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Abstract

We present the MultiScript Phonetic
Search algorithm to address the problem
of language learners looking up unfamil-
iar words that they heard. We apply it
to Arabic dictionary lookup with noisy
queries done using both the Arabic and
Roman scripts. Our algorithm is based on
a computational phonetic distance metric
that can be optionally machine learned. To
benchmark our performance, we created
the ArabScribe dataset, containing 10,000
noisy transcriptions of random Arabic dic-
tionary words. Our algorithm outperforms
Google Translate’s “did you mean" fea-
ture, as well as the Yamli smart Arabic
keyboard.

1 Introduction

The research effort reported here was motivated
by the experience of second-language learners of
Arabic who, upon hearing an unfamiliar word,
would repeatedly guess different spelling varia-
tions until they either give up or find a word that
made sense in the context. In the data we col-
lected, subjects were only able to spell an Ara-
bic word correctly 35% of the time. This diffi-
culty arises because many Arabic phones are dis-
tinguished from each other only by phonetic fea-
tures that often do not exist in the learner’s na-
tive language, such as pharyngealization. Fur-
thermore, for a variety of reasons, both learners
and native speakers often write Arabic words im-
precisely using a variety of Roman-script conven-
tions, such as Arabizi (Darwish, 2014), and this
presents a difficult problem for disambiguating the
intended word.

We address this problem with a novel algorithm
MultiScript Search for phonetic searching across

Target word: Õæ

	j 	��� (tDxym)

	á�
 	jJ.£ Õæ
jJ.£ Õæ

	jJ. �K 	á�
 	jJ. �K

(Tbxyn) (TbHym) (tbxym) (tbxyn)
thabheem Tat7iim tohpriim tawbheem
ta'95eem topk’chim takreem tabheem

Table 1: Example of the Arabic dictionary lookup
task for both Arabic and Roman script.

multiple orthographies, and apply it to performing
dictionary lookup of Arabic words from noisy user
inputs in both the Arabic and Roman scripts. The
task of dictionary lookup here is defined as a user
hearing a single word and typing their best guess
of how it sounds in a system that will look the
word up in a dictionary. An example of how users
searched for the word Õæ


	j 	��� (tDxym)1 ‘magnifi-
cation’ is given in Table 1.

Our phonetic search algorithm can be generally
applied to any language-script pair and does not
require training data. But, we also present a ma-
chine learning method to boost the performance of
our algorithm if training data is available. The al-
gorithm first performs mapping from user input to
phones, and then it searches in the dictionary for
words that have a low phonetic distance from the
query. We investigate a number of algorithms for
both the grapheme-to-phoneme mapping, and also
for calculating phonetic distance.

To benchmark our lookup accuracy, we created
the ArabScribe dataset, which is comprised of al-
most 10,000 transcriptions from 103 participants
with different degrees of knowledge of Arabic.
The participants heard random Arabic dictionary
words and transcribed them using either the En-
glish or Arabic keyboards (i.e., in Roman script

1Arabic transliteration is presented in the Habash-Soudi-
Buckwalter scheme (Habash et al., 2007).
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or in Arabic script). We benchmarked our system
against two widely used tools to look up unfamil-
iar Arabic words, Google Translate and the Yamli
Smart Arabic Keyboard. We show that we exceed
the performance of both tools.

The paper will proceed as follows. In Section 2
we discuss the related literature in transliteration,
spell correction and phonetic distance mapping. In
Section 3 we describe our high level algorithm and
the variations we tested. In Section 4 we describe
the ArabScribe dataset. Section 5 presents our
search recall results and our benchmark against the
Google and Yamli systems. In Section 6, we sum-
marize our findings and present a discussion on
potential future work.

2 Related Work

The principal contribution and distinction of our
work against previous work in the related areas
of transliteration and spelling correction is that we
are concerned with recovering from hearing errors
rather than errors arising from spelling or ambigu-
ous orthography. To our knowledge, there has not
been any empirical research into the accuracy of
the task of phonetic dictionary lookup of spoken
words.

Spelling Correction Within a single orthogra-
phy, a closely related problem is spellchecking.
Commonly used algorithms employ statistical and
edit-distance models over letters, phones or meta-
phone (Whitelaw et al., 2009; Kukich, 1992;
Damerau, 1964; Oflazer, 1996; Atkinson, 2005;
Philips, 1990; Toutanova and Moore, 2002). Our
algorithm is distinguished from these, in that we
are not only addressing the case where the user
doesn’t know how to spell the word, but the much
more challenging case where they have not heard
the sound correctly.

Whitelaw et al. (2009) describe the Google
spell check system which takes a statistical ap-
proach using massive unannotated web corpora.
Their dictionary of canonical terms contains the
most common tokens appearing online, and they
match misspelled words to their canonical form
using a combination of a language context and
Levenshtein edit distance. Then, they build a sta-
tistical model of how substrings change. Spelling
suggestions are scored as a function of the proba-
bility of the substring substitutions combined with
a language model. This statistical approach has
the advantage that it requires no formal language

definition, instead requiring a large amount of lin-
guistic data and computational resources. While
it is a very effective spell checker, it does not per-
form well on noisy user input of guessed spellings
of unfamiliar words as it is trained on web corpora
which are written by people who have a gener-
ally stronger command of the language and there-
fore errors are often due to typos rather than not
knowing how to spell the word. There is un-
fortunately no published material about the exact
method used by Google’s transliteration or Yamli
smart keyboard to map Roman-script input into
Arabic words.

In the context of spelling correction for Ara-
bic, there has been a large number of efforts and
resources (Shaalan et al., 2010; Alkanhal et al.,
2012; Eskander et al., 2013; Mohit et al., 2014;
Zaghouani et al., 2014) (among others).2 All of
these efforts focus on contextual spelling correc-
tion or conventionalization. In this work we con-
tribute a new data set, ArabScribe, that may be of
use in that area of research.

Transliteration Transliteration systems invari-
ably use either a direct mapping between sub-
strings in the two scripts (Al-Onaizan and Knight,
2002; AbdulJaleel and Larkey, 2003; El-Kahky et
al., 2011; Al-Badrashiny et al., 2014), or use an
intermediate script such as the International Pho-
netic Alphabet (IPA) (Brawer et al., 2010) or Dou-
ble Metaphones (Philips, 2000).

AbdulJaleel and Larkey (2003) proposed a sta-
tistical method for transliteration between Arabic
and English. It does statistical alignment of a cor-
pus of transliterated proper names, and produces
the probability of transliterations of short n-grams
between the two scripts. Then, input terms are seg-
mented into the available n-grams, and all possi-
ble transliterations are produced and scored based
on their joint probabilities. Habash (2009) used
an ambiguous mapping that utilized the sounds-
like indexing system Double Metaphones (Philips,
2000) combined with the direct mapping scores
defined by Freeman et al. (2006) to handle out-of-
vocabulary words in the context of Arabic-English
machine translation. Freeman et al. (2006) ex-
tended Levenshtein Edit Distance to allow for im-
proved matching of Arabic and English versions
of the same proper names. El-Kahky et al. (2011)
use graph reinforcement models to learn mapping

2For more information on Arabic natural language pro-
cessing, see Habash (2010).
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between characters in different scripts in the con-
text of transliteration mining.

Al-Badrashiny et al. (2014) present a similar
system where words are transcribed using a finite
state transducer constructed from an aligned par-
allel Arabizi-Arabic corpus. The disadvantage of
this and other learned methods (Ristad and Yiani-
los, 1998; Lin and Chen, 2002; Mangu and Brill,
1997; Jiampojamarn et al., 2009) is that they re-
quire aligned parallel corpora whereas our ap-
proach performs well without any data. We note
that training data for attempted dictionary lookup
of heard words is extremely scarce. Brawer et al.
(2010) present an automatic transliteration system
used to internationalize place names for Google
Maps. Their approach relies on hand crafting rule
sets, that map between orthographies and the IPA.
Their approach does not require any training data;
however, it requires expert knowledge of the writ-
ing system of different languages and is difficult
for languages like English, which do not have a
simple orthographic to phonetic mapping. How-
ever, it is advantageous because adding rules for
a single orthographic system allows translitera-
tion between all language pairs. As with the Ab-
dulJaleel system, this approach does not address
noisy information retrieval, where the target term
may be incorrectly heard or spelled.

Phonetic Similarity Models Several phonetic
similarity models have been discussed in the liter-
ature. In general, algorithms either directly com-
pare phonetic pairs, or make use of phonetic fea-
ture vectors. Our approach in this paper uses pho-
netic features vectors to compute phonetic similar-
ity.

Kuo et al. (2007) proposed a similarity model
between English and Mandarin Chinese using
phonetic confusion matrices. These are NxM ma-
trices, giving the similarity two phone sets of size
N and M. These similarities are generated statis-
tically, either through aligned transliterations that
have been converted to phones, or from errors pro-
duced in automatic speech recognition systems.
However, the size of these matrices grow quadrat-
ically with the size of the phone set, so can require
large amounts of training data.

Kondrak (2003) introduces an algorithm for
calculating phonetic distance using separate pho-
netic feature vectors for vowels and consonants,
with heuristic weights ascribed to each feature,
and then calculating the best alignment using

the Wagner-Fischer edit distance dynamic pro-
gramming algorithm (Wagner and Fischer, 1974).
There is a fixed cost for skipping a specific phone,
and otherwise a cost for substitutions of phones
proportionate to the difference in their weighted
feature vectors.

Sriram et al. (2004) present a generic method
for cross-linguistic search that shares the two
stage approach in this paper, with a grapheme-
to-phoneme model followed by matching in pho-
netic space with a distance metric. However, they
only describe a rule based grapheme-to-phoneme
system in abstract and do not present any sort
of performance evaluation for their algorithm.
Their search algorithm also requires the alignment
and calculation of phonetic distance of the query
against the entire database of search terms, which
can be prohibitively expensive for large query sets.

3 MultiScript Search Algorithm

Our algorithm operates in two stages. First, the
query term is converted from Arabic or Roman
script into several possible phone sequences using
several grapheme to phone conversion techniques.
Then we use a phonetic distance algorithm to do
search state enumeration based on a trie built from
a phonetic Arabic dictionary.

We test different variations of grapheme to
phone conversation techniques and phonetic dis-
tance metrics. For grapheme to phone conversion,
we investigate using a simple manually created fi-
nite state transducer, and using deep bi-directional
long short term recurrent neural networks. For
the phonetic distance metric, we investigate us-
ing simple Levenshtein edit distance, unweighted
phone feature vectors, and unweighted consonant
and vowel feature vectors. We also show a method
to train the system to produce weighted distance
costs for performance increase.

3.1 Grapheme to Phone Model

3.1.1 Finite State Transducer
We can define a very simple finite state trans-
ducer, which maps an orthographic input into a set
of one or more IPA string outputs. This FST is
compiled from a simple hand written list of rules
of many-to-many mapping between orthographic
substrings and single IPA phones. Creating such
a list only requires basic knowledge of the ortho-
graphic system of the script.

The Arabic script FST is relatively simple, with
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Figure 1: Overview of Phonetic Similarity Search algorithm

most consonants just mapping to a single IPA
output, but with one-to-many mappings for some
characters such as the long vowels. Our Arabic
FST contains all the rules described in Biadsy et
al. (2009).

The Roman script FST contains Arabizi-
specific heuristic mappings from one- or two-
character Roman-script strings into IPA found in
the Arabic language, e.g. gh mapping to /K/. It
also includes digits, such as 5 mapping to /x/ p
and 7 mapping to /è/ h. We also introduce the con-
straint that IPA phones that are repeated in the out-
put string are collapsed into a single phone, to deal
with doubled characters (i.e., H. A��J» ktAb /kutta:b/
‘authors’ is mapped to /kuta:b/).

3.1.2 BiLSTM Recurrent Neural Network
A common strategy for grapheme to phone map-
ping is to use recurrent neural networks trained
on parallel orthography to phonetic corpora. We
train a deep bidirectional long-short term memory
cells (LSTM), loosely based on the grapheme-to-
phoneme model presented by Rao et al. (2015).
Our RNN has two hidden layers, each containing
512 LSTM cells in both the forwards and back-
wards directions. We use the connectionist tempo-
ral classification cost (CTC) function to train the
network (Graves et al., 2006). The use of the CTC
cost function helps us avoid doing phone align-
ments between our parallel corpora. We decode
the neural net outputs using a beam search with
width 100, taking only the top 1 result.

We train on two different parallel corpora. The
first is the CMU pronouncing dictionary, a pho-

netic dictionary for English.3 We also train on
a hybrid corpus, which contains data from both
CMU dictionary and ArabScribe. We do not train
LSTM for Arabic orthography because there is
not enough variation in the mapping between the
script and the phonetic output to justify their use.

3.2 Search State Enumeration

Our goal is to find the words in the phonetic dic-
tionary with the lowest phonetic distance from
our query input encoded as phones. A naive ap-
proach would be to use the Wagner-Fischer dy-
namic programming algorithm to calculate the op-
timal alignment of insertions, deletions and sub-
stitutions, of our query against all terms in the dic-
tionary. However, the cost of this would be pro-
hibitive. Instead, we dynamically search for the
most phonetically similar words by maintaining a
set of search states against a phonetic trie contain-
ing our dictionary. An overview of the approach is
in Figure 1.

We first build a trie containing the phonetic rep-
resentation of all words in the Arabic dictionary.
We use the IPA as our phone set. For our dic-
tionary, we use fully diacritized lemmas from the
Buckwalter Morphological Analyzer (Buckwalter,
2004). We convert the fully diacritized Arabic into
phones using the simple rule based method pro-
posed in Biadsy et al. (2009). We store all these
terms in a trie data structure, where each node op-
tionally contains a set of words for which it is the
terminating node.

3http://www.speech.cs.cmu.edu/cgi-bin/
cmudict
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Given a user input, we convert it into one or
more phone strings, using one of our grapheme
to phone algorithms. For each of these phone
strings, we initialize a 4-tuple search state
(queryString, queryIndex, trieNode, cost)
which represent the IPA encoded query, the
index of the current phone in that string that is
being consumed, the current node in the trie and
the accumulated cost. For the initial search on
"qamuus" (Arabic for ‘dictionary’), one such
four-tuple might be: (kamus, 0, root, 0).

We then do search state enumeration until we
discover N final search states which are our re-
sults for a TopN search. The search state enumer-
ation process is illustrated in Figure 2. We define a
function Transition, that takes our search state s,
and returns a set S′ of zero or more search states.
Transition allows the search state to accept a sin-
gle insertion, deletion, or substitution edit as in the
Wagner-Fischer algorithm (Wagner and Fischer,
1974). The exact cost increase of each new search
state s depends on the phonetic distance algorithm
that we select.

Transition(s) = S′

S′ = Ins(s) ∪Del(s) ∪ Sub(s)
s′.cost ≥ s.cost ∀s′ ∈ S′

Ins(s) = { s′ |s′.tNode ∈ s.tNode.children }
Del(s) = { s′ |s′.qIndex = s.qIndex + 1 }
Sub(s) = { s′ |s′.qIndex = s.qIndex + 1 ∧

s′.tNode ∈ s.tNode.children }

We are looking for the words with the lowest
phonetic distance overall, or equivalently, the low-
est cost paths to final search states. A search state
is considered final if we have consumed all char-
acters in our query, and our resulting trie node is
the end of a dictionary word. These conditions can
be expressed as:

isF inal(s) =(s.qIndex == len(s.qString)
∧ s.tNode.word 6= NULL)

An optimization we use to prevent enumerating
the entire tree is using a min-heap, containing all
the search states we have seen. We always pop
the minimum search state, and therefore are guar-
anteed to traverse the global set of search states
in cost order. For searching a query that fully

matches a dictionary word, the number of transi-
tions to discover the first word is equal exactly to
the number of characters in the phonetic represen-
tation of that word.

If we use a Fibonacci heap as our min-heap,
the worst case complexity of this algorithm is
O(ldqlog(dl)), where d is the length of the longest
phonetic string in our dictionary, and l is the num-
ber of phones in our alphabet, and q is the length
of the query, considering a complete Trie. How-
ever, as this algorithm discovers search states in
cost order, in practice it is quite fast and does not
need to enumerate many states before termination.
It is also practical to implement a cost ceiling, af-
ter which transitions no longer need occur as you
are too phonetically distant to have meaningful re-
sults. In this case, the phonetic search can be guar-
anteed to always terminate in a reasonable time.

3.3 Phonetic Distance Metric

We present below three strategies for defining the
cost of insertion, deletion and substitution edits.

3.3.1 Levenshtein Distance

We investigate a naive approach where the cost of
all insertion, deletion and substitution operations
has a cost of 1. Thus, we find results that have
low edit distance to our query. This approach is
widely used in applications such as conventional
spell correction, transliteration similarity and mu-
sic information retrieval (Freeman et al., 2006;
Toussaint and Oh, 2016).

3.3.2 Phone Binary Feature Vector

Again we define the cost of insertion and dele-
tion edits to be 1. We represent phones using a
21-valued binary feature vector based on the Pan-
phon package (Mortensen, 2016). Each feature is
assigned either a value of + positive, - negative,
or 0 as not relevant. The cost of substitution is
then simply the distance between the two phones,
which is calculated by sum the weights of the rele-
vant non-zero features divided by the total weight
of all features that are relevant in at least one of the
two phones. For the untrained version, the weight
of all features is equal to 1.
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Figure 2: Search State Enumeration

D(p, q) =

∑
i

WiI(pi, qi)R(pi, qi)∑
i

WiR(pi, qi)

I(x, y) =

{
1, ifx == y

0, otherwise

R(x, y) =

{
1, if (x! = 0 ∨ y! = 0)
0, otherwise

Because we divide by the sum of all relevant
weights, the output of our distance function is al-
ways in the range of [0, 1], with D(x, x) = 0. To
improve performance, we introduce two language
specific rules. For Roman-script inputs, substi-
tutions between consonants and vowels are disal-
lowed; and for Arabic-script inputs, vowel inser-
tions are free, as Arabic is usually written without
short vowel diacritics.

3.3.3 Machine Learned Weights
A machine learning method is introduced to im-
prove the accuracy of phonetic search by fine tun-
ing the weights associated with inserting, deleting
and substituting phones on a corpus of transcrip-
tions. Each discrete phone p is given insertion and
deletion costs in the range [0, 10], while substitu-
tions are given the range [0, 1]. The higher range
for insertions and deletions is to allow insertion
and deletion errors to take a higher cost than sub-

stitutions; this prevents our algorithm from enu-
merating over many unlikely insertion and dele-
tions. A weight Wi is also assigned to each phone
feature, but our distance function D(p, q) still pro-
duces costs in the range [0, 1]. The weights are
trained such that the phonetic distance between a
given transcription and the actual word is mini-
mized relative to the phonetic distances between
the transcription and all other words in the train-
ing set.

We define an edit vector ~Et,w between a tran-
scription t and a word w as the sum of all edits
required in the shortest path between the phonetic
representations of t and w as calculated by the
Wagner-Fischer algorithm (Wagner and Fischer,
1974). We define an arbitrary but fixed ordering on
our set of phones P and on our phone features F .
Thus the first 2|P | indices of ~E represent the num-
ber of inserts and deletions on specific phones, and
the last |F | indices represent the number of times a
specific feature was different between two phones.

We construct an edit matrix for each transcrip-
tion Mt, where the first row M0

t is the edit vector
between the transcription and the target word, fol-
lowed by the edit vectors between the transcription
and all other words in our training set. For Arab-
Scribe, we use 41 phones and 21 phone features
so the dimension of ~E is 2(41) + 21 = 103. Our
training set contains 400 words, so our edit matrix
has dimensions (400, 103).
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To train, we initialize three weight variable vec-
tors for insertion ~Wi, deletion ~Wd and substitution
~Ws of length |P |, |P | and |F |, respectively. We
make a concatenated projected weight vector as
follows:

~Wproj = concatenate(10 · sigmoid(Wi),
10 · sigmoid(Wd),

W 2
s∑

i
W i

s
2 )

This makes ~Wproj align with ~E element-wise. We
do the sigmoid and division by squared sum op-
erations in order to force the cost of edits into the
ranges we specified above. Finally we define the
cost function for a given transcription t as:

Ct = exp(D ·
~Et,w · ~Wproj

Mt
~Wproj

)− 1

Where D is a scaling factor hyper-parameter that
punishes higher costs much more than lower costs,
therefore forcing the training to improve the more
difficult cases rather than over-optimizing the easy
cases. The optimal value is dependent on the data
size but we found D = 500 worked well for the
ArabScribe training set. Note Ct = 0 when t is a
perfect transcription.

We do batch gradient descent with early stop at
the point test performance drops. In our case, the
entire ArabScribe training set could fit in memory,
but for larger training sets stochastic gradient de-
scent is recommended.

4 The ArabScribe Dataset

In order to benchmark the performance of our al-
gorithms, and to provide training data for the bidi-
rectional LSTM and trained weight vectors, we
created the ArabScribe dataset of Arabic transcrip-
tions. This dataset is freely available for research
purposes.4

We randomly selected 500 MSA lemmas (the
words) from the list of lemmas in our dictionary,
the Buckwalter Arabic Morphological Analyzer
(BAMA) (Buckwalter, 2004). BAMA contains
36,918 lemmas total. Five native speakers were
recorded slowly and clearly speaking 100 words
each, covering all 500 entries. Then, 103 partic-
ipants listened to up to 100 words each. Each

4ArabScribe can be downloaded from http://camel.
abudhabi.nyu.edu/resources/.

No Experience 26
0-1 years of Arabic education 45
1-2 years of Arabic education 14
2+ years of Arabic education 6
Heritage speaker 3
Native speaker 9
Total 103

Table 2: ArabScribe participant skill levels

Arabic Script Roman Script
Train 654 1342
Test 2,580 5,357
Total 3,234 6,699

Table 3: ArabScribe transcription types

participant was assigned either the "English key-
board" (with digits and common punctuation) or
sometimes the "Arabic keyboard" (without diacrit-
ics) if they reported that they could type Arabic.
They were required to transcribe each word they
heard in a way that was most natural to them. We
collected 3,234 transcriptions with the Arabic key-
board (Arabic script) and 6,699 transcriptions with
the English keyboard (Roman Script).

We collected native language and Arabic skill
level of each participant were also collected. The
skill levels are:

1. No Arabic experience

2. 0-1 years of Arabic education

3. 1-2 years of Arabic education

4. 2+ years of Arabic education

5. Heritage speaker (some Arabic exposure
from family background but not fluent)

6. Native speaker

We tried to balance the dataset for having all
words transcribed by an equal number of partici-
pants at all skill levels with both the Arabic and
English keyboards. The transcriptions were also
divided into a 20% testing set comprised of 100
words, and a 80% training set comprised of the
other 400 words. Table 2 gives the the breakdown
of the range of Arabic skill levels of the partic-
ipants in our experiment; and Table 3 gives the
breakdown of the number of samples in the train
and test sets.
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Script Grapheme-to-Phone Distance Metric Top 1 Top 10
Roman EngLSTM Levenshtein 19.6% 21.3%
Roman HybridLSTM Levenshtein 20.5% 22.3%
Roman EngLSTM MultiScript Untrained 19.9% 37.1%
Roman HybridLSTM MultiScript Untrained 21.4% 36.8%
Roman FST Levenshtein 43.6% 49.1%
Roman FST MultiScript Untrained 36.8% 53.3%
Roman FST MultiScript Trained 46.0% 60.7%
Arabic - Exact Match 34.9% -
Arabic FST Levenshtein 54.7% 57.3%
Arabic FST MultiScript Untrained 54.4% 65.4%
Arabic FST MultiScript Trained 55.0% 69.0%

Table 4: Recall rates for different methods in TopN dictionary lookup

5 Experimental Results

To benchmark our phonetic search algorithm, we
search against each transcription from our test set
against the Arabic dictionary of all terms from
BAMA. We then look for the correct word in the
top 1 and top 10 results returned. We varied the
grapheme-to-phone technique and distance met-
ric, and performed the test on both the Roman and
Arabic script data. For grapheme-to-phone tech-
niques, we used the finite state transducers (FST)
for Arabic and Roman scripts. We also trained a
BiLSTM for Roman script only on either the En-
glish dictionary (EngLSTM) or a mix of the En-
glish dictionary and the ArabScribe training set
(HybridLSTM). For the distance metrics, we used
the Levenshtein distance metric, and the untrained
and trained varieties of the MultiScript algorithm.
The full results are listed in Table 4. Our Baseline
techniques are exact matching for Arabic Script
and searching using the FST with a Levenshtein
edit distance (Damerau, 1964) for Roman Script.
In general the LSTM based techniques performed
poorly compared to the FST techniques. Multi-
Script without training was similar in performance
to the Levenshtein distance metric. However, us-
ing a FST with trained MultiScript Search was the
best performer for both Roman and Arabic Script.
The top performing algorithms identified the tar-
get word within the top 10 results for 69.0% of
cases with Arabic script, and 60.7% of cases with
Roman script.

FSTs likely outperformed BiLSTMs because
the English LSTM is not capable of producing any
phones in the Arabic phone set, and it also cannot
recognize Arabizi special symbols such as punc-

tuation and digits. Training with some samples
from ArabScribe slightly boosted the LSTM per-
formance, but we hypothesize that the very small
size of this training set made it ineffective. How-
ever, a disadvantage of the FST approach, is that
it was tailored for the English-Arabic mapping,
and would not generalize well to searching against
other language pairs.

We found that for both Arabic and Roman script
inputs, the accuracy of the algorithm is much
higher for participants with more experience. This
is likely because they can hear the sounds more
accurately and also because they recognize more
of the words in the test set. Our recall rate for
advanced learners (2+ years of Arabic education)
was 87% for Arabic script input and 78.5% for Ro-
man script input. This search accuracy is in fact
slightly higher than what native speakers scored
which was 85.4% and 77.8% for Arabic and Ro-
man script, respectively. Users with Arabic expe-
rience found their desired word in the top 10 sig-
nificantly more often than beginner learners (0-1
years experience), whose recall rates were only
56.1% for Arabic script and 55.7% for Roman
script. The full recall rates of FST+MultiScript
search can be found in Table 5.

The instances in which MultiScript failed to
match were often because the user thoroughly mis-
heard the sound, or that there were too many real
Arabic words similar to the target word which all
were matched with low phonetic distance scores.
Some errors also arose due to our FST not being
complex enough to account for all the different
ways people write the sounds they hear.
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Arabic Experience Roman Arabic
Native Speaker 68.1% 84.4%
Heritage Speaker 63.3% No Data
Advanced (2+ years) 70.8% 87.2%
Intermediate (1-2 years) 53.3% 69.0%
Beginner (0-1 years) 55.7% 56.1%
No Experience 44.9% N/A

Table 5: Top 10 recall rates at different skill levels
for FST + MultiScript trained search.

Method Recall
Google Translate Roman Top 1 21.5%
MultiScript Roman Top 1 46.0%
Yamli Roman Top 10+ 44.5%
MultiScript Roman Top 10 60.7%
Google Translate Arabic Top 1 9.4%
MultiScript Arabic Top 1 31.0%

Table 6: Benchmarking against Google Translate
and Yamli on non-exact dictionary matches.

Benchmarking against Google and Yamli
Two popular tools that are commonly used by stu-
dents of Arabic to look up unfamiliar words are
Google Translate5, through the “did you mean fea-
ture", and the Yamli Smart Arabic Keyboard6. We
recognize that this comparison is not entirely fair
as these tools target a much larger problem do-
main. However, we do this comparison as these
are the tools most commonly used by students to
address this unfamiliar word lookup problem.

Google Translate sometimes offers a single cor-
rection for non-dictionary word inputs, so we
compare it to MultiScript top 1. For Arabic script
inputs, 35% of the inputs were spelled exactly
correctly, so we only measure rates of recovery
from spelling errors rather than the rate of finding
the correct word. The Yamli smart keyboard is a
transliteration system where users can type Arabic
using Roman letters, and it can return more than
10 suggestions per typed word, so we benchmark
it against MultiScript top 10.

The results of this comparative benchmark are
presented in Table 6. We significantly out-
performed both Google Translate and Yamli in this
specific dictionary lookup task for both Arabic and
Roman scripts.

5https://translate.google.com/
6http://www.yamli.com/arabic-keyboard/

6 Conclusion and Future Work

We have demonstrated a novel algorithm for per-
forming an efficient phonetic search against a large
Arabic dictionary using both the Roman and Ara-
bic scripts. We have also introduced the Arab-
Scribe dataset containing around 10,000 transcrip-
tion attempts of Arabic words in Roman and Ara-
bic scripts. A comparative benchmark shows that
our best setup significantly improves on the widely
used Google Translate "did you mean" feature, as
well as the Yamli Arabic smart keyboard.

Though our work was done for Arabic only, the
only language specific methods involved were the
finite state transducer rules and the system could
easily be extended to other languages and or-
thographies. Other extensions of this work would
be to apply these phonetic search algorithms in
targeted information retrieval for one or more or-
thographies. For example, it could be applied
in searching for names of people on Wikipedia,
or names of places in a mapping application. It
would also be interesting to see how the perfor-
mance of the system improves with much larger
scales of training data, and if using multivalued
phone features would improve the distance metric.
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