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Abstract

Newer incarnations of the Universal De-
pendencies (UD) resources feature rich
morphological annotation on the word-
token level as regards tense, mood, aspect,
case, gender, and other grammatical infor-
mation. This information, however, is not
aligned to any part of the word forms in
the data. In this work, we present an al-
gorithm for inferring this latent alignment
between morphosyntactic labels and sub-
strings of word forms. We evaluate the
method on three languages where we have
manually labeled part of the Universal De-
pendencies data—Finnish, Swedish, and
Spanish—and show that the method is ro-
bust enough to use for automatic discov-
ery, segmentation, and labeling of allo-
morphs in the data sets. The model allows
us to provide a more detailed morphosyn-
tactic labeling and segmentation of the UD
data.

1 Introduction

Recent versions of Universal Dependencies (UD)
(Nivre et al., 2017) provide not only part-of-
speech labeling, but also universal lexical and in-
flectional features on most word forms. Table 1
illustrates a few example words from the three ex-
periment languages used in this paper.1

A noteworthy aspect of this layout of the data is
that it provides for an interesting inference prob-
lem in the realm of weakly supervised learning
of inflectional morphology.2 First, we note that

1We have deviated slightly from the original annotation,
incorporating the lemma as a feature for each word, the need
for which will be explained in the technical portion of the
paper.

2A similar annotation is provided in the SIGMORPHON
shared task (Cotterell et al., 2016a) data set, although without
implicit token frequency information since the data comes in
the form of inflection examples mostly from Wiktionary.

the feature-value pairs in the annotation corre-
spond mostly to individual allomorphs in the sur-
face form of the word. For example, in the Span-
ish word asignados (Table 1), a standard analysis
would be that the asign- part corresponds to the
stem, the -ad- corresponds to VerbForm=Part
and Tense=Past, the -o- to Gender=Masc
and the -s to Number=Plur. The inference
problem is then: given many annotated word
forms with morphosyntactic features which are
not matched to any substrings in the word, find
a globally satisfactory segmentation of all word
forms and associate the morphosyntactic labels in
each word with these segmented substrings.

2 Related Work

Morphological segmentation, particularly in unsu-
pervised scenarios, is a standard problem in NLP,
and has been explored in numerous works (Gold-
smith (2001), Creutz and Lagus (2005), Poon et
al. (2009), Dreyer and Eisner (2011) inter alia).
We recommend Ruokolainen et al. (2016) for an
overview. Likewise, semi-supervised, or mini-
mally supervised models—where the supervision
usually implies access to some small number of
segmented words—have also been widely inves-
tigated (Dasgupta and Ng, 2007; Kohonen et al.,
2010; Grönroos et al., 2014; Sirts and Goldwater,
2013). Many approaches also take advantage of a
semantic signal, or a proxy for semantic similarity
between words such as Latent Semantic Analysis
(Schone and Jurafsky, 2000) or its more modern
counterpart, word embeddings (Soricut and Och,
2015). The specific formulation of an inference
problem like the one presented in this paper has
to our knowledge not been directly addressed pre-
viously, probably due to the necessity of anno-
tated resource schemas such as those present in
UD 2.0. A related problem, dealt with in Cotterell
et al. (2016b) and Kann et al. (2016), concerns si-
multaneous segmentation and canonicalization—
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Finnish jäällä Noun|Lemma=jää|Case=Ade|Number=Sing
Spanish asignados Verb|Lemma=asignar|Gender=Masc|Number=Plur|Tense=Past|VerbForm=Part
Swedish innebär Verb|Lemma=innebära|Mood=Ind|Tense=Pres|VerbForm=Fin|Voice=Act

Table 1: Examples of the modified UD annotations used for inference of segmentation and labeling.

a task where allomorphs are both segmented and
rendered as a single canonical form, e.g. commu-
nism 7→ commune ism. This task was addressed
in an entirely supervised scenario, however, and so
the results are not directly comparable.

3 The Segmentation and Labeling
Problem

As implied above, the current labeling of the UD
data provides significant constraints and a supervi-
sion signal that can guide us in the inference pro-
cess. One strong linguistically informed bias is
that labels, i.e. abstractions of morphemes such
as Number=Sing, Gender=Masc, should be
assigned to substrings in such a way as to co-
occur only with a small number of distinct strings
throughout the data. This corresponds to the idea
that each morpheme be realized as a limited num-
ber of distinct allomorphs. For example, the En-
glish pluralizer morpheme by and large occurs as
only three allomorphs, -s,-es, ∅. Another intuition
is the inverse of the previous one: that each al-
lomorph only co-occur with a limited number of
labels. For example, the -s allomorph in English
serves mainly two distinct functions: a pluralizer
and the third person present tense marker. We ex-
pect rampant ambiguity not to be present in the
morphology of a language. On the whole, since
most labels are seen a large number of times, we
can develop a model that leverages this informa-
tion to favor correspondences that are systematic
in the data. Figure 1 illustrates a linguistically
sound correspondence over several word forms
that involve two stems in Spanish.

The intuition behind our model is that we’d like
to find a segmentation of all words in the data into
constituent allomorphs, and provide a label for
each allomorph that fulfills the properties above.
To perform this, we take advantage of the fact that
we already know which morphemes (feature-value
pairs) are present in each word (although some of
these labels will correspond to null allomorphs).

In general, we want to explore the space of all
possible segmentations and labelings in the data
and find one that optimizes some objective func-

cambia cambian cambiarán hablarán

cambiar Ind Pres hablarPlur FutSing

Figure 1: Morphosyntactic features are assigned correspond-
ing substrings where re-use of the same label-substring cor-
respondences is encouraged by the model. Note that some
labels (such as Sing here) can be assigned to empty sub-
strings.

tion C, based on the above observations. A given
proposal segmentation S and labeling F of the
data gives us a joint distribution PS,F over pairs
of substrings s ∈ Σ∗ and labels l ∈ Y , where Y
is the set of labels (feature-value pairs) used in the
data. We can formalize a cost function C(S, F )
based on the distribution P(S, F ). This cost func-
tion could take many linguistically motivated spe-
cific forms: simply minimizing the total number
of resulting distinct allomorphs in the data, mini-
mizing the joint entropy of the labels and the al-
lomorphs, maximizing the mutual information of
the allomorphs and the labels, etc. Below, we use
a specific cost function that maximizes a measure
of symmetric conditional probability between seg-
ments and labels.

4 Model

4.1 Definitions
Let D = {(x1, y1), ..., (xk, yk)} be a collection of
word forms xi and sets of associated morphologi-
cal features yi, for example

dogs {lemma=dog,num=plural}
As explained in Section 3, we learn a segmen-
tation S = {s1, ..., sk} of words in D, where
each si = (sii ...s

i
n) is a segmentation of word xi

into substrings, and a set of feature assignments
F = {fi : yi → si|1 ≤ i ≤ k} of morphological
features in yi onto substrings in si.

Because of the existence of unmarked morpho-
logical features, such as singular number of nouns
in English, we have to allow assignment of mor-
phological features to a zero morpheme. We ac-
complish this by adding an empty substring to
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each segmentation.
Each segmentation and label assignment of the

data setD defines joint counts c(s, f) of substrings
s and morphological features f as in Equation 1.

c(s, f) = ‖{sij |sij = s and fi(f) = sij}‖ (1)

Using c(s, f) we express the probability of the
co-occurrence of a feature and substring in Equa-
tion 2.

P(s, f) ∝ c(s, f) + αB(s, f) (2)

The function B in Equation 2 expresses a prior
belief about the joint counts of segments and la-
bels, and hyper-parameter α controls the weight
of the prior information (Goldwater and Griffiths,
2007). A large α will result in P(s, f) which very
closely reflects the prior belief while a smaller α
lets P adapt more closely to the current segmenta-
tion and label assignment. We set α to 0.1 in all
experiments.

We use the joint distribution of substrings and
labels in the unsegmented data set D as prior in-
formation. Thus B(s, f) = #(s, f)/#(f), where
#(s, f) is the count of substrings s in words with
morphological feature f and #(f) is the count of
feature f in D.

For lemma features, for example lemma=dog,
we add an additional factor to the co-occurrence
probability P(s, f) as shown in Equation 3. The
quantity d(s, f) represents the edit distance of the
substring s and the lemma corresponding to f . For
example, d(do,lemma=dog) = 1. This allows us
to model the fact that the stem and lemma of a
word form often share a long common substring.

P(s, f) ∝ (c(s, f) + αB(s, f)) · 2−d(s,f) (3)

4.2 Objective Function
Our objective function is the symmetric condi-
tional probability over segments s and morpholog-
ical features f defined by Equation 4

C(S, F ) =
∏

s∈Σ∗,f∈Y
P(s|f)P(f |s) (4)

Symmetric conditional probability was intro-
duced by da Silva et al. (1999) for multi-word
expression extraction. The measure is intuitively
appealing for our purposes since it is maximized
when each morphological feature is associated
with exactly one allomorph, and this allomorph, in

turn, only occurs with the specific morphological
feature.3

4.3 Inference
The space of possible segmentations and label as-
signments to each allomorph segment is very large
except for toy data sets. Therefore, an exact so-
lution to the optimization problem presented in
Section 4.2 is infeasible. Instead, we use Gibbs
sampling to explore the space of possible segmen-
tations S and feature assignments A of our data
set D with the intent of finding the segmenta-
tion Smax and assignment Amax which maximize
the symmetric conditional probability of segments
and features.

Gibbs sampling in this context proceeds by
sampling a new segmentation S′ and assignment
A′ from the current segmentation S and assign-
ment A, and then either rejecting the old segmen-
tation and assignment in favor of the new one
with probability (C(A′, S′)/C(A,S))β , or keeping
the old segmentation and assignment. We set the
hyper-parameter β to 2 in all experiments and run
the Gibbs sampler on the data setD until the value
of the objective function C has converged.

A new segmentation S′ and label assignmentA′

can be sampled from an existing segmentation S
and assignment A in two steps. First, randomly
choose a word xi from the data set. Using its
current segmentation si in S, form the set of new
segmentation candidates C by (1) joining two seg-
ments in si, (2) splitting one of the segments in si,
or (3) moving a segment boundary in si one step to
the left or right. The set C is illustrated in Figure
2.4 Then randomly sample a new segmentation c
from C.

Next, assign the labels in yi to the segments of
c in the following way. Iteratively, choose the sub-
string s ∈ c and feature f ∈ yi of maximal sym-
metric conditional probability P (s|f)P (f |s), pro-
vided that no features have yet been assigned to s,
and f has not been assigned to a substring. When
each substring in c has been assigned exactly one
label, assign remaining labels to substrings in c
which maximize the symmetric conditional prob-
ability.

3This is, of course, not true in general because morphemes
often have more than one allomorph. Nevertheless, the num-
ber of allomorphs is small for most stems and affixes.

4We assume that every non-empty segment has a corre-
sponding morphological feature. Therefore, we filter out seg-
mentations where the number of segments exceeds the num-
ber of morphological features yi for the given word xi.

142



(a)
Finnish Spanish Swedish

Recall 87.43 84.38 88.71
Precision 94.63 88.63 94.01
F1-score 90.89 86.45 91.28

Morfessor baseline

Recall 80.65 81.32 90.82
Precision 76.92 73.64 75.58
F1-score 78.74 77.29 82.50

(b)
Finnish Spanish Swedish

Recall 62.79 50.10 55.87
Precision 71.06 54.22 61.82
F1-score 66.67 52.08 58.69

Morfessor baseline

Recall 30.51 25.93 44.13
Precision 28.45 22.24 32.92
F1-score 29.45 23.94 37.71

(c)
Finnish Spanish Swedish

Recall 80.07 73.49 88.26
Precision 90.62 79.54 97.66
F1-score 85.02 76.39 92.73

Morfessor baseline

Recall 74.96 48.34 83.10
Precision 69.90 41.47 62.00
F1-score 72.34 44.64 71.01

Table 2: Results for (a) morpheme boundaries; (b) unlabeled morphemes; (c) labeled morphemes.

do+gs

dog+s

dogsdo+g+s

d+o+gs

d+ogs
move

split

split

join

move

Figure 2: The set of new segmentation candidates for word
dogs given the old segmentation do+gs. Each of the new
segmentations is equally probable.

5 Experiments

We conduct experiments by running Gibbs sam-
pling on words and morphological labels in the
combined training and test data (without manual
segmentations and label assignments). We then
compare the segmentations and label assignments,
discovered by the system, with the manually pre-
pared annotations in the test data.

5.1 Baseline

As a baseline, we use the Morfessor system
(Creutz and Lagus, 2005) for unsupervised seg-
mentation.5 We then assign labels to substrings as
explained in Section 4.3. However, as we cannot
control the number of segments given by Morfes-
sor, we may end up with substrings to which we
cannot assign morphological features. This hap-
pens in the case where the number of substrings
given by Morfessor exceeds the number of mor-
phological features for the word.

5.2 Data and Evaluation

We use three treebanks from the Univer-
sal Dependency v1.4 resource for experi-
ments: UD-Finnish, UD-Spanish and

5We use revision 4219fbcc27ee0f5e3a4dca8de9f7ffc7a5bfe5e0 of
https://github.com/aalto-speech/morfessor and default settings
for all hyperparameters.

UD-Swedish. We use the first 10,000 word
forms from the training sets of each treebank for
training (these contain 5,892 unique word forms
for Finnish, 3,624 unique word form for Swedish
and 4,092 unique word forms for Spanish) and
the first 300 words from the test sets of each tree-
bank for testing (these contain 253 unique word
forms for Finnish, 172 unique word forms for
Swedish and 278 unique word forms for Spanish).
Punctuation and numbers were excluded from the
training and test sets.

We remove a number of UD labels which do
not express morphological categories, for example
style=arch and abbr=yes.6

The test sets were manually segmented and
morphological features were manually assigned
to the segments by competent language speakers.
The average number of morphemes per word in
the test sets are 1.9 for Finnish, 1.7 for Spanish
and 1.4 for Swedish, respectively.

We evaluate our system with regard to recall,
precision and F1-score for (1) morpheme bound-
aries including word boundaries, (2) unlabeled
morphemes, and (3) labeled morphemes. In the
case of labeled morphemes, a single substring can
be counted multiple times if it has been assigned
multiple morphological features. That is, even
when the system fails to predict some of the mor-
phological features correctly for a given substring,
it will still receive a score for the features it did
manage to predict correctly.

5.3 Results

Results are shown in Figures 2 (a), (b), and (c).
The advantage given by leveraging the weak la-
beling in UD is visible in that the proposed sys-
tem clearly outperforms the unsupervised Morfes-
sor baseline for all languages.

Results for labeled morphemes are substantially
6Our data sets and code are publicly available at https:

//github.com/mpsilfve/ud-segmenter.
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better than for unlabeled morphemes because the
same substring can be scored as correct multiple
times if it is associated to several morphologi-
cal features. Moreover, the F1-score for labeled
morphemes is computed over both non-empty and
empty substrings because morphological features
can be realized as a zero morpheme. In contrast,
the unlabeled morpheme F1-score only considers
non-empty substrings—i.e. the unlabeled segmen-
tation is not rewarded for declaring empty allo-
morphs.

Overall, our system performs well on Finnish
and Swedish but performance is markedly worse
on Spanish—although an error analysis reveals
that many of the incorrect segmentations in Span-
ish are linguistically defensible.

6 Discussion & Future Work

The system is immediately deployable for all UD
languages and provides a segmentation and label-
ing of allomorphs, which may be useful for other
downstream tasks. While the segmentation is not
linguistically perfect, it is consistent. We also note
that in many cases it is not linguistically clear-cut
where morpheme boundaries should be drawn. An
illustrative example is provided by Spanish verb
forms where the infinitive, future, and conditional
forms always contain an -ar, -er, or -ir substring,
e.g. hablar, comer, vivir. Traditionally, the verb
stem itself is not assumed to include these since,
for example, subjunctive and some preterite forms
surface without the vowel or the r: hablé, comı́a,
viva. From an information-theoretic point of view,
it is unclear which stem shape is an appropriate
linguistic choice to declare. This is due to the fact
that most witnessed forms in the data retain at least
the vowel because present indicative forms are
quite frequent, e.g. hablan (3P-PL) or hablamos
(1P-PL), etc. Indeed, our algorithm chooses to
include the vowel, probably because of the over-
whelming frequency of present tense forms.

Our algorithm generally performs quite well on
Finnish, however, there are a number of prob-
lematic morphological features which cause seg-
mentation errors. For example, plural number for
nouns, adjectives and pronouns is a source of er-
rors. In Finnish, plural number in nouns and ad-
jectives is realized by three different affixes -i-, -j-
and -t. Pronouns are also marked for number in
the UD data set but these affixes are not present
in pronouns. Instead, plural number is realized as

the zero morpheme in our gold standard segmen-
tation. This means that there is a large number
of different realizations for plural number, which
may explain the fact that our system quite often
incorrectly assigns plural number to the zero mor-
pheme. Another problem is caused by illative case
which is realized as -Vn or -hVn where V refers
to the last vowel of the preceding word stem. As
in the case of plural number, this leads to a large
amount of different realizations for illative case.
All of these, nevertheless, share the final suffix -
n. Therefore, our system often prefers to drop all
non-final characters and incorrectly marks illative
case as -n.

The most frequent error in the Swedish data
set is that the definite noun markers (-en, -et, -
n) and adjective markers (-a) are assigned to the
zero morpheme. This may be related to the fact
that pronouns, which are quite common in the data
set, are marked for definiteness but do not always
carry the same affixes as nouns. For example,
the Swedish pronoun dessa is definite but carries
none of the definiteness markers for nouns. This
can most likely be addressed by invoking sepa-
rate models per part of speech so that the model
is not confused by similar suffixes occurring with
entirely different tags.

The majority of segmentation errors seem stem
from the tendency of the SCP scoring to strongly
prefer one-to-one correspondences between allo-
morphs and morphological features. Situations
where a morphological feature can be realized by
a large number of different allomorphs present
problems. At the present time, solving these
problems remains future work. To this end, we
plan to experiment with different cost functions
as the SCP appears to perform best on aggluti-
native languages where the one-to-one assump-
tion holds stronger than for fusional languages.
Likewise, root-and-pattern morphologies, such as
found in the Semitic languages, have not been con-
sidered here since this would require permitting
that allomorphs be discontinuous in a word form.
Extending the model to handle such phenomena
is straightforward, but requires associating labels
with subsequences instead of substrings, which in
turn greatly enlarges the search space, and requires
efficiency improvements in the sampler to be able
to handle large data sets where discontinuous mor-
phemes are present.
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