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Abstract

Automatic simplification of clinical notes con-
tinues to be an important challenge for NLP
systems. A frequent obstacle to develop-
ing more robust NLP systems for the clini-
cal domain is the lack of annotated training
data. This study investigates unsupervised
techniques for one key aspect of medical text
simplification, viz. the expansion and disam-
biguation of acronyms and abbreviations. Our
approach combines statistical machine trans-
lation with document-context neural language
models for the disambiguation of multi-sense
terms. In addition we investigate the use
of mismatched training data and self-training.
These techniques are evaluated on nursing
progress notes and obtain a disambiguation
accuracy of 71.6% without any manual anno-
tation effort.

1 Introduction

As part of a general trend towards patient-centered
care many healthcare systems in the U.S. are start-
ing to provide patients with expanded access to clin-
ical notes, often through patient portals connected
to their electronic medical record (EMR) systems.
Recent studies, such as the OpenNotes project (Del-
banco et al., 2012), have found that that patients with
access to their health records are more involved in
their care and have a better understanding of their
treatment plan (Esch et al., 2016; Wolff et al., 2016).
However, medical notes often contain complex tech-
nical language and medical jargon, requiring pa-
tients to seek additional help for linguistic clarifi-
cation (Walker et al., 2015). Natural language pro-

cessing (NLP) has the potential to bridge the gap be-
tween increased access to medical information and
the lack of domain-specific medical training on the
patient side. However, in spite of previous work in
this area, medical text simplification systems are still
not sufficiently mature to be routinely deployed in
practice. One problem is the large variety of medi-
cal sub-disciplines and document types that need to
be covered; another is the lack of annotated train-
ing data, often due to constraints on data sharing for
reasons of patient privacy.

In this study we investigate unsupervised statis-
tical NLP techniques to address one key aspect of
medical text simplification, viz. the expansion of
medical acronyms and abbreviations (AAs). In ad-
dition to text simplification, AA resolution can also
help a variety of downstream information extraction
tasks. While AA resolution has been studied exten-
sively in the biomedical domain, studies on clinical
text are comparatively rare. Moreover, most previ-
ous studies use traditional supervised machine learn-
ing techniques, consisting of feature extraction and
supervised classifiers such as naive Bayes or Sup-
port Vector Machines (SVMs) that utilize a carefully
developed AA sense inventory and a large amount
of hand-annotated ground-truth data. In spite of re-
cently developed methods for rapid data acquisition
(crowdsourcing), obtaining reliable manual annota-
tions for highly specialized domains is still difficult
and acts as a bottleneck in the development of high-
quality medical text simplification systems.

Our proposed approach combines automatic min-
ing of AAs and their possible expansions from med-
ical websites, a first-pass simplification step using
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statistical machine translation, and a second-pass
rescoring step using recently-developed document-
level neural language models. To address the data
sparsity issue we investigate model training with
mismatched training data as well as self-training.

We evaluate our approach on a subset of a pub-
licly available corpus of nursing progress notes from
the MIMIC-II database. Results show an F1 score
for AA identification of 0.96, an overall expansion
accuracy of 74.3%, and a disambiguation accuracy
of 71.6%, all without any supervised annotations
used during training.

2 Prior Work

AA identification and resolution has a long history
in the biomedical domain. Inventories of AAs and
their full forms have been compiled by rule-based
(Ao and Takagi, 2005) or machine learning tech-
niques (Movshovitz-Attias and Cohen, 2012; Hen-
riksson et al., 2014; Okazaki et al., 2010), often
aided by the fact that biomedical texts tend to de-
fine AAs at their first mention. Disambiguation
of biomedical AAs has been achieved using tradi-
tional machine learning approaches, such as vector
space methods (Stevenson et al., 2009), naive Bayes
classifiers (Bracewell et al., 2005; Stevenson et al.,
2009), and SVMs (Joshi et al., 2006; Stevenson et
al., 2009). Clustering has also been used for the pur-
pose of disambiguation (Okazaki and Ananiadou,
2006).

Studies on AAs in clinical text are rarer than those
for biomedical texts. In (Pakhomov et al., 2005),
disambiguation of clinical AAs was achieved using
decision trees and maximum entropy models trained
on bag-of-word features from hand-annotated and
web-collected text. Moon et al. (2012; 2015) sim-
ilarly investigated several supervised machine learn-
ing techniques and text features for disambiguation
of AAs in clinical text, including naive Bayes clas-
sifiers, SVMs and decision trees trained on bag-of-
word features or Unified Medical Language System
(UMLS) concepts. They also noted general prob-
lems with AA disambiguation in clinical text, such
as shortage of training data due to patient privacy
constraints, lack of resources developed for clinical
text, and non-standard and highly variable language
use in clinical notes. Wu et al. (2015) extended SVM

resp care note : pt on nrb mask + 6l nc required
nt sx due inability to clear secretions.
sx copious th yellow sput.
pt sats didn’t recover after sx + a&a tx.

Figure 1: Sample nursing note.

classification with vectors based on neural word em-
beddings. Several systems that participated in the
ShaRe/CLEF eHealth Challenge Task on AA nor-
malization (Mowery et al., 2016) utilized condi-
tional random fields (e.g.,(Wu et al., 2013)). Cus-
tomized expansion dictionaries for clinical text were
added in (Xia et al., 2013).

Finally, AA identification and expansion for gen-
eral English has been addressed by (Ammar et al.,
2011; Tevana et al., 2013; Ahmed et al., 2015),
among others. The studies most closely related to
ours are (Ahmed et al., 2015), which uses language
modeling techniques (though not at the document
level), and (Ammar et al., 2011), which makes use
of statistical machine translation.

3 Data and Task

Our test data consists of nursing progress notes from
the MIMIC-II database (Saeed et al., 2011), writ-
ten by nurses in a cardiac intensive care unit. This
data set was chosen because (a) it is publicly avail-
able1; (b) the documents contain a very high per-
centage of AAs, thus presenting the problem in a
condensed form ; (c) it presents interesting addi-
tional challenges: it is characteristic of a highly spe-
cialized medical sub-domain, and it contains fre-
quent misspellings, non-standard use of AAs, and
elliptical syntax, which we plan to address in fu-
ture work. The present study is intended to serve
as the first step in a more comprehensive simplifica-
tion system for challenging clinical texts. A sample
from a nursing note is shown in Figure 1. AAs are
not marked as such – the original documents are ei-
ther all lowercased, all uppercased, or mixed-case
with inconsistent casing; acronyms are not marked
by periods. Thus, AAs often overlap in form with
regular words, in particular function words – e.g., is
can be the function word “is” or an abbreviation for
incentive spirometry.

1https://mimic.physionet.org/
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# words % AAs % ambig.
dev set

125.6 (± 104.3) 25.4 (± 20.4) 73.8 (± 13.6)
eval set

123.7 (± 112.4) 24.8 (± 9.9) 75.1 (± 12.2)
Table 1: Average number (and stddev) of words, percentage

of AAs, and percentage of ambiguous AAs per document, for

development (dev) and evaluation (eval) sets.

We use a total of 30 documents (written by vari-
ous nurses) as reference material. These were split
into 15 development and 15 evaluation documents
and were manually expanded by medically trained
annotators (two medical specialists, one of whom
was a hospitalist, and two RNs as additional con-
sultants). The annotation was a consensus annota-
tion; thus, inter-annotator agreement was not mea-
sured. The total number of unique AAs in this set
is 229, with 611 different instances. Table 1 shows
the averages and standard deviations of the num-
ber of words, percentage of AAs, and percentage
of ambiguous AAs per document. We see fairly
large variation in the length of documents and per-
centages of AAs. On average, however, roughly
a quarter of all words are AAs, and 75% of these
are ambiguous. We use two other clinical data sets
as additional training data: a set of 696 hospital
discharge summaries from the i2b2 challenge task
(Uzuner et al., 2007) (henceforth “i2b2”) and a cor-
pus of 2,365 clinical notes (doctor’s notes, hospital
discharge summaries, autopsy reports, etc.) from the
iDASH repository2 (henceforth “Cases”).

4 Unsupervised Resolution of
Abbreviation and Acronyms

Our proposed approach resolves AAs in a largely
unsupervised way, requiring true AA sense labels
only for system tuning and evaluation but not for
training. The first step towards this goal is the ac-
quisition of possible mappings of AAs to their ex-
panded forms. The second step involves preprocess-
ing the nursing documents and generating multiple
expanded versions by considering possible combi-
nations of expansions at the sentence level. In a
third step, hypotheses are rescored by a document-
level language model in order to achieve better dis-

2http://dx.doi.org/10.15147/J2H59S

# mappings 9,852
# unique AAs 4,608
# ambiguous AAs 2,817

Table 2: Number of term mappings (total, unique, and ambigu-

ous) extracted from medical terminology websites.

ambiguation and selection of expansions.

4.1 Collecting Term Mappings

The first step towards AA resolution is the collec-
tion of a glossary that maps AAs to their expanded
forms. We found that existing clinical sense invento-
ries did not provide good coverage for the more spe-
cialized domain of ICU nursing – e.g., the clinical
sense inventory of (Moon et al., 2012) only covered
7% of the AAs in our development and test data;
even the much larger ADAM database of MEDLINE
abbreviations (Zhou et al., 2006) covered only 65%.
Therefore, we are interested in exploring the fea-
sibility of extracting term mappings automatically
from generally accessible resources, without addi-
tional human curation. Lists of medical and nurs-
ing abbreviations were collected from more than a
dozen websites, such as Wikipedia’s List of Medi-
cal Abbreviations, NIH Medline Plus, ECommunity
Health Network, etc., by extracting AAs from html
and pdf documents using semi-automated scripts.
Note that in order to ensure wide coverage, web-
sites were not restricted to those with nursing ter-
minology; neither was the search biased to maxi-
mize coverage of the AAs in our corpus. Rather,
we aimed at including a wide range of medical AAs
to ensure future reusability for other tasks and do-
mains. A total of 10k mappings were collected; after
cleaning and removing duplicates the total number
was 9,852. These include medical acronyms and ab-
breviations, but also health insurance terms, proper
names, drug names, etc. The resulting mappings
were not hand-curated, annotated, or selected for
relevance, in order to minimize the amount of human
labor involved. The resulting number of unique AAs
is 4,608. 2,817 AAs (61.1%) of these have more
than one possible expansion. The maximum num-
ber of different expansions is 10; the average is 2.6.
As an example, the abbreviation pt has the follow-
ing long forms: patient, physical therapy, physical
therapist, patient teaching, pint, prothrombin time,
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protime. Note that we accepted all possible expan-
sions gathered from the websites as valid; we also
did not attempt to cluster potential minor variants
(like protime and prothrombin time) into single en-
tries. Although such cleaning steps might improve
results, our goal was to evaluate the performance of
our approach with potentially noisy data. The final
list of term mappings was found to cover 89% of the
AAs in our development and test data.

4.2 Term Expansion

The documents are preprocessed by tokenization of
punctuation and mapping all numbers to a generic
symbol. To create initial expanded versions of our
nursing documents with different possible term ex-
pansions we utilize a phrase-based statistical ma-
chine translation (SMT) system. An SMT system
generates target-language translations from source-
language input by finding the maximum-likelihood
sentence hypothesis obtained by concatenating indi-
vidual phrase-level translations. The final score for
each hypothesis is provided by a log-linear model
that computes a weighted sum of feature functions
defined on the input s, the output t, or both:

score(s, t) =
1
Z
exp(

∑
k

λkfk(s, t)) (1)

where f(s, t) is a feature function, λ is a weight, and
Z is a normalization factor. At a minimum, transla-
tion scores and a target-side language model score
are included; additional feature functions providing
e.g., reordering scores or global coherence scores
can be added.

Our system maps ’source’ (abbreviated) terms to
‘target’ (expanded) terms according to a phrase ta-
ble with all pairs of AAs and their expanded forms,
trained from the list of term mapping collected in the
first step. No entries are included for AAs that are
identical to function words such as is, of, on, etc., as
initial development experiments showed that these
would lead to an overly high number of false alarms.
The drawback is that these AAs will never be ex-
panded and will necessarily count as misses.

The language model in the SMT system is a back-
off n-gram model trained using modified Kneser-
Ney smoothing. The n-gram order was varied be-
tween 3 and 5 and optimized on the development set.

We compared several language models: one trained
on the target side of our term mapping list plus i2b2
data, another on the target side plus Cases data, and
a third trained on all three.

The maximum phrase length in our translation
system is 5. During decoding, no reordering is per-
mitted. The decoding pass generates up to 100 hy-
potheses per sentence, in order to explore all possi-
ble combinations of AA expansions in a sentence.

5 Self-training

Self-training is a general way of utilizing unsuper-
vised data in a classification system. Starting with
a system trained on limited data, the system is ap-
plied to unlabeled data. The system’s predictions are
then filtered according to the probability or confi-
dence of the prediction, and the most likely or confi-
dent hypotheses are added back to the training data.
This procedure can be iterated. Self-training has
been used in NLP for e.g., parsing (McClosky et al.,
2006) and machine translation (Ueffing et al., 2007).
In the context of AA resolution, (Pakhomov, 2002)
has used a similar approach to enrich the training
data for a maximum entropy classifier.

Here, we use the top-1 hypotheses of our first-
pass SMT system to generate additional training
data for both the first and second pass language mod-
els. To this end we apply the SMT system to the
i2b2 and Cases data. Additionally we utilize up to
2000 nursing notes from the MIMIC-II corpus that
do not overlap with our development or evaluation
sets. One-best hypotheses are generated from our
initial SMT system, and are combined with the tar-
get side of the term mapping list. This set is then
used to retrain the back-off n-gram model used in
the SMT system, and to re-generate the first-pass n-
best lists. The automatically expanded data is also
used to train the document-level language models
described in the following section.

6 Document-Level Context Modeling

The selection of appropriate AA expansions is pri-
marily dependent on the the specific medical domain
(nursing, cardiology). AA disambiguation could be
aided by a detailed sense inventory with domain la-
bels – however, such a classification was not avail-
able from our web sources, and considerable manual
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labor would be required for manual annotation.
As an alternative information source it might be

advantageous to take into account not only the local
sentence context but also the more global document
context. For example, the probability of expanding
hr to heart rate rather than hour might be boosted
by the occurrence of words such as cardiovascular
or blood pressure earlier in the document. Thus, the
document context might serve as a proxy for explicit
domain or topic models.

To this end we explore document-context lan-
guage models (DCLMs) as developed by and de-
scribed in (Ji et al., 2015). DCLMs are neural lan-
guage models that attempt to predict words based
not only on the local n-gram context as in standard
back-off language models, but based on the entire
history up to the beginning of the document. Various
DCLM architectures have been proposed. We pro-
vide a concise summary here; details can be found
in (Ji et al., 2015).

General recurrent neural language models
(RNNLMs) compute the probability of an output
vector (probabilities over the output vocabulary) y
at time step n as

yn = softmax(Whhn + b) (2)

hn = g(hn−1, xn) (3)

where W is a weight matrix, b is a bias term, h ∈
RH is a hidden state vector, x ∈ RK is a contin-
uous embedding vector representing the word, and
g is a nonlinear activation function. The number
of parameters in the network is determined by the
dimensionalities of the embedding vector, K, and
that of the the hidden vector, H . In “context-to-
hidden” DCLMs the hidden state vector in sentence
t at time step n is computed not only from the cur-
rent embedding vector xn and the preceding state
vector ht,n−1 but additionally from the last hidden
state vector (context vector) of the preceding sen-
tence, ct−1 = ht−1,M , where M is the last word in
the previous sentence. The context vector is simply
concatenated with the current embedding vector:

ht,n = g(hn−1, xn ◦ ct) (4)

Alternatively, the context vector can be directly
combined with the output vector (“context-to-

output” model), using its own weight matrix:

yt,n = softmax(Whht,n +Wcct−1 + b) (5)

Due to the addition of a second weight matrix
Wc this model has more parameters and may be
more difficult to train on limited data. Finally, an
“attention-based” architecture has been proposed to
address the limits of a fixed-dimensional representa-
tion of variably-sized document contexts by formu-
lating the context vector as a linear combination of
all hidden states in the previous sentence:

ct−1,n =
M∑

m=1

αm,nht−1,m (6)

Thus, the model can attend to different words in the
previous sentence selectively. Moreover, a differ-
ent context vector is computed for every word n in
the current sentence. The context vector is added to
both the hidden and the output representation for the
current sentence. While this creates a more flexi-
ble model, the number of parameters also increases
greatly.

Different DCLMs, as well as standard RNNLMs,
and RNNLMs whose context can extend beyond
the previous sentence boundary, were implemented3

and were trained using AdaGrad optimization on the
same data sets as the back-off ngram models used in
the SMT system. 90% of the data was used for train-
ing while 10% were held out as development data.
Training was stopped when the difference in devel-
opment set perplexity between the previous and the
current iteration was at most 0.5. Different values
were investigated for the number units in the em-
bedding and hidden layers (K and H).

For second-pass rescoring of n-best lists with
DCLMs we proceed as follows. For each hypoth-
esis in the n-best list for the current sentence, a new
“document” is created by concatenating the hypoth-
esis with the previous document context. Each of
these documents is scored with the DCLM. The hy-
pothesis resulting in the lowest per-document per-
plexity chosen and committed to the growing docu-
ment context. Since no prior context is available for
the first sentence in each document, and all further
choices are dependent on the choices for previous

3Using https://github.com/jiyfeng/dclm
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sentences, we choose the 1-best hypothesis from the
first pass SMT system for the first sentence, rather
than assuming a “dummy” context. The vocabulary
of the models is restricted to those words that occur
at least 3 times in the training data; all others are
mapped to a generic “unknown word” symbol.

We noticed during training that the attention-
based DCLM obtained much higher perplexity on
the development data than the other models, most
likely as a result of having too little training data in
relation to the number of parameters. This model
was therefore excluded from further experiments.

7 Experiments and Results

The first evaluation criterion for our method is the
correct identification of AAs vs. regular words. Con-
trary to rule-based or supervised approaches to AA
identification (Nadeau and Turney, 2005; Dannélls,
2006; Moon et al., 2015) AAs are not identified
explicitly but implicitly through the choices made
by the SMT system. AA identification can be con-
sidered a binary detection problem and can thus be
evaluated by precision, recall, and F1 score. The
second evaluation measure is overall accuracy, i.e.,
the overall percentage of correct AA expansions. Fi-
nally, we measure the disambiguation accuracy, i.e.,
the percentage of correct expansions of ambiguous
AAs only.

Table 3 shows precision (P), recall (R), F1-score
(F1), overall accuracy (A) and disambiguation accu-
racy (DA) on the eval set for several baseline sys-
tems. Random is a baseline system where one of
the sentence hypotheses produced by the SMT sys-
tem is selected randomly.4 Precision and recall are
high (and generally stable across all different mod-
els), since it is only a small number of words not
caught by the function word filter that are consis-
tently misinterpreted as AAs. Oracle refers to re-
sults obtained by a system that always chooses the
hypothesis yielding the highest disambiguation ac-
curacy according to the reference annotation – this
represents the upper bound on the accuracy that can
be achieved given our automatically collected term
mappings. The gap between the oracle accuracy and

4A majority sense baseline system is not available due to the
lack of a sense inventory with frequency information for this
data set.

System P R F1 A DA
1 Random 0.95 0.97 0.96 56.6 48.2
2 Oracle 0.93 0.95 0.94 80.0 78.6
3 SMT 0.95 0.97 0.96 72.0 68.0

Table 3: Precision (P), recall (R), F1-score (F1), overall accu-

racy (A) and disambiguation accuracy (DA) for random base-

line, oracle topline, and 1-best output from initial SMT system.

System P R F1 A DA
+ self-training

1 Random 0.95 0.97 0.96 60.4 52.4
2 Oracle 0.96 0.97 0.96 80.9 80.7
3 SMT 0.95 0.97 0.96 72.2 69.4

+ DCLM
4 DCLM 0.95 0.97 0.96 74.3 71.6

Table 4: Precision (P), recall (R), F1-score (F), overall expan-

sion accuracy (A) and disambiguation accuracy (DA) after self-

training and second-pass rescoring with DCLMs.

100% accuracy is due to missing expansions in our
term mapping list. Row 3 in Table 3 is the result
obtained by the first-pass SMT system. The LM
for this system was optimized on the development
set and consists of a 4-gram back-off model trained
using modified Kneser-Ney smoothing on the com-
bined Cases and i2b2 data and the target side of
our term mapping list. Accuracy scores obtained by
the SMT model are markedly higher than random
scores, though there is still much room for improve-
ment.

Table 4 shows the results obtained by an improved
system that utilizes self-training and DCLMs. For
self-training, the amount of automatically expanded
MIMIC-II data and the combination with Cases and
i2b2 data was optimized on the development set.
Combining the latter two sets with 1,500 expanded
documents from MIMIC to train a 4-gram back-off
LM was found to be best. Since new n-best lists
are generated using the self-trained models, the Ran-
dom and Oracle results are different (and improved).
The accuracy of our SMT system’s output is also im-
proved by 1.4% absolute.

For rescoring hypotheses with document-level
language models we investigated the DCLM archi-
tectures described in Section 6, minus the attention-
based model, well as standard RNNLMs and
RNNLMs whose context can extend in the past be-
yond the sentence boundary. The number of parame-
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ters for each model (K andH) was optimized on the
development set. Different models trained on dif-
ferent automatically expanded data sources (Cases,
i2b2, and MIMIC-II) and their combinations were
investigated. It was found that the combined data
as well as the Cases and i2b2 data sets in isola-
tion actually resulted in a worse performance of the
rescored system compared to the first-pass SMT sys-
tem. While our mismatched data sources did help in
training the SMT system, DCLMs, which attempt to
model the entire document structure, seem to be very
sensitive to mismatched data. By contrast, DCLMs
trained on the automatically expanded MIMIC-II
data only did achieve an improvement over the first-
pass system. The best model (obtained by devel-
opment set optimization) was a “context-to-hidden”
DCLM with a hidden layer size of 48 and a word
embedding layer size of 128. The best final overall
accuracy on the evaluation set is 74.3%; the disam-
biguation accuracy is 71.6%. This is fairly close to
the topline disambiguation accuracy of 80.2% that
can be achieved given our term inventory; how-
ever, there is further room for improvement. Of
the different document context models tested, all
performed in a similar range – e.g., the best mod-
els with other architectures (“context-to-output” and
RNNLMs without sentence boundary) achieved be-
tween 70.2% and 71.1% disambiguation accuracy
on the eval set. Furthermore, an RNNLM model
with only the current sentence as context achieves
70.5%. Thus, while DCLMs seem to provide slight
improvements, our text sample is currently too small
to assess statistically significant differences between
different architectures or context lengths. Rather, the
benefit seems to derive from the neural probability
estimation technique used in RNNLM-style models.

Figure 2 shows the automatically expanded ver-
sion of the sample in Figure 1. While most expan-
sions were acceptable, our term mapping list did not
contain a domain-appropriate entry for a&a, which
was therefore expanded incorrectly to arthroscopy
and arthrotomy rather than albuterol and atroven.

8 Discussion

In this paper we have explored unsupervised and
self-supervised resolution of AAs in nursing notes.
Contrary to most previous work, which has utilized

respiratory care note: patient on non-
rebreather mask and 6l nasal cannula required
nasotracheal suction due inability to clear se-
cretions.
suction copious thick yellow sputum .
patient oxygen/blood saturation level didn’t
recover after suction and arthroscopy and
arthrotomy therapy.

Figure 2: Expanded version of nursing note.

supervised classifiers, AA resolution was achieved
using web mining to extract term mappings, statisti-
cal machine translation, and document-level neural
language modeling. With the exception of a small
set of hand-annotated documents used to evaluate
different models, no ground truth labels were re-
quired. Results demonstrated positive effects from
self-training and neural language models. Future
work will include leveraging additional sources for
term mappings, the development of statistical mod-
els to improve syntactic readability, and readability
experiments with lay human readers.
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