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Abstract

Using the Entropy Reduction incremental
complexity metric, we relate high gamma
power signals from the brains of epilep-
tic patients to incremental stages of syn-
tactic analysis in English and French. We
find that signals recorded intracranially
from the anterior Inferior Temporal Sul-
cus (aITS) and the posterior Inferior Tem-
poral Gyrus (pITG) correlate with word-
by-word Entropy Reduction values de-
rived from phrase structure grammars for
those languages. In the anterior region,
this correlation persists even in combi-
nation with surprisal co-predictors from
PCFG and ngram models. The result
confirms the idea that the brain’s tempo-
ral lobe houses a parsing function, one
whose incremental processing difficulty
profile reflects changes in grammatical un-
certainty.

1 Introduction

Incremental complexity metrics connect word-by-
word processing data to computational proposals
about how parsing might work in the minds of
real people. Entropy Reduction is such a metric.
It relates the comprehension difficulty that people
experience at a word to decreases in uncertainty
regarding the grammatical alternatives that are in
play at any given point in a sentence (for a re-
view, see Hale 2016). Entropy Reduction plays
a key role in accounts of many classic psycholin-
guistic phenomena (Hale 2003; 2004; 2006) in-
cluding the difficulty profile of prenominal rela-
tive clauses (Yun et al., 2015). It has connected
a wide range of behavioral measures to many
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different theoretical ideas about incremental pro-
cessing, both with controlled stimuli (Linzen and
Jaeger, 2016; Wu et al., 2010) and in naturalis-
tic texts (Frank, 2013). Entropy Reduction and re-
lated metrics of grammatical uncertainty have also
proved useful in the analysis of EEG data by help-
ing theorists to interpret well-known event-related
potentials (beim Graben et al., 2008; beim Graben
and Drenhaus, 2012).

This paper applies Entropy Reduction (hence-
forth: ER) to another type of tightly time-locked
brain data: high gamma power electrical signals
recorded from the brains of patients awaiting re-
sective surgery for intractable epilepsy. While ex-
perimental participants are reading sentences, en-
tropy reductions from phrase structure grammars
predict changes in this measured neural signal.
This occurred at sites within the temporal lobe
that have been implicated, in various ways, in
language processing (Fedorenko and Thompson-
Schill, 2014; Pallier et al., 2011; Dronkers et al.,
2004). The result generalizes across both French
and English speakers. The absence of similar cor-
relations in a control condition with word lists sug-
gests that the effect is indeed due to sentence-
structural processing. A companion paper ex-
plores algorithmic models of this processing (Nel-
son et al., Under review).

The remainder of this paper is organized into
five sections. Section 2 first introduces intracra-
nial recording techniques, as they were applied
in our study. Section 3 details the language
models that we used, including both hierarchi-
cal phrase structure grammars and word-level
Markov models. Section 4 goes on to explain
the statistical methods, including a complemen-
tary “sham” analysis of the word-list control con-
dition where no sentence structure exists. Sec-
tion 5 reports the results of these analyses (e.g.
Table 2 on page 8). Section 6 concludes.
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Site Number of patients Language Recording type
Stanford Medical Center 3 English ECoG

Massachusetts General Hospital 1 English Depth
Pitié-Salpêtrière Hospital 8 French Depth

Table 1: Recording site information.

2 Methods: Intracranial recording

2.1 Overview

In intracranial recording, neurological patients
volunteer to perform a task while electrodes, im-
planted in their brains for clinical reasons, con-
tinuously monitor neural activity. It offers the
most direct measure possible of neural activity in
humans, and as such is attractive to researchers
from across many disciplines (Fedorenko et al.,
2016; Martin et al., 2016; Rutishauser et al.,
2006). Recordings can be made either from the
cortical surface (referred to here as ECoG, short
for electrocorticogram) or from beneath the corti-
cal surface (referred to here as depth recordings).
For both types, what is recorded is a spatial av-
erage of extracellular potentials generated by neu-
rons in the vicinity of the recording site. This is
the same signal as the EEG signal, which has a
millisecond temporal resolution, but with a spa-
tial resolution far improved beyond that of EEG.
Despite these benefits, there are also limitations
to the technique. The recordings are only made
in certain hospitals under quite specialized con-
ditions. The number of subjects recorded from
are therefore typically smaller than in studies us-
ing non-invasive brain-imaging methods. Also,
the signals are obtained from patients with brain
pathologies, primarily epilepsy. Nevertheless, the
latter concern can be mitigated by screening out
participants who perform poorly on clinical tests
of language function, by discarding data from re-
gions that are later determined to be pathological,
or from trials with epileptic activity (see § 2.3.1).

2.2 Patients

Patients from three different hospitals (Table 1)
were recorded while awaiting resective surgery
as part of their clinical treatment for in-
tractable epilepsy. Written informed consent was
obtained from all participants. Experiments were
approved by the corresponding review boards at
each institution.

2.3 Recordings
Intracranial voltages were low-pass filtered with
a 200 Hz to 300 Hz cutoff and sampled at ei-
ther 1525.88 Hz (SMC) or 512 Hz (MGH and
PS). Electrode positions were localized using the
method described in Dykstra et al (2011) and
Hermes et al (2010) and converted to standard
MNI coordinates. Only left hemisphere electrodes
were analyzed.

2.3.1 Channel and artifact removal
In intracranial experiments, a portion of channels
often show either flat or extremely noisy recorded
signals. In both cases this suggests problems with
the recording contact and the channel should in
general not be analyzed. As mentioned above,
channels recording from tissue that was deter-
mined to be pathological should also not be ana-
lyzed. Here, raw data for each channel were vi-
sually inspected for artifacts, such as large jumps
in the data, and for channels with little to no sig-
nal variation apparent above the noise levels. 7.9%
of channels were removed from further analysis
in this manner. 10.5% of channels were clinically
determined as showing epileptic activity and were
also removed from further analysis.

2.3.2 Referencing
To eliminate potential effects from common-mode
noise in the online reference and volume con-
duction duplicating effects in nearby electrodes,
recordings were re-referenced offline using a bipo-
lar montage in which the difference in volt-
age signals between neighboring electrodes was
calculated and used for further analysis. For
ECoG grids, such differences were computed for
all nearest neighbor pairs along both dimensions
of the grid. Electrodes that were identified as noisy
or pathological were systematically excluded be-
fore pairwise differencing. This procedure re-
sulted in 288 bipolar pairs of ECoG electrodes,
and 433 bipolar pairs of depth electrodes available
for analysis in this dataset. We took the location
of each bipolar pair to be the midpoint between
the two individual electrode locations. We hence-

2



A

Same
or

Different?

Ten sad students of Bill Gates should often They shouldsleep

400 or 600 ms 2200 ms

Dallas George fat should twoproud reallyof sings two

Present
or

Absent?

B

Entropy
reduction

0
>0 to .58
.58 to.79
.79 to 2.1
>2.1

aITS electrode

h
ig
h
g
a
m
m
a
p
o
w
e
r
(d
B
)

b

time relative to word onset (s)

0-0.5 0.5 1

0.21

0

0.5

1
*

Sentence condi�on:

Word list condi�on:

Main sentence Delay Probe Response

Figure 1: (A) Experimental setup: patients saw sentences or word lists, of variable length, and judged
whether a subsequent probe matches or does not match. (B) High-gamma power profile at various levels
of Entropy Reduction for the word at time 0. The lower part of panel (B) shows the fitted regression co-
efficient for Entropy Reduction and its 95% confidence interval across time.

forth refer to these bipolar pairs as electrodes for
simplicity. All results presented in this study were
essentially unchanged when using an average ref-
erence montage.

2.4 Tasks

There were two tasks presented in separate blocks:
one in which the stimuli were simple sentences
in the participant’s native language, and an-
other where the stimuli were randomly-ordered
word lists. Figure 1A schematically depicts this
arrangement.

In the main sentence task blocks, patients were
presented with a sentence of variable length (up
to 10 words), followed after a delay of 2.2 sec-
onds by a shorter probe sentence (2-5 words). On
75% of trials, this probe was related to the pre-
vious sentence by processes of substitution and
ellipsis. For example, a stimulus sentence like
“Bill Gates slept in Paris” was followed by probes
such as “he did” or “he slept there.” On the re-
maining 25% of trials the probe shared this form,
but was unrelated in meaning to the stimulus e.g.
“they should.” The participants were instructed to
press one key if the probe had the SAME meaning
and another key if the meaning of the probe was
DIFFERENT. This matching task is meant to en-
gage participants’ memory for the entire sentence,
rather than just one part.

In the word-list task block, patients were pre-
sented with the same words used in the preced-
ing sentence task block, but in random order.
To avoid any attempt at sentence reconstruction,
words were shuffled both within and across sen-

tences. Then following the same delay as in the
sentence task, the patients were presented with a
one word probe, and asked to identify whether or
not that word was in the preceding list. This con-
trol task has the same perceptual and motor de-
mands as the main task but with no sequential ex-
pectations or sentence-structural interpretation of
the stimuli. Sentence and word list tasks were
presented in alternating blocks of 80 trials, with
2 to 3 sentence-task blocks and 1 word list block
recorded for each patient.

In both sentence and word list conditions, words
were presented one at a time at a fixed location
on a screen to discourage eye movements. The
temporal rate was adapted to individual patients’
natural pace, either 400ms (4 patients) or 600ms
(8 patients) per word.

3 Materials: language models

We consider two types of language models. The
first type comprises linguistically-motivated prob-
abilistic context-free phrase structure grammars
(PCFG) based on X-bar theory (Sportiche et al.,
2013; Jackendoff, 1977). Figure 2 shows an En-
glish example. The hierarchical analyses assigned
by this first type of model contrast with those
of a second type: word bigram models fitted to
Google Ngrams (Michel et al., 2011). Within each
type, there are specific English and French ver-
sions.

The PCFGs are derived from a computer pro-
gram that created the stimuli for the intracra-
nial recordings. This program randomly generates
well-formed X-bar structures using uniform dis-
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Figure 2: Example analysis from X-bar grammar.
P{0, 1, 2} annotations indicate bar level, i.e V P2
means verb phrase, and should is analyzed as a
projection of tense (T).

tributions. It decides, for instance, on the number
of adjuncts present in a particular phrase, the sta-
tus of each verb as infinitival, transitive or copu-
lar, and on nominal properties such as case, per-
son and number. Applying relative frequency es-
timation to a sample of these trees, we inferred a
PCFG that matches the distributions present in the
experimental stimuli. For more on this estimation
procedure, see Chi (1999).

These language models serve to predict com-
prehension difficulty via three different incremen-
tal complexity metrics, described below.

3.1 Entropy Reduction

Entropy Reduction (ER) is a complexity metric
that tracks uncertainty regarding the proper anal-
ysis of sentences. If a word comes in that de-
creases grammatical uncertainty, then the metric
predicts effort in proportion to the degree to which
uncertainty was reduced. Hale (2016) reviews
this metric, its motivation and broader implica-
tions. Here we characterize precisely the partic-
ular ERs that figure in our modeling by reference
to a generic sentence w consisting of two concate-
nated substrings, u and v. Let w = uv be gen-
erated by a PCFG G so that w ∈ L(G) and de-
note by Du the set of derivations that derive the
k-word initial substring u0···k as a prefix. This
initial substring corresponds to the words that the

comprehender has already heard, and may be of
any length. The existence of at least one grammat-
ical completion, v, restates the requirement that u
be a viable prefix. Since G is a probabilistic gram-
mar, each member d ∈ Du has a probability. If the
Shannon entropy H(Du) of this set is reduced in
the transition from one initial substring to the next,
then information-processing work has been done
and neural effort is predicted. We compute the
predictions of this metric, in both languages, us-
ing the freely-available Cornell Conditional Prob-
ability Calculator, or CCPC for short (Chen et
al., 2014). This program calculates a probability
for each derivation d ∈ Du, conditioned on the
prefix string u. It uses exhaustive chart parsing
to compute the total probability of Du following
Nederhof and Satta (2008). In order to focus on
sentence-structural aspects of comprehension, we
follow previous work such as Demberg and Keller
(2008) and Yun et al. (2015) in computing this
metric at the pre-terminal, rather than word, level.

3.2 Surprisal

The surprisal of a word, in the sense of Hale
(2001), links measurable comprehension difficulty
to the (negative log) total probability eliminated
in the transition from u0···k to u0···k+1. We used
the CCPC to compute surprisals at the preterminal
level from PCFG models. Surprisals from word-
bigram models were obtained simply by negative
log-transforming the conditional probability of a
successor word given the previous word.

3.3 Bigram entropy

This metric is entropic like ER, but ignores struc-
ture and deals only with the conditional probabil-
ity distribution of the next word. We determined
this entropy using the counts of all of the bigrams
in the Google N-grams database starting with one
of the words in our stimuli. This amounted to over
9.2 million unique bigrams in English and 3.3 mil-
lion in French. In the analysis to follow, these
word-bigram models serve as a comparison to the
grammatical predictors rather than any sort of pos-
itive proposal about human sentence comprehen-
sion.

4 Analysis

4.1 Broadband high gamma power

We analyzed the broadband high-gamma power
(HGP), which is broadly accepted in the neuro-
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physiological field as reflecting the average acti-
vation and firing rates of the local neuronal pop-
ulation around a recording site (Ray and Maun-
sell, 2011; Miller et al., 2009). We calculated
the HGP using wavelet analyses implemented in
the FieldTrip toolbox (Oostenveld et al., 2011).
We used a wavelet width of 5 and calculated the
spectral power over the frequency window span-
ning from 70 to 150 Hz sampled in the time do-
main at 1/4 of the raw sampling rate. The result-
ing power at each time point was then transformed
to a decibel scale relative to the entire experiment
mean power for each channel for subsequent anal-
yses. The shading of traces in Figure1B reflects
the standard errors of the mean across trials.

4.2 Regression analyses

At the single-electrode level, we performed lin-
ear regression analyses with each word as the
basic unit of observation. The dependent vari-
able was the HGP, averaged over a window from
200 to 500 ms following each word. It is in
this time window, more or less, that linguistic ef-
fects have been found in behavioral, EEG and
MEG data (Pylkkänen et al., 2014; Bemis and
Pylkkänen, 2013; Sahin et al., 2009; Friederici,
2002).

We considered the word-by-word Entropy Re-
duction (ER), as the covariate of interest. To this,
we added two other covariates of no interest. One
differentiates closed class and open class words,
while another summarizes baseline neural activ-
ity. We used for the baseline value the average
HGP in a 1-second interval before the onset of the
first word of a particular stimulus main sentence.
This approach, in which the baseline is included
as a covariate, improves over the classical subtrac-
tion approach because it only accounts for the vari-
ance in the dependent variable in common with the
baseline term. However for display purposes, Fig-
ure 1B depicts the classical subtraction of signal-
minus-baseline.

The models shown in Table 3 include an ad-
ditional covariate of interest: bigram entropy, bi-
gram surprisal and phrase structure surprisal, as
introduced above in section 3. The four regression
models were thus:

(I)HGP ∼ 1 + ER + Word Class + Baseline

(II)
HGP ∼ 1 + ER + bigram entropy

+ Word Class + Baseline

(III)
HGP ∼ 1 + ER + bigram surprisal

+ Word Class + Baseline

(IV)HGP ∼ 1 + ER + PCFG surprisal
+ Word Class + Baseline

We observed the same patterns of results described
in this paper when including all of the parameters
in one larger model.

4.3 Word list sham analyses
If uncertainty about grammatical structures is in-
deed driving ER effects when the stimulus is a
sentence, then these effects should be stronger
than corresponding effects for the same words pre-
sented in a random, non-sentential order. To test
this, we assigned sham ER values to the word list
condition that matched the value in the sen-
tence condition in one of two ways. In Method 1
(word identity matching), each word in the word-
list condition was matched to the same word when
it occurred in the list condition (possibly at a dif-
ferent position). In Method 2 (word ordinal po-
sition matching), each trial in the word-list con-
dition was matched to a trial of the same length
in the sentence-task condition. The ER values of
the sentence-task trial were then assigned to the
word-list trial, matched by ordinal position. We
then compared the effect of the real ER values in
the sentence task versus the sham values assigned
to the word-list task by computing the interaction
of that variable across tasks for each sham assign-
ment method. These analyses control for the pos-
sibility that either ordinal word position or indi-
vidual word identity underlie the effects observed
in the sentence-task condition.

4.4 Statistical tests
Mixed-effects regression models have become
standard in computational psycholinguistics.
However sample sizes in intracranial studies are
not usually as large, for the reasons mentioned
above in subsection 2.1. In such a scenario multi-
level models typically gain little beyond classical
varying-coefficient models (Gelman and Hill,
2007). We therefore pursued a statistical approach
that independently assesses statistical significance
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across electrodes and participants using two
different testing procedures. To make inferences
about particular brain areas rather than analyzing
the entire heterogeneous sample at once, we pur-
sued this approach in a regions of interest (ROIs)
based analysis. Both procedures use as inputs the
z-scores of coefficients from the above multiple
regression analysis for each electrode located
within a given ROI. We derived the z-scores from
the p-values of the t-statistics of the coefficients,
which account for the degrees of freedom of each
test.

The first test tests for significance across elec-
trodes ignoring participant identification using
Stouffers z-score method (Zaykin, 2011). This
method tests the significance of the z-score sum
across electrodes with an assumption of indepen-
dence between electrodes. Though its indepen-
dence assumption is likely violated in these data,
the test provides a useful benchmark. This test
is complemented by the second test that does not
make this assumption.

The second test tests for significance across par-
ticipants (i.e. treating participants as a random fac-
tor) using a randomization/simulation procedure
that proceeded as follows. For each participant,
we observed the highest (and lowest) z-score for
all electrodes in the ROI, and calculated the av-
erage of these scores across participants that had
any electrodes in the ROI. We then simulated inde-
pendent random z-scores sampled from a standard
normal distribution for every electrode in the ROI,
with each simulated electrode assigned to a subject
to give the same distribution of the number of elec-
trodes per each subject in the ROI found in the real
data. With each iteration of the simulation we cal-
culated the mean of the highest simulated z-scores
across subjects in the same manner as with the
real data, repeating this 100,000 times to obtain
a simulated null-distribution of the across-subject
mean best z-score expected by chance. The mean
highest (and absolute value of the lowest) z-scores
across subjects in the actual data were then com-
pared to this null distribution to ascertain the prob-
ability of recording such a value of equal or greater
extremity in the sample by chance.

By testing whether the effect is consistently
observed across multiple participants, this sec-
ond test avoids concerns about dependence be-
tween electrodes. This test benefits from the sen-
sitivity afforded by testing for the best electrode in

each subject, especially appropriate in an intracra-
nial recording scenario with a relatively small
number of electrodes that are not necessarily po-
sitioned at the ideal location for a given effect in
each subject. The first test complements this by
showing significance over the entire pool of elec-
trodes, not relying on subjects’ best electrodes.

Note that an alternate approach for the first test
would be to count the number of electrodes in each
region with a positive effect significant at the 0.05
level, and use a binomial test to assess the proba-
bility of observing at least that many significant
electrodes by chance given the total number of
electrodes in that region. We prefer Stouffer’s z-
score method because it does not rely on an ar-
bitrary 0.05 threshold to determine the overall p-
value, and because it takes into account the total
contribution of every z-score in the sample. We
thus chose to report the Stouffers z-score test re-
sults only, though we note that the proportions of
significant electrodes here support the same pat-
terns of significance.

4.5 Regions of interest (ROI) definition

We defined ROIs independently of our theoret-
ical predictors by finding local maxima of the
difference between sentences and baseline activ-
ity. The procedure to find these locations pro-
ceeded as follows: For each electrode a z-score
of the contrast between activation during the sen-
tence and during the baseline period was calcu-
lated. A potential ROI center was systematically
placed at all possible locations in a 3D grid in
the cortex, with 1 mm between possible locations
in all directions. The ROI radius was fixed to
22 mm. At each position, the electrodes within the
fixed distance from the ROI center were grouped
to calculate two independent z-scores. These z-
scores were calculated using much the same pro-
cedure as above, except that a t-test across the
means of subjects was used to assess the across-
subjects’ z-score, rather than simulations. This
avoidance of numerical simulation saved com-
puting time. The two z-scores were combined
via a weighted average to determine a compos-
ite z-score for each ROI, with a weight of 0.25
and 0.75 assigned to the across-electrodes and
across-subjects z-scores respectively. Local max-
ima of the composite z-score were then detected
and ordered according to the composite z-score,
discarding local maxima within 22 mm of an-
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midline are projected onto the lateral surface plot
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(bottom). (Right) The electrodes included in the
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other local maxima with a higher z-score. The
two highest-scoring local maxima with an ante-
rior/posterior MNI coordinate more posterior than
-8 were selected as the ROI centers. These had
MNI coordinates: -37,-16,-27 (aITS) and -47,-
66,1 (pITG). Figure 3 shows the locations of elec-
trodes within each of these regions.

5 Results & Discussion

ER was observed to correlate with an increase
in activity as suggested in Figure 1B on page 3,
where data from just one electrode are plotted.
Figure 3, above, shows the distribution of the ef-
fect across the entire sample. Groups of posi-
tive coefficients were observed in the aITS and
pITG ROIs, which, as Table 2 shows, were sig-
nificant across subjects and electrodes. A compar-
ison with sham ER values assigned to the word list
task showed that the effect in both areas was sig-
nificantly higher than word identity matched sham
values in the word list task (Table 2, middle). The
coefficients in aITS but not pITG were signifi-
cantly higher than ordinal position matched sham
values in the word list task (Table 2, bottom).

In additional multiple regression models, we in-
cluded other entropy- and surprisal- based predic-

tors alongside ER in two-parameter models. Ta-
ble 3 shows that there was a significant nega-
tive effect of bigram entropy and a positive ef-
fect of bigram surprisal in both aITS and pITG,
with no effect of PCFG surprisal in either region.
ER is still significant in combination with each of
these covariates, except with bigram surprisal in
pITG, which was significant across subjects but
not across electrodes. Overall, we find that ER
is positively correlated with temporal activity af-
ter accounting for lexical effects and surprisal in
its conventional version.

6 Conclusion

Intracranial recordings from patients reading sen-
tences show a correlation with ER in anterior In-
ferior Temporal Sulcus (aITS) and posterior Infe-
rior Temporal Gyrus (pITG). This occurred even
when potential contributions to neural activity
from word identity or ordinal position in sentences
were accounted for in a control task where there
was no syntactic structure. Additionally, aITS and
pITG showed a negative response to bigram en-
tropy and a positive response to bigram surprisal.
However, the ER effect persisted in aITS when
combined with these and other potentially com-
peting effects. These results converge with other
findings based on reading time (Wu et al., 2010;
Linzen and Jaeger, 2016) that suggest that down-
ward changes in grammatical uncertainty can
serve as an approximate quantitative index of hu-
man processing effort. We did also observe a
positive effect of lexical bigram surprisal, espe-
cially in pITG, which has been observed in other
work (Nelson et al., Under review), though we fo-
cus here on ER.

These results add a precise anatomical local-
ization to this earlier body of work, converg-
ing well with findings from MEG (Brennan and
Pylkkänen, 2016; van Schijndel et al., 2015),
PET (Mazoyer et al., 1993; Stowe et al., 1998) and
fMRI (Brennan et al., 2012). As with any correla-
tional modeling result, there is no suggestion of
exhaustivity. We do not claim that X-bar gram-
mars are the only ones whose Entropy Reduc-
tions would model HGP. But they suffice to do
so. This lends credence to the idea, recently un-
derlined by van Schijndel and Schuler (2015), that
phrase structure of some sort must figure in realis-
tic models of word-by-word human sentence com-
prehension.
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Sentences
Stouffer’s Z Mean highest Z-score Mean lowest Z-score

region value p value p value p
ant. Inferior Temporal Sulcus 6.01 < 0.001 3.53 < 0.001 -0.99 0.997
post. Inferior Temporal Gyrus 4.69 < 0.001 2.42 < 0.001 -0.87 0.862

Sentences vs. Word lists- word identity match
ant. Inferior Temporal Sulcus 4.23 < 0.001 2.18 0.013 -1.53 0.642
post. Inferior Temporal Gyrus 3.42 < 0.001 1.77 0.050 -0.87 0.862

Sentences vs. Word lists- word ordinal position match
ant. Inferior Temporal Sulcus 2.80 0.005 2.21 0.009 -1.61 0.497
post. Inferior Temporal Gyrus 1.95 0.051 1.49 0.204 -1.22 0.491

Table 2: Hypothesis tests for fitted regression coefficients on model I for Entropy Reduction predictor by
region of interest (ROI). The first two columns report statistics obtained using Stouffer’s Z-score method,
pooling electrodes across human participants. Subsequent columns report the highest and lowest z-score
values on a per-participant basis, averaged across participants. The p-values for the mean highest and
lowest z-scores were determined using simulations, see § 4.4. The middle and lower tables show the
interaction of the regressor across the sentence and word list tasks after assigning sham values to the
word list that were matched with the sentence condition values of the same word identity (Middle) and
word ordinal position (Bottom). Positive values in these cases indicates a more positive coefficient in the
sentence task.

aITS
Stouffer’s Z Mean highest Z-score Mean lowest Z-score

predictor value p value p value p

(II)
Entropy reduction 5.43 < 0.001 3.22 < 0.001 -1.05 0.994

Bigram entropy -2.53 0.011 1.32 0.881 -2.34 0.002

(III)
Entropy reduction 4.70 < 0.001 2.58 < 0.001 -1.08 0.991

Bigram surprisal 2.31 0.021 2.53 < 0.001 -1.27 0.932
(IV) Entropy reduction 6.05 < 0.001 3.38 < 0.001 -0.91 0.999
Phrase structure surprisal -1.16 0.246 1.24 0.951 -1.46 0.741

pITG
Stouffer’s Z Mean highest Z-score Mean lowest Z-score

predictor value p value p value p

(II)
Entropy reduction 4.11 < 0.001 2.38 < 0.001 -0.97 0.779

Bigram entropy -2.33 0.02 1.54 0.166 -2.26 0.002

(III)
Entropy reduction 1.63 0.104 1.98 0.013 -1.61 0.119

Bigram surprisal 7.56 < 0.001 5.61 < 0.001 -0.29 0.999
(IV) Entropy reduction 4.87 < 0.001 2.22 0.002 -0.5 0.990
Phrase structure surprisal -1.29 0.196 0.97 0.777 -1.7 0.078

Table 3: Hypothesis tests for fitted regression coefficients for two parameter models including a different
co-factor of interest with the Entropy Reduction regressor. Each pair of rows corresponds to the two
coefficients of a different two parameter model. Results are shown in the same format as Table 2.
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