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Abstract

During content planning, a typical discourse
generation system receives as input a library
of facts and selects facts to include as the
content for utterances. However, storytellers
do not need to be completely constrained by a
set of facts and instead can invent facts which
support the storytellers goals, subsequently
constructing the storyworld around those
facts. We present a discourse-driven approach
to narrative generation leveraging automated
planning which can interleave construction
of story and discourse while preserving
modularity.

Introduction

Artificial intelligence (AI) automated planning
research (Ghallab et al., 2004) is a popular source
of data structures and algorithms for understanding,
generating, and reasoning about stories (Young et
al., 2014). Narratologists frequently distinguish the
fabula (i.e., story) of narrative from the discourse
(e.g., the narration of the story to a spectator)
(Genette and Lewin, 1983; Bruner, 1991; Herman,
2013), and plans have proven useful for modeling
both story and discourse (Young, 2007); they are
effective for modeling discourse because a coherent
sequence of communicative actions is plan-like
(Cohen and Perrault, 1979; Lambert and Carberry,
1991; Young and Moore, 1994), and plans are
effective for modeling stories because stories are
composed of events with cause-effect relations and
characters also form plans to achieve their goals
(Trabasso and Sperry, 1985; Riedl and Young,

2010). Behavioral research demonstrates that plans
capture many key features that spectators use
to understand narrative discourse (Trabasso and
Sperry, 1985; Christian and Young, 2004; Ware et
al., 2014; Radvansky et al., 2014; Cardona-Rivera et
al., 2016).

A typical approach to discourse generation
is to supply a program with a library of facts
about the domain of interest from which to select
content for utterances (Meteer, 1991; Reiter and
Dale, 1997). Narrative discourse generation systems
are usually no different (Lönneker, 2005; Callaway
and Lester, 2002); story is generated to meet some
user-provided goals (i.e., a story plan solves a story
problem) and passed through a pipeline as input
for generating discourse and narration (e.g., text or
animation) to solve a discourse problem (Callaway
and Lester, 2002; Young et al., 2004; Jhala and
Young, 2010; Cheong and Young, 2015) (see also
(Young et al., 2014)). This pipeline architecture
is amenable to the task of generating different
discourse plans about the same set of events.

However, analysis of these programs reveals
that if there are story constraints associated with dis-
course planning operations, an input plan that solves
a story problem may not meet those constraints
needed to solve the discourse problem (i.e., the
story plan is incompatible with the discourse goals),
even though a compatible solution to the story
problem exists. For example, to tell stories about
characters who courageously navigate a dangerous
terrain, one discourse action might be to convey
that an obstacle, such as a bridge, is dangerous
and has the constraint that some character dies at
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this obstacle; if the discourse planner receives as
input a story where no character dies, the discourse
planner would be unable to meet the discourse goal
or subgoal to convey an obstacle is dangerous, even
though in the space of possible stories, there exists
at least one story where at least one character dies.
The discourse plan may depend on describing the
obstacle as dangerous as a causal antecedent for
conveying that the main protagonist is in danger
because the protagonist is at the obstacle. A planner
which generates both story and discourse plans from
story and discourse problems is considered bipartite
complete if the planner will find a compatible pair of
story and discourse solutions if one exists.

Storytellers needn’t be completely limited by
existing facts and can invent facts to support
their storytelling goals, subsequently building the
storyworld around those facts. For example, a
screenwriter may add an event to the story (e.g.,
a non-central character slips to his death from a
narrow bridge), in order to elicit a discourse effect
(e.g., believing the bridge is a dangerous obstacle for
the protagonist). Following this idea, our approach
to narrative generation is discourse-driven; as a
discourse planner constructs a discourse plan, con-
straints on the scenarios in the story are added to the
story plan so that a story planner constructs a story
plan which is compatible with the discourse plan.
Our representation of planning formalisms enables
constraints to be flexible (they need not completely
specify the underlying scenario), narrative theoretic
(they can refer to high-level phenomena such as
character intentionality and conflict), and to be path
pruning (they can speed up the search for a solution
by limiting exploration to just those plans which are
consistent with the constraints).

In most classic NLG systems, generation of
both the story and discourse would fall under the
task of content determination (Reiter and Dale,
1997). However, our criticism of the story-then-
discourse pipeline architecture is reminiscent of
past discussions on the drawbacks of using a
modular pipeline in NLG systems (Reiter, 2000)
such as the well-known ”generation gap” between
text planning and realization (Meteer, 1991). We
introduce bipartite planning which preserves mod-
ularity of story and discourse, allowing users to
plug in different story and discourse problems and

potentially different generation systems, but which
interleaves construction of story and discourse to
enable bipartite completeness.

Related Work

Narrative planning benefits from a rich history of
AI research. The first story generation system to
use planning is TALESPIN (Meehan, 1977), which
generates stories about woodland creatures that take
actions to satisfy simple needs in accordance with
rules of the world. Another early story generation
system UNIVERSE (Lebowitz, 1983) represents
plot fragments as plans and selects a fragment to
execute if it satisfies an authorial goal. MINSTREL
(Turner, 1993) uses planning to create an outline of a
story and case-based reasoning to fill in details from
a story library. Cavazza and colleagues use forward
state-space character-centric planning but cannot
guarantee authorial goal conditions are achieved
(Cavazza et al., 2002; Porteous et al., 2010). Plan-
space search is used as a top-down approach to story
generation; a user specifies initial and goal states of a
story world and the solution space is restricted to just
those story plans which are causally sound (Young
et al., 2014), and narrative-theoretic extensions (e.g.,
IPOCL (Riedl and Young, 2010) and CPOCL (Ware
et al., 2014)) further limit the solution space just to
plans where characters act believably.

Narrative discourse generation systems
(NDGS) typically take story as input from a library
of facts such as from a story planner or from
collected data and produce a plan for narrating the
story. STORYBOOK (Callaway and Lester, 2002)
is an end-to-end narrative prose generation system
with four parts: 1) a narrative organizer which
takes as input a story plan, 2) a sentence planner
which creates a proto-sentence outline, 3) a revision
module which produces prose paragraphs from
proto-sentences, and 4) a surface realizer which
makes some grammatical edits and formats the
story in a file. However, STORYBOOK expects
decisions about discourse, such as the order to tell
events or how to describe elements of the story,
such as from a particular character perspective
(focalization), to be provided as part of the input
(in the story plan). A distinct discourse module
for content determination has been proposed as an
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amendment to this architecture (Lönneker, 2005).
This more closely mirrors the way narratologists
partition narrative into story and discourse (Genette
and Lewin, 1983; Young, 2007).

Later NDGSs have included a discourse con-
tent determination module which structures events
in story plans provided as input. Suspenser (Cheong
and Young, 2015) and Prevoyant (Bae and Young,
2014) systems arrange the events in a story into an
ordering which elicits suspense or surprise, respec-
tively, based on cognitive-computational definitions
inspired by psychological theory). These systems
first determine which events from the story are
worth telling by measuring their causal importance
(Young, 1999), and include less important events
when they can help maximize a suspense/surprise
function by increasing the distance between impor-
tant events. Darshak (Jhala and Young, 2010) is
a cinematic discourse generation system in which
dramatic patterns decompose into camera shot
patterns to convey events from an input story plan
which are animated in a virtual environment. These
systems use a discourse planner adapted from the
DPOCL (decompositional) algorithm (Young et al.,
1994).

One drawback about these systems is that
the communicative actions are all inform speech
acts (suspense and surprise decompose into inform
actions) and lack representation for evaluative
description (e.g., a brave character, an honorable
action, a dangerous location, etc.). An interesting
approach by Li, Thakker, Wang, and Riedl (2014)
is to learn the most probable sentiment of a
story word from a corpus of annotated words
and from crowdsourced stories involving a similar
scenario to the story. The words used in the text
can then be replaced to make the story more
descriptive and to reflect the mood of the scene.
Our vision of discourse generation more closely
aligns with the properties described by Grosz
and Sidner (1986): discourse reasoning ought to
be goal-oriented, such that descriptions causally
enable subsequent descriptions about the story. Bae,
Cheong, and Young (2011) produce narrative plans
with focalization by using different plan libraries for
different characters which have built-in descriptions
of the story based on the character’s persona.
The events are reconstructed with the plan library

representing the character who’s perspective the
story is being told from. However, tailoring these
descriptions for a particular story is time consuming,
and a modular, domain-independent approach is
preferred where a user can swap out description
knowledge and tell the same kind of narrative with
different storyworlds and characters.

Problem Formulation

Our discourse-driven narrative planning approach
is a search for solutions to two problems, a story
problem and discourse problem, where a solution
is a plan of actions to bring an initial state to a
goal state. At the story level, the solution represents
the actions of characters in the storyworld, whereas
at the discourse level, the solution represents the
communicative actions by a narrator agent to inform
and describe elements in the story to a spectator
agent. A pair of compatible story and discourse
solutions to story and discourse problems is a
bipartite solution. With prior approaches to story
and discourse generation, a story solution is supplied
as input to a discourse planner. In this approach,
elements in a story solution become required as
part of the search for a discourse solution. These
requirements are prerequisite criteria about the story
for the story and discourse plans to be a bipartite
solution to the story and discourse problems.

Narrative Plans

Partial-order causal link (POCL) planning is a type
of planning as refinement search (Kambhampati et
al., 1995), involving search through plan-space such
that each child node in the search is a refinement to
the (potentially flawed) plan represented at its parent
node. Through an iterative process of identifying
flaws in the plan and repairing them in a least-
commitment manner (Weld, 1994), plans with no
flaws are selected and returned as solutions to the
planning task. A planning problem or task consists
of an initial state, a set of goal conditions, a set
of action types, and a set of logical constants; in
a storyworld, constants are characters, items, and
locations, whereas at the discourse level, constants
refer to elements of the story (e.g. a character, a
character’s plan, a conflict, etc.).
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Figure 1 Example story action operators and
planning problem

" move"  st or y oper at or
var i abl es = {

?c -  char act er
?f r om ?t o -  l ocat i on}

pr econd( move,  ( at  ?c ?f r om) )
pr econd( move,  ( adj  ?f r om ?t o) )
pr econd( move,  ( al i ve ?c) )
ef f ect ( move,  ( at  ?c ?t o) )
ef f ect ( move,  ¬( at  ?c ?f r om) )

" f al l - f r om"  st or y oper at or
var i abl es = {

?c -  char act er
?f r om -  l ocat i on}

pr econd( f al l - f r om,  ( at  ?c ?f r om) )
pr econd( f al l - f r om,  ( hi gh- up ?f r om) )
pr econd( f al l - f r om,  ( al i ve ?c) )
ef f ect ( f al l - f r om,  ¬( al i ve ?c) )
ef f ect ( f al l - f r om,  ¬( at  ?c ?f r om) )

Const ant s :  I ndy,  Sapi t o,  
c l i f f 1,  c l i f f 2,  br i dge
Oper at or s: {

move,  
f al l - f r om}

I ni t i al :  {
( at  I ndy c l i f f 1) ,  
( at  Sapi t o c l i f f 1) ,  
( adj  c l i f f 1 br i dge) ,  
( adj  br i dge cl i f f 2) ,  
( i nt ends Sapi t o 

( at  Sapi t o c l i f f 2) ) ,
( i nt ends I ndy 

( at  I ndy c l i f f 2) ) }
Goal :  {

( at  I ndy c l i f f 2) ,
( al i ve I ndy) }

Mi ni at ur e St or y Pl anni ng Pr obl em

Action Operators

STRIPS-style operators (Fikes and Nilsson, 1972)
depict action types that can occur, and a step is
an instance of an action operator. Each operator
has preconditions, describing what must be true
for the step to occur, and effects, representing how
the world will change after the step occurs. Pre-
conditions and effects are described in a language
of function-free first-order predicate literals. These
literals have variables which must be assigned to
constants in the planning problem. For instance,
consider a story action operator type ”fall-from”
which may be found in a story problem (see Figure
1). The operator has variables ?character and ?from,
preconditions that ?character is at ?from, ?character
is alive, and that ?from is high-up, and effects that
?character is not at ?from and is not alive, reflecting
the change in the world after the action executes.
Figure 1 shows two example action operators written
in a format amenable for understanding operations
we discuss later.

At the discourse level, the world state is a
conjunction of literals indicating what a spectator
agent believes is true and not true about the
story (denoted with bel before the believed literal).
Discourse actions are communicative actions taken
by a narrator agent to add or remove the spectator’s
beliefs. In addition to preconditions and effects,
discourse action operators have requirements and
restrictions on the variables used in its precondi-
tions and effects. A discourse action cannot be used
if one of its set of restrictions are detected in the
story, and the story plan is considered incompatible

if any set of restrictions from discourse actions are
detected during its construction. When a discourse
action is used as a step in a discourse plan, the
requirements are matched to existing elements of the
story plan and/or are added to the story plan.

When the variable in a requirement is a step
in the story plan, the step might only be partially
defined, called a partial step. The planner must
select some action operator which is consistent with
the step and its requirements and add components
to the partial step so that the step is an instance
of the operator. For example, a discourse action to
convey that a location is dangerous (see Figure 2)
has the requirements that some story action occurs
with the precondition that a character is at this
location and the effect that this character is not alive.
The fall-from action operator (see Figure 1) would
be considered consistent with these requirements.
The rest of this step would be added to the story
plan such as the preconditions that the location is
high-up and the character is alive (see Figure 3).
At some point, the variable representing the high-
up location would be assigned to a constant from
the story problem with the desired property, such as
the bridge. Figure 2 shows two example discourse
operators including the example discussed here.

The variable in a discourse action can have a
type associated with any element of a story plan,
such as a variable, step, set of steps, ordering of
steps, causal link between steps, character plan,
character goal, etc. This enables discourse actions
to post requirements and restrictions about many
aspects of the story and thus enables a wide range
of descriptions to be readily supported in discourse
actions. Each discourse action could also include
communicative actions (e.g., camera shots, text
operators, etc) that are designed by artists/writers
to narrate the story content, similar to the design in
DARSHAK (Jhala and Young, 2010) in which the
communicative effects of a scene are decomposed
into primitive camera shots.

Causal Soundness

Each plan has one placeholder start step whose
effects express the initial state, and one placeholder
end step whose only preconditions are the goal
conditions that must be true at the end of the plan.
All steps in a solution are goal-oriented; each step’s
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Figure 2 Example discourse action operators and
planning problem

" convey- danger - at "

Const ant s:  hero 
Oper at or s: { 

convey-danger-at, 
convey-in-danger}

I ni t :  None
Goal :  ( bel-in-danger hero) 

var i abl es:(
?death - step,
?victim - actor
?loc - variable)

pr econdi t i on: None
ef f ect : 

(bel-danger-at ?loc ?death)
r equi r ement s: {

effect(?death, ¬(alive ?victim)),
precond(?death, (at ?victim ?loc))}

" convey- i n- danger "
var i abl es:(

?hero ?c - actor             
?dloc - variable
?move ?dstep - step)

pr econdi t i on: (
bel-danger-at ?dloc ?dstep)

ef f ect : (bel-in-danger ?hero)
r equi r ement s: {

ordering(?dstep, ?move),
effect(?move, (at ?hero ?dloc))}

r est r i ct i ons={ exists ?m2 (
effect(?m2, ¬(at ?c ?dloc) and
not-effect(?m2, ¬(alive ?c)) and
ordering(?m2, ?move))}

Mi ni at ur e Di scour se Pl anni ng Pr obl em

preconditions are causally linked to one or more
effects from prior steps. A causal link between steps
s and t, denoted s

p−→ t, indicates that s has an
effect p which co-designates with a precondition p
of step t. Step s is an ancestor of step t, and t is
a descendant of step s. A step’s causal ancestors
are all steps in the transitive closure of the ancestor
relationship. A step’s causal descendants are all
steps in the transitive closure of the descendant
relationship.

A precondition which is not yet make true by
another step (i.e., an open precondition flaw) is
resolved by finding an action operator which has
an effect that can become the needed precondition.
When a step can possibly undo one of the effects of
a prior step which is needed as a precondition of a
later step (i.e., a threatened causal link flaw), the
planner attempts to reorder steps or add constraints
to the steps involved so that no conflict can arise.
The plan is causally sound just when for every total
ordering of steps, each step’s preconditions are met
when that step is executed.

Intentional Coherence

Another requirement adopted for story plans is that
each character should only intentionally take actions
which can be explained as part of a character plan to
achieve one of that character’s goals. An intention
frame includes the elements needed to represent
why a character adopts a goal and her actions to
achieve it. It is a tuple 〈a, g,m, sf , Sf 〉 where a is

an actor, g is some literal that a wishes to make
true, m is a motivating step whose effects include
intends(a, g), sf is the satisfying step whose effects
include g, and Sf is a subplan for a to satisfy g
such that all steps in Sf are causal ancestors of sf

and have the consent of a. An action which does not
require a ”volunteer”, such as an accident or a force
of nature, is called a happening. The solution is
considered intentionally coherent just when when all
voluntary actions are part of a character’s intention
frame. Characters do not always achieve their goals
and may take the first n steps of the subplan. For
example, a character a may not finish a plan because
some other step undoes one of the effects of a step
that a took to enable a subsequent step. The different
ways that a character’s plan can become thwarted
by another step has been studied in prior work as a
definition of narrative conflict (Ware et al., 2014). In
story problems supporting character intentionality,
characters either have goals in the initial state or
adopt goals as the effects of actions taken in the story
(e.g., a character who finds a treasure map might
adopt the goal to have the treasure).

Solution
To solve the planning problems (one story problem
and one discourse problem), the planner iteratively
selects flaws from either plan and selects some
method to resolve the flaw. The solutions are plans: a
plan is a tuple 〈S, B, O, L〉 where S is a set of steps,
B is a set of bindings between variables in S, O is a
set of ordering constraints overs steps in S, and L is
a set of causal links between steps in S. The plan is
valid just when the plan is causally sound and all
constants have an assigned variable. Additionally,
story plans include a set of character intention
frames. The story plan is valid just when the base
plan is valid plus the plan is intentionally coherent
and all variables are assigned to a constant1. The
two plans are structurally similar but conceptually
distinct. In the story plan, the steps are actions
taken by characters. In the discourse plan, steps are
communicative actions taken by a narrator agent
to add or remove the spectator’s beliefs. Once a
compatible pair of solutions are constructed, the

1Stories are limited by the constants provided as input,
whereas discourse variables may refer to elements created
during story planning
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Figure 3 Partial story step (and discourse variable) ?death in the discourse action ”convey-danger-at”
becomes an instance of the ”fall-from” operator in the story plan. The solid arrows indicate which
requirements are matched to elements of ”fall-from”. The hollow arrows indicate which elements of the
operator are added to the requirements, so that ?death becomes an instance of ”fall-from”.

" convey- danger - at "  r equi r ement s
pr econd( ?deat h,  ( at  ?vi ct i m ?l oc) )
ef f ect ( ?deat h,  ¬( al i ve ?vi ct i m) )
pr econd( ?deat h,  ( hi gh- up ?l oc) )
pr econd( ?deat h,  ( al i ve ?vi ct i m) )
ef f ect ( ?deat h,  ¬( at  ?vi ct i m ?l oc) )

bi ndi ngs:  <?l oc = ?f r om>,  <?vi ct i m = ?c>,  <?deat h = f al l - f r om>

" f al l - f r om"  st or y oper at or
pr econd( f al l - f r om,  ( at  ?c ?f r om) )
pr econd( f al l - f r om,  ( hi gh- up ?f r om) )
pr econd( f al l - f r om,  ( al i ve ?c) )
ef f ect ( f al l - f r om,  ¬( al i ve ?c) )
ef f ect ( f al l - f r om,  ¬( at  ?c ?f r om) )

solutions can be sent down the NLG pipeline to be
realized as text or some in some other medium. For
instance, the story could be used to animate avatars
in a virtual world and the discourse actions could be
mapped to camera actions to film the events.

Algorithm

The bipartite planning algorithm BiPOCL for
generating story and discourse solutions to story
and discourse problems is presented in Algorithm
1. In discourse planning (lines 3-8), flaws are added
for requirements needed in the story plan. Story
planning (lines 9-14) involves a combination of
approaches from prior work (Riedl and Young,
2010; Ware, 2014) which are not provided in detail
here (such as those involving intention frames). In
addition, story planning involves selecting require-
ments to add to the story plan and partial steps in
the story plan to make into instances of story action
operators. Threats to causal links (lines 15-19) are
resolved, with the exception that some threats are
okay to leave in the story plan if they can represent
conflict. The algorithm terminates when bindings or
orderings are inconsistent in either plan, or when
there are no flaws in either plan.

Example: The Dangerous Bridge

To help explain the bipartite planning approach to
narrative generation, a miniature example is pre-
sented consisting of story and discourse problems
and a bipartite solution. The story domain and prob-
lem for this example is inspired by Indiana Jones
(see Figure 1). Agents in this domain can move
between adjacent locations and fall by accident
from high locations. The discourse problem contains
actions for describing story elements as dangerous

(see Figure 2). The discourse action ”convey-
danger-at” describes a location as dangerous by
virtue that some character dies as a consequence of
being at this location. The discourse action ”convey-
in-danger” describes a character as being in danger
by virtue that this character is at a dangerous
location (precondition, requirement), and no other
character before this has safely moved from this
location and left without dying (restriction). Both
problems are provided as input by users.

An instance of a bipartite solution to the story
and discourse problems is presented in Figure 4.
Space limitations prevent us from including figures
to demonstrate the construction of this solution. For
details on the construction of intention frames, see
(Ware, 2014). To start, the BiPOCL is called with the
initial plans, each containing a start and end step. In
the story plan, there are two empty intention frames
motivated by the start step which must explain how
Indy and Sapito will achieve their goal to be across
the bridge at cliff2. Open precondition flaws are
added for every goal condition of both plans. Flaws
can be selected in any order.

The open precondition (at Indy
cliff2) is repaired by adding a causal
link from a new step move Indy bridge
cliff2 which has the new open precondition
(at Indy bridge) (the bridge is the only
location adjacent to cliff2). The open precondition
that (bel-in-danger hero) is repaired
by adding a causal link from a new step
convey-in-danger hero which has new
open precondition (bel-danger-at ?dloc).
The requirements for this discourse action can be
added to the story immediately or at some later
iteration. The story action move Indy bridge
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Algorithm 1 The BiPOCL (Bipartite Partial Order Causal Link) Algorithm
1: Termination: If either plan is inconsistent, backtrack. Otherwise, return the plans.
2: Plan Refinement: Non-deterministically select a flaw in either plan
3: Discourse Planning:
4: Choose a precondition of a step not yet established through a causal link and either:
5: Reuse: Find a step which already establishes the precondition.
6: New: Create the step from an operator which establishes the precondition.
7: Add flaws for the step’s requirements which need to be added to the story.
8: Add a causal link between the new/old step and the step with the precondition.
9: Story Planning: Do one of the following:

10: Choose a flaw in the story and resolve with associated refinement method.
11: Choose a discourse requirement not yet added to the story, and either:
12: Reuse: Find a story element which already satisfies the requirement.
13: New: Create the requirement and add it to the plan.
14: Choose a partial step, select a consistent action operator, and add the step’s missing components.
15: Threat Resolution:
16: Find a step which may threaten to undo a causal link. Choose how to prevent the threat:
17: Promotion: If possible, move the threatened steps to occur before the threat in the plan.
18: Demotion: If possible, move the threatened steps to occur after the threat in the plan.
19: Restriction: If possible, add constraints to the steps involved so that no conflict can arise.
20: Recursive Invocation Call the planner recursively with the new plan structure.

Figure 4 On the left is a discourse plan; boxes are discourse steps, arrows are causal links, and variables of
interest are in ovals. On the right is a compatible story plan; boxes are steps, a dashed arrow is a threatened
causal link, a solid arrow is a causal link, a dotted bounding box is an intention frame, the source of a hollow
arrow is a motivating step and the sink is an intention frame, the dashed box in an intention frame indicates
a step not taken (but which completes the character’s plan), and an oval surrounds an element bound to the
labeled discourse variable.

( move Sapi t o c l i f f 1 br i dge)

( f al l - f r om Sapi t o 
br i dge)

( move Sapi t o br i dge cl i f f 2)

( at  Sapi t o br i dge)

i ni t i al

( i nt ends Sapi t o ( at  Sapi t o c l i f f 2) )

( at  Sapi t o c l i f f 1)

( move I ndy c l i f f 1 br i dge)

( move I ndy br i dge cl i f f 2)

( at  I ndy br i dge)

( at  I ndy c l i f f 1)

f i nal

( at  I ndy c l i f f 2)

?deat h

?move

i ni t i al

f i nal

( convey- danger - at  ?l oc)

?deat h

( convey- i n- danger  her o)

?move

( bel - i n- danger  her o) )

( bel - danger - at  ?l oc) )

Di scour se Pl an Compat i bl e St or y Pl an

( i nt ends I ndy ( at  I ndy c l i f f 2) )

( at  Sapi t o br i dge)
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cliff2 is a candidate for discourse variable
?move, making the dangerous location (?dloc)
cliff2. The search would fail in this case because
in our miniature universe, there exists no action
that can bring death to a character at cliff2 (since
cliff2 is not high-up). Alternatively, a new partial
step could be added to the story plan, leaving the
location yet unspecified. The partial step is only
consistent with the ”move” operator, creating step
instance move ?c ?from ?to which floats in
the plan ordered between the start and end steps.
The open precondition (at Indy bridge)
can be repaired by adding a causal link from this
floating step, which becomes move Indy ?from
bridge. The open precondition flaw for this
step can be repaired by adding a causal link from
the start step with effect (at Indy cliff1),
transforming the required step into move Indy
cliff1 bridge. Since this step is bound to
the discourse variable ?move, the bridge is the
dangerous location ?dloc.

The open precondition (bel-danger-at
bridge) (since now ?dloc=bridge) is
repaired by a causal link from new step
convey-danger-at bridge. Its requirement
is that ?death is a step ordered before
?move (via binding to variable ?dstep in
convey-in-danger) with the effect that ?victim
is not alive. Only Sapito is a valid candidate to be
?victim. The requirement can be fulfilled by adding
step fall-from Sapito bridge. Sapito’s
plan to be at cliff2 can be constructed like Indy’s.
Either Sapito can cross the bridge to cliff2 (fulfilling
his goal) and then move back to the bridge, or he
can get to the bridge and fall there without ever
completing the goal. There is a restriction about
the bridge from action convey-in-danger that
no character can move from the bridge alive if that
move occurs before Indy’s action of moving to
the bridge. Thus, Sapito must fall from the bridge
without reaching cliff2.

Some of the relationships between discourse
variables and story elements are marked in the
figure. The bindings between discourse variables
and story elements include 〈hero, Indy〉, 〈?victim,
Sapito〉, 〈?loc, bridge〉, 〈?move, move Indy
cliff1 bridge〉, and 〈?death, fall-from
Sapito bridge〉.

The resulting narrative is that Sapito tries to
cross the bridge but accidentally falls and dies so
that the spectator believes the bridge is dangerous.
Then, Indy moves to the bridge so that we believe he
is in danger. Finally Indy safely crosses the bridge
and achieves his goal. Medium-specific realization
depends on system goals and can be as simple as
filling slots in templates associated with discourse
actions.

Discussion and Future Work

Typically, NDGSs accept as input a set of propo-
sitions or a database of facts from which to select
for utterances in a communicative plan and are not
bipartite complete. Our discourse-driven approach is
likely bipartite complete because requirements limit
the solution space for stories during discourse plan
refinement rather than limiting the solution space for
discourse plans during discourse plan refinement,
avoiding the possibility for inconsistencies between
requirements and existing story elements.

We call our narrative generation approach
discourse-driven because the propositions about the
domain of facts (i.e., the story world and character
actions) are created to support the storyteller’s
goals. This shift of responsibility is appropriate
for storytelling where an author/narrator may not
be reporting on real events and instead invents
scenarios for her characters to elicit a desired
effect. With our approach, a story generation system
accommodates these scenarios in a causally sound
and intentionally coherent world. We presented an
example motivated by Indiana Jones where the
narrative planner adds an event to the story level
(i.e., a non-central character slips off a bridge), in
order to construe the bridge as dangerous.

Prior approaches to discourse planning have
focusing on what order to inform events to a spec-
tator (presentation order), rather than on describing
events in a goal-oriented way. Research on discourse
comprehension demonstrates that causal reasoning
is biased by the recency of narrative events in text,
which may have implications for timing (Winer
et al., 2015) and recallability of events (Cardona-
Rivera et al., 2012). Bipartite planning could set
up good timing through a specification of minimum
distances between steps in a story that are relevant
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for the discourse plan, or by structuring parallel plot
lines to enable juxtaposition editing.

The story-then-discourse approach may not be
well suited for ”description planning” because it
is unlikely that the propositions provided as input
to the discourse planner contain the scenario or
context needed for a particular description to be
applicable. Our approach depends on the assumption
that descriptions can have causal relationships, an
assumption that ought to be evaluated empirically.
In prior work, generated story plans have been
automatically mapped to a psychological model
of question-answering and shown to have repre-
sentational accuracy on some key question types
(Christian and Young, 2004; Cardona-Rivera et al.,
2016). This model may be extended to include
question types about a spectator’s interpretation via
information described at the discourse level. For
example, if a story element is evidence for some
belief (e.g., the death of Sapito is evidence that the
bridge is dangerous), then our model may predict
which elements of the story ought to be used to
justify that belief (e.g., Q: ”When did you begin
to believe that the bridge is dangerous?” A: ”When
Sapito fell from the bridge.”).
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