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Abstract

Social media messages’ brevity and uncon-
ventional spelling pose a challenge to lan-
guage identification. We introduce a hierar-
chical model that learns character and con-
textualized word-level representations for lan-
guage identification. Our method performs
well against strong baselines, and can also re-
veal code-switching.

1 Introduction

Language identification (language ID), despite be-
ing described as a solved problem more than ten
years ago (McNamee, 2005), remains a difficult
problem. Particularly when working with short
texts, informal styles, or closely related language
pairs, it is an active area of research (Gella et al.,
2014; Wang et al., 2015; Baldwin and Lui, 2010).
These difficult cases are often found in social media
content. Progress on language ID is needed espe-
cially since downstream tasks, like translation and
semantic parsing, depend on correct language ID.

This paper brings continuous representations for
language data, which have produced new states of
the art for language modeling (Mikolov et al., 2010),
machine translation (Bahdanau et al., 2015), and
other tasks, to language ID. We adapt a hierarchi-
cal character-word neural architecture from Kim et
al. (2016), demonstrating that it works well for lan-
guage ID. Our model, which we call C2V2L (“char-
acter to vector to language”) is hierarchical in the
sense that it explicitly builds a continuous represen-
tation for each word from its character sequence,
capturing orthographic and morphology-related pat-
terns, and then combines those word level represen-
tations in context, finally classifying the full word

sequence. Our model does not require any special
handling of casing or punctuation nor do we need
to remove URLs, usernames, or hashtags, and it is
trained end-to-end using standard procedures.

We demonstrate the model’s state-of-the-art per-
formance in experiments on two datasets consist-
ing of tweets. This hierarchical technique works
well compared to classifiers using character or word
n-gram features as well as a similar neural model
that treats an entire tweet as a single character se-
quence. We find further that the model can bene-
fit from additional out-of-domain data, unlike much
previous work, and with little modification can an-
notate word-level code-switching. We also confirm
that smoothed character n-gram language models
perform very well for language ID tasks.

2 Model

Our model has two main components trained to-
gether, end-to-end.1 The first, “char2vec,” ap-
plies a convolutional neural network (CNN) to a
whitespace-delimited word’s Unicode character se-
quence, providing a word vector.2 The second
is a bidirectional LSTM recurrent neural network
(RNN) that maps a sequence of such word vectors
to a language label.

2.1 Char2vec

The first layer of char2vec is an embedding learned
for each Unicode code point that appears at least
twice in the training data, including punctuation,
emoji, and other symbols. If C is the set of char-
acters then we let the size of the character embed-

1Code available here: http://github.com/ajaech/twitter_langid
2For languages without word segmentation, e.g., Chinese,

the entire character sequence is treated as a single word. This
still works well (see Section 3.2.)
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ding layer be d = dlog2 |C|e. (If each dimension of
the character embedding vector holds one bit of in-
formation then d bits should be enough to uniquely
encode each character.) The character embedding
matrix is Q ∈ Rd×|C|. Words are given to the model
as a sequence of characters. When each character in
a word of length l is replaced by its embedding vec-
tor we get a matrix C ∈ Rd×(l+2). There are l + 2
columns in C because padding characters are added
to the left and right of each word.

The char2vec architecture uses two sets of fil-
ter banks. The first set is comprised of matrices
Hai ∈ Rd×3 where i ranges from 1 to n1. The
matrix C is narrowly convolved with each Hai , a
bias term ba is added and an ReLU non-linearity,
ReLU(x) = max(0, x), is applied to produce an
output T1 = ReLU(conv(C,Ha) + ba). T1 is of
size n1 × l with one row for each of the filters and
one column for each of the characters in the input
word. Since each of the Hai is a filter with a width
of three characters, the columns of T1 each hold a
representation of a character trigram. During train-
ing, we apply dropout on T1 to regularize the model.
The matrix T1 is then convolved with a second set
of filters Hbi

∈ Rn1×w where bi ranges from 1 to
3n2 and n2 controls the number of filters of each of
the possible widths, w = 3, 4, or 5. Another con-
volution and ReLU non-linearity is applied to get
T2 = ReLU(conv(T1,Hb) + bb). Max-pooling
across time is used to create a fix-sized vector y from
T2. The dimension of y is 3n2, corresponding to the
number of filters used.

Similar to Kim et al. (2016) who use a highway
network after the max-pooling layer, we apply a
residual network layer. Both highway and resid-
ual network layers allow values from the previous
layer to pass through unchanged but the residual
layer is preferred in our case because it uses half
as many parameters (He et al., 2015). The resid-
ual network uses a matrix W ∈ R3n2×3n2 and bias
vector b3 to create the vector z = y + fR(y) where
fR(y) = ReLU(Wy + b3). The resulting vector z
is used as a word embedding vector in the word-level
LSTM portion of the model.

There are three differences between our version
of the model and the one described by Kim et al.
(2016). First, we use two layers of convolution in-
stead of just one, inspired by Ling et al. (2015a)

who used a 2-layer LSTM for character modeling.
Second, we use the ReLU function as a nonlinear-
ity as opposed to the tanh function. ReLU has been
highly successful in computer vision applications
in conjunction with convolutional layers (Jarrett et
al., 2009). Finally, we use a residual network layer
instead of a highway network layer after the max-
pooling step, to reduce the model size.

Figure 1: C2V2L model architecture. The model takes
the (misspelled) word “esfuezo,” and produces a word
vector via the two CNN layers and the residual layer. The
word vectors are then combined via the LSTM, and the
words’ predictions averaged for a tweet prediction.

It is possible to use bi-LSTMs instead of con-
volutional layers in char2vec as done by Ling et
al. (2015a). We did explore this option in prelimi-
nary experiments but found that using convolutional
layers has several advantages, including a large im-
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provement in speed for both the forward and back-
ward pass, many fewer parameters, and improved
language ID accuracy.

2.2 Sentence-level Language ID
The sequence of word embedding vectors is pro-
cessed by a bi-LSTM, which outputs a sequence of
vectors, [v1, . . .vT ] where T is the number of words
in the tweet. All LSTM gates are used as defined by
Sak et al. (2014). Dropout is used as a regularizer
on the inputs to the LSTM, as in Pham et al. (2014).
The output vectors vi are transformed into probabil-
ity distributions over the set of languages by apply-
ing an affine transformation followed by a softmax:

pi = fL(vi) =
exp(Avi + b)∑T
t=1 exp(Avt + b)

(These word-level predictions, we will see in §5.4,
are useful for annotating code-switching.) The
sentence-level prediction pS is then given by aver-
aging the word-level language predictions.

The final affine transformation can be interpreted
as a language embedding, where each language is
represented by a vector of the same dimensional-
ity as the LSTM outputs. The goal of the LSTM
then is (roughly) to maximize the dot product of
each word’s representation with the language em-
bedding(s) for that sentence. The only supervision
in the model comes from computing the loss of
sentence-level predictions.

3 Tasks and Datasets

We consider two datasets: TweetLID and Twitter70.
Summary statistics for each of the datasets are pro-
vided in Table 1.

3.1 TweetLID
The TweetLID dataset (Zubiaga et al., 2014) comes
from a language ID shared task that focused on six
commonly spoken languages of the Iberian penin-
sula: Spanish, Portuguese, Catalan, Galician, En-
glish, and Basque. There are approximately 15,000
tweets in the training data and 25,000 in the test
set. The data is unbalanced, with the majority of
examples being in the Spanish language. The “un-
determined” label (‘und’), comprising 1.4% of the
training data, is used for tweets that use only non-
linguistic tokens or belong to an outside language.

Additionally, some tweets are ambiguous (‘amb’)
among a set of languages (2.3%), or code-switch be-
tween languages (2.4%). The evaluation criteria take
into account all of these factors, requiring prediction
of at least one acceptable language for an ambiguous
tweet or all languages present for a code-switched
tweet. The fact that hundreds of tweets were labeled
ambiguous or undetermined by annotators who were
native speakers of these languages reveals the diffi-
culty of this task.

For tweets labeled as ambiguous or containing
multiple languages, the training objective distributes
the “true” probability mass evenly across each of the
languages, e.g., 50% Spanish and 50% Catalan.

The TweetLID shared task had two tracks: one
that restricted participants to only use the official
training data and another that was unconstrained, al-
lowing the use of any external data. There were 12
submissions in the constrained track and 9 in the un-
constrained track. Perhaps surprisingly, most partic-
ipants performed worse on the unconstrained track
than they did on the constrained one.

As supplementary data for our unconstrained-
track experiments, we collected data from Wikipedia
for each of the six languages in the TweetLID cor-
pus. Participants in the TweetLID shared task also
used Wikipedia as a data source for the uncon-
strained track. We split the text into 25,000 sen-
tence fragments per language, with each fragment of
length comparable to that of a tweet. The Wikipedia
sentence fragments are easily distinguished from
tweets. Wikipedia fragments are more formal and
are more likely to use complex words; for ex-
ample, one fragment reads “ring homomorphisms
are identical to monomorphisms in the category of
rings.” In contrast, tweets tend to use variable
spelling and more simple words, as in “Haaaaallelu-
jaaaaah http://t.co/axwzUNXk06” and “@justin-
bieber: Love you mommy http://t.co/xEGAxBl6Cc
http://t.co/749s6XKkgK awe ♥”. Previous work
confirms that language ID is more challenging on
social media text than sentence fragments taken
from more formal text, like Wikipedia (Carter,
2012). Despite the domain mismatch, we find in
§5.2 that additional text in training helps our model.

The TweetLID training data is too small to di-
vide into training and validation sets. We created
a tuning set by adding samples taken from Twitter70
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TweetLID Twitter70
Tweets 14,991 58,182

Character vocab. 956 5,796
Languages 6 70

Code-switching? Yes Not Labeled
Balanced? No Roughly

Table 1: Dataset characteristics.

and from the 2014 Workshop on Computational Ap-
proaches to Code Switching (Solorio et al., 2014)
to the official TweetLID training data. We used this
augmented dataset with a 4:1 train/development split
for hyperparameter tuning.3

3.2 Twitter70

The Twitter70 dataset was published by the Twitter
Language Engineering Team in November 2015.4

The languages come from the Afroasiatic, Dravid-
ian, Indo-European, Sino-Tibetan, and Tai-Kadai
families. Each person who wants to use the data
must redownload the tweets using the Twitter API.
In between the time when the data was published
and when it is downloaded, some of the tweets can
be lost due to account deletion or changes in privacy
settings. At the time when the data was published
there were approximately 1,500 tweets for each lan-
guage. We were able to download 82% of the tweets
but the amount we could access varied by language
with as many as 1,569 examples for Sindhi and as
few as 371 and 39 examples for Uyghur and Oriya,
respectively. The median number of tweets per lan-
guage was 1,083. To our knowledge, there are no
published benchmarks on this dataset.

Unlike TweetLID, the Twitter70 data has no un-
known or ambiguous labels. Some tweets do con-
tain code-switching but it is not labeled as such; a
single language is assigned. There is no predefined
test set so we used the last digit of the identification
number to partition them. Identifiers ending in zero

3We used this augmented data to tune hyperparameters for
both constrained and unconstrained models. However, after set-
ting hyperparameters, we trained our constrained model using
only the official training data, and the unconstrained model us-
ing only the training data + Wikipedia. Thus, no extra data was
used to learn actual model parameters for the constrained case.

4For clarity, we refer to this data as “Twitter70” but it can be
found in the Twitter blog post under the name “recall oriented.”
See http://t.co/EOVqA0t79j

(15%) were used for the test set and those ending in
one (5%) were used for tuning.

When processing the input at the character level,
the vocabulary for each data source is defined as
the set of Unicode code-points that occur at least
twice in the training data: 956 and 5,796 characters
for TweetLID and Twitter70, respectively. A small
number of languages, e.g. Mandarin, are responsible
for most characters in the Twitter70 vocabulary.

Gillick et al. (2016) processed the input one byte
at a time instead of by character. In early experi-
ments, we found that when using bytes the model
would often make mistakes that should have been
obvious from the orthography alone. We do not rec-
ommend using the byte sequence for language ID.

4 Implementation Details

4.1 Preprocessing

An advantage of the hybrid character-word model
is that only limited preprocessing is required. The
runtime of training char2vec is proportional to the
longest word in a minibatch. The data contains many
long and repetitive character sequences such as “ha-
hahaha...” or “arghhhhh...”. To deal with these, we
restricted any sequence of repeating characters to
at most five repetitions where the repeating pattern
can be from one to four characters. There are many
tweets that string together large numbers of Twit-
ter usernames or hashtags without spaces between
them. These create extra long “words” that cause
our implementation to need more memory and com-
putation during training. To solve this we enforce
the constraint that there must be a space before any
URL, username, or hashtag. To deal with the few
remaining extra-long character sequences, we force
word breaks in non-space character sequences every
40 bytes. This primarily affects languages that are
not space-delimited like Chinese. We do not per-
form any special handling of casing or punctuation
nor do we need to remove the URLs, usernames, or
hashtags as has been done in previous work (Zubi-
aga et al., 2014). The same preprocessing is used
when training the n-gram models.

4.2 Training and Tuning

Training is done using minibatches of size 25 and a
learning rate of 0.001 using the Adam method for
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Parameter TweetLID Twitter70
1st Conv. Layer (n1) 50 59
2nd Conv. Layer (n2) 93 108

LSTM 23 38
Dropout 25% 30%

Total Params. 193K 346K
Table 2: Hyperparameter settings for selected models.

optimization (Kingma and Ba, 2015). For the Twit-
ter70 dataset we used 5% held out data for tuning
and 15% for evaluation. To tune, we trained 15
models with random hyperparameters and selected
the one that performed the best on the development
set. Training is done for 80,000 and 100,000 mini-
batches for TweetLID and Twitter70 respectively.

The only hyperparameters to tune are the number
of filters in each of the two convolutional layers, the
size of the word-level LSTM vector, and the dropout
rate. The selected values are listed in Table 2.

5 Experiments

For all the studies below on language identification,
we compare to two baselines: i) langid.py, a
popular open-source language ID package, and ii)
a classifier using n-gram character language mod-
els. For the TweetLID dataset, additional compar-
isons are included as described next. In addition, we
test our model’s word-level performance on a code-
switching dataset.

The first baseline, based on the langid.py
package, uses a naïve Bayes classifier over byte n-
gram features (Lui and Baldwin, 2012). The pre-
trained model distributed with the package is de-
signed to perform well on a wide range of domains,
and achieved high performance on “microblog mes-
sages” (tweets) in the original paper. langid.py
uses feature selection for domain adaptation and to
reduce the model size; thus, retraining it on in-
domain data as we do in this paper does not provide
an entirely fair comparison. However, we include it
for its popularity and importance.

The second baseline is built from character n-
gram language models. It assigns each tweet accord-
ing to language `∗ = arg max` p(tweet | `), i.e., ap-
plying Bayes’ rule with a uniform class prior (Dun-
ning, 1994). For TweetLID, the rare ‘und’ was han-
dled with a rejection model. Specifically, after `∗ is

chosen, a log likelihood ratio test is applied to decide
whether to reject the decision in favor of the ‘und’
class, using the language models for `∗ and ‘und’
with a threshold chosen to optimize F1 on the devel-
opment set. The models were trained using Witten-
Bell smoothing (Bell et al., 1989), but otherwise the
default parameters of the SRILM toolkit (Stolcke,
2002) were used.5 N-gram model training ignores
tweets labeled as ambiguous or containing multi-
ple languages, and the unconstrained models use
a simple interpolation of TweetLID and Wikipedia
component models. The n-gram order was chosen
to minimize perplexity with 5-fold cross validation,
yielding n=5 for TweetLID and Twitter70, and n=6
for Wikipedia.

Note that both of these baselines are generative,
learning separate models for each language. In
contrast, the neural network models explored here
are trained on all languages, so parameters may be
shared across languages. In particular, a character
sequence corresponding to a word in more than one
language (e.g., “no” in English and Portuguese) has
a language-independent word embedding.

5.1 TweetLID: Constrained Track

In the constrained track of the 2014 shared task, Hur-
tado et al. (2014) attained the highest performance
(75.2 macroaveraged F1). They used a set of one-vs-
all SVM classifiers with character n-gram features,
and returned all languages for which the classifica-
tion confidence was above a fixed threshold. This
provides our third, strongest baseline.

In the unconstrained track, the winning team was
Gamallo et al. (2014), using a naïve Bayes classifier
on word unigrams. They incorporated Wikipedia
text to train their model, and were the only team in
the competition whose unconstrained model outper-
formed their constrained one. We compare to their
constrained-track result here.

We also consider a version of our model, “C2L,”
which uses only the char2vec component of C2V2L,
treating the entire tweet as a single word. This tests
the value of the intermediate word representations in
C2V2L; C2L has no explicit word representations.
Hyperparameter tuning was carried out separately
for C2L.

5Witten-Bell works well with small character vocabularies.
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Results The first column of Table 3 shows the ag-
gregate results across all labels. Our model achieves
the state of the art on this task, surpassing the shared
task winner, Hurtado et al. (2014). As expected,
C2L fails to match the performance of C2V2L,
demonstrating that there is value in the hierarchi-
cal representations. The performance of the n-gram
LM baseline is notably strong, beating eleven out
of the twelve submissions to the TweetLID shared
task. We also report category-specific performance
for our models and baselines in Table 3. Note that
performance on underrepresented categories such as
‘glg’ and ‘und’ is much lower than the other cate-
gories. The category breakdown is not available for
previously published results.

One important advantage of our model is its
ability to handle special categories of tokens that
would otherwise require special treatment as out-of-
vocabulary symbols, such as URLs, hashtags, emo-
jis, usernames, etc. Anecdotally, we observe that the
input gates of the word-level LSTM are less likely
to open for these special classes of tokens. This is
consistent with the hypothesis that the model has
learned to ignore tokens that are non-informative
with respect to language ID.

5.2 TweetLID: Unconstrained Track

We augmented C2V2L’s training data with 25,000
fragments of Wikipedia text, weighting the Tweet-
LID training examples ten times more strongly. Af-
ter training on the combined data, we “fine-tune”
the model on the TweetLID data for 2,000 mini-
batches, which helped to correct for bias away from
the undetermined language category, not covered in
the Wikipedia data. The same hyperparameters were
used as in the constrained experiment.

For the n-gram baseline, we interpolate the mod-
els trained on TweetLID and Wikipedia for each lan-
guage. Interpolation weights given to the Wikipedia
language models, set by cross-validation, ranged
from 16% for Spanish to 39% for Galician, the most
and least common labels respectively.

We also compare to unconstrained-track results of
Hurtado et al. (2014) and Gamallo et al. (2014).

Results The results for these experiments are
given in Table 4. Like Gamallo et al. (2014), we see
a benefit from the use of out-of-domain data, giving

a new state of the art on this task as well. Overall,
the n-gram language model does not benefit from
Wikipedia, but we observe that if the undetermined
category, which is not found in the Wikipedia data,
is ignored, then there is a net performance gain.

In Table 5, we show the top seven neighbors to
selected input words based on cosine similarity. In
the left column we see that words with similar fea-
tures, such as the presence of the “n’t” contraction,
can be grouped together by char2vec. In the middle
column, an out-of-vocabulary username is supplied
and similar usernames are retrieved. When work-
ing with n-gram features, removing usernames is
common, but some previous work demonstrates that
they still carry useful information for predicting the
language of the tweet (Jaech and Ostendorf, 2015).
The third example,“noite” (Portuguese for “night”),
shows that the word embeddings are largely invari-
ant to changes in punctuation and capitalization.

5.3 Twitter70
We compare C2V2L to langid.py and the 5-
gram language model on the Twitter70 dataset; see
Table 6. Although the 5-gram model achieves the
best performance, the results are virtually identical
to those for C2V2L except for the closely-related
Bosnian-Croatian language pair.

The lowest performance for all the models is on
closely related language pairs. For example, using
the C2V2L model, the F1 score for Danish is only
62.7 due to confusion with the mutually intellig-
ble Norwegian (Van Bezooijen et al., 2008). Dis-
tinguishing Bosnian and Croatian, two varieties of
a single language, is also difficult. Languages that
have unique orthographies such as Greek and Ko-
rean are identified with near perfect accuracy.

A potential advantage of the C2V2L model over
the n-gram models is the ability to share informa-
tion between related languages. In Figure 2 we show
a T-SNE plot of the language embedding vectors
taken from the softmax layer of our model trained
with a rank constraint of 10 on the softmax layer.6

Many languages appear close to related languages,
although a few are far from their phonetic neighbors
due to orthographic dissimilarity.

6The rank constraint was added for visualization; without it,
the model makes all language embeddings roughly orthogonal
to each other, making T-SNE visualization difficult.
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Model Avg. F1 eng spa cat eus por glg und amb
n-gram LM 75.0 74.8 94.2 82.7 74.8 93.4 49.5 38.9 87.0
langid.py 68.9 65.9 92.0 72.9 70.6 89.8 52.7 18.8 83.8
C2L 72.7 73.0 93.8 82.6 75.7 89.4 57.0 18.0 92.1
C2V2L 76.2 75.6 94.7 85.3 82.7 91.0 58.5 27.2 94.5

Table 3: F1 scores on the TweetLID language ID task (constrained track), averaged and per language category (in-
cluding undetermined and ambiguous). The scores for Hurtado et al. (2014) and Gamallo et al. (2014) are 75.2 and
75.6 respectively, as reported in Zubiaga et al. (2014); per-language scores are not available.

Model F1 ∆
Hurtado et al. (2014) 69.7 –4.5
Gamallo et al. (2014) 75.3 +2.7
n-gram LM 74.7 –0.3
C2V2L 77.1 +0.9

Table 4: F1 scores for the unconstrained data track of
the TweetLID language ID task. ∆ measures change in
absolute F1 score from the constrained condition.
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Figure 2: T-SNE plot of language embeddings.

5.4 Code-Switching

Because C2V2L produces language predictions for
every word before making the tweet-level predic-
tion, the same architecture can be used in word-level
analysis of code-switched text, switching between
multiple languages. Training a model with token
level code-switching predictions requires a dataset
that has token level labels. We used the Spanish-
English dataset from the EMNLP 2014 shared task
on Language Identification in Code-Switched Data
(Solorio et al., 2014): a collection of monolingual

and code-switched tweets in English and Spanish.
To train and predict at the word level, we remove

the final average over the word predictions, and cal-
culate the loss as the sum of the cross-entropy be-
tween each word’s prediction and the correspond-
ing gold label. Both the char2vec and word LSTM
components of the model are unaffected, other than
retraining their parameters.7 To tune hyperparam-
eters, we trained 10 models with random parameter
settings on 80% of the data from the training set, and
chose the settings from the model that performed
best on the remaining 20%. We then retrained on
the full training set with these settings.

C2V2L performed well at this task, scoring 95.1
F1 for English (which would have achieved second
place in the shared task, out of eight entries), 94.1
for Spanish (second place), 36.2 for named enti-
ties (fourth place) and 94.2 for Other (third place).8

While our code-switching results are not quite state-
of-the-art, they show that our model learns to make
accurate word-level predictions. For other results on
code-switched data, see Jaech et al. (2016b).

6 Related Work

Language ID has a long history both in the speech
domain (House and Neuburg, 1977) and for text
(Cavnar and Trenkle, 1994). Previous work on the
text domain mostly uses word or character n-gram
features combined with linear classifiers (Hurtado et
al., 2014; Gamallo et al., 2014).

Recently published work by Radford and Gallé
(2016) showed that combining an n-gram language
model classifier (similar to our n-gram baseline)

7Both sentence and word-level supervision could be used to
train the same model, but we leave that for future work.

8Full results for the 2014 shared task are omitted for
space but can be found at http://emnlp2014.org/
workshops/CodeSwitch/results.php.
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couldn’t @maria_sanchez noite
can’t 0.84 @Ainhooa_Sanchez 0.85 Noite 0.99
’don’t 0.80 @Ronal2Sanchez: 0.71 noite. 0.98
ain’t 0.80 @maria_lsantos 0.68 noite? 0.98
don’t 0.79 @jordi_sanchez 0.66 noite.. 0.96
didn’t 0.79 @marialouca? 0.66 noite, 0.95
Can’t 0.78 @mariona_g9 0.65 noitee 0.92
first 0.77 @mario_casas_ 0.65 noiteee 0.90

Table 5: Top seven most similar words from the training data and their cosine similarities for inputs “couldn’t”,
“@maria_sanchez”, and “noite”.

Model F1

langid.py 87.9
5-gram LM 93.8

C2V2L (ours) 91.2
Table 6: F1 scores on the Twitter70 dataset.

with information from the Twitter social graph im-
proves language ID on TweetLID from 74.7 to 76.6
F1, only slightly better than our result of 76.2.

Bergsma et al. (2012) created their own multilin-
gual Twitter dataset and tested both a discriminative
model based on n-grams plus hand-crafted features
and a compression-based classifier. Since the Twit-
ter API requires researchers to re-download tweets
based on their identifiers, published datasets quickly
go out of date when the tweets in question are no
longer available online, making it difficult to com-
pare against prior work.

Several other studies have investigated the use
of character sequence models in language process-
ing. These techniques were first used only to create
word embeddings (dos Santos and Zadrozny, 2015;
dos Santos and Guimaraes, 2015) and then later ex-
tended to have the word embeddings feed directly
into a word-level RNN. Applications include part-
of-speech tagging (Ling et al., 2015b), language
modeling (Ling et al., 2015a), dependency parsing
(Ballesteros et al., 2015), translation (Ling et al.,
2015b), and slot filling text analysis (Jaech et al.,
2016a). The work is divided in terms of whether
the character sequence is modeled with an LSTM or
CNN, though virtually all now leverage the resulting
word vectors in a word-level RNN. We are not aware
of prior results comparing LSTMs and CNNs on a
specific task, but the reduction in model size com-

pared to word-only systems is reported to be much
higher for LSTM architectures. All analyses report
that the greatest improvements in performance from
character sequence models are for infrequent and
previously unseen words, as expected.

Chang and Lin (2014) outperformed the top re-
sults for English-Spanish and English-Nepali in the
EMNLP 2014 Language Identification in Code-
Switched Data (Solorio et al., 2014), using an RNN
with skipgram word embeddings and character n-
gram features. Word-level language ID has also
been studied by Mandal et al. (2015) in the con-
text of question answering and by King and Abney
(2013). Both used primarily character n-gram fea-
tures, which are well motivated for code-switching
tasks since the presence of multiple languages in-
creases the odds of encountering a previously un-
seen word.

7 Conclusion

We present C2V2L, a hierarchical neural model
for language ID that outperforms previous work
on the challenging TweetLID task. We also find
that smoothed character n-gram language models
can work well as classifiers for language ID for
short texts. Without feature engineering, our n-gram
baseline beat eleven out of the twelve submissions in
the TweetLID shared task, and gives the best perfor-
mance on the Twitter70 dataset, where training data
for some languages is quite small. In future work,
we plan to further adapt C2V2L to analyze code-
switching, having shown that the current architec-
ture already performs well.
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