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Abstract

This paper discusses the importance of com-
puting relative properties and not just retriev-
ing absolute properties when generating geo-
graphic referring expressions such as “north-
ern France”. We describe an algorithm that
computes spatial properties at run-time by
means of spatial operations such as intersect-
ing and analyzing parts of wholes. The evalu-
ation of the algorithm suggests that part-whole
relations are key in geographic expressions.

1 Introduction

This paper discusses the role of spatial operations
in ‘creating’ properties to be used for generating
geographic expressions. For example, we gener-
ate the expression “northern France” by retrieving
the property FRANCE from our knowledge base, and
subsequently computing (or creating) the property
NORTH at run-time. The algorithm we describe in
this article is meant to be used by Natural Language
Generation (NLG) systems (Reiter and Dale, 2000),
especially those in the Data-to-Text family (Reiter,
2007), which automatically write reports in natural
language such as English, given structured data such
as those we typically store in databases. Our domain
is weather forecast and our input data conforms with
that typically found in Geographic Information Sys-
tems (Worboys and Duckham, 2004).

The many algorithms for doing Referring Expres-
sion Generation (REG) as outlined in Krahmer and
Van Deemter (2012) assume that Knowledge Bases
(KBs) exhaustively specify all properties that are in-
herent (i.e. absolute) to entities. The REG style we

propose here is inspired in alternative work (Kelle-
her and Kruijff, 2006; Viethen and Dale, 2008) that
computes relational properties, rather than storing
them in KBs. We base our approach on evidence
observed in human-authored texts, as it shall be ex-
plained in Section 4. The underlying philosophy is
that some properties are absolute, i.e. inherent to
entities, while some properties are relative to other
properties. An example of the relative type of prop-
erties in the spatial domain is the part-whole rela-
tion, henceforth mereology (Cohn and Renz, 2008,
577). For example, a given city will absolutely be a
part of a country (or continent) or not, so the prop-
erties COUNTRY and CONTINENT are absolute. On
the other hand, whether a city lies in the North de-
pends on the area that is chosen as the whole, so the
property DIRECTION is relative to another property.
Paris is in the North of France, but lies in the centre
of Europe. NORTH and CENTRAL are in a mereolog-
ical relation to FRANCE and EUROPE, respectively.

Our approach is very much in line with that pro-
posed by Van Deemter (2002), since we process
sets (not individuals) by computing intersection, a
typical set-theoretic operation. The key difference
from a fully set-theoretic approach is that we also
compute mereological relations. As described in
Sections 2 and 3, our algorithm takes point-based
data and outputs sets of semantic labels such as
(COASTAL u (NORTH, FRANCE)). Such sets can
be further converted into a natural language expres-
sion such as “northern coast of France” or “coast in
northern France” in a full NLG system. The perfor-
mance of our approach is evaluated and discussed in
Section 5.
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2 Concepts Underlying the Algorithm

Before explaining the procedure the algorithm fol-
lows, we first need to look at some background con-
cepts that were implemented in the algorithm.

Descriptors are qualitative labels such as NORTH,
ABERDEEN, HIGH or COASTAL. When construct-
ing objects representing descriptions, we transform
primitive values from the dataset (e.g. eleva-
tion=800m) into descriptor labels (e.g. HIGH).

Frames of Reference assign descriptors to partic-
ular subsets of the data. Frames are relations be-
tween data points and some other spatial entity, us-
ing some measurement. Our model ended up with
two types of frames, depending on how much the
number of relative spatial entities varied:

Absolute Frames are those whose relative spatial
entities are few or only one. For instance,
whether a point lies on high or low ground al-
ways depends (in our domain) on the spatial
entity called ‘sea’ and some arbitrary metric,
such as the distance on the z-axis to that entity.
This allows descriptors to be labelled as HIGH

or LOW, by simply retrieving absolute values
of data points. For example, if all points in a
subset of points have values above 200 for the
property height, a descriptor with label HIGH

is created to describe that subset. To mimic
expressions in our corpus, 3 absolute frames
were implemented: COASTALPROXIMITY ≡
(COASTAL ∧ INLAND), ELEVATION ≡ (HIGH

∧ LOW) and NAMEDAREAS ≡ (ABERDEEN ∧
ABERDEENSHIRE ∧ MORAY).

Relative Frames are those whose relative spatial
entities are too many, which makes it inappro-
priate to list all possible relations as potential
descriptors of that frame. For example, the 3
regions of NAMEDAREAS (see above) can still
be split into compass directions. Assigning a
single direction value such as NORTH to a de-
scriptor is ambiguous, since that will depend on
the area used as reference. Because the direc-
tion of a point in our corpus depends on differ-
ent spatial entities, we modelled DIRECTIONS

as the only relative frame, which contains the

4 cardinal directions (e.g. NORTH) and the 4
inter-cardinal directions (e.g. NORTHEAST)1.

Geocharacterization is the process of mapping
points to descriptors. Geocharacterization creates a
finite set of Frames of Reference such as COASTAL-
PROXIMITY and ELEVATION.

Descriptions are sets of descriptors such as
(NORTH u COASTAL)2 that identify a particular sub-
set of the data. A description never contains more
than one descriptor of the same Frame of Reference.

Intersection is the relation between descriptors of
a description in which only those points that are
common between the descriptors are considered.
For example, the description (NORTH u COASTAL)
means that the subset of points being referred to are
only those that belong to both NORTH and COASTAL.

Mereology is the relation between descriptors of
a description in which a part-whole relation is cre-
ated, where a named descriptor becomes the whole
and a direction descriptor the part. For example,
the description (NORTH, ABERDEENSHIRE) implies
only the subset of ABERDEENSHIRE we can also la-
bel as NORTH. In our approach, we implemented a
4-tile half-panes model (Frank, 1992, 361), where
a bounding box is created around a named area.
Each half of the box becomes a cardinal direction –
the upper half becomes NORTH, the left half WEST,
etc., and the intersections between halves become
the inter-cardinal directions, e.g. NORTHEAST ≡
NORTH u EAST.

The concept of Descriptions is particularly impor-
tant to our approach: they are the representation of
geographic referring expressions and are the output
of the algorithm. A Description such as (NORTH,
COASTAL) can be used by a realiser in an NLG sys-
tem to generate surface expressions such as “north-

1Our dichotomy absolute vs. relative does not align with
Levinson’s relative and absolute frames. We implement frames
as functions and call absolute those functions that take only the
data point as argument (e.g. coastal-proximity(oxford) = in-
land), and we call relative those that take a second argument
(e.g. directions(oxford, uk) = south, but directions(oxford, eu-
rope) = northwest).

2For the sake of readability, when a direction is rela-
tive to the entire region, we omit the relation. The descrip-
tion ((NORTH, WHOLE REGION) u COASTAL) is simplified to
(NORTH u COASTAL).
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(a) Yellow = NORTH, green
= EAST, red = COASTAL

(b) the North, the West and
the coast

(c) the northern coast and
the West

(d) the northern and western
coast

Figure 1: Some interpretations of a description (NORTH ? EAST ? COASTAL). To generate expression 1c,
our approach needs to output 2 descriptions and unify them: (NORTH u COASTAL) t WEST.

ern coasts”, “coasts in the North”, “N coast”, etc.
In our work, we assume such expressions to be sur-
face variations of the same semantic structure. Our
algorithm thus outputs a semantic structure (a De-
scription), not a surface form (an expression).

Slightly different forms of the above concepts
were used in the work of Turner et al. (2010). How-
ever Turner and colleagues limit Frames of Refer-
ence (and the set of Descriptors they are made of) to
be only absolute, i.e. there is only one specific set
of points for each descriptor. Our research, as we
explain in more detail below, has shown that this is
not true for mereological relations. There is also the
danger of selecting content for a referring expres-
sion that is not ideal for surface forms as Horacek
(2004) and Khan et al. (2008) alert. In the work
of Turner and colleagues, descriptions could con-
tain many direction descriptors and the relation be-
tween descriptors was not defined (represented as ?).
This is harmless for expressions such as “the North
and the West”, where the description is (NORTH ?
EAST). The approach becomes problematic when
the final description is (NORTH ? EAST ? COASTAL),
as seen in Figure 1. Possible realizations of this de-
scription are “the North, the West and the coast”, or
“the northern coast and the West”, “the northern and
western coast”, among others. Not knowing the re-
lation between the directions and COASTAL enables
the system to admit any of these realizations as pos-
sible, which could be misleading for a reader. In
this paper, we describe mereology as a key spatial
relation, but surely others exist. The spatial exten-
sion of the Generalized Upper Model (Bateman et
al., 2010) lists internal and external directions, so
NORTH could be internal or external to a named area.

For example, NORTH is internal in “northern Lon-
don” (so a mereological relation exists) but it can be
either internal or external in “North of London”.

It is important to note too that constructing
Frames of Reference (i.e. doing geocharacteriza-
tion) can be influenced by many factors, as sug-
gested by Ramos-Soto et al. (2016), and thus the
number of geocharacterization models could be in-
finite. For instance, the north of regions cannot al-
ways be viewed as the absolute upper half of a re-
gion. What one calls “North” may depend on many
features pertinent to the region. The existence of a
mountain range in the middle of an area could be-
come the boundary between north and south. The
same applies for coastal proximity. The width of a
coastal area may vary depending on the scale with
which one looks at a map. We cannot exclude the
possibility of geocharacterization variation between
individuals either. Therefore we do not claim our
specific geocharacterization to be universal; it sim-
ply enables us to run an algorithm that should re-
flect human behaviour when employing spatial op-
erations to generate geographic referring expres-
sions, while leaving geocharacterization models as
an open and intriguing question. In other words, our
geocharacterization is an assumption, and what we
carefully investigate is the role of spatial operations
in generating geographic expressions.

3 The Algorithm

In this section we explain how our algorithm goes
from point-based data to semantic representations
of geographic referring expressions. The entire pro-
cedure occurs in 2 steps: overgeneration and scor-
ing. The overgeneration step starts with the entire
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A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5
A6 B6 C6 D6 E6 F6

(a) Raw data.

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5
A6 B6 C6 D6 E6 F6

(b) COASTALPROXIMITY.

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5
A6 B6 C6 D6 E6 F6

(c) NAMEDAREAS.

C1 D1 E1 F1

C2 D2 E2 F2

C3 D3 E3 F3

C4 D4

B5 C5 D5 E5 F5
A6 B6 C6 D6 E6 F6

(d) DIRECTIONS.

Figure 2: Hypothetical geocharacterization models for a region. Model A is the raw data representing the
entire region, where the subset {C1, D1, E1, F1, E2, F2} is the target. B represents the COASTALPROX-
IMITY frame, where blue denotes COASTAL and yellow INLAND. C represents the NAMEDAREAS frame,
where blue denotes MORAY, yellow ABERDEENSHIRE and green ABERDEEN. D represents the DIREC-
TIONS frame for ABERDEENSHIRE. Blue denotes northwest, green northeast, orange southwest and yellow
southeast. NORTH is the union of northwest and northeast, EAST the union of northeast and southeast, and
so on.

dataset, which is already tagged with absolute prop-
erties (such as named area and altitude). Its goal is to
produce all possible descriptions for a subset of the
dataset, the target set (e.g. all points where precipita-
tion is observed). At any point, descriptions that do
not overlap with the target subset are rejected. The
overgeneration algorithm functions as follows:

1. Start a list of candidate descriptions by building
single-descriptor descriptions from all absolute
frames.

2. Increment the list of candidates with mereolog-
ical descriptions, i.e. for each NAMEDAREAS

descriptor combine it with each relative de-
scriptor (currently only DIRECTIONS descrip-
tors).

3. Increment the list of candidates with all valid
intersections3 among the current candidate de-
scriptions.

4. Compute description scores and select the
highest scoring description.

In order to score descriptions in our domain
(weather), we followed two intuitions. First that

3The algorithm rejects intersections that are semantically
redundant (e.g. ((NORTH, MORAY) u (MORAY)) ≡ (NORTH,
MORAY)) or linguistically awkward (e.g. ((NORTH, MORAY)
u (NORTH) → “the area of intersection between the North of
Moray and the North of the whole region”).

there is a minimum ratio of true positives a descrip-
tion can capture in order to be accepted as candidate.
For example, if a description A overlaps with only
70% of the target points and description B with 90%,
and we require at least 80% of true positives, de-
scription B is a candidate and A should be ignored.
The second intuition states that, of all candidate de-
scriptions, the description with the highest balance
of true positives and true negatives should win. We
used recall as the metrics for minimum threshold of
true positives and F-measure as the metrics to bal-
ance out true positives and negatives. These are
computed as (precision is also provided, since F-
measure requires it):

precision =
description ∩ target

description

recall =
description ∩ target

target

Fmeasure = 2 · precision · recall

precision + recall

Where description is the set of points associated
with a description (e.g. (NORTH u COASTAL)) and
target is the set of points associated with the target
subset (e.g. those that represent rain).

Below is an example of the procedure with a hy-
pothetical data set and target. Let us assume Figure
2a is the entire data set and represents the entire re-
gion, where the subset {C1, D1, E1, F1, E2, F2}
is the target subset for which a description needs to
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be generated. The preparatory step before the algo-
rithm starts is to do geocharacterization with the ab-
solute Frames of Reference. Let us assume our full
geocharacterized model should contain 3 frames:
NAMEDAREAS, COASTAL and DIRECTIONS. DI-
RECTIONS is a relative frame and needs the descrip-
tors of NAMEDAREAS to exist, so initially we can
only construct the frames COASTALPROXIMITY and
NAMEDAREAS (Figures 2b and 2c).

At any given point, a description is only consid-
ered as candidate if it scores higher than 0 recall,
i.e. if it intersects at least once with the target set.
This results in the following initial list of candidate
descriptions (where R=recall and F-M=F-measure):

Absolute Descriptions R F-M
COASTAL 0.83 0.59
ABERDEENSHIRE 1.00 0.40

Now the algorithm creates mereological descrip-
tions with the DIRECTIONS frame (Figure 2d), as
explained in Section 2. Once this interim geochar-
acterization step is done, mereological descriptions
are added to the list of candidates:

Mereological Descriptions R F-M
NORTHEAST, ABERDEENSHIRE 0.83 0.67
NORTH, ABERDEENSHIRE 1.00 0.67
EAST, ABERDEENSHIRE 0.83 0.45
NORTHWEST, ABERDEENSHIRE 0.17 0.22
EAST, ABERDEENSHIRE 0.17 0.13

The next step is to generate intersections between
all current candidate descriptions, as long as they are
valid (see above), and add them to the list of candi-
dates:

Intersected Descriptions R F-M
COASTAL u (NORTH, ABERDEEN-
SHIRE)

0.83 0.83

COASTAL u (EAST, ABERDEEN-
SHIRE)

0.83 0.77

COASTAL u (NORTHEAST, AB-
ERDEENSHIRE)

0.67 0.73

COASTAL u ABERDEENSHIRE 0.83 0.71
COASTAL u (NORTHEAST, AB-
ERDEENSHIRE)

0.17 0.29

Once the overgeneration algorithm is done, the
scoring algorithm chooses the description with high-
est F-measure score, after filtering by recall. As-

suming a recall threshold of 0.80, the description
(COASTAL u (NORTH, ABERDEENSHIRE)) is the
winner, as it has the highest F-Measure score of all
remaining candidates. However if there is a need
to raise the recall threshold to 1.00, i.e. no target
point must be ignored, then the winning descrip-
tion is (NORTH, ABERDEENSHIRE). The choice for
a particular recall threshold may vary from domain
to domain. In the studies we have carried out, we
achieve best performance at a threshold of 0.60 for
one testbed, and 0.80 for another, as explained in
Section 5.

4 Knowledge Acquisition

In this section we explain how we created a corpus
of aligned data and text, which had a two-fold use:
(a) inform us about the spatial operations employed
by humans when producing geographic expression,
and (b) serve as a testbed to evaluate the develop-
ment of the algorithm.

From the work of de Oliveira et al. (2015) it be-
came evident that named areas played an important
role in geographic referring expressions, especially
by allowing a mereological relation between certain
unnamed descriptors and named descriptors. How-
ever that study provided only a high-level under-
standing of how often each Frame of Reference is
used by humans when producing geographic refer-
ring expressions. In this study we conducted an ex-
periment to produce an aligned data-and-text corpus,
where each expression is associated with a particular
subset of points (similar to the SUMTIME-METEO
corpus (Sripada et al., 2002)). This enables the use
of corpus entries as test cases, by running the algo-
rithm with the subset of points of each entry, and
comparing the output of the algorithm with the de-
scription in the entry.

Another interesting aspect of the corpus is its
source. The texts were written by human experts
(2 meteorologists), which guarantees that the ge-
ographic expressions in the corpus are similar to
those in published weather forecasts. We could
not guarantee this if the same texts were written by
non-experts, for example using crowd-sourcing plat-
forms. Nonetheless it is important to remember that
our corpus – as strongly advised by the experiment
participants – does not reflect the nature of real-life
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weather reports, with all the complexity that is in-
volved in describing the weather. The corpus we
present here is a collection of geographic expres-
sions written by people with a life-time experience
in producing geographic expressions; it is not a col-
lection of real-life-like weather reports.

Using a web-based tool4, the experts were ex-
posed to 20 data sets. Each data set hypotheti-
cally represented a simplified weather forecast for
the Scottish Grampian Region. When plotted onto
the map, data points that represented some form
of precipitation were highlighted in red, as shown
in Figure 3. The experts were asked to write a
pseudo weather forecast, describing where precipi-
tation and/or dry weather was expected.

Figure 3: A map the meteorologists saw to write
a weather forecast. Red points denote precipitation
and green points dry weather. The numbered boxes
were added for the alignment step, after texts had
been written. Numbers on texts and boxes mark the
alignment between points and expressions.

The above was only the first task of the experi-
ment. The outcome of the the first task was a set of
free-text paragraphs describing the location of wet
and/or dry weather for the entire data set seen. The
first observation we made from the raw responses is
that some data clustering was taking place, because
paragraphs contained many expressions (effectively
noun phrases) to describe a single data set. This
meant an alignment between parts of the texts and
subsets (or clusters) of points had to be made. We

4http://homepages.abdn.ac.uk/
rodrigodeoliveira/pages/georef/index_ka.php

prepared a document by hand where we provided
the authors with screenshots of the maps they saw,
along with the texts they wrote for each map. We
numbered each expression on the texts and placed
numbered boxes on the subset of points we judged
to be referred to by each expression, as shown in Fig-
ure 3. The authors’ task was to review our suggested
alignment and fix it where applicable.

The last task to effectively build a corpus of data-
and-text alignments was to annotate each referring
expression with semantic labels. This task was car-
ried out by one group of 3 human annotators per me-
teorologist – henceforth M1 and M2 – whereby 1 an-
notator participated in both annotations. The annota-
tion task (for both M1 and M2) consisted of tagging
expressions with labels of various categories. The
following categories and labels were available:

Main direction Included the cardinal and inter-
cardinal directions.

Direction modifier For words such as far and cen-
tral, as well as the cardinal directions of com-
plex direction expressions such as “NNW”,
where we assume the main direction to be
NORTHEAST and the modifier to be NORTH-.
This category is mainly for completeness, since
we did not implement any of them.

Area The 3 Authority Areas of the Scottish
Grampian region: ABERDEEN, ABERDEEN-
SHIRE and MORAY.

Coastness Whether COASTAL or INLAND.

Altitude Whether HIGH or LOW.

Each category relates to a frame of reference in
our system, and labels relate to descriptors. For each
category, a null annotation was also available, in
case the frame of reference was not mentioned. An-
notators were instructed to annotate expressions en-
tirely based on the linguistic material provided, not
using their world knowledge. For example, if they
were familiar with Aberdeen City and recognized it
as a coastal city, but the expression was simply “Ab-
erdeen”, they should provide only { ABERDEEN } as
annotation and not { ABERDEEN, COASTAL }.

Overall agreement between annotators was high –
92% for M1 and 98% for M2 – whereby the cate-
gory Coastness had the highest disagreement (63%)
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for M1, as shown in Table 1. This was probably due
to bad instructions as we suspect one annotator was
using his world knowledge to judge whether a re-
ferred area was close to or far from the Grampian
coast. All annotators live in Aberdeen City, but they
saw only the expressions and no images. We im-
proved instructions before annotating M2.

M1 sub-corpus AB AC BC ABC
Main direction 1.00 0.98 0.98 0.97
Direction modifier 1.00 0.96 0.96 0.97
Area 1.00 1.00 1.00 1.00
Coastness 0.92 0.52 0.46 0.63
Altitude 1.00 1.00 1.00 1.00
All categories 0.98 0.89 0.88 0.92
M2 sub-corpus AD AE DE ADE
Main direction 1.00 0.97 0.97 0.98
Direction modifier 0.96 0.87 0.91 0.92
Area 1.00 1.00 1.00 1.00
Coastness 1.00 1.00 1.00 1.00
Altitude 1.00 1.00 1.00 1.00
All categories 0.99 0.97 0.98 0.98

Table 1: The Kappa agreement scores when la-
belling expressions produced by both meteorologist
(M1 and M2). Columns 2-4 show the pair-wise
agreement, and the column 5 the averages of pair-
wise agreements per category. Figures at the bottom
of each sub-corpus are the averages of each column.

After annotation, there were no cases where all
three annotations were different, so there was a most
frequent annotation for each data set. We kept those
as the final set of labels for each entry in the cor-
pus. After annotation, the M1 sub-corpus contained
a total of 57 data-and-text aligned entries, while M2
contained 41. In the next section we explain how we
used both M1 and M2 to evaluate the progress when
developing the algorithm.

5 Evaluation and Discussion

Our algorithm development was carried out in two
phases. First, we used a Gold Standard from M1
to develop the logic of the algorithm, and subse-
quently used a Gold Standard from M2 to test its
performance. For each phase, we ran the algorithm
with 3 distinct combinations of spatial operations:
a) no operation, so only absolute descriptions such
as (COASTAL) and non-specific directions such as
(NORTH) were generated; b) mereology only, where

mereological descriptions such as (NORTH, MORAY)
were generated in addition to the ones above; c)
both mereology and intersection, where the most
complex descriptions such as (COASTAL u (NORTH

u MORAY)) were also generated. The evaluation
method was intrinsic, as described by Belz and Gatt
(2008), whereby we computed the similarity be-
tween corpus descriptions and the output of the algo-
rithm using the DICE coefficient of similarity. The
Gold Standard testbeds excluded descriptions with
direction modifiers such as far and central, because
the current algorithm does not have an implementa-
tion for these concepts. The Gold Standard from M2
contained 44 entries, and that from M2, 36.

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

(a) Training scores (M1).

0 20 40 60 80 100

0.3

0.4

0.5

0.6

(b) Test scores (M2).

Figure 4: DICE similarity scores when running the
algorithm against both sub-corpora (M1 and M2),
using 3 different operation combinations – no oper-
ation (blue), mereology only (red), and both mere-
ology and intersection (brown) – and 5 different re-
call thresholds. The X axis shows the different recall
thresholds in percentage. The Y axis shows the av-
erage DICE scores across all data sets.

For each testbed we ran the algorithm 6 times,
one for each recall threshold of an arbitrary set of
thresholds (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0). The re-
sults (shown in Figure 4) suggest that there is no
specific recall threshold that gives better results, but
1.00 (i.e. no false positives accepted) is not the ideal
threshold as it gave the worst results in all scenar-
ios. However, the evaluation showed that there was
a consistent gain in performance after the addition of
each spatial operation. The highest average of DICE
scores for M1 went from 0.36 with no operations to
0.67 with both operations, whereas for M2 scores
went from 0.38 to 0.66.

We can attempt to explain why some of our output
differs from the human descriptions. Geocharacter-
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(a) (b)

Figure 5: Examples of almost perfect match between human-generated and machine-generated descriptions.

ization: If the mental models of the humans do not
align with those our algorithm uses. An example of
this is the description (EAST u COASTAL) which the
human M2 gave to cluster 1 of the map in Figure
5a. The winning description according to the algo-
rithm was only (EAST), because (EAST u COASTAL)
covered less of the target points. This relates also
to the topic of vagueness (Van Deemter, 2009), if
one assumes descriptors not to have crisp but fuzzy
boundaries (Schneider, 2000; Bittner and Smith,
2003). Weighting: If some descriptions should be
rewarded if they include certain descriptors. This is
much in line with the preference order of properties
from the Incremental Algorithm (Dale and Reiter,
1995). The human-generated description for clus-
ter 2 on Figure 5b was (HIGH u (SOUTH, MORAY))
which was the second best description generated by
the machine. If the algorithm rewarded descriptions
that include a named area, maybe the above descrip-
tion would have won.

These are only some of the possible reasons. We
may not forget either that discourse and brevity may
also play a role. Nonetheless the results we present
in this paper show how, in any scenario, an algorithm
for generating geographic expressions performs bet-
ter if it employs intersection and mereology than
without any operation.

6 Conclusions and Future Work

In this paper we have outlined an algorithm for
generating geographic referring expressions. The
algorithm employs 2 spatial operations – intersec-
tion and mereology – when processing point-based
data. We described the compilation of a data-and-

text aligned corpus, which we used as a testbed
to guide development and to test the final system.
We have shown that employing spatial operations
makes the machine-generated output more similar to
the human-generated descriptions. We increased the
overall average of similarity between the computer
output and human descriptions from a 0.38 (DICE),
when no operations are used, to a score of 0.66,
when computing mereology and intersection.

In line with Reiter and Belz (2009), we believe
that our metrics-based evaluation was valuable but
only a ‘development-stage’ guidance. A task-based
evaluation shall be more revealing of the algorithm’s
performance. Thus, our next study will evaluate how
well users accomplish a task given the descriptions
generated by our algorithm. Nonetheless we are
convinced that spatial operations are employed by
humans when producing descriptions, which makes
the algorithm described here to be more human-like
than previous approaches. Above all, our results
show that relative properties are paramount when
generating referring expressions in geographic do-
mains, where mereological relations are key.
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