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Abstract

Causal relations play a key role in infor-
mation extraction and reasoning. Most of
the times, their expression is ambiguous
or implicit, i.e. without signals in the text.
This makes their identification challeng-
ing. We aim to improve their identifica-
tion by implementing a Feedforward Neu-
ral Network with a novel set of features for
this task. In particular, these are based on
the position of event mentions and the se-
mantics of events and participants. The re-
sulting classifier outperforms strong base-
lines on two datasets (the Penn Discourse
Treebank and the CSTNews corpus) anno-
tated with different schemes and contain-
ing examples in two languages, English
and Portuguese. This result demonstrates
the importance of events for identifying
discourse relations.

1 Introduction

The identification of causal and temporal rela-
tions is potentially useful to many NLP tasks
(Mirza et al., 2014), such as information extraction
from narrative texts (e.g., question answering, text
summarization, decision support) and reasoning
through inference based on a knowledge source
(Ovchinnikova et al., 2010).

A number of resources provide examples of
causal relations annotated between event mentions
(Mirza et al., 2014) or text spans (Bethard et al.,
2008). Among the second group, there are corpora
compliant with the assumptions of the Rhetori-
cal Structure Theory (RST) in various languages
(Carlson et al., 2002; Aleixo and Pardo, 2008),
and the Penn Discourse Treebank (Prasad et al.,
2007). The latter counts the largest amount of ex-

amples and is the only resource distinguishing be-
tween explicit and implicit relations.

The discourse signal marking causal relations is
often ambiguous (i.e. shared with other kinds of
relation), or lacking altogether. Identifying im-
plicit causal relations is challenging for several
reasons. They often entail a temporal relation of
precedence, but this condition is not mandatory
(Bethard et al., 2008; Mirza et al., 2014). More-
over, implicit causal relations are partly subjective
and have low inter-annotator agreement (Grivaz,
2012; Dunietz et al., 2015). Finally, they have to
be detected through linguistic context and world
knowledge: unfortunately, this information can-
not be approximated by explicit relations deprived
of their signal (Sporleder and Lascarides, 2008).
Notwithstanding the partial redundancy between
signal and context, implicit examples and explicit
examples belonging to the same class appear to be
too dissimilar linguistically.

Although various techniques have been pro-
posed for the task, ranging from distributional
metrics (Riaz and Girju, 2013, inter alia) to tra-
ditional machine learning algorithms (Lin et al.,
2014, inter alia), few have been based on deep
learning. Those that have used deep learning have
mostly relied on lexical features (Zhang et al.,
2015; Zhang and Wang, 2015). The aim of our
work is to enrich Artificial Neural Networks with
features that capture insights from linguistic the-
ory (§ 2) as well as related works (§ 3). In particu-
lar, they capture information about the content and
position of the events involved in the relation. Af-
ter presenting the datasets (§ 4), the method (§ 6)
and the experimental results (§ 7) we conclude (§
8) by highlighting that the observed improvements
stem from the link between event semantics and
discourse relations. Although our work focuses on
implicit causal relations, the proposed features are
shown to be beneficial also for explicit instances.
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2 Events in Linguistic Theory

Events are complex entities bridging between se-
mantic meaning and the syntactic form (Croft,
2002). The token expressing an event in a text is
called a mention and usually consists in a verbal
predicate. An event denotes a situation and con-
sists of various components, such as participants
and aspect. Participants are entities taking part
in the situation, each playing a specific semantic
role (Fillmore, 1968; Dowty, 1991). Aspect is the
structure of the situation over time and is partly
inherent to verbs (Vendler, 1967).

Within discourse, events can establish between
themselves different kinds of relation, among
which a causal relation (Pustejovsky et al., 2003).
This relation is asymmetrical, bridging between a
cause and an effect. Discourse-level causation is
expressed explicitly through verbs (e.g. to cause or
to enable) (Wolff, 2007) or adverbial markers, ei-
ther inter-clausal (e.g. because) or inter-sentential
(e.g. indeed). These markers are often ambiguous.
Moreover, causation is not necessarily explicit: it
can be entailed by the speakers and inferred by the
listeners only through world knowledge (Grivaz,
2012).

Both explicit and implicit relations are regulated
by a long-standing cognitive principle, namely di-
agrammatical iconicity. According to this princi-
ple the tightness of the morphosyntactic packaging
of two expressions is proportional to the degree of
semantic integration of the concepts they denote
(Haiman, 1985). The relevance of this principle
for causal relations has been validated empirically
by comparing constructions used to describe cau-
sation in visual stimuli (Kita et al., 2010): such
constructions were affected by the mediation of an
animate participant and the absence of spatial con-
tact or temporal contiguity.

This principle is useful to distinguish causality
from other relations. Among adverbial clauses,
those expressing cause preserve more indepen-
dence from the main (effect) clause than the others
cross-linguistically. Independence is measured by
the freedom in their relative order, the autonomous
intonation contour, and non-reduced grammatical
categories or valence of verbs (Lakoff, 1984; Dies-
sel and Hetterle, 2011; Cristofaro, 2005). The
iconicity principle predicts that this morphosyn-
tactic behaviour corresponds to situations not nec-
essarily sharing time, place and participants from
a semantic point of view.

3 Previous Work

Many previous works identified causal relations
using metrics or traditional machine learning algo-
rithms. Metrics of the ‘causal potential’ of event
pairs were estimated using distributional informa-
tion (Beamer and Girju, 2009), verb pairs (Riaz
and Girju, 2013) or discourse relation markers (Do
et al., 2011). Other techniques employed manu-
ally defined rules, consisting in high-level patterns
(Grivaz, 2012) or a set of axioms (Ovchinnikova
et al., 2010).

The machine learning approaches formulated
causal relation identification as a binary classifica-
tion problem. This problem sometimes involved
an intermediate step of discourse marker predic-
tion (Zhou et al., 2010). Features based on fine-
grained syntactic representations proved particu-
larly helpful (Wang et al., 2010), and were some-
times supplemented with information about word
polarity, verb classes, and discourse context (Pitler
et al., 2009; Lin et al., 2014).

Few approaches based on deep learning have
been proposed for discourse relation classification
so far. Zhang et al. (2015) focused on implicit re-
lations. They introduced a Shallow Convolutional
Neural Network that learns exclusively from lexi-
cal features. It adopts some strategies to amend the
sparseness and imbalance of the dataset, such as
a shallow architecture, naive convolutional opera-
tions, random under-sampling, and normalization.
This approach outperforms baselines based on a
Support Vector Machine, a Transductive Support
Vector Machine, and a Recursive AutoEncoder.

Moreover, related work on nominal relation
classification (Zeng et al., 2014; Zhang and Wang,
2015) showed improvements due to using ad-
ditional features (neighbours and hypernyms of
nouns), as well as measuring the relative distance
of each token in a sentence from the target nouns.
Although these features are possibly relevant for
the identification of causal relations, they have not
been investigated for this task before.

4 Datasets

We ran our experiment on two datasets represent-
ing different annotation schemes and different lan-
guages: the Penn Discourse Treebank in English
(Prasad et al., 2007) and the CSTNews corpus in
Brazilian Portuguese (Aleixo and Pardo, 2008).
The Penn Discourse Treebank was chosen because
it distinguishes between explicit and implicit rela-
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Figure 1: Layers of the Feedforward Neural Network with enriched features.

tions and offers the widest set of examples. Re-
lations are classified into four categories at the
coarse-grained level: Contingency is considered as
the positive class, whereas the others as the nega-
tive class.1 We divided the corpus into a training
set (sections 2-20), a validation set (sections 0-1),
and a test set (sections 21-22), following Pitler et
al. (2009) and Zhang et al. (2015).

On the other hand, he CSTNews corpus con-
tains documents in Brazilian Portuguese annotated
according to the Rhetorical Structure Theory. We
filtered the texts to keep only relations among
leaves in the discourse tree (i.e. containing text
spans). The examples labelled as volitional-cause,
non-volitional-cause result, and purpose were as-
signed to the positive class and the others to the
negative class. In this case, no distinction was
available between implicit and explicit relations.
The data partitions in the datasets are detailed in
Table 1.

Set PDTB CSTNews
Training 3342/9290 190/1101
Validation 295/888 19/143
Test 279/767 19/142

Table 1: Number of examples: positive/negative

1Contingency overlaps with the fine-grained category
Cause for implicit relations: Condition instead can be hardly
conveyed without an explicit hypothetical marker (e.g. if ).

5 Features

The most basic kind of features we fed to our algo-
rithm is lexical features, i.e. the vectors stemming
from the look-up of the words in every sentence.
Vectors are obtained from a model trained with
gensim (Řehůřek and Sojka, 2010) on Wikipedia.
Moreover, we included some additional features:
event-related and positional features.

In order to obtain these, the PDTB and CST-
News corpora were parsed using MATE tools
(Bohnet, 2010). This parser was trained on the
English and Portuguese treebanks available in the
Universal Dependency collection (Nivre et al.,
2016). In particular, for each of the two related
sentences we employed the syntactic trees to dis-
cover its root (considered as the event mention)
and the nominal modifiers of the root (considered
as the participants).2 We extracted the vector rep-
resentations of their lemmas, which we call event-
related features. Moreover, we assigned to each
token two integers representing its absolute lin-
ear distance from either event mention. These are
called positional features.

The combination of lexical and additional fea-
tures is called enriched feature set, as opposed to
a basic feature set with just lexical features. As
an example, consider Figure 1. The lemmas of the
two roots are emit and contaminate. Those of their

2The syntactic root is often, but not necessarily, a verb. Its
nominal modifiers are dependent nouns labelled as subject,
direct object, or indirect object.
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nominal dependents are plutonium+radiation and
environment, respectively. Moreover, the token al-
pha, for instance, is assigned the integers 1 (dis-
tance from emits) and 5 (distance from contami-
nated).

The rationale of the additional features is that
similar features were employed successfully for
nominal relation classification (Zeng et al., 2014).
Moreover, they are motivated linguistically. Po-
sitional features encode the distance and hence
the iconic principle, whereas event-related fea-
tures account for the semantics of the event and
its participants (see § 2).

6 Method

We describe here the architecture of the Feedfor-
ward Neural Network with an enriched feature
set. The core components of the architecture are
a look-up step, a hidden layer and the final lo-
gistic regression layer where a softmax estimates
the probabilities of the two classes. These are are
shown in Figure 1. Positional features are concate-
nated to the input after the look-up step, and are
represented as grey nodes. Event-related features
instead are concatenated to the output of the hid-
den layer, and are represented as blue nodes. The
training set was under-sampled randomly: positive
examples were pruned in order to obtain the same
amount of negative and positive examples.3 Af-
terwards, all the sentences of the training set were
padded with zeroes to equalize them to a length n.
Each word was transformed into its corresponding
D-dimensional vector by looking up a word em-
bedding matrix E. This matrix is a parameter of
the model and is initialized with pre-trained vec-
tors. Afterwards, each vector was concatenated
along the D-dimensional axis with its two neigh-
bouring vectors and its two positional features.

This input representation x was then fed to the
hidden layer. It underwent a non-linear transfor-
mation with a weight and a bias as parameters, and
the hyperbolic tangent tanh as activation function.
The weight is a matrix W1 ∈ RD×h, where h is
an hyper-parameter defining the size of the hid-
den layer. The bias, on the other hand, is a vec-
tor b1 ∈ Rh. Both were initialised by uniformly
sampling values from the symmetric interval sug-
gested by Glorot and Bengio (2010). The output

3Without random under-sampling, the algorithm wors-
ened its performance, whereas no significant differences were
observed with random over-sampling.

of this transformation was concatenated with four
word embeddings of the two events and the two
(max-pooled) sets of their participants. The re-
sulting matrix underwent a max pooling operation
over the n axis, which yielded a vector.

Finally, the output of the hidden layer was fed
into a Logistic Regression layer. As above, it was
multiplied to a weight W2 ∈ Rh×2 and added to
a bias b2 ∈ R2. Note that the shape of these pa-
rameters along a dimension has length 2 because
this is the number of classes to output. Contrary to
the hidden layer, both parameters were initialized
as zeros. The output of Logistic Regression was
squashed by a softmax function σ, which yielded
the probability for each class given the example.

The set of parameters of the algorithm is θ =
{E,W1, b1,W2, b2}. The loss function is based
on binary cross-entropy and is regularised by the
squared norm of the parameters scaled by a hy-
perparameter `. Given an input array of indices
to the embedding matrix xi, the event-related fea-
tures xe, the positional features xp, and a true class
y, the objective function is as shown in Equation
1:

J = −
∑
x,y

σ(W2||max
n

(tanh(W1·(xi·E⊕xe)+

+ b1)⊕ xp)||+ b2) logP (y) + `||θ||2. (1)

The optimization of the objective function was
performed through mini-batch stochastic gradient
descent, running for 150 epochs. Early stopping
was enforced to avoid over-fitting. The width of
the batches was set to 20, whereas the learning
rate λ to 10−1. The vector dimension D in the
word embedding was 300, the regularization fac-
tor ` 10−4, and the width of the hidden layer h
3000.

7 Results

The performance of the classifier presented in §
6 (named Enriched) was compared with a series
of baselines. A naive baseline consists in always
guessing the positive class (Positive). A more
solid baseline is the state of the art for class-
specific identification of implicit relations in the
PDTB: the Shallow Convolutional Neural Net-
work (SCNN) by Zhang et al. (2015). The config-
uration of this algorithm, as mentioned in § 3, in-
cludes max pooling, random under-sampling, and
normalization. Finally, the last baseline is our

28



Classifier Macro-F1 Precision Recall Accuracy
Positive 42.11 26.67 100 26.67
SCNN 52.04 39.80 75.29 63.00
Basic 53.01 42.04 71.74 66.44
Enriched 54.52 42.37 76.45 66.35

Classifier Macro-F1 Precision Recall Accuracy
Positive 21.11 11.80 100 11.80
Basic 48.36 35.51 76.48 82.82
Enriched 55.62 40.66 88.24 85.00

Table 2: Different settings for the datasets PDTB (above) and CSTNews (below).

classifier deprived of the additional features (Ba-
sic): in other words, it hinges only upon the lexical
features.

The results for both the PDTB and CSTNews
datasets are presented in Table 2.4 A McNamar’s
Chi-Squared test determined the statistical signif-
icance of the difference between the classes pre-
dicted by Enriched and Basic with p < 0.05. The
enriched features have a positive impact on preci-
sion and recall. This effect is not always observed
in accuracy: however, this metric is unreliable due
to the high number of negative examples. The im-
provement on the PDTB is clearly related to im-
plicit examples. From the results on the CSTNews
corpus, however, it is safe to gather only that iden-
tification of causal relations in general is affected.

8 Conclusion

Drawing upon the semantic theory of events and
inspired by work on related tasks, we enriched the
feature set previously used for the identification of
causal relations. Eventually, this set included lex-
ical, positional, and event-related features. Pro-
viding this information to a Feedforward Neural
Network, we obtained a series of results. Firstly,
our method outperformed earlier approaches and
solid baselines on two different datasets and in two
different languages, demonstrating the benefit of
enriched features. Secondly, our experiment con-
firmed two theoretical assumptions, namely the
iconic principle and the complexity of events. In
general, exploiting the theory of event semantics
contributed significantly to discourse relation clas-
sification, demonstrating that these domains are
intertwined to a certain extent.

4The results for the CSTNews corpus equals to the aver-
age of multiple initializations.
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