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Abstract

This paper introduces an Intelligent Com-

puter Assisted Language Learning system

designed to provide reading input for lan-

guage learners based on the syntactic com-

plexity of their language production. The

system analyzes the linguistic complexity

of texts produced by the user and of texts

in a pedagogic target language corpus to

identify texts that are well-suited to foster

acquisition. These texts provide develop-

mental benchmarks offering an individu-

ally tailored language challenge, making

ideas such as Krashen’s i+1 or Vygotsky’s

Zone of Proximal Development concrete

and empirically explorable in terms of a

broad range of complexity measures in all

dimensions of linguistic modeling.

1 Introduction

The analysis of linguistic complexity is a promi-

nent endeavor in Second Language Acquisition

(SLA) where Natural Language Processing (NLP)

technologies are increasingly applied in a way

broadening the empirical foundation. Automatic

complexity analysis tools such as CohMetrix (Mc-

Namara et al., 2014), the L2 Syntactic Complexity

Analyzer (Lu, 2010), and the Common Text Anal-

ysis Platform (Chen and Meurers, 2016) support

studies analyzing interlanguage development (Lu,

2011; Lu and Ai, 2015; Mazgutova and Kormos,

2015), performance evaluation (Yang et al., 2015;

Taguchi et al., 2013), and readability assessment

(Vajjala and Meurers, 2012; Nelson et al., 2012).

In this paper, we introduce a new system

called Syntactic Benchmark (SyB) that utilizes

NLP to create syntactic complexity benchmarks

This work is licensed under a Creative Commons Attribu-
tion 4.0 International License. License details: http://
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and identify reading material individually chal-

lenging learners, essentially instantiating the next

stage of acquisition as captured by Krashen’s con-

cept of i+1 (Krashen, 1981) or relatedly, but em-

phasizing the social perspective, Vygotsky’s Zone

of Proximal Development (ZPD; Vygotsky, 1976).

In terms of structure of the paper, we first locate

our approach in terms of the Complexity, Accu-

racy, and Fluency (CAF) framework in SLA re-

search. Then we review approaches adopted by

earlier studies in developmental complexity re-

search, including problems they pose for a peda-

gogical approach aimed at offering developmental

benchmarks. We propose and justify a solution,

before presenting the architecture and functional-

ity of the SyB system.

2 Development of Syntactic Complexity

The three-part model of development distinguish-

ing Complexity, Accuracy, and Fluency has gained

significant popularity among SLA researchers

(Wolfe-Quintero et al., 1998; Skehan, 2009;

Housen et al., 2009; Bulté and Housen, 2012)

since it was first delineated by Skehan (1989). It

provides SLA researchers with a systematic and

quantitative approach to development. Among

the CAF triplet, complexity arguably is the most

researched and most “complex” due to its poly-

semous and multidimensional nature (Bulté and

Housen, 2012; Vyatkina et al., 2015). Complex-

ity in the SLA literature has been used to refer to

task, cognitive, or linguistic complexity (Housen

et al., 2009). In the present paper, we investigate

complexity from a linguistic perspective, where it

is concisely characterized by Ellis (2003) as “the

extent to which language produced in performing

a task is elaborate and varied”. While the lin-

guistic complexity construct consists of a range of

sub-constructs at all levels of linguistic modeling,

such as lexical, morphological, syntactic, seman-

tic, pragmatic and discourse (Lu, 2010; Lu, 2011;
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Lu and Ai, 2015; Ortega, 2015; Mazgutova and

Kormos, 2015; Jarvis, 2013; Kyle and Crossley,

2015), the focus in this paper is on syntactic com-

plexity.

In line with Ellis’s (2003) definition of linguis-

tic complexity, Ortega (2003) characterized syn-

tactic complexity as the range of syntactic struc-

tures and the elaborateness or degree of sophistica-

tion of those structures in the language production,

which we adopt as the operational definition in this

paper. The uses of syntactic complexity analysis in

SLA research include (i) gauging proficiency, (ii)

assessing production quality, and (iii) benchmark-

ing development (Ortega, 2012; Lu and Ai, 2015).

The development of syntactic complexity in

language produced by learners is closely related

to the learner’s proficiency development. While

the goal of language acquisition is not as such

to produce complex language, advanced learners

usually demonstrate the ability to understand and

produce more complex language. With increasing

proficiency, the learners are expanding their syn-

tactic repertoire and capacity to use a wider range

of linguistic resources offered by the given gram-

mar (Ortega, 2015), thus producing “progressively

more elaborate language” and “greater variety of

syntactic patterning”, constituting development in

syntactic complexity (Foster and Skehan, 1996).

As a result, syntactic complexity is often used to

determine proficiency or assess performance in the

target language (Larsen-Freeman, 1978; Ortega,

2003; Ortega, 2012; Vyatkina et al., 2015; Wolfe-

Quintero et al., 1998; Lu, 2011; Taguchi et al.,

2013; Yang et al., 2015; Sotillo, 2000).

Besides the practical side of performance as-

sessment and placement, in SLA research the de-

velopmental perspective is considered to be “at

the core of the phenomenon of L2 syntactic com-

plexity” (Ortega, 2015). However, it is also the

least addressed and understood phenomenon of

syntactic complexity in SLA research (Vyatkina

et al., 2015; Ortega, 2012). Understanding the

development of syntactic complexity would en-

able SLA researchers to determine trajectories of

the learners’ development and set benchmarks for

certain time points or across a given time span.

On the practical side, such work could help lan-

guage teachers select or design appropriate learn-

ing materials, and it can provide a reference frame

for testing the effectiveness of instructional inter-

ventions. Hence researching syntactic complex-

ity from a developmental perspective is of far-

reaching relevance and applicability.

2.1 Development of Syntactic Complexity in

Learner Corpora

A number of longitudinal and cross-sectional stud-

ies have been conducted to investigate the rela-

tionship between syntactic complexity and learner

proficiency, aimed at finding (i) the most informa-

tive complexity measures across proficiency lev-

els (Lu, 2011; Ferris, 1994; Ishikawa, 1995), (ii)

the patterns of development for different syntac-

tic measures (Bardovi-Harlig and Bofman, 1989;

Henry, 1996; Larsen-Freeman, 1978; Lu, 2011),

or (iii) discovering a developmental trajectory of

syntactic complexity from the learner production

(Ortega, 2000; Ortega, 2003; Vyatkina, 2013; Vy-

atkina et al., 2015).

With a few exceptions (Vyatkina, 2013; Tono,

2004), one thing these studies have in common

is that they analyze the syntactic complexity de-

velopment of learners based on their production.

This seems natural since it investigates complex-

ity development by analyzing the production of

the developing entity, i.e., the learners. In prin-

ciple, a longitudinal learner corpus with a contin-

uous record of productions from individual learn-

ers over time would seem to enable us to deter-

mine the developmental trajectory and linguistic

complexity benchmarks. However, this approach

encounters some challenges that make it subopti-

mal for determining developmental benchmarks in

practice.

First, the approach is dependent on learner cor-

pora varying significantly on a number of param-

eters such as the learners’ background, the tasks

eliciting the production, and the instructional set-

tings, etc. Significant effects of such factors on the

syntactic complexity of learner writing have been

identified in a number of studies (Ellis and Yuan,

2004; Lu, 2011; Ortega, 2003; Sotillo, 2000; Way

et al., 2000; Yang et al., 2015; Alexopoulou et al.,

2017). Consequently, the developmental patterns

or benchmarks constructed from different learner

corpora, elicited using different tasks, etc. are

likely to vary or even contradict each other. For ex-

ample, the correlation between subordination fre-

quency and proficiency level have been found to

be positive (Aarts and Granger, 1998; Granger and

Rayson, 1998; Grant and Ginther, 2000), negative

(Lu, 2011; Reid, 1992), or uncorrelated (Ferris,
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1994; Kormos, 2011). It is difficult to build on

such conflicting findings in practice.

Second, the NLP tools used for the automatic

complexity analysis do not work equally well

when applied to the language produced by learners

at varied proficiency levels. Complexity analysis

is currently performed using tools developed for

different analysis needs (McNamara et al., 2014;

Lu, 2010; Kyle and Crossley, 2015; Chen and

Meurers, 2016). They enable fast and robust anal-

ysis of large corpora, in principle making the con-

clusions drawn from these analyses more power-

ful. However, analyzing learner data can pose sig-

nificant challenges to the NLP components, which

were usually developed for and tested on edited

native language, as found in newspapers. While

some NLP tools were shown to be quite reliable

for analyzing the writing of learners at upper in-

termediate proficiency or higher (Lu, 2010; Lu,

2011), their robustness for lower-level writing or

for some types of task (e.g., not providing reli-

able sentence delimiting punctuation) is question-

able, requiring dedicated normalization steps and

conceptual considerations (Meurers and Dickin-

son, 2017). This may well be why developmen-

tal profiling has rarely been done for learner lan-

guage below upper-intermediate proficiency lev-

els, as Ortega and Sinicrope (2008) observed. This

currently limits the possibility of determining de-

velopmental benchmarks or trajectories across the

full range of proficiency levels.

Last but not least, second language proficiency

development is systematically affected by individ-

ual differences, making complexity research find-

ings from learner data chaotic and hard to gen-

eralize. For example, Vyatkina et al. (2015) ob-

served a “non-linear waxing and waning” (p. 28)

for different modifier categories in a longitudi-

nal learner corpus. Norrby and Håkansson (2007)

identified four different types of morphosyntactic

complexity development in a corpus of Swedish

adult learner language, referred to as “the Care-

ful”, “the Thorough”, “the Risk-taker”, and “the

Recycler”. The analysis of morphological devel-

opment in English L2 acquisition presented by

Murakami (2013; 2016) also highlights the im-

portance of accounting for individual variation in

modeling L2 development. As a result, given

the current state of affairs and without complex

models integrating a range of factors, develop-

mental benchmarks based on learner corpora are

of limited practical use for proficiency placement

or performance assessment. Naturally this does

not mean that research into developmental patterns

based on learner corpora is not important or rel-

evant for SLA. On the contrary, the dynamic and

adaptive nature of language acquisition means that

it is challenging and interesting to approach lan-

guage development in a way accounting for in-

dividual differences (Larsen-Freeman, 2006; Ver-

spoor et al., 2008; Verspoor et al., 2012), task ef-

fects (Alexopoulou et al., 2017), and other factors.

For benchmarking and developmental tool devel-

opment it is useful to look for a more stable data

source though.

2.2 Developmental Benchmarks of

Complexity in a Pedagogic Corpus

Considering the challenges just discussed, we ex-

plore the analysis of syntactic complexity in peda-

gogic language corpora compiled from well-edited

target language (TL). A pedagogic TL corpus is a

corpus “consisting of all the language a learner has

been exposed to” (Hunston, 2002), or more real-

istically “a large enough and representative sam-

ple of the language, spoken and written, a learner

has been or is likely to be exposed to via teach-

ing material, either in the classroom or during self-

study activities” (Meunier and Gouverneur, 2009).

An optimal TL corpus for benchmarking syntac-

tic complexity development would be one that in-

cludes texts targeting learners at any proficiency

level, i.e., covering the full spectrum.

The advantages of a pedagogic corpus for devel-

opmental benchmarking are two-fold: First, peda-

gogic corpora can be constructed to exhibit a linear

development of complexity measures, as shown by

Vyatkina (2013) and confirmed here later. While

the developmental trajectory in learner produc-

tions is “bumpy” and influenced by individual dif-

ferences, task, and other factors discussed earlier,

the pedagogic corpus can be written in a way tar-

geting increased linguistic complexity. This is de-

sirable if one wants the class to follow an instruc-

tional progression enriching grammatical forms in

line with the pedagogic input they receive (Vy-

atkina, 2013). Pedagogically, it should be easier

for language teachers to select instructional ma-

terials based on a linear benchmark of linguistic

complexity, especially if one has evidence of the

students’ proficiency using that same scale.

Second, the problem of the NLP tools being
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challenged by learner language, especially that of

the low-proficiency learners, is avoided since ped-

agogic corpora contain texts with grammatically

well-formed and edited articles. Considering the

high accuracy of current NLP for such text ma-

terial, the developmental benchmark constructed

from a pedagogic corpus using automatic com-

plexity analysis tools should be highly reliable.

It should be acknowledged that no benchmark-

ing system can avoid analyzing learner language if

the system is used for proficiency placement pur-

poses (unless additional, external language tests

are used). However, complexity benchmarks con-

structed based on a TL corpus are more reliable

than a comparison with a benchmark computed

based on learner corpora. If the NLP tools fail to

process the learner production to be compared to

the benchmark because of grammar errors, result-

ing in placing the student on a lower level of the

TL benchmark, the placement in a sense still is in-

dicative of the aspect of the learner language that

needs to be improved.

In sum, the above review suggests that a de-

velopmental perspective to syntactic complexity

aimed at teaching practice can be meaningfully ap-

proached with the assistance of a pedagogic cor-

pus consisting of texts targeting learners in a wide

spectrum of language proficiency. In the following

section, we will introduce an NLP-based system

based on this idea.

3 The Syntactic Benchmark System

Syntactic Benchmark (SyB) is an Intelligent Com-

puter Assisted Language Learning (ICALL) sys-

tem that analyzes the syntactic complexity of a text

produced by a learner and places the text onto a de-

velopmental scale constructed from a comprehen-

sive pedagogic corpus. The system aims at help-

ing learners place the syntactic complexity level of

their writings with regard to the pedagogic bench-

mark and identify the syntactic areas where further

improvement is needed. The system is able to vi-

sualize the developmental benchmark for different

syntactic complexity measures and the learner’s

position on the benchmark for the selected com-

plexity index. Based on the complexity level of

the user’s language output, SyB then proposes ap-

propriately challenging texts from the pedagogic

corpus. Reading these texts providing “i+1” in-

put should help the user advance in language pro-

ficiency. The size of the “+1”, i.e., the degree of

the challenge and the overall proficiency level that

the learner assumes being at currently are manu-

ally specified by the user.

Figure 1 shows the Data Window, into which

the learner enters a text they wrote to identify its

level in terms of syntactic complexity in relation to

the TL benchmark corpus. In Figure 2, we see the

Visualization Window providing the result of the

analysis for the selected complexity feature (here,

the Mean Length of Clause measure). The box-

plots show the results for each text in each level in

the TL benchmark corpus, and a red line indicates

the measure’s value for the learner text. Selecting

the “Challenge” button leads to the Search Result

Window shown in Figure 3. It provides a search

result list with links to TL articles intended as i+1

input material for the learner. The texts are slightly

above the level of the learner text in terms of the

selected complexity measure, with the degree of

the challenge being determined by the user setting.

The learner also specifies the overall proficiency

level they assume to be in so that the text chal-

lenging them in terms of the selected complexity

measure is selected from the pool of texts intended

for that overall proficiency level.

In the following, we take a closer look at the

SyB components.

3.1 The Pedagogic Corpus

The pedagogic TL corpus used for constructing

the syntactic complexity benchmark consists of

14,581 news articles from the educational website

Newsela1, which is a website that provides news

articles on a wide range of topics. Each article on

the website is adapted into five reading levels (in-

cluding an “original” level, which is the article in

its unadapted form) by human editors. Newsela

uses the Lexile Framework (Lexile, 2007) for text

leveling and provides a grade to Lexile mapping

for converting from Lexile scores to US grade lev-

els. Since the grade level is easier to understand

for most users, the SyB system uses grade levels

as benchmarking levels. For copyright reasons,

the SyB system does not store the original articles

from Newsela. It only keeps records of the com-

plexity statistics of the articles and the Search Re-

sult Window provides the results in terms of links

to the text on the Newsela web site.

1https://newsela.com
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Figure 1: The Data Window of the Syntactic Benchmark Analyzer, where users can paste a composition

to identify their level in relation to the TL benchmark corpus

Figure 2: The Visualization Window showing the users’ level (red line) for the selected syntactic com-

plexity measure (here: Mean Length of Clause) in relation to the TL benchmark corpus
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Figure 3: The Search Result Window supporting selection of TL articles based on the learner produc-

tion’s syntactic complexity level (and user-specified degree of challenge and overall target grade level)

3.2 NLP Processing

Each article in the Newsela TL reading corpus was

processed with an NLP pipeline consisting of a

sentence segmenter, a tokenizer and a parser from

the Stanford CoreNLP Toolkit library (Manning et

al., 2014). Tregex (Levy and Andrew, 2006), a

utility for tree pattern matching, was used to ex-

tract syntactic units such as coordinate phrases,

clauses, and T-units from the parse tree of a sen-

tence.

We used the Tregex patterns of Lu’s (2010)

L2 Syntactic Complexity Analyzer and calculated

the same set of 14 syntactic indices suggested in

his study (p. 479, Table 1). This set of syntac-

tic features have also been used in developmen-

tal syntactic complexity studies and proved to be

valid and reliable (Larsen-Freeman, 1978; Ortega,

2003; Wolfe-Quintero et al., 1998). The SyB sys-

tem currently uses a replication of Lu’s processing

pipeline, which was shown to have achieved a very

high level of reliability in a number of studies (Lu,

2010; Lu and Ai, 2015; Yang et al., 2015; Ai and

Lu, 2013; Lu, 2011).

In future work, we plan to integrate the broad

range of linguistic complexity measures offered by

our Common Text Analysis Platform (Chen and

Meurers, 2016).

3.3 Benchmarking and Challenging

For each of the 14 syntactic measures, a bench-

mark box plot of the measure values by grade level

was created. Whenever the user pastes or enters

a representative production and chooses the mea-

sure they are interested in, the SyB system calcu-

lates the chosen measure value from the user text

and draws a horizontal red line across the bench-

mark box plot to signify the relative position of

the user text’s complexity level on the TL cor-

pus benchmark. Figure 2 shows an example of a

benchmark plot and the learner text as measured

by the same complexity index, Mean Length of

Clause.

The system then selects from the TL corpus

those articles that challenge the user in terms of

specific syntactic complexity as measured by the

user’s choice of complexity indicator. The user is

also given choices of the overall target grade levels

of the texts and the level of challenge they want to

receive (Figure 3). The range of challenge levels

matches the range of the syntactic measure calcu-

lated from the TL corpus. The complete challenge

range is divided into ten sections and controlled

by a range slider with those steps, shown as the

red slider in the top-right corner of Figure 3.

Each article in the Newsela TL reading corpus
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comes with the overall evaluation of reading level

by the editors. Since there is significant overlap

in the range of complexity measure values across

target reading levels, it is useful to let the user de-

termine the overall pool of texts that they want the

system to select from using the selected complex-

ity measure. In SyB, the overall reading level of

the challenge texts is selected using the drop-down

listbox in the top-left corner of Figure 3. The cur-

rent system then only evaluates a single complex-

ity feature of the learner’s production (in the case

of Figure 2, Mean Length of Clauses) and pro-

poses texts at an appropriately challenging levels

based on this single aspect, selected from the pool

of texts at the user-selected overall level.

This is not optimal because whether a text poses

challenges to specific readers also depend on other

factors, such as the lexical complexity, the learn-

ers’ language competence including aspects such

as strategic competence, their world and domain

knowledge, and so forth. An alternative method

we intend to explore in the future is to compute

a broad range of complexity measures using the

NLP from our Common Text Analysis Platform

(Chen and Meurers, 2016) so that each text is rep-

resented by a vector encoding the results for each

complexity measure for that text (which could

also include dimensions for other factors to be

considered, such as measures of the user’s do-

main knowledge for different topics or subject do-

mains). The overall i+1 challenge can then be

computed using a vector distance metric (Manhat-

tan, Euclidean, etc.). Perhaps most attractively,

one could combine the two approaches, with the

vector-based overall comparison replacing the cur-

rent manual setting of the global level determining

the set of texts to be considered, and the challenge

being determined by the user-selected single com-

plexity measure as in the current approach.

The hypothesis behind the overall setup is that

by reading the challenging texts, the users will

“align” (Wang and Wang, 2015) to the target lev-

els of syntactic complexity, hence promoting their

TL proficiency. Whether this hypothesis is correct

and which approach works best for determining

input material appropriately challenging learners

is an empirical question. Answering it should also

provide important insights into the question how

Krashen’s notion of an i+1 (or Vygotsky’s ZPD)

can be operationalized in terms of measurable fea-

tures such as linguistic complexity.

4 Summary and Outlook

This paper introduced the ICALL system SyB for

benchmarking syntactic complexity development

based on a TL corpus. A TL corpus can provide a

consistent, linear, and complete instantiation of in-

cremental complexification for different aspects of

linguistic complexity. Current NLP technologies

are more robust for analyzing such TL corpora

than for analyzing learner corpora. As a result,

syntactic complexity benchmarks in TL corpora

may be more applicable and relevant for instruc-

tional use than models of linguistic complexifica-

tion based on learner corpora, which are harder to

analyze automatically, exhibit significant individ-

ual variation, task effects, and other uncontrolled

factors. However, this hypothesis remains to be

validated empirically in actual teaching practice.

Future research also needs to investigate which

level of challenge for which of the complexity

measures at which domain of linguistic modeling

is most effective at fostering learning, i.e., what

constitutes the best +1 for which aspect of linguis-

tic complexity (for learners with which individ-

ual characteristics). Last but not least, while the

SyB system provides users with options to control

the syntactic complexity and overall reading chal-

lenge levels, the system does not take into account

the gap between the active ability exhibited in pro-

duction and the passive ability used for compre-

hension. The receptive and productive knowledge

were found to differ within learners in a number

of studies (Zhong, 2016; Schmitt and Redwood,

2011).

We plan to empirically evaluate the system’s ef-

fectiveness in providing input individually tailored

to the i+1 in terms of linguistic complexity as a

means to foster learning. It will also be interesting

to compare this kind of individual adaptation of

the complexity of the input based on the complex-

ity analysis of the learner’s production with the in-

put enrichment supported by a teacher-based se-

lection of the constructions targeted to be learned

as supported by the FLAIR system (Chinkina and

Meurers, 2016).

Finally, it will be interesting to enhance the sys-

tem by making the texts it suggests for reading

adaptive not only to what the learner is capable

of producing, but also to how well the learner un-

derstands the articles suggested by the system. We

are currently developing a production task module

where the learner is asked to produce output af-
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ter reading the complexity challenge texts. This

will make it possible to analyze (i) whether there

is uptake of the increasingly complex language be-

ing read and (ii) how the complexification impacts

the user’s comprehension of the challenging texts.

In principle, the system could then be extended to

adapt the subsequent text challenges based on a

combination of these form and meaning factors.
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Fanny Meunier and Céline Gouverneur. 2009. New
types of corpora for new educational challenges:
Collecting, annotating and exploiting a corpus of
textbook material. In Karin Aijmer, editor, Corpora
and Language Teaching, pages 179–201. John Ben-
jamins, Amsterdam.

Detmar Meurers and Markus Dickinson. 2017. Ev-
idence and interpretation in language learning re-
search: Opportunities for collaboration with com-
putational linguistics. Language Learning, 67(2).
http://dx.doi.org/10.1111/lang.12233.

Akira Murakami. 2013. Individual Variation and the
Role of L1 in the L2 Development of English Gram-
matical Morphemes: Insights From Learner Cor-
pora. Ph.D. thesis, University of Cambridge.

Akira Murakami. 2016. Modeling systematicity and
individuality in nonlinear second language develop-
ment: The case of english grammatical morphemes.
Language Learning, 6(4):834–871.

Jessica Nelson, Charles Perfetti, David Liben, and
Meredith Liben. 2012. Measures of text difficulty:
Testing their predictive value for grade levels and
student performance. Technical report, The Coun-
cil of Chief State School Officers.

Catrin Norrby and Gisela Håkansson. 2007. The in-
teraction of complexity and grammatical process-
ability: The case of swedish as a foreign language.
International Review of Applied Linguistics in Lan-
guage Teaching, 45:45–68.

Lourdes Ortega and C. Sinicrope. 2008. Novice profi-
ciency in a foreign language: A study of task-based
performance profiling on the STAMP test. Technical
report, Center for Applied Second Language Stud-
ies, University of Oregon.

Lourdes Ortega. 2000. Understanding syntactic com-
plexity: The measurement of change in the syntax of
instructed L2 Spanish learners. Unpublished doc-
toral dissertation, University of Hawaii, Manoa, HI.

Lourdes Ortega. 2003. Syntactic complexity measures
and their relationship to L2 proficiency: A research
synthesis of college-level L2 writing. Applied Lin-
guistics, 24(4):492–518.

Lourdes Ortega. 2012. A construct in search of the-
oretical renewal. In B. Szmrecsanyi and B. Kort-
mann, editors, Linguistic complexity: Second lan-
guage acquisition, indigenization, contact, pages
127–155. de Gruyter, Berlin.

Lourdes Ortega. 2015. Syntactic complexity in l2
writing: Progress and expansion. Journal of Second
Language Writing, 29:82–94.

Joy Reid. 1992. A computer text analysis of four cohe-
sion devices in english discourse by native and non-
native writers. Journal of Second Language Writing,
1(2):79–107.

Norbert Schmitt and Stephen Redwood. 2011. Learner
knowledge of phrasal verbs: A corpus-informed
study. In Fanny Meunier, Sylvie De Cock,
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