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Abstract

Sequences of long nouns, i.e., noun com-
pounds, occur frequently and are productive.
Their interpretation is important for a variety
of tasks located at various layers of NLP. Ma-
jor reasons behind the poor performance of au-
tomatic noun compound interpretation are: (a)
lack of a well defined inventory of semantic
relations and (b) non-availability of sufficient,
annotated, high-quality dataset.

Tratz and Hovy (2010) presented an inventory
of semantic relations. They compared existing
inventories with their two-level hierarchy, and
created a large annotated dataset.

We performed both theoretical as well as data-
driven analysis of this inventory. Theoretical
analysis reveal ambiguities in the coarse rela-
tions. Data-driven analysis report similar per-
formance for coarse as well as fine relations
prediction. Our experiments show that im-
proving the coarse classification accuracy can
improve the performance of fine class predic-
tor by 13 to 30 points in F-score.

1 Introduction

An important characteristic of a language is the pro-
cess of creating new words by means of compounding.
Especially, in English, technical and scientific litera-
ture produces long sequences of nouns, such as laptop
screen, Internet connection, colon cancer symptoms,
etc. Following Downing (1977)’s definition (for En-
glish language), these long sequences of nouns, acting
as single noun, are known as noun compounds (NCs).
NLP tasks cannot ignore such long sequences of nouns
as they are abundant and productive type of compounds
in English.

Most noun compounds appear only once in a large
corpus. Baldwin and Tanaka (2004) analyzed the BNC
corpus and found that 63.4% of total noun compounds
appear only once in the corpus. In addition to the
productive nature, noun compounds are compositional.
These characteristics of the noun compounds make
them a special case, and demand a special treatment.

The conventional approach to tackle this problem is
a pipeline of three steps: (1) find noun compounds from
text, (2) parse them if required, and (3) extract the se-
mantic relationships between components of the noun
compounds. The task of extracting semantic relations
between components of a noun compound, or para-
phrasing it using verbs and/or prepositions is known as
interpretation of noun compound (or noun compound
interpretation).

Our primary interest resides in interpretation of two-
word noun compounds using predefined semantic la-
bels as classes. The labels have been arranged in a two
level hierarchy - coarse classes and fine classes. In this
paper, we report the technical and linguistic challenges
that we faced while performing classification task. Par-
ticularly, we discuss the challenges with coarse level
classification.

The rest of the paper is organized as follows: Sec-
tion 2 covers the related work. Section 3 discusses our
approach, the experiments and results for the same are
shown in Section 4. Section 5 discusses the results,
which is followed by conclusion and future work.

2 Related Work
In computational domain, most work uses either of two
representations for semantic relations: (1) set of ab-
stract relations, or (2) paraphrasing a noun compound.
Among these two, the former is most popular; repos-
itories of such relations are generally proposed by the
linguists.

2.1 Semantic Relations
Researchers have used sets of abstract relations as
a preferred choice for semantic relation representa-
tion (Levi, 1978; Warren, 1978; Tratz and Hovy,
2010). Levi (1978)’s theory categorizes noun com-
pounds based on the compounding process as: (1) pred-
icate deletion, where a predicate between the compo-
nents is simply dropped to create a compound, and (2)
predicate nominalization, where the head is nominal-
ized form of a verb and modifier is argument of the
verb. They proposed a set of abstract predicates for the
former category, but no labels for the later category.
Later Ó Séaghdha (2007) revised this inventory, and
proposed a two level hierarchy of semantic relations.293



Method Relations Examples Performance
Wermter (1989) Neural network 7 108 81.5% Accuracy
Lauer (1995) Various Methods 8 385 47% Accuracy
Rosario et al. (2002) Rule Based (medical) 18 1660 60% Accuracy
Girju et al. (2005) WordNet bases rule learning and SVM 35 4205 64% Accuracy
Kim and Baldwin (2005) WordNet Similarity (k-NN) 20 2169 53% Accuracy
Séaghdha and Copestake (2013) SVM and String Kernels 6 1443 65% Accuracy
Tratz and Hovy (2010) MaxEnt / SVM 43 17509 79.4% Accuracy
Dima and Hinrichs (2015) Deep neural network 43 17509 77.70% F1-score

Table 1: Performance of past approaches for noun compound interpretation. Note that (almost) all methods use
different relation inventory and different dataset making it difficult to compare performance.

Levi (1978)’s study is purely based on linguistics.
On the other hand, Warren (1978) analyzed the Brown
corpus and proposed a four-level hierarchy of seman-
tic relations. Nastase and Szpakowicz (2003) extended
Warren (1978)’s approach. Their proposed set of rela-
tions is also based on Barker and Szpakowicz (1998)’s
semantic relations.

Vanderwende (1994) proposed a set of 13 relations
based on the syntactical category and types of ques-
tions. Girju et al. (2005) provided another inventory of
semantic relation based on Moldovan et al. (2004) for
semantic relation in noun phrases.

Finally, Tratz and Hovy (2010) compared and con-
solidated most of these theories and proposed a two
level hierarchy of 43 semantic relations, which are
grouped in 9 coarse relations. This inventory of rela-
tions was iteratively refined to improve inter-annotator
agreement. Tratz and Hovy (2010) used crowd sourc-
ing for the iterative process. We have used this relation
repository for our experiments and analysis.

2.2 Automatic Interpretation

Researchers have proposed various methods for au-
tomatic interpretation (Wermter, 1989; Nakov, 2013;
Dima and Hinrichs, 2015). Unfortunately, these meth-
ods have been tested on different relation inventories
and datasets, which makes it hard to compare their per-
formance. Table 1 summarizes various methods for au-
tomatic interpretation.

All these methods can be categorized in two cate-
gories based on how it models the relation: (1) model
the relation using only component features (Kim and
Baldwin, 2005, 2013), or (2) directly modeling the re-
lation based on how components of a compound can
interact in real world (Nakov and Hearst, 2008). A sys-
tem based on the latter approach should ideally perform
better. But, generalization of such information needs
large annotated data and a Web scale resource for para-
phrase searching.

2.3 Word Embeddings

For classification task, we need to represent a given
noun compound as a feature vector. One way is to
concatenate the word embeddings of its constituent
words. Mathematically, a word embedding is a func-

tion V : D → Rn, where D is a dictionary of the
words in a language and Rn is an n-dimensional real
space.

Word embeddings are based on the distributional hy-
pothesis. So, the words which occur in similar context
have similar vectors. As word vector captures the con-
text, the embedding technique approximates the inter-
action of a word with other words. This intuition can
help us in modeling semantic relation using vectors of
the components only.

Dima and Hinrichs (2015) has shown that the noun
compound interpretation using only word embeddings,
without any feature engineering, gives results compa-
rable to the state-of-the-art. For our experiments, we
used Google’s pre-trained word embeddings1 (Mikolov
et al., 2013a,b).

3 Approach
Our aim is to classify a given noun compound into one
of fine classes. The classes are arranged in two level
hierarchy. We want to exploit the hierarchy to improve
the system.

Noun Compound

coarse class

Coarse Classifier

Fine Classifier

Fine Class

Figure 1: Pipeline architecture

If the coarse class of a noun compound is known,
then inter coarse class confusion can be avoided. We
try to leverage this fact by proposing a pipeline archi-
tecture (refer Figure 1) for the classification task. We

1https://code.google.com/archive/p/word2vec/294



System Type Input Output Remark
Type-1 vectors of the components + 1-hot presentation 43 fine relations

of a coarse relations
Type-2 vectors of the components + coarse class number 43 fine relations
Type-3 vectors of the components only 9 coarse relations Coarse Classification
Type-4 vectors of two components only 43 fine relations End-to-end

Table 2: System types based on input features and output classes/relations.

define various systems based on the input and output to
experiment with.

4 Experiments and Results
In this section we explain dataset creation, experiment
setup, and the results. An analysis of experiments is
discussed in the next section.

4.1 Dataset Pre-processing
For our experiment, we used Tratz and Hovy (2010)’s
relation inventory and dataset. This inventory has 43
fine relations, grouped under 9 coarse relations. In this
dataset, each example has been labeled with one of 43
fine semantic relations. We can get coarse class label
indirectly as each fine relation belongs to exactly one
coarse relation.

There are totally 19036 examples of noun-noun
compounds in the Tratz and Hovy (2010)’s dataset.
Some examples in the dataset contain more than one
word as a component, e.g., health-care legislation,
real-estate speculation. We eliminated such examples.
We also eliminate examples for which at least one com-
ponents has no word vector. This result in 18857 ex-
amples. We used Google’s pre-trained word vectors to
create feature vectors. For example, feature vector of
passenger traffic is concatenation of two vectors: vec-
tor of passenger and vector of traffic.

We shuffled our dataset, and split it into three dis-
joint sets: train set (65%), validation set (15%), and
test set (20%). The system was trained on the train set.
The validation set was used for validation and hyper-
parameter searching. The system was evaluated on the
test set.

4.2 Experimental Setup
To check our hypothesis, we defined four types of sys-
tems. Table 2 defines system types based on the input
feature vector and the output classes. Given the word
embeddings of a noun compound, Type-3 and Type-4
systems predict a coarse relation and a fine relation, re-
spectively.

Type-1 and Type-2 systems are modeled as follows:
given a noun compound and true coarse relation, pre-
dict a fine relation. The sole difference between them is
how coarse-class information is represented. It is rep-
resented as 1-hot encoding in Type-1 system, whereas
as a single numeric value in Type-2.

We used the following classifiers for our experiment
with the above mentioned four types of settings:

• Naive Bayes

• k-nearest neighbor (kNN)

• SGD: Various linear classifiers with standard loss
functions and stochastic gradient descent opti-
mization (implemented as SGD in scikit-learn
(Pedregosa et al., 2011))

• Decision tree (ID3 algorithm)

• Support vector machine (SVM)

• Deep neural network (DNN) (similar to Dima and
Hinrichs (2015)’s architecture)

In addition to the above four types of systems and
the classifiers, we use a pipeline architecture (proposed
in Section 3), where predicted output of Type-3 sys-
tem (coarse relation predictor) was fed to the Type-1 or
Type-2 system.

For all of these multi-class classifications, we used
one-vs-one and one-vs-rest techniques. Performance of
the system in both sets of techniques are very similar.

4.3 Results
Figure 2 summarizes the results of various classifiers
with different settings. SVM with polynomial ker-
nel (degree=2, and soft margin constant C=10) out-
performs all classifiers for all the mentioned systems.
SVM results are separately shown in Table 3.

System Type Precision Recall F1-score
Type-1 0.93 0.93 0.93
Type-2 0.92 0.92 0.92
Type-3 0.84 0.85 0.84
Type-4 0.81 0.81 0.80
Pipeline 0.79 0.8 0.79

Table 3: SVM (polynomial, degree 2, C 10) Results for
all system types.

There are some interesting patterns across all classi-
fiers. Most important patterns are: (a) performance of
Type-3 (coarse predictor) and Type-4 (fine predictor)
are almost same for most classifiers, (b) when coarse
relation information was fed to a classifier in addition
to word vectors (Type-1 or Type-2), performance of the
system boosts up by 13 to 30 points in F-score.

For pipeline architecture, overall system perfor-
mance degrades slightly compared to Type-4 system.295



Figure 2: Performance (F-score) of combination of classifiers and system types. The system types are defined in
Table 2.

Results for pipeline architecture (with SVM classifier)
are shown in Figure 2. Similarly, slightly less F-scores
are observed for other classifiers.

5 Discussions

Typically, it is expected that prediction among fine
classes is difficult compared to prediction among
coarse classes. A fine class predictor requires more in-
formation/samples compared to coarse class predictor.
Particularly, the number of required training examples
increases as the number of parameter to be estimated
increases. We have the same number of examples for
coarse and fine prediction. So, coarse classification
is supposed to outperform fine classification. Despite
such expectation, there is no significant difference in
Type-3 (coarse predictor) and Type-4 (fine predictor)
with most classifiers.

To check whether a better coarse class predictor can
help the system in predicting the fine class, we used
true coarse class labels as features in the fine class pre-
dictor (Type-1 and Type-2). Additional coarse class in-
formation boosts the performance of fine class predic-
tor by 13 to 30 points in F1-score. This is evident from
the difference in performance of Type-1 and Type-2
systems as compared to Type-4 system shown in Figure
2.

We analyzed the semantic relations and annotated
dataset to understand the main reasons behind the poor
performance of coarse relation predictor. Following are
some important observations:

• The definition of OTHER is too vague. There are
two fine relations under this coarse relation: Other
and Fixed Pair / Special / Lexicalized. For ‘Other’
subcategory, the annotator guideline says “rela-
tionship between the two words is fairly clear, but
no category seems appropriate.”

Precision Recall F1-score # Test Sample

C1 0.79 0.78 0.79 217
C2 0.84 0.91 0.88 1275
C3 0.78 0.78 0.78 361
C4 0.89 0.84 0.86 95
C5 0.79 0.72 0.76 258
C6 0.79 0.77 0.78 232
C7 0.89 0.90 0.90 867
C8 0.90 0.84 0.87 393
C9 0.55 0.14 0.23 77

Table 4: Confusion matrix for the coarse class pre-
dictor (Type-3) using SVM. (C1: “Causal Group”,
C2: “Function / Purpose Clusters”, C3: “Ownership,
Employment, and Use”, C4: “Time”, C5: “Location
& Whole+Part”, C6: “Composition / Containment”,
C7: “Topical”, C8: “Coreferential / Attributive”, C9:
“Other”)

C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 170 20 11 0 5 2 9 0 0
C2 15 1166 19 3 13 12 32 7 8
C3 10 38 281 1 8 6 11 6 0
C4 1 7 1 80 0 0 2 4 0
C5 4 18 18 0 187 9 19 3 0
C6 2 31 5 0 5 179 4 6 0
C7 6 43 13 5 8 4 781 6 1
C8 4 21 6 0 8 12 12 330 0
C9 3 38 4 1 3 3 8 6 11

Table 5: Confusion matrix for the coarse class predictor
(Type-3) using SVM. For the labels, refer Table 4.

• PURPOSE/ACTIVITY GROUP has overlap with
most of the coarse classes. This is also seen in
the confusion matrix (ref. 2nd column and 2nd
row in Table 5). In proportion to the total exam-
ples in this class, column values are small. But,
as this class covers 33% of the total examples, a
“small” value in C2 column can penalize the re-
call of other classes heavily (like C9). The same296



holds true for the row.

• Fixed Pair / Special / Lexicalized are multiword
expressions, and such expressions should be han-
dled separately. Typically, we can interpret com-
positional compounds only. If we feed a multi-
word expression to a system which is trained to
interpret noun-noun compounds, then the system
will try to predict the semantic relation based on
semantics of the components. This was clear from
error analysis and the confusion matrix. The last
row (ref. Table 5) is heavy as compared to last
column.

• Partial Attribute/Feature/Quality Transfer, be-
longing to ATTRIBUTIVE AND COREFERENTIAL
coarse relation, is defined as “The {attribute2}
is metaphorically (but not literally) a/the/made of
{attribute1}.” Like multiwords, the interpretation
of metaphoric noun compounds cannot be inferred
from the composition of the semantics of its com-
ponents.

6 Conclusion and Future Work

In this paper, we claimed that the main bottleneck in
noun compound interpretation task is the ambiguity be-
tween coarse classes. We analyzed an inventory of se-
mantic relations and annotated data to understand such
ambiguities. In addition, we also used a data driven ap-
proach to show that coarse relation prediction is a major
bottleneck in the system. Experiment results also show
that if one can improve coarse predictor, then overall
system will improve significantly.

The SVM classifier with polynominal kernel (de-
gree=2, and C=10) outperforms Tratz and Hovy (2010)
and Dima and Hinrichs (2015) by a small margin. The
salient points of our system are: 1) our system uses
only word vectors, and 2) our system does not rely on
computationally complex algorithms and resources.

To solve the ambiguity in semantic relation, we ob-
serve two possible directions:

1. Separate interpretable semantic relations from the
rest, and define (or reshape) the coarse relation
boundary accordingly.

2. Refining the definitions by adding more informa-
tion. Such revised definitions may help the re-
searcher in clarifying the class boundary. Such
information can later be used to make the system
more robust.
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Ó Séaghdha, D. (2007). Annotating and learning com-
pound noun semantics. In Proceedings of the 45th
Annual Meeting of the ACL: Student Research Work-
shop, pages 73–78. Association for Computational
Linguistics.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Rosario, B., Hearst, M. A., and Fillmore, C. (2002).
The descent of hierarchy, and selection in relational
semantics. In Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics,
pages 247–254. Association for Computational Lin-
guistics.
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