
D S Sharma, R Sangal and A K Singh. Proc. of the 13th Intl. Conference on Natural Language Processing, pages 71–80,
Varanasi, India. December 2016. c©2016 NLP Association of India (NLPAI)

Dependency grammars as Haskell programs

Tomasz Obrębski
Adam Mickiewicz University

Poznań, Poland
obrebski@amu.edu.pl

Abstract

In the paper we try to show that a lazy
functional language such as Haskell is a
convenient framework not only for imple-
menting dependency parsers but also for
expressing dependency grammars directly
in the programming language in a com-
pact, readable and mathematically clean
way. The parser core, supplying neces-
sary types and functions, is presented to-
gether with two examples of grammars:
one trivial and one more elaborate, allow-
ing to express a range of complex gram-
matical constraints such as long distance
agreement. The complete Haskell code of
the parser core as well the grammar exam-
ples is included.

1 Introduction

Functional programming is nowadays probably
the most rapidly developing subfield in the domain
of theory and implementation of programming
languages. Functional languages, with Haskell as
their flagship, are continuously evolving, mostly
by absorbing more and more mathematics (ab-
stract algebra, category theory). This translates
into their increasing expressiveness, which is di-
rectly usable by programmers.

The combination of keywords functional pro-
gramming and parsing usually brings to mind the
monadic parsing technique (Hutton and Meijer,
1998) developed as an attractive functional of-
fer for parser builders. This technology is ded-
icated mostly to artificial languages. Much less
work has been done in functional programming
paradigm regarding natural language parsing tech-
nologies. The outstanding exception is the Gram-
matical Framework environment (Ranta, 2011).
Written in Haskell with extensive use of higher-
order abstraction and laziness property, it offers

impressive capabilities of making generalizations
in all conceivable dimensions in a large and highly
multilingual language model including morpho-
logical, syntactic and semantic layers. Some other
works, which may be mentioned here, are due to
Ljunglöf (2004), de Kok and Brouwer (2009), Ei-
jck (2005).

As far as dependency-based parsing and lan-
guage description is concerned (Kubler et al.,
2009), the author is not aware of any attempts to
apply functional programming techniques.

Below we try to show that a lazy functional lan-
guage such as Haskell is a convenient framework
not only for implementing dependency parsers but
also for expressing dependency grammars directly
as Haskell code in a compact, readable, and math-
ematically clean way.

A question may arise: why the ability to write
a grammar directly in a programming language
should be considered desirable. There are already
plenty of grammatical formalisms to choose from.
And what makes Haskell more interesting target
language then others, e.g. Python. The answer
to the first questions is: (1) the grammar writer is
free in choosing the way the lexical and grammat-
ical description is formulated; (2) full strength of
the language may be used according to the needs.
DCG grammars (Pereira and Warren, 1980) are a
good example here. The answer to the second one
is: (1) the grammar may be expressed in declar-
ative way in the language very close to that of
mathematics, in terms of basic mathematical no-
tions such as sets, functions, and relations; (2)
functional character of Haskell allows for mak-
ing generalizations wherever the grammar writer
finds it advantageous; (3) Haskell syntax allows
for formulating grammatical statements in a com-
pact, clean, mathematical manner; (4) Haskell li-
braries supply support for mathematical objects
frequently used in language description, e.g. lat-
tices (cf. Koster, 1992; Levy and Pollard, 2001),71

semirings (cf. Goodman, 1999), to mention just
two.

2 The Haskell toolbox

Haskell is a purely functional programming lan-
guage, applying lazy evaluation strategy, see
(Jones, 2002) for language specification, (Lipo-
vaca, 2011) for introductory course, and (Yorgey,
2009) for information on advanced Haskell alge-
braic type classes. We will take a closer look at
two Haskell types on which the parser and gram-
mar implementation is based:

[a] – list of elements of type a

a→[a] – a function taking an argument
of type a and returning a list of el-
ements of type a.

Below, we are going inspect the properties of
those types as well as functional tools which will
allow us to operate on them conveniently.

Lists are used to store collections of values.
Their interpretation depends on the context. We
use lists for representing sequences, sets, alterna-
tives of values as well as possible lack of a value
(singleton list - value exists, empty list - no value).
The other important type is the type of functions
that take an argument of some type a and return
a list of values of type a, i.e. the type a→[a].
These are functions which return sequences, sets,
alternatives, or a possibly lacking value, all repre-
sented by lists. Here are some examples:

• the function which extends the parse with a
new node produces several alternative results
for the word "fly" (type Parse→[Parse]);

• the function returning the preceding node
has no value for the first node (type
Node→[Node]);

• the function computing transitive heads
of a node returns a set of nodes (type
Node→[Node]).

A list type [a] is obtained by applying the list
functor [] to some type a, with no constraints on
what a is. Two properties are particularly useful:
(1) the list functor [] is an instance of Monad; (2)
a list of elements of any type is an instance of
Monoid.

Functions and operators from both classes
(Monoid and Monad) may be intermixed for lists

because they share the value-combining operation:
both the join1 operation in the list monad and the
operation in the monoid [a] is concatenation. An
important consequence of the fact that [a] is an
instance of Monoid is that all functions which re-
turn [a] are also instances of Monoid. Below we
summarize the list of operators on values of type
[a] and a -> [a], supplied by classes Monad and
Monoid, which we will make use of.

• ⊕ ::[a]→[a]→[a]

(instance Monoid [a])

xs⊕ys combines values contained in xs with
those in ys producing one list with both xs

and ys;

• ⊕ ::(a→[a])→(a→[a])→(a→[a])

(instance Monoid (a -> [a]))

f⊕g combines functions f and g, which both
return a list of values of type a, into a single
function returning one list that contains the
return values of both f and g;

• >=> :: (a→[a])→(a→[a])→(a→[a])

(instance Monad [])

f >=> g composes functions f and g in one
function (of the same type). The resulting
function applies g to each value from the list
returned by f and returns the results com-
bined in one list;

• >>= :: [a]→(a→[a])→[a]

(instance Monad [])

[a] >>= f applies f to all values from [a]

and combines the results.

In addition to the operators listed above, we will
use the function:

• pure :: a→[a]

(instance Applicative [])

which returns a singleton list containing its
argument. It is equivalent to the monadic
return function, but it reads much better in
our contexts.

Having a function of type a→[a], we will be
frequently also interested in its transitive closure
or reflexive transitive closure (strictly speaking -
the term transitive closure refers to the underlying

1The operation which transforms a list of lists into a flat
list.72

relation). We will introduce the family of closure
functions. They are used for example to obtain the
function which computes transitive heads from the
function that returns the head.

clo,mclo,rclo,mrclo ::(a→[a])→a→[a]
clo f = f >=> (pure⊕ clo f)
rclo f = pure⊕ clo f
mclo f = f >=> mrclo f
mrclo f x = let fx = f x in if null fx

then pure x
else fx >>= mrclo f

The function clo computes the closure of its
argument function f. The function f is (Kleisli)
composed with the function which combines (⊕)
its arguments (pure values of f) with the values of
recursive application of clo f on each of those ar-
guments. The function rclo computes the reflex-
ive transitive closure of its argument function f.
The argument itself (pure) is combined (⊕) with
the values returned by clo f applied to this argu-
ment. The m* versions of clo and rclo return only
maximal elements of closures, i.e. those for which
the argument function f returns no value.

The operators and functions presented above
will be expecially useful for working with rela-
tions. This is undoubtedly the most frequently
used mathematical notion when talking about de-
pendency structures. We use relations to express
relative position of a word (node) with respect to
another word (predecessor, neighbor, dependent,
head). We also frequently make use of such oper-
ations on relations as transitive closure transitive
head, reflexive transitive dependent) or composi-
tion (transitive head of left neighbour).

Haskell is a functional language. We will thus
have to capture operations on relations by means
of functions. The nearest functional relatives of a
relation are image functions.

Given a relation R ⊂ A × B, the image func-
tions R[·] are defined as follows (1 – image of an
element, 2 – image of a set):

(1) R[x] = {y | xRy} where x ∈ A
(2) R[X] = {y | x ∈ X ∧ xRy} where X ⊂ A

Haskell expressions corresponding to image
functions and their use are summarized below (x
has type a, xs has type [a], r and s have type
a →[a]):

R[x] r x (or pure x >>= r)
R[X] xs >>= r

(R ◦ S)[·] s >=> r

(R ∪ S)[·] r⊕ s

R+[·] clo r

R∗[·] rclo r

3 Data structures

The overall design of the parser is traditional.
Words are read from left to right and a set of alter-
native parses is built incrementally. We start with
describing data types on which the parser core is
based. They are designed to fit well into the func-
tional environment2.

3.1 The Parse type
A (partial) parse is represented as a sequence of
parse steps. Each step consumes one word and in-
troduces a new node to the parse. It also adds all
the arcs between the new node and the nodes al-
ready present in the parse. All the data added in
a parse step – the index of the new node, its cat-
egory and the information on its connections with
the former nodes – will be encapsulated in a value
of type Step:

type Parse = [Step]
data Step = Step Ind Cat [Arc] [Arc]

deriving (Eq,Ord)

A value of type Step is built of the type con-
structor of the same name and four arguments:

(1) the word’s index of type Ind. It reflects the
position of the word in the sentence. It is also
used as the node identifier within a parse;

(2) the syntactic category of the node represented
by a value of type Cat;

(3) the arc linking the node to its left head. This
value will be present only if the node is pre-
ceded by its head in the surface ordering. List
is used to represent a possibly missing value.

(4) the list of arcs which connect the node with
its left dependents.

We also make Step an instance of the classes
Eq and Ord. This will allow us to use comparison
operators (based on node index order) with values
of type Node introduced below.

The value of type Arc is a pair:
2The functional programming friendly representation of a

parse was inspired by (Erwig, 2001).73

type Arc = (Role,Ind)

where Ind is the integer type.

type Ind = Int

For the sentence John saw Mary. we obtain the
following sequence of the parse steps:

[Step 3 N [(Cmpl,2)] [],
Step 2 V [] [(Subj,1)],
Step 1 N [] []]

We introduce three operators for constructing
a parse:

infixl 4 <<, +->, +<-
(<<) :: Parse -> (Ind,Cat) -> Parse
p << (i,c) = Step i c [] [] : p

(+->),(+<-) :: Parse -> (Role,Ind) -> Parse
(Step i c [] d: p) +-> (r,j) = Step i c [(r,j)] d : p
(Step i c h d: p) +<- (r,j) = Step i c h ((r,j):d) : p

The operator << adds an unconnected node with
index i and category c to the parse p. The oper-
ator +-> links the node i as the head of the cur-
rent (last) node with depencency of type r. The
operator +<- links the node i as the dependent of
the current node with depencency of type r. All
the operators are left associative and can therefore
be sequenced without parentheses. The expression
constructing the parse for the sentence John saw
Mary. is presented in Figure 1.

3.2 The Node type

In i-th step, the parser adds the node i to the parse
and tries to establish its connections with nodes
i − 1, i − 2, ..., 1. In order to make a decision
whether the dependency of type r between nodes
i and j, j < i, is allowed, various properties of
the node j has to be examined. They depend on
the characteristics of the grammar. Some of them
are easily accessible, such as the node’s category.
Other ones are not accessible directly, such as e.g.
the set of roles on outgoing arcs, categories of de-
pendent nodes.

When the parser has already performed n steps,
full information on each node i, i < n, including
its connections with all nodes j, j < n, is avail-
able. In order to make this information accessible
for the node i, we use the structure of the follow-
ing type for representing a node:

data Node = Node [Step] [Step] deriving (Eq,Ord)

The first list of steps is the parse history up to
the step i. The second list contains the steps which
follow i, arranged from the one directly succeed-
ing i up to the last one in the partial parse.

The node representation contains the whole
parse, as seen from the node’s perspective. The
redundancy in the node representation, resulting
from the fact that the whole parse is stored in
all nodes during a computation, is apparent only.
Lazy evaluation guarantees that those parts of
the structure, which will not be used during the
computation, will never be built. Thus, we can
see a value of type Node, as representing a node
equipped with the potential capability to inspect
its context. In the last node of a parse, the history
list will contain the whole parse and the future list
will be empty.

lastNode :: Parse → Node
lastNode p = Node p []

The following functions will simplify extracting
information from a Node value.

ind :: Node → Ind
ind (Node (Step i _ _ _ : _) _) = i
cat :: Node → Cat
cat (Node (Step _ c _ _ : _) _) = c

hArc, dArcs :: Node → [Arc]
hArc (Node (Step _ _ h _ : _) _) = h
dArcs (Node (Step _ _ _ d : _) _) = d

The most essential property of a Node value is
probably that all the other nodes from the partial
parse it belongs to may be accessed from it.

lng, rng :: Node → [Node]
lng (Node (s:s’:p) q) = [Node (s’:p) (s:q)]
lng _ = []
rng (Node p (s:q)) = [Node (s:p) q]
rng _ = []

preds, succs :: Node → [Node]
preds = clo lng
succs = clo rng

The function lng (left neighbour) returns the
preceding node. The last step in the history list is
moved to the beginning of the future list, provided
that the history list contains at least two nodes.
The function rng (right neighbour) does the op-
posite and returns the node’s successor. The clo

function was used to compute the list of predeces-
sors and successors of a node.

The next group of functions allows for access-
ing the head and dependents of a node. List com-
prehensions allow for their compact implementa-
tion:74

[] << (1,N) << (2,V) +<- (Subj,1) << (3,N) +-> (Cmpl,2)

N N V N

V
Sub

j

N

V

N

Sub
j

N

V

N

Sub
j Cmpl

Figure 1: The expression for the parse: [Step 3 N [(Cmpl,2)] [], Step 2 V [] [(Subj,1)], Step 1 N [] []]

ldp’,rdp’,dp’,lhd’,rhd’,hd’ :: Node→ [(Role, Node)]
ldp’ v = [(r,v’)|v’←preds v,(r,i)←dArcs v,ind v’≡i]
rdp’ v = [(r,v’)|v’←succs v,(r,i)←hArc v’,ind v≡i]
dp’ = ldp’ ⊕ rdp’

lhd’ v = [(r,v’)|v’←preds v,(r,i)←hArc v,ind v’≡i]
rhd’ v = [(r,v’)|v’←succs v,(r,i)←dArcs v’,ind v≡i]
hd’ = lhd’ ⊕ rhd’

The function ldp’ (left dependent) returns the
list of left dependents of the node v together with
corresponding roles: these are such elements v’

from the list of predecessors of v, for which there
exists an arc in dArcs v with index equal to the
index of v’. To get the list of right dependents
(rdp’) of v, we select those nodes from the list
succs v, whose left head’s index is equal to that of
v. The functions rhd’ (right head) and lhd’ (left
head) are implemented analogously. The function
dp’ which computes all dependents is defined by
combining the functions ldp’ and rdp’ with the
operator ⊕ (similarly hd’).

These primed functions are not intended to be
used directly by grammar writers (hence their
primed names)3. They will serve as the basis
for defining the basic parser interface functions:
group of functions for computing related nodes
(ldp, rdp, ...), group of functions for computing
roles on in- and outgoing arcs (ldpr, rdpr, ...), and
finally the group of function for accessing nodes
linked with dependency of a specific type (ldpBy,
rdpBy, ...).

ldp, rdp, dp, lhd, rhd, hd :: Node → [Node]
ldp = fmap snd . ldp’
(similarly rdp, dp, lhd, rhd, hd)

ldpBy, rdpBy, dpBy :: Role → Node → [Node]
ldpBy r v = [v’ | (r,v’)← ldp’ v]
rdpBy r v = [v’ | (r,v’)← rdp’ v]
dpBy r = ldpBy r ⊕ rdpBy r

ldpr, rdpr, dpr, lhdr, rhdr, hdr :: Node → [Role]
ldpr = fmap fst . ldp’
(similarly rdpr, dpr, lhdr, rhdr, hdr)

lhdBy,rhdBy,hdBy :: Role → Node → [Node]

3They are not of type a →[a] and are far less usefull then
e.g. functions of type Node →[Node] defined below (ldp,
rdp, ...).

lhdBy r v = [v’ | (r,v’)← lhd’ v]
rhdBy r v = [v’ | (r,v’)← rhd’ v]
hdBy r = lhdBy r ⊕ rhdBy r

The functions for navigating among nodes4 are
summarized in Figure 2.

lng preds = clo lng

rng succs = clo rng

ldp rdp

dp = ldp⊕ rdp lm◦dp

lhd rhd

hd = lhd⊕ rhd root = mrclo hd

Figure 2: Node functions (black dot - the argu-
ment, circles - values)

We will end with defining three more use-
ful functions: lm and rm for choosing the left-
most/rightmost node from a list of nodes, and
hdless for checking whether the argument node
has no head.

lm, rm :: [Node] -> [Node]
lm [] = []
lm xs = [minimum xs]
rm [] = []
rm xs = [maximum xs]

hdless :: Node → Bool
hdless = null ◦ hd

4Many other useful functions for navigating among
parse nodes may be defined using the ones introduced
above, for example: subtree = rclo dp, root = mrclo hd,
tree = root >=> subtree, siblings = hd >=> dp, etc.75

4 The parser core

We will begin by defining the step function.
Given a parse and a word, it computes the next
Step. This computation may be decomposed into
two independent operations: shift – add a new
Step with only word’s category and the index,
with no connections; and connect – create de-
pendency connections for the last node in the
parse. The operations shift and connect will re-
sort to two different information sources external
to the parser: the lexicon and the grammar, re-
spectively. In the impelementation of shift we
assume the existence of an external lexicon (see
Section 5), which provides a function dic of type
Word -> [Cat]. This function, given a word w as
argument, returns a list of its syntactic categories.
type Word = String

shift :: Word → Parse → [Parse]
shift w p = [p << (nextId p, c) | c← dic w]

where nextId [] = 1
nextId (Step i _ _ _ : _) = i + 1

The shift function adds to the parse p a new
unconnected node with w’s syntactic category and
the appropriately set index. As the word w may be
assigned many alternative syntactic categories due
to its lexical ambiguity, a list of parses is produced
– one parse for each alternative reading of w.

In the impelementation of connect we assume
the existence of an external grammar (see Section
5), which is required to offer the functions heads,
deps of type Node -> [(Role,Node)] and pass

of type Node -> Bool. The functions heads and
deps take a node as argument and return the list of
all candidate connections to heads or dependents,
respectively. The pass function allows the gram-
mar to perform the final verification of the com-
plete parse (the last node is passed as the argu-
ment).

We first define two functions addHead and
addDep. They add connections proposed by the
grammar for the last node in the parse. The func-
tions also check whether the candidate for the de-
pendent node has no head attached so far.
addHead, addDep :: Parse → [Parse]
addHead p = [p +-> (r,ind v’) | let v = lastNode p,

hdless v,
(r,v’)← heads v]

addDep p = [p +<- (r,ind v’) | let v = lastNode p,
(r,v’)← deps v,
hdless v’]

With these functions we can define connect as
follows:

connect :: Parse → [Parse]
connect = (addDep >=> connect) ⊕ addHead ⊕ pure

Parses returned by addDep, addHead, are com-
bined together with the unchanged parse (pure).
Parses returned by addDep are recursively passed
to connect, because there are may be more than
one dependent to connect. The connect function
produces parses with all possible combinations of
valid connections.

Now, the step computation may be implemented
by combining shift w and connect.

step :: Word → Parse → [Parse]
step w = shift w >=> connect

The whole parse will be computed (function
steps) by applying left fold on a word list using
the step function inside the list monad – we just
have to flip the first two arguments of step to get
the type needed by foldM.

steps :: [Word] → [Parse]
steps = foldM (flip step) []

Finally, the parser function selects com-
plete parses (containing one tree, thus satisfying
(≡1)◦size) and asks the grammar for final verifi-
cation (pass◦lastNode).

parser :: [Word] → [Parse]
parser = filter ((≡1)◦size ∧ pass◦lastNode) ◦ steps

5 Lexicons and grammars

In order to turn the bare parser engine defined
above into a working syntactic analysis tool we
has to provide it with a lexicon and a grammar.
We are short of exactly six elements: the types Cat
and Role, and the functions dic, heads, deps, and
pass.

Definition of a lexicon and a grammar accounts
to defining these six elements making use of the
set of 30 interface functions, namely: cat, lng,
rng, preds, succs, ldp, rdp, dp, lhd, rhd, hd,
ldpr, rdpr, dpr, lhdr, rhdr, hdr, ldpBy, rdpBy,
dpBy, lhdBy, rhdBy, hdBy, lm, rm, hdless, clo,
rclo, mclo, mrclo supplemented with ... the whole
Haskell environment. Two examples are given be-
low. It should be stressed that the examples are by
no means meant to be understood as proposals of
grammatical systems or descriptive solutions, they
unique role is the illustration of using Haskell lan-
guage for the purpose of formulating grammatical
description.76

5.1 Example 1
The first example is minimalistic. We will imple-
ment a free word order grammar which is able
to analyze Latin sentences composed of words
Joannes, Mariam, amat. The six elements re-
quired by the parser are presented below. The part
of speech affixes ’n’ and ’a’ stand for ’nominative’
and ’accusative’.

data Cat = Nn | Na | V deriving (Eq,Ord)
data Role = Subj | Cmpl deriving (Eq,Ord)

dic "Joannes" = [Nn]
dic "Mariam" = [Na]
dic "amat" = [V]

heads d = [(r,h) | h← preds d,
r← link (cat h) (cat d)]

deps h = [(r,d) | d← preds h,
r← link (cat h) (cat d)]

pass = const True

link V Nn = [Subj]
link V Na = [Cmpl]
link _ _ = []

There is one little problem with the above gram-
mar: duplicate parses are created as a result of
attaching the same dependents in different order.
we can solve this problem by slightly complicat-
ing the definition of deps function and substitut-
ing the expression lm ◦(ldp⊕ pure) >=> preds

in the place of preds. This expression defines a
function which returns predecessors (preds) of the
leftmost (lm) left dependent (ldp) of the argument
node or of the node itself (pure) if no dependents
are present yet.
Examples of the parser’s output:

> parse "Joannes amat Mariam"

[[Step 3 Nacc [(Cmpl,2)] [],
Step 2 V [] [(Subj,1)],
Step 1 Nnom [] []]]

> parse "Joannes Mariam amat"

[[Step 3 V [] [(Subj,1),(Cmpl,2)],
Step 2 Nacc [] [],
Step 1 Nnom [] []]]

The parsing algorithm which results from com-
bining the parser from Section 4 with the above
grammar is basically equivalent to the ESDU vari-
ant from (Covington, 2001).

5.2 Example 2
The second example shows a more expressive
grammar architecture which allows for handling

some complex linguistic phenomena such as: con-
straints on cardinality of roles in dependent con-
nections; local5 agreement; non-local agreement
between coordinated nouns; non-local require-
ment of a relative pronoun to be present inside a
verb phrase in order to consider it as a relative
clause; long distance agreement between a noun
and a relative pronoun nested arbitrarily deep in
the relative clause.

These phenomena are present for example in
Slavonic languages such as Polish. In this exam-
ple the projectivity requirement will be addition-
ally imposed on the tree structures.

In the set of categories, the case and gender
markers are taken into account: n=nominative,
a=accusative, m=masculine, f=feminine;
REL=relative pronoun. The lexicon is imple-
mented as before6:

data Cat = Nmn | Nfn | Nma | Nfa | Vm | Vf
| ADJmn | ADJfn | ADJma | ADJfa
| RELmn | RELfn | RELma | RELfa | CONJ

deriving (Eq,Ord)

data Role = Subj | Cmpl | Coord | CCmpl | Rel | Mod
deriving (Eq,Ord)

dic "Jan" = [Nmn]
dic "Jana" = [Nma]
dic "Maria" = [Nfn]
dic "Marię" = [Nfa]
dic "książka" = [Nfn]
dic "książkę" = [Nfa]
dic "dobra" = [ADJfn]
dic "dobrą" = [ADJfa]

dic "widział" = [Vm]
dic "widziała"= [Vf]
dic "czyta" = [Vm,Vf]
dic "czytał" = [Vm]
dic "czytała" = [Vf]
dic "który" = [RELmn]
dic "którego" = [RELma]
dic "która" = [RELfn]
dic "którą" = [RELfa]
dic "i" = [CONJ]

We introduce word classes, which are tech-
nically predicates on nodes. Functions of type
a →Bool are instances of Lattice class and may
be combined with operators∨ (join) and∧ (meet),
e.g. nominal class:

v,n,adj,rel,conj :: Node → Bool
v = (∈ [Vm,Vf]) ◦ cat
n = (∈ [Nmn,Nma,Nfn,Nfa]) ◦ cat
adj = (∈ [ADJmn,ADJma,ADJfn,ADJfa]) ◦ cat
rel = (∈ [RELmn,RELma,RELfn,RELfa]) ◦ cat
conj = (≡ CONJ) ◦ cat

nominal :: Node → Bool
nominal = n ∨ rel

nom,acc,masc,fem :: Node → Bool

5By the term local we mean: limited to the context of a
single dependency connection.

6Jan(a) = John, Mari(a/ę) = Mary, książk(a/ę) =
book, dobr(a/ą) = good, widział(a) = to seePAST ,
czyta=to readPRES , czytał(a) = to readPAST , któr(y/ego/a/ą)
= which/who/that, i = and77

nom = (∈ [Nmn,Nfn,ADJmn,ADJfn,RELmn,RELfn]) ◦ cat
acc = (∈ [Nma,Nfa,ADJma,ADJfa,RELma,RELfa]) ◦ cat
masc = (∈ [Vm,Nmn,Nma,ADJmn,ADJma,RELmn,RELma]) ◦ cat
fem = (∈ [Vf,Nfn,Nfa,ADJfn,ADJfa,RELfn,RELfa]) ◦ cat

The grammar has the form of a list of rules. The
type Rule is defined as follows:

data Rule = Rule Role (Node→Bool) (Node→Bool) [Constr]

A value of type Rule is built of the type con-
structor of the same name and four arguments: the
first is the dependency type (role), the next two
specify categories allowed for the head and the de-
pendent, given in the form of predicates on nodes.
The fourth argument of is the list of constraints im-
posing additional conditions. The type of a con-
straint in a function from a pair of nodes (head,
dependent) to Bool.

type Constr = (Node,Node)→ Bool

The functions heads, deps, and pass take the
following form:

heads d = [(r,h) | h← visible d, r← roles h d]
deps h = [(r,d) | d← visible h, r← roles h d]
pass = const True

visible = mrclo (lm ◦ dp) >=> lng >=> rclo lhd

roles h d = [r | Rule r p q cs← rules,
p h, q d,
all ($ (h,d)) cs]

The function visible (see Figure 3) returns the
list of nodes connectable without violating the pro-
jectivity requirement. These are reflexive transi-
tive left heads (rclo lhd) of the left neighbour
(lng) of the maximal transitive leftmost dependent
(mrclo (lm◦dp)). The function roles, given two
nodes as arguments, selects roles which may label
dependency connection between them. For each
rule Rule r p q cs in the list of rules, it checks
whether the head and dependent nodes satisfy the
predicates imposed on their categories (p and q,
respectively), then verifies whether all constrains
cs apply to the head-dependent pair (($ (h,d)).

visible = mrclo (lm◦dp) >=> lng >=> rclo lhd

sub = clo dp

Figure 3: Node functions visible and sub

The set of constraints for our example include
order constraints (left, right), agreement in gen-
der (agrG), case (agrC), both case and gender
(agrCG), agreement between coordinated nouns
(agrCoord), and the constraint related to relative
close attachment (agrRel, see below).

right (h,d) = h < d
left (h,d) = d < h
agrG (h,d) = (all masc ∨ all fem) [h,d]
agrC (h,d) = (all nom ∨ all acc) [h,d]
agrCG = agrC ∧ agrG
agrCoord (h,d) = or [agrC (h’,d) | h’← hdBy Coord h]
agrRel (h,d) = or [agrCG (h,d’) | d’← sub d, rel d’]

where sub = clo dp

The constraint agrCoord7 checks whether the
node h has the head h’ linked by dependency of
type Coord and the agrC constraint for h’ and d

evaluates to True; agrRel checks whether the node
d has a transitive dependent d’ (i.e. subordinate
node, function sub – see Figure 3) belonging to
the category rel which agrees with the node h in
case and gender. Finally, the list of grammar rules
may be stated as:

rules = [Rule Subj v (nominal ∧ nom) [agrG],
Rule Cmpl v (nominal ∧ acc) [],
Rule Coord n conj [right],
Rule CCmpl conj n [right,agrCoord],
Rule Rel n v [agrRel],
Rule Mod n adj [agrCG]]

Now, we will extend our grammar with con-
straints on the cardinality of roles. Let’s intro-
duce two more componenents to the grammar: the
set of roles, which may appear at most once for
each head (sgl) and the statements indicating roles
which are obligatory for word categories (obl).

sgl :: [Role]
sgl = [Subj, Cmpl, CCmpl, Rel]

obl :: [((Node → Bool), [Role])]
obl = [(conj,[CCmpl])]

Singleness constraint will be defined as an in-
stance of a more general mechanism: universal
constraints – similar to constraints in rules but with
global scope.

type UConstr = (Role,Node,Node) → Bool

singleness :: UConstr
singleness (r,h,d) = ¬ (r ∈ sgl ∧ r ∈ dpr h)

uc :: [UConstr]
uc = [singleness]

7We used the standard Haskell function or here, despite
its name is not intuitively fitting the context, because it does
exactly what we need: it checks both whether the constraint
agrC returns True and whether there esists h’ for which the
agrC is evaluated.78

Universal constraints will be checked before
each dependency is added and will block the ad-
dition in case any of them is violated. In order to
incorporate them into our grammar we have to re-
place the function roles used in the definition of
heads and deps functions with roles’ defined as
follows:

roles’ h d = [r | r← roles h d, all ($ (r,h,d)) uc]

The function roles’ extends roles by addition-
ally checking if all universal constraints (the list
uc) apply to the connection being under consider-
ation.

The obligatoriness constraint will be checked
after completing the parse, in the pass function.
The sat function looks for all roles which are
obligatory for the argument node, as defined in the
statements in the obl list, and verifies if all of them
are present.

sat n = all (∈ dpr n) [r | (p,rs)← obl, p n, r← rs]

pass = all sat ◦ (pure ⊕ preds) (redefinition)

Here are some examples of the parser’s output:

> parse "widział Marię i Jana"8

[[Step 4 Nma [(CCmpl,3)] [],
Step 3 CONJ [(Conj,2)] [],
Step 2 Nfa [(Cmpl,1)] [],
Step 1 Vm [] []]

]

> parse "widział Marię i Jan"9

[]

> parse "Jan widział książkę którą czyta Maria"10

[[Step 6 Nfn [(Subj,5)] [],
Step 5 Vf [(Rel,3)] [(Cmpl,4)],
Step 4 RELfa [] [],
Step 3 Nfa [(Cmpl,2)] [],
Step 2 Vm [] [(Subj,1)],
Step 1 Nmn [] []]

]

> parse "Jan widział książkę którego czyta Maria"11

[]

8he-saw Mary+acc and John+acc
9he-saw Mary+acc and John+nom (agrCoord constraint vio-

lated)
10John saw the-book+fem+acc which+fem+acc Mary is-reading
11John saw the-book+fem+acc which+masc+acc Mary is-reading

(agrRel constraint violated)

6 Efficiency issues

As far as the efficiency issues are concerned, the
most important problem appears to be the the
number of alternative partial parses built, because
partial parses with all possible combinations of le-
gal connections (as well subsets thereof) are pro-
duced during the analysis. This may result in un-
acceptable analysis times for longer and highly
ambiguous sentences.

This problem may be overcome by rejecting un-
promising partial parses as soon as possible. One
of the most obvious selection criteria is the for-
est size (number of trees in a parse). The relevant
parser modification accounts to introducing the se-
lection function (for simplicity we use the fixed
value of 4 for the forest size to avoid introducing
extra parameters) and redefining the step function
appropriately:

select :: Parse → [Parse]
select p = if size p ≤ 4 then [p] else []

step w = shift w >=> connect >=> select

The function size which used to compute the
number of trees in a parse may be defined as fol-
lows:

size :: Parse -> Int
size = foldr acc 0
where acc (Step _ _ h ds) n = n + 1 - length(h++ds)

7 All/first/best parse variants

The parser is designed to compute all possible
parses. If, however, only the first n parses are re-
quested, then only these ones will be computed.
Moreover, thanks to the lazy evaluation strategy,
only those computations which are necessary to
produce the first n parses will be performed. Thus,
no modifications are needed to turn the parser into
a variant that searches only for the first or first
n parses. It is enough to request only the first n
parses in the parser invocation. For example, the
parse1 function defined below will compute only
the first parse.

parse1 = take 1 ◦ parse

In order to modify the algorithm to al-
ways select the best alternatives according to
someScoringFunction, instead of the first ones,
the parser may by further modified as follows:

someScoringFunction :: (Ord a) ⇒ Parse → a
someScoringFunction = ...79

sort :: [Parse] → [Parse]
sort = sortWith someScoringFunction

step w = shift w >=> connect >=> (sort ◦ select)

8 Conclusion

In the paper we have tried to show that a lazy func-
tional language such as Haskell is a convenient
framework not only for implementing dependency
parsers but also for expressing dependency gram-
mars directly as Haskell code. Even without intro-
ducing any special notation, language constructs,
or additional operators, Haskell itself allows to ex-
press the grammar in compact, readable and math-
ematically clean manner.

The borderline between the parser and the
grammar is shifted compared to the traditional
view, e.g. CFG/Earley. In the part, which we
called the parser core, minimal assumptions are
made about structural properties of the syntactic
trees allowed (e.g. projective, nonprojective) and
the nature of grammatical constraints which are
formulated. In fact the only hard-coded require-
ments are that the syntactic structure is represented
in the form of a dependency tree and that the parse
is built incrementally.

In order to turn the ideas presented above into a
useful NLP tool for building grammars it would
be obviously necessary to rewrite the code in
more general, parametrizable form, abstracting
over word category type (e.g. to allow structural
tags), role type, parse filtering and ranking func-
tions, the monad used to represent alternatives, al-
lowing for representing some kinds of weights or
ranks etc.

In fact, the work in exactly this direction is al-
ready in advanced stage of development. In this
paper it was reduced to the essential part (without
parameterized data types, multi-parameter classes,
monad transformers, and so on), which size allows
to present it in full detail and with the complete
source code in a conference paper.

References

Covington, M. A. (2001). A fundamental algo-
rithm for dependency parsing. In In Proceed-
ings of the 39th Annual ACM Southeast Confer-
ence, pages 95–102.

de Kok, D. and Brouwer, H. (2009). Natural
language processing for the working program-
mer. http://freecomputerbooks.com/books/
nlpwp.pdf. Accessed: 2016-11-22.

Eijck, J. V. (2005). Deductive parsing
with sequentially indexed grammars.
http://homepages.cwi.nl/~jve/papers/

05/sig/DPS.pdf. Accessed: 2016-11-22.

Erwig, M. (2001). Inductive graphs and functional
graph algorithms. J. Functional Programming,
11(5):467–492.

Goodman, J. (1999). Semiring parsing. Computa-
tional Linguistics, 25(4):573–605.

Hutton, G. and Meijer, E. (1998). Monadic parsing
in haskell. J. Funct. Program., 8(4):437–444.

Jones, S. P., editor (2002). Haskell 98 Lan-
guage and Libraries: The Revised Report.
http://haskell.org/.

Koster, C. H. (1992). Affix grammars for natu-
ral languages. In Alblas, H. and Melichar, B.,
editors, Attribute Grammars, Applications and
Systems, volume 545 of LNCS, pages 469–484.
Springer-Verlag.

Kubler, S., McDonald, R., Nivre, J., and Hirst,
G. (2009). Dependency Parsing. Morgan and
Claypool Publishers.

Levy, R. and Pollard, C. (2001). Coordination and
neutralization in hpsg. In Eynde, F. V., Hel-
lan, L., and Beermann, D., editors, Proceedings
of the 8th International Conference on Head-
Driven Phrase Structure Grammar, pages 221–
234. CSLI Publications.

Lipovaca, M. (2011). Learn You a Haskell for
Great Good!: A Beginner’s Guide. No Starch
Press, San Francisco, CA, USA, 1st edition.

Ljunglöf, P. (2004). Functional chart parsing of
context-free grammars. Journal of Functional
Programming, 14(6):669–680.

Pereira, F. C. N. and Warren, D. H. D. (1980). Def-
inite Clause Grammars for Language Analysis -
A Survey of the Formalism and a Comparison
with Augmented Transition Network. Artificial
Intelligence, pages 231–278.

Ranta, A. (2011). Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI
Publications, Stanford. ISBN-10: 1-57586-626-
9 (Paper), 1-57586-627-7 (Cloth).

Yorgey, B. (2009). The typeclassopedia. The
Monad. Reader Issue 13, pages 17–66.

80

