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Preface

Welcome to the first workshop on structured prediction for NLP! Many prediction tasks in NLP
involve assigning values to mutually dependent variables. For example, when designing a model to
automatically perform linguistic analysis of a sentence or a document (e.g., parsing, semantic role
labeling, or discourse analysis), it is crucial to model the correlations between labels. Many other NLP
tasks, such as machine translation, textual entailment, and information extraction, can be also modeled
as structured prediction problems.

In order to tackle such problems, various structured prediction approaches have been proposed, and
their effectiveness has been demonstrated. Studying structured prediction is interesting from both NLP
and machine learning (ML) perspectives. From the NLP perspective, syntax and semantics of natural
language are clearly structured and advances in this area will enable researchers to understand the
linguistic structure of data. From the ML perspective, the large amount of available text data and
complex linguistic structures bring challenges to the learning community. Designing expressive yet
tractable models and studying efficient learning and inference algorithms become important issues.

Recently, there has been significant interest in non-standard structured prediction approaches that take
advantage of non-linearity, latent components, and/or approximate inference in both the NLP and
ML communities. Researchers have also been discussing the intersection between deep learning and
structured prediction through the DeepStructure reading group. This workshop intends to bring together
NLP and ML researchers working on diverse aspects of structured prediction and expose the participants
to recent progress in this area.

This year we have seven papers (six regular papers and one tutorial paper) covering various aspects of
structured prediction, including neural networks, deep structured prediction software library, classical
inside-outside algorithm, and imitation learning. We also invited four fantastic speakers and a great
discussion panel. We hope you all enjoy the program!

Finally, we would like to thank all programming committee members, speakers, panelists, and authors.
We are looking forward to seeing you in Austin.
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Inside-Outside and Forward-Backward Algorithms Are Just Backprop
(Tutorial Paper)

Jason Eisner
Department of Computer Science

Johns Hopkins University
jason@cs.jhu.edu

Abstract
A probabilistic or weighted grammar implies
a posterior probability distribution over possi-
ble parses of a given input sentence. One often
needs to extract information from this distri-
bution, by computing the expected counts (in
the unknown parse) of various grammar rules,
constituents, transitions, or states. This re-
quires an algorithm such as inside-outside or
forward-backward that is tailored to the gram-
mar formalism. Conveniently, each such al-
gorithm can be obtained by automatically dif-
ferentiating an “inside” algorithm that merely
computes the log-probability of the evidence
(the sentence). This mechanical procedure
produces correct and efficient code. As for
any other instance of back-propagation, it can
be carried out manually or by software. This
pedagogical paper carefully spells out the con-
struction and relates it to traditional and non-
traditional views of these algorithms.

1 Introduction

The inside-outside algorithm (Baker, 1979) is a
core method in natural language processing. Given
a sentence, it computes the expected count of each
possible grammatical substructure at each position
in the sentence. Such expected counts are commonly
used (1) to train grammar weights from data, (2) to
select low-risk parses, and (3) as soft features that
characterize sentence positions for other NLP tasks.

The algorithm can be derived directly but is gen-
erally perceived as tricky. This paper explains how it
can be obtained simply and automatically by back-
propagation—more precisely, by differentiating the
inside algorithm. In the same way, the forward-
backward algorithm (Baum, 1972) can be gotten by
differentiating the backward algorithm.

Back-propagation is now widely known in the
natural language processing and machine learning
communities, thanks to the recent surge of interest

in neural networks. Thus, it now seems useful to
call attention to its role in some of NLP’s core algo-
rithms for structured prediction.

1.1 Why the connection matters
The connection is fundamental. However, in the
present author’s experience, it is not as widely
known as it should be, even among experienced re-
searchers in this area. Other pedagogical presenta-
tions treat the inside-outside algorithm as if it were
sui generis within NLP, deriving it “directly” as
a challenging dynamic programming method that
sums over exponentially many parses. That treat-
ment follows the original papers (Baker, 1979; Je-
linek, 1985; see Lari and Young, 1991 for history).
While certainly valuable, it ignores the point that the
algorithm is working with a log-linear (exponential-
family) distribution. All such distributions share the
property that a certain gradient is a vector of ex-
pected feature counts. The inside-outside algorithm
can be viewed as following a standard recipe—
back-propagation—for computing this gradient.

That insight is practically useful when deriv-
ing new algorithms. The original inside algorithm
applies to probabilistic context-free grammars in
Chomsky Normal Form. However, other inside al-
gorithms are frequently constructed for other pars-
ing strategies or other grammar formalisms (see sec-
tion 8 for examples). It is very handy that these
can be algorithmically differentiated to obtain the
corresponding inside-outside algorithms. The core
of this paper (section 5) demonstrates by example
how to do this manually, by working through the
derivation of standard inside-outside. Alternatively,
one can implement one’s new inside algorithm using
a software framework that supports automatic dif-
ferentiation in a general-purpose programming lan-
guage (see www.autodiff.org) or a neural net-
work (e.g., Bergstra et al., 2010)—hopefully without
too much overhead. Then the rest comes for free.
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Note that we use the name “inside-outside” (or
“forward-backward”) to denote just an algorithm
that computes certain expected counts. Such an
algorithm runs an inside pass and then an outside
pass, and then combines their results. The resulting
counts are broadly useful, as we noted at the start
of the paper (see section 4 for details). Thus, we
use “inside-outside” narrowly to mean computing
these counts. We do not use it to refer to the larger
method that computes the counts repeatedly in order
to iteratively reestimate grammar parameters: we
call that method by its generic name, Expectation-
Maximization (section 4).

1.2 Contents of the paper
After concisely stating the formal setting (section 2)
and the inside algorithm (section 3), we discuss the
expected counts, their uses, and their relation to the
gradient (section 4). Finally, we show how to differ-
entiate the inside algorithm to obtain the new algo-
rithm that computes this gradient (section 5).

For readers who are using this paper to learn the
algorithms, section 6 gives interpretations of the β
and α quantities that arise and relates them to the
traditional dynamic programming presentation.

As a bonus, section 7 then offers a supplementary
perspective. Here the inside algorithm is presented
as normalizing any weighted parse forest and, fur-
ther, converting it into a PCFG that can be sampled
from. The inside-outside algorithm is then explained
as computing this sampler’s probabilities of hitting
various anchored constituents and rules. Similarly,
the backward algorithm can be regarded as normal-
izing a weighted “trellis” graph and, further, con-
verting it into a non-stationary Markov model; the
forward-backward algorithm computes hitting prob-
abilities in this model.

Section 8 discusses other settings where the same
approach can be applied, starting with the forward-
backward algorithm for Hidden Markov Models.
Two appendices work through some additional vari-
ants of the algorithms.

1.3 Related work
Other papers have also provided significant insight
into this subject. In particular, Goodman (1998,
1999) unifies most parsing algorithms as semiring-
weighted theorem proving, with discussion of both

inside and outside computations. Klein and Man-
ning (2001) regard the resulting proof forests—
traditionally called parse forests—as weighted hy-
pergraphs. Li and Eisner (2009) show how to com-
pute various expectations and gradients over such
hypergraphs, by techniques including the inside-
outside algorithm, and clarify the “wonderful” con-
nection between expected counts and gradients. Eis-
ner et al. (2005, section 5) observe without de-
tails that for real-weighted proof systems, the ex-
pected counts of the axioms (in our setting, gram-
mar rules) can be obtained by applying back-
propagation. They detail two ways to apply back-
propagation, noting inside-outside as an example.

Graphical models are like context-free grammars
in that they also specify log-linear distributions over
structures.1 Darwiche (2003) shows how to com-
pute marginal posteriors (i.e., expected counts) in a
graphical model by the same technique given here.

2 Definitions and Notation

Assume a given alphabet Σ of terminal symbols
and a disjoint finite alphabet N of nonterminal
symbols that includes the special symbol ROOT.

A derivation T is a rooted, ordered tree whose
leaves are labeled with elements of Σ and whose in-
ternal nodes are labeled with elements of N . We
say that the internal node t uses the production rule
A→ σ if A ∈ N is the label of t and σ ∈ (Σ∪N )∗

is the sequence of labels of its children (in order).
We denote this rule by Tt.

In this paper, we focus mainly on derivations in
Chomsky Normal Form (CNF)—those for which
each rule Tt has the form A → B C or A → w for
some A,B,C ∈ N and w ∈ Σ. We write R for
the set of all possible rules of these forms, andR[A]
for the subset with A to the left of the arrow. How-
ever, the following definitions generalize naturally
to other choices ofR.

A weighted context-free grammar (WCFG) in
Chomsky Normal Form is a function G : R → R≥0.
Thus, G assigns a weight to each CNF rule. We ex-
tend it to assign a weight to each CNF derivation, by

1Indeed, the two formalisms can be unified under a broader
formalism such as case-factor diagrams (McAllester et al.,
2004) or probabilistic programming (Sato, 1995; Sato and
Kameya, 2008).
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defining G(T ) =
∏
t∈T G(Tt), where t ranges over

the internal nodes of T .
A probabilistic context-free grammar (PCFG)

is a WCFG G in which (∀A ∈ N )
∑

R∈R[A] G(R) =
1. In this case, G(T ) is a probability measure over
all derivations.2

The CNF derivation T is called a parse of w ∈
Σ∗ if ROOT is the label of its root and w is its fringe,
i.e., the sequence of labels of its leaves. We refer to
w as a sentence and denote its length by n; T (w)
denotes the set of all parses of w.

The triple 〈A, i, k〉 is mnemonically written asAki
and pronounced as “A from i to k.” We say that a
parse of w uses the anchored nonterminal Aki or
the anchored rule Aki → Bj

i C
k
j or Akk−1 → wk if

it contains the respective configurations

A

wi+1 . . . wk

A

C

wj+1 . . . wk

B

wi+1 . . . wj

A

wk

3 The Inside Algorithm

The inside algorithm (Algorithm 1) returns the to-
tal weight Z of all parses of sentence w accord-
ing to a WCFG G. It is the natural extension to
weighted CFGs of the CKY algorithm, a recognition
algorithm for unweighted CFGs in Chomsky Nor-
mal Form (Kasami, 1965; Younger, 1967).

The importance of Z is that a probability distribu-
tion over the parses T ∈ T (w) is given by

p(T | w) def= G(T )/Z (1)

When G is a PCFG representing a prior distribution
on parses T , (1) is its posterior after observing the
fringe w. When G is a WCFG, (1) directly defines a
conditional distribution on parses.
Z is a sum of exponentially many products, since
|T (w)| is exponential in n = |w|. Fortunately,
many of the sub-products are shared across multiple
summands, and can be factored out using the dis-
tributive property. This strategy leads to the above

2For this statement to hold even for “non-tight” PCFGs (Chi,
1999), we must consider the uncountable space of all finite and
infinite derivations. That requires equipping this space with an
appropriate σ-algebra and defining the measure G more pre-
cisely.

Algorithm 1 The inside algorithm
1: function INSIDE(G, w)
2: initialize all β[· · · ] to 0
3: for k := 1 to n : . width-1 constituents
4: for A ∈ N :
5: β[Akk−1] += G(A→ wk)

6: for width := 2 to n : . wider constituents
7: for i := 0 to n− width : . start point
8: k := i+ width . end point
9: for j := i+ 1 to k − 1 : . midpoint

10: for A,B,C ∈ N :
11: β[Aki ] += G(A→BC)β[Bj

i ]β[Ckj ]

12: return Z := β[ROOTn0 ]

polynomial-time dynamic programming algorithm,
which interleaves sums and products.

Along the way, the inside algorithm computes
useful intermediate quantities. Each inner weight
β[Aki ] is the total weight of all derivations with root
A and fringe wi+1wi+2 . . . wk. This implies the cor-
rectness of the return value, and is rather easy to es-
tablish by induction on the width k − i.

Note that if a parse contains any 0-weight rules,
then that parse also has weight 0 and so does not
contribute to Z. In effect, such rules and parses are
excluded by G. Such rules can in fact be skipped
at lines 5 and 11, where they clearly have no ef-
fect. This further reduces runtime from O(n3|N |3)
to O(n3|G|), where |G| denotes the number of rules
of nonzero weight.

4 Expected Counts and Derivatives

4.1 The goal of inside-outside

The inside-outside algorithm aims to extract useful
information from the distribution (1). Given a sen-
tence w, it computes the expected count of each
rule R ∈ R in a random parse T drawn from that
distribution:

c(R) def=
∑
T

(
p(T | w)

∑
t∈T

δ(Tt = R)
)

(2)

For example, when G is a PCFG, c(A→ B C) is
the posterior expectation of the number of times that
A expanded as B C while generating the sentence
w. Why are these expected counts useful? As Baker
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(1979) saw, summing them over all observed sen-
tences constitutes the E step within the Expectation-
Maximization (EM) method (Dempster et al., 1977).
EM adjusts the rule probabilities G to locally maxi-
mize likelihood (i.e., the probability of the observed
sentences under G).

4.2 The log-linear view

Of course, another way to locally maximize likeli-
hood is to follow the gradient of log-likelihood. It
has often been pointed out that EM is related to gra-
dient ascent (e.g., Salakhutdinov et al., 2003; Berg-
Kirkpatrick et al., 2010).

We now observe that (1) is an exponential-family
model, implying a close relationship between ex-
pected counts and this gradient.

When we re-express the distribution (1) in the
standard log-linear form, we see that its natural pa-
rameters are given by θR

def= log G(R) for R ∈ R:

p(T | w) = G(T )/Z

=
1
Z

∏
t∈T
G(Tt) =

1
Z

exp
∑
t∈T

θTt

=
1
Z

exp
∑
R∈R

θR · fR(T ) (3)

Here each fR is a feature function: fR(T ) ∈ N
counts the occurrences of rule R in parse T .

By standard properties of log-linear models,
∂(logZ)/∂θR equals the expectation of fR(T ) un-
der distribution (3). But the latter is precisely the
expected count c(R) that we desire. Thus, expected
counts can be obtained as the gradient of logZ. We
will show in section 5 that this is precisely how the
inside-outside algorithm operates.

4.3 Anchored probabilities

Along the way, the classical inside-outside algo-
rithm finds the expected counts of the anchored
rules. It finds c(A → B C) as

∑
i,j,k c(A

k
i →

Bj
i Ckj ), where c(Aki → Bj

i Ckj ) denotes the ex-
pected count of that anchored rule, or equivalently,
the expected number of times that A → B C is
used at the particular position described by i, j, k. A
simple extension (section 6.3) will find c(Aki ), the
expected count of an anchored constituent.3

3A slower method is c(Ak
i ) =

∑
B,C,j c(A

k
i → Bj

i C
k
j ).

A CNF parse never uses a rule or constituent more
than once at a given position, so an anchored ex-
pected count is always in [0, 1]. In fact, it is the
probability that a random parse uses this anchored
rule or anchored constituent.

These anchored probabilities are independently
useful. They can be used in subsequent NLP tasks
as soft features that characterize each portion of
the sentence by its likely syntactic behavior. If
c(Aki ) = 0.9, then (according to G) the substring
wi+1 . . . wk is probably a constituent of type A. If
also

∑
j c(A

k
i → Bj

i C
k
j ) = 0.75, this A probably

splits into subconstituents B and C.
Even for the parsing task itself, the anchored

probabilities are useful for decoding—that is, se-
lecting a single “best” parse tree T̂ . If the system
will be rewarded for finding correct constituents,
the expected reward of T̂ is the sum of the an-
chored probabilities of the anchored constituents in-
cluded in T̂ . The T̂ that maximizes this sum4 can
be selected by a Viterbi-style algorithm, once all the
anchored probabilities have been computed (Good-
man, 1996; Matsuzaki et al., 2005).

5 Deriving the Inside-Outside Algorithm

5.1 Back-propagation

Section 4.2 showed that the expected counts can be
obtained as the partial derivatives of logZ. How-
ever, we will start by obtaining the partial derivatives
of Z. This will lead to a more standard presentation
of the inside-outside algorithm, exposing quantities
such as the outer weights α that are both intuitive
and useful.

The inside algorithm can be regarded as evalu-
ating an arithmetic circuit that has many inputs
{G(R) : R ∈ R} and one output Z. Each non-input
node of the circuit is a β value, which is defined as a
sum of products of certain other β values and G val-
ues. The circuit’s size and structure are determined
by w. The nested loops in Algorithm 1 simply it-
erate through the nodes of this circuit in a topologi-
cally sorted order, computing the value at each node.

Given any arithmetic circuit that represents a dif-
ferentiable function Z, automatic differentiation
extends it with a new adjoint circuit that computes

4An example of minimum Bayes risk decoding.
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the gradient of Z—that is, the partial derivatives of
the output Z with respect to the inputs.

In the common case of reverse-mode automatic
differentiation (Griewank and Corliss, 1991), the ad-
joint circuit employs a back-propagation strategy
(Werbos, 1974).5 For each node x in the original cir-
cuit (not just the input nodes), the adjoint circuit in-
cludes an adjoint node ðxwhose value is the partial
derivative ∂Z/∂x. Beginning with the obvious fact
that ðZ = 1, the adjoint circuit next computes the
partials of Z with respect to the nodes that directly
influence Z, and then with respect to the nodes that
influence those, gradually working back toward the
inputs. Thus, the earlier x is computed, the later ðx
is computed.

5.2 Differentiating the inside algorithm

Back-propagation is popular for optimizing the pa-
rameters of neural networks, which involve nonlin-
ear functions (LeCun, 1985; Rumelhart et al., 1986).
We do not need to give a full presentation here, be-
cause the inside algorithm’s circuit consists entirely
of multiply-adds. In this simple case, automatic dif-
ferentiation just augments each operation

x += y1 · y2 (4)

with the pair of adjoint operations

ðy1 += ðx · y2 (5)

ðy2 += y1 · ðx (6)

Intuitively, (5) recognizes that increasing y1 by a
small increment ε will increase x by ε · y2, which
in turn increases Z by ðx · ε · y2. This suggests that
ðy1 = ðx · y2. However, increasing y1 may affect
Z through more than just x, since y1 may also feed
into other equations like (4). Differentiability im-
plies that the combined effect of these influences of
y1 on Z is additive as ε→ 0, accounting for the +=
in (5) (which is unrelated to the += in (4)).

This pattern in (4)–(6) extends to three-way prod-
ucts as well. Thus, the key step at line 11 of the
inside algorithm,

β[Aki ] += G(A→ B C)β[Bj
i ]β[Ckj ] (7)

5In cases like ours, where the original circuit has variable
size, it is sometimes referred to as “backprop through structure”
(Williams and Zipser, 1989; Goller and Küchler, 2005).

yields three adjoint summands

ðG(A→ B C) += ðβ[Aki ]β[Bj
i ]β[Ckj ] (8)

ðβ[Bj
i ] += G(A→ B C)ðβ[Aki ]β[Ckj ] (9)

ðβ[Ckj ] += G(A→ B C)β[Bj
i ]ðβ[Aki ] (10)

Similarly, the initialization step in line 5,

β[Akk−1] += G(A→ wk) (11)

yields the single (obvious) adjoint summand

ðG(A→ wk) += ðβ[Akk−1] (12)

Importantly, computing the adjoints increases the
runtime by only a constant factor.

The adjoint of an inner weight, ðβ[· · · ], corre-
sponds to the traditional outer weight, written as
α[· · · ]. We will adopt this notation below. Fur-
thermore, for consistency, we will write ðG(R) as
α[R]—the “outer weight” of rule R.

5.3 The inside-outside algorithm
We need only one more move to derive the inside-
outside algorithm. So far, we have obtained α[R] def=
ðG(R), the partial of Z with respect to G(R) =
exp θR. We log-transform both Z and G(R) to ar-
rive finally at the expected count:

c(R) =
∂ logZ
∂θR

. from section 4.2

=
∂ logZ
∂Z

· ∂Z

∂G(R)
· ∂G(R)
∂θR

. chain rule

= (1/Z) · α[R] · G(R) (13)

The final algorithm appears as Algorithm 2. This
visits all of the inside nodes in a topologically sorted
order by calling Algorithm 1, then visits all of their
adjoints in a topologically sorted order (roughly the
reverse), and finally applies (13).

6 Detailed Discussion

6.1 Relationship to the traditional version
An “off-the-shelf” application of automatic dif-
ferentiation produces efficient code. Indeed, we
would have gotten slightly more efficient code if
we had applied the technique directly to the prob-
lem of section 4.2—finding the gradient of log-
likelihood. This version is shown as Algorithm 3

5



Algorithm 2 The inside-outside algorithm
1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α[ROOTn0 ] += 1 . sets ðZ = 1
5: for width := n downto 2 : . wide to narrow
6: for i := 0 to n− width : . start point
7: k := i+ width . end point
8: for j := i+ 1 to k − 1 : . midpoint
9: for A,B,C ∈ N :

10: α[A→BC] += α[Aki ]β[Bj
i ]β[Ckj ]

11: α[Bj
i ] += G(A→BC)α[Aki ]β[Ckj ]

12: α[Ckj ] += G(A→BC)β[Bj
i ]α[Aki ]

13: for k := 1 to n : . width-1 constituents
14: for A ∈ N :
15: α[A→ wk] += α[Akk−1]

16: for R ∈ R : . expected rule counts
17: c(R) := α[R] · G(R)/Z

in Appendix A. It computes adjoint quantities of
the form α

Z [x] = ∂(logZ)/∂x rather than α[x] =
∂Z/∂x. As a result, it divides once by Z at line 4,
whereas Algorithm 2 must do so many times at
line 17 (to implement the correction in (13)).

Even Algorithm 2 is slightly more efficient than
the traditional version (Lari and Young, 1990),
thanks to the new quantity α[R]. The traditional ver-
sion (Algorithm 4) leaves out line 17, instead replac-
ing lines 10 and 15 respectively with

c(A→ B C) +=
α[Ak

i ]G(A→B C)β[Bj
i ]β[Ck

j ]

Z (14)

c(A→ wk) +=
α[Ak

k−1]G(A→wk)

Z (15)

Our automatically derived Algorithm 2 efficiently
omits the common factor G(R)/Z from each sum-
mand above. It uses α[R] to accumulate the result-
ing intermediate sum (over positions of R), and fi-
nally multiplies the sum by G(R)/Z at line 17.6

6.2 Obtaining the anchored probabilities
If one wants the anchored rule probabilities dis-
cussed in section 4.3, they are precisely the sum-

6In practice, to avoid allocating separate memory for α[R],
it can be stored in c(R) and then multiplied in place by G(R)/Z
at line 17 to obtain the true c(R). Current automatic differenti-
ation packages do not discover optimizations of this sort, as far
as this author knows.

mands in (14) and (15). To derive this fact via gra-
dients, just revise our previous construction to use
anchored rules R′ ∈ R. Extending the notation of
section 4.2, let fR′(T ) ∈ {0, 1} denote the count of
R′ in parse T . We wish to find its expectation c(R′).
Intuitively, this should equal ∂(logZ)/∂θR′ , which
intuitively should work out to the summand in ques-
tion via anchored versions of (8) and (13). This in-
deed holds if we revise (3) to use anchored features
fR′ of the tree T :

p(T | w) =
1
Z

exp
∑
R′∈R′

θR′ · fR′(T ) (16)

and then set θR′
def= log G(R) whenever R′ is an

anchoring of R. Notice that (16) is a more ex-
pressive model than a WCFG, since it permits the
same rule R to have different weights at different
positions—an idea we will revisit in section 8.4.
However, here we take the gradient of its Z only
at the point in parameter space that corresponds to
the actual WCFG G—obtained by setting θR′ to the
same value, logG(R), for all anchorings R′ of R.

6.3 Interpreting the outer weights

Section 5.3 exposes some interesting quantities.
The outer weight of a constituent is α[Aki ] =
ðβ[Aki ]. The outer weight of a rule—novel to our
presentation—is α[R] = ðG(R). We now connect
these partial derivatives to a traditional view of the
outer weights.

As we will see, β[Aki ] ·ðβ[Aki ] (inner times outer)
is the total weight of all parses that contain Aki .
Then (1) implies that the total probability of these
parses is β[Aki ] · ðβ[Aki ]/Z. This gives the marginal
probability of the anchored nonterminal, i.e., c(Aki ).

Analogously, G(R) · ðG(R) is the total weight of
all parses that contain R, where a parse is counted
multiple times in this total if it contains R multiple
times. Dividing by Z as before gives the expected
count c(R), which is indeed what line 17 does.

What does an outer weight signify on its own, and
how does it help compute the total weight? Con-
sider a parse T that contains the anchored nontermi-
nal Aki , so that T has the form
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ROOT

w1 . . . wi A

wi+1 . . . wk

wk+1 . . . wn

Its weight G(T ) is the product of weights of all rules
in the parse. This can be factored into an inside
product that considers the rules dominated by Aki ,
times an outside product that considers all the other
rules in T . That is, T is obtained by combining
an “inside derivation” with an incomplete “outside
derivation,” of the respective forms

A

wi+1 . . . wk

ROOT

w1 . . . wi A wk+1wn

and the weight of T is the product of their weights.
The many parses T that contain Aki can be ob-

tained by pairwise combinations of inside and out-
side derivations of the forms shown. Thus—thanks
to the distributive property—the total weight of
these parses is β[Aki ] ·α[Aki ], where the inner weight
β[Aki ] sums the inside product over all such inside
derivations, and the outer weight α[Aki ] sums the
outside product over all such outside derivations.
Both sums are accomplished in practice by dynamic
programming recurrences that build from smaller to
larger derivations. Namely, Algorithm 1 line 11 ex-
tends from smaller inside derivations to β[Aki ], while
Algorithm 2 lines 11–12 extend from α[Aki ] to larger
outside derivations.

The previous paragraph is part of the traditional
(“difficult”) explanation of the inside-outside algo-
rithm. However, it gives an alternative route to the
gradient interpretation. It implies that Z can be
found as β[Aki ] · α[Aki ] plus the weights of some
other parses that do not involve β[Aki ]. It follows
that ∂Z/∂β[Aki ] is indeed α[Aki ].

Similarly, how about the outer weight and total
weight of a rule? Consider a parse T that contains
rule R at a particular position i, j, k. G(T ) can be
factored into the rule probability G(R)—which can
be regarded as an “inside product” with only one
factor—times an “outside product” that considers all
the other rule tokens in T . This decomposition helps
us find the total weight as before. Each of the many
instances of a parse T with a token of R marked

within it can be obtained by combining R with the
incomplete “outside derivation” that lacks the token
of R at that position, which has the form

ROOT

w1 . . . wi A

C

wj+1 . . . wk

B

wi+1 . . . wj

wk+1 . . . wn

Summing the weights of these instances (a tree with
c copies ofR is added c times), the distributive prop-
erty implies the total is G(R) ·α[R], where the outer
weight α[R] sums over the “outside derivations.”
Algorithm 2 accumulates that sum at line 10 (for a
binary rule as drawn above) or line 15 (unary rule).

We can verify from this fact that ∂Z/∂G(R) is in-
deed α[R], by checking the effect on Z of increasing
G(R) slightly. Let us express Z =

∑∞
c=0 Zc, where

Zc is the total weight of parses that contain exactly
c copies of R. Increasing G(R) by a multiplicative
factor of 1 + ε will increase Z to

∑
c(1 + ε)cZc,

which ≈ ∑
c(1 + cε)Zc for ε ≈ 0. Put an-

other way, increasing G(R) by adding εG(R) results
in increasing Z by about

∑
c cεZc. Therefore (at

least when G(R) 6= 0), we conclude ∂Z/∂G(R) =(∑
c cZc

)
/G(R) = (G(R) · α[R])/G(R) = α[R],

since
∑

c cZc is the total weight computed in the
previous paragraph.

7 The Forest PCFG

For additional understanding, this section presents a
different motivation for the inside algorithm—which
then leads to an attractive independent derivation of
the inside-outside algorithm.

7.1 Constructing the parse forest as a PCFG

The inner weights serve to enable the construc-
tion of a convenient representation—as a PCFG—
of the distribution (1). Using a grammar to repre-
sent the packed forest of all parses of w was origi-
nally discussed by Bar-Hillel et al. (1961) and Billot
and Lang (1989). The construction below Neder-
hof and Satta (2003) takes the weighted version of
such a grammar and “renormalizes” it into a PCFG
(Thompson, 1974; Abney et al., 1999; Chi, 1999).
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This PCFG G′ generates only parses of w: that
is, it assigns weight 0 to any derivation with fringe
6= w. G′ uses the original terminals Σ, but a different
nonterminal set—namely the anchored nonterminals
N ′ = {Aki : A ∈ N , 0 ≤ i < k ≤ n}, with root
symbol ROOT′ = ROOTn0 . The CNF rules over these
nonterminals are the anchored rules R′. The func-
tion G′ : R′ → R≥0 can now be defined in terms of
the inner weights:

G′(Aki → Bj
i C

k
j )

def=
G(A→ B C) · β[Bj

i ] · β[Ckj ]

β[Aki ]
(17)

G′(Akk−1 → wk)
def=

G(A→ wk)
β[Akk−1]

= 1 (18)

for A,B,C ∈ N and 0 ≤ i < j < k ≤ n, and
G′(· · · ) = 0 otherwise. All trees T with G′(T ) > 0
have fringe w. Note that |G′| = O(n3|G|).

Thus, G′ defines the weights of the rules inR′[Aki ]
to be the relative contributions made to β[Aki ] in Al-
gorithm 1 by its summands.7 This ensures that they
sum to 1, making G′ a PCFG.

7.2 Sampling from the forest PCFG

One use of G′ is to enable easy sampling from (1),
since PCFGs are designed to allow sampling (by a
straightforward top-down recursive procedure). In
effect, the top-down sampler recursively subdivides
the total probability mass Z. For example, suppose
that 60% of the total Z = β[ROOTn0 ] was contributed
by the various derivations in which the two child
subtrees of ROOT have root labels B,C and fringes
w1 . . . wj , wj+1 . . . wn. Then the first step of sam-
pling from G′ has a 60% chance of expanding ROOT′

intoBj
0 andCnj . If that happens, the sampler then re-

cursively chooses how to expand those nonterminals
according to their inner weights.

By thus sampling a tree T ′ from G′, and then sim-
plifying each internal node label Aki to A, we obtain
a parse T of w, distributed according to p(T | w) as
desired. This method is equivalent to traditional pre-
sentations of sampling from p(T | w) (Bod, 1995,

7When β[Ak
i ] = 0, these relative contributions are indeter-

minate (quotients are 0/0). Then G′ can specify any probability
distribution over the rules R′[Ak

i ]. That distribution will never
be used: the PCFG G′ has probability 0 of reaching the an-
chored nonterminal Ak

i and needing to expand it.

p. 56; Goodman, 1998, section 4.4.1; Finkel et al.,
2006). Our presentation merely exposes the con-
struction of G′ as an intermediate step.8

7.3 Expected counts from the forest PCFG
The above reparameterization of p(T | w) as a
PCFG G′ makes it easier to find c(Aki ). The proba-
bility of findingAki in a parse must be the probability
of encountering it when sampling a parse top-down
from G′ (the hitting probability).

Observe that the top-down sampling procedure
starts at ROOT′. If it reaches Aki , it has probability
G′(Aki → Bj

i C
k
j ) of reaching Bj

i as well as Ckj on
the next step.

Thus, the hitting probability c(Aki ) of an anchored
nonterminal is the total probability of all “paths”
from ROOT′ to Aki . To find all such totals, we ini-
tialize all c(· · · ) = 0 and then set c(ROOT′) = 1.
Once we know c(Aki ), we can extend those paths to
its successor vertices, much as in the forward algo-
rithm for HMMs.

Clearly, the probability that c(Aki ) expands using
a particular anchored rule R′ ∈ R′[Aki ] during top-
down sampling is

c(R′) = c(Aki ) · G′(R′) (19)

which we add into the expected count of the unan-
chored version R:

c(R) += c(R′) (20)

This anchored rule hits the successors of Aki . E.g.:

c(Bj
i ) += c(Aki → Bj

i C
k
j ) (21)

c(Ckj ) += c(Aki → Bj
i C

k
j ) (22)

This view leads to a correct algorithm that directly
computes c values without using α values at all. This
Algorithm 5 looks exactly like Algorithm 2 or 3, ex-
cept it uses the above lines that modify c(· · · ) in
place of the lines that modify α[· · · ] or α

Z [· · · ]. We
can in fact regard Algorithm 3 as simply the result of
rearranging Algorithm 5 to avoid some of the multi-
plications and divisions needed to construct G′, ex-
ploiting the fact that they cancel out as paths are ex-
tended.

8Exposing G′ can be computationally advantageous, in fact.
After preprocessing a PCFG, samples can be drawn in time
O(n) per tree independent of the size of the grammar, by us-
ing alias sampling (Vose, 1991) to draw each rule in O(1) time.
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For example, in Algorithm 5, update (22) above
expands via (19) and (17) into

c(Ckj ) += c(Aki ) ·
G(A→B C)·β[Bj

i ]·β[Ck
j ]

β[Ak
i ]

(23)

Algorithm 3 rearranges this into

c(Ck
j )

β[Ck
j ]

+= c(Ak
i )

β[Ak
i ]
· G(A→BC) · β[Bj

i ] (24)

and then systematically uses α
Z [x] to store c(x)

β[x] . It
similarly transforms all other c updates into α

Z up-
dates as well. Algorithm 3 then recovers c(x) :=
α
Z [x] · β[x] at the end of the algorithm, for all x∈R,
and could do the same for all x ∈ R′ or x ∈ N ′.
8 Other Settings

Many types of weighted grammar are used in com-
putational linguistics. Hence one often needs to
construct new inside and inside-outside algorithms
(Goodman, 1998, 1999). As examples, the weighted
version of Earley’s (1970) algorithm (Stolcke, 1995)
handles arbitrary WCFGs (not restricted to CNF).
Vijay-Shanker and Weir (1993) treat tree-adjoining
grammar. Eisner (1996) handles projective depen-
dency grammars. Smith and Smith (2007) and
Koo et al. (2007) handle non-projective dependency
grammars, using an inside algorithm with a different
structure (not a dynamic programming algorithm).

In typical settings, each T is a derivation
tree (Vijay-Shankar et al., 1987)—a tree-structured
recipe for assembling some syntactic description of
the input sentence. The parse probability p(T | w)
takes the form 1

Z

∏
t∈T exp θt, where t ranges over

certain configurations in T . Z is the total weight
of all T . Then the core insight of section 4.2 holds
up: given an “inside” algorithm to compute logZ,
we can differentiate to obtain an “inside-outside” al-
gorithm that computes ∇ logZ, which yields up the
expected counts of the configurations.

In this section we review several such settings.
Parsing with a WCFG in CNF (Algorithms 1–2) is
merely the simplest case that fully illustrates the “ins
and outs,” as it were.

In all these cases, the EM algorithm is not the only
use of the expected counts: Sections 1 and 4.3 men-
tioned more important uses. EM itself is only useful
for training a generative grammar, at best.9

9EM locally maximizes logZ, which equals the likelihood

8.1 The forward-backward algorithm

A Hidden Markov Model (HMM) is essentially a
simple PCFG. Its nonterminal symbols N are often
called states or tags. The rule set R now consists
not of CNF rules as in section 2, but all rules of the
form ROOT → A or A → w B or A → w (for
A,B ∈ N and w ∈ Σ). As a result, a parse of a
length-4 sentence w must have the form

RO
O

T A B C D

w
4

w
3

w
2

w
1

which is said to tag each word wj with its par-
ent state. All parses share this right-branching tree
structure, so they differ only in their choice of tags.

(Traditionally, the weight G(A → w B) or
G(A → w) is defined as the product of an emission
probability, p(w | A), and a transition probabil-
ity, p(B | A) or p(HALT | A). However, the fol-
lowing algorithms do not require this. Indeed, the
algorithms do not require that G is a PCFG—any
right-branching WCFG will do.)

In this setting, the inside algorithm (which com-
putes β bottom-up) is known as the backward al-
gorithm, because it proceeds from right to left. The
subsequent outside pass (which computes α top-
down) is known as the forward algorithm.

Thanks to the fixed tree structure, this special-
ized version of inside-outside can run in total time
of only O(n|N |2). Of course, once we work out the
fast backward algorithm (directly or from the inside
algorithm), the forward-backward algorithm comes
for free by algorithmic differentiation, with α[x] de-
noting ðx = ∂Z/∂x. Pseudocode appears as Algo-
rithms 6–7 in Appendix B.

The forest of all taggings of w may be compactly
represented as a directed acyclic graph—the trel-
lis. The forward-backward algorithms can be nicely
understood with reference to this trellis, shown as
Figure 1 in Appendix B. Each maximal path in the
trellis corresponds to a tagging; α and β quantities
sum the weights of prefix and suffix paths. G de-
fines a probability distribution over these taggings

log p(w) in the case of a generative grammar. Even in this case,
EM may not be the best choice: once we are already comput-
ing ∇ logZ, any continuous optimization algorithm (batch or
online) can exploit that gradient to improve logZ.

9



via (1). Following section 7, one can determine tran-
sition probabilities to the edges of the trellis so that
a random walk on the trellis samples a tagging, from
left to right, according to (1). The backward algo-
rithm serves to compute β values from which these
transition probabilities are found (cf. section 7.1).
Under these probabilities, the trellis becomes a non-
stationary Markov model over the taggings. The for-
ward pass now finds the hitting probabilities in this
Markov model (cf. section 7.3), which describe how
often the random walk will reach specific anchored
nonterminals or traverse edges between them. These
are the expected counts of tags and tag bigrams at
specific positions.

8.2 Other grammar formalisms
Many grammar formalisms have weighted versions

that produce exponential-family distributions over
tree-structured derivations:

• PCFGs or WCFGs whose nonterminals are lex-
icalized or extended with other attributes, in-
cluding unification-based grammars (Johnson
et al., 1999)
• Categorial grammars, which use an unbounded

set of nonterminals N (bounded for any given
input sentence)
• Tree substitution grammars and tree adjoin-

ing grammars (Schabes, 1992), in which the
derivation tree is distinct from the derived tree
• History-based stochasticizations such as the

structured language model (Jelinek, 2004)
• Projective and non-projective dependency

grammars as mentioned earlier
• Semi-Markov models for chunking (Sarawagi

and Cohen, 2004), with runtime O(n2)

Each formalism has one or more inside algo-
rithms10 that efficiently computeZ, typically in time
O(n2) to O(n6) via dynamic programming. These
inside algorithms can all be differentiated using the
same recipe.

The trick continues to work when one of these in-
side algorithms is extended to the case of prefix pars-
ing or lattice parsing (Nederhof and Satta, 2003),
where the input sentence is not fully observed, or

10Even basic WCFGs admit multiple algorithms—Earley’s
algorithm, unary cycle elimination, the “hook trick,” and more
(see Goodman, 1998; Eisner and Blatz, 2007).

to partially supervised parsing (Pereira and Schabes,
1992; Matsuzaki et al., 2005), where the output tree
is not fully unobserved.

8.3 Synchronous grammars

In a synchronous grammar (Shieber and Schabes,
1990), a parse T is a derivation tree that produces
aligned syntactic representations of a pair of sen-
tences. These cases are handled as before. The in-
put to the inside algorithm is a pair of aligned or
unaligned sentences, or a single sentence.

The simplest synchronous grammar is a finite-
state transducer. Here T is an alignment of the two
sentences, tagged with states. Eisner (2002) general-
ized the forward-backward algorithm to this setting
and drew a connection to gradients.

8.4 Conditional grammars

In the conditional random field (CRF) approach,
p(T | w) is defined as Gw(T )/Z, where Gw is a
specialized grammar constructed given the input w.
Generally Gw defines weights for the anchored rules
R′, allowing the weight of a rule to be position-
specific. (This slightly affects lines 5 and 11 of
Algorithm 1.) Any weighted grammar formalism
may be used: e.g., the formalisms in section 2 and
section 8.1 respectively yield the CRF-CFG (Finkel
et al., 2008) and the popular linear-chain CRF (Sut-
ton and McCallum, 2011).

Nothing in our approach changes. In fact, super-
vised training of a CRF usually follows the gradi-
ent ∇ log p(T ∗ | w). This equals the vector of rule
counts observed in the supervised tree T ∗, minus the
expected rule counts∇ logZ—as equivalently com-
puted by backprop or inside-outside.

8.5 Pruned, prioritized, and beam parsing

For speed, it is common in practice to perform only
a subset of the updates at line 11 of Algorithm 1.
This approximate algorithm computes an underesti-
mate Ẑ of Z (via underestimates β̂[Aki ]), because
only a subset of the inside circuit is used. By
storing this dynamically determined smaller circuit
and performing back-propagation through it (Eisner
et al., 2005), we can compute the partial deriva-
tives ∂Ẑ/∂β̂[Aki ] and ∂Ẑ/∂G(R). These approxi-
mations may be used in all formulas in order to com-
pute the expected counts of constituents and rules
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in the pruned parse forest, which consists of the
parse trees—with total weight Ẑ—explored by the
approximate algorithm.

Many clever single-pass or multi-pass strategies
exist for including the most important updates.
Strategies are usually based either on direct prun-
ing of constituents or prioritized updates with early
stopping. A key insight is that β[Aki ] · ðβ[Aki ] is the
total contribution of β[Aki ] to Z, so one should be
sure to include the update β[Aki ] += ∆ if ∆ ·α[Aki ]
is predicted to be large.

Weighted automata are popular for parsing, par-
ticularly dependency parsing (Nivre, 2003). In this
case, T is similar to a derivation tree: it is a sequence
of operations (e.g., shift and reduce) that constructs
a syntactic representation. Here an approximate Ẑ
is usually computed by beam search, and can be dif-
ferentiated as above.

8.6 Inside-outside should be as fast as inside

In all cases, it is good practice to derive one’s
inside-outside algorithm by differentiation—manual
or automatic—to ensure correctness and efficiency.

It should be a red flag if a proposed inside-outside
algorithm is asymptotically slower than its inside al-
gorithm.11 Why? Because automatic differentiation
produces an adjoint circuit that is at most twice the
size of the original circuit (assuming binary opera-
tors). That means ∇ logZ always can be evaluated
with the same asymptotic runtime as logZ.

Good researchers do sometimes slip up and pub-
lish less efficient algorithms. Koo et al. (2007)
present the O(n3) algorithms for non-projective de-
pendency parsing: they point out that a contempo-
raneous IWPT paper with the same O(n3) inside
algorithm had somehow raised inside-outside’s run-
time from O(n3) to O(n5). Similarly, Vieira et al.
(2016) provide efficient algorithms for variable-
order linear-chain CRFs, but note that a JMLR pa-
per with the same forward algorithm had raised the
grammar constant in forward-backward’s runtime.

11Unless inside-outside has been deliberately slowed down to
reduce its space requirements, as in the discard-and-recompute
scheme of Zweig and Padmanabhan (2000). Absent such a
scheme, inside-outside may need asymptotically more space
than inside: though the adjoint circuit is not much bigger than
the original, evaluating it may require keeping more of the orig-
inal in memory at once (unless time is traded for space).

9 Conclusions and Further Reading

Computational linguists have been back-
propagating through their arithmetic circuits
for a long time without realizing it—indeed, since
before Rumelhart et al. (1986) popularized the
use of this technique to train neural networks.
Recognizing this connection can help us to under-
stand, teach, develop, and implement many core
algorithms of the field.

Good follow-up reading includes

• how to use the inside algorithm within a larger
neural network that can be differentiated end-
to-end (Gormley et al., 2015; Gormley, 2015);
• how to efficiently obtain the partial derivatives

of the expected counts by differentiating the al-
gorithm a second time (Li and Eisner, 2009);
• how to navigate through the space of possible

inside algorithms (Eisner and Blatz, 2007);
• how to convert an inside algorithm into variant

algorithms such as Viterbi parsing, k-best pars-
ing, and recognition (Goodman, 1999);
• how to apply the same ideas to graphical mod-

els (Aji and McEliece, 2000; Darwiche, 2003).
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A Pseudocode for Inside-Outside Variants

The core of this paper is Algorithms 1 and 2 in the
main text. For easy reference, this appendix pro-
vides concrete pseudocode for some close variants
of Algorithm 2 that are discussed in the main text,
highlighting the differences from Algorithm 2. All
of these variants compute the same expected counts
c, with only small constant-factor differences in ef-
ficiency.

Algorithm 3 is the clean, efficient version of
inside-outside that obtains the expected counts
∇ logZ by direct implementation of backprop. We
may regard this as the fundamental form of the algo-
rithm. The differences from Algorithm 2 are high-
lighted in red and discussed in section 6.1.

Since logZ is replacing Z as the output being dif-
ferentiated, the adjoint quantity ðx is redefined as
∂(logZ)/∂x and stored in α

Z [x]. The name α
Z is

chosen because it is 1
Z times the traditional α. The

computations in the loops are not affected by this
rescaling: they perform the same operations as in
Algorithm 2. Only the start and end of the algorithm
are different (lines 4 and 17).

To emphasize the pattern of reverse-mode auto-
matic differentiation, Algorithm 3 takes care to com-
pute the adjoint quantities in exactly the reverse of
the order in which Algorithm 1 computed the orig-
inal quantities. The resulting iteration order in the
i, j, and k loops is highlighted in blue. Comput-
ing adjoints in reverse order always works and can
be regarded as the default strategy. However, this
is merely a cosmetic change: the version in Algo-
rithm 2 is just as valid, because it too visits the nodes
of the adjoint circuit in a topologically sorted order.
Indeed, since each of these blue loops is paralleliz-
able, it is clear that the order cannot matter. What
is crucial is that the overall narrow-to-wide order of
Algorithm 1, which is not parallelizable, is reversed
by both Algorithm 2 and Algorithm 3.

Algorithm 4 is a more traditional version of Al-
gorithm 2. The differences from Algorithm 2 are
highlighted in red and discussed in section 6.1.

Finally, Algorithm 5 is a version that is derived
on independent principles (section 7.3). It directly

Algorithm 3 A cleaner variant of the inside-outside
algorithm

1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α

Z [ROOTn0 ] += 1
Z . sets ðZ = 1/Z

5: for width := n downto 2 : . wide to narrow
6: for i := n− width downto 0 : . start point
7: k := i+ width . end point
8: for j := k − 1 downto i+ 1 : . midpoint
9: for A,B,C ∈ N :

10: α
Z [A→BC] += α

Z [Aki ]β[Bj
i ]β[Ckj ]

11: α
Z [Bj

i ] += G(A→BC)αZ [Aki ]β[Ckj ]
12: α

Z [Ckj ] += G(A→BC)β[Bj
i ]
α
Z [Aki ]

13: for k := n downto 1 : . width-1 constituents
14: for A ∈ N : p
15: α

Z [A→ wk] += α
Z [Akk−1]

16: for R ∈ R : . expected rule counts
17: c(R) := α

Z [R] · G(R) . no division by Z

Algorithm 4 A more traditional variant of the
inside-outside algorithm

1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α[ROOTn0 ] += 1 . sets ðZ = 1
5: for width := n downto 2 : . wide to narrow
6: for i := 0 to n− width : . start point
7: k := i+ width . end point
8: for j := i+ 1 to k − 1 : . midpoint
9: for A,B,C ∈ N :

10: c(A→B C)

+=
α[Ak

i ]G(A→B C)β[Bj
i ]β[Ck

j ]

Z

11: α[Bj
i ] += G(A→BC)α[Aki ]β[Ckj ]

12: α[Ckj ] += G(A→BC)β[Bj
i ]α[Aki ]

13: for k := 1 to n : . width-1 constituents
14: for A ∈ N :
15: c(A→ wk) +=

α[Ak
k−1]G(A→wk)

Z

16: for R ∈ R :
17: do nothing . c(R) has already been computed
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computes the hitting probabilities of anchored con-
stituents and rules in a PCFG representation of the
parse forest. This may be regarded as the most natu-
ral way to obtain the algorithm without using gradi-
ents. However, as section 7.3 notes, it can be fairly
easily rearranged into Algorithm 3, which is slightly
more efficient. The differences from Algorithms 2
and 3 are highlighted in red.

To rearrange Algorithm 5 into Algorithm 3, the
key is to compute not the count c(x), but the ratio
c(x)
β[x] (or c(x)

G(x) when x is a rule), storing this ratio in
the variable α

Z [x]. This ratio α
Z [x] can be interpreted

as ∂(logZ)/∂x as previously discussed.

Algorithm 5 An inside-outside variant motivated as
finding hitting probabilities

1: procedure INSIDE-OUTSIDE(G, w)
2: Z := INSIDE(G,w) . side effect: sets β[· · · ]
3: initialize all c[· · · ] to 0
4: c(ROOTn0 ) += 1
5: for width := n downto 2 : . wide to narrow
6: for i := 0 to n− width : . start point
7: k := i+ width . end point
8: for j := i+ 1 to k − 1 : . midpoint
9: for A,B,C ∈ N :

10: c(Aki →Bj
i C

k
j ) := . eqs. (19), (17)

c(Aki ) ·
G(A→B C)·β[Bj

i ]·β[Ck
j ]

β[Ak
i ]

11: c(A→BC) += c(Aki →Bj
i C

k
j )

12: c(Bj
i ) += c(Aki →Bj

i C
k
j )

13: c(Ckj ) += c(Aki →Bj
i C

k
j )

14: for k := 1 to n : . width-1 constituents
15: for A ∈ N :
16: c(Akk−1→wk) :=c(Akk−1) . eqs. (19),(18)
17: c(A →wk) += c(Akk−1→wk)

18: for R ∈ R : . expected rule counts
19: do nothing . c(R) has already been computed

B Pseudocode for Forward-Backward

Algorithm 6 is the backward algorithm, as intro-
duced in section 8.1. It is an efficient specializa-
tion of the inside algorithm (Algorithm 1) to right-
branching trees.

Notation: We use ROOT0 to denote the root an-
chored nonterminal, and Aj (for A ∈ N and 1 ≤

j ≤ n) to denote an anchored nonterminal A that
serves as the tag of wj . That is, Aj is anchored so
that its left child is wj . (Since this Aj actually dom-
inates all of wj . . . wn in the right-branching tree, it
would be called Anj−1 if we were running the full
inside algorithm.)

Line 7 builds up the right-branching tree by com-
bining a word from j − 1 to j (namely wj) with
a phrase from j to n (namely Bj+1). This line is
a specialization of line 11 in Algorithm 1, which
combines a phrase from i to j with another phrase
from j to k. Thanks to the right-branching con-
straint, the backward algorithm only has to loop over
O(n) triples of the form (j−1, j, n) (with fixed n)—
whereas the inside algorithm must loop over O(n3)
triples of the form (i, j, k).

Algorithm 6 The backward algorithm
1: function BACKWARD(G, w)
2: initialize all β[· · · ] to 0
3: for A ∈ N : . stopping rules
4: β[An] += G(A→ wn)
5: for j := n− 1 downto 1 :
6: for A,B ∈ N : . transition rules
7: β[Aj ] += G(A→ wj B) β[Bj+1]

8: for A ∈ N : . starting rules
9: β[ROOT0] += G(ROOT → A) β[A1]

10: return Z := β[ROOT0]

The forward-backward algorithm, Algorithm 7,
is derived mechanically by differentiating Algo-
rithm 6, by exactly the same procedure as in sec-
tion 5. As a result, it is a specialization of Algo-
rithm 2.

This presentation of the forward-backward algo-
rithm finds the expected counts of rules R ∈ R.
However, section 8.1 mentions that each rule R can
be regarded as consisting of an emission action Re
followed by a transition action Rt. We may want
to find the expected counts of the various actions.
These can of course be found by summing the ex-
pected counts of all rules containing a given action.
However, this step can also be handled naturally by
backprop, in the common case where each G(R) is
defined as a product pRe ·pRt of the conditional prob-
abilities of the emission and transition. In this case,
θR = log G(R) from section 4.2 can be re-expressed
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Algorithm 7 The forward-backward algorithm
1: procedure FORWARD-BACKWARD(G, w)
2: Z := BACKWARD(G,w) . also sets β[· · · ]
3: initialize all α[· · · ] to 0
4: α[ROOT0] += 1 . sets ðZ = 1
5: for A ∈ N : . starting rules
6: α[ROOT → A] += α[ROOT0] β[A1]
7: α[A1] += α[ROOT0] G(ROOT → A)
8: for j := 1 to n− 1 :
9: for A,B ∈ N : . transition rules

10: α[A→ wj B] += α[Aj ] β[Bj+1]
11: α[Bj+1] += α[Aj ] G(A→ wj B)

12: for A ∈ N : . stopping rules
13: G(A→ wn) += α[An]
14: for R ∈ R : . expected rule counts
15: c(R) := α[R] · G(R)/Z

ROOT0 ROOT1 ROOT2 ROOT3 HALT

NOUN1 NOUN2 NOUN3

VERB1 VERB2 VERB3

Figure 1: The trellis of taggings of a length-3 sentence, under

an HMM where N = {ROOT, NOUN, VERB}. (Although the

trellis shows that ROOT may be used as an ordinary tag, often

in practice it is allowed only at the root. This can be arranged

by giving weight 0 to rules involving ROOTj for j > 0, corre-

sponding to the gray edges.)

as the sum of two parameters, θRe + θRt , which
represent the logs of these conditional probabilities.
Then the expected emission and transition counts are
given by ∂(logZ)/∂θRe and ∂(logZ)/∂θRt .

It is traditional to view the forward-backward al-
gorithm as running over a “trellis” of taggings (Fig-
ure 1), which represents the forest of parses. Since
a nonterminal Aj that is anchored at position j nec-
essarily emits wj , the trellis representation does not
bother to show the emissions. It is simply a directed
graph showing the transitions. Every parse (tagging)
of w corresponds to a path in Figure 1. Specifically,
edge Aj → Bj+1 in the trellis represents the an-
chored rule Aj → wj B

j+1, without showing wj .
Similarly, An → HALT represents the anchored rule
An → wn, without showing wn, and ROOT → A1

represents the anchored rule ROOT → A1. The
weight of a trellis edge corresponding to an anchor-
ing of rule R is given by G(R). The weight G(T )
of a tagging T is then the product weight of the path
that corresponds to that tagging.

On this view, the inner weight β[Aj ] can be re-
garded as a suffix weight: it sums up the weight
of all paths from Aj to HALT. Algorithm 6 can be
transparently viewed as computing all suffix weights
from right to left by dynamic programming. Z =
ROOT0 sums the weight of all paths from ROOT0 to
HALT. Similarly, the outer weight α[Aj ] can be re-
garded as a prefix weight, computed symmetrically
within Algorithm 7.

The constructions of section 7 are easier to un-
derstand in this setting. Here is the interpretation.
It is possible to replace the non-negative weights on
the trellis edges with probabilities, in such a way
that the product weight of each path is not changed.
Indeed, the method is essentially identical to the
“weight pushing” algorithm for weighted finite-state
automata (Mohri, 2000).

The probabilistic version of the trellis is a repre-
sentation of a new weighted grammar G′—an HMM
(hence a type of PCFG) that generates only taggings
of w, with the probabilities given by (1).

In the probabilistic version of the trellis, the edges
from a node have total probability of 1. Thus it is
the graph of a Markov chain, whose states are the
anchored nonterminals N ′. Sampling a tagging of
w is now as simple as taking a random walk from
ROOT0 until HALT is reached. The forward pass can
be interpreted as a straightforward use of dynamic
programming to compute the hitting probabilities of
the nodes in the trellis, as well as the probabilities of
traversing a node’s out-edges once the node is hit.

But how were the trellis probabilities found in the
first place? The edge Aj → Bj+1 originally had
weight G(A → wj B). In the probabilistic version

of the trellis, it has probability G(A→wj B)·β[Bj+1]
β[Aj ]

.
This represents the total weight of paths from Aj

that start with this edge, as a fraction of the total
weight β[Aj ] of all paths from Aj . (The edges in-
volving ROOT0 and HALT edges are handled simi-
larly.) Computing the necessary β weights to deter-
mine these probabilities is the essential function of
the backward algorithm.
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Abstract
Natural Language Inference (NLI) is a fun-
damentally important task in natural language
processing that has many applications. It is
concerned with classifying the logical rela-
tion between two sentences. In this paper, we
propose attention memory networks (AMNs)
to recognize entailment and contradiction be-
tween two sentences. In our model, an atten-
tion memory neural network (AMNN) has a
variable sized encoding memory and support-
s semantic compositionality. AMNN captures
sentence level semantics and reasons relation
between the sentence pairs; then we use a S-
parsemax layer over the output of the gener-
ated matching vectors (sentences) for classifi-
cation. Our experiments on the Stanford Nat-
ural Language Inference (SNLI) Corpus show
that our model outperforms the state of the art,
achieving an accuracy of 87.4% on the test da-
ta.

1 Introduction

Natural Language Inference (NLI) refers to the
problem of determining entailment and contradic-
tion relationships between two sentences. The chal-
lenge in Natural Language Inference, also known
as Recognizing Textual Entailment (RTE), is to cor-
rectly decide whether a sentence (called a hypoth-
esis) entails or contradicts or is neutral in respect
to another sentence (referred to as a premise). Pro-
vided with a premise sentence, the task is to judge
whether the hypothesis can be inferred (Entailment)
or the hypothesis cannot be true (Contradiction) or
the truth is unknown (Neutral). Few examples are
illustrated in Table 1.

NLI is the core of natural language understand-
ing and has wide applications in NLP, e.g., automat-
ic text summarization (Yan et al., 2011a; RuiYan et
al., 2011b); and question answering (Harabagiu and
Hickl, 2006). Moreover, NLI is also related to oth-
er tasks of sentence pair modeling, including rela-
tion recognition of discourse units (YangLiu et al.,
2016), paraphrase detection (Hu et al., 2014), etc.

Bowman released the Stanford Natural Language
Inference (SNLI) corpus for the purpose of encour-
aging more learning centered approaches to NLI
(Bowman et al., 2015). Published SNLI corpus
makes it possible to use deep learning methods to
solve NLI problems. So far proposed work based
on neural networks for text similarity tasks includ-
ing NLI have been published in recent years (Hu
et al., 2014; Wang and Jiang, 2015; Rocktaschel
et al., 2016; Yin et al., 2016);. The core of these
models is to build deep sentence encoding model-
s, for example, with convolutional networks (LeCun
et al., 1990) or long short-term memory networks
(Hochreiter and Schmidhuber, 1997) with the goal
of deeper semantic encoders. Recurrent neural net-
works (RNNs) equipped with internal short mem-
ories, such as long short-term memories (LSTMs)
have achieved a notable success in sentence encod-
ing. LSTMs are powerful because it learns to control
its short term memories. However, the short term
memories in LSTMs are a part of the training pa-
rameters. This imposes some practical difficulties in
training and modeling long sequences with LSTMs.

In this paper, we proposed a deep learning frame-
work for natural language inference, which mainly
consists of two layers. As we can see from the fig-
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Premise Hypothesis Label
A person throwing a yellow ball in the air. The ball sails through the air. Entailment
A person throwing a yellow ball in the air. The person throws a square. Contradiction
A person throwing a yellow ball in the air. The ball is heavy. Neutral

Table 1: Three NLI examples from SNLI. Relations between a Premise and a Hypothesis: Entailment, Contradiction, and Neutral

(irrelevant).

ure 1, from top to bottom are: (A) The sentence en-
coding layer (Figure 1a); (B) The sentence matching
layer (Figure 1b). In the sentence encoding layer,
we introduce an attention memory neural network
(AMNN), which has a variable sized encoding mem-
ory and naturally supports semantic compositionali-
ty. The encoding memory evolves over time, whose
size can be altered depending on the length of in-
put sequences. In the sentence matching layer, we
directly model the relation between two sentences
to extract relations between premise and hypothesis,
and dont generate sentence representations. In addi-
tion, we introduce the Sparsemax (Yin and Schutze,
2015) , a new activation function similar to the tra-
ditional Softmax, but is able to output sparse prob-
ability distributions; then, we present a new smooth
and convex loss function, Sparsemax loss function,
which is the Sparsemax analogue of the logistic loss.
We will explain the two layers in detail in the follow-
ing subsection.

Figure 1: High-level architectures of attention memory neural

networks. (a) The sentence encoding layer: Individual sentence

modeling via AMNN. (b) The sentence matching layer: Sen-

tence pair modeling, after which a Sparsemax layer is applied

for output.

2 Proposed Approach

In our model, we adopt a two-step strategy to clas-
sify the relation between two sentences. Concretely,

our model comprises two parts:

• The sentence encoding layer (Figure 1a). This
part is mainly a sentence semantic encoder,
aiming to capture general semantics of sen-
tences.

• The sentence matching layer (Figure 1b). This
part mainly introduces how vector representa-
tions are combined to capture the relation be-
tween the premise and hypothesis for classifi-
cation.

2.1 The sentence encoding layer: AMNN

In this layer, we introduce an attention memory neu-
ral network (AMNN), which implements an atten-
tion controller and a variable sized encoding mem-
ory, and naturally supports semantic compositional-
ity. AMNN has four main components: Input, Out-
put and Attention memory modules, and an encod-
ing memory. We then examine each module in detail
and give intuitions about its formulations.

Suppose we are given an set {Xi, Y i}Ni=1, where
the input Xi is a sequence wi

1, w
i
2, ..., w

i
Ti

of token-
s, and Y i can be an output sequence. The encoding
memory M ∈ Sd×l has a variable number of slot-
s, where d is the embedding dimension and l is the
length of the input sequence. Each memory slot vec-
tormt ∈ Sd corresponds to the vector representation
of wt. In particular, the memory is initialized with
the raw embedding vector at time t=0. As Attention
memory module reads more input content in time,
the initial memory evolves over time and refines the
encoded sequence.

Input module reads an embedding vector. Atten-
tion memory module looks for the slots related to
the input by computing semantic similarity between
each memory slot and the hidden state. We calculate
the similarity by the dot product and transform the
similarity scores to the fuzzy key vector by normal-
izing with Softmax function. Since our key vector is
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fuzzy, the slot to be composed is retrieved by taking
weighted sum of the all slots. In this process, our
memory is analogous to the soft attention mechanis-
m. We compose the retrieved slot with the current
hidden state and map the resulting vector to the en-
coder output space. Finally, we write the new repre-
sentation to the memory location pointed by the key
vector.

In our recurrent network, we use a gated recurrent
network (Cho et al., 2014a; Chung et al., 2014). We
also explored the more complex LSTM (Hochreit-
er and Schmidhuber, 1997) but it performed simi-
larly and is more computationally expensive. Both
work much better than the standard tanh RNN and
we postulate that the main strength comes from
having gates that allow the model to suffer less
from the vanishing gradient problem (Hochreiter
and Schmidhuber, 1997).

Concretely, let vl ∈ Rl and vd ∈ Rd be vectors,
and given a input function fGRU

input , a output function
fGRU

output, and the key vector output at, the output state
ht and the encoding memory Mt in time step t as

ot = fGRU
input(xt) (1)

at = Softmax(oT
t Mt−1) (2)

mt = aT
t Mt−1 (3)

ht = fGRU
output(ot,mt) (4)

Mt = Mt−1(1− (at ⊗ vd)T )
+(ht ⊗ vl)(at ⊗ vd)T (5)

where the input function fGRU
input and the output

function fGRU
output are neural networks, also are the

training parameters in the model. We abbreviate the
above computation with Mt = GRU(xt,Mt−1). E-
quation (1) is a matrix of ones, ⊗ denotes the outer
product which duplicates its left vector l or d times
to form a matrix. The function fGRU

input sequentially
maps the word embeddings to the internal space of
the memory wt−1. Then Equation (2),(3),(4),and (5)
retrieves a memory slotmt that is semantically asso-
ciated with the current input word wt, and combines
the slot mt with the input wt, and then transforms

the composition vector to the encoding memory and
rewrites the resulting new representation into the s-
lot location of the memory space. The slot location
(ranging from 1 to d) is defined by a key vector at

which the Input module emits by attending over the
memory slots. In GRU (xt, Mt−1), the slot that was
retrieved is erased and then the new representation is
located. Attention memory module performs this it-
erative process until all words in the input sequence
is read, and performs the input and output opera-
tions in every time step. The encoding memories
{M}Tt=1 and output states {h}Tt=1 are further used
for the tasks.

2.2 The sentence matching layer

Combining sentences encoding: In this part, we
introduce how vector representations of individual
sentences are combined to capture the relation be-
tween the premise and hypothesis. Three matching
methods were applied to extract relations.

• Concatenation of the two representations

• Element-wise product

• Element-wise difference

This matching architecture was first used by (Mou
et al., 2015) The first matching method follows the
most standard procedure of the Siamese architec-
tures, while the latter two are certain measures of
similarity or closeness. This matching process is fur-
ther concatenated (Figure 1b), given by

Vc = [(VpVh;Vp − Vh;Vp � Vh] (6)

where Vp and Vh are the sentence vectors of the
premise and hypothesis, respectively; � denotes
element-wise product; semicolons refer to column
vector concatenation. Vc is the generated matching
vector of the matching layer.

We would like to point out that, with subsequen-
t linear transformation, element-wise difference is a
special case of concatenation. If we assume the sub-
sequent transformation takes the form ofW [VpVh]T ,
where W=[W1W2] is the weights for concatenated
sentence representations, then element-wise differ-
ence can be viewed as such that W0(Vp − Vh) W0

20



is the weights corresponding to element-wise differ-
ence). Thus, our third heuristic can be absorbed in-
to the first one in terms of model capacity. How-
ever, as will be shown in the experiment, explic-
itly specifying this heuristic significantly improves
the performance, indicating that optimization dif-
fers, despite the same model capacity. Moreover,
word embedding studies show that linear offset of
vectors can capture relationships between two words
(Mikolov et al., 2013b), but it has not been exploit-
ed in sentence-pair relation recognition. Although
element-wise distance is used to detect paraphrase in
(He et al., 2015), it mainly reflects similarity infor-
mation. Our study verifies that vector offset is useful
in capturing generic sentence relationships, akin to
the word analogy task.
Sparsemax Transformation: In this part, we in-
troduce the Sparsemax transformation, which has
similar properties to the traditional Softmax, but
is able to output sparse probability distribution-
s. This transformation was first used by Andre
(Martins and Astudillo, 2016). Let 4K−1 :=
p ∈ RK |1T p = 1, p ≥ 0 be the (K-1)-dimensional
simplex. We are interested in functions that map
vectors in RK to probability distributions in4K−1.
Such functions are useful for converting a vector of
real weights (e.g., label scores) to a probability dis-
tribution (e.g. posterior probabilities of labels). The
Sparsemax function, defined componentwise as:

Sparsemax(z) := argmax
p∈4K−1

‖p− z‖2 (7)

Sparsemax has the distinctive feature that it can re-
turn sparse posterior distributions, that is, it may as-
sign exactly zero probability to some of its output
variables. This property makes it appealing to be
used as a filter for large output spaces, to predict
multiple labels, or as a component to identify which
of a group of variables are potentially relevant for a
decision, making the model more interpretable. Cru-
cially, this is done while preserving most of the at-
tractive properties of Softmax: we show that Sparse-
max is also simple to evaluate, it is even cheaper to
differentiate, and that it can be turned into a convex
loss function.

We present the Sparsemax loss, a new loss func-
tion that is the Sparsemax analogue of logistic re-
gression. We show that it is convex, everywhere d-

ifferentiable, and can be regarded as a multi-class
generalization of the Huber classification loss, an
important tool in robust statistics (Zhang and Tong,
2004). We apply the Sparsemax loss to train multi-
label linear classifiers. Finally, we use a Sparsemax
layer over the output of a non-linear projection of
the generated matching vector for classification.

3 Experiments

3.1 Dataset

To evaluate the performance of our model, we
conducted our experiments on Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015). The dataset, which consists of
549,367/9,842/9,824 premise-hypothesis pairs for
train/dev/test sets and target label indicating their re-
lation. Each pair consists of a premise and a hy-
pothesis, manually labeled with one the labels EN-
TAILMENT, CONTRADICTION, or NEUTRAL.
We used the provided training, development, and
test splits.

3.2 Hyper-Parameter Settings

In this section, we provide details about training the
neural network. The model is implemented using
open-source framework the TensorFlow (Abadi et
al., 2015). The training objective of our model is
cross-entropy loss, and we use mini-batch stochastic
gradient descent (SGD) with the Rmsprop (Hinton,
2012) for optimization. We set the batch size to 128,
the initial learning rate to 3e-4 and l2 regularizer
strength to 3e-5, and train each model for 60 epochs,
and fix dropout rate at 0.3 for all dropout layers. In
our neural layers, we used pretrained 300D Glove
840B vectors (Pennington et al., 2014) to initialize
the word embedding. Out-of-vocabulary words in
the training set are randomly initialized by sampling
values uniformly from (0.02, 0.02). All of these
embedding are not updated during training. Each
hyper-parameter setting was run on a single machine
with 10 asynchronous gradient-update threads, us-
ing Adagrad (Duchi et al., 2011) for optimization.

3.3 Results and Qualitative Analysis

Table 1 compares the results of our models with the
previous art-of-the-state baseline results. We com-
pare our models against several baselines, including
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Method Train acc. (%) Test acc. (%) Params.
Previous non-neural network results

Lexicalized Classifier(Bowman et al., 2015) 99.7 78.2 -
Previous neural network results

LSTM LSTM RNN encoders(Bowman et al., 2016) 83.9 80.6 3.0M
Tree-based CNN encoders (Mou et al., 2015) 83.3 82.1 3.5M
SPINN-NP encoders (Bowman et al., 2016) 89.2 83.2 3.7M

LSTM with attention (Rocktaschel et al., 2016) 85.3 83.5 252K
mLSTM (Wang and Jiang, 2015) 92.0 86.1 1.9M

LSTMN with deep attention fusion (Cheng et al., 2016) 88.5 86.3 3.4M
Decomposable attention model (Parikh et al., 2016) 90.5 86.8 582K

Our results
AMNs-G (AMNN with GRU) 89.1 87.4 3.5M
AMNs-L (AMNN with LSTM) 89.3 87.0 3.2M

Table 2: Train/test accuracies on the SNLI dataset and the approximate number of trained parameters (excluding embeddings) for

each approach. “-G“ and “-L“ denote GRU and LSTM, resp.

the strongest published non-neural network-based
result from Bowman et al. (2015) and previous neu-
ral network models built around several types of sen-
tence encoders. Here AMNs-G, AMNs-L denote
the neural networks of AMNN GRU RNN and LST-
M RNN, respectively. When we experimented with
the AMNN model instead of some previous model-
s, Tree-based CNN by (Mou et al., 2015), SPINN-
NP by Bowman et al. 2016, LSTM with attention
by Rocktaschel et al. 2016, as initial sentence rep-
resentations of the premise and the hypothesis. As
seen, both AMNs-G and AMNs-L further slightly
improved the result. Our models are able to outper-
form the previous state-of-the-art in terms of the ac-
curacy at test time, by approximately 0.6%.

4 Related Work

Language inference or entailment recognition can be
viewed as a task of sentence pair modeling. Most
neural networks in this field involve a sentence-level
model, followed by one or a few matching modules.
Our method is motivated by the central role played
by sentence-level modeling (Yin and Schutze, 2015;
Mou et al., 2016; Wan et al., 2015; Parikh et al.,
2016; YangLiu et al., 2016; Rocktaschel et al.,
2016) and previous approaches to semantic encoder
(Graves et al., 2014; Weston et al., 2015; Sukhbaatar
et al., 2015; Kumar et al., 2016; Bahdanau et al.,
2015). (Yin and Schutze, 2015) and (Mou et al.,
2016) apply convolutional neural networks (CNNs)
as the individual sentence model, where a set of fea-
ture detectors over successive words are designed to

extract local features. (Wan et al., 2015) and (Yan-
gLiu et al., 2016) build sentence pair models upon
recurrent neural networks (RNNs) to iteratively in-
tegrate information along a sentence.

The neural counterpart to sentence similarity
modeling, attention and external memory, which are
the key part of our approach, was originally pro-
posed and has been predominantly used to attemp-
t to extend deep neural networks with an external
memory (NTM) (Graves et al., 2014). NTM im-
plements a centralized controller and a fixed-sized
random access memory. The controller uses atten-
tion mechanisms to access the memory. The work
of (Sukhbaatar et al., 2015) combines the soft atten-
tion with Memory Networks (MemNNs) (Graves et
al., 2014). Although MemNNs are designed with
non-writable memories, it constructed layered mem-
ory representations and showed promising results on
both artificial and real question answering tasks. An-
other variation of MemNNs is Dynamic Memory
Network (DMN) (Kumar et al., 2016) which is e-
quipped with an episodic memory and seems to be
flexible in different settings.

In contrast, our use of external memory is based
on variable sized semantic encoder and our method
use the attention mechanism to access the external
memory. The size of the memory can be altered
depending on the input length, i.e., we use a larger
memory for long sequences and a smaller memory
for short sequences. Our models are suitable for N-
LI and can be trained easily by any gradient descent
optimizer.
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5 Conclusion and future work

In this paper, we proposed attention memory net-
works (AMNs) to solve the natural language infer-
ence (NLI) problem. Firstly, we present the atten-
tion memory neural network (AMNN) that uses at-
tention mechanism and has a variable sized seman-
tic memory. AMNN captures sentence-level seman-
tics; then we directly model the relation with com-
bining two sentence vectors to aggregate informa-
tion between premise and hypothesis. Finally, we
introduce the Sparsemax, a new activation function
similar to the traditional Softmax, but is able to out-
put sparse probability distributions. We use the S-
parsemax layer over the generated matching vector
for output. The attention memory networks (AMN-
s) over the premise provides further improvements
to the predictive abilities of the system, resulting in
a new state-of-the-art accuracy for natural language
inference on the Stanford Natural Language Infer-
ence corpus.

Our model can be easily adapted to other
sentence-matching models. There are several di-
rections for our future work: (1) Employ this ar-
chitecture on other sentence matching tasks such
as Text Summarization, Paraphrase Text Similarity
and Question Answer etc. (2) Try more heuristics
matching methods to make full use of the individual
sentence vectors. (3) Extend AMNN to produce en-
coding memory and representation vector of entire
documents.
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Abstract

In Rhetorical Structure Theory, discourse
units participate in asymmetric relationships,
with one element acting as the nucleus and the
other as the satellite. In the resulting tree-like
nuclearity structure, the importance of each
discourse unit can be measured by the num-
ber of relations in which it acts as the nu-
cleus or as the satellite. Existing approaches
to automatically parsing such structures suffer
from two problems: they employ local infer-
ence techniques that do not capture document-
level structural regularities, and they rely on
annotated training data, which is expensive
to obtain at the discourse level. We investi-
gate the SampleRank structure learning algo-
rithm as a potential solution to both problems.
SampleRank allows us to incorporate arbitrary
document-level features in a global stochastic
inference algorithm. Furthermore, it enables
the training of a joint model of discourse struc-
ture and summarization, which can be learned
from document-level summaries alone, with-
out discourse-level supervision. We obtain
mixed results in the fully supervised case, and
negative results for the joint model of dis-
course structure and summarization.

1 Introduction

Rhetorical structure theory (RST) is a hierarchi-
cal model of document-level organization, in which
segments of text are linked in binary or multi-way
discourse relations (Mann and Thompson, 1988).
Many RST relations are asymmetric, containing a
nucleus and a satellite. An example is shown in Fig-
ure 1, with unit 1B as the nucleus of its relationship

	

EVIDENCE

R

NON-VOLITIONAL CAUSE

1A 1B

1C

[The more people you love,]1A [the weaker you
are.]1B [You’ll do things for them that you know you

shouldn’t do.]1C

Figure 1: An example Rhetorical Structure Theory parse of a

small segment of text.

with 1A, and then the combined unit 1A:B at the
nucleus of its relationship with 1C. In any given dis-
course relation, the nucleus is more likely to relevant
to a summary of the document (Marcu, 1999c), and
its sentiment is more likely to be relevant to the over-
all document-level polarity (Heerschop et al., 2011;
Bhatia et al., 2015). Thus, recovering this nuclear-
ity structure is a key task for discourse parsing, with
important practical applications.

All known RST discourse parsers take one of two
approximations, which are well known in structure
prediction. In dynamic programming approaches to
discourse parsing, the feature space is locally re-
stricted, allowing only features of discourse units
that are sequentially adjacent (Joty et al., 2015), or
adjacent in the discourse parse (Yoshida et al., 2014;
Li et al., 2014). This makes exact inference pos-
sible, but at the cost of ignoring aspects of doc-
ument structure that may be relevant for identify-
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ing the correct parse. For example, we may pre-
fer balanced nuclearity structures, or we may prefer
to avoid left-branching structures, but these proper-
ties cannot be captured with local features. Alter-
natively, transition-based methods construct the dis-
course parse through a series of local decisions, typ-
ically driven by a classifier (Marcu, 1999b; Sagae,
2009; Ji and Eisenstein, 2014). While the classifier
is free to examine any aspect of the document or the
existing partial parse, the accuracy of such methods
may be limited by search errors.

A second limitation of existing discourse parsers
relates to the amount of available training data.
Because discourse is a high-level linguistic phe-
nomenon, relatively large amounts of text must be
annotated to produce each training instance. In RST,
the smallest possible components of each discourse
relation are elementary discourse units (EDUs),
which correspond roughly to clauses. A relatively
long news article might feature only a few dozen
discourse relations, yet it still requires considerable
time for the annotator to read and understand. This
suggests that it will be inherently difficult to train
accurate discourse parsers using standard supervised
learning techniques.

This paper proposes to solve both problems using
SampleRank, a structure learning algorithm (Wick
et al., 2011). SampleRank uses stochastic search to
explore the space of possible outputs, updating its
model after each sample. It imposes no limitations
on the feature set; given an appropriate sampling dis-
tribution, it is capable of exploring the entire space
of output configurations (in the limit).

Furthermore, SampleRank can be trained using
indirect supervision, which provides a potential so-
lution to the problem of limited training data for
discourse parsing. Because discourse nuclearity
structures are closely linked to other document-
labeling tasks — such as summarization and senti-
ment analysis — it is in principle possible to use
labels from those tasks as a supervision signal for
discourse parsing itself. To do this, we link dis-
course structure and summarization using a con-
straint proposed by Hirao et al. (2013). SampleRank
then explores the joint space of extractive summaries
and discourse parses, scoring the summaries against
automatically-obtained reference summaries, while
simultaneously learning to produce discourse parses

that are compatible with high-scoring summaries.

At this stage, we have obtained only mixed em-
pirical results with the application of SampleRank
to RST discourse parsing: SampleRank offers im-
provements on one metric for RST parsing in the su-
pervised learning scenario, but it does not improve
over a summarization baseline in the indirect super-
vision scenario. Nonetheless, we hope the ideas pre-
sented here will inspire further research in stochastic
structure prediction for automated discourse struc-
ture analysis.

2 Discourse Parsing as Structure
Prediction

We first describe a supervised discourse parser that
uses SampleRank to escape the limitations of local
features and local structure prediction. Our parser
is designed to recover the nuclearity structure of a
document, e.g., the unlabeled edges in Figure 1.
The full discourse parsing task also requires pre-
dicting the nature of the relation between discourse
units, e.g., ELABORATION or CONDITION, but we
do not consider the relation prediction problem in
this work. We also do not consider the problem
of discourse segmentation, which involves splitting
the text into elementary discourse units. Prior work
shows that relatively simple classification-based ap-
proaches can achieve high accuracy on the discourse
segmentation task (Hernault et al., 2010; Xuan Bach
et al., 2012).

Let di ∈ D(xi) represent the nuclearity structure
for document i, where xi represents both the text of
the document and its segmentation into elementary
discourse units. The set of possible nuclearity struc-
tures D(xi) includes trees in which adjacent dis-
course units are related by either mononuclear (sub-
ordinating) or multinuclear (coordinating) discourse
relations.1 Each relation instantiates a larger dis-
course unit, which may then be related to its neigh-
bors, until the entire document is covered by a con-
nected nuclearity structure. Danlos (2008) offers a
formal comparison of the representational capacity
of RST and related discourse models.

1All relations shown in Figure 1 are mononuclear. An ex-
ample of a multinuclear discourse relation is LIST.

26



We propose a log-linear probability model over
discourse structures,

P (d | x) ∝ exp
(
θ>f(d, x)

)
, (1)

where f(d, x) represents a vector of features and θ
represents a vector of weights. As noted above, prior
work has largely focused on two restrictions to this
model: either constraining the feature function f(·)
to consider only local phenomena, or using a local,
transition-based approach to incrementally construct
the discourse nuclearity structure.

Instead, we use stochastic search to identify the
top-scoring discourse structure for any document.
This enables the use of arbitrary features, while
avoiding making premature commitments to lo-
cal discourse structures. The SampleRank algo-
rithm (Wick et al., 2011; Zhang et al., 2014) enables
us to learn the weight vector θ in the context of this
stochastic inference algorithm. To use SampleRank,
we must define three things:

• a feature function f(·);

• a sampling distribution q(·);

• a scoring function ω(·).

At each step in the algorithm, we sample a discourse
structure d′ ∼ q(d), where d is the previous dis-
course structure. This sample is then stochastically
accepted or rejected, according to the Metropolis-
Hastings algorithm: if the sample d′ achieves higher
likelihood `(d′) than the previous sample `(d), then
it is accepted; if not, the sample may still be ac-
cepted with probability `(d′)

`(d) . When the probability
P (d | x) and scoring function ω(d) disagree, an up-
date is made to θ to try to align the probability with
the scoring metric. For more on the details of the
algorithm, see the original paper (Wick et al., 2011).

2.1 Features

We employ the following features for every internal
node (discourse unit) of an RST tree:

Lexical Features These features capture the first
word and last word of both the left and right
EDU of internal node. We also add lexical fea-
tures combined with nuclearity of the EDU.

Cluster Features These features include the Brown
et al. (1992) cluster prefix for last and first word
of both left and right EDU of internal node.

Syntactic Features These set of features employ
POS tags for last and first word of both left and
right EDU of internal node.

Sentence-Paragraph Features We also add two
features if left and right EDU are in same sen-
tence and if they are in same paragraph.

Text Organizational Features Each sample con-
tains a complete nuclearity structure for the
document, and we can compute global features
of this structure. Specifically, we compute:
whether the full RST tree is left sided, right
sided or fully balanced; the sequential position
of the overall root nucleus EDU in the docu-
ment.

2.2 Sampling

The SampleRank algorithm proceeds by making a
series of local changes to a complete discourse struc-
ture. These changes must preserve the validity of the
structure (so that it is impossible to transition from
a valid RST nuclearity structure to an invalid struc-
ture); they must also be ergodic, meaning that they
enable a complete exploration of the space of valid
RST trees for a given document.

To facilitate stochastic exploration of the space
of discourse parses, we convert the RST nuclearity
structure to a representation proposed by Hirao et
al. (2013), called dependency discourse trees (DEP-
DT). This representation is a spanning tree over the
elementary discourse units (EDUs) of a text. The
relationship between RST nuclearity structures and
dependency discourse trees is analogous to the rela-
tionship in syntax between context-free constituency
structures and dependency grammar: just as syntac-
tic constituents have a head element, each compos-
ite discourse unit has a most central elementary dis-
course unit. However, due to the more constrained
nature of RST, it is possible to uniquely identify the
original RST nuclearity structure from a DEP-DT.

The discourse proposal distribution qdisc gov-
erns the moves that chooses the next sample dis-
course tree from the current discourse tree. In RST
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parse tree, a set of internal nodes represent rela-
tions between adjacent discourse units. Our sam-
pler chooses any internal node with equal probabil-
ity, and performs one of three possible alterations to
the subtree defined by the internal node: edge polar-
ity change, left rotate, and right rotate.

2.2.1 Edge polarity change
This moves changes the “polarity” of the chosen

internal node. There are three possible polarities:
N − N (indicating a multinuclear relation), N − S
(indicating that the leftmost element is the nucleus),
and S −N (indicating that the rightmost element is
the nucleus). Non-binary multinuclear relations are
binarized. As an example, consider switching the
polarity of the root node from N − S to S −N :

2.2.2 Tree Rotations
A rotation is an operation that changes one binary

tree into another. In a tree of n leaf nodes, there are
n − 1 possible rotations: one for each non-root in-
ternal node. The rotation corresponding to a node
changes the structure of the tree near the node, but
leaves the structure intact elsewhere. A rotation op-
eration will keep the order of the leaf nodes intact,
but it will change the depth for some nodes.

As shown in Figure 2, a right rotation operation
on any internal node (Q) will consist of following
operations

• Take the left child (P ) of the chosen internal
node (Q) and cut off its right subtree (B).

• Move it (P ) to the place of the chosen internal
node (Q) and attach that as its right child.

• Attach the removed subtree (B) from step 1 as
the left child of the original chosen node (Q).

The left rotate is exactly the opposite of the above
operation and can be described as following on in-
ternal node P :

• Take the right child (Q) of the chosen internal
node (P ) and cut off its right subtree (B).

• Move it (Q) to the place of the chosen internal
node (P ) and attach that as its left child.

• Attach the removed subtree (B) from step 1 as
the right child of the original chosen node (P ).

Figure 2: Left and right tree rotation. (Image

Tree rotation.png from Ramasamy at the English

Language Wikipedia.)

To show that this sampler is ergodic, consider that
any arbitrary n-node binary search tree can be trans-
formed into any other arbitrary n-node binary search
tree using O(n) rotations. We can convert any binary
search tree with n nodes into a right-branching chain
of length n using at most O(n) right rotation oper-
ations. If a node in the tree has a left subtree then
we perform a right rotation on that tree node. There
can be O(n) such nodes, so we need at most n right
rotations. By using similar argument we can prove
that a right-branching chain of length n can be con-
verted into any binary search tree with n nodes using
as most n left rotations. Combining these two trans-
formations, it is possible to convert any arbitrary n-
node binary search tree into any other arbitrary n-
node binary search tree, using O(n) rotations.

2.3 Objective function
RST trees are scored in terms of F1 on three prop-
erties (Abney et al., 1991; Marcu, 2000): span (do
the subtrees in the response match the subtrees in
the reference?), nuclearity (does each subtree have
the same nucleus as in identical subtree in the refer-
ence?), and relation (is each discourse relation gov-
erning each span correctly identified?). These met-
rics form a cascade: every error on the span metric
propagates to the nuclearity metric, and every error
on the nuclearity metric propagates to the relation
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metric. The relation metric is not relevant for this
research, as we do not attempt to predict discourse
relations. Therefore, we define the objective func-
tion as,

ω(d) = F1span(d, dgold) + F1nuclearity(d, dgold).
(2)

This definition carries the usual advantage of Sam-
pleRank training, which is to optimize the de-
sired objective, rather than a proxy such as log-
likelihood.

3 Summaries as Supervision

The previous section describes how SampleRank
can enable the training of an RST discourse parser
with arbitrary features and (approximate) global in-
ference. A further advantage of SampleRank is that
training can directly target the F1 objective, rather
than a log-likelihood or max-margin objective that
may relate only tangentially to the true scoring func-
tion.

However, a second challenge for discourse pars-
ing is the expense of obtaining labeled training
data. In syntactic parsing, each sentence con-
tains many syntactic dependencies; in contrast,
in discourse parsing, each elementary discourse
unit corresponds to only a single discourse depen-
dency. This means that annotators produce an
order-of-magnitude fewer discourse annotations for
a given amount of text, making the creation of large
discourse-annotated corpora difficult. The RST
Treebank is the largest known dataset for discourse
parsing, but it contains only a few hundred docu-
ments.

Prior work has frequently noted the connection
between discourse nuclearity structure and summa-
rization: for example, Marcu (1999c) shows that
the nuclearity of a segment predicts its overall im-
portance in the discourse, and Hirao et al. (2013)
show that RST nuclearity trees can be exploited
for single-document summarization in a constraint-
based optimization framework. Summarization an-
notations are considerably easier to obtain than dis-
course parses, since they are often available “for
free”, in the form of bullet-point summaries of news
articles (Marcu, 1999a; Svore et al., 2007).

We propose to exploit these annotations to train a
discourse parser. We scrape a corpus of newspaper

articles and summaries from the CNN website. We
then introduce the summary s as an additional vari-
able, while using the discourse parse d to constrain
the space of possible summaries: specifically, the el-
ements of the text that align with the summary must
be close to the root of the RST tree. By training a
model to produce a good summary, we simultane-
ously train a discourse parser to produce nuclearity
structures that are compatible with the ground truth
summaries. In this way, a discourse parser can be
trained by indirect supervision.

Again, this model can be defined in a log-linear
framework:

P (s | x) =
∑

d∈D(x)

P (s, d | x) (3)

P (s, d | x) = exp(θ>f(d, x) + µ>g(s, d, x))
× δ(s ∈ C(d, x)), (4)

where s indicates a summary, C(d, x) indicates the
set of summaries that are compatible with discourse
parse d on text x, and δ(s ∈ C(d, x)) is an indicator
function,

δ(s ∈ C(d, x)) =

{
1, s ∈ C(d, x)
0, s /∈ C(d, x).

(5)

The vector g(·) indicates a vector of features de-
scribing the summary, discourse parse, and text; µ
indicates a vector of weights on these features; and
θ and f(·) are weights and features as in Equation 1.

We use a slightly modified version of SampleR-
ank to learn in this setting. To do so, we first define
the constraints, features, and scoring function. We
then present our adaptation of SampleRank to this
form of indirect supervision.

3.1 Summary Constraints

Hirao et al. (2013) propose to relate nuclearity to
summarization, by constraining the set of summaries
that are compatible with any discourse parse. Their
method is based on converting nuclearity structures
to a dependency discourse tree (DEP-DT), as de-
scribed in § 2.2. Given this dependency discourse
structure, we can express the following constraint on
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permissible summaries:

N∑
i=1

`isi ≤L (6)

∀i : sparent(i) ≥si (7)

where N is the number of EDUs in the document;
s is an N -dimensional binary vector that represents
the summary, i.e. si = 1 indicates that the ith
EDU is included in the summary; `i is the number
of words of the ith EDU; and L is the maximum
length of the summary in words. Constraint (6) en-
sures that the entire summary contains fewer than L
words, and constraint (7) captures the connection to
the discourse structure, ensuring that the summary
is a rooted subtree of the dependency discourse tree.
Thus, the elementary discourse unit i can be present
in the summary only if all of its ancestors in the
DEP-DT are also present.

Hirao et al. (2013) the performance of constraint-
based summarization on the RST treebank, which
includes paired summaries and discourse structures
for 30 documents. They find that constraint-based
summarization yields better ROUGE scores than two
extractive baselines: a maximum-coverage summa-
rizer, and a “LEAD” baseline of simply selecting the
first few sentences. However, most of these gains
are obtained using gold summaries. The improve-
ments offered by automatically produced summaries
are much more modest; for ROUGE-2, they do not
rise to the level of statistical significance. Our ap-
proach is motivated by the idea that using the sum-
marization task to train discourse parser may yield
discourse parses that are better, particularly for the
downstream task of summarization. To train our sys-
tem, we gather a much larger dataset by scraping the
CNN news website, where each news article is ac-
companied by a bullet point summary. This data is
described in more detail in § 4.2.

3.2 Features
The feature vector g(s, d, x) includes features of the
summary. We add the following simple summary
features:

Depth-weighted term Frequency Many extractive
summarization algorithms are based in part on
term frequency, preferring sentences that cover

some of the most important elements in the
text (Mani and Maybury, 1999). We reward
EDUs for containing high-frequency words, in
proportion to their depth in the dependency dis-
course tree:

ψi =
N∑
i

si

∑V
j xi,j

∑N
i′ xi′,j

Depth(i)
, (8)

where si is an indicator of whether EDU i ap-
pears in the summary, V is the vocabulary size,
xi,j is the count of word j in EDU i, and∑N

i′ xi′,j counts the term frequency over the
entire document.

Summary EDU position Previous summarization
research shows that the position of each sen-
tence is an important factor in extractive sum-
marization. We employ three positioned-based
features: the minimum, maximum and average
position of all EDUs appearing in the summary.

Many more summarization features are considered
by Berg-Kirkpatrick et al. (2011), and these may be
incorporated in the model in future work.

3.3 Summary proposal distribution

To use SampleRank to train from indirect supervi-
sion, we must augment the sample state to the tuple
(s, d), where s is the summary and d is the discourse
structure. The proposal distribution must therefore
modify the summary as well as the discourse struc-
ture. Our proposal takes a stage-wise approach,
first sampling a discourse structure d ∼ qd(dold),
and then sampling a summary conditioned on the
discourse structure, s ∼ qs|d(d), such that s is
guaranteed to obey the constraints described above.
The discourse structure proposal is unchanged from
§ 2.2; the summary proposal is as follows:

• Initialize the summary frontier to a list contain-
ing one element, the root of the dependency
discourse tree.

• Repeat until the summary contains L tokens:

– Sample an EDU from the current sum-
mary frontier, with uniform probability
across the frontier.
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– Add the sampled EDU node text to the
summary, remove it from the frontier, and
add its DEP-DT children to the frontier
list.

The discourse structure sampler is unchanged and
is not conditioned on the summaries, so the sampler
is ergodic over the space of possible discourse struc-
tures for a given document. The summary sampler
can generate any summary that meets the constraints
for a given discourse structure, and is not condi-
tioned on its prior state. Thus, the overall sampler
is ergodic over the paired space of discourse struc-
tures and summaries that satisfy their constraints.

To compute the Hastings correction for the
Metropolis-Hastings acceptance probability, it is
necessary to compute the sampling probabilities.
The probability of sampling any summary is equal
to the product of probabilities of selecting each EDU
at each stage of the sampling procedure, which is in
turn based on the frontier size.

Algorithm 1 Sample Rank algorithm for learning
discourse parsing and extract summarization from
indirect supervision

1: for e = 1 to #epochs do
2: for i = 1 to N do
3: d

′ ∼ qd(· | xi, di)
4: s

′ ∼ qs|d(· | xi, d
′
)

5: y
′ ← {d′

, s
′}

6: y+ ← argmaxy∈{yi,y
′} ω(y)

7: y− ← argminy∈{yi,y
′} ω(y)

8: yi ← acceptOrReject(y
′
, yi;θt, ω, q)

9: Of ← f(xi, y
+)− f(xi, y

−)
10: ∆ω = ω(y+)− ω(y−)
11: if ∆ω 6= 0 and θ>t Of < ∆ω then
12: θt+1 ← update(Of,∆ω,θt)
13: t← t+ 1
14: end if
15: end for
16: end for

3.4 Scoring function

In this setting, we receive no supervision on the dis-
course structure, only on the summary s. Our scor-
ing function therefore can only quantify the sum-

mary quality, which we do using the ROUGE met-
ric (Lin, 2004).

For completeness, Algorithm 1 presents our spe-
cialization of the SampleRank algorithm to learning
joint discourse parsing and summarization from in-
direct summary-based supervision.

4 Evaluation

We evaluate the supervised model from § 2 on
the RST parsing task, and the indirectly-supervised
model § 3 on summarization.

4.1 Supervised evaluation
The supervised model is evaluated on supervised
task of discourse parsing on RST-DT dataset (Carl-
son et al., 2002). The RST Discourse Treebank
(RST-DT) consists of 385 documents, with 347 for
train and 38 for testing in the standard split. We only
focus on nuclearity and span prediction tasks. We
use the same F1 score on span and nuclearity as our
evaluation metrics defined in the section 2.3.

We compare our SampleRank approach with
several competitive parsers from the literature:
HILDA (Hernault et al., 2010), a bottom-up
classification-driven parser; DPLP (Ji and Eisen-
stein, 2014), a shift-reduce parser that uses represen-
tation learning; and a condition random field (CRF)
based parser with post-editing operations and a rich
array of features (Feng and Hirst, 2014). SampleR-
ank is competitive on the span metric, outperform-
ing all systems except for the CRF approach, which
employs rich linguistic features including syntax
and entity transitions. On the nuclearity metric,
the SampleRank-based parser does somewhat worse
than these prior efforts.

4.2 Indirect supervision
We evaluate our indirectly supervised model on the
task of summarization for CNN news document and
summaries, using the data. The data is obtained
by crawling the CNN news website for news arti-
cles and the summaries are obtained by the bullet
sections. We collected 2000 such news documents
and summaries. The CNN summaries are not neces-
sarily extractive, so for supervised training, we link
each summary bullet to a sentence in the original text
with the highest ROUGE score. (This link from sum-
mary bullets to sentences is necessary to compute
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Span F1 Nuclearity F1

HILDA (Hernault et al., 2010) 83.0 68.4
DPLP basic features (Ji and Eisenstein, 2014) 79.4 68.0
DPLP representation learning (Ji and Eisenstein, 2014) 82.1 71.1
CRF + post-editing (Feng and Hirst, 2014) 85.7 71.0
SampleRank (this work) 84.2 65.3

Table 1: Evaluation of RST discourse parsing

the TKP constraints.) The average summary length
in the CNN dataset is roughly 10% of the full docu-
ment length.

We use ROUGE-1 and ROUGE-2 scores, as de-
fined by Lin (2004), for scoring the summaries. § 4.2
presents the results, in comparison with a simple
“LEAD” baseline, which selects the first n sentences
of the document. The learning-based method was
not able to outperform LEAD, a negative result.

We also apply the Tree Knapsack Problem (TKP)
summarization algorithm (Hirao et al., 2013), which
incorporates Rhetorical Structure Theory by pro-
ducing summaries that obey the constraints elabo-
rated in § 3.1, using the RST parses produced by
supervised SampleRank training on the RST tree-
bank. Even this method is not able to produce
better scoring summaries than LEAD. Hirao et al.
(2013) obtained slight improvements on ROUGE-
1 over LEAD, using HILDA discourse parses on a
dataset of 30 single-document summaries in the RST
treebank. The CNN dataset may be less amenable to
discourse-driven summarization than the RST data,
or the difference may be explained HILDA’s supe-
rior performance on nuclearity metric.

5 Related Work

Early work on RST discourse parsing focused on
local classifiers (Marcu, 1999b; Hernault et al.,
2010), with more recent work exploring struc-
ture prediction techniques such as sequence label-
ing (Joty et al., 2015), chart parsing (Li et al.,
2014), and minimum spanning tree (Feng and Hirst,
2014). A parallel line of research has consid-
ered incremental discourse parsing techniques such
as shift-reduce (Sagae, 2009; Ji and Eisenstein,
2014). Muller et al. (2012) apply more advanced
search-based algorithms for transition-based dis-
course parsing in the framework of Segmented Dis-

course Representation Theory (SDRT). Our pro-
posed approach has the advantage of allowing arbi-
trary features, and avoiding local search errors; how-
ever, stochastic search is not guaranteed to fully ex-
plore the search space in any finite amount of time.

We are unaware of prior work on indirect super-
vision for discourse parsing from downstream tasks.
A somewhat related line of work has used explicitly
labeled discourse relations as a source of supervi-
sion for the classification of implicit discourse re-
lations. Marcu and Echihabi (2002) were the first
to explore this approach, working in the context of
RST. Sporleder and Lascarides (2008) suggest that
informational differences between explicit and im-
plicit discourse relations limit the possible efficacy
of this approach. More recent work has treated these
two relation types as separate domains, obtaining
good results by applying domain adaptation tech-
niques (Braud and Denis, 2014; Ji et al., 2015).

Recent work has applied a number of machine
learning techniques to summarization, with par-
ticularly relevant work focusing on syntactically-
motivated sentence compression (Berg-Kirkpatrick
et al., 2011). The combination of the proposed ap-
proach with abstractive summarization via sentence
compression might yield better results on summa-
rization metrics. Discourse structure has also been
linked to sentence compression (Sporleder and La-
pata, 2005), suggesting another intriguing direction
for future work. Other recent machine learning ap-
proaches have employed neural attentional mech-
anisms for sentence summarization (Rush et al.,
2015), but to our knowledge such structure-free dis-
criminatively trained approaches have not been ap-
plied on the document level.
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ROUGE-1 ROUGE-2
F score Recall F score Recall

LEAD 0.2818 0.2569 0.1154 0.1042
SampleRank, trained on CNN summaries (this work) 0.2317 0.2304 0.0858 0.0851

TKP+SampleRank trained on RST treebank 0.2731 0.2730 0.0967 0.0963

Table 2: Evaluation of joint summarization and discourse parsing algorithm

6 Discussion

This paper proposes a new structure learning ap-
proach for discourse parsing, based on the SampleR-
ank algorithm. This approach has the potential to
address two major problems with existing discourse
parsing algorithms: (1) use of local features or in-
cremental decoding algorithms, and (2) lack of suf-
ficient labeled data. We find some advantages in
the supervised setting, with good results on span
identification, but relatively poor results on nucle-
arity. It is possible that fine-tuning the training ob-
jective could better balance between these two met-
rics. We then showed how SampleRank can learn
a model that jointly parses the discourse nuclearity
structure and produces an extractive summary, using
only summary-document pairs as training data. Un-
fortunately the resulting summarizer fails to outper-
form a simple baseline. A natural next step would
be to design more expressive features for capturing
summarization quality, and to learn a joint model
from both labeled discourse parses and summaries.
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Abstract

We propose a multi-task learning objective
for training joint structured prediction mod-
els when no jointly annotated data is avail-
able. We use conditional random fields as the
joint predictive model and train their parame-
ters by optimizing the marginal likelihood of
all available annotations, with additional pos-
terior constraints on the distributions of the
latent variables imposed to enforce agreement.
Experiments on named entity recognition and
part-of-speech tagging show that the proposed
model outperforms independent task estima-
tion, and the posterior constraints provide a
useful mechanism for incorporating domain-
specific knowledge.

1 Overview

Researchers working in applied sciences like natural
language processing, bioinformatics, meteorology,
etc. are often interested in modeling various facets of
naturally occurring data, which are often inter-related.
While a world in which data is annotated jointly and
consistently is pleasant to imagine, in practice differ-
ent annotation guidelines exist and different data is
annotated in service of different practical goals.
This paper proposes a new technique, based on poste-
rior regularization, to learn a joint model over several
tasks from disjoint annotations. Single task learn-
ing which involves independent optimization rou-
tines over these disparate datasets can be effective if
enough data is available, but in low data scenarios, it
helps to incorporate inductive bias about the data and
the task. Multi-task learning based approaches (Caru-
ana, 1997) often incorporate this bias by exploiting

the relatedness between various facets/tasks such
that several disjointly annotated datasets for different
tasks can be used for joint optimization over differ-
ent tasks. However, most of the existing work on
multi-task learning focuses on the case when the the
tasks share both the input space and output space
(Obozinski et al., 2010; Jebara, 2011), which makes
approaches based upon parameter tying, feature se-
lection, kernel selection etc. suitable for these sce-
narios. Some examples of ‘common output space’
formulation of multi-task learning are binary classi-
fication and regression over multiple datasets with
common output space: [0,1] and R respectively for
classification and regression. Importantly, in this
work we focus on the case in which the tasks share
the input space but their output spaces are disjoint.
We approach this scenario by guiding the multi task
learning according to some external world knowledge
about the relationship between the output spaces of
different tasks.
To illustrate, consider the scenario, in which we want
to train a named entity recognizer (NER) and a part
of speech (PoS) tagger for a low resource language
which offers very small amount of disjoint training
data for each of these tasks. Typically, both these
tasks are treated as sequence labeling problems (Rat-
naparkhi and others, 1996; Tjong Kim Sang and
De Meulder, 2003), which are modeled by undirected
Markov networks like linear chain conditional ran-
dom fields (CRFs) (Lafferty et al., 2001). We focus
on jointly modeling these tasks with features that
pertain to the relationships between the tasks. Fur-
ther, we wish to guide the learning of joint models
by incorporating external knowledge about relation-

35



ship between the two tasks which is independent
of language and can be obtained by analyzing high
resource languages or from domain experts. For ex-
ample, we know that it is highly likely for a Part of
Speech to be Noun if the Named Entity is tagged
as Person, but it is highly unlikely for a word be-
ing tagged as a Named Entity if it is a Verb. In
this work, we propose to learn a joint CRF from
the disjoint datasets and influence the learning by
incorporating biases about the posterior distribution,
pertaining to the inter-relationship between the tasks.
Given multiple tasks modeled by CRFs with different
output/label space, which share structure and suffi-
cient statistics derivable from the observed data, we
perform multi-task learning by modelling the tasks by
a joint latent CRF, which is trained to maximize the
likelihood of the disjointly annotated heterogeneous
training data for different tasks. Then, we influence
the learning of the joint latent CRF by incorporating
constraints over the posterior distribution of the joint
CRF, which encode relationship between the tasks.
We present experimental results of our approach on
joint learning of PoS tagging and NER tagging in low
data scenario, and compare them with the single-task
approach and the unbiased/unregularized joint mod-
elling approaches. The encouraging results suggest
that our approach of biasing joint latent CRFs via
Posterior Regularization is a principled and effective
way of exploiting inter task relationships. In the de-
scription below, we describe our approach and experi-
ments with respect to linear-chain CRFs parametrized
by exponential families, but our approach is general
and can be applied to any set of tasks that are mod-
eled by arbitrary CRFs that share some structure.

2 Problem statement

We are given a collection of annotated datasets
D = D1, . . . ,DM for M tasks and each task
has its training set Dm of Tm input-output pairs
(xm,1,ym,1), . . . , (xm,Tm ,ym,Tm). Particularly, we
are interested in structured prediction tasks where
xj,k is a sequence and the output, yj,k is mod-
elled by a Conditional Random Field (Lafferty et
al., 2001) conditioned on global information deriv-
able from xj,k. Typically, the output space Ym of
each task for a sequence is very large and disjoint
i.e. Yj,i ∩ Yk,i = ∅ ∀j, k ∈ 1..M, k 6= j. For

example, the output space for a sequence x is a
set of all valid parse trees (Yparse,x) for the task
of parsing and for the task of NER based upon
a linear chain CRF, it is a chain of named entity
predictions(YNER,x). Also, our approach focuses on
the case when the datasets for the different tasks are
disjoint i.e. xj ∩ xk = ∅ ∀j, k ∈ 1..M, k 6= j. The
probability distribution characterized by a CRF for a
particular task can be expressed as:

p(ym,i|xm,i) =
1

Z(xm,i)

∏
c∈Cm,i

ψ(xm,i,ym,i,c)

with Cm,i = (xj,k,c,yj,k,c) set of cliques in a CRF,
ψ(xm,i,ym,i,c) is the potential for a clique c, and
Z in

∑
y∈Y

∏
c∈C ψ(x,yc) is the global normaliza-

tion factor. The potential is a function of the in-
put and the relevant output variables in the clique.
In our experiments, we work with the distribution
parametrized as an exponential family distribution:
ψ(xm,i,ym,i,c) = exp(θT f(xm,i,ym,i,c)), where
f(x,yc) is a vector of informative features that can
be derived from x, and θ is the parameter vector
characterizing the distribution, which is estimated
during the learning phase. Parameter estimation is
performed by maximizing the likelihood of the ob-
served labels given the training sequence. The deriva-
tive w.r.t. the parameter θk is:

Edata fk(xm,i, ym,i,c)− Emodel fk(xm,i, y′m,i,c)

Furthermore, we have a set of constraints S with
the individual constraints s(Yci,j ,Yci′,k), for tasks
j and k, defined over substructures(cliques) of the
structured output spaces for different tasks, which
exhibit some correlation between the tasks. For ex-
ample, in joint modelling of NER and parsing, there
can be constraints pertaining to correlations between
preterminals of the parses and the NE labels assigned
to the tokens in the sequence. In this work, we aim to
learn a joint probabilistic graphical model that repre-
sents p(y|x), where y ∈ ∏M

i=1 Yi over all the tasks
while respecting the constraint set, from the given
disjoint single task training data for each task.

max
θ

M∑
m=1

Tm∑
i=1

log pθ(ym,i|xm,i) s.t.

satisfy(s) = 1 ∀s ∈ S
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While not a required condition for our approach, in-
ference with our method becomes efficient if the
cliques over which the constraints are defined, share
structural similarities across the tasks.
Hence for NER and PoS, if x contains w words,
then the output space for NER and PoS tagging is
YNER,x = (TNER)w and YPoS,x = (TPoS)w. It is
important to note that TNER∩TPoS = ∅. Also, since
both the tasks are modeled as linear chain CRFs, for
a given sequence x, they share a similar clique struc-
ture, which makes the joint inference easier. The
constraint set S consists of several constraints that
exhibit the relationship between the two tasks. These
constraints can be formulated by domain experts or
can also be transferred from the large related do-
main corpora if the constraints are not sensitive to
the domains. For this pair of tasks, constraints can be
defined on all the cliques (node and edge based) with-
out requiring any changes in the inference algorithm.
However, even for two tasks with very different CRF
structures (For eg. constituency parsing and NER),
we can facilitate sharing of node based cliques at
preterminals of the parse trees and the nodes of linear
chain CRFs for NER. For simplicity of exposition,
further discussion will assume M = 2, and CRF for
each task is a first order linear chain CRF.

3 Unregularized Models

In this section, we’ll first consider a fully supervised
scenario, in which labels for both the tasks are avail-
able for each sequence x in the training data. After
that, we will discus latent joint CRF, which will be
used to model the actual scenario, in which we have
output labels from only one of the tasks for each
sequence x in the training data.

3.1 Fully supervised joint CRF

Full supervision requires that each input sequence x
is annotated for all tasks. Our motivating assumption
is that this is an ideal scenario, but not always avail-
able. Additionally, this model lays the foundation of
the latent joint model we discus in the next section.
The joint CRF is a simple modification of the single
task CRF. For linear chain CRF models associated
with the tagging tasks, we simply consider the ex-
panded tag-space Tjoint = Ttask1 × Ttask2. Now,
for a sequence x of length w, the size of the output

space is Yjoint = T wjoint and the CRF distribution is
parametrized as:

p(y|x) =
1

Z(x; θ)
×

w∑
t

exp(θT f(x, yjoint,t, yjoint,t−1, t))

× exp(θT f(x, yjoint,t, t))

where yjoint,t = (ytask1,t, ytask2,t). It should
be noted that for the joint model we have new
kind of transition and label features based
upon the task identities: f(x, yjoint,t, yjoint,t−1),
f(x, ytask1,t, ytask1,t−1), f(x, ytask2,t, ytask2,t−1),
f(x, yjoint,t), f(x, ytask1,t), f(x, ytask2,t). Hence
this model is much larger than the single task model
both in terms of output-space(Y) and the feature
space.
Exact inference for parameter estimation and finding
the best sequence can be performed by algorithms
similar to the ones used for the single linear chain
CRFs.

3.2 Joint Latent CRF
This model is very much similar to the model de-
scribed in the previous section, but, in this case we
work with the original data scenario i.e. several small
single task datasets output labels for only one of the
tasks provided. During parameter estimation, the
joint CRF model observes only partial output, so
marginalization over the latent output variables is
required. The objective function in this case is to
maximize the likelihood of the partial output, given
the input sequence x:

max
θ

2∑
m=1

Tm∑
i=1

log pθ(ym,i|xm,i) =

max
θ

2∑
m=1

Tm∑
i=1

log
ym−,i∑
k=1

pθ(yk,i|xm,i).

For the latent model, the gradient w.r.t. θk is: The
derivative w.r.t. the parameter θk is:

2∑
m−1

Tm∑
j=1

|x|∑
i=1

Ep(ym−,i|ym,i,xm,i) fk(xm,i, yi, yi−1)−

Ep(y′|xm,i) fk(xm,i, y
′
i, y
′
i−1)
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From the above equation, we notice that as far as in-
ference is considered, the only change in this model,
when compared to the completely supervised joint
model, is that inference now involves marginaliza-
tion over all the latent output labels. The inference
for computing the expectation quantities and the
marginal probabilities can still be done modifying
the junction tree algorithm used in the supervised
joint CRF accordingly. However, the objective now
is non convex and parameter estimation is done via a
discriminative EM procedure.
The advantage of this model is that now it allows us
to train a joint model over both the datasets with in-
formative features pertaining to both the tasks, which
was not possible with single task CRF models. It is
expected that this method will learn to incorporate
certain correlations between the two tasks just by the
virtue of looking at different training datasets and
learning features pertaining to both the output labels.
Moreover, this model also lays the basis for the model
discussed in the next section which regularizes the
posterior distribution of this latent model.

4 Constraint based regularization for
Multi Task Learning

In this section, we describe our method to influence
the parameter learning of the latent joint CRF de-
scribed in the last section, according to the constraints
pertaining to the relationship between the tasks that
we are interested in. The motivation behind this ap-
proach is that often, varying sources of information
about the tasks and we would like to expose our mod-
els to information beyond what is provided by the
annotated training data.
The constraints could be in the form of biases based
upon world knowledge that are provided by the do-
main experts, or they could determined empirically
by analysis of related domains which expose rela-
tionships among the relevant tasks. For example,
compatibility of part of speech tags and named entity
tags is largely invariant across several languages. In
scenarios, where the multiple tasks have non inter-
secting output spaces, these constraints can convey
information about the relation between the output
spaces. Now we discus our method to bias the joint
latent CRF for multitask learning and we will also
discus about the kinds of constraints and information

our method easily allows to incorporate.

4.1 Posterior Regularization
Posterior Regularization(Ganchev et al., 2010; Zhu
et al., 2014) is an effective technique to perform con-
straint based learning when the original model’s pa-
rameters are learned via Expectation Maximization.
(1998) showed that both M and E steps are maxi-
mization problems over a function that is dependent
on the model parameters and the distribution over
the latent variables respectively, and is also a lower
bound for the log-likelihood of the observed data.

L(θ) = Edata(log
∑
y

p(x, y))

≥ Edata(
∑
y

q(y|x)log pθ(x, y)
q(y|x) ) = F (q, θ)

where x is the observed variable and y is the hidden
variable. The standard EM procedure amounts to:

E : qt+1(y|x) = arg max
q
F (q, θt) =

arg min
q
KL(q(y|x) || pθt(y|x)) = pθt(y|x)

M : θt+1 = arg max
θ
F (qt+1, θ) =

arg max
θ

Edata(
∑
y

qt+1(y|x)logpθ(x, y))

Posterior Regularization refers to modifying the E-
step such that the q(y|x) distribution that is estimated
in the E-step also respects certain linear Expectation
based constraints belonging to the constraint set S.
The M-step is typically left unchanged. This has an
effect of regularizing the expectations of the hidden
variables. In the context of the joint latent CRF, the
hidden task output variables are the latent variables
and rest of the variables are observed. Formally, the
E-step can be described as:

arg min
q

KL(q(y | x) || pθ(y | x))

subject to

Eq(φ(x,y))− b ≤ ξ,
||ξ||β < ε,∑

y

q(y | x) = 1
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where φ(x,y) are constraint features that can be com-
puted from the input and the output, and b are respec-
tive expected values of the constraint features over
a corpus. This framework can handle constraints
based on the expected values of certain quantities
over training data, under the model’s distribution. ξ
is the slack parameter, which relaxes the necessity for
exactly matching the expectation of constraint fea-
tures under model with b. Assuming that a feasible
q(y) exists, this E-step optimization problem can be
solved by solving by using Lagrangian duality and
solving the dual problem. The solution of the dual
problem results in the following form of the q(y)
distribution:

q∗(y | x) =
pθ(y|x) exp(−λ∗Tφ(x,y))

Z(λ∗, θ)
(1)

where λ∗ is the solution of the dual problem and
Z(λ∗, θ) =

∑
y pθ(y|x) exp(−λ∗T .φ(x,x)), is the

normalization constant for q(Y).
The associated dual problem with parameter vector
λ is:

λ∗ = arg max
λ≥0
−bλ− log(Z(λ, θ))− ε||λ||β∗ (2)

where ||.||β∗ is the conjugate of norm ||.||β . In our ex-
periments, we set β =∞ such that β∗ = 1. Hence,
the dual optimization can be carried out by proxi-
mal gradient ascent with the following update for λk
pertaining to the kth constraint:

λi+1
k = Stε(λik + t(−bk − d log Z(λ, θ)

dλ
)) =

Stε(λik + t(−bk + Eq(φk(x,y))))

where t is the step size and Stε() is the soft threshold-
ing operator.
An important observation to be made here is that if
pθ is modeled by a CRF parametrized by an expo-
nential family distribution and the computation of
φ(x,y) decomposes according to the cliques of the
CRF representing ptheta then the approximating q
distribution has the form:

q(y|x) =
1

Z(x; θ, λ)

∏
c∈C

exp(θT f(x,yc)− λTφ(x,yc))

(3)

This form enables us to perform inference with
q(y | x) efficiently by using exactly same inference

routine as the one used for carrying out inference
with p(y | x). Therefore, in our experiments with
first-order linear-chain CRFs, we work with the
constraint features that can be computed locally
along the nodes and edges of the CRF.
For example, ‘φ = proportion of the label
(Person,Noun)’ can be computed incrementally
by using marginal probability of the label at each
node of the CRF, which is an artefact of the inference
algorithm in linear chain CRFs.
Similarly, ‘φ = proportion of the edge
(Person,Noun) → (Not-NE,VERB)’, also
can be computed fairly easily by using the marginal
probability of the edges of the CRF.
However, a constraint feature like ‘φ = proportion of
NE=Person, given PoS=Noun’ does not decom-
pose along the graph of a first order linear chain CRF
and cannot be computed incrementally along the
structure of the CRF. Therefore, incorporating this
type of constraint will make inference harder and we
don’t address this problem in this work, and assume
that the computation of the constraint features is
decomposable according to the structure of the joint
CRF. The EM procedure for the latent joint CRF
becomes:
E-step: Compute the optimal dual parameters(λ∗)
for the constraint features by optimizing Eqn 2.
Then, use λ∗ to compute qi+1(y|x) using Eqn 3
M-step: Compute the optimal CRF feature pa-
rameters θ by maximizing the likelihood of the
training data consisting of partially observed output,
conditioned on the input sequence:

θi+1 = arg max Edata(Eq(y|x) logpθ(y|x))

The above EM procedure can be interpreted as
block co-ordinate descent over the parameters of a
linear chain CRF that characterizes the distribution
q(y | x). While this perspective leads us to view
λ and θ as similar parameters, both of them are
subtly different. θ is responsible for matching
model expectation (Emodel(f)) of features with the
empirical expectation of the features (Edata(f)), λ
on the other hand is responsible for matching model
expectation of constraint features (Emodel(φ)), with
the external bias (b).
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5 Related Work

Posterior Regularization was proposed by (2010). It
was also expressed in a more general form and ex-
tended to Bayesian non parametric models by (Zhu
et al., 2014), who also show that the real expres-
sive power of PR lies in modelling external con-
straints based upon corpus statistics in addition to
the model parameters, which differentiates it from
regular Bayesian treatment of external knowledge
as parameter based priors. It is very closely related
to the Bayesian Measurements framework (Liang et
al., 2009) which is more abstract than Posterior Reg-
ularization, in which the constraint features φ are
measured with noise as b.

b = φ(x,y) + noiseφ

The noise log(p(b|φ,X,Y)) = −hφ(b− φ(X,Y))
with convex h, is modeled as a log concave noise so
that over all MAP objective is convex. In particular,
it is modeled as box noise (b ≤ Iφ(X,Y)+/−ε). Ac-
cording to this framework, not only the constraint
features, but also, fully annotated training data ex-
amples themselves are considered Bayesian measure-
ments.Assuming a Bayesian setting with a prior on
θ, the model distribution is:

p(θ,y,b|x, φ) = p(θ) p(y|x; θ) p(b|x,y, φ) (4)

(2009) approximate to the posterior of
p(Y, θ|X, φ,b) by mean field factorization
and further relaxing the problem to be able to
leverage duality for the solution. With their approx-
imation, they arrive at the objective of Posterior
Regularization. The key to their model and optimiza-
tion lies in the noise used to model the measurements
and also the variational approximation procedure to
optimize an approximate objective. In particular, box
noise is responsible for the constraints in their model
to be linear expectation based constraints. Other
log concave noise distributions offer the potential to
model other non-linear constraints as well.
There is a lot of work pertaining to semi-supervised
learning using external biases in the form of
either hard or soft constraints. Like Posterior
Regularization, Generalized expectation(Druck et al.,
2008) is able to incorporate soft constraints defined
over a whole distribution of labels by adding the

expectation based constraints to the objective(MLE)
of the problem. Although this is an appealing
method, it can be very expensive to run because the
gradient calculations depend on the cross product
of model feature space and model constraint space.
In fact, Posterior Regularization can be seen as
a variational approximation to the objective of
GE criterion (Ganchev et al., 2010). PR and GE
have been shown to be useful in incorporating
soft constraints for various tasks like bilingual
NER (Che et al., 2013), cross lingual projection
of coreference(Martins, 2015) etc. There has been
plenty of work to bias predictions/ learning of
structured prediction models in presence of hard
constraints, which incorporate discrete penalty
associated with label combinations relevant to the
constraint features. A key difference of these models
from Posterior Regularization is that instead of
working with expected counts of output labels, they
work with hard count assignments. The constraint
driven learning approach of (2007) adds a penalty
term to the conditional log probability of the output
that can be seen as adding cost deterministically
for violating the constraints. Their approach is
usually intractable practically and approximations
like beam search are used. Also, (2010) show that
dual decomposition methods can be very effective
for different related tasks with hard constraints based
upon the relatedness of the tasks. This method solves
the joint objective of the different tasks and forces
and agreement between predictions of different tasks
according to the hard constraints that inter-relate
their output spaces. This is an effective approach if
the relationship between the output spaces of the
two tasks is perfectly deterministic.However, this
approach only improves joint inference and isn’t
very effective at learning parameters of the model
w.r.t. the constraints. Another popular approach
for constraint based inference is using Integer
Linear Programming (Roth and Yih, 2005), but
this too doesn’t focus on guiding learning of joint
models using the constraints. Both the hard count
based approaches are unsuitable for modelling the
problem described in this paper, which aims at using
non-deterministic soft-constraints pertaining to the
relationship between the tasks to bias the learning of
the models.
Multi Task learning refers to a very broad array
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of problem scenarios and techniques(Caruana,
1997; Thrun and Pratt, 2012) which are motivated
by a common hypothesis: Modelling multiple
inter-related tasks enables us to work with a larger
amount of data and has the potential to transfer
statistical information across various tasks, domains
and datasets, such that generalization performance
of the predictive models improves for all of the
tasks. Most of approaches (Obozinski et al., 2010;
Jebara, 2011) assume that the multiple tasks have
the same input space(x ∈ Rd) and also share the
output space; eg. R for regression and 0,1 for
classification based tasks. These multi-task learning
techniques include sparse feature selection via
group l1 regularization(Obozinski et al., 2010),
feature transformation to jointly train over all the
tasks(Evgeniou and Pontil, 2004), kernel selection
(Jebara, 2011) etc. Crucially, in our work, we work
with multiple tasks that have different output spaces.
In fact, in our approach and experiments, the output
label spaces are completely disjoint. Hence, we try
to bias our probabilistic models by soft constraints
encoding the relationship between the output spaces
of different tasks.

6 Experiments

We performed experiments on jointly modelling two
tasks: 1) Named Entity Recognition(NER) and 2)
Part of Speech (PoS) tagging. For NER, we follow
the standard convention of ‘B-I-O tagging’ (Tjong
Kim Sang and De Meulder, 2003; Sha and Pereira,
2003) where ‘B’ and ‘I’ help identify segments of
named entities and ‘O’ identifies the words that are
not named entities. For PoS, we used the ‘Universal’
PoS tagset, which is largely invariant across several
languages (Petrov et al., 2011). The tagset for the
two tasks was:

NER: [O, B-PER, I-PER, B-ORG,
I-ORG, B-LOC, I-LOC, B-MISC, I-MISC]

POS: [VERB, NOUN, PRON, ADJ, ADV,
ADP, CONJ, DET, NUM, PRT, X, .]

Since, we wish to study the effect of the size of train-
ing data, we used the standard English ConLL dataset
(Tjong Kim Sang and De Meulder, 2003) for both
NER and PoS tagging models and artificially impov-
erished the data by randomly sampling disjoint task

Table 1: Sizes of the different training datasets.

DATA SET #NER INSTANCES #POS INSTANCES

BASE (1X) 219 223
BASE×2 (2X) 442 444
BASE×4 (4X) 886 873

Table 2: Constraints used for the experiments. UB and LB refer

to the upper and lower bounds on the expectations

φ(proportion) b(UB) b(LB)
(O,NOUN) 0.21 0.18
(I-PER,NOUN) 0.055 0.053
(I-ORG,ADJ) 0.046 0.44
(I-LOC,NOUN) 0.041 0.039
(I-MISC,NOUN) 0.016 0.013
(I-PER,NOUN)→ (I-PER,NOUN) 0.028 0.023
(I-ORG,NOUN)→ (I-ORG,NOUN) 0.018 0.015
(I-LOC,NOUN)→ (O,.) 0.017 0.014
(I-PER,NOUN)→ (O,.) 0.018 0.015
(I-ORG,NOUN)→ (O,NUM) 0.015 0.011
(O,.)→ (I-LOC,NOUN) 0.013 0.010

specific datasets of varying sizes (Table 1). For train-
ing all of the CRF models (single, supervised joint,
latent joint, and posterior regularized joint), we used
a standard set of indicator features derivable from the
input sequence.
For obtaining informative constraints, we used the

statistics from a large Spanish NER dataset (Tjong
Kim Sang and De Meulder, 2003). We specifically
chose this setting to gauge the ease and efficacy of
language invariant relationships between NER and
PoS tagging tasks. Specifically, we focused on the
expected proportions of the joint labels and the joint
edges in the training corpus. We also used the perfor-
mance on our development set to identify a small pool
of constraintswhich are listed in Table 2. It should be
noted that depending upon the specific data and task
settings many other kinds of informative constraints,
that also condition on observed sequence x can be
easily incorporated as long as their computation de-
composes along the cliques of our joint models. For
numerical stability, the constraints in table 2 were
scaled to be in the same range by scaling φ.
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Table 3: Performance on NER and Part of Speech tagging. ‘P’, ‘R’, ‘F1’ stand for Precision, Recall and F1 score for Named Entity

Recognition task, ‘Acc’ refers to part of speech tagging accuracy. 1x, 2x, and 3x refer to the data sets for the two tasks as described

in table 1. ‘Single-task’ refers to independent training of CRFs for the two tasks, ‘Latent CRF’ refers to the joint CRF trained over

partially observed data via EM, ‘Posterior Reg.’ refers to out approach of regularizing the output distribution of ‘Latent CRF’,

‘Oracle’ refers to the unrealistic case when both the datasets are annotated with both task outputs.

SZ SINGLE-TASK LATENT-CRF POSTERIOR REG. ORACLE (2X SUPERVISED)
P R F1 ACC P R F1 ACC P R F1 ACC P R F1 ACC

1X 0.67 0.39 0.50 0.83 0.53 0.51 0.52 0.84 0.58 0.53 0.55 0.84 0.67 0.63 0.65 0.88
2X 0.69 0.55 0.62 0.87 0.63 0.62 0.63 0.87 0.66 0.62 0.64 0.87 0.73 0.71 0.72 0.90
4X 0.79 0.61 0.69 0.89 0.71 0.70 0.70 0.90 0.70 0.71 0.70 0.90 0.79 0.77 0.77 0.92

6.1 Results

Our experimental focus is on comparing our
approach of regularizing the output distribution of
a joint CRF with other approaches described in the
paper: i) training a single CRF for each task with its
respective data. ii) training a latent joint CRF over
both the datasets jointly via EM. We also present
results for the fully supervised joint CRF model,
which was trained assuming the unrealistic scenario,
in which we have annotations for both the tasks in
our training data. This effective doubles the training
data for the fully supervised joint CRF. This provides
an effective upper bound on the performance of
the joint CRF model. These results are reported
over the CoNLL test set which consists of 3250
sequences. We notice in table 3 that for all the
three data scenarios, the single task CRFs perform
the worst on both the tasks. The latent CRF based
approach consistently improves over the single task
performance. The posterior regularization models
further improve over the latent CRF performance.
The improvement with posterior regularization is
most pronounced for the smallest dataset. The part
of speech tagging accuracy improves slightly for
smallest data scenario with our approach, but it is
comparable for the larger data scenarios. This might
be because PoS tagging is a considerably easier
problem and relies less on the ‘structure’ in the
model than NER (Liang et al., 2008).
Another consistent pattern is that the ‘Oracle’ is
always significantly better at both the tasks in all the
data settings because it is trained on fully annotated
dataset of both the tasks for a give data scenario.
Interestingly, its performance is always slightly
better than the single model scenario with 2x data.
This suggests that joint CRF modelling is providing

some gains over independent task training and
empirically the effect on sample complexity due to
the bigger CRF model doesn’t seem to hurt at all.

7 Conclusion

We presented a multi task learning approach based
upon jointly modelling structured prediction tasks
when no jointly annotated data is available. We
presented a latent CRF model to jointly model
the two tasks, whose output posterior distribution
is influenced by constraints that encode some ex-
ternal knowledge about the tasks and their inter-
relationships. Specifically, we assume that the output
spaces of the different tasks do not necessarily inter-
sect, and instead we only know about the tendencies
of compatibility between the different output spaces.
We bias the learning of our models by using this
external knowledge about the tasks. We report exper-
imental results on two Natural Language Processing
tasks: i) Named Entity Recognition and ii) Part of
speech tagging. Our results show that our method
is very effective in low data scenarios and always is
significantly better that training individual models on
small datasets.
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Abstract

Global features have proven effective in a
wide range of structured prediction problems
but come with high inference costs. Imita-
tion learning is a common method for train-
ing models when exact inference isn’t feasi-
ble. We study imitation learning for Seman-
tic Role Labeling (SRL) and analyze the ef-
fectiveness of the Violation Fixing Perceptron
(VFP) (Huang et al., 2012) and Locally Opti-
mal Learning to Search (LOLS) (Chang et al.,
2015) frameworks with respect to SRL global
features. We describe problems in applying
each framework to SRL and evaluate the ef-
fectiveness of some solutions. We also show
that action ordering, including easy first in-
ference, has a large impact on the quality of
greedy global models.

1 Introduction

In structured prediction problems, global features
express dependencies between related pieces of a
label and make inference non-trivial. In Semantic
Role Labeling (SRL) (Gildea and Jurafsky, 2002),
global features and constraints have been studied ex-
tensively (Punyakanok et al., 2004; Toutanova et al.,
2008; Täckström et al., 2015) inter alia. SRL has
many phenomenon that relate labels such as syn-
tactic control, role mutual exclusion, and structural
constraints like span overlap.

Previous work on inference for models with
global features has studied a variety of method in-
cluding dynamic programming, reranking, and ILP
solvers. Greedy search and beam search are rel-
atively understudied areas due to the difficulty in

training models which perform well with the weak
guarantees provided by greedy search. The Viola-
tion Fixing Perceptron (VFP) framework (Huang et
al., 2012) is a notable exception which has been used
to great effect in a range of structured problems.
Learning to Search (L2S) (Daumé III and Marcu,
2005; Chang et al., 2015) is another line of work for
training greedy models with no assumptions about
features. These training methods are appealing be-
cause they decouple the definition of (global) fea-
tures from the (exact) inference and training proce-
dures. This allows easier specification of models
(features not algorithms) and the ability to use in-
ference methods which scale with the difficulty of
the problem rather than the type of features used.

In this work, we study VFP and L2S methods for
training greedy global SRL models. We find that
both methods are far from ideal. VFP is inconsistent
and often doesn’t perform better than unstructured
perceptron training. L2S leads to models which
under-predict arguments and do not perform as well
as pipeline training. We describe the causes of these
problems and offer some solutions.

Finally, we study the effect of the transition sys-
tem on the usefulness of global features. We find
that the order that actions are performed in can be
as important as the training method, leading to bet-
ter models with the same features and computational
complexity.

2 Problem Formulation

Semantic role labeling (Gildea and Jurafsky, 2002)
(SRL) is the task of locating and labeling (with
roles) the semantic arguments to predicates. Adding
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a step, frame semantic parsing (Das et al., 2010)
(FSP), seeks to first disambiguate predicates by la-
beling them with a frame before performing SRL.
Semantic roles abstract over grammatical function
and provide information about particular arguments
relation to an event, state, or fact. SRL has been
shown to be helpful in a variety of NLP tasks in-
cluding information extraction, question answering,
and coreference resolution.

Let x refer to a sentence and its POS tags and de-
pendency parse. For this work, we are given x and a
vector of predicate locations t = [t1, t2, ...tn], where
each ti is a span, most often representing a single
verb like “love” in the sentence “John loves Mary”.

SRL and FSP are defined with respect to a schema
which provides a set of frames and roles which will
serve as labels for predicates and arguments. We
consider two schemas, Propbank (Kingsbury and
Palmer, 2002) and FrameNet (Fillmore, 1982; Baker
et al., 1998). Propbank frames concern different
senses of a lexical unit (a lemma and POS tag), so
the correct frame for “love” in the case above is
the frame love-v-1, as opposed to love-v-2,
which is only used in modal cases like “I would love
to go on vacation”. In the FrameNet schema, frames
are coarser grain situations which may have many
lexical units which map to them. In this case frame
would be Experiencer focus which could also
be evoked by the adore.v or despise.v lexical units.
These frames will constitute another vector f =
[f1, f2, ...fn] of frames for each predicate in t.

Once t and f are known, the schema defines a
function mapping a frame to a set of roles K(fi)
which each frame must have filled explicitly (by
some mention span in the sentence) or implicitly
(by some other discourse entity not directly men-
tioned in the sentence). For the latter case we say
that an unfilled role is filled by a special dummy
span called ∅. For the former case, we could in
principle predict any span within the sentence, but
to make systems faster and more accurate, a prun-
ing step is often used which picks out only the
spans which are plausible arguments to a particular
predicate conditioned on a syntactic parse (Xue and
Palmer, 2004). We call this set S(ti)1 and it always

1Extensions like the one described in Täckström et al.
(2015) consider the role during the pruning step, but we gloss

includes ∅. SRL is the task of predicting a matrix
k = {kij : i ∈ [1..n], j ∈ K(fi), kij ∈ S(ti)}
where kij is the location of the jth role for frame fi

evoked by the predicate at ti. For the rest of this pa-
per, we will concern ourselves with the FSP task of
predicting both f and k.

Transition System A transition system provides a
way to break down an assignment to (f, k) into a se-
quence of actions. The transition systems we use in
this work all use the trivial definition that an action
is a variable index and value (i.e. an assignment).
A state is comprised of a sequence of actions and
constitutes a partial assignment. A state is written
st = [a0, a1, ...at−1].

Transition systems in this work vary by their or-
dering over variable indices to fill in.

Other orders will be discussed further in §7, but
for now our transition system will predict frames
first, in left-to-right sentence order, followed by
roles for each frame (in the same order). The roles
for a given frame are ordered by how many times
they were instantiated in the training and dev data.

3 Global Features

Global features are important for a couple reasons.
First, a variety of insights and statistical regulari-
ties from previous work (Punyakanok et al., 2004;
Toutanova et al., 2008; Täckström et al., 2015) can
be described using global features on states and ac-
tions. Our definitions will not be fully equivalent to
the formulation in previous work, but will draw on
the same set of information. Second, global features
are by their nature very expressive, and using ap-
proximate inference, they will serve as a stress test
for various imitation learning methods. In this sec-
tion we will list our global features and their moti-
vations.
numArgs is a global feature template which

counts how many arguments a given predicate has
realized in a sentence. This is perhaps the simplest
type of information which is expressable in a global
model but not a local one. This is useful because
it serves as a dynamic or contingent intercept. Nor-
mally an argument is predicted if its score exceeds
0 (or the score of the action corresponding ∅), but

over this detail in our notation for simplicity.
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with this global feature that threshold also depends
on how many arguments have already been labeled.

The remaining global features are pairwise fea-
tures, meaning they can be expressed as templates
of the form h(ai, at) where ai is any action in the
history st and at is the current action to be scored.
roleCooc is a feature template which expresses

which roles co-occur with each other in a predi-
cate argument structure. There are some hard role
co-occurrence constraints in the annotation guide-
lines for both Propbank and FrameNet which this
feature aims to learn. For Propbank, continuation
and reference roles may not appear without their
base counterpart. FrameNet does not have this
distinction between base, continuation, and refer-
ence roles, but instead has some mutual exclusion
relationships between frame elements (roles) such
as the Entities, Entity 1, and Entity 2
roles for the Similarity frame. Entity 1
and Entity 2 require each other’s realization and
both are mutually exclusive with the Entities
role. These roles exist so that there is a sen-
sible way to annotate sentences like “[The two
painters]Entities were [alike]Similarity” as well
as “[Our economy]Entity 1 is [like]Similarity [a
healthy plant]Entity 2”

If R(at) is a function which returns the role of an
action at (assuming at assigns a value in k), then
the pairwise definition of this feature is h(ai, at) =
(R(ai), R(at)).
argLoc is a feature template which describes the

linear relationship between argument spans. This
relationship pos(s1, s2) is the all-pairs relationship
between the starts and end indices of the two spans,
where two indices are said to be either “left”, “left
and bordering”, “equal”, “right and bordering”, or
“right”. If E(at) is a function which returns the
span of an action at (assuming at assigns a value
in k), then h(ai, at) = pos(E(ai), E(at)) This can
encode overlap, nesting, or boundary relationships
between argument spans.
roleCoocArgLoc is the pointwise product of

roleCooc and argLoc. This feature can capture
regularities like “a continuation role is to the non-
bordering left of the base role” which depend on in-
formation from both argLoc and roleCooc.

Finally full refers to all templates together.

Refinements We designed the features in a way
as to be overly general. For example, consider
numArgs and its effects for various frames. A
value like 4 may be very unlikely for a frame like
see-v-3 which was instantiated with exactly one
argument in each of the 24 times it appeared in Prop-
bank. But, a value of 4 is below average for a frame
like afford-v-1 which was observed 43 times
with an average of 4.2 realized arguments.

While numArgs seems like it should de-
pend on the frame, there are other cases
like the FrameNet role exclusion and re-
quires relationships which should hold re-
gardless of frame. For example, the frames
Amalgamation, Becoming separated,
Cause to amalgamate, and Separating
all have the same pattern concerning the Parts,
Part 1, and Part 2 roles. These frames were
seen only 2, 2, 9, and 12 times in training data
respectively, so generalizing this rule by pooling
training data is crucial.

To choose the right granularity for the global fea-
ture templates, we consider multiple refinements. A
refinement of a template is the result of taking the
pointwise product of the template with one or two
label features templates. The label feature templates
we consider are constant (a backoff feature), frame,
role, and frame-role. For each global feature tem-
plate, we try each refinement and use the one with
the best dev set F-measure when trained with LOLS.

4 Experimental Design

We measure performance on two data sets, the
Propbank annotations (Kingsbury and Palmer, 2002)
available in the Ontonotes 5.0 corpus (Pradhan et al.,
2012) and FrameNet 1.5 (Baker et al., 1998).

For all learning methods we average the weights
across all iterations of training (Freund and
Schapire, 1999). This is explicitly called for as a
part of LOLS and is also a standard trick used with
the structured perceptron.

We use the local features described in Hermann
et al. (2014) for argument and frame identification,
but we did not use their feature embedding method
since it performed about as well as the sparse feature
method and was slower. We use the best refinements
using the process described in §3.
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We are studying the fully greedy case of infer-
ence in this work (i.e. a beam size of 1). As far
as we know, efficient greedy and easy first inference
are mutually exclusive goals, and we focus on the
latter. Our implementation uses a heap to store ac-
tions in a manner similar to Goldberg and Elhadad
(2010). This way actions can be generated once, in-
stead of once per transition, and global features per-
form sparse updates to the actions on the heap. For
beam search, states cannot share a heap (since their
histories, and thus global features, would be differ-
ent), so actions generation, global features, and ac-
tion sorting would have to occur at every transition.

All performance values shown here are measured
for the task of frame semantic parsing (FSP), mean-
ing that we measure precision, recall, and F-measure
where every index in f and k are considered pre-
dictions. Predictions in k are not correct unless the
frame that they correspond to are also correct. We
show two scenarios: gold f refers to the case where
the frame labels are given and auto f refers to when
they are predicted by the model. All figures and
plots are on dev set performance.

Unless specified, we set the loop order over roles
by how frequently they occur in the dev data, which
will be described as freq in §7.

5 Violation Fixing Perceptron

Violation Fixing Perceptron (VFP) (Huang et al.,
2012) is a family of perceptron updates which are in-
tended to train machines which operate using beam
search. The beam holds states, and at every step an
action is appended to each state to reach a successor
state which is put on the next beam.

In VFP, the core concept is a violation. A tu-
ple (x, y, z), where x is a sentence as defined ear-
lier and y is a string of correct actions (having zero
cost/loss), and z is a string of predicted actions, is a
violation if θ · f(x, z) > θ · f(x, y) and z is “incor-
rect”. There are multiple ways of defining incorrect
which yield different algorithms in the VFP family.
In all variants y and z must be the same length and
if there is more than one incorrect (x, y, z), the one
with the largest difference in score is chosen. In the
early update variant, first described by Collins and
Roark (2004), z is incorrect if it differs from y only
in the last position. In max violation z is incorrect if

Gold f Auto f
Global Feature PB ∆` FN ∆` PB ∆` FN ∆`
numArgs -0.4 -0.1 -1.3 +0.3
roleCooc -0.4 -0.3 -0.1 +0.6
argLoc -1.2 -0.4 -1.9 +0.2
roleCoocArgLoc -2.0 -0.2 0.0 +0.2
full -1.5 -0.7 -2.0 +0.2

Figure 1: Global model advantage using max viola-
tion VFP and freq.

it differs any position. In latest update z is incorrect
if it differs in the last position (but can include other
differences, unlike early update).

Results In figure 1 we plot the difference in per-
formance between a model which includes a particu-
lar global feature type and the baseline model which
only uses local features. Almost across the board
the values are negative, indicating that the global
model performs worse, even though the local model
is nested within the global model (i.e. there exists
a parameter setting in the global model such that it
is equivalent to the local model). This result is at
odds with previous results which have successfully
used max violation perceptron to train models with
non-local features. We hypothesize that the reason
performance goes down is due to the expressivity of
our global features and the inconsistency problem
described in Chang et al. (2015).

Briefly, the inconsistency comes from the fact that
the weights derived from VFP training simultane-
ously, and ambiguously, reflect what to do condi-
tioned on being in a state arrived at by the oracle or
the predictor. These two distributions over states are
different if the predictor cannot perfectly mimic the
oracle (the beam separability assumption). At test
time, all of the states will be reached from the pre-
dictor’s actions, so the contribution of what to do by
possibly incorrectly assuming the state/history was
created by the oracle is misleading. This can be very
bad when the global features are expressive and the
predictor makes a significant number of mistakes.

Inconsistency To validate that inconsistency is re-
sponsible for this poor performance, we setup an-
other experiment where we artificially make the task
easier. If the model is more accurate, then the pre-
dictor will necessarily be closer to the oracle, mean-
ing that the inconsistency will shrink towards 0. To
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Gold f Auto f
Global Feature PB ∆` FN ∆` PB ∆` FN ∆`
numArgs 0.0 0.0 +0.2 +0.7
roleCooc -0.6 -0.3 -0.1 +0.5
argLoc -0.4 +0.1 -0.1 -0.4
roleCoocArgLoc +0.4 +0.4 +0.1 -0.1
full +0.6 +0.4 -0.1 +0.3

Figure 2: Global model advantage using LOLS and
freq.
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Figure 3: Benefit of roleCooc global features as a
function of inconsistency in the model.

make the task easier, we added a binary feature to
the local features which was either 1 or -1 based on
whether the action has cost 0. We flip the sign of
this feature with probability 1 − α. A model with
α = 1 should get perfect accuracy and α = 1

2 offers
no extra information.

Figure 3 shows the difference between a global
model using roleCooc and a local model (both re-
ceiving the “cheating” feature) for various values of
α. This experiment used FrameNet data and max
violation VFP. The local model does better than the
global model (below the red line) where the incon-
sistency is high (α < 0.75) and worse where it is
low. Though the plot is noisy, when α = 1 the two
models have the same performance.

This result explains why max violation training
has been shown to be successful in tasks like POS
tagging and shift-reduce parsing, where the accu-
racy of the model is in the 90s. VFP with global
features improves over local models on these tasks
because the inconsistency is small, and the benefit
from global features is great.

6 Learning to Search

Learning to search (L2S) is a family of imitation
learning algorithms including early update percep-
tron (Collins and Roark, 2004), LaSO (Daumé III
and Marcu, 2005), SEARN (Daumé III et al., 2009),
DAgger (Ross et al., 2011), and LOLS (Chang et
al., 2015). The unifying feature of these algorithms
is that they all are a reduction of training transition
based models to a cost-sensitive classification prob-
lem over (st, at) pairs.

Chang et al. (2015) showed that when the refer-
ence (oracle) policy is optimal, which we can guar-
antee in our case,2 the cost estimates may be derived
from reference roll-outs, which can be easily com-
puted in constant time. Given reference cost esti-
mates, the only way to distinguish within this fam-
ily is with respect to the roll-in distribution. The
LOLS algorithm prescribes using the current pol-
icy for rolling-in, which does not always work well,
which we will return to in §8.2.

Results In figure 2 we plot global model advan-
tage using the freq action orderings and LOLS train-
ing. There are mixed results; some global features
are actually improving over the local model (some-
thing which was not achieved by VFP training). We
will return to why this is in §8.2, but first we will
analyze an orthogonal aspect of the model.

7 Action Ordering

So far our transition system considers actions sorted
by frequency of a role, which may not be optimal.
Here we measure the effect of other orderings.

Easy First The first motivation is related to easy
first inference (Shen et al., 2007; Raghunathan et
al., 2010) inter alia. The idea is that the “easi-
est” decisions should be made first because there
is less risk that they are wrong and may be more
safely conditioned on in making future decisions
than any other action. To implement this heuristic,
we define two variants of the easyfirst meta action
ordering. easyfirst-dynamic chooses the variable
index corresponding to the highest scoring action.
easyfirst-static chooses variable indices sorted by

2Every action fills in a label and we can say whether it is
right or wrong, thus the reference policy is the one which always
fills in a correct label.
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the dev set F-measure of the local model (most ac-
curate visited first).3

Baselines The freq ordering sorts actions by how
frequently their role appears in the training set, most
frequent first. This be seen as a very naive version
of easyfirst, but with the nice property that it is in-
dependent of the local model.

From a model (estimator) bias and variance point
of view, we should expect dynamic orderings to have
higher variance (whether they have lower bias is a
somewhat related but empirical question). In our
case, we could track this variance by proxy and look
at the number of nonzero global features, as is com-
mon in the sparsity-inducing regularization litera-
ture. Consider training a model with the roleCooc
global feature on single example, a frame with K
roles. With easyfirst-dynamic, there are K2 pos-
sible roleCooc nonzero features, whereas with
easyfirst-static and freq the maximum is K(K−1)

2
since the order is fixed at training time.

To see if increased variance is responsible for po-
tential differences in the easyfirst variants, we con-
struct a parallel situation with random orderings:
rand-static and rand-dynamic. The first chooses
a random ordering over roles which is used through-
out training and testing, and the second chooses a
random ordering every time inference is run.

Results In figure 4 we have plotted models trained
with each global feature type and each action order-
ing. The first thing to notice is the variance across
different action orderings is generally larger than the
variance across different global features (for the best
action ordering). This indicates that action ordering
is important, perhaps more so than the global fea-
tures used. This is an important result considering
that most previous work on transition based infer-
ence has not addressed automatic ordering.

Next, there is little consistency between Propbank
and FrameNet. We believe the major reason for
this is the amount of training data (Propbank has
20.7 times more instances and 1.58 more instances
per type), causing overall accuracy to be higher and
easyfirst inference to work better.

Looking at the number of non-zero global fea-

3F-measure is computed from MAP estimates of precision
and recall under a β(1, 5

4
) prior, slightly rewarding frequency.

tures, we see virtually no correlation between that
measure of capacity and performance, on either data
set. While this metric is often used in static (local)
models to describe capacity, we believe this metric
is less meaningful with global features.

Note that rand-dynamic works well on
FrameNet, only losing to a non-random order-
ing once (easyfirst-static on argLoc). Given
the overall worse performance of our model on
FrameNet, and the dearth of training data, we
hypothesize that rand-dynamic is actually pro-
viding a regularizing effect similar to dropout
(Hinton et al., 2012). Since both rand-static and
rand-dynamic are random, they offer no real
signal they could differ on (bias is the same),
and using the standard bias-variance argument we
should expect rand-static to do no worse since
rand-dynamic introduces additional variance into
the model estimate. Our only explanation for the
results is that rand-static is overfitting in a way
which rand-dynamic isn’t capable of.

Consistent with overfitting, we see that on both
data sets easyfirst-static usually does as well or bet-
ter than easyfirst-dynamic. In the opposite fashion
of the random orderings, here the dynamic version
is more expressive and likely to overfit.

8 Error Analysis

Neither VFP nor LOLS worked for our transition
transition systems out of the box. Here we discuss
problems encountered with each algorithm and of-
fer some solutions for fixing them. We do not claim
these solutions are robust, but hopefully offer insight
into potential difficulties in training models like this.

8.1 Violation Fixing Perceptron

The max violation version of VFP dictates that
the violation to be corrected is the solution to
argmin(x,y,z)∈C,z∈⋃i{Bi[0]}wt · ∆Φ(x, y, z) Where
Bi is the beam holding actions at step ith and C is
the beam confusion set as defined in (Huang et al.,
2012). With only local features, Φ and ∆Φ decom-
pose into a sum over actions and and the argmin
can be pushed inside that sum. This is equivalent to
an (unstructured) perceptron update for every step in
the trajectory. When global features are added, the
update to the local features ceases to match the un-
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Figure 4: Model performance (y) by log number of non-zero global features (x). Propbank (left) and
FrameNet (right). Global feature type by color: numArgs, roleCooc, argLoc, argLocRoleCooc, and full.
easyfirst is triangle, freq is square, rand is circle. Filled in means dynamic, hollow is static.

structured perceptron update and both global and lo-
cal features are only updated with respect to a prefix
of the oracle and predicted trajectory.

This prefix update may mean that mistakes at the
end of the trajectory will not be corrected until the
mistakes at the beginning are fixed.4 Skipping train-
ing data puts global models at a disadvantage over
local ones, and we attribute the poor performance of
the global models to this issue.

This problem was one of the motivations of max
violation over the early update strategy introduced
by Collins and Roark (2004). Huang et al. (2012)
described an update called “latest update” which
chooses the longest prefix which was still a viola-
tor, presumably to address the problem of skipping
training data. While this may help, it is still possible
to construct examples where a classification update
would be made but a “latest update” would not.

For example, let s(yi) = w · φ(x, yi) and
s(y[1:i]) = w · φ(x, y[1:i]), such that w ·
∆Φ(x, y[1:i], z[1:i]) = s(y[1:i]) − s(z[1:i]). Assume
local scores s(yi) are derived from one-hot vectors
indexed by (i, yi). Assume a global model with the
form: s(y[1:i]) =

∑
k<j w · f(yk, yj) +

∑
j s(yj)

Take a sequence of binary decisions over the alpha-
bet {a, b} with mistakes at indices i and j such that

4This is the intended behavior under the beam separability
assumption, but this may lead to very poor performance in gen-
eral.

i < j. Assume greedy search.

yi = a, yj = b, zi = b, zj = a

w · f(b, a) = −3, w · f(x, y) = 0 ∀(x, y) 6= (b, a)
s(yi) = 0, s(yj) = 0

s(y[1:i]) = 0, s(y[1:j]) = 0
s(zi) = 1, s(zj) = 1

s(z[1:i]) = 1, s(z[1:j]) = 1 + 1 +−3 = −1
s(y[1:j]) > s(z[1:j])⇔ ∆Φ(x, y[1:i], z[1:i]) < 0

(x, y[1:j], z[1:j]) is in the confusion set, but is not a
violator, even though yj 6= zj , and the classification
update would change s(yj) and s(zj).

Both max violation and latest update would
choose to update on (x, y[1:i], z[1:i]) in hopes of fix-
ing it before moving on to the mistake at j. This
happens consistently in our experiments (on the
FrameNet data with roleCooc, by the end of train-
ing more than 10% of violators contain a mistake in
the suffix not chosen by max violation).

Results In figure 5 we show the performance of
max violation and latest update variants of VFP
along with an augmentation (+CLASS) intended to
fix the issue of missing suffix mistakes. Global
models were trained with the roleCooc feature
template and easyfirst-dynamic action ordering.
+CLASS adds an unstructured perceptron update for
every index in the trajectory. This modification al-
ways helps on FrameNet, leading to global mod-
els which outperform local models, but consistently
hurts on Propbank. Remember that all of these
deltas are measured against a local only model,
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Gold f Auto f
Training PB ∆` FN ∆` PB ∆` FN ∆`
max violation -3.5 -0.9 -1.3 -0.4
latest update -1.4 -0.7 -1.4 -0.3
max violation +CLASS -3.0 +1.8 -2.2 +2.4
latest update +CLASS -2.4 +1.2 -2.4 +2.4

Figure 5: Global model advantage using
roleCooc and easyfirst-dynamic across VFP
variations and +CLASS.

which is a pure CLASS update, so you can think
of the +CLASS variants as a linear interpolation be-
tween a global and local objective.

8.2 LOLS

LOLS performs a roll-in with the current policy.
This causes many updates which are derived from
mistakes during frame identification. Once the
wrong frame is predicted, in argument identifica-
tion the model’s cost incentives flip towards trying
to predict ∅ for all roles so as not to incur false
positives. The roles in FrameNet are defined based
on the frame5 and in Propbank they are not consis-
tent across frames.6 This is arguably a pathological
property of a transition system: action costs strongly
depend on state.

Using LOLS (model roll-in), there is a strong bias
towards choosing ∅ for all roles, leading to high pre-
cision, low recall, and overall sub-optimal models.
We found that when training the argument identi-
fication parameters of the model it was better to
perform a hybrid model/oracle roll-in whereby the
frame identification actions were chosen by the ora-
cle. This may not be the fault of LOLS, but the of
Hamming loss for action costs, which is a bad sur-
rogate for F-measure.

Another important component of LOLs is the
choice of cost in the cost-sensitive classification re-
duction. We found that defining costs based on the
Hamming loss of an action performed very poorly.
We found much better results with the multiclass
hinge encoding described in Lee et al. (2004). In
figure 6 we show performance with various choices
of roll-in and cost definitions. The best LOLS global

5If you label a span as the Cognizer role for the frame Opin-
ion and that span was the Cognizer role for the Judgment frame,
then the label is wrong.

6with the exception of ARG0 and ARG1 which typically cor-
respond to proto-Agent and proto-Patient roles.

Gold f Auto f
Roll-in Cost PB ∆` FN ∆` PB ∆` FN ∆`
model Hamming -24.5 -15.5 -10.1 -4.9
model Hinge -1.7 -1.1 -0.4 +0.2
hybrid Hamming -22.1 -12.9 -8.9 -1.0
hybrid Hinge +0.8 +1.0 +0.9 +1.1

Figure 6: Global model advantage using
roleCooc and easyfirst-dynamic across LOLS
variations: roll-in and cost function.

models consistently improve over local models.

8.3 Absolute Performance

Throughout the paper we have listed relative per-
formance. Our absolute performance is 73.0 for
Propbank (dev) and 55.3 for FrameNet (dev). This
falls significantly short of the work of Zhou and Xu
(2015) at 81.1 (PB dev), FitzGerald et al. (2015) at
79.2 (PB dev), and 72.0 (FN). Those works used
non-linear neural models with multi-task distributed
representations, which are not comparable to our re-
sults. However, the models of Pradhan et al. (2013)
at 77.5 (PB test) and Das et al. (2012) at 64.6 (FN
test) are roughly comparable, and the performance
gap is still significant. While our efforts do not ad-
vance the state of the art in SRL, we hope that they
are enlightening with respect to the application of
various imitation learning methods.

9 Related Work

Berant and Liang (2015) used imitation learning for
learning a semantic parser. Choi and Palmer (2011)
explored transition based SRL and proposed some
global features (e.g. copy ARG0 from controlling
predicates) but did not consider action (re-)ordering
or imitation learning. Wiseman and Rush (2016) de-
rive a learning to search framework which is related
to LaSO (Daumé III and Marcu, 2005). Similar to
our hybrid roll-in, they “reset” the beam as soon as
the oracle prefix falls off.

10 Conclusion

In this work we study the use of imitation learning
for greedy global models for SRL. We analyze the
Violation Fixing Perceptron (VFP) and Locally Op-
timal Learning to Search (LOLS) frameworks, ex-
plaining how they fall short and offer some methods
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for improving them. We also study the effect of in-
ference order on learning and the utility of global
features, finding that it is a very important factor of
overall performance in greedy models.
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Dipanjan Das, André F. T. Martins, and Noah A. Smith.
2012. An exact dual decomposition algorithm for
shallow semantic parsing with constraints. In Se-
mEval, SemEval ’12. Association for Computational
Linguistics.
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Abstract

We introduce DRAIL, a new declarative
framework for specifying Deep Relational
Models. Our framework separates structural
considerations, which express domain knowl-
edge, from the learning architecture to sim-
plify the process of building complex struc-
tural models.

We show the DRAIL formulation of two
NLP tasks, Twitter Part-of-Speech tagging and
Entity-Relation extraction. We compare the
performance of different deep learning archi-
tectures for these structural learning tasks.

1 Introduction

Building statistical models capable of dealing with
realistic problems require making predictions over
multiple, often interdependent, variables. In such
settings, correctly capturing the dependencies be-
tween these variables often takes precedence to the
specific algorithm used for estimating the models’
parameters. Capturing these dependencies relies on
compiling expert knowledge about the problem do-
main into the statistical model, and in recent years
several machine learning systems offering intuitive
interfaces for defining the dependencies between
predictions were suggested (Domingos et al., 2006;
McCallum et al., 2009; Rizzolo and Roth, 2010;
Bach et al., 2015; Kordjamshidi et al., 2015).

On the other hand, end-to-end deep learning
methods, which are becoming increasingly popu-
lar, take an almost opposite approach. These meth-
ods map the complex input object to desired outputs

∗* Equal contribution.

directly, without decomposing the decision process
into parts and modeling their dependencies. The re-
cent advances in deep learning allow these meth-
ods to successfully learn such mappings over very
high dimensional latent features space (Duchi et al.,
2011; Srivastava et al., 2014; Bahdanau et al., 2014).

At first glance these two trends seem almost con-
tradictory, as the first highlights the importance of
an easy-to-define, interpretable models, and the sec-
ond focuses on finding complex non-linear mapping
from the raw inputs to outputs that are difficult to in-
terpret, and its definition requires considerable tech-
nical expertise. However, as we argue in this paper,
these two objectives are not at odds, but rather ex-
press the specific considerations required at different
levels of abstraction. We suggest to break the depen-
dency between the two layers, and present a frame-
work for supporting it, by separating the definition
of structural elements and their dependencies from
the specific learning architecture used for learning
them. In this paper we describe the steps we took
towards building a declarative framework for Deep
Relational Learning (DRAIL).

DRAIL is a declarative modeling language for
defining structured prediction problems, that sep-
arates between the modeling layer, which defines
the high level dependencies between variables, and
the learning layer, which defines the learning archi-
tecture that will be used and its parameters. From
a modeling perspective, DRAIL is very similar to
other declarative languages such as Markov Logic
Networks (MLN) (Domingos et al., 2006) and Prob-
abilistic Soft Logic (PSL) (Bach et al., 2015), and
uses first order logic as a template language for
defining factor graph templates, which are instanti-
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ated from given data.
A DRAIL program is defined over a set of predi-

cates, which can represent either observed values or
output predictions. We can define complex depen-
dencies by connecting these predicates using rules
of the following form:
O(x,c) ∧ O(x,d)⇒ P(x,y)
P(x,a)⇒¬P(x,b)

In this example, a,b,c are constant symbols,
x,y are variables, O(·) is a predicate capturing ob-
served properties of the input, and P(·) is a predi-
cate, representing a predicted property. The first de-
cision rule, captures the mapping between observed
properties of an input object and a prediction, while
the second rule captures the dependency between
two predictions (specifically, it states one output as-
signment for an input object prevents the assignment
of another). Each one of the rule templates is as-
sociated with a score, either learned from data, or
determined by the user, and the overall decision is
made by finding the optimally scored assignments
of output values to variables, by performing MAP
inference. This flexible framework allows DRAIL
to include both soft constraints, which quantify the
dependency between different output decisions, and
hard constraints, which force these dependencies
by manually assigning the rule the highest possible
weight.

Once the structural dependencies between the el-
ements of the model are determined using the deci-
sion rules, we can turn our attention to learning con-
siderations. From that perspective each rule defines
a factor graph template, and using data we learn a
scoring function for it. We learn the parameters of
the scoring function for each rule using a deep learn-
ing architecture, which can be different for each rule,
and normalized into a probability distribution, to al-
low global inference over all competing values. This
flexibility is the key difference between DRAIL and
other declarative learning frameworks: as it makes
no distinction between base classifiers and soft con-
straints, the scoring function for both can be learned
using highly expressive models.

We experimented with two well-known natu-
ral language processing structured prediction tasks,
Twitter Part-of-Speech tagging (Gimpel et al., 2011)
and Entity-Relation extraction (Roth and Yih, 2007).
In section 3 we show how to define these tasks as

DRAIL instances, and associate them with learning
architectures. In section 4 we explain our inference
procedure, converting a DRAIL instance into an In-
teger Linear program. We explain our learning ap-
proach in section 5. In our current experiments we
used both Multi-layer Perceptron networks (MLP)
and Recurrent Neural networks (RNN). We report
our results in section 6.

2 Related Work

The difficulty of building complex machine learn-
ing models over relational data has attracted con-
siderable attention in the machine learning commu-
nity, and several high level languages for specify-
ing the structure of different graphical models have
been suggested. For example, BLOG (Milch et al.,
2005) and CHURCH (Goodman et al., 2012) were
suggested for generative models, and MLN (Domin-
gos et al., 2006), PSL (Bach et al., 2015), FACTO-
RIE (McCallum et al., 2009), and CCM (Rizzolo
and Roth, 2010; Kordjamshidi et al., 2015) were
suggested for conditional models.

In this paper we look into combining such declar-
ative frameworks with deep learning models. Com-
bining deep learning with structured models was
studied by several works, typically in the context of a
specific task or a specific inference procedure. These
include dependency parsing (Chen and Manning,
2014; Weiss et al., 2015), transition systems (Andor
et al., 2016) named entity recognition and sequence
labeling systems (Ma and Hovy, 2016; Lample et
al., 2016), and models for combining deep learning
and graphical models for vision tasks (Zheng et al.,
2015; Chen et al., 2015).

3 DRAIL Modeling Language

The DRAIL modeling language provides a general
way to define relational learning problems that are
highly structured. A relational model is specified in
DRAIL using a set of weighted first-order logic rule
templates that describe predictions and express the
dependencies and constraints of a specific domain.
Each rule is composed of: (1) a template definition
written in first order logic, (2) the neural network
architecture that will be used to learn the parame-
ters of its scoring function, and (3) the set of feature
functions to be extracted. Rules are then compiled
into factor graphs, combining both predictions and
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observed variables. To further illustrate these defini-
tions, we begin our explanation with two concrete
examples of NLP applications.

Example 1: Part-of-Speech (POS) Tagging This
task aims to map each word in a given sentence to its
corresponding POS category (e.g., noun, verb, ad-
jective, etc.).

Figure 1 describes an example of a simple model
definition for the POS tagging task. Words and their
corresponding POS tags have sequential dependen-
cies that can easily be expressed in a declarative way.
Our model consists of two rules: the first rule (line
1) conditions the POS tag only on the current word
(i.e., similar to an emission feature), and the second
rule (line 5) extends the dependency to both the pre-
vious word in the sentence and its tag assignment
(similar to a transition). In these rules, x is the cur-
rent word, y is the previous word, z is the POS tag
assignment of the previous word, and k is the POS
tag of the current word to be predicted.

1 rule:
2 def: Word(x) ⇒ HasPos(x,k)
3 network: MultiLayer, MultiClass
4 features: ["extract_twitter_glove"]
5 rule:
6 def: Word(x) ∧ HasPrevWord(x,y) ∧

HasPos(y,z) ⇒ HasPos(y,k)
7 network: MultiLayer, MultiClass
8 features: ["extract_twitter_glove", "

extract_tag"]

Figure 1: Modeling POS Tagging using DRAIL

In this example script, both rules are defined as
multi-class prediction problems and are associated
with Multi-layer neural network architectures (lines
3,7 respectively). We represent each word as a vector
using Twitter Glove embedding (Pennington et al.,
2014). We also use a vector representation for the
previous POS tag (lines 4,8 respectively).

Example 2: Entity-Relation Extraction Our sec-
ond example focuses on a simplified version of the
relation extraction task (Roth and Yih, 2007; Kord-
jamshidi et al., 2015), which identifies named enti-
ties and their categories (PER, LOC, ORG) and two
types of relations (LIVEIN, WORKFOR) over these
entities. In Figure 2 we illustrate the model defini-
tion for this task, and write the structural dependen-

cies of the problem using DRAIL. The model con-
sists of three rules: the first rule (line 1) is used for
predicting the entity category of a given phrase, and
the second and third rules (lines 5 and 9, respec-
tively) describe the two possible relations between
pairs of phrases. We force the consistency between
the entity and relation prediction types by encoding
this knowledge as hard constraints (lines 13-16).

1 rule:
2 def: Phrase(x) ⇒ IsEntity(x,y)
3 network: MultiLayer, MultiClass
4 features: ["extract_entity_feats"]
5 rule :
6 def: Phrase(x) ∧ Phrase(y) ∧

InSentence(x,z) ∧ InSentence(y,z) ⇒
LiveIn(x,y)

7 network: MultiLayer, Binary
8 features: ["live_in_feats"]
9 rule :

10 def: Phrase(x) ∧ Phrase(y) ∧
InSentence(x,z) ∧ InSentence(y,z) ⇒
WorkFor(x,y)

11 network: MultiLayer, Binary
12 features: ["work_for_feats"]
13 const: LiveIn(x,y) ⇒ Entity(x,"Per")
14 const: LiveIn(x,y) ⇒ Entity(y,"Loc")
15 const: WorkFor(y,z) ⇒ Entity(y,"Per")
16 const: WorkFor(y,z) ⇒ Entity(z,"Org")

Figure 2: Modeling the Relation Extraction problem using
DRAIL

DRAIL Elements The elementary units of the
model are predicates, which represent relations in
the domains. These can be binary relations be-
tween two variables (e.g., HasPos(x,z) where
a word x has a POS tag z), or unary relations
(e.g., Phrase(x)). The predicates can correspond
to hidden or observed variables. In the latter case,
the data corresponding to each predicate is loaded
from raw files into a relational database that can later
be automatically queried to instantiate groundings
for each rule template. Otherwise, the assignment of
predicted values is determined in an inference pro-
cedure afterwards.

Each rule template defines a learning problem,
which is used to score different assignments to the
head of the rule. Rules have the form A⇒ B, where
A (body) constitutes a conjunction of observations
and predicted values and B (head) is the information
to be predicted. We allow each rule to be defined as
either a multi-class, multi-label or a binary learning
problem.
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The overhead of DRAIL is considerably light,
considering the size of the tested data sets. We im-
plemented a compiler to translate formatted rules
provided by the user to rule templates speedily.
DRAIL then creates a simple in-memory relational
database instance by loading raw data, based on
the rule templates created. In order to construct the
training, validation and testing data sets, DRAIL
queries the database to create inputs for models cor-
responding to designated rule templates. The over-
head of DRAIL majorly lies on the database queries
process, which can be alleviated by using a more so-
phisticated database that handles queries efficiently
for larger volumes of data. As far as we know, a vari-
ety of matured industrialized database systems carry
this merit. After the data sets are created, the train-
ing procedure will be the same as usual. Hence, we
intend to improve this aspect in later formal releases.

We use several neural network architectures to
learn a probability distribution over the different out-
put value predictions. Our main idea is to have a
model definition that is agnostic of the network ar-
chitecture used. In this way, the type of network
(e.g., MLP, CNN or RNN) as well as other hyper-
parameters (e.g., the number of layers, the number
of hidden units, the learning rate, etc.) can be easily
tuned without changing the dependencies between
output variables.

To be able to learn from observations, each ob-
served grounding must generate features to feed into
the associated neural network. Currently, we provide
a basic feature extractor interface for users to extend.
Features are programmable in the Python language
and there is no limit as to which types of features can
be included for a rule. We also provide a set of out-
of-the-box features that can be directly used, such as
word embedding and one-hot vector representations
for predicate arguments. Since features are added
programmatically, external resources can be easily
incorporated.

Finally, const rules define hard constraints over
the general problem. These constraints allow the
user to inject domain or common-sense knowledge
into the prediction problem. For example, in the re-
lation extraction task, the LIVEIN relation can only
be predicted between an entity phrase of type PER-
SON and an entity phrase of type LOCATION. These
constraints do not require any learning, and they can

be directly translated into inference constraints.

4 Inference

Given a specific instance, we assign values to the
output variables by running an inference procedure,
formulated as an Integer Linear Programming (ILP)
problem over rule groundings.

A rule grounding is an instantiation of a rule tem-
plate. We generate rule grounding by enumerating
all possible values for the rule’s variables given its
domain. For example, the rule template Word(x)
⇒ HasPos(x,y), will be instantiated with each
possible part-of-speech tag for each observed word.

We score the rule groundings by associating each
template with a neural net. We denote the score of
each rule grounding as wi, the weight associated
with rule grounding i. These weights are used as
coefficients of the corresponding ILP variables in
the objective function when performing global in-
ference.

We introduce rule variables ri for each rule
grounding i and head variables hj for each different
head predicate j (and its negation (h̄j)) to indicate
the activation of the variable. The objective function
can then be expressed as

arg max
∀ri

∑
i

wi · ri

.
Note that in the objective function, we do not as-

sign any weights to head variables as their values are
entirely determined by constraints that ensure con-
sistency.

In order to enforce consistency between variable
assignments and dependencies among them, the fol-
lowing five types of constraints are taken into con-
sideration in an ILP formulation.

negation constraints The first type constraints en-
sure exclusive activation of a head predicate
and its negation at the same time. For example,
hHasPos(a,b) + h̄HasPos(a,b) = 1.

implied constraints Each rule template defines the
dependency between body and head. This de-
pendency is reflected between the rule ground-
ings variable and the head variables in the body.
For example, in the rule grounding Word(a)
∧ HasPrevWord(a,b) ∧ HasPos(b,p)
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⇒ HasPos(a,q), where a, b are words and
p, q are part-of-speech tags, the constraint
rrule ≤ hHasPos(b,p) is needed, as the whole
rule is true only when the body is activated.

rule/head constraints One head predicate can be
associated with multiple rule grounding vari-
ables. Let ri, i ∈ ruleset(j) denote the rule
variables associated with the same head vari-
able hj , where ruleset(j) is the set of rule
groundings that share the same head predicate
j. Activation of any rules in ruleset(j) en-
sures the activation of the head variable, i.e.
hj ≥ ri,∀i ∈ ruleset(j). On the other hand,
the activation of the head variable ensures the
activation of at least one of its corresponding
rule variables, i.e. hj ≤

∑
i ri.

binary/multi-class/multi-label constraints In
many problems, we are facing multi-class or
multi-label decisions. DRAIL guarantees this
by adding suitable constraints. For instance, in
the multi-class case, among all head variables
hj (j ∈ decision(d)) on the same entity,
only one of them is activated while the others
remain inactive, as a decision is made on
which class to choose, i.e.

∑
j hj = 1. Note

that the constraints for binary predicates can be
covered by the negation constraints mentioned
above.

hard constraints from rule definitions Users can
define hard constraints in the rule templates,
which usually infuse prior knowledge and
thus improve the prediction capacity. Rule
groundings of these templates are dealt dif-
ferently as the activation of such a rule de-
pends on the activation of all body predi-
cates. As an example, a hard constraint for
entity-relation extraction problem discussed in
this paper is LiveIn(x,y)⇒ Entity(x,
‘‘Per’’).

We used the Gurobi Optimizer (Gurobi Optimiza-
tion, 2015) to implement the inference module. As
in many real world problem settings, the optimiza-
tion problem based on the ILP formulation is com-
putationally intractable, hence in practice we relax
the inference procedure to linear programming (LP)

problem by adapting the variable type from binary
to continuous, within the range [0, 1].

5 Learning

Each rule template in a DRAIL model file defines
a learning problem, for scoring the mapping of the
variables defined in rule body to its head. We de-
signed the rules to include flexible definitions for the
representation and architecture used for learning this
scoring function.

In the training stage, rule groundings are unfolded
from the data, using rule templates. For each rule
template, the neural networks map the LHS (left
hand side) of a rule to the RHS (right hand side) with
some probability, given all possible groundings for
the right hand side. This mapping is learned using
a deep learning model, which uses a logistic regres-
sion on top and the output probability distribution
will be used as scores over the multi-class classifica-
tion problem in an succeeding inference procedure.

One of the main advantages of DRAIL is that
the neural network architecture is separate from
the structural model. For each deep neural network
model, all the hyper-parameters (e.g., the type of
neural network, the learning rate, etc.) can be config-
ured and optimized. Consequently we can associate
different deep neural network architectures with
different rule templates, as suits the sub-problems
best. This design not only grants more flexibility
when dealing with a structural learning problem, but
also enables users to experiment with more feasible
choices. For example, in the entity relation classifi-
cation problem, we can create a LSTM (long-short-
term-memory) model for entity tagging and then a
Multi-layer Perceptron model for relation classifica-
tion. In our experiments we used two different archi-
tectures, a Multi-layer Perceptron model and a Re-
current neural network, which are briefly described
in the following sections.

5.1 MLP (Multi-layer Perceptron)

MLP is a simple yet widely used feed-forward artifi-
cial neural network model mapping input data onto a
set of appropriate outputs. It contains several layers
of nodes as a directed graph. Nodes in each layer are
fully connected and an activation function is applied
to each node except the input nodes. MLP has been
proved to be a useful modeling tool, capable of ap-
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proximating any function (Cybenko, 1989), hence it
can be directly applied to data that are linearly insep-
arable. In our experiments we used a simple three-
layer MLP that can be formulated as follows:

hs = sigm(W [x1;x2; ps]),
ys = softmax(hs),

where the ; operator means concatenation of input
vectors, and ps is the feature representation of a hid-
den variable s.Visually, this model can be illustrated
by Figure 3.

x2

Hidden
Layer

x1 ps

y

Figure 3: Multi-layer Perceptron Model for DRAIL.

5.2 RNN (Recurrent Neural Networks)

It has been repeatedly demonstrated that Recurrent
Neural Networks are a good fit for sequence label-
ing tasks (Elman, 1990; Graves, 2013). We there-
fore used it for tackling the POS tagging task. Since
our model (see section 3) for the POS task captures
the dependency between the previous prediction and
the current one, we formulate the RNN to accommo-
date this prediction task by including the unobserved
predicates on the LHS of the rule templates as hid-
den variables. In order to break the dependency of
the hidden predicates and the recurrent information
in the model, we concatenated feature representa-
tions of the hidden variable with the recurrent rep-
resentations that entail the history information and
feed them to the final softmax layer to yield scores.
This can be defined by the following equations:

ht = [sigm(Wxxt); sigm(Whht−1)],
hst = [ht; pst ],
yst = softmax(hst ) (1)

where pst is the feature representation of hidden vari-
able s at step t. A graphical demonstration of this
model is shown in Figure 4.

xt

RNN
Unit

ht−1 ht

ytpst

Figure 4: Recurrent Neural Network Model for DRAIL.

Possible future extension of deep neural network
models include but are not limited to: LSTM (Long
short term memory) model, GRU (Gated Recurrent
Unit) model, Recursive Neural Network and Atten-
tion models. In addition, though our current learning
implementation is training local learning models in
the training stage combined with global inference in
the testing stage, which is analogous to an MEMM
model, in future work we plan to extend DRAIL to
global learning in the training stage, similar to Con-
ditional Random Fields (CRF).

6 Experiments

To demonstrate the generalization ability of our
system to a variety of NLP tasks, we evaluated
DRAIL on two structured prediction problems:
Twitter Part of Speech (POS) tagging task (Gimpel
et al., 2011) and the Entity-mention-Relation extrac-
tion task (Roth and Yih, 2007).

6.1 Part of Speech Tagging for Twitter
To tackle the Twitter POS tagging problem, Gimpel
et al. (2011) used a CRF and defined a comprehen-
sive set of features specific to the Twitter domain.
We modeled the POS tagging problem in DRAIL as
described on section 3 and tested it on the same data.
This data set contains 1, 827 tweets (26, 436 tokens)
in total, divided in three folds: train, validation and
test and it encompasses 25 different tags.

We used different features in our experiments, in-
cluding pre-trained word embeddings1 (Mikolov et

1We refer to Mikolov et al (2013) as W2V, and to Pennington
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al., 2013; Pennington et al., 2014) to take advantage
of our deep learning system as well as the base fea-
tures defined by (Gimpel et al., 2011): a feature type
for each word, suffixes of size 1 to 3, capitalization
patterns, and features to indicate whether the word
contains digits and hyphens.

We built deep neural network models for each
template separately and trained them locally us-
ing different configurations of the enumerated fea-
ture sets. The same set hyper-parameters were used
across both models: a MLP model with one hidden
layer of 100 hidden units. We used batched stochas-
tic gradient descent (SGD) with batch size 200 to
train the models. Additionally, to prevent over fit-
ting, we applied an early-stop paradigm to deter-
mine the appropriate number of training epochs by
using the validation set. In the prediction stage, In-
teger Linear Programming (ILP) was used to per-
form global inference on the test set and decide the
POS tag for all words in a sentence. In order to speed
up the inference, we relaxed ILP to Linear Program
(LP), approximating the {0, 1} variables as a float
number within the range [0, 1].

Results Experimental results can be observed in
tables 1 and 2. Table 1 shows the advantage of us-
ing deep neural networks over a Maximum Entropy
Markov Model (MEMM) and the CRF results re-
ported by (Gimpel et al., 2011). We obtained an im-
provement of 4.51% and 2.31% respectively, even
by training Neural Networks locally, with zero tun-
ing effort and performing global inference only at
prediction time. In addition, we defined two mod-
els, a local baseline, using only the emission features
(i.e., without inference), and a skyline that used the
gold previous POS tags (i.e., no inference is required
to determine this information). DRAIL’s results af-
ter global inference got quite close to using the gold
dependencies in the same MLP model, missing the
skyline by just 0.37%.

One of the main advantages of deep neural net-
works is the way they can exploit feature embed-
ding. By looking at table 2 we can observe that word
embeddings pre-trained on Twitter data help boost
the performance of this task considerably. In con-
trast, the pre-trained word embeddings from Google
news negatively impact the results, decreasing the
performance drastically. We attribute this result to

et al (2014) as Twitter Embedding

the linguistic style and language characteristics of
tweets, which greatly differ from those of news arti-
cles. To confirm this hypothesis, we did a subsequent
qualitative analysis and discovered that a great num-
ber of twitter tokens are not present in the Google
news corpus.

These results provide evidence that training sim-
ple MLP models locally, using suitable pre-trained
embeddings and applying global inference for pre-
diction, can outperform shallow models with global
training procedures, even without additional man-
ual efforts to tune hype-parameters. Furthermore, we
extended our deep neural networks model to Re-
current Neural networks in DRAIL, and integrated
it with global inference. Due to time limitation,
DRAIL is only tested with simple features, while
still demonstrating comparable performance on this
task.

Model Feature set Accuracy
CRF (Gimpel
et al., 2011)

Base Features 83.38%

MEMM Base Features 81.00%
DRAIL Local
Prediction
(Baseline)

Base Features + Twitter
Embedding

84.20%

DRAIL Gold
Dependencies
(Skyline)

Base Features + Twitter
Embedding

85.88%

DRAIL MLP
with Global
Inference

Base Features + Twitter
Embedding

85.51%

Table 1: Comparison of DRAIL to other models

Model Feature set Accuracy

MLP with
Global
Inference

Google W2V 55.52%
BOW 75.50%
Twitter Embedding 78.35%
Twitter Embedding +
BOW

82.10%

Twitter Embedding +
Base Features

85.51%

Local RNN BOW (randomized vec-
tor)

79.68%

RNN with
Global Infer-
ence

BOW (randomized vec-
tor)

80.12%

Table 2: Accuracy of Twitter POS tagging using DRAIL with
different architectures and feature sets
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6.2 Entity-Relation Extraction
We used DRAIL to describe a joint model to extract
named entities and relations between them. The data
set used was created by (Roth and Yih, 2004). It
contains 1441 sentences and 37261 phrases. There
are four types of entities: People (1691), Location
(1968), Organization (984), and Other (706) and
five types of relations. Similar to previous work on
this data set, we focused on two specific relations:
LIVEIN (521) indicates a Person lives in a Location,
and WORKFOR (401) indicates a Person works for
an Organization. All other pairs of phrases do not
hold any relation between them, which means the
data set is highly skewed.

We used the model configuration outlined in Fig-
ure 2. For the entity classifier, a set of features were
extracted from phrases with a window of size 4
around the target including itself. These features in-
clude words, word embedding, part-of-speech tags,
suffix, prefix, gazetteers and capitalization patterns.
For the relation classifier, we included the same set
of features mentioned above for both phrases as well
as a small list of indicator words additionally, like
“live”, “native”, “employ”, and its relative position
to the two target phrases. We also used features
from the path between two phrases on the depen-
dency parsing tree. A deep neural network model
was trained locally for each rule. These networks
have one hidden layer and 100 hidden units (300 for
relation classifiers). We used stochastic gradient de-
cent with batch size 100 and AdaGrad (Duchi et al.,
2011) to adapt the learning rate in training. Softmax
probabilities from the neural networks were used as
scores in each ILP instance to find the optimal solu-
tion.

Results The results using 5-fold cross-validation
are shown in Table 3. We report the F1 score of
the positive class, i.e. Fβ=1. To show the model-
ing capacity and expressiveness of DRAIL, we also
tested using 0-order MEMM for local models. For
each configuration, we report the result obtained di-
rectly from locally trained classifiers, and the results
after global inference. As it shows, the deep archi-
tecture has a higher impact on the relation extrac-
tion problem than on entities, demonstrating its ef-
ficacy on difficult decisions. Also, the global infer-
ence procedure helps improve the performance on
relation extraction significantly. Even without incor-

porating numerous handcrafted features, the perfor-
mance of DRAIL is commensurate to or better than
previous work, including (Kordjamshidi et al., 2015)
and (Roth and Yih, 2007). Note that results are not
directly comparable because their data splits specifi-
cations were not available.

Model PER LOC ORG WorkFor LiveIn
MEMM
Local

93.96 88.80 78.82 54.12 43.56

MEMM
Global

93.43 89.02 79.36 54.68 53.09

MLP
Local

92.32 89.78 80.60 54.80 51.19

MLP
Global

92.30 90.05 79.86 62.84 56.86

Table 3: The F1 of different local models with and without in-
ference on Entity-Relation Extraction task using DRAIL, 5-fold
cross validation

7 Discussion and Conclusion

This paper introduces DRAIL, an open-source2

declarative framework for defining structural depen-
dencies between probabilistic concepts trained us-
ing deep learning models. The experimental results
on the Twitter POS tagging problem and the Entity-
mention-Relation extraction task demonstrate the
flexibility of our framework, which can be used for
quick prototyping and evaluating the interplay be-
tween representation complexity and structural com-
plexity. DRAIL takes advantage of both building de-
pendencies between structures and mapping com-
plex inputs to outputs, resulting in a richer and
more flexible hypothesis class, and enriched fea-
ture representations at the same time. These merits
enhance the prediction ability of DRAIL. Our cur-
rent work looks into including efficient and effective
joint training (CRF Neural Networks) into DRAIL,
by taking into account assigning values to all the
variables in a global model and back-propagating
error to the whole structure simultaneously. A po-
tential advantage is that we can pre-train the mod-
els locally, and use global training to boost the per-
formance using the same set of parameters, by only
changing the objective function. Our DRAIL frame-
work carries the capacity to incorporate this training
paradigm into itself without additional effort.

2we intend to release the code and data used in our experi-
ments
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Abstract

In this work, we present the first results for
neuralizing an Unsupervised Hidden Markov
Model. We evaluate our approach on tag in-
duction. Our approach outperforms existing
generative models and is competitive with the
state-of-the-art though with a simpler model
easily extended to include additional context.

1 Introduction

Probabilistic graphical models are among the most
important tools available to the NLP community. In
particular, the ability to train generative models us-
ing Expectation-Maximization (EM), Variational In-
ference (VI), and sampling methods like MCMC has
enabled the development of unsupervised systems for
tag and grammar induction, alignment, topic models
and more. These latent variable models discover hid-
den structure in text which aligns to known linguis-
tic phenomena and whose clusters are easily identifi-
able.

Recently, much of supervised NLP has found great
success by augmenting or replacing context, features,
and word representations with embeddings derived
from Deep Neural Networks. These models allow for
learning highly expressive non-convex functions by
simply backpropagating prediction errors. Inspired
by Berg-Kirkpatrick et al. (2010), who bridged the
gap between supervised and unsupervised training
with features, we bring neural networks to unsuper-
vised learning by providing evidence that even in

∗This research was carried out while all authors were at the
Information Sciences Institute.

unsupervised settings, simple neural network mod-
els trained to maximize the marginal likelihood can
outperform more complicated models that use expen-
sive inference.

In this work, we show how a single latent variable
sequence model, Hidden Markov Models (HMMs),
can be implemented with neural networks by sim-
ply optimizing the incomplete data likelihood. The
key insight is to perform standard forward-backward
inference to compute posteriors of latent variables
and then backpropagate the posteriors through the
networks to maximize the likelihood of the data.

Using features in unsupervised learning has been
a fruitful enterprise (Das and Petrov, 2011; Berg-
Kirkpatrick and Klein, 2010; Cohen et al., 2011) and
attempts to combine HMMs and Neural Networks
date back to 1991 (Bengio et al., 1991). Addition-
ally, similarity metrics derived from word embed-
dings have also been shown to improve unsupervised
word alignment (Songyot and Chiang, 2014).

Interest in the interface of graphical models and
neural networks has grown recently as new infer-
ence procedures have been proposed (Kingma and
Welling, 2014; Johnson et al., 2016). Common to
this work and ours is the use of neural networks to
produce potentials. The approach presented here is
easily applied to other latent variable models where
inference is tractable and are typically trained with
EM. We believe there are three important strengths:

1. Using a neural network to produce model prob-
abilities allows for seamless integration of addi-
tional context not easily represented by condi-
tioning variables in a traditional model.
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2. Gradient based training trivially allows for mul-
tiple objectives in the same loss function.

3. Rich model representations do not saturate as
quickly and can therefore utilize large quantities
of unlabeled text.

Our focus in this preliminary work is to present
a generative neural approach to HMMs and demon-
strate how this framework lends itself to modularity
(e.g. the easy inclusion of morphological informa-
tion via Convolutional Neural Networks §5), and the
addition of extra conditioning context (e.g. using an
RNN to model the sentence §6). Our approach will
be demonstrated and evaluated on the simple task of
part-of-speech tag induction. Future work, should
investigate the second and third proposed strengths.

2 Framework

Graphical models have been widely used in NLP.
Typically potential functions ψ(z,x) over a set of
latent variables, z, and observed variables, x, are
defined based on hand-crafted features. Moreover,
independence assumptions between variables are of-
ten made for the sake of tractability. Here, we pro-
pose using neural networks (NNs) to produce the po-
tentials since neural networks are universal approx-
imators. Neural networks can extract useful task-
specific abstract representations of data. Addition-
ally, Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) based Recurrent Neural
Networks (RNNs), allow for modeling unbounded
context with far fewer parameters than naive one-hot
feature encodings. The reparameterization of poten-
tials with neural networks (NNs) is seamless:

ψ(z,x) = fNN(z,x | θ) (1)

The sequence of observed variables are denoted
as x = {x1, . . . , xn}. In unsupervised learning, we
aim to find model parameters θ that maximize the
evidence p(x | θ). We focus on cases when the pos-
terior is tractable and we can use Generalized EM
(Dempster et al., 1977) to estimate θ.

p(x) =
∑
z

p(x, z) (2)

= Eq(z)[ln p(x, z | θ)] + H[q(z)] (3)

+ KL (q(z) ‖ p(z |x, θ)) (4)

Text Pierre Vinken will join the board
PTB NNP NNP MD VB DT NN

Table 1: Example Part-of-Speech tagged text.

where q(z) is an arbitrary distribution, and H is the
entropy function. The E-step of EM estimates the
posterior p(z |x) based on the current parameters θ.
In the M-step, we choose q(z) to be the posterior
p(z |x), setting the KL-divergence to zero. Addition-
ally, the entropy term H[q(z)] is a constant and can
therefore be dropped. This means updating θ only
requires maximizing Ep(z |x)[ln p(x, z | θ)]. The gra-
dient is therefore defined in terms of the gradient of
the joint probability scaled by the posteriors:

J(θ) =
∑
z

p(z |x)
∂ ln p(x, z | θ)

∂θ
(5)

In order to perform the gradient update in Eq 5,
we need to compute the posterior p(z |x). This
can be done efficiently with the Message Passing al-
gorithm. Note that, in cases where the derivative
∂
∂θ ln p(x, z | θ) is easy to evaluate, we can perform
direct marginal likelihood optimization (Salakhutdi-
nov et al., 2003). We do not address here the question
of semi-supervised training, but believe the frame-
work we present lends itself naturally to the incorpo-
ration of constraints or labeled data. Next, we demon-
strate the application of this framework to HMMs in
the service of part-of-speech tag induction.

3 Part-of-Speech Induction

Part-of-speech tags encode morphosyntactic informa-
tion about a language and are a fundamental tool in
downstream NLP applications. In English, the Penn
Treebank (Marcus et al., 1994) distinguishes 36 cate-
gories and punctuation. Tag induction is the task of
taking raw text and both discovering these latent clus-
ters and assigning them to words in situ. Classes can
be very specific (e.g. six types of verbs in English)
to their syntactic role. Example tags are shown in Ta-
ble 1. In this example, board is labeled as a singular
noun while Pierre Vinken is a singular proper noun.

Two natural applications of induced tags are as
the basis for grammar induction (Spitkovsky et al.,
2011; Bisk et al., 2015) or to provide a syntactically
informed, though unsupervised, source of word em-
beddings.
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z1 zt�1 zt+1 zTzt

xt xt+1xt�1x1 xT

Figure 1: Pictorial representation of a Hidden Markov Model.

Latent variable (zt) transitions depend on the previous value

(zt−1), and emit an observed word (xt) at each time step.

3.1 The Hidden Markov Model

A common model for this task, and our primary
workhorse, is the Hidden Markov Model trained with
the unsupervised message passing algorithm, Baum-
Welch (Welch, 2003).

Model HMMs model a sentence by assuming that
(a) every word token is generated by a latent class,
and (b) the current class at time t is conditioned on
the local history t−1. Formally, this gives us an emis-
sion p(xt | zt) and transition p(zt | zt−1) probability.
The graphical model is drawn pictorially in Figure 1,
where shaded circles denote observations and empty
ones are latent. The probability of a given sequence
of observations x and latent variables z is given by
multiplying transitions and emissions across all time
steps (Eq. 6). Finding the optimal sequence of latent
classes corresponds to computing an argmax over the
values of z.

p(x, z) =
n+1∏
t=1

p(zt | zt−1)
n∏
t=1

p(xt | zt) (6)

Because our task is unsupervised we do not have
a priori access to these distributions, but they can be
estimated via Baum-Welch. The algorithm’s outline
is provided in Algorithm 1.

Training an HMM with EM is highly non-convex
and likely to get stuck in local optima (Johnson,
2007). Despite this, sophisticated Bayesian smooth-
ing leads to state-of-the-art performance (Blunsom
and Cohn, 2011). Blunsom and Cohn (2011) fur-
ther extend the HMM by augmenting its emission
distributions with character models to capture mor-
phological information and a tri-gram transition ma-
trix which conditions on the previous two states. Re-
cently, Lin et al. (2015) extended several models

Algorithm 1 Baum-Welch Algorithm
Randomly Initialize distributions (θ)
repeat

Compute forward messages: ∀i,t αi(t)
Compute backward messages: ∀i,t βi(t)
Compute posteriors:

p(zt = i |x, θ) ∝ αi(t)βi(t)
p(zt = i, zt+1 = j |x, θ)

∝ αi(t)p(zt+1 =j|zt= i)
×βj(t+ 1)p(xt+1|zt+1 =j)

Update θ
until Converged

including the HMM to include pre-trained word em-
beddings learned by different skip-gram models. Our
work will fully neuralize the HMM and learn embed-
dings during the training of our generative model.
There has also been recent work on by Rastogi et al.
(2016) on neuralizing Finite-State Transducers.

3.2 Additional Comparisons
While the main focus of our paper is the seamless
extension of an unsupervised generative latent vari-
able model with neural networks, for completeness
we will also include comparisons to other techniques
which do not adhere to the generative assumption.
We include Brown clusters (Brown et al., 1992) as
a baseline and two clustering techniques as state-
of-the-art comparisons: Christodoulopoulos et al.
(2011) and Yatbaz et al. (2012).

Of particular interest to us is the work of Brown
et al. (1992). Brown clusters group word types
through a greedy agglomerative clustering according
to their mutual information across the corpus based
on bigram probabilities. Brown clusters do not ac-
count for a word’s membership in multiple syntactic
classes, but are a very strong baseline for tag induc-
tion. It is possible our approach could be improved
by augmenting our objective function to include mu-
tual information computations or a bias towards a
harder clustering.

4 Neural HMM

The aforementioned training of an HMM assumes ac-
cess to two distributions: (1) Emissions with K × V
parameters, and (2) Transitions with K ×K parame-
ters. Here we assume there are K clusters and V
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word types in our vocabulary. Our neural HMM
(NHMM) will replace these matrices with the out-
put of simple feed-forward neural networks. All con-
ditioning variables will be presented as input to the
network and its final softmax layer will provide prob-
abilities. This should replicate the behavior of the
standard HMM, but without an explicit representa-
tion of the necessary distributions.

4.1 Producing Probabilities

Producing emission and transition probabilities al-
lows for standard inference to take place in the
model.

Emission Architecture Let vk ∈ RD be vector
embedding of tag zk, wi ∈ RD and bi vector embed-
ding and bias of word i respectively. The emission
probability p(wi | zk) is given by

p(wi | zk) =
exp(v>k wi + bi)∑V
j=1 exp(v>k wj + bj)

(7)

The emission probability can be implemented by a
neural network where wi is the weight of unit i at
the output layer of the network. The tag embeddings
vk are obtained by a simple feed-forward neural net-
work consisting of a lookup table following by a non-
linear activation (ReLU). When using morphology
information (§5), we will first use another network
to produce the word embedddings wi.

Transition Architecture We produce the transi-
tion probability directly by using a linear layer of
D ×K2. More specifically, let q ∈ RD be a query
embedding. The unnormalized transition matrix T is
computed as

T = U>q + b (8)

where U ∈ RD×K2
and b ∈ RK2

. We then reshape
T to a K ×K matrix and apply a softmax layer per
row to produce valid transition probabilities.

4.2 Training the Neural Network

The probabilities can now be used to perform the
aforementioned forward and backward passes over
the data to compute posteriors. In this way, we per-
form the E-step as though we were training a vanilla
HMM. Traditionally, these values would simply

be re-normalized during the M-step to re-estimate
model parameters. Instead, we use them to re-scale
our gradients (following the discussion from §2).
Combining the HMM factorization of the joint proba-
bility p(x, z) from Eq. 6 with the gradient from Eq. 5,
yields the following update rule:

J(θ) =
∑
z

p(z |x)
∂ ln p(x, z | θ)

∂θ

=
∑
t

∑
zt

p(zt |x)
∂ ln p(xt | zt, θ)

∂θ

+ p(zt, zt−1 |x)
∂ ln p(zt | zt−1, θ)

∂θ
(9)

The posteriors p(zt |x) and p(zt, zt−1 |x) are ob-
tained by running Baum-Welch as shown in Algo-
rithm 1. Where traditional supervised training can
follow a clear gradient signal towards a specific
assignment, here we are propagating the model’s
(un)certainty instead. An additional complication in-
troduced by this paradigm is the question of how
many gradient steps to take on a given minibatch. In
incremental EM the posteriors are simply accumu-
lated and normalized. Here, we repeatedly recom-
pute gradients on a minibatch until reaching the max-
imum number of epochs or a convergence threshold
is met.

Finally, notice that the factorization of the HMM
allows us to evaluate the joint distribution p(x, z | θ)
easily. We therefore employ Direct Marginal Likeli-
hood (DML) (Salakhutdinov et al., 2003) to optimize
the model’s parameters. After trying both EM and
DML we found EM to be slower to converge and per-
form slightly weaker. For this reason, the presented
results will all be trained with DML.

4.3 HMM and Neural HMM Equivalence

An important result we see in Table 2 is that the Neu-
ral HMM (NHMM) performs almost identically to
the HMM. At this point, we have replaced the un-
derlying machinery, but the model still has the same
information bottlenecks as a standard HMM, which
limit the amount and type of information carried be-
tween words in the sentence. Additionally, both ap-
proaches are optimizing the same objective function,
data likelihood, via the computation of posteriors.
The equivalency is an important sanity check. The
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Tag embeddings

ReLU

Linear

Softmax

Char-CNN

Figure 2: Computational graph of Char-CNN emission network.

A character convolutional neural network is used to compute the

weight of the linear layer for every minibatch.

following two sections will demonstrate the extensi-
bility of this approach.

5 Convolutions for Morphology

The first benefit of moving to neural networks is the
ease with which new information can be provided
to the model. The first experiment we will perform
is replacing words with embedding vectors derived
from a Convolutional Neural Network (CNN) (Kim
et al., 2016; Jozefowicz et al., 2016). We use a convo-
lutional kernel with widths from 1 to 7, which covers
up to 7 character n-grams (Figure 2). This allows the
model to automatically learn lexical representations
based on prefix, suffix, and stem information about a
word. No additional changes to learning are required
for extension.

Adding the convolution does not dramatically
slow down our model because the emission distribu-
tions can be computed for the whole batch in one
operation. We simply pass the whole vocabulary
through the convolution in a single operation.

6 Infinite Context with LSTMs

One of the most powerful strengths of neural net-
works is their ability to create compact representa-
tion of data. We will explore this here in the creation
of transition matrices. In particular, we chose to aug-
ment the transition matrix with all preceding words
in the sentence: p(zt | zt−1, w0, . . . , wt−1). Incorpo-
rating this amount of context in a traditional HMM is
intractable and impossible to estimate, as the number
of parameters grows exponentially.

For this reason, we use an stacked LSTM
to form a low dimensional representation of the
sentence (C0...t−1) which can be easily fed to
our network when producing a transition matrix:

xtxt�1x1 xT

Tt�1,t

Figure 3: A graphical representation of our LSTM transition

network. Transition matrix Tt−1,t from time step t − 1 to t is

computed based on the hidden state of the LSTM at time t− 1.

p(zt | zt−1, C0...t−1) in Figure 3. By having the
LSTM only consume up to the previous word, we do
not break any sequential generative model assump-
tions.1 In terms of model architecture, the query em-
bedding q will be replaced by a hidden state ht−1 of
the LSTM at time step t− 1.

7 Evaluation

Once a model is trained, the one best latent sequence
is extracted for every sentence and evaluated on three
metrics.

Many-to-One (M-1) Many-to-one computes the
most common true part-of-speech tag for each clus-
ter. It then computes tagging accuracy as if the clus-
ter were replaced with that tag. This metric is easily
gamed by introducing a large number of clusters.

One-to-One (1-1) One-to-One performs the same
computation as Many-to-One but only one cluster is
allowed to be assigned to a given tag. This prevents
the gaming of M-1.

V-Measure (VM) V-Measure is an F-measure
which trades off conditional entropy between the
clusters and gold tags. Christodoulopoulos et al.
(2010) found VM is to be the most informative and
consistent metric, in part because it is agnostic to the
number of induced tags.

8 Data and Parameters

To evaluate our approaches, we follow the existing
literature and train and test on the full WSJ corpus.

1This interpretation does not complicate the computation
of forward-backward messages when running Baum-Welch,
though it does, by design, break Markovian assumption about
knowledge of the past.
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There are three components of our models which can
be tuned. Something we have to be careful of when
train and test are the same data. To avoid cheating,
no values were tuned in this work.

Architecture The first parameter is the number of
hidden units. We chose 512 because it was the largest
power of two we could fit in memory. When we ex-
tended our model to include the convolutional emis-
sion network, we only used 128 units, due to the
intensive computation of Char-CNN over the whole
vocabulary per minibatch.

The second design choice was the number of
LSTM layers. We used a three layer LSTM as it
worked well for (Tran et al., 2016), and we applied
dropout (Srivastava et al., 2014) over the vertical con-
nections of the LSTMs (Pham et al., 2014) with a rate
of 0.5.

Finally, the maximum number of inner loop up-
dates applied per batch is set to six. We train all the
models for five epochs and perform gradient clipping
whenever the gradient norm is greater than five. To
determine when to stop applying the gradient during
training we simply check when the log probability
has converged ( new−old

old < 10−4) or if the maximum
number of inner loops has been reached. All opti-
mization was done using Adam (Kingma and Ba,
2015) with default hyper-parameters.

Initialization In addition to architectural choices
we have to initialize all of our parameters. Word em-
beddings (and character embeddings in the CNN) are
drawn from a Gaussian N (0, 1). The weights of all
linear layers in the model are drawn from a uniform
distribution with mean zero and a standard deviation
of

√
1/nin, where nin is the input dimension of the

linear layer.2 Additionally, weights for the LSTMs
are initialized using N (0, 1/2n), where n is the num-
ber of hidden units, and the bias of the forget gate
is set to 1, as suggested by Józefowicz et al. (2015).
We present some parameter and modeling ablation
analysis in §10.

It is worth emphasizing that parameters are shared
at the lower level of our network architectures (see
Figure 2 and Figure 3). Sharing parameters not
only allows the networks to share statistical strength,
but also reduces the computational cost of comput-

2This is the default parameter initialization in Torch.

System M-1 1-1 VM

B
as

e HMM 62.5 41.4 53.3
Brown 68.2 49.9 63.0

SO
TA

Clark (2003) 71.2 65.6
Christodoulopoulos (2011) 72.8 66.1
Blunsom (2011) 77.5 69.8
Yatbaz (2012) 80.2 72.1

O
ur

W
or

k NHMM 59.8 45.7 54.2
+ Conv 74.1 48.3 66.1
+ LSTM 65.1 52.4 60.4
+ Conv & LSTM 79.1 60.7 71.7

Table 2: English Penn Treebank results with 45 induced clusters.

We see significant gains from both morphology (+Conv) and ex-

tended context (+LSTM). The combination of these approaches

results in a very simple system which is competitive with the

best generative model in the literature.

ing sufficient statistics during training due to the
marginalization over latent variables.

In all of our experiments, we use minibatch size of
256 and sentences of 40 words or less due to mem-
ory constraints. Evaluation was performed on all
sentence lengths. Additionally, we map all the digits
to 0, but do not lower-case the data or perform any
other preprocessing. All model code is available on-
line for extension and replication at
https://github.com/ketranm/neuralHMM.

9 Results

Our results are presented in Table 2 along with two
baseline systems, and the four top performing and
state-of-the-art approaches. As noted earlier, we are
happy to see that our NHMM performs almost iden-
tically with the standard HMM. Second, we find that
our approach, while simple and fast, is competitive
with Blunsom (2011). Their Hierarchical Pitman-Yor
Process for trigram HMMs with character modeling
is a very sophisticated Bayesian approach and the
most appropriate comparison to our work.

We see that both extended context (+LSTM) and
the addition of morphological information (+Conv)
provide substantial boosts to performance. Interest-
ingly, the gains are not completely complementary,
as we note that the six and twelve point gains of these
additions only combine to a total of sixteen points in
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Configuration M-1 1-1 VM

Uniform initialization 65.5 50.1 61.7
1 LSTM layer, no dropout 69.3 52.7 63.6
1 LSTM layer, dropout 71.0 55.7 66.2
3 LSTM layers, no dropout 72.7 52.2 65.1

Best Model 79.1 60.7 71.7
Table 3: Exploring different configurations of NHMM

VM improvement. This might imply that at least
some of the syntactic context being captured by the
LSTM is mirrored in the morphology of the language.
This hypothesis is something future work should in-
vestigate with morphologically rich languages.

Finally, the newer work of Yatbaz et al. (2012)
outperforms our approach. It is possible our perfor-
mance could be improved by following their lead and
including knowledge of the future.

10 Parameter Ablation

Our model design decisions and weight initializa-
tions were chosen based on best practices set forth
in the supervised training literature. We are lucky
that these also behaved well in the unsupervised set-
ting. Within unsupervised structure prediction, to our
best knowledge, there has been no empirical study
on neural network architecture design and weight ini-
tialization. We therefore provide an initial overview
on the topic for several of our decisions.

Weight Initialization If we run our best model
(NHMM+Conv+LSTM) with all the weights initial-
ized from a uniform distribution U(−10−4, 10−4)3

we find a dramatic drop in V-Measure performance
(61.7 vs 71.7 in Table 3). This is consistent with
the common wisdom that unlike supervised learning
(Luong et al., 2015), weight initialization is impor-
tant to achieve good performance on unsupervised
tasks. It is possible that performance could be further
enhance via the popular technique of ensembling,
would would allow for combining models which con-
verged to different local optima.

LSTM Layers And Dropout We find that dropout
is important in training an unsupervised NHMM.

3We choose small standard derivation here for numerical sta-
bility when computing forward-backward messages.

Removing dropout causes performance to drop six
points. To avoid tuning the dropout rate, future work
might investigate the effect of variational dropout
(Kingma et al., 2015) in unsupervised learning. We
also observed that the number of LSTM layers has
an impact on V-Measure. Had we simply used a sin-
gle layer we would have lost nearly five points. It
is possible that more layers, perhaps coupled with
more data, would yield even greater gains.

11 Future Work

In addition to parameter tuning and multilingual eval-
uation, the biggest open questions for our approach
are the effects of additional data and augmenting the
loss function. Neural networks are notoriously data
hungry, indicating that while we achieve competitive
results, it is possible our model will scale well when
run with large corpora. This would likely require the
use of techniques like NCE (Gutmann and Hyväri-
nen, 2010) which have been shown to be highly ef-
fective in related tasks like neural language mod-
eling (Mnih and Teh, 2012; Vaswani et al., 2013).
Secondly, despite focusing on ways to augment an
HMM, Brown clustering and systems inspired by it
perform very well. They aim to maximize mutual
information rather than likelihood. It is possible that
augmenting or constraining our loss will yield addi-
tional performance gains.

Outside of simply maximizing performance on tag
induction, a more subtle, but powerful contribution
of this work may be its demonstration of the easy
and effective nature of using neural networks with
Bayesian models traditionally trained by EM. We
hope this approach scales well to many other do-
mains and tasks.
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