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Abstract

Discriminating between Similar Lan-
guages (DSL) is a challenging task
addressed at the VarDial Workshop series.
We report on our participation in the
DSL shared task with a two-stage system.
In the first stage, character n-grams are
used to separate language groups, then
specialized classifiers distinguish similar
language varieties. We have conducted
experiments with three system configura-
tions and submitted one run for each. Our
main approach is a word-level convolu-
tional neural network (CNN) that learns
task-specific vectors with minimal text
preprocessing. We also experiment with
multi-layer perceptron (MLP) networks
and another hybrid configuration. Our
best run achieved an accuracy of 90.76%,
ranking 8th among 11 participants and
getting very close to the system that
ranked first (less than 2 points). Even
though the CNN model could not achieve
the best results, it still makes a viable ap-
proach to discriminating between similar
languages.

1 Introduction

Language identification is the task of detecting the
language of a given text segment. Although meth-
ods that are able to achieve an accuracy of over
99% for clearly distinct languages like English
and Spanish do exist (Dunning, 1994), it is still a
major problem to distinguish between closely re-
lated languages, like Bosnian and Croatian, and
language varieties, like Brazilian and European
Portuguese (Goutte et al., 2016). The problem of
discriminating between similar languages was ad-
dressed in the DSL shared task at VarDial 2017. In

DSL 2017, participants were asked to develop sys-
tems that could distinguish between 14 language
varieties, distributed over 6 language groups. Two
participation tracks were available: closed and
open training. In closed track, systems should
be trained exclusively in the DSL Corpus Collec-
tion (Tan et al., 2014), provided by the organiz-
ers (see Section 3), while in open training the use
of external resources was allowed. For a detailed
description of the VarDial workshop and of DSL
2017, refer to the shared task report (Zampieri et
al., 2017).

This paper describes our system and the results
of our submissions for closed track at DSL 2017.
Our goal was to experiment with deep neural net-
works in language variety distinction, in partic-
ular word-level Convolutional Neural Networks
(CNN). This kind of network has been success-
fully applied to several natural language process-
ing tasks, such as text classification (Kim, 2014)
and question answering (Severyn and Moschitti,
2015; Wang et al., 2016).

Like other participants did in previous editions
of the DSL shared task (Zampieri et al., 2015), we
chose to use two-stage classification. First, each
sentence gets a group label, that guides the selec-
tion of a model especially trained for that group.
Then, it goes through a classifier that predicts the
final language variety. We experimented with dif-
ferent machine learning techniques for variety pre-
diction while the language group classifier was
kept the same. This allowed us to compare, not
only the overall accuracy of each classifier, but
also its accuracy within each language group.

To distinguish between language groups, the ef-
ficiency of character n-grams was leveraged (Vata-
nen et al., 2010), while three configurations had
their performances comparared for language vari-
ety prediction. One run was submitted for each of
the following configurations: (a) run1: a word-

124



level CNN that learns word vectors from scratch;
(b) run2: a multi-layer perceptron (MLP) fed
by tf-idf vectors of word n-grams, and (c) run3:
a hybrid configuration composed by word-level
MLP models and character-level Naive Bayes
models. Our best run (run3) was positioned 8th
among 11 participants, with 90.76% of accuracy
in the test set and with a difference of 1.98 per-
centage points from the first system in the rank.

Although our word-level CNN did not outper-
form the other two configurations, it scored very
close to our best run. We also found that combi-
nations of unigrams and bigrams produce higher
scores than unigrams alone. This was observed in
both convolutional networks and multi-layer per-
ceptron networks.

2 Related Work

Many approaches to discriminating between sim-
ilar languages have been attempted in previous
DSL shared tasks, and best results were achieved
by simpler machine learning methods like SVMs
and Logistic Regression (Malmasi et al., 2016).
However, since deep neural networks have been
successfully applied to many NLP tasks such as
question answering (Severyn and Moschitti, 2015;
Santos et al., 2015; Rao et al., 2016), we wanted
to experiment with similar network architectures,
particularly CNNs, in the task of discriminating
between similar languages.

In the last shared task (DSL 2016), four teams
used some form of convolutional neural network.
The team mitsls (Belinkov and Glass, 2016) de-
veloped a character-level CNN, meaning that each
sentence character was embedded in vector space.
Their system ranked 6th out of seven rank posi-
tions, with 0.830 of overall accuracy, while the 1st
system scored 0.894 using SVMs and character n-
grams.

Cianflone and Kosseim (2016) used a character-
level convolutional network with a bidirectional
long short term memory (BiLSTM) layer. This ap-
proach achieved accuracy of 0.785.

A similar approach was used by the team Res-
Ident (Bjerva, 2016). They developed a residual
network (a CNN combined with recurrent units)
and represented sentences at byte-level, arguing
that UTF-8 encodes non-ascii symbols with more
than one byte, which potentially allows for more
disambiguating power. This system achieved ac-
curacy of 0.849. The fourth team used a word-

level CNN (Malmasi et al., 2016), but details are
not available since a paper was not submitted.

In DSL 2015, Franco-Salvador et al. (2015)
used logistic regression and SVM models fed
by pre-trained distributed vectors. Two strate-
gies were explored for sentence representation:
sentences represented as an average of its word
vectors trained by word2vec (Mikolov et al.,
2013), and sentences represented directly as vec-
tors trained by Paragraph Vector (Le and Mikolov,
2014). This system ranked 7th out of 9 partici-
pants.

Collobert et al. (2011) propose avoiding task-
specific engineering by learning features during
model training. In that work, several NLP tasks
were used as benchmarks to measure the rele-
vance of the internal representations discovered by
the learning procedure. One of these benchmarks
used a convolutional layer to produce local fea-
tures around each word in a sentence.

We intended to experiment with learning word
vectors in the target task, in an approach similar
to that of Collobert et al. (2011). We are partic-
ulary interested in local features captured by con-
volutional networks. We believe these networks
can learn words and language constructions com-
monly used in particular language varieties.

3 Data

Since we participated in the closed track, all mod-
els were trained and tested in the DSL Corpus Col-
lection (Tan et al., 2014), provided by the organiz-
ers. This corpus was composed by merging dif-
ferent corpora subsets, for the purpose of the DSL
shared task, and comprises news data of various
language varieties.

New versions of the DSL Corpus Collection
(DSLCC) are build upon lessons learned by the
organizers. Thus, an overview of the version used
in DSL 2017 is provided in Table 1. It encom-
passes 14 language varieties distributed over 6 lan-
guage groups. Since its first release, the DSLCC
contains 18,000 training sentences, 2,000 develop-
ment sentences and 1,000 test sentences for each
language variety; each sentence contains at least
20 tokens (Tan et al., 2014).

4 Methodology

Three system configurations were experimented,
and one run was submitted for each. We use two-
stage classification, and apply different machine

125



Figure 1: Architecture of the convolutional neural network.

Group Language/Variety Code

A
Bosnian bs
Croatian hr
Serbian sr

B
Indonesian id
Malay my

C
Persian fa-IR
Dari fa-AF

D
Canadian French fr-CA
Hexagonal French fr-FR

E
Brazilian Portuguese pt-BR
European Portuguese pt-PT

F
Argentine Spanish es-AR
Peninsular Spanish es-ES
Peruvian Spanish es-PE

Table 1: Language groups and language varieties
contained in DSL Corpus Collection provided for
DSL 2017.

learning techniques to train one classifier per lan-
guage group in each configuration.

Our pipeline starts with language group predic-
tion. After getting a group label, each sentence is
forwarded to the corresponding variety classifier.
In all configurations, the group classifier was kept
fixed.

Character n-grams are used to train a Naive
Bayes classifier1 that distinguishes between lan-
guage groups. Before training, language codes
are replaced with the respective group code (bs,
hr, or sr becomes A, for example), sentences are
tokenized, and each token gets an end mark ($).
Tokens are defined as character segments delim-
ited by whitespaces. Better results were achieved
in the development set when letter case was kept
original, so it was not changed. Named entities
were not changed either. We found 5 to be the best
size for n-grams, with accuracy of 0.9981 in the

1We use scikit-learn multinomial Naive Bayes.

development set. Values greater than 5 also give
good results, but training is much slower.

In the first system configuration, language vari-
eties are classified using convolutional neural net-
works. This is our main approach.

4.1 Convolutional Neural Network
The model, shown in Figure 1, is similar to one
of the architectures experimented by Kim (2014).
It takes raw sentences as input and generates class
probabilities as output. The highest probability is
selected as the predicted class.

Let s = {w1, w2, w3, . . . , wL} be a sentence of
fixed length L. Each word wj must be mapped
to a row vector xj ∈ Rd embedded in matrix
W|V |+1×d, where |V | is the number of distinct
words in the language group. Rows in W follow
the same order as words in the vocabulary, so that
the i-th row in W represents the vector of the i-
th word in the vocabulary V . Words are mapped
to vectors by looking up their corresponding in-
dexes in W (embedding lookup). Words that are
not found in the vocabulary V are skipped.

Matrix SL×d represents the sentence s and is
obtained by concatenation of word vectors xj . No-
tice that W has |V | + 1 rows. The first row cor-
responds to a special token PAD, used to fill up
sentences shorter than L.

Convolution filters are slided over S to gener-
ate intermediate feature vectors known as feature
maps. Filters are always of width d, but there may
be different filter lengths and multiple filters of
each length.

Formally, each feature ci in a feature map c is
computed as

ci = f(w · Si:i+h−1 + b) (1)

where w ∈ Rh×d is a convolution filter, b ∈ R is a
bias term, f(·) is a non-linear function such as the
hyperbolic tangent, and h is the filter length.
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The convolution of 3 filters of length 2 is repre-
sented in Figure 1. Each filter generates one fea-
ture map.

Max-over-time pooling is applied to each fea-
ture map c to take the maximum value ĉ =
max(c). Those pooled values are concatenated to
form a final feature vector that is fed to a fully-
connected layer followed by softmax. For regular-
ization, dropout is applied to the fully-connected
layer. The final output is a probability distribution
over the class labels.

4.1.1 Model Training
To train the model, sentences are tokenized and all
digits (0-9) are replaced with zeros. Letter case
is not changed. Tokens are delimited by whites-
paces, but no end marker is appended to them.
Maximum sentence length L is set to 80, since the
longest sentence found in the training set had 77
tokens.

One model is trained for each language group.
The vocabulary V is the set of unique tokens found
in the training set for the current group. Vocabu-
lary sizes are shown in in Table 2.

Group Languages # of tokens
A bs, hr, sr 175,665
B id, my 74,654
C fa-AF, fa-IR 38,145
D fr-CA, fr-FR 66,891
E pt-BR, pt-PT 72,694
F es-AR, es-ES, es-PE 92,062

Table 2: Vocabulary size for each language group.

Word vectors (matrix W ) are initialized ran-
domly and updated by backpropagation along with
other network weights. Since we intend to mini-
mize the dependence of our model on external re-
sources, that may not be readily available for spe-
cific languages, the use of pre-trained word em-
beddings is entirely avoided.

The model hyperparameters are: vector dimen-
sion d = 200, filters of lengths (h) 1 and 2
with 100 feature maps each, hyperbolic tangent for
non-linearity, drop-rate of 0.20 (or keeping prob-
ability of 0.80) for dropout, and shuffled mini-
batches of size 50. Parameter values were found
by grid search on the development set. All mod-
els are trained for 3 epochs, using Adam opti-
mizer (Kingma and Ba, 2014) to minimize the
cross-entropy, without early stopping. We use

TensorFlow (Abadi et al., 2016) for implementa-
tion.

Group Code Precision Recall F1

A
bs 0.74 0.72 0.73
hr 0.83 0.84 0.84
sr 0.85 0.88 0.86

B
id 0.98 0.97 0.97
my 0.97 0.98 0.98

C
fa-ir 0.95 0.94 0.95
fa-af 0.94 0.95 0.95

D
fr-ca 0.89 0.91 0.90
fr-fr 0.90 0.89 0.89

E
pt-br 0.93 0.91 0.92
pt-pt 0.91 0.93 0.92

F
es-ar 0.85 0.80 0.82
es-es 0.85 0.84 0.85
es-pe 0.82 0.88 0.85

Table 3: Performance of run1 (CNN) in each lan-
guage variety.

4.2 Multi-Layer Perceptron

A vanilla Multi-Layer Perceptron2 (MLP) was
used to compare the CNN performance with that
of another neural model.

In this approach, one classifier is trained for
each language group, just as before. Sentences
are represented as bag of word n-grams structured
as high-dimensional tf-idf vectors. To make n-
grams comparable to filters in the CNN models,
they are extracted from sentences in sizes of 1 and
2 words (unigrams and bigrams). Letter case is not
changed and no transformation is done on digits.

The model has a hidden layer of size 30 and
each language variety corresponds to one unit in
the output layer. The activation function is hyper-
bolic tangent. Models are trained for 10 epochs
without early stopping by stochastic gradient de-
scent with mini-batches of 200 examples. Opti-
mization is carried out by having Adam optimizer
to minimize the cross entropy.

4.3 Hybrid System Configuration

Considering the lower performance of both previ-
ous configurations in group A, relatively to other
groups, we came up with a hybrid system configu-
ration in which all language varieties are predicted
by MLP classifiers, except for group A. For that

2We use the MLP classifier implemented in scikit-learn.
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group, a standard character n-gram model is ap-
plied. It is exactly the model described in Sec-
tion 4 as the first component of our pipeline.

This change caused little impact on perfor-
mance, as discussed later in Section 6.

5 Results

Table 3 shows the performance of our convolu-
tional neural network (run1) in each language va-
riety, while Table 4 shows the corresponding con-
fusion matrix. In Table 4, the horizontal axis in-
dicates predicted labels, while true labels are in-
dicated on the vertical axis. For example, it can
be understood that 28 hr sentences were wrongly
predicted as sr. For fine grained results, we opted
to report on our main approach (CNN) instead of
reporting on our best performing system.

The overall results of our three submitted runs,
along with a random baseline, are summarized on
Table 5. The result of the best performing sys-
tem is also reported, and an extra column was ap-
pended to the table to report on development set
accuracy. Our best run (run3) ranked 8th out
of 11 participants according to the official eval-
uation. It achieved an accuracy of 0.9076, with
a small difference of 0.0198 percentage points to
the best system. Our deep neural network (run1)
achieved an accuracy of 0.8878, indicating that the
CNN scored close to our best run, but could not
outperform it. Accuracy values computed on the
development set behave similarly to that of the of-
ficial evaluation.

The result of a traditional single-stage charac-
ter n-gram model is also reported in Table 5 as a
baseline for the development set. This is the Naive
Bayes model described in Section 4, used to distin-
guish between language groups, but trained over
all 14 language varieties.

6 Discussion

Although we focus on results of our main ap-
proach, all three runs behaved similarly. We can
see in Table 4 that the confusion between language
groups is minimal. This is due to the two-stage
architecture that separates sentences in groups be-
fore discriminating between varieties.

The group classifier performs its task almost
perfectly. In the development set, the group clas-
sifier achieved accuracy of 99.81%. We have con-
ducted an error analysis by sampling misclassi-
fied sentences, and found that most of them really

seems to belong to the predicted language group.
In the following example, the classifier predicted
group D (French) instead of the true label F (Span-
ish):

Jean-Paul Bondoux, chef propietario de
La Bourgogne & Jérôme Mathe, chef de
Le Café des Arts (Figueroa

In most examples, the classifier is misguided by
proper nouns in foreign languages, like names of
soccer players commonly found in news texts.

Prior classification of language groups narrows
down the set of output classes for variety clas-
sifiers, allowing for their optimization in a sin-
gle language. We believe this raises the accuracy
within language groups.

However, some language groups are more chal-
lenging than others, as is shown in Table 3. Groups
A and F are responsible for the lowest scores.
Group A, particulary, contains the most difficult
language to discriminate (bs) for our three system
configurations. Even the change from a neural to
a statistical approach in our hybrid configuration
had little impact in that group performance (Ta-
ble 5). This was observed both in the development
set and the official runs.

The vocabulary of group A may lead to more
sparse language models that hinders performance
of classifiers. Group A contains almost 2 times the
number of tokens in group F, the second largest
group which also comprises 3 language varieties
(Table 2).

Overall, our hybrid configuration showed the
best performance, which is very close to the MLP.
In fact, we would still rank the same position if
the MLP configuration (run2) were considered
instead.

Although the MLP scored higher than the CNN,
difference was small. Also, the convolutional
model is trained relatively fast in appropriate hard-
ware, considering that pre-trained word vectors
are not used and all model values are initialized
randomly. With its minimum preprocessing re-
quirements, these characteristics make our word-
level CNN a viable model for discriminating be-
tween similar languages.

7 Conclusion

In this work we explored word-level convolutional
neural networks to discriminate between similar
languages and language varieties. Our intuition
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hr bs sr es-ar es-es es-pe fa-af fa-ir fr-ca fr-fr id my pt-br pt-pt
hr 837 131 28 0 1 0 0 0 0 1 2 0 0 0
bs 156 718 125 0 0 0 0 0 0 1 0 0 0 0
sr 10 114 876 0 0 0 0 0 0 0 0 0 0 0
es-ar 0 0 0 798 77 123 0 0 0 0 0 0 2 0
es-es 0 0 0 90 842 63 0 1 1 0 0 0 0 3
es-pe 0 0 0 55 67 878 0 0 0 0 0 0 0 0
fa-af 0 0 0 0 0 0 953 47 0 0 0 0 0 0
fa-ir 0 0 0 0 0 0 59 940 0 1 0 0 0 0
fr-ca 0 0 0 0 0 0 0 0 909 91 0 0 0 0
fr-fr 0 1 2 0 1 0 0 0 110 885 0 0 0 1
id 0 0 0 0 1 0 0 0 0 1 971 27 0 0
my 0 0 0 0 0 0 0 0 0 1 19 980 0 0
pt-br 0 0 0 0 0 2 0 0 0 2 0 0 913 83
pt-pt 0 0 0 0 1 1 0 0 0 1 0 0 68 929

Table 4: Confusion matrix for the DSL task, run1 (CNN). The horizontal axis indicates predicted labels,
while true labels are on the vertical axis.

Run Config. Accuracy F1 (micro) F1 (macro) F1 (weighted) Dev Accuracy
Random baseline 0.0710
Best system 0.9274
run1 CNN 0.8878 0.8878 0.8876 0.8876 0.8954
run2 MLP 0.9033 0.9033 0.9029 0.9029 0.9107
run3 Hybrid 0.9076 0.9076 0.9075 0.9075 0.9120
NB baseline 0.8976

Table 5: Results for the DSL task. Last column shows results computed on the development set.

is that language varieties can be distinguished by
particular words and common language construc-
tions. Even though we argue for avoiding task-
specific feature engineering, we believe this kind
of linguistic bias is fundamental to the success of
methods that address the task of discriminating
between similar languages. We believe both the
CNN and the MLP models were able to capture
particular words and common language construc-
tions as features.
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