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Abstract

Colour terms have been a prime phenomenon
for studying language grounding, though pre-
vious work focussed mostly on descriptions
of simple objects or colour swatches. This
paper investigates whether colour terms can
be learned from more realistic and potentially
noisy visual inputs, using a corpus of referring
expressions to objects represented as regions
in real-world images. We obtain promising re-
sults from combining a classifier that grounds
colour terms in visual input with a recalibra-
tion model that adjusts probability distribu-
tions over colour terms according to contex-
tual and object-specific preferences.

1 Introduction

Pioneering work on natural language generation
from perceptual inputs has developed approaches
that learn to describe visual scenes from multi-
modal corpus data and model the connection be-
tween words and non-symbolic perceptual features
(Roy, 2002; Roy and Reiter, 2005). In this paradigm,
colour terms have received special attention. In-
tuitively, a model of perceptually grounded mean-
ing should associate words for colour with partic-
ular points or regions in a colour space, e.g. (Mo-
jsilovic, 2005). On the other hand, their visual as-
sociation seems to vary with the linguistic context
such as ‘red’ in the context of ‘hair’, ‘car’ or ‘wine’
(Roy and Reiter, 2005).

Recently, large-scale data sets of real-world im-
ages and image descriptions, e.g. (Young et al.,
2014), or referring expressions (Kazemzadeh et al.,

2014; Gkatzia et al., 2015) have become available
and can now serve as a realistic test bed for mod-
els of language grounding. In this paper, we use the
ReferIt corpus (Kazemzadeh et al., 2014) to assess
the performance of classifiers that predict colour
terms from low-level visual representations of their
corresponding image regions.

A number of studies on colour naming have
looked at experimental settings where speakers re-
ferred to simple objects or colour swatches instanti-
ating a single value in a colour space. Even in these
controlled settings, speakers use colour terms in
flexible, context-dependent ways (Baumgaertner et
al., 2012; Meo et al., 2014). Therefore, probabilistic
models and classifiers, allowing for variable thresh-
olds and boundaries between regions in a colour
space, have been proposed to capture their grounded
meaning (Roy, 2002; Steels and Belpaeme, 2005;
Meo et al., 2014; Larsson, 2015).

Can we learn to predict colour terms for more
complex and potentially noisy visual inputs? In con-
trast to simple colour swatches, real-world objects
often have internal structure, their visual colour val-
ues are hardly ever uniform and the colour terms can
refer to a specific segment of the referent (see image
a) and b) in Figure 1). Moreover, the low-level vi-
sual representation of objects in real-world images
can vary tremendously with illumination conditions,
whereas human colour perception seems to be robust
to illumination, which is known as the “colour con-
stancy” problem (Brainard and Freeman, 1997). Re-
search on colour perception suggests that speakers
use “top-down” world knowledge about the proto-
typical colours of an object to recalibrate their per-
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(a)“small red car on right” (b“yellow building”

(c)“green” (d)“first set of green on right”

(e)“red plants in the middle” (f)“red rock bluff center”

Figure 1: Example images and REs from the ReferIt corpus

ception of an object to its expected colours (Mitterer
and De Ruiter, 2008; Kubat et al., 2009). For in-
stance, the use ‘green’ for the two, rather different
hues in Figure 1 (c-d) might be attributed to the fact
that both objects are plants and expected to be green.

However, recalibration to expected colours is not
the only possible effect of context. Despite or be-
cause of special illumination conditions, the moun-
tain in Figure 1 (f) and the plants in Figure 1 (e)
are described as ‘red’, a rather atypical, unexpected
colour that is, therefore, contextually salient and in-
formative. This relates to research on referential
over-specification showing that speakers are more
likely to (redundantly) name a colour if it is atypical
(Westerbeek et al., 2014; Tarenskeen et al., 2015).

In our corpus study, we find that these various
contextual effects pose a considerable challenge for
accurate colour term classification. We explore
two ways to make perceptually grounded classi-
fiers sensitive to context: grounded classifiers that
are restricted to particular object types and “re-
calibration” classifiers that learn to adjust predic-
tions by a general visual classifier to the prefer-
ences of an object and its context. Whereas object-

specific colour classifiers perform poorly, we find
that the latter recalibration approach yields promis-
ing results. This seems to be in line with a
model by Gärdenfors (2004) that assumes context-
independent colour prototypes which can be pro-
jected into the space of known colours for an object.

2 Grounding colour Terms: Visual
Classifiers

In this Section, we present “visual classifiers” for
colour terms that predict the colour term of an object
given its low-level visual properties. We assess to
what extent the visual classifiers can cope with the
real-world challenges discussed above.

2.1 Corpus and Data Extraction
We train and evaluate on the ReferIt data set col-
lected by Kazemzadeh et al. (2014). The basis of the
corpus is a collection of “20,000 still natural images
taken from locations around the world” (Grubinger
et al., 2006), which was manually augmented by Es-
calante et al. (2010) with segmentation masks iden-
tifying objects in the images (see Figure 4). This
dataset also provides manual annotations of region
labels, with the labels being organised in an ontol-
ogy (Escalante et al., 2010). Kazemzadeh et al.
(2014) collected a large number of expressions refer-
ring to objects (for which segmentations exist) from
these images (130k REs for 96k objects), using a
game-based crowd-sourcing approach.

We extract all pairs of REs containing a colour
word and their image region from the corpus. We
consider REs with at least one of the 11 basic
colour words ’blue’, ’red’, ’green’, ’yellow’, ’white’,
’black’, ’grey’, ’pink’, ’purple’, ’orange’, ’brown’.
We remove relational REs, containing one of the
following prepositions: ’below’, ’above’, ’not’, ’be-
hind’, ’under’, ’underneath’, ’right of’, ’left of’,
’ontop of’, ’next to’,’middle of’ in order to filter in-
stances where the colour term describes a landmark
object. We split the remaining pairs into 11207 in-
stances for training and 1328 for testing. Table 1
shows the frequencies of the colour adjectives in the
training set.

2.2 Visual Input
Research in image processing has tried to define
colour spaces and colour descriptors which are to

247



colour term % colour term %
white 26.7 black 8.7
blue 20.5 brown 6.2
green 16.7 pink,orange 2.8
red 14.6 grey,purple 1.4
yellow 9.9

Table 1: Distribution of colour words in training data

some extent invariant to illumination and closer to
human perception, cf. (Manjunath et al., 2001; Van
De Sande et al., 2010). As we are more interested
in the linguistic aspects of the problem, we have fo-
cussed on the standard, available feature represen-
tations. We extracted RGB and HSV colour his-
tograms for region segments with opencv (Brad-
ski, 2000). As the region segments are sized dif-
ferently, we normalised the histograms to represent
relative instead of absolute frequencies.

Ideally, we would like to use a feature repre-
sentation that could be generalised to other words
contained in referring expressions. Therefore, we
have extracted features that have been automatically
learned with a high-performance convolutional neu-
ral network (Szegedy et al., 2015). We computed
the smallest rectangular bounding box for our im-
age regions, applied the ConvNet and extracted the
final fully-connected layer before the classification
layer. As bounding boxes are less precise than seg-
mentation masks, it is expected that this representa-
tion will perform worse – but it gives us an interest-
ing estimate as to how much the performance of our
model degrades on visual input that is less tailored
to colour terms. To summarise, we have extracted
the following representations of our visual inputs:

• mean RGB values for region segment (3 features)

• RGB histograms with 512 bins (8 bins per channel)
for region segment (512 features)

• HSV histograms with 512 bins (8 bins per channel)
for region segment (512 features)

• ConvNet features for bounding box (1027 features)

2.3 Experimental Set-up
The task We define our classification problem as
follows: input is a feature vector x, a visual repre-
sentation of a referent in an image, and output is a
label y, a colour term for the referent. For the sake
of simplicity, we only consider training and test-
ing instances that contain colour terms and do not

model the decision whether a colour term should be
generated at all. In standard NLG terminology, we
are only interested in realisation, and not in con-
tent selection. A lot of research on REG has ac-
tually focussed on content selection, assuming per-
fect knowledge about appropriate colour terms for
referents in a scene, cf. (Pechmann, 1989; Viethen
and Dale, 2011; Viethen et al., 2012; Krahmer and
Van Deemter, 2012; Koolen et al., 2013).

The classifiers We used a multilayer perceptron
that learns a function from colour histograms (or
ConvNet features) to colour terms, i.e. defining an
input layer corresponding to the dimensions of the
colour histogram and an output layer of 11 nodes.
We did not extensively tune the hyper parameters
for our different visual inputs, but tested some pa-
rameter settings of the perceptron trained on RGB
histograms, singling out a development set of 500
instances from the training set described above. We
report results for training on the entire training set
with two hidden layers (240 nodes and 24 nodes), a
drop out set to 0.2 and 25 epochs. When training on
the mean RGB values as input, we use simple logis-
tic regression as we only have 3 features.

We also tested a Knn (nearest neighbour) clas-
sifier which simply stores all instances of x in the
training data, and during testing, retrieves the k in-
stances that are most similar to the testing example
based on some distance metric. We used the default
implementation of Knn in scikit-learn (Pe-
dregosa et al., 2011) which is based on Minkowski
distance. Testing on the development set, we ob-
tained best results with setting k to 10 and uniform
weights (all neighbours of a testing instance treated
equally).

Evaluation We report accuracy scores. When
there are multiple colour terms for the same region,
we use the top n predictions of the visual classifier.

2.4 Results
Table 2 reports the performance of the visual clas-
sifiers for the different visual inputs and the two
classification methods. We see that Knn performs
consistently worse than Perceptron. The ConvNet
features perform dramatically worse than the colour
histograms and do not even come close to a simple
logistic regression trained on mean RGB values of
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Figure 2: Proportion of correct vs. false predictions depending

on the visual probability of the top-ranked colour term

the image regions. Surprisingly, we obtain better re-
sults with RGB histograms than with HSV.

Perceptron Knn
Mean RGB 57.29 55.65
RGB histogram (3d) 63.7 59.32
HSV histogram (3d) 62.84 55.73
ConvNet features 47.77 38.79

Table 2: Accuracies for general visual colour classifiers

Figure 2(a) shows the accuracy of the visual clas-
sifier depending on the (binned) entropy of the pre-
dicted probability distribution over colour terms.
The accuracy (shown as the proportion of white and
grey parts of a bar) is systematically higher in cases
when the entropy is low, i.e. when the top colour
has a clearly higher probability than the remaining
colour candidates. This pattern suggests that the
predicted probability distributions reflect the confi-
dence of the visual classifier somewhat reliably. We
consider this as evidence that the visual classifier
learns to identify the prototypical instances of colour
terms, whereas other, more ambiguous hues are as-
sociated with distributions of higher entropy.

2.5 Lexical vs. visual colour probabilities

Additionally, we assess the visual classifiers for dif-
ferent types of objects, based on the label annota-
tions included in the corpus. We average the pre-
dicted visual probabilities for colour over all in-
stances of an object label and compute the lexical
probabilities of a colour term conditioned on the ob-
ject label. These lexical probabilities tell us how of-
ten a colour co-occurs with a particular object la-
bel. Figure 3 shows the lexical and predicted visual
probabilities (striped bars) for the labels ‘flower’,

‘horse’, ‘hill’, and ‘car’, illustrating some object-
specific variation. For instance, flowers occur with
many different colours, except “black”, “brown” and
“green”. Horses, on the other hand, only occur with
“white”, “brown” and “black”.

Depending on the object, the visual probabilities
come more or less close to the lexical probabilities.
The classifier predicts that flowers are more likely
to be “green” than “blue”, which reflects that flow-
ers are likely to have certain green parts. The lexical
probabilities, however, show a clear preference for
“blue” over “green” since speaker mostly describe
the salient, non-green parts of flowers. A more dras-
tic case is “horse” where “brown” is frequent, but the
classifier seems to systematically mis-represent this
colour, predicting much more black horses than ex-
pected. For “hill”, speakers almost exclusively use
the colour “green” whereas the visual classifier pre-
dicts a flatter distribution among “blue”, “green” and
“white”. As hills are often located in the background
of images, the high probability for ‘blue’ certainly
reflects a systematic, contextual illumination prob-
lem (see Figure 1(d) for a ‘blueish’ mountain).

Generally, the lexical colour probabilities in Fig-
ure 3 clearly show object-specific tendencies. In the
following, we investigate how we can leverage that
knowledge to adjust colour probabilities predicted
on visual input to lexical preferences.

3 Object-specific Visual Classifiers

A simple way to make visual classifiers aware of
object-specific colour preferences is to train separate
classifiers for particular object types. This may not
be a theoretically pleasing model for the meaning of
colour terms, but in the following, we test whether
this model improves the empirical performance for
of colour term classification.

3.1 Object Types and Classes

Obviously, an object-specific model of colour terms
crucially depends on the types of objects that we as-
sume. How fine-grained does our object classifica-
tion need to be? Intuitively, there are clear expec-
tations about prototypical colours of certain objects
(e.g. bananas vs. carrots), whereas other objects are
more neutral (e.g. buildings, cars).

Fortunately, the ReferIt corpus comes with de-
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Figure 3: Lexical probabilities for colour terms conditioned on different types of objects (top row) and average visual probabilities

predicted by the classifier trained on RGB histograms (bottom row)

tailed label annotations of the image regions (e.g.
several types humans like ‘child-boy’, ‘child-girl’,
‘face-of-person’). These object types are organised
in an ontology, such that we can map relatively spe-
cific object type labels (e.g. ‘car’) to their general
class (e.g. ‘vehicle’).1 Table 3 shows the most fre-
quent type labels and their classes in our training
data. One very frequent type actually encodes colour
information (‘sky-blue’ as opposed to ‘sky-white’
and ‘sky-night’ – leaves of the class ‘sky’).

object labels (classes) # instances top colour
man (humans) 1244 blue (22%)
woman (humans) 869 red (21%)
sky-blue (sky) 503 blue (98%)
group-of-persons (humans) 425 red (22%)
wall (construction) 421 white (42%)
car (vehicle) 418 white (42%)

Table 3: Most frequent object labels, their classes and most fre-

quently mentioned colour (in the training instances of the visual

classifier for colour)

3.2 Experimental Set-up

The Classifiers We use the same training data as
in our previous experiment (Section 2.3). But now,
we separate the training instances according to their
labels (Section 3.1) and train several visual colour
classifiers, i.e. one multi-class multi-layer percep-
tron per object label. In order to assess the impact
of the underlying object classification, we used la-

1We map all object types below the node ‘humans to ‘hu-
mans’. Other categories on the same level are too general, e.g.
‘man-made objects’, ‘landscape-nature’ – here,we use the im-
mediate mother node of the object label in the ontology.

bels corresponding to (i) to the annotated, specific
object types, (ii) the more general object classes. In
each case, we only trained visual classifiers for la-
bels with more than 50 instances in the training data.
This leaves us with 52 visual classifiers for object
types, and 33 visual classifiers for object classes.

Evaluation During testing, we assume that the ob-
ject labels are known and we retrieve the corre-
sponding visual classifiers. For objects with un-
known labels (not contained in the training set) or
an infrequent label (with less than 50 instances in
the training set) we use the general visual classifier
from Section 2.3 (the perceptron trained on RGB
histograms). In Table 4, we report the colour predic-
tion accuracy on the overall test set and on the subset
of testing instances where the object-specific classi-
fiers predicted a different colour term than the gen-
eral visual classifier. This way, we assess how often
the object-specific classifiers actually ‘recalibrate’
the decision of the general classifier and whether this
calibration leads to an improvement.

3.3 Results
Table 4 shows that the classifiers trained for ob-
ject types (visualobject) revise the decisions of the
general classifier (visualgeneral) relatively often (for
619 out of 1328 testing instances), but rarely make
a prediction that is different from the general clas-
sifier and correct (19% of the cases). Thus, over-
all, they severely decrease the performance of the
colour term prediction. Similarly, the visual clas-
sifiers for object classes lead to a considerable de-
crease in performance. Interestingly, the predictions
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# recalibrated Accuracy on recalibrated subset Overall Accuracy
Classifiers colour terms visualgeneral visualobject visualgeneral visualgeneral/object

Object types 619 57.9 19. 63.7 45.19
Object classes 357 72.54 8 63.7 45.58

Table 4: colour term prediction for general (visualgeneral) and object-specific (visualobject) visual classifiers, accuracies reported

on the recalibrated subset where predictions differ between the general and the object-specific classifiers, and for the whole testset

of this model seem to often differ from the general
visual classifier when the latter is relatively confi-
dent: the general visual accuracy on this subset is
much higher (72%) than on the overall test set. This
suggests that the object-specific visual classifiers do
not learn prototypical meanings of colour terms and
are much more sensitive to noise whereas the gen-
eral colour classifier has an advantage rather than a
disadvantage from seeing a lot of different instances
of a particular colour.

4 Recalibrating Colour Terms

A model that generally adjusts its predictions to
the expected colour terms for specific objects is
clearly not successful. In this Section, we present
an alternative approach that separates the ground-
ing of colour terms on low-level visual from object-
specific and contextual effects. Thus, instead of
training object-specific colours directly on low-level
visual inputs, we now learn to predict systematic ad-
justments or recalibration of the probability distribu-
tions that a robust general visual classifier produces.

4.1 Data preparation
In order to learn recalibrations of visual probabil-
ity distributions over colour terms, we need training
instances annotated with “realistic” output of the vi-
sual classifier (where the colour term with the high-
est probability does not necessarily correspond to
the gold label). Therefore, we split our training data
into 10 folds and apply 10-fold cross-validation (or
so-called “jackknifing”) on the training data, i.e. we
have 10 folds that we annotate with a respective vi-
sual classifier trained on the remaining 9 folds.

4.2 Context-based Recalibration
So far, we have looked at the prediction of colour
terms as a purely local problem. However, we expect
other objects surrounding the target referent to have
an effect on the selected colour terms, especially in
cases where the visual classifier is less confident.

For each target region, we extract all the remain-
ing distractor regions from the same image and ap-
ply the visual classifier. We compute a context vec-
tor by averaging over these regions and use the mean
probability of each colour term. Based on the con-
textual colour probabilities, we can learn a function
that adjusts the local probabilities for colour terms
given additional evidence from the context.

The Classifiers We train logistic regression mod-
els for each colour term, where e.g. objects de-
scribed as ‘blue’ are positive instances and objects
described with a different colour are negative in-
stances for the blue classifier. Instead of low-level
visual input (colour histograms) we use the distribu-
tions over colour terms predicted by the visualgeneral

classifier as features and train the context-based re-
calibration on 22 features (11 probabilities for the
region and 11 probabilities for the context).

4.3 Object-specific Recalibration

We can also model recalibration separately for each
type of object. For instance, a recalibration classi-
fier for ‘horse’ could learn that many horses clas-
sified as ‘black’ are actually referred to as ‘brown’
(see Section 2.5). Thus, we want to test whether
object-specific recalibration classifiers learn to re-
cover from systematic errors made by the general
visual classifier for certain types of objects.

Combining object-specific and context-based re-
calibration could help to distinguish colours that are
unusual and salient from unexpected colours that are
due to e.g. specific illumination conditions. For in-
stance, this classifier could learn that a ‘blueish’ hill
is very unlikely to be blue, if there are a lot of other
blue objects in the image.

The Classifiers For each object label, we train 11
regressions that adjust the probabilities of a colour
terms predicted by the general visual classifier and
whose training samples are restricted to instances of
that object. We compare a simple object-specific
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# recalibrated Accuracy on recalibrated subset Overall Acurracy
Recalibration colour terms visualgeneral recalibrated visualgeneral recalibrated
Context 135 43.7 40 63.7 63.3
Object types 193 38.3 42 63.7 64.5
Object classes 185 36.75 46.48 63.7 65.1
Object classes + context 201 34.32 46.26 63.7 65.57

Table 5: Colour term prediction with context-based, object-specific and combined recalibration of the visual classifier, accuracies

are reported on the recalibrated subset where predictions differ between the general visual classifiers and recalibrated colour terms,

and for the whole testset

SUCCESSFUL OBJECT-SPECIFIC RECALIBRATIONS INCORRECT OBJECT-SPECIFIC RECALIBRATIONS

(a) brown, visual: black recalibrated: brown (b) black, visual: black recalibrated: green

(c) green, visual: blue recalibrated: green (d) blue, visual: blue recalibrated: white

SUCCESSFUL CONTEXT-BASED RECALIBRATION INCORRECT CONTEXT-BASED RECALIBRATION

(e) red, visual: green recalibrated: red (f) red, visual: pink recalibrated: white

SUCCESSFUL COMBINED RECALIBRATION INCORRECT COMBINED RECALIBRATION

(g): black, visual: red recalibrated: black (h) yellow, visual: yellow recalibrated: white

Figure 4: Examples for successfully and mistakenly recalibrated colour term predictions, target regions on the left, full image on

the right
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recalibration that only takes the distribution over
colour terms as input (11 features), and a combined
recalibration based on a vector of 22 features (11
probabilities for the region and 11 probabilities for
the context). Moreover, we train recalibration classi-
fiers on object types (52×11 regressions) and object
classes (33×11 regressions).

4.4 Results and Discussion

Evaluation We only recalibrate the visual proba-
bilities for an object, if we have observed more than
50 training instances (same as in Section 3). For the
remaining instances, we simply use the colour terms
predicted by the general visual classifier. Thus, we
will again be particularly interested in the subset of
testing instances where the recalibration classifiers
change the predictions of the visual classifier, which
is the set of “recalibrated colour terms”.

Table 5 shows the accuracies for the entire test set
and the recalibrated subset. Except for the context-
based recalibration which slightly degrades the ac-
curacy compared to using only the visual probabil-
ities (63.7%), the recalibration now improves the
general visual classifier. The accuracies on the re-
calibrated subset reveal why recalibration is more
successful than the object-specific visual classifiers
discussed in Section 3: it is much more conservative
in changing the predictions of the visual classifier.
Moreover, the accuracy of the general visual classi-
fier on the recalibrated test sets is substantially lower
than on the overall test set. This shows that the recal-
ibration classifiers learn to adjust those cases where
the visual classifier is not very confident.

The accuracy of the visual classifier is not zero
on the recalibrated subsets, meaning that some origi-
nally correct predictions are mistakenly recalibrated.
Examples for correct and incorrect recalibration are
shown in Figure 4, illustrating that the model has to
strike a balance between expected and unexpected
colour terms in context. There are several exam-
ples where the object-specific recalibration gives a
higher probability to the more prototypical colour
of the object (e.g. ‘green’ for trees and ‘white’ for
houses in (a) and (c)), but this can lead to less salient,
non-distinguishing or misleading colour terms be-
ing selected (Figure 4 (b,d)). The general context-
based recalibration, on the other hand, often gives
more weight to colours that are salient in the im-

age (Figure 4(e)) , but sometimes calibrates the dis-
tribution in the wrong direction (Figure 4(f)). The
combination of context-based and object-specific re-
calibration adjusts colour probabilities most reliably,
and also seems to capture some cases of colour seg-
ments (Figure 4(g)). But there are still cases where
the preference for expected or visually salient, un-
expected colour is hard to predict, e.g. the “yellow
cloud” in Figure 4(h).

These examples also suggest that an evaluation of
the colour term prediction in terms of their interac-
tive effectiveness might reveal different effects. The
recalibration-based model lends itself for dynamic,
interactive systems that adjust or correct their usage
of colour terms based on interactive feedback.

Related Work Our notion of “recalibration” is
related to a geometrical approach by (Gärdenfors,
2004) that separates colour naming conventions
and prototypical, context-independent colour term
meaning. Similarly, in distributional semantics, ad-
jectives have been modeled as matrixes that map dis-
tributional vectors for nouns to composed vectors for
adjective-noun pairs (Baroni and Zamparelli, 2010).
Our recalibration classifiers can also be seen as first
step towards modeling a compositional effect, but in
our model, the noun (object label) adjusts the pre-
dictions of the adjective (colour). Finally, this works
relates to research on vagueness of colour terms.
But, instead of adjusting single thresholds between
colour categories (Meo et al., 2014), the recalibra-
tion adjusts distributions over colour terms.

5 Conclusions

When speakers refer to an object in a scene, they of-
ten use colour terms to distinguish the target referent
from its distractors. Accurate colour term prediction
is thus an important step for a system that automat-
ically generates referring expressions from visual
representations of objects, cf. (Kazemzadeh et al.,
2014; Gkatzia et al., 2015). This study has presented
perceptually grounded classifiers for colour terms
trained on instances of their corresponding referents
in real-world images. We showed that this approach
needs to balance various contextual effects (due to
illumination, salience, world knowledge) and ob-
tained promising results from a recalibration model
that adjust predictions of a general visual classifier.
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