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Abstract

Negation cue detection involves identify-
ing the span inherently expressing nega-
tion in a negative sentence. In Chinese,
negative cue detection is complicated by
morphological proprieties of the language.
Previous work has shown that negative
cue detection in Chinese can benefit from
specific lexical and morphemic features,
as well as cross-lingual information. We
show here that they are not necessary: A
bi-directional LSTM can perform equally
well, with minimal feature engineering.
In particular, the use of a character-based
model allows us to capture characteristics
of negation cues in Chinese using word-
embedding information only. Not only
does our model performs on par with pre-
vious work, further error analysis clarifies
what problems remain to be addressed.

1 Introduction

Negation cue detection is the task of recogniz-
ing the tokens (words, multi-word units or mor-
phemes) inherently expressing negation. For in-
stance, the task in (1) is to detect the negation cue
“不(not)”, indicating that the clause as a whole is
negative.

(1) 所有住客均表示不不不会追究酒店的这次管
理失职
(All of guests said that they would not inves-
tigate the dereliction of hotel.)

Previous work has addressed this task in En-
glish as a prerequisite for detecting negation scope
(Fancellu et al., 2016; Cruz et al., 2015; Zou et al.,
2013; Velldal et al., 2012; Zhu et al., 2010). But
recently, the release of the CNeSp corpus (Zou et
al., 2015) allows allows the task to be addressed in

Chinese as well. Detecting negation cues in Chi-
nese texts is difficult because character cues can
be homographs of or contained within words not
expressing negation. For instance, “非常(very)”
and “未来(future)” are not negation cues, while
“非(not)” and “未(not)” are. Moreover, even ex-
pressions that contain a negation cue may not cor-
respond to clause-level negation, because the over-
all meaning of the expression is positive. This
can be observed in the expression “非要”, roughly
corresponding to the English expression “couldn’t
help but/had to” which contains the negation cue
“非”, but which carries a positive meaning where
the action indeed take place, as in:

(2) ...，到了后非非非要2 0 0元，...
...when we are arriving, they had to charge
200 yuan...

Finally, negation cues in Chinese are similar to
English affixal cues (e.g. ”insufficient”), where
they become integral part with the word they mod-
ify (e.g. 够(“sufficient”)→不够(“insufficient”)).
According to the CNeSp guidelines, both the
negation affix and the root it attaches to are con-
sidered as part of the cue. The high combinatory
power of negation affixes leads however to issues
of data sparsity. This is particularly relevant in
the context of the CNeSp corpus, given that about
12% of negation in the test set is not present in the
training set (Zou et al., 2015, p. 660).

Specifically, using the CNeSp corpus, Zou et
al. (2015) tried to automatically detect negation
cues using a sequential classifier trained on a vari-
ety of features, including lexical (word n-grams),
syntactic (PoS n-grams) and morphemic features
(whether a character has appeared in training data
as part of a cue). In addition, to address the
problem of affixal negation cues producing tokens
in the test set that did not appear in the training
set, Chinese-to-English word-alignment was also
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taken into account.
In contrast, the recent success of Neural Net-

work models for negation scope detection (Fan-
cellu et al., 2016) suggested investigating whether
a character-based recurrent model can perform on
par or better than this previous work. After de-
scribing our model in Section 2, we show in Sec-
tion 3.3 that a character-level representation with
no feature engineering is able to achieve similar
recall as models that use word-alignment informa-
tion, as well as other features, to tackle the prob-
lem of data sparsity. Compared to other sequence
classifiers however, we show that neural networks
tend to overpredict negation cues (thereby damag-
ing precision) and suffer from insufficient training
data.

2 The model

2.1 Input
We define a negative sentence as one that con-
tains at least one negation cue. Given a sen-
tence ch = ch1...ch|c|, we represent each character
chi ∈ ch as a d-dimensional character-embedding
vector che

i ∈ IRd.
We defineEvxd

ch as the character-embedding ma-
trix, where v is the vocabulary size. To represent a
character along with its surrounding context in ab-
sence of any word segmentation, the input to the
network is the concatenation of the current char-
acter chi with its neighboring characters in a fixed
window size 2*m+1. Our input instance will there-
fore be the concatenation of a given character plus
its m proceeding and m succeeding characters as
follows, che

i−m...ch
e
i−1; ch

e
i ; ch

e
i+1...ch

e
i+m.

2.2 BiLSTM Neural Network
The model we are going to use for this task is a
Bi-LSTM model. Similar to RNNs, these mod-
els are able to leverage long-distance relations to
predict whether a character is part of a negation
cue or not. LSTM have however the advantage of
better retaining information when backpropagat-
ing the error. On top of this, the bi-directionality
allows to process the input left-to-right and vicev-
ersa, allowing for the entire sentential context to
be taken in consideration at prediction time.

The inner computation of the LSTM network is
as follows:

it = sigmoid(Wixcht +Wihht−1 + bi)

ft = sigmoid(Wfxcht +Wfhht−1 + bf )

ot = sigmoid(Woxcht +Wohht−1 + bo)

ct = ft∗ct−1+it∗tanh(Wcxcht+Wchht−1+bc)

ht = ot ∗ tanh(ct)
where W are the weight matrices, it, ft, ot and ct
are the input, forget, output gate and cell state at
position t, b the bias vector and ht the hidden state
representation at time t. The prediction of label yt

is computed as:

yt = softmax(Why[h
forw
t ;hback

t ] + by) (1)

where Wyh is the output layer weight matrix
and [hforw

t ;hback
t ] the concatenation of the hidden

states as computed during the forward and back-
ward pass.

2.3 Transition Probability
Although the bi-LSTM keeps an internal memory
of the inputs previously visited, the predictions
made are independent from each other. For this
reason, we introduce a new joint model p(s|ch),
defined as:

p(s|ch) =
n∏

i=1

p(si|si−1, ch)

The only functional change to the original LSTM
model is the addition of a 4-parameter transition
matrix to create the dependence on si−1, enabling
the use of standard inference algorithms. This en-
ables us to train the model end-to-end.

3 Experiments

3.1 Data
We use the Chinese Negation and Speculation
(CNeSp) corpus (Zou et al., 2015) in our experi-
ments. It is divided into three sub-corpora: Prod-
uct reviews (below as product), Financial Articles
(financial) and Computer-related Articles (scien-
tific). (Corpus statistics appear in Table 1.) We
first train and test on each corpus separately. We
use a fixed 70%/15%/15% split of these in order
to define a fixed development set for error analy-
sis, but this setup precludes direct comparison to
with (Zou et al., 2015), since they used 10-fold
cross-validation. Nevertheless, we felt a data anal-
ysis was crucial to understanding these systems,
and we wanted a clear distinction between test (for
reporting results) and development (for analysis).
For completeness, we also show results on training
and testing when all corpora are joined together.
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Models Financial Article Product Review Scientific Literature All
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Baseline-Word 25.09 68.37 36.70 33.18 76.31 46.25 12.06 77.42 20.87 24.01 74.40 36.31
Baseline-Char 29.82 82.79 43.84 32.73 75.96 45.75 14.50 93.55 25.11 24.28 76.00 36.80
BiLSTM-char 61.94 71.16 66.23 78.93 87.46 82.98 64.71 35.48 45.83 69.08 84.00 75.81

+ Bigram 65.15 73.02 68.86 79.05 86.76 82.72 25.00 9.68 13.95 71.70 80.80 75.98
+ Transition 58.57 68.37 63.09 78.57 86.24 82.23 47.83 35.48 40.74 69.08 82.74 75.30

Table 2: Results on development set for each of the CNeSp subcorpora.

Models Financial Article Product Review Scientific Literature All
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Zou et al. (2015) 72.77 67.02 69.78 81.94 89.23 85.43 75.17 78.91 76.99 - - -
Baseline-Word 24.76 66.52 36.09 30.93 72.47 43.36 12.32 83.33 21.46 22.13 71.68 33.82
Baseline-Char 28.66 78.11 41.94 33.41 78.75 46.91 12.32 83.33 21.46 23.68 77.89 36.32
BiLSTM-char 62.92 64.81 63.85 85.02 91.99 88.37 20.83 16.67 18.52 70.50 82.24 75.92

+ Bigram 63.41 66.95 65.14 85.06 91.29 88.07 7.14 3.33 4.55 73.83 80.25 76.90
+ Transition 63.08 70.39 66.53 84.56 89.72 87.07 14.29 10.00 11.76 72.49 82.48 77.16

Table 3: Results on test set for each of the CNeSp subcorpora.

Sentence Number Cue Number
Financial 6550 1461
Product 4969 3914
Scientific 4626 171

Table 1: Details of the three CNeSp subcorpora.

3.2 Settings
We experimented with three different settings:

• Character (char.): the input is a single charac-
ter embedding, concatenated with the embed-
dings of its neighboring characters in a win-
dow size m.

• Character-bigram (bigram): the input is char-
acter bigram embedding obtained by the con-
catenation of the embeddings of two adjacent
characters. We concatenate a bigram embed-
ding with the embeddings of the neighbor-
ing character bigrams in a window size m.
This reflects the observation that most nega-
tion cues are bigrams.

• Transition: a transition-based component is
applied on top of the network (§2.3)

Our model is trained using stochastic gradient
descent with L2 regularization. Learning rate
is 0.01 with decay rate 0.95, m is 2 to yield a
window size of 5; character embedding dimension
and feature embedding dimension are both 100,
discount κ in margin loss is 0.2, and the hyper
parameter for the L2 is 0.000001.

Baseline. To understand the difficulty of cue
detection, we designed two naive baselines based

on a list of all negation cues contained in the train-
ing data: 1) Baseline-Word, where we classify as
negation cue a character or a span of characters if
it appears on the list, and 2) Baseline-Char, where
we first segment the test sentence1 and consider a
word as cue if it contains any element on the list.

3.3 Results

Results on the development and test sets are shown
in Tables 2 and 3 respectively. Both baselines
achieves low precision compared to a higher re-
call which indicates that the challenge of this task
lies in not overpredicting the negation cue span.
A comparison of our models shows that character
bigram information does not contribute to better
performance, nor does the transition based com-
ponent. Interpreting the poor performance on the
scientific set is however difficult since there are
only 171 cues in 4262 sentences, and only 12 in
the 463 test sentences, a sample too small to draw
any conclusion.

Table 3 also shows that neural network mod-
els with minimal feature engineering perform on
par or better than the highly engineered sequen-
tial model used by Zou et al. (2015). Their higher
recall show that they capture more negation cues,
which is important, given that the approach does
not use any cross-lingual alignment information to
deal with test cues not seen during training. Fi-
nally, the results of the scientific test set show the
same problem of small sample size as with the de-
velopment set.

1For the segmentation we used the NLPIR toolkit:
https://github.com/NLPIR-team/NLPIR
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4 Error Analysis

4.1 Financial articles

Most of the errors in the financial sub-corpus are
under-prediction errors. For instance, in the sen-
tence (3), our model predicts “不景” as the neg-
ative cue, which is the under-prediction of “不不不景景景
气气气”.

(3) ...,受经济不不不景景景气气气影响,...
(...,influenced by the economic depres-
sion,...)

In order to tackle this problem we carried out a
small experiment where we post-process the re-
sults. We first used the NLPIR toolkit to automati-
cally segment the sentence and if the detected cue
is part of a word, then the whole word is consid-
ered as cue. The under-prediction error shows that
the word segmentation information may be impor-
tant in negation cue detection. When we apply this
heuristic to the financial sub-corpus, we only no-
ticed however only a small improvement across all
measures as shown in Table 4.

Precision Recall F1
Original 65.15 73.02 68.86

Post Process 66.39 74.42 70.18

Table 4: Difference between before and after post
process in financial sub corpora

4.2 Product Review

Amongst the wrong predictions (121 in total) for
the Product Review corpus, there are 61 sentences
for which we predict more negative cues than gold
one. These errors concern the most frequent neg-
ative cues such as “不(not)” and “没(not)”. For
instance, as shown in (4), our best model predicts
“不(not)” as cue, which is different with the gold
one.

(4) 房间设施一般，网速不不不仅慢还经常断
网。
(The room facilities are common and the net-
work not only is slow but also often discon-
nect.)

These errors show that even expression that con-
tain a negation cue may not correspond to clause-
level negation. We also hypothesized that these
wrong predictions are due to the fact that our

model are not fed any explicit syntactic or seman-
tic information regarding the context of a given
character. Future work could explore the possibil-
ity of augmenting the input with extra information
such as part of speech tags.

5 Conclusions and Future Work

In the present paper we addressed the problem of
automatically detecting the negation cue in Chi-
nese. In particular, we investigated whether char-
acter - based neural networks are able to achieve
on par or better performance than previous highly
engineered sequence classifiers. Results confirm
that these models can be a valid alternative to pre-
vious ones, although still suffering from overgen-
erating the negation cue. In the process, we also
found that one of the corpora we tested with might
not be suitable to be used on its own, given the
lack of enough instances.

Given the positive results obtained for Chinese,
future work should focus in testing the method in
English as well.
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