
n-gram simulation that the probability
(P (t|w1, .., wn, c1, .., cm)) of an item t (an
action or utterance from the tutor in our work) is
predicted based on a sequence of the most recent
words (w1, . . . , wn) from the previous utterance
and additional dialogue context parameters C:

P (t|w1, .., wn, c1, .., cm) =
freq(t, w1, .., wn, c1, .., cm)

freq(w1, .., wn, c1, .., cm)
(1)

where c1, .., cm ∈ C represent additional con-
ditions for specific user/task goals (e.g. goal com-
pletion as well as previous dialogue context).

For this specific task, the additional dialogue
conditions (C) are as follows: (1) the color state
(Cstate) for whether the color attribute is identified
correctly, (2) the shape state (Sstate) for whether
the shape attribute is identified correctly, as well
as 3) the previous context (preContxt) for which
attribute (colour or shape) is currently under dis-
cussion.

In order to reduce mismatch risk, the simulation
model is able to back-off to smaller n-grams when
it cannot find any n-grams matched to the current
word sequence and conditions. To eliminate the
search restriction by the additional conditions, we
applied the nearest neighbors algorithm to search
for the n-gram matches by calculating the Ham-
ming distance of each pair of n-grams.

The n-gram user simulation is generic, as it is
designed to handle the item prediction on multiple
levels, on which the predicted item, t, can be as-
signed either to (1) a full user utterance (Ut) on
the utterance level; (2) a combined sequence of
dialogue actions (Dast); or alternatively (3) the
next word/lexical token. During the simulation,
the n-gram model chooses the next item according
to the distribution of n-grams. In terms of the ac-
tion level, a user utterance will be chosen upon a
distribution of utterance templates collected from
the corpus and combined given dialogue actions
Dast. The tutor simulation we train here is at the
level of the action and utterance, and is evaluated
on the same levels below. However, the frame-
work can be used to train to predict fully incre-
mentally on a word-by-word basis. In this case,
the wi(i < n) in Eq.1 will contain not only a se-
quence of words from the previous system utter-
ance, but also words from the current speaker (the
tutor itself as it is generating).

The probability distribution in equation 1 is in-
duced from the corpus using Maximum Likeli-
hood Estimation, where we count how many times
each t occurs with any specific combination of
the conditions (w1, . . . , wn, c1, . . . , cm) and di-
vide this by the total number of times t occurs (see
Eq 1).

5.2 Evaluation of the User Simulation

We evaluate the proposed user simulation based on
the turn-level evaluation metrics by (Keizer et al.,
2012), in which evaluation is done on a turn-by-
turn basis. Evaluation is done based on the cleaned
up corpus (see Section 4). We investigate the per-
formance of the user model on two levels: the ut-
terance level and the action level.

The evaluation is done by comparing the distri-
bution of the predicted actions or utterances with
the actual distributions in the data. We report two
measures: the Accuracy and Kullback-Leibler Di-
vergence (cross-entropy) to quantify how closely
the simulated user responses resemble the real user
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(a) Dialogue Turns Distribution (b) Dialogue Actions per Turn Distribution

(c) Dialogue Action Frequencies (d) Incremental Dialogue Phenomena Frequencies

Figure 4: Corpus Statistics

responses in the BURCHAK corpus. Accuracy
(Acc) measures the proportion of times an utter-
ance or dialogue act sequence (Dast) is predicted
correctly by the simulator, given a particular set of
conditions (w1, .., wn, c1, .., cm). To calculate this,
all existing combinations in the data of the values
of these variables are tried. If the predicted action
or utterance occurs in the data for these given con-
ditions, we count the prediction as correct.

Kullback-Leibler Divergence (KLD) (Dkl(P ‖
Q)) is applied to compare the predicted distribu-
tions and the actual one in the corpus (see Eq.2).

Dkl(P ‖ Q) =
M∑
i=1

pi log(
pi

qi
) (2)

Table 2 shows the results: the user simulation
on both utterance and action levels achieves good
performance. The action-based user model, on a
more abstract level, would likely be better as it is
less sparse, and produces more variation in the re-
sulting utterances.

Ongoing work involves using BURCHAK to
train a word-by-word incremental tutor simula-
tion, capable of generating all the incremental phe-
nomena identified earlier.

Simulation Accuracy (%) KLD
Utterance-level 77.98 0.2338

Act-level 84.96 0.188

Table 2: Evaluation of The User Simulation on
both Utterance and Act levels

6 Training a prototype concept learning
agent from the BURCHAK corpus

In order to demonstrate how the BURCHAK cor-
pus can be used, we train and evaluate a proto-
type interactive learning agent using Reinforce-
ment Learning (RL) on the collected data. We
follow previous task and experiment settings (see
(anon, anon)) to compare the learned RL-based
agent with a rule-based agent with the best per-
formance from previous work. Instead of using
hand-crafted dialogue examples as before, here we
train the RL agent in interaction with the user sim-
ulation, itself trained from the BURCHAK data as
above.

6.1 Experiment Setup

To compare the performance of the rule-based sys-
tem and the trained RL-based system in the in-
teractive learning process, we follow all experi-
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ment setup, including visual data-set and cross-
validation method. We also follow the evalua-
tion metrics provided by (2016b) : Overall Per-
formance Ratio (Rperf ) to measures the trade-offs
between the cost to the tutor and the accuracy
of the learned meanings, i.e. the classifiers that
ground our colour and shape concepts. (see Eq.3).

Rperf =
∆Acc

Ctutor
(3)

i.e. the increase in accuracy per unit of the cost, or
equivalently the gradient of the curve in Fig. 5 We
seek dialogue strategies that maximise this.

The cost Ctutor measure reflects the effort
needed by a human tutor in interacting with the
system. Skocaj et. al. (2009) point out that a com-
prehensive teachable system should learn as au-
tonomously as possible, rather than involving the
human tutor too frequently. There are several pos-
sible costs that the tutor might incur: Cinf refers to
the cost (assigned to 5 points) of the tutor provid-
ing information on a single attribute concept (e.g.
“this is red” or “this is a square”); Cack/rej is the
cost (0.5 points) for a simple confirmation (like
“yes”, “right”) or rejection (such as “no”); Ccrt is
the cost of correction (5 points) for a single con-
cept (e.g. “no, it is blue” or “no, it is a circle”).

6.2 Results & Discussion

Fig. 5 plots Accuracy against Tutoring Cost di-
rectly. The gradient of this curve corresponds to
increase in Accuracy per unit of the Tutoring Cost:
a measure of the trade-off between accuracy of
learned meanings and tutoring cost.

The result shows that the RL-based learning
agent achieves a comparable performance with the
rule-based system.

Figure 5: Evolution of Learning Performance

Table 3 shows an example dialogue between the
learned concept learning agent and the tutor sim-
ulation, where the user model simulates the tutor
behaviour (T) for the learning tasks. In this ex-
ample, the utterance produced by the simulation

involves two incremental phenomena, i.e. a self-
correction and a continuation, though note that
these have not been produced on a word-by-word
level.

L: so is this shape square?
T: no, it’s a squ ... sorry ... a circle. and color?
L: red?
T: yes, good job.

Table 3: Dialogue Example between a Learned
Policy and the Simulated Tutor

7 Conclusion

We presented a new data collection tool, a new
data set, and and associated dialogue simula-
tion framework which focuses on visual language
grounding and natural, incremental dialogue phe-
nomena. The tools and data are freely available
and easy to use.

We have collected new human-human dialogue
data on visual attribute learning tasks, which are
then used to create a generic n-gram user simula-
tion for future research and development. We used
this n-gram user model to train and evaluate an
optimized dialogue policy, which learns grounded
word meanings from a human tutor, incremen-
tally, over time. This dialogue policy optimisation
learns a complete dialogue control policy from the
data, in contrast to earlier work (Yu et al., 2016b)
which only optimised confidence thresholds, and
where dialogue control was entirely rule-based.

Ongoing work further uses the data and sim-
ulation framework here to train a word-by-word
incremental tutor simulation, with which to learn
complete, incremental dialogue policies, i.e. poli-
cies that choose system output at the lexical level
(Eshghi and Lemon, 2014). To deal with uncer-
tainty this system in addition takes all the visual
classifiers’ confidence levels directly as features in
a continuous space MDP.
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Abstract

In this paper, a retrieval-based caption
generation system that searches the web
for suitable image descriptions is studied.
Google’s search-by-image is used to find
potentially relevant web multimedia con-
tent for query images. Sentences are ex-
tracted from web pages and the likelihood
of the descriptions is computed to select
one sentence from the retrieved text doc-
uments. The search mechanism is mod-
ified to replace the caption generated by
Google with a caption composed of la-
bels and spatial prepositions as part of the
query’s text alongside the image. The
object labels are obtained using an off-
the-shelf R-CNN and a machine learning
model is developed to predict the prepo-
sitions. The effect on the caption genera-
tion system performance when using the
generated text is investigated. Both hu-
man evaluations and automatic metrics are
used to evaluate the retrieved descriptions.
Results show that the web-retrieval-based
approach performed better when describ-
ing single-object images with sentences
extracted from stock photography web-
sites. On the other hand, images with
two image objects were better described
with template-generated sentences com-
posed of object labels and prepositions.

1 Introduction

The automatic generation of concise natural lan-
guage descriptions for images is currently gain-
ing immense popularity in both Computer Vi-
sion and Natural Language Processing communi-
ties (Bernardi et al., 2016). The general process
of automatically describing an image fundamen-

tally involves the visual analysis of the image con-
tent such that a succinct natural language state-
ment, verbalising the most salient image features,
can be generated. In addition, natural language
generation methods are needed to construct lin-
guistically and grammatically correct sentences.
Describing image content is very useful in ap-
plications for image retrieval based on detailed
and specific image descriptions, caption genera-
tion to enhance the accessibility of current and ex-
isting image collections and most importantly as
an assistive technology for visually impaired peo-
ple (Kulkarni et al., 2011). Research work on au-
tomatic image description generation can be or-
ganised in three categories (Bernardi et al., 2016).
The first group generates textual descriptions from
scratch by analysing the composition of an image
in terms of image objects, attributes, scene types
and event actions, extracted from image visual fea-
tures. The other groups describe images by re-
trieving sentences either from visual space com-
posed of image-description pairs or from a multi-
modal space that combines image and sentences in
one single space. As opposed to direct-generation-
based methods, the latter two approaches generate
less verbose and more human-like descriptions. In
this paper, a web-retrieval-based system that ex-
ploits the ever-growing vision-text content is stud-
ied while exploring how object labels and prepo-
sitions affect the retrieval of image descriptions.

This paper is organised as follows: section 2
gives an overview of existing image caption al-
gorithms. Section 3 outlines the problem defini-
tion and section 4 presents a web-retrieval-based
framework followed by its implementation details
in section 5. The dataset and evaluation are dis-
cussed in sections 6 and 7 respectively. The results
are presented in section 8 followed by a discussion
in section 9. Finally, section 10 concludes with the
main observations and the future direction.
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2 Related Work

Direct-generation models (Fang et al., 2015;
Kulkarni et al., 2011; Li et al., 2011; Yang et
al., 2011), exploit the image visual information to
derive an image description by driving a natural
language generation model such as n-grams, tem-
plates and grammar rules. Despite producing cor-
rect and relevant image descriptions, this approach
tends to generate verbose and non-human-like im-
age captions. The second and most relevant group
of models to this paper, tackles the problem of tex-
tually describing an image as a retrieval problem.
There are attempts that make use of pre-associated
text or meta-data to describe images. For in-
stance, Feng and Lapata (2010) generated captions
for news images using an extractive and abstrac-
tive generation methods that require relevant text
documents as input to the model. Similarly, Aker
and Gaizauskas (2010) relied on GPS metadata to
access relevant text documents to be able to gener-
ate captions for geo-tagged images. Other models
formulate descriptions by finding visually similar
images to the query images from a collection of
already-annotated images. Query images are then
described either by (a) reusing the whole descrip-
tion of the most visually similar retrieved image,
or by (b) associating relevant phrases from a large
collection of image and description pairs (Ordonez
et al., 2016). Retrieval models can be further sub-
divided, based on the technique used for repre-
senting and computing image similarity. The first
subgroup uses a visual space for finding related
images, while the second subgroup uses a multi-
modal space for combining both textual and vi-
sual image information. The first subgroup (Or-
donez et al., 2011; Ordonez et al., 2016; Gupta et
al., 2012; Mason and Charniak, 2014; Yagcioglu
et al., 2015), is intended to first extract visual fea-
tures from the query images. Based on a visual
similarity measure dependent on the extracted fea-
tures, a candidate set of related images is retrieved
from a large collection of pre-annotated images.
Retrieved descriptions are then re-ranked by fur-
ther exploiting the visual and textual information
extracted from the retrieved candidate set of sim-
ilar images. Conversely, retrieving descriptions
from a multimodal space is characterised by the
joint space between visual and textual data con-
structed from a collection of image-description
pairs. For example, in Farhadi et al. (2010), im-
age descriptions were retrieved from a multimodal

space consisting of < object, action, scene > tu-
ples. More recently, deep neural networks were
introduced to map images and corresponding de-
scriptions in one joint multimodal space (Socher
et al., 2014; Kiros et al., 2014; Donahue et al.,
2015; Karpathy and Li, 2015; Chen and Zitnick,
2015).

3 Problem Definition

Image caption generators are designed to asso-
ciate images with corresponding sentences, hence
they can be viewed in terms of an affinity func-
tion f(i, s) that measures the degree of correla-
tion between images and sentences. Based on
a set of candidate images Icand annotated with
corresponding candidate sentences Scand, typi-
cal retrieval-based caption generation methods de-
scribe an image by reusing sentence s ∈ Scand.
The selected sentence is the one that maximises
the affinity function f(iq, s) for a given query im-
age iq. On the contrary, generation-based image
descriptors attempt to construct a novel sentence
sn composed of image entities and attributes.

The system described in this paper extracts
sentences from a collection of web pages W,
rather than from a limited set of candidate human-
authored image descriptions Scand, as done in
most existing retrieval-based studies. Websites
containing visually similar images to the query
image are found using search-by-image technol-
ogy. The intuition to this method is based on
the fact that the evergrowing Internet-based mul-
timedia data is a readily-available data source as
opposed to the purposely constructed and limited
image-description datasets used in many studies.
The search for a query image can be thought of as
providing a dynamic and specialised small dataset
for a given query image.

The suggested framework starts by generating a
simple image description based on the image vi-
sual entities and their spatial relationship. This
simple description is then used as keywords to
drive and optimise a web-data-driven based re-
trieval process. The latter is primarily intended to
retrieve the most relevant sentence from the set of
candidate web pages W by utilising the function-
ality offered by a search-by-image algorithm. This
strategy is adopted under the assumption that web
pages featuring visually similar images to a query
image iq, can contain sentences which can be ef-
fectively re-used to describe image iq.

12



person on a surfboard

generation-based

preposition 
prediction

object detection

retrieval-based

search by 
image

P(Tw1)

P(Twn)

P(Tw2)

P(T)

Tw1

Tw2

Twn

High angle view of 
a person surfing in 
the sea

Twb

T

sb

W1

W2

Wn

W

iq

Figure 1: The proposed web-retrieval-based system designed in two stages. The query image iq is first
described by the keywords generated by the first stage. These are then used to retrieve image descriptions
from a collection of web pages W. The best sentence sb is extracted from the best text document Twb

,
with respect to the global word probability distribution P (T) and the query image iq.

4 Image Description Framework

The proposed generation-retrieval-based approach
is centrally decomposed into two phases. The first
generation stage of the framework is mainly in-
tended to generate simple image descriptions that
will serve as keywords for the second retrieval
phase. By exploiting the vast amount of image-
text data found on the Web, the latter will then ex-
tract the most likely sentence for a given query im-
age. A high-level overview of the proposed image
description framework is presented in Figure 1.

4.1 Generation-based Image Description

The first stage of the image description generation
framework analyses the image visual content and
detects the most important image objects. There-
fore, the aim of this step is to detect and anno-
tate image objects with corresponding high-level
image labels and corresponding bounding boxes.
In order to describe the spatial relationship be-
tween the predominant image objects, various pre-
dictive models based on different textual and geo-
metric feature sets, were investigated as described
in section 4.2. From this simple generated image
description, in the form of an object-preposition-
article-object keyword structure, the framework is
then designed to drive a web-retrieval-based pro-

cess. This process exploits both the visual aspect
of the query image, as well as the linguistic key-
words generated by the first stage of the pipeline.

4.2 Preposition Predictive Model

The generation of prepositions was cast as a
prediction-based problem through geometrical
and encoded textual features. Four different pre-
dictive models based on separate feature sets were
analysed. This experiment confirmed that the Ran-
dom Forest model obtained the best preposition
prediction accuracy rate. This was achieved when
predicting prepositions via word2vec (Mikolov et
al., 2013) textual labels combined with the ge-
ometric feature sets used by Muscat and Belz
(2015) and Ramisa et al. (2015). This setup
marginally outperformed the best preposition pre-
diction accuracy achieved by Ramisa et al. (2015)
when trained and evaluated on the same Visen’s
MSCOCO Prepositions1 testing set having origi-
nal object labels. Results can be found in Table 1.

4.3 Retrieval-based Image Description

The aim of the second phase of the proposed
framework is to retrieve descriptions based on the
visual aspect of a query image and its correspond-

1http://preposition.github.io
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Table 1: The accuracies obtained from the Visen’s MSCOCO original object labels. The accuracies
for different configuration setups are presented, based on different geometric feature sets, in relation
to different textual label encoding. LE stands for the Label Encoder which encodes object labels with
corresponding integers, IV for Indicator Vectors and W2V for Word2Vec.

Geometric + Textual Features
Ramisa et al. Muscat & Belz All Geometric Features

Model LE IV W2V GF LE IV W2V GF LE IV W2V GF
SVM 0.03 0.42 0.77 0.60 0.01 0.42 0.77 0.60 0.08 0.44 0.74 0.63

Decision Tree 0.53 0.66 0.75 0.69 0.52 0.65 0.76 0.67 0.53 0.64 0.75 0.69
Random Forest 0.60 0.65 0.81 0.72 0.56 0.62 0.81 0.69 0.59 0.68 0.82 0.71

Logistic Regression 0.64 0.50 0.80 0.64 0.61 0.50 0.81 0.61 0.65 0.51 0.80 0.64

ing simple generated image description, as dis-
cussed in Section 4.1. This phase is designed
to find a set of web pages composed of images
that are visually related to the query image. This
search functionality is freely available by the cur-
rent two dominant search-engines, Google2 and
Bing3. These two proprietary image-search al-
gorithms are able to retrieve visually similar im-
ages, which may therefore be used for collecting
web pages with featured visually similar images.
From the retrieved collection of web pages char-
acterised with visually similar images to the query
image, this phase is designed to extract the best
sentence that can be used to describe the query
image. Based on the idea that websites usually
describe or discuss the embedded images, it is as-
sumed that this stage is capable of finding human-
like sentences describing the incorporated images
which can be re-used to describe the query images.

Given a collection of candidate web pages W
with embedded visually similar images, this phase
is intended to extract the main text Twi from
each corresponding web page wi ∈ W. This
is carried out by analysing the Document Ob-
ject Model (DOM) of each web page as well as
by statistically distinguishing between HTML and
textual data. Moreover, this stage is intended
to discard any boilerplate text that is normally
found in web pages, including navigational text
and advertisements by exploiting shallow text fea-
tures (Kohlschütter et al., 2010). After transform-
ing the set of web pages W to the corresponding
text documents T, this stage computes the word
probability distribution P (Twi) for each Twi , dis-
regarding any stop words in the distribution. The

2https://images.google.com
3https://www.bing.com/images/explore?

FORM=ILPSTR

text found in each text document Twi is combined
in one text collection T and the probability dis-
tribution P (T), representing all the probabilities
for the words contained in collection T, is calcu-
lated. The top k most probable words from each
generated probability distribution P (Twi) are con-
sidered to find the most probable relevant text doc-
ument Twb

, for the extraction of the best sentence
sb that describes the query image iq. Specifically,
the best text document is selected by the follow-
ing maximising function over each text document
probability distribution P (Twi), with respect to
the global word probability distribution P (T):

Twb
= arg max

wi

k∑
n=1

P (Twi,n)P (T = Twi,n),

(1)

where n represents the nth most probable word of
the probability distribution.

This strategy is used to eliminate documents
that are probably irrelevant to provide correct de-
scriptions for query images. A similar approach
is carried out to retrieve the best sentence sb that
could potentially describe the query image. The
technique used to select the most appropriate sen-
tence from Twb

is initiated by extracting the set of
candidate sentences Scand from the selected best
file Twb

. The second step is to weight each sen-
tence si ∈ Scand by the summation over how prob-
able each word is, with respect to the global word
probability distribution P (T). Therefore, sb is re-
trieved by maximising the following formula:

sb = arg max
si

|si|∑
n=1

P (T = si,n), (2)

where n represents the nth word found in
sentence si ∈ Scand extracted from the best file
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Twb
, and |si| represents the number of words

found in sentence si.

To further enhance the contextual reliability of
the selected sentence, the approach used to retrieve
image descriptions is combined with the image
visual aspect. This is accomplished by weight-
ing the visible object class labels in accordance
to their corresponding image predominance level.
The area of the visible image entities, with respect
to the entire query image iq, was used to priori-
tise visible image objects. Therefore, the best sen-
tence sb is retrieved by combining the knowledge
extracted from the most probable words found in
P (T) and the visual aspect of the query image iq,
by the following formula:

sb = arg max
si

|si|∑
n=1

P (T = si,n)R(iq, si,n), (3)

where R is a function which computes the area
of the object class label si,n found in the nth word
of sentence si in the context of image iq.

5 Implementation

The image description generation framework was
modularised and implemented in two stages. To
detect the main image objects, the first stage em-
ploys the two-phased fast region-based convolu-
tional neural network (R-CNN) proposed by Ren
et al. (2015). The first module of the R-CNN is a
deep fully convolutional neural network designed
to propose regions, while the second module is
a detector that uses the proposed regions for de-
tecting image objects enclosed in bounding boxes.
This architecture is trained end-to-end into a single
network by sharing convolutional features. The
deep VGG-16 model (Simonyan and Zisserman,
2014) pre-trained on MSCOCO (Lin et al., 2014)
dataset, was utilised to detect image objects with
corresponding class labels and bounding boxes.
These were then used to infer the spatial relation-
ship between the detected image objects as dis-
cussed in section 4.2.

By using the linguistic keywords generated
from the first stage, the second part of the frame-
work is designed to retrieve the most probable sen-
tence from a set of relevant web pages that feature
visually similar images. The set of web pages is
collected by using the free functionality offered
by Google’s Search By Image4 proprietary tech-

4https://images.google.com

nology. For a given uploaded query image, this
functionality is intended to return visually similar
images. Based on extracted image visual features
and automatically generated textual keywords by
the same functionality, Google’s Search by Image
retrieves visually similar images. The websites
of the visually returned images are then retrieved
from the corresponding URLs binded with each
visually similar image. By using Selenium5 to
automate the headless PhantomJS browser, query
images were automatically uploaded to retrieve
websites featuring visually similar images. In
this study, it was shown how object labels con-
nected with spatial prepositions affect the retrieval
search performed by Google’s search-by-image al-
gorithm. This was accomplished by replacing
Google’s keywords with object labels and prepo-
sition generated by the first stage of the proposed
framework. Furthermore, this study also investi-
gated whether stock photography websites could
improve the retrieval search of the designed frame-
work. The retrieval of websites featuring stock
photos was achieved by concatenating the phrase
“stock photos” with the keywords extracted from
the visual aspect of the query image. To detect and
extract the main textual content of each respective
web page, the boilerpipe6 toolkit was employed.
From the set of extracted text documents, the most
probable sentence that best describes the query im-
age is then retrieved, as discussed in Section 4.3.

6 Dataset

To evaluate the proposed image description frame-
work, a specific subset of human-annotated im-
ages featured in MSCOCO7 testing set was used.
Since the preposition prediction task is targeted to
generate prepositions between two image objects,
describing images having exactly two image ob-
jects was of particular interest to this study. There-
fore, the following steps were carried out to se-
lect images consisting of two image objects. From
the ViSen’s MSCOCO testing set, 1975 instances
having strictly one single preposition between two
image objects were found and extracted. Finally,
1000 images were randomly selected from the lat-
ter subset. Since images may contain background
image objects, the same object detector employed
in the proposed framework was used for detecting

5http://docs.seleniumhq.org
6https://boilerpipe-web.appspot.com
7http://mscoco.org
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Table 2: Configuration Setups

Setup Name Image Descriptions

G Generation Descriptions consisting of object labels

GP Generation-Preposition Descriptions consisting of object labels connected with spatial prepositions

R Retrieval Descriptions retrieved based on Google’s automatic generated keywords

GR Generation-Retrieval Descriptions retrieved based on the generated keywords by G

GRS Generation-Retrieval-Stock Descriptions retrieved based on the generated keywords by G from stock
photography websites

GPR Generation-Preposition-Retrieval Description retrieved based on the generated keywords by GP

GPRS Generation-Preposition-Retrieval-Stock Descriptions retrieved from stock photography websites based on the
descriptions generated by GP

objects. The fast R-CNN found 128 images con-
taining one image object, 438 images containing
exactly two image objects, while the remaining
434 images contained more than two image ob-
jects. For the evaluation of this framework, images
composed of one and two image objects were only
considered. Therefore, the framework was evalu-
ated on a dataset consisting of 566 images, where
128 images contain one single object, while the
other remaining 438 images contain exactly two
image objects.

7 Evaluation

Both human and computational evaluation were
used to evaluate the web-retrieval-based frame-
work. The automatic evaluation was performed
by using existing metrics, intended to mea-
sure the similarity between generated descrip-
tions and corresponding human ground truth de-
scriptions. The measures include BLEU (Pap-
ineni et al., 2002), ROUGE L (Lin and Hovy,
2003), METEOR (Denkowski and Lavie, 2014)
and CIDEr (Vedantam et al., 2015). To comple-
ment the automatic evaluation, human judgments
for image descriptions were obtained from a qual-
ified English teacher. Since the human evalua-
tion process is considerably time-consuming, hu-
man judgments were collected for a sample of 200
images split equally for single and double-object
images. The same human evaluation criteria pro-
posed by Mitchell et al. (2012) was used to evalu-
ate the generated descriptions. Human evaluation
was conducted by rating the grammar, main as-
pects, correctness, order and the human-likeness
of descriptions using a five-point Likert scale.

8 Results

The framework was evaluated in each phase of
its pipeline as described in Table 2. The re-
sults are given in Tables 3 and 4 for single and
double-object images respectively. The generation
phase of the framework that describes images with
just object labels is represented by G, while the
standalone retrieval-based approach which uses
Google’s automatic generated keywords is repre-
sented by R. Furthermore, when describing single-
object images, the joint generation-retrieval stage
that uses the prototype’s keywords is represented
by GR. When describing double-object images,
the generation-retrieval process is denoted by GPR
given that it uses both object labels and preposi-
tions as keywords. Moreover, the results obtained
when the retrieval phase considers stock photog-
raphy websites are denoted by the letter S. The
retrieval-based stages are specified by the two pa-
rameters, W and F. The latter represents the num-
ber of text files analysed from the correspond-
ing websites, whereas W represents the number
of most probable words used for the selection of
the best sentence from a set of web pages. A
grid search was performed to find these param-
eters for each configuration. The same notation
was used for the human evaluation results. Typi-
cal image descriptions generated by the proposed
web-retrieval-based image caption generation sys-
tem can be found in Figure 2.

9 Discussion

The automatic evaluation showed that single-
object images were best described by the
generation-retrieval from stock photography web-
sites (GRS). This outperformed the one-word de-
scription of the generation-based configuration
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Table 3: Automatic evaluation of single-object images.

Model

Metric G
R

(20W, 30F)
GR

(5W, 35F)
GRS

(5W, 35F)
CIDEr 0.134 0.066 0.099 0.154

BLEU@4 0.000 0.000 0.010 0.013
BLEU@3 0.000 0.007 0.022 0.032
BLEU@2 0.001 0.026 0.058 0.074
BLEU@1 0.001 0.080 0.148 0.173
ROUGE L 0.124 0.101 0.133 0.164
METEOR 0.062 0.060 0.078 0.089

Table 4: Automatic Evaluation of double-object images.

Model

Metric G GP
R

(20W, 30F)
GR

(5W, 35F)
GRS

(5W, 25F)
GPR

(10W, 15F)
GPRS

(10W, 15F)
CIDEr 0.482 0.604 0.082 0.148 0.176 0.132 0.152

BLEU@4 0.033 0.132 0.005 0.014 0.018 0.013 0.017
BLEU@3 0.085 0.187 0.015 0.030 0.036 0.028 0.035
BLEU@2 0.165 0.241 0.038 0.069 0.081 0.067 0.077
BLEU@1 0.252 0.292 0.125 0.190 0.199 0.175 0.190
ROUGE L 0.340 0.413 0.130 0.185 0.210 0.174 0.198
METEOR 0.152 0.177 0.078 0.109 0.117 0.100 0.113

(G), as well as the retrieval-based (R) setup.
The latter result confirms that the replacement of
Google’s Search by Image captions improved the
retrieved descriptions. This concludes that more
relevant images were returned by Google when re-
placing its automatic caption with object labels.

Conversely, double-object images were best de-
scribed via the generation-preposition (GP) con-
figuration. Although replacing Google’s Search
By Image keywords improved the results, the
simple descriptions based on object labels con-
nected with spatial prepositions were more accu-
rate. Automatic evaluation also confirmed that the
web-retrieval approach (GRS) performs better on
double-object images. This study also showed that
the retrieval process performs better without using
prepositions as keywords. This resulted from the
fact that prepositions constrain the search result
performed by Google when indexing web pages,
since most descriptive text available on the Web
includes verbs rather than prepositions.

The human evaluation results for the single-
object images are presented in Table 5. Particu-
larly, generation-based (G) descriptions obtained
a grammatical median score of 1, confirming that
one-word descriptions do not produce grammati-
cally correct sentences. The results also confirm
that the used object detector accurately describes
the dominant objects in an image. By considering

the improbability of one-word human derived de-
scriptions, this stage resulted in a low human like-
ness score of 2. The retrieval method applied on
stock photography websites (RS) lead to grammat-
ical improvement in the generated descriptions.
Such descriptions were grammatically rated with a
median score of 3. However, results show that the
retrieval method decreases the relevancy of the re-
trieved descriptions. Despite generating grammat-
ically sound sentences with better human-likeness,
the human evaluation showed a degree of incon-
sistency between the descriptions and their corre-
sponding images. When combining the generation
(G) and retrieval (RS) proposed approaches, the
grammar, order and the human likeness improved
for single-object images.

Table 5 also demonstrates that the generation-
preposition (GP) configuration generated the best
descriptions when describing double-object im-
ages. Furthermore, these results also confirmed
that the retrieval (RS) approach improves when re-
placing Google’s caption with object labels. The
human evaluation also established the ineffective-
ness of the retrieval stage when combined with the
generation-prepositions (GPRS) stage. This table
also confirmed that the web-retrieval approach de-
scribed double-object images better than single-
object images.
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Vase and clock in 
a window sill.

Person launching a kite. High angle view of a person 
surfing in the sea.

A shot of a kitchen microwave 
oven.

Person on skateboard 
skateboarding in action 

sport.

(a)

Cat chasing a mouse. Young person jogging outdoor 
in nature.

Person sleeping. Dog in hat.
italy, gressoney, 

person jumping ski, 
low angle view.

(b)

Figure 2: (a) Correct and (b) incorrect descriptions generated by the web-retrieval-based framework.

Table 5: Human evaluation of single and double-object images with scores (1-5) obtained for each stage
of the proposed framework: median, mean and standard deviation in parentheses.

single-object images
Model Grammar Main Aspects Correctness Order Humanlike

G 1 (1.11, 0.31) 4 (3.82, 0.89) 5 (4.84, 0.68) 5 (4.38, 1.04) 2 (1.79, 0.65)
RS 3 (3.31, 1.50) 2 (2.27, 1.26) 2 (2.07, 1.35) 3 (2.90, 1.63) 2.5 (2.68, 1.46)

GRS 4 (3.56, 1.25) 2 (2.31, 1.02) 2 (2.00, 1.14) 4 (3.26, 1.60) 3 (2.75, 1.22)

double-object images
Model Grammar Main Aspects Correctness Order HumanLike

G 4 (3.80, 0.65) 5 (4.42, 0.97) 5 (4.69, 0.75) 5 (4.63, 0.79) 4 (3.77, 0.72)
GP 5 (4.44, 0.97) 5 (4.53, 0.81) 5 (4.81, 0.63) 5 (4.69, 0.81) 5 (4.43, 0.90)
RS 4 (3.39, 1.24) 2 (2.50, 1.25) 2 (2.20, 1.14) 2 (2.27, 1.26) 3 (2.93, 1.45)

GRS 3 (3.00, 1.41) 3 (3.14, 1.24) 2.5 (2.71, 1.32) 3 (2.93, 1.40) 3 (2.69, 1.52)
GPRS 3 (2.70, 1.32) 3 (2.87, 1.13) 2 (2.42, 1.16) 2 (2.45, 1.31) 2.5 (2.38, 1.31)

10 Conclusion and Future Work

This paper investigated the use of object labels and
prepositions as keywords in a web-retrieval-based
image caption generator. By employing object de-
tection technology combined with a preposition
prediction module, keywords were extracted in the
form of object class labels and prepositions. The
proposed retrieval approach is independent of any
purposely human-annotated image datasets. Im-
ages were described by extracting sentences found
in websites, featuring visually similar images to
the query image. The search is aided with the
use of the generated keywords. This approach
was particularly effective when describing single-

object images, and especially so when extracting
sentences from stock photography websites.

Despite the retrieval of relevant descriptions for
both single and double-object images, object la-
bels connected with spatial prepositions obtained
better accuracies when describing double-object
images. Although Google’s Search By Image was
enhanced by the replacement of its predicted im-
age annotations with object labels, further work in
using a wider variety of keywords such as verbs
can be carried out to improve the results. It is also
worth studying whether linguistic parsing can be
used to assess the quality of sentences during the
caption extraction phase to increase the likelihood
of choosing better sentences.
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Abstract
We investigate animal recognition models
learned from wildlife video documentaries
by using the weak supervision of the tex-
tual subtitles. This is a challenging setting,
since i) the animals occur in their natural
habitat and are often largely occluded and
ii) subtitles are to a great degree comple-
mentary to the visual content, providing a
very weak supervisory signal. This is in
contrast to most work on integrated vision
and language in the literature, where tex-
tual descriptions are tightly linked to the
image content, and often generated in a
curated fashion for the task at hand. We
investigate different image representations
and models, in particular a support vec-
tor machine on top of activations of a pre-
trained convolutional neural network, as
well as a Naive Bayes framework on a
‘bag-of-activations’ image representation,
where each element of the bag is consid-
ered separately. This representation al-
lows key components in the image to be
isolated, in spite of vastly varying back-
grounds and image clutter, without an ob-
ject detection or image segmentation step.
The methods are evaluated based on how
well they transfer to unseen camera-trap
images captured across diverse topograph-
ical regions under different environmen-
tal conditions and illumination settings, in-
volving a large domain shift.

1 Introduction

It is estimated1 that video traffic will be 82 per-
cent of all global Internet traffic by 2020. The

1http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-
paper-c11-481360.html

ubiquitousness of video on the web demands in-
dexing tools that facilitate fast and easy access to
relevant content. Traditionally, video search has
been based on user-tags. However, in the recent
past, research activities have been directed at au-
tomatic indexing of videos based on the content.
Contributing to this goal of automatic video index-
ing, we focus on the problem of wildlife recogni-
tion in nature documentaries with subtitles.

This setup is challenging from at least two per-
spectives: first, from the point of view of the con-
tent, and second, due to the nature of video docu-
mentaries. As far as the content is concerned, we
are dealing with animals shot in their natural habi-
tat. The problem of identifying animals in videos,
especially those shot in the natural habitat presents
several challenges. Firstly, animals are among the
most difficult objects to recognize in images and
videos, mainly due to their deformable bodies that
often self occlude and the large variation they pose
in appearance and depiction (Afkham et al., 2008;
Berg and Forsyth, 2006). Further, in the natural
habitat, there are challenges due to camouflage
and occlusion by flora. Moreover, unlike faces
or cuboidal objects such as furniture, we do not
have accurate detectors that can localize the an-
imal in a frame. State-of-the-art object proposal
methods such as (Girshick et al., 2014; Ren et al.,
2015) yield an unacceptably low level of either re-
call or precision. The absence of detectors neces-
sitates other mechanisms that allow segregation of
the components of the image.

The nature of video documentaries presents yet
another challenge. Typically, in video documen-
taries such as ours, the subtitles are not parallel,
but complementary to the visuals (See Fig. 1).
This is in contrast to most work on integrated vi-
sion and language in the literature, where textual
descriptions are tightly linked to the image con-
tent. This means we do not have examples that
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In the rivers and lakes of Africa, lives an animal which has a reputation for being the most
unpredictable and dangerous of all.
Even crocodiles are wary.
The hippopotamus.

Figure 1: A set of frames together with the corresponding subtitles: The frames show hippos, while the
subtitles mention both hippo and crocodile.

can reliably tie together textual and visual entities.
In this work, we study image representations

and models that cope with the above challenges.
These include a support vector machine on top
of activations of a pretrained convolutional neu-
ral network, and a Naive Bayes framework on a
‘bag-of-activations’ image representation, where
each element of the bag is considered separately.
While the former utilizes a global representation
denoted by the feature vector comprising CNN ac-
tivations, the latter works on per dimension ba-
sis, allowing key components in the image to be
isolated, in spite of largely varying backgrounds
and image clutter, without an object detection or
image segmentation step. We experiment with
both continuous and discretized variants of the
‘bag-of-activations’ representation. In particular,
we investigate image representations and weakly
supervised animal recognition models that can
be learned without the need for bounding boxes,
or curated data comprising manually annotated
training examples.

The rest of this paper is organized as follows:
Section 2 presents the background and related
work. Section 3 provides the problem definition.
Section 4 describes the image representations and
animal recognition models based on CNN activa-
tions. Section 5 discusses the experiments and re-
sults. Finally, Section 6 provides the conclusions.

2 Related Work

Identifying animals is a well-studied topic
(Afkham et al., 2008; Berg and Forsyth, 2006;
Schmid, 2001; Ramanan et al., 2006). Recent

works such as (Hariharan and Girshick, 2016) and
(Gomez and Salazar, 2016) advance us further and
provide better insight into the problem. However,
these methods are not applicable in our setting
since they require extensive training data. It is
important to note that in this setup, we lack suffi-
cient reliable training data making neural network-
based training impractical.

Apart from these works that focus specifically
on animals, there is a large literature on generic
object detection. These methods are often evalu-
ated on the Pascal VOC challenge dataset (Ever-
ingham et al., 2012) which includes classes of an-
imals such as cats, dogs, cows and horses, among
other things. There are also datasets that focus
on animals such as Caltech UCSD Birds (Wah
et al., 2011) and Stanford Dogs (Khosla et al.,
2011). Additionally, the FishClef and BirdClef
challenges which are part of LifeClef (Joly et al.,
2015) provide an arena for identification of species
of fish and birds respectively. Most of these
datasets are, however, object-centered and in that
sense easier than the ‘in-the-wild’ setting we are
dealing with.

The problem of aligning animals from videos
with their mentions in subtitles has been studied
in (Dusart et al., 2013) and (Venkitasubramanian
et al., 2016). The former relies on hand-annotated
bounding boxes to localize the animals in a frame,
which are difficult to acquire. The latter relies on
training animal classifiers on labeled external data
such as ImageNet (Deng et al., 2009), and has the
issue that not all classes of objects can be learned
from an external dataset, for instance, rare species
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of animals may not be found on ImageNet.
Recently, there has been considerable interest

in sentence/caption generation from images as
well as natural language based object detection,
e.g. (Karpathy and Fei-Fei, 2014; Fang et al.,
2014; Guadarrama et al., 2013; Kazemzadeh et al.,
2014). These approaches typically rely on text
snippets that accurately describe the content of the
images or videos. However, in our context, the
subtitles and the visuals are not parallel, but com-
plementary. For example, often a few animals are
mentioned in the text, while the connected frame
only shows one of them. The connection between
the vision and the text is therefore much weaker.
Additionally, in our setup, we have too few data to
train similar models. As a result, these approaches
are not directly applicable to our setting. In this
paper, we explore weakly-supervised models that
can deal with the complementarity or the ‘non-
parallelism’ of the visual and textual modalities.

There has also been some work on alignment
across modalities for recognizing people (Pham
et al., 2010, 2011; Guillaumin et al., 2008). These
approaches rely on the use of a face-detector.
While there are face detectors available with rea-
sonable accuracy, there are no such detectors that
allow localizing animals. The absence of the
bounding boxes complicates the problem in many
ways. A notable endeavor in this domain is that
of (Everingham et al., 2006) where dialogue tran-
scripts and other supervisory information (such as
lip movements or clothing) are used in addition to
subtitles and face detectors. In our context, since
the subjects of our videos involve animals, cues
such as lip movements or clothing are not relevant.

In this paper, we investigate image representa-
tions and multi-modal animal recognition models
that can cope with a) complementarity of vision
and language, b) lack of bounding boxes and c)
lack of labeled external data, and can transfer to a
different unseen domain, shot under very different
conditions.

3 Task definition

We have a wildlife documentary with subti-
tles. On the visual side, we derive key frames
F = {f1, f2 . . . fq} from which we extract vi-
sual features with a suitable representation A =
{a1,a2 . . .aq}. Assume each feature vector has
D dimensions. On the textual side, from the sub-
titles, we identify the unique animal mentions or

animal names N = {n1, n2 . . . np}, using a list
of animal names derived from WordNet (Miller,
1995) as in (Dusart et al., 2013).

Using the setup of (Venkitasubramanian et al.,
2016), we associate every frame fi, 1 ≤ i ≤ q,
with a set Ni ⊂ N of possible animal names de-
rived from 5 subtitles to the left and right of the
frame. The set Ni refers to the set of unique ani-
mal names derived from their mentions and coref-
erences in the subtitles2. It is possible that the
frame has some or all or none of the animals in
Ni. Corresponding to every name nl ∈ Ni, we
have a binary label yl indicating the presence or
absence of nl. Our objective is to find the most
likely value of yl corresponding to name nl ∈ Ni

for every frame fi.

4 Image Representations Based on CNN
Activations

A popular choice of visual features for object
recognition is the activations of the penultimate
layer of a pretrained Convolutional Neural Net-
work. In this work, we use the VGG CNN-M-128
architecture3 of (Chatfield et al., 2014), which is
trained on 1,000 object categories from ImageNet
(Deng et al., 2009) with roughly 1.2M training im-
ages. Within this realm, we explore two perspec-
tives on the real-valued feature vector: (i) a global
representation where each feature vector is treated
as one entity, and (ii) a bag-of-activations repre-
sentation, where each element of the bag is con-
sidered separately.

The global representation is by far the most
commonly used (Sharif Razavian et al., 2014) and
fits well with a linear Support Vector Machine
(SVM) classifier. For the task of object recogni-
tion, the linear SVM is typically used with the L2

norm, and has the following objective function

minimize
wl

1
2
||wl||2 + C

∑
i

max(1− ylwl
Tai, 0)

where wl denotes the set of weights to be learned
for the label yl corresponding to name nl, and
C denotes the cost4. In a weakly supervised
setting, these weights are learned based on the

2There remains a small percentage (2.35%) of animals not
mentioned in the nearby subtitles. These will be left unde-
tected.

3This model yielded 128 features.
4We used the Liblinear (Fan et al., 2008) toolkit, with the

default setting of 1 for the cost C.
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weakly associated (hence noisy) frame-name pairs
< ai, nl > for all nl ∈ Ni.

An alternative to this global representation is
a bag-of-activations representation, where each
feature dimension is treated in isolation. Li et
al. (2014) have shown that the CNN activations
have two interesting properties: firstly, they can
be treated independently along the dimensions and
second, they preserve their essence even after bi-
narization. We exploit the first property and use
it in a naive Bayes framework. The idea of treat-
ing each element of the CNN representation indi-
vidually rather than using the full feature vector
in a high-dimensional space is crucial: It brings
robustness to image clutter and changing back-
grounds, and helps in learning from few examples.

p(yl|ai) =
p(yl)

∏D
v=1 p(aiv|yl)
Zl

(1)

Zl is a normalization constant for the name nl,
given by

Zl = p(yl)
D∏

v=1

p(aiv|yl)+p(yl)
D∏

v=1

p(aiv|yl) (2)

where yl = 0 if yl = 1 and vice versa. p(yl) is
the prior which we assume to be uninformative for
simplicity. So, p(yl = 0) = p(yl = 1).

Then, using Eq. 2, Eq. 1 can be written as fol-
lows:

p(yl|ai) =
∏D

v=1 p(aiv|yl)∏D
v=1 p(aiv|yl) +

∏D
v=1 p(aiv|yl)

(3)
The second interesting property of the CNN ac-

tivations is that they preserve their essence even
after binarization. We investigate this further
and show that not only binarization but also dis-
cretization of the feature vector into a larger num-
ber of bins is useful. In particular, we propose to
discretize the feature vector into B bins along each
dimension5. In this paper, we experiment with
two approaches for binning the feature vector - (i)
equal width and (ii) equal frequency. The equal
width approach ensures that all the bins are of the
same size. For example, if we are interested in 2
equal width bins, we could look at the feature vec-
tor along a dimension and set the threshold mid-
way between the minimum and maximum values

5Discretization can also be applied to the global repre-
sentation used by the SVM, but as shown in (Venkitasubra-
manian et al., 2016), it is particularly useful in conjunction
with a naive Bayes classifier.

of that dimension. The values that are less than the
threshold could be set to 0, while the rest are set
to 1. In equal frequency binning, the threshold is
set such that the number of elements in each bin is
roughly the same.

This discretization is similar to the vector quan-
tization of SIFT descriptors to obtain Bag of Vi-
sual Words (BoVW). But, while BoVW has the
issue that the discretization errors can have a sig-
nificant negative impact, with CNN features, there
are no strong discretization artifacts. In fact, Li et
al. (2014) have shown that retaining just the values
of the largest k dimensions (or even setting the val-
ues of the largest k dimensions to 1 and the rest to
0) is sufficient to capture the essence of the image.

Discretizing the feature space allows us to re-
place the feature aiv by the corresponding bin βv.

p(aiv|yl) = p(βv|yl) (4)

where βv ∈ {0, 1 . . . B} is the bin to which aiv

belongs.
Eq. 3 can then be rewritten as

p(yl|ai) =
∏D

v=1 p(βv|yl)∏D
v=1 p(βv|yl) +

∏D
v=1 p(βv|yl)

(5)

To compute the conditional probabilities
p(βv|yl) of the bin βv given yl, we rely on the
noisy labels that can be obtained from the text.
Basically we count the co-occurrence of label
yl corresponding to name nl ∈ Ni with bin βv

relative to the total number of instances where yl

occurs in our dataset.

p(βv|yl) =
freq(βv, yl)
freq(yl)

(6)

5 Experiments and Results

The dataset used in our experiments is that of
(Dusart et al., 2013). This is a wildlife documen-
tary named ‘Great Wildlife Moments’6 with sub-
titles from the BBC. This is an interlaced video
with a duration of 108 minutes at a frame rate of
25 frames per second, and the frame resolution is
720x576 pixels. The video consists of 28 chap-
ters and all the chapters except the ones contain-
ing just one animal are evaluated. This leaves us
with chapters 14 to 28. Applying shot cut detec-
tion (Hellier et al., 2012) on these chapters, we ob-
tained 602 key frames. Of these, 302 frames had

6https://en.wikipedia.org/wiki/Great_Wildlife_Moments
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Method Precision Recall F1

SVM 80.43 12.71 21.96
Naive Bayes 20.23 71.48 31.54

Table 1: Results of using the continuous features
and applying the weak labels of our dataset

Figure 2: The precision-recall curves for the SVM
and naive Bayes classifier shown in Table 1. Area
under the curve is 0.1599 for the SVM and 0.3642
for naive Bayes.

no animal. The remaining 300 contained 365 ani-
mals in total. We run our algorithm on all the 602
key frames. There were 19 species of animals.

The animal labeling is evaluated in terms of
precision, recall and F1 computed over the entire
dataset as follows:

precision =
number of labels correctly assigned

total number of labels assigned

recall =
number of labels correctly assigned

actual number of animal present

The evaluation covers two aspects:

1. How well do the representation and model
learned using the weak labels of our dataset
perform on the same dataset? (Section 5.1)

2. How well do the representation and model
learned using the weak labels of our dataset
transfer to an external dataset shot over di-
verse topographical regions under different
environmental conditions and illumination
settings? (Section 5.2)

5.1 Animal labeling on wildlife videos
Table 1 shows the performance of an SVM on the
global representation and a naive Bayes classifier
on the bag of activations using continuous fea-
tures. In either case, name nl is assigned to frame

Figure 3: The distribution of the feature val-
ues along the first dimension: x-axis shows the
range of feature values, y-axis shows the num-
ber of frames. The grey histogram shows the
distribution of the feature values. The red curve
is the normal distribution plotted using the mean
and standard deviation along the first dimension,
N (0.0454, 0.0622).

ai if p(yl|ai) > p(yl|ai), that is, the probability
threshold for prediction was set at 0.5. For the
naive Bayes classifier, a Gaussian distribution was
used to model the continuous features along each
dimension. While both models do not yield ade-
quate performance, the naive Bayes certainly does
far better compared to the SVM. In this setup in-
volving limited reliable example pairs, it is benefi-
cial to treat each element of the CNN representa-
tion individually rather than using the full feature
vector in a high-dimensional space. Fig. 2 shows
the precision-recall curves of the SVM and the
naive Bayes classifier. The naive Bayes is clearly
better in this setup, except in the low recall / high
precision region.

Closer inspection reveals that the Gaussian dis-
tribution used in the Naive Bayes framework is not
a good fit to the data (see Fig. 3 for one example
feature dimension). Fig. 3 shows the normal dis-
tribution plotted using the mean and the standard
deviation along the first dimension for the entire
dataset (red curve: N (0.0454, 0.0622)). This is
superimposed on the histogram of the real-valued
(undiscretized) feature vector (in grey). While
there are certainly other distributions (such as
Poisson or Binomial) that could be used to model
the data, we show that the most commonly used
Gaussian clearly does not fit the data. Rather than
forcing the data to fit into some distribution, we
turn to a discretized setting as it allows use of a
simple non-parametric model.
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Method Precision Recall F1

B = 2 46.43 91.55 61.61
B = 3 46.85 94.37 62.62
B = 4 47.03 92.96 62.46
B = 5 47.18 94.37 62.91
B = 6 47.88 95.31 63.74
B = 7 47.69 96.71 63.88
B = 8 47.45 96.24 63.57
B = 9 47.00 95.77 63.06
B = 20 46.47 95.77 62.58
log2l-bins 47.47 96.71 63.68

Method Precision Recall F1

B = 2 48.04 92.02 63.12
B = 3 47.95 93.43 63.38
B = 4 46.99 95.31 62.95
B = 5 46.24 95.31 62.27
B = 6 45.56 96.24 61.84
B = 7 45.23 95.77 61.45
B = 8 44.93 95.77 61.17
B = 9 44.81 97.18 61.33
B = 20 43.51 97.65 60.20

Table 2: Results of using the discretized features (left: equal width discretization, right: equal frequency
discretization) and applying the weak labels of our dataset

Next, we present the results of using the dis-
cretized features. Table 2 (left) shows the results
of the animal labeling using equal width binning
for different number of bins B. First, we use a
fixed number of bins over every dimension. That
is, along every dimension in the feature vector,
the number of bins is set to a constant B. Note
that irrespective of the number of bins, the per-
formance has improved significantly. The preci-
sion has more than doubled, and the recall has
improved by more than 20% absolute. Contrary
to expectations, the discretization has actually im-
proved the classification. These findings are con-
sistent with those of Dougherty et al. (Dougherty
et al., 1995). Overall, we see that these results are
significantly better than all the baselines in Table
1. In addition to the discretization, the key as-
pects of this method are the use of naive Bayes
classifier and the idea of treating each element of
the CNN representation separately rather than us-
ing the full feature vector in a high-dimensional
space. These bring robustness to image clutter and
changing backgrounds, and help in learning from
few examples.

Next, looking at the F1 measures for different
values of B, we see that the best results are ob-
tained when B = 7. In addition to fixing the
number of bins along every dimension, we used
a heuristic to set a variable number of bins for
each dimension. Using the heuristic in S-Plus his-
togram algorithm of Spector (Spector, 1994), we
set the number of bins along each dimension to
log2l, where l is the number of unique values in
that dimension. Using this heuristic, different di-
mensions had different number of bins. We ob-
served that of the 128 dimensions, 12 had 7 bins,

while the rest had 8 bins. This explains why we
have the best results in the range B = 7 and
B = 8.

Table 2 (right) shows the results of the animal
labeling using equal frequency binning for differ-
ent number of bins B. Here, since we are deal-
ing with sparse matrices, we have to ensure that
all zero-valued entries along a dimension should
belong to the same bin. The results in table 2 in-
corporate this correction. As with the equal-width
case, we obtain significant improvements over the
naive Bayes classifier with continuous features.

Fig. 4 shows some of the sample outputs of our
system. Note that our method is capable of iden-
tifying multiple species in the same frame, as well
as detecting frames that do not contain any animal.

5.2 Transfer to camera-trap images
The second aspect of the evaluation is to measure
how well the representations and models transfer
to external data from an entirely different setup.
To evaluate this, we use the Snapshot Serengeti
(Swanson et al., 2015) dataset, which consists of
camera-trap (remote, automatic cameras) images
covering wildlife in Savanna. We learn animal
recognition models using the weak labels of our
dataset and apply them to the Snapshot Serengeti
(Swanson et al., 2015) dataset. It is important to
note that the pictures of this Serengeti dataset are
captured automatically, in very different scenes,
under various illumination conditions. This causes
a huge domain shift. The Serengeti dataset covers
40 mammalian species, of which three (Lion, Ze-
bra and Hippopotamus) also appear in our dataset.
We choose 500 random images7 each of Lion and

7shot between 6:00 am and 6:00 pm
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Figure 4: Some sample outputs from our system. ‘GT’ indicates ground truth, ‘Predicted’ indicates the
predictions of the system.

Zebra, and all 37 images available for the Hip-
popotamus class. This set forms the target data
on which the animal recognition models will be
tested. Fig. 5 shows some of the sample images
from this dataset.

Table 3 shows the performance of the animal
recognition models learned using our data, applied
on the target dataset. The first baseline is simply
based on the probabilities output by the CNN pre-
trained on ImageNet. We used the same architec-
ture (CNN-M-128) that was used for feature ex-
traction. When the output probability for a certain
class was >0.5, we concluded that the system pre-
dicted that class. Of course, multiple classes could
be predicted for each key frame. Although some
of the classes predicted covered ‘lake side’, ‘hay’
etc. which were not explicitly labeled in our setup,
there were a lot of animals incorrectly predicted
(which did not belong to our dataset of 19 ani-
mals). These included elephant, panther, camel,
dugong. We filtered the outputs to just retain the
19 classes that were seen in our dataset. This in-
creased the precision by a large margin (second
row in the table). Next, we retained only the
three classes that were common to our dataset and
Serengeti dataset. While this gave a perfect preci-
sion, the recall stands low at approx. 20% in all
the three cases above.

Next, we train an SVM (on the continuous fea-
tures) on all the 19 classes of our dataset, using
the weak association of the subtitles and applied
them to Serengeti (Swanson et al., 2015) dataset

(Second block on table 3). Note that the perfor-
mance is low compared to ImageNet cases in the
first block. The model learned by the SVM on our
dataset does not compare well with that of Im-
ageNet, which was trained on several thousands
of zebra, hippos and lions. As with the previ-
ous block, filtering to the 3 relevant classes in-
creases the precision by a large margin, while the
recall stays the same. When we used the ground
truth labels instead of the weak labels (which ba-
sically indicate if a frame could have some ani-
mal), we have a perfect precision, but the recall
is even lower. By capturing elements in the back-
ground/environment which might be related to the
animal, (e.g., a water body for the hippopotamus,
or grasslands for the zebra), the training based on
weak labels yields higher recall, albeit at the cost
of precision.

The last block shows the performance using a
naive Bayes, trained using both weak labels, and
the ground truth. Again, we note that the preci-
sion is better with groundtruth labels, while the
recall is lower. But in either case, there are re-
markable improvements compared to the first and
second blocks. The idea of treating each element
of the CNN representation individually rather than
using the full feature vector in a high-dimensional
space is crucial both for isolating the object(s) of
interest from the clutter, and for learning with few
examples. The discretized naive Bayes does not
perform better than the continuous naive Bayes in
this case - the discretized features probably do not
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Figure 5: Some sample images from the Snapshot Serengeti (Swanson et al., 2015) dataset, together
with the descriptions that show the difficulty of the task. Green box indicates the animal was recognized
correctly, while red indicates the animal was missed.

Method Precision Recall F1

CNN-M-128 (1000 classes) 21.98 20.38 21.15
CNN-M-128 (filtered to 19 classes of our dataset) 91.75 20.38 33.35
CNN-M-128 (filtered to 3 overlapping classes) 100 20.38 33.86
SVM continuous (on our 19 classes) - using weak labels 58.16 14.96 23.80
SVM continuous (on 3 overlapping classes) - using weak labels 86.34 14.96 25.50
SVM continuous (on 3 overlapping classes) - using GT 100 9.31 17.04
NBC continuous (on 3 overlapping classes) - using weak labels 49.03 90.53 63.61
NBC continuous (on 3 overlapping classes) - using GT 62.07 67.71 64.77
NBC discretized into log2l bins (on 3 classes) - using weak labels 53.45 65.73 58.95

Table 3: Performance of the animal recognition models learned using our data, applied on images from
Snapshot Serengeti (Swanson et al., 2015) dataset

transfer as well to the target domain. Neverthe-
less, it certainly outperforms the classifiers in the
first two blocks, by a large margin.

6 Conclusions

In this paper, we investigate different image rep-
resentations and models, including a support vec-
tor machine on top of activations of a pretrained
convolutional neural network, as well as a Naive
Bayes framework on a bag-of-activations image
representation, where each element of the bag is
considered separately. We show that the bag-of-
activations representation allows key components
in the image to be isolated, in spite of largely vary-
ing backgrounds and image clutter, and eliminates
the need for an object detection or image segmen-
tation step. In contrast to most work on integrated
vision and language that use curated data, the pro-

posed approach deals with vision and language
that are complementary.

When the source and target are of the same do-
main, we also found that the discretization used
with a multinomial Naive Bayes classifier yields
much better performance compared to continuous
features with a traditional Naive Bayes classifier -
the precision is more than doubled and the recall
is boosted by more than 20% absolute for the task
of identifying animals on a challenging dataset of
wildlife documentaries. Here, we have used unsu-
pervised equal-width and equal-frequency binning
of the features. In future, we wish to explore other
(weakly) supervised techniques for discretization,
and their transfer to other domains. The methods
proposed here take us a step closer to automatic
video recognition and indexing.
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Abstract

In this paper, we study how humans per-
ceive the use of images as an additional
knowledge source to machine-translate user-
generated product listings in an e-commerce
company. We conduct a human evaluation
where we assess how a multi-modal neural
machine translation (NMT) model compares
to two text-only approaches: a conventional
state-of-the-art attention-based NMT and a
phrase-based statistical machine translation
(PBSMT) model. We evaluate translations
obtained with different systems and also dis-
cuss the data set of user-generated product
listings, which in our case comprises both
product listings and associated images. We
found that humans preferred translations ob-
tained with a PBSMT system to both text-only
and multi-modal NMT over 56% of the time.
Nonetheless, human evaluators ranked transla-
tions from a multi-modal NMT model as bet-
ter than those of a text-only NMT over 88% of
the time, which suggests that images do help
NMT in this use-case.

1 Introduction

In e-commerce, leveraging Machine Translation (MT)
to make products accessible regardless of the cus-
tomer’s native language or country of origin is a
very persuasive use-case. In this work, we study
how humans perceive the machine translation of user-
generated auction listings’ titles as listed on the eBay
main site1. Among the challenges for MT are the
specialized language and grammar for listing titles, as
well as a high percentage of user-generated content for
non-business sellers, who are often not native speakers
themselves. This is reflected on the data by means of
extremely high trigram perplexities of product listings,
which is in 4 digit numbers even for language models
(LMs) trained on in-domain data, as we discuss in §3.
This is not only a challenge for LMs but also for auto-
matic evaluation metrics such as the n-gram precision-
based BLEU metric (Papineni et al., 2002).

1http://www.ebay.com/

The majority of listings are accompanied by a prod-
uct image, often (but not always) a user-generated shot.
Moreover, images are known to bring useful com-
plementary information to MT (Calixto et al., 2012;
Hitschler et al., 2016; Huang et al., 2016; Calixto et
al., 2017b). Therefore, in order to explore whether
product images can benefit the machine translation of
auction titles, we evaluate a multi-modal neural MT
(NMT) system to eBay’s production system, specif-
ically a phrase-based statistical MT (PBSMT) one.
We additionally train a text-only attention-based NMT
baseline, so as to be able to measure eventual gains
from the additional multi-modal data independently of
the MT architecture.

According to a quantitative evaluation using a com-
bination of four automatic MT evaluation metrics, a
PBSMT system outperforms both text-only and multi-
modal NMT models in the translation of product list-
ings, contrary to recent findings (Bentivogli et al.,
2016). We hypothesise that these automatic metrics
were not created for the purpose of measuring the im-
pact an image brings to an MT model, so we conduct
a human evaluation of translations generated by three
different systems: a PBSMT, a text-only attention-
based NMT and a multi-modal NMT system. With that
human evaluation we wish to see whether those find-
ings corroborate the automatic scores or instead sup-
port results included in recent papers in the literature.

The remainder of the paper is structured as follows.
In §2 we briefly describe the text-only and multi-modal
MT models we evaluate in this work and in §3 the data
sets we used, together with a discussion of interesting
findings. In §4 we discuss how we structure our evalua-
tion and in §5 we analyse and discuss our results. In §6
we discuss important related work and finally in §7 we
draw conclusions and suggest avenues for future work.

2 MT Models evaluated in this work

We first introduce the two text-only baselines used in
this work: a PBSMT model (§2.1) and a text-only
attention-based NMT model (§2.2). We then briefly
discuss the doubly-attentive multi-modal NMT model
we use in our experiments (§2.3), which is compara-
ble to the model evaluated by Calixto et al. (2016) and
further detailed and analysed in Calixto et al. (2017a).
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Figure 1: Decoder RNN with attention over source sen-
tence and image features. This decoder learns to inde-
pendently attend to image patches and source-language
words when generating translations.

2.1 Statistical Machine Translation (SMT)

We use a PBSMT model where the language model
(LM) is a 5–gram LM with modified Kneser-Ney
smoothing (Kneser and Ney, 1995). We use minimum
error rate training (Och, 2003) for tuning the model pa-
rameters using BLEU as the objective function.

2.2 Text-only NMT (NMTt)

We use the attention-based NMT model introduced
by Bahdanau et al. (2015) as our text-only NMT base-
line. It is based on the encoder–decoder framework
and it implements an attention mechanism over the
source-sentence words X = (x1, x2, · · · , xN ), where
Y = (y1, y2, · · · , yM ) is its target-language transla-
tion. A model is trained to maximise the log-likelihood
of the target given the source.

The encoder is a bidirectional recurrent neural net-
work (RNN) with GRU units (Cho et al., 2014). The
annotation vector for a given source word xi is the
concatenation of forward and backward vectors hi =[−→
hi;
←−
hi

]
obtained with forward and backward RNNs,

respectively, and C = (h1,h2, · · · ,hN ) is the set of
source annotation vectors.

The decoder is also an RNN, more specifically a neu-
ral LM (Bengio et al., 2003) conditioned upon its past
predictions via its previous hidden state st−1 and the
word emitted in the previous time step yt−1, as well as
the source sentence via an attention mechanism. The
attention computes a context vector ct for each time
step t of the decoder where this vector is a weighted
sum of the source annotation vectors C:

esrc
t,i = (vsrc

a )T tanh(U src
a st−1 +W src

a hi), (1)

αsrc
t,i =

exp (esrc
t,i)∑N

j=1 exp (esrc
t,j)

, (2)

ct =
N∑

i=1

αsrc
t,ihi, (3)

where αsrc
t,i is the normalised alignment matrix between

each source annotation vector hi and the word to be
emitted at time step t, and vsrc

a , U src
a and W src

a are
model parameters.

2.3 Multi-modal NMT (NMTm)

We use a multi-modal NMT model similar to the one
evaluated by Calixto et al. (2016) and further studied
in Calixto et al. (2017a), illustrated in Figure 1. It can
be seen as an expansion of the attentive NMT frame-
work described in §2.2 with the addition of a visual
component to incorporate local visual features.

We use a publicly available pre-trained Convolu-
tional Neural Network (CNN), namely the 50-layer
Residual Network (ResNet-50) of He et al. (2016) to
extract convolutional image features (a1, · · · ,aL) for
all images in our dataset. These features are extracted
from the res4f layer and consist of a 196 x 1024 di-
mensional matrix where each row, i.e. a 1024D vector,
represents features from a specific area and so only en-
codes information about that specific area of the image.

The visual attention mechanism computes a context
vector it for each time step t of the decoder similarly
to the textual attention mechanism described in §2.2:

eimg
t,l = (vimg

a )T tanh(U img
a st−1 +W img

a al), (4)

αimg
t,l =

exp (eimg
t,l )∑L

j=1 exp (eimg
t,j )

, (5)

it =
L∑

l=1

αimg
t,l al, (6)

where αimg
t,l is the normalised alignment matrix between

each image annotation vector al and the word to be
emitted at time step t, and vimg

a , U img
a and W img

a are
model parameters.

3 Data sets

We use the data set of product listings and images
produced by eBay, henceforth referred to as eBay24k,
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which consists of 23, 697 tuples of products each con-
taining (i) a product listing in English, (ii) a prod-
uct listing in German and (iii) a product image. In
∼6k training tuples, the original user-generated prod-
uct listing was given in English and was manually
translated into German by in-house experts. The same
holds for validation and test sets, which contain 480
and 444 triples, respectively. In the remaining training
tuples (∼18k), the original listing was given in Ger-
man and manually translated into English. We also
use the publicly available Multi30k dataset (Elliott et
al., 2016), a multilingual expansion of the original
Flickr30k (Young et al., 2014) with∼30k pictures from
Flickr, each accompanied by one description in English
and one human translation of the English description
into German.

Although the curation of in-domain parallel product
listings with an associated product image is costly and
time-consuming, monolingual German listings with an
image are far simpler to obtain. In order to increase the
small amount of training data, we train the text-only
model NMTt on the German–English eBay24k and
Multi30k data sets (without images) and back-translate
83, 832 German in-domain product listings into En-
glish. We use the synthetic English, original German
and original image as additional training tuples, hence-
forth eBay80k.

The translation of user-generated product titles raises
particular challenges; they are often ungrammatical
and can be difficult to interpret in isolation even by a
native speaker of the language, as illustrated in Table 1.
We note that the listings in both languages have many
scattered keywords and/or phrases glued together, as
well as few typos (e.g., English listing in the first ex-
ample). Moreover, in the second example the product
image has a white frame surrounding it. These are all
complications that make the multi-modal MT of prod-
uct listings a challenging task, where there are differ-
ent difficulties derived from processing listings and im-
ages.

To further demonstrate these issues, we compute per-
plexity scores with LMs trained on one in-domain and
one general-domain German corpus: the Multi30k (∼
29k sentences) and eBay’s in-domain data (∼ 99k sen-
tences), respectively.2 The LM trained on the Multi30k
computes a perplexity of 25k on the eBay test set, and
the LM trained on the in-domain eBay data produces a
perplexity of 4.2k on the Multi30k test set. We note that
the LM trained on eBay’s in-domain data still computes
a very high perplexity on eBay’s test set (ppl = 1.8k).
These perplexity scores indicate that fluency might not
be a good metric to use in our study, i.e. we should not
expect a fluent machine-translated output of a model
trained on poorly fluent training data.

2These are 5-gram LMs trained with KenLM (Heafield
et al., 2013) using modified Kneser-Ney smoothing on tok-
enized, lowercased data.

Image Product Listing

(en) apple macbook pro 13.3“
laptop - dvd - rw drive / good
screen / airport card keyboar

(de) apple macbook pro laptop
13.3“ - dvd - rw - laufwerk / gutes
display / airport karte tastatur

(en) modern napkin holder table
top stainless steel weighted
arm napkins paper towels

(de) moderner tischserviettenhalter
aus edelstahl mit beschwertem arm
für servietten und papiertücher

Table 1: Examples of product listings accompanied by
product images from the eBay test set.

Listing Difficulty Adequacy
language N listing only listing+image listing+image

English 20 2.50 ± 0.84 2.40 ± 0.84 2.45 ± 0.49
German 15 2.83 ± 0.75 2.00 ± 0.50 2.39 ± 0.78

Table 2: Difficulty to understand product listings with
and without images and adequacy of listings and im-
ages. N is the number of raters (Calixto et al., 2017b).

3.1 English and German product listings

Clearly, user-generated product listings are not very
fluent in terms of grammar or even predictable word
order. To better understand whether this has an impact
on semantic intelligibility, Calixto et al. (2017b) have
recently conducted experiments using eBay data to as-
sess how challenging listings are to understand for a
human reader. Specifically, they asked users how they
perceive product listings with and without having the
associated images available, under the hypothesis that
images bring additional understanding to their corre-
sponding listings.

In Table 2, we show results which suggest that the
intelligibility of both the English and German product
listings are perceived to be somewhere between “easy”
and “neutral” when images are also available. It is no-
table that, in case of German, there is a statistically sig-
nificant difference between the group who had access
to the image and the product listing (M=2.00, SD=.50)
and the group who only viewed the listing (M=2.83,
ST=.30), where F(1,13) = 6.72, p < 0.05. Further-
more, humans find that product listings describe the as-
sociated image somewhere between “well” and “neu-
tral” with no statistically significant differences be-
tween the adequacy of product listings and images in
different languages (Calixto et al., 2017b).

Altogether, we have a strong indication that images
can indeed help an MT model translate product listings,
especially for translations into German.
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0% 20% 40% 60% 80% 100%

NMTt

NMTm

PBSMT

Time in Seconds1st best 2nd best 3rd best

18.8% 32.6% 48.5%

24.8% 42.5% 32.6%

56.3% 24.8% 18.8%

Figure 2: Models PBSMT, NMTt and NMTm ranked
by humans from best to worst.

4 Experimental set-up
We use the eBay24k, the additional back-translated
eBay80k and the Multi30k (Elliott et al., 2016) data
sets to train all our models. In our experiments, we
wish to contrast the human assessments of the ade-
quacy of translations obtained with two text-only base-
lines, PBSMT and NMTt, and one multi-modal model
NMTm, with scores computed with four automatic
MT metrics: BLEU4 (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014), TER (Snover et
al., 2006), and chrF3 (Popović, 2015).3 We report
statistical significance with approximate randomisation
for the first three metrics using the MultEval tool (Clark
et al., 2011).

For our qualitative human evaluation, we ask bilin-
gual native German speakers:

1. to assess the multi-modal adequacy of transla-
tions (number of participants N = 18), described
in §4.1;

2. to rank translations generated by different mod-
els from best to worst (number of participants
N = 18), described in §4.2.

On average, our evaluators’ consisted of 72%
women and 28% men. They were recruited from em-
ployees at eBay Inc., Aachen, Germany, as well as
the student and staff body of Dublin City University,
Dublin, Ireland.

4.1 Adequacy
Humans are presented with an English product listing,
a product image and a translation generated by one of
the models (without knowing which model). They are
then asked how much of the meaning of the source is
also expressed in the translation, taking the product im-
age into consideration. They must then select from a
four-level Likert scale where the answers range from
1 – All of it to 4 – None of it.

4.2 Ranking
We present humans with a product image and three
translations obtained from different models for a par-
ticular English product listing (without identifying the

3We specifically compute character 6-gram F3.

models) and ask them to rank translations from best to
worst.

5 Results
In Table 3, we contrast the human assessments of the
adequacy of translations obtained with two text-only
baselines, PBSMT and NMTt, and one multi-modal
model NMTm, with scores obtained computing four
MT automatic metrics.

Both models NMTm and PBSMT improve on model
NMTt’s translations according to the first three auto-
matic metrics (p < 0.01), and we also observe im-
provements in chrF3. Although a one-way anova did
not show any statistically significant differences in ad-
equacy between NMTm and NMTt (F(2, 18) = 1.29,
p > 0.05), human evaluators ranked NMTm as better
than NMTt over 88% of the time, a strong indication
that images do help neural MT and bring important in-
formation that the multi-modal model NMTm can effi-
ciently exploit.

If we compare models NMTm and PBSMT, the latter
outperforms the former according to BLEU, METEOR
and chrF3, but they are practically equal according to
TER. Additionally, the adequacy scores for both these
models are, on average, the same according to scores
computed over N = 18 different human assessments.
Nonetheless, even though both models NMTm and PB-
SMT are found to produce equally adequate output,
translations obtained with PBSMT are ranked best by
humans over 56.3% of the time, while translations ob-
tained with the multi-modal model NMTm are ranked
best 24.8% of the time, as can be seen in Figure 2.

We stress that the multi-modal model NMTm con-
sistently outperforms the text-only model NMTt, ac-
cording to all four automatic metrics used in this work.
Translations generated by model NMTm contain many
neologisms, possibly due to training these models us-
ing sub-word tokens rather than just words (Sennrich et
al., 2016). Some examples are: “sammlerset”, “gara-
genskateboard”, “kampffaltschlocker”, “schneidsattel”
and “oberreceiver”. We argue that this generative qual-
ity of the NMT models and the data sets evaluated in
this work could have made translations more confusing
for native German speakers to understand, therefore the
preference for the SMT translations.4

We note that the pairwise inter-annotator agreement
for the ranking task shows a fair agreement among the
annotators (κ = 0.30), computed using Cohen’s kappa
coefficient (Cohen, 1960). For all the other evalua-
tions, according to Landis and Koch (1977) the pair-
wise inter-annotator agreement can be interpreted as
slight (κ = 0.15 for the multi-modal translation ad-
equacy). The lower agreement score seems plausible
since our annotators were crowdsourced and so had
limited guidelines and less training for the tasks that
would have been ideal.

4The SMT model was trained on words directly and there-
fore does not present these issues.
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Model BLEU4↑ METEOR↑ TER↓ chrF3↑ Adequacy↓
NMTt 22.5 40.0 58.0 56.7 2.71 ± .48
NMTm 25.1† 42.6† 55.5† 58.6 2.36 ± .47
PBSMT 27.4†‡ 45.8†‡ 55.4† 61.6 2.36 ± .47

Table 3: Adequacy of translations and four automatic metrics on eBay’s test set: BLEU, METEOR, TER and chrF3.
For the first three metrics, results are significantly better than those of NMTt (†) or NMTm (‡) with p < 0.01.

6 Related work

Multi-modal MT has just recently been addressed by
the MT community in a shared task (Specia et al.,
2016), where many different groups proposed tech-
niques for multi-modal translation using different com-
binations of NMT and SMT models (Caglayan et al.,
2016; Calixto et al., 2016; Huang et al., 2016; Li-
bovický et al., 2016; Shah et al., 2016). In the multi-
modal translation task, participants are asked to train
models to translate image descriptions from one natural
language into another, while also taking the image it-
self into consideration. This effectively bridges the gap
between two well-established tasks: image description
generation (IDG) and MT.

There is an important body of research conducted in
IDG. We highlight the work of Vinyals et al. (2015),
who proposed an influential neural IDG model based
on the sequence-to-sequence framework. They used
global visual features to initialise an RNN LM de-
coder, used to generate the image descriptions in a tar-
get language, word by word. In contrast, Xu et al.
(2015) were among the first to propose an attention-
based model where a model learns to attend to spe-
cific areas of an image representation as it generates
its description in natural language with a soft-attention
mechanism. In their model, local visual features were
used instead. In both cases, as well as in this work
and in most of the state-of-the-art models in the field,
models transferred learning from CNNs pre-trained for
image classification on ImageNet (Russakovsky et al.,
2015).

In NMT, Bahdanau et al. (2015) was the first to
propose to use an attention mechanism in the de-
coder. Their decoder learns to attend to the relevant
source-language words as it generates a sentence in
the target language, again word by word. Since then,
many authors have proposed different ways to incor-
porate attention into MT. Luong et al. (2015) proposed
among other things a local attention mechanism that
was less costly than the original global attention; Fi-
rat et al. (2016) proposed a model to translate from
many source and into many target languages, which in-
volved a shared attention mechanism strategy; Tu et al.
(2016) proposed an attention coverage strategy, so that

the model has explicit information from which source
words are used to generate previous target words, and
therefore addressed the problems of over- and under-
translation.

Calixto et al. (2017b) has recently reported n-best
list re-ranking experiments of e-commerce product list-
ings using multi-modal eBay data. Whereas their fo-
cus is on improving translation quality with n-best list
re-ranking experiments, in this work our focus is on
the human evaluation of translations generated with the
different text-only and multi-modal models. To the best
of our knowledge, along with Calixto et al. (2017b) we
are the first to study multi-modal NMT applied to the
translation of product listings, i.e. for the e-commerce
domain.

7 Conclusions and Future Work
In this paper, we investigate the potential impact of
multi-modal NMT in the context of e-commerce prod-
uct listings. Images bring important information to
NMT models in this context; in fact, translations ob-
tained with a multi-modal NMT model are preferred to
ones obtained with a text-only model over 88% of the
time. Nevertheless, humans still prefer phrase-based
SMT over NMT output in this use-case. We attribute
this to the nature of the task: listing titles have little
syntactic structure and yet many rare words, which can
produce many confusing neologisms especially if using
subword units.

The core neural MT models still have to be improved
significantly to address these challenges. However, in
contrast to SMT, they already provide an effective way
of improving MT quality with information contained in
images. As future work, we will study the impact that
additional back-translated data have on multi-modal
NMT models.
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Abstract

We present BreakingNews, a novel dataset
with approximately 100K news articles in-
cluding images, text and captions, and en-
riched with heterogeneous meta-data (e.g.
GPS coordinates and popularity metrics).
The tenuous connection between the im-
ages and text in news data is appropriate to
take work at the intersection of Computer
Vision and Natural Language Processing
to the next step, hence we hope this dataset
will help spur progress in the field.

1 Introduction

Current successes in the crossroads between NLP
and computer vision indicate that the techniques
are mature for more challenging objectives than
those posed by existing datasets. The NLP com-
munity has been addressing tasks such as senti-
ment analysis, popularity prediction, summariza-
tion, source identification or geolocation to name
a few, that have been relatively little explored in
computer vision. BreakingNews is a large-scale
dataset1 of news articles with rich meta-data and,
we believe, an excellent benchmark for taking
joint vision and language developments a step fur-
ther. In contrast to existing datasets, the link be-
tween images and text in BreakingNews is not
as direct, i.e., the objects, actions and attributes
of the images may not explicitly appear as words
in the text (see example in Fig. 1). The visual-
language connections are more subtle and learn-
ing them will require the development of new in-
ference tools able to reason at a higher and more
abstract level. Furthermore, besides tackling ar-
ticle illustration or image captioning tasks, the

* denotes equal contribution
1http://www.iri.upc.edu/people/

aramisa/BreakingNews/index.html

Figure 1: Example article with annotations from
the BreakingNews dataset.

proposed dataset is intended to address new chal-
lenges, such as source/media agency detection, es-
timation of GPS coordinates, or popularity predic-
tion (which we annotate based on the reader com-
ments and number of re-tweets).

In (Ramisa et al., 2016) we present several base-
line results for different tasks using this dataset.

2 Description of the Dataset

The BreakingNews dataset consists of approxi-
mately 100,000 articles published between the 1st
of January and the 31th of December of 2014. All
articles include at least one image, and cover a
wide variety of topics, including sports, politics,
arts, healthcare or local news.

The main text of the articles was downloaded
using the IJS newsfeed (Trampuš and Novak,
2012), which provides a clean stream of semanti-
cally enriched news articles in multiple languages
from a pool of rss feeds.

We restricted the articles to those that were writ-
ten in English, contained at least one image, and
originated from a shortlist of highly-ranked news
media agencies (see Table 1) to ensure a degree of
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Source num.
articles

avg. len.
article

avg. num.
images

avg. len.
caption

avg. num.
comments

avg. len.
comment

avg. num.
shares

% geo-
located

Yahoo News 10,834 521±338 1.00± 0.00 40± 33 126± 658 39± 71 n/a 65.2%
BBC News 17,959 380±240 1.54± 0.82 14± 4 7± 78 48± 21 n/a 48.7%
The Irish Independent 4,073 555±396 1.00± 0.00 14± 14 1± 6 17± 5 4± 20 52.3%
Sydney Morning Herald 6,025 684±395 1.38± 0.71 14± 10 6± 37 58± 55 718± 4976 60.4%
The Telegraph 29,757 700±449 1.01± 0.12 16± 8 59± 251 45± 65 355± 2867 59.3%
The Guardian 20,141 786±527 1.18± 0.59 20± 8 180± 359 53± 64 1509± 7555 61.5%
The Washington Post 9,839 777±477 1.10± 0.43 25± 17 98± 342 43± 50 n/a 61.3%

Table 1: Dataset statistics. Mean and standard deviation, usually rounded to the nearest integer.

consistency and quality. Given the geographic dis-
tribution of the news agencies, most of the dataset
is made of news stories in English-speaking coun-
tries in general, and the UK in particular. For each
article we downloaded the images, image captions
and user comments from the original article web-
page. News article images are quite different from
those in existing captioned images datasets like
Flickr8K (Hodosh et al., 2013) or MS-COCO (Lin
et al., 2014): often include close-up views of a per-
son (46% of the pictures in BreakingNews contain
faces) or complex scenes. Furthermore, news im-
age captions use a much richer vocabulary than in
existing datasets (e.g. Flickr8K has a total of 8,918
unique tokens, while eight thousand random cap-
tions from BreakingNews already have 28,028),
and they rarely describe the exact contents of the
picture.

We complemented the original article images
with additional pictures downloaded from Google
Images, using the full title of the article as search
query. The five top ranked images of sufficient
size in each search were downloaded as potentially
related images (in fact, the original article image
usually appears among them).

Regarding measures of article popularity, we
downloaded all comments in the article page and
the number of shares on different social networks
(e.g. Twitter, Facebook, LinkedIn) if this informa-
tion was available. Whenever possible, in addi-
tion to the full text of the comments, we recovered
the thread structure, as well as the author, pub-
lication date, likes (and dislikes) and number of
replies. Since there were no share or comments
information available for "The Irish Independent",
we searched Twitter using the full title and col-
lected the tweets that mentioned a name associ-
ated with the newspaper (e.g. @Independent_ie,
Irish Independent, @IndoBusiness) or with links
to the original article in place of comments. We
considered the collective number of re-tweets as
shares of the article. The IJS Newsfeed annotates

 -180 °  - 90 °     0 °    90 °   180 °

 -90 °

 -45 °

   0 °

  45 °

  90 °

Figure 2: Ground truth geolocations of articles.

the articles with geolocation information both for
the news agency and for the article content. This
information is primarily taken from the provided
RSS summary, but sometimes it is not available
and then it is inferred from the article using heuris-
tics such as the location of the publisher, TLD
country, or the story text. Fig. 2 shows a distri-
bution of news story geolocation.

Finally, the dataset is annotated for convenience
with shallow and deep linguistic features (e.g. part
of speech tags, inferred semantic topics, named
entity detection and resolution, sentiment analy-
sis) with XLike 2 and Enrycher 3 NLP pipelines.
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1 Introduction and background

Head movements are the most frequent gestures
in face-to-face communication, and important for
feedback giving (Allwood, 1988; Yngve, 1970;
Duncan, 1972), and turn management (McClave,
2000).Their automatic recognition has been ad-
dressed by many multimodal communication re-
searchers (Heylen et al., 2007; Paggio and Navar-
retta, 2011; Morency et al., 2007).

The method for automatic head movement an-
notation described in this paper is implemented as
a plugin to the freely available multimodal anno-
tation tool ANVIL (Kipp, 2004), using OpenCV
(Bradski and Koehler, 2008), combined with a
command line script that performs a number of file
transformations and invokes the LibSVM software
(Chang and Lin, 2011) to train and test a support
vector classifier. Successively, the script produces
a new annotation in ANVIL containing the learned
head movements. The present method builds on
(Jongejan, 2012) by adding jerk to the movement
features and by applying machine learning. In this
paper we also conduct a statistical analysis of the
distribution of words in the annotated data to un-
derstand if word features could be used to improve
the learning model.

Research aimed at the automatic recognition
of head movements, especially nods and shakes,
has addressed the issue in essentially two differ-
ent ways. Thus a number of studies use data in
which the face, or a part of it, has been tracked via
various devices and typically train HMM models
on such data (Kapoor and Picard, 2001; Tan and
Rong, 2003; Wei et al., 2013). The accuracy re-
ported i these studies is in the range 75-89%.

Other studies, on the contrary, try to identify
head movements from raw video material using
computer video techniques (Zhao et al., 2012;
Morency et al., 2005). Different results are ob-

tained depending on a number of factors such
as video quality, lighting conditions, whether the
movements are naturally occurring or rehearsed.
The best results so far are probably those in
(Morency et al., 2007), where an LDCRF model
achieves an accuracy from 65% to 75% for a false
positive rate of 20-30% and outperforms earlier
SVM and HMM models.

Our work belongs to the latter strand of research
in that we also work with raw video data.

2 Movement features

Three time-related derivatives with respect to the
changing position of the face are used in this work
as features for the identification of head move-
ments: velocity, acceleration and jerk. Velocity
is change of position per unit of time, acceleration
is change of velocity per unit of time, and jerk is
change of acceleration per unit of time. We expect
that a sequence of frames for which jerk has a high
value in the horizontal or vertical direction will
correspond to the most effortful part of the head
movement, often called stroke (Kendon, 2004).

3 Data, test setup, and results

The data come from the Danish NOMCO (Paggio
et al., 2010), a video-recorded corpus of conver-
sational interactions with many different annota-
tion layers (Paggio and Navarretta, 2016), includ-
ing type of head movement (nods, turns. etc).

For this work, two videos in which one of the
participants is the same were selected at random,
and only the head movements performed by this
one participant are considered. One video is used
for training, and the other for testing. In both
videos, OpenCV is used to analyse each frame for
the x and y coordinates of the participants’s head,
and based on these coordinates velocity, acceler-
ation and jerk measures are calculated for each
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Category true false
movement 29,980 11,960
non-movement 235,640 108,420
sum 265,620 120,380

Table 1: Distribution of true and false move and non-move
sequences in milliseconds.

frame and added to the video annotation. In the
video used for training, each frame is added a
boolean feature indicating presence or absence of
head movement in the manual annotation.

A first inspection of the classification results
showed that in several cases the classifier detected
sequences of movement interrupted by empty
frames, where the manual annotation consisted of
longer spans of uninterrupted movement. There-
fore, empty spans (margins) of varying length
were considered part of the movement annotation
in the subsequent experiments, all performed with
SVM. In all experiments, using all three move-
ment features together yield the best results. When
margin = 2 the ratio true positive/true negative is
maximal. A maximum accuracy of 68%, however,
is reached for a much higher value of the mar-
gin, 17 frames, or 0.68 seconds. For comparison,
a baseline model always selecting non-movement
would reach an accuracy of 64%. Counts for true
and false movement and non-movement sequences
detected by the classifier are shown in Table (1).

Even though we can do better than the baseline,
the accuracy is still not adequate. Considering the
fact that the annotators who created the gold stan-
dard had access to the audio channel when they
identified the head movements, it is worth consid-
ering whether word features could be used to train
more sophisticated and accurate models.

4 Head movements and words

The relation between head movements and words
was investigated by looking at how different kinds
of words are distributed over sequences of move-
ment vs non-movements. We thus considered dis-
tributions where the word category includes only
real words, also filled pauses, only filled pauses
and feedback words, and finally only stressed
words. In all cases, we are only looking at the
speech stream of the person performing the move-
ment. The last two distributions show the least in-
teresting effects. Thus, feedback words have al-
most equal, and very low, probability to occur in
movement and non-movement sequences. In the

true false
words 0.58 0.46
no words (incl. filled pauses) 0.42 0.54
words (incl. filled pauses) 0.75 0.73
no words 0.25 0.27
filled pauses and fb words 0.07 0.05
other words and no words 0.93 0.95
stressed words 0.31 0.25
unstressed words and no words 0.69 0.75

Table 2: Proportions of different word and no word cate-
gories in true and false movement sequences

true false
words 0.36 0.57
no words (incl. filled pauses) 0.64 0.43
words (incl. filled pauses) 0.56 0.76
no words 0.44 0.24
filled pauses and fb words 0.04 0.04
other words and no words 0.96 0.96
stressed words 0.20 0.28
unstressed words and no words 0.80 0.72

Table 3: Proportions of different word and no word cate-
gories in true and false non-movement sequences

case of stressed words, we see that their probabil-
ity of occurring with movement is slightly higher
than with non movement (31% vs 20%). If we
look at the distribution of all words vs no words
including filled pauses, we see that words have a
58% probability of occurring with movement, as
opposed to a only 36% probability of occurring
with non-movement. Finally, if we take words in-
cluding filled pauses against no words, the proba-
bility of word occurrence with movement is 75%
vs 56% with non-movement. Thus, distinguishing
between real words and no words including filled
pauses has the potential to differentiate best be-
tween presence and absence of movement in that
we see that in this case the mutual proportion be-
tween word and no words goes in opposite direc-
tions depending on the sequence type. The dif-
ferences in the distribution in this case are signif-
icant on a chi-square test in both movement and
non-movement sequences. All the probabilities
are summed up in Tables (2) and (3) .

To conclude, we have presented an approach
where an SVM classifier is trained to recognise
movement sequences based on velocity, acceler-
ation, and jerk. A preliminary investigation of the
overlap between temporal sequences classified as
either movement or non-movement and the speech
stream of the person performing the gesture shows
that using word features may help increase the ac-
curacy of the model, which is now 68%.
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Informàtica Industrial

(CSIC-UPC)
Wide Eyes Technologies
arubio@iri.upc.edu

LongLong Yu
Wide Eyes Technologies

longyu@
wide-eyes.it

E. Simo-Serra
Waseda University

esimo@
aoni.waseda.jp

F. Moreno-Noguer
Institut de Robòtica i
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Abstract

Finding a product in the fashion world can
be a daunting task. Everyday, e-commerce
sites are updating with thousands of im-
ages and their associated metadata (tex-
tual information), deepening the problem.
In this paper, we leverage both the im-
ages and textual metadata and propose a
joint multi-modal embedding that maps
both the text and images into a common
latent space. Distances in the latent space
correspond to similarity between products,
allowing us to effectively perform retrieval
in this latent space. We compare against
existing approaches and show significant
improvements in retrieval tasks on a large-
scale e-commerce dataset.

1 Introduction

The level of traffic of modern e-commerce is
growing fast. U.S. retail e-commerce, for instance,
was expected to grow 16.6% on 2016 Christmas
holidays (after a 15.3% increase in 2014) (Wal-
ton, 2016). In order to adapt to these trend, sell-
ers must provide a good experience with easy to
find and well classified products. In this work,
we consider the problem of multi-modal retrieval,
in which a user searches for either text or images
given a text or image query. Existing approaches
for retrieval focus image-only and require hard to
obtain datasets for training (Hadi Kiapour et al.,
2015). Instead, we opt to leverage easily obtained
metadata for training our model, and learning a
mapping from text and images to a common latent
space, in which distances correspond to similarity.

We evaluate our approach in the retrieval
and classification tasks and it outperforms
KCCA (Bach and Jordan, 2002) and Bag-of-word
features on a large e-commerce dataset.

Figure 1: Example of a text and nearest images
from the test set. Our embedding produces low
distances between texts and images referring to
similar objects.

2 Method

Our joint multi-modal embedding approach con-
sists of a neural network with two branches: one
for image and one for text. The image branch
is based on the Alexnet (Krizhevsky et al., 2012)
Convolutional Neural Network (CNN) which con-
verts a 227×227 pixel image into a fixed-size 128-
dimensional vector. The text branch is based on
a multi-layer neural network and uses as an input
features extracted by a pre-trained word2vec net-
work which are converted into a fixed-size 128-
dimensional vector. Both branches are trained
jointly such that the 128-dimensional output space
becomes a joint embedding by minimizing the dis-
tance between related image-text pairs and maxi-
mizing the distance between unrelated image-text
pairs using the contrastive loss function (Hadsell
et al., 2006) shown in 1, where vI and vT are
two embedded vectors corresponding to the im-
age and the text respectively, y is a label that in-
dicates whether or not the two vectors are compat-
ible (y = 0) or dissimilar (y = 1), and m is a mar-
gin for the negatives. Two auxiliary classification
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Figure 2: Architecture of the neural network used. Conv, Pool and FC refer to convolutional, pooling
and fully connected layers, respectively. When sizes of two dimensions are equal, some of them are
omitted for clarity. Fully connected layers are uni-dimensional. Text descriptor and Image descriptor are
the embedded vectors describing the input text and image, respectively.

Table 1: Results of our method compared to
KCCA and our method using Bag of Words for text
representation.

Model Median rank
Img v. txt Txt v. img

KCCA 52.42% 46.65%
Bag of Words 4.50% 4.54%

word2vec 1.61% 1.63%

networks are also used during training that encour-
ages the joint embedding to also encode semantic
concepts. An overview can be seen in Fig. 2.

LC(vI , vT , y) = (1− y)
1
2

(‖vI − vT ‖2)2

+ (y)
1
2
{max (0, m− ‖vI − vT ‖2)}2

(1)

3 Results

Next, we describe the results obtained by apply-
ing our method to a Fashion e-commerce dataset
of 431, 841 images of fashion products with as-
sociated texts, classified in 32 categories (such
as boots, jewelry, skirt, shirt, dress, backpack,
swimwear, glasses/sunglasses, shorts, sandals,
etc.). In order to evaluate our method, we compute
all the 128-dimensional descriptors of images and

texts in the testing set. Then, use the text as queries
to obtain the images, and vice-versa. Looking at
the position at which the exact match is, we com-
pute the median rank for each case. The resultant
values are below 2%, meaning that the exact match
is usually closer than the 98% of the dataset, beat-
ing the result obtained by KCCA1 and by our same
architecture substituting the word2vec by a classi-
cal Bag of Words. We compare this metrics with
two baselines: a version of our method replacing
word2vec by Bag of Words and KCCA (see Ta-
ble 1. We also obtained a recall value of nearly
80% for the top 5%, meaning that 80% of times
the exact match for the input query is in the closest
5% results. At the same time, for the classification
task we obtain accuracy values of 90% for images
and 99% for texts with the word2vec approach.

4 Conclusions

We have presented an approach for joint multi-
modal embedding with neural networks with a fo-
cus on the fashion domain that is easily amenable
to large existing e-commerce datasets by exploit-
ing readily available images and their associated
metadata, and can be easily used for retrieval
tasks.

1The KCCA model has been trained with less descriptors
(only 10000) due to memory errors when trying to use the
whole training set
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