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Abstract

Codeswitching is a widely observed phe-
nomenon among bilingual speakers. By com-
bining subword information enriched word
vectors with linear-chain Conditional Ran-
dom Field, we develop a supervised machine
learning model that identifies languages in a
English-Spanish codeswitched tweets. Our
computational method achieves a tweet-level
weighted F1 of 0.83 and a token-level ac-
curacy of 0.949 without using any exter-
nal resource. The result demonstrates that
named entity recognition remains a challenge
in codeswitched texts and warrants further
work.

1 Introduction

Codeswitching (CS) is a widely observed phe-
nomenon in social media. Solorio et al. (2014) de-
fine CS broadly as a communication act, whether
spoken or written, where two or more languages are
being used interchangeably. Codeswitching is com-
mon among bilingual speakers, both in speech and in
writing. Identifying the languages in a codeswitched
input is a crucial first step before applying other nat-
ural language processing algorithms.

The second shared task, like the previous
one (Solorio et al., 2014), challenges the participants
to develop computational method for identifying the
language of each word in a dataset of codeswitched
tweets. For each word in the source, the goal is to
identify whether the word is lang1, lang2, mixed,
other (punctuation, emotion and everything that is
not a word in neither lang1 nor lang2), ambiguous,

Token Gold standard label
Hay lang2
Dios ne
, other
I lang1
’m lang1
tired lang1

Table 1: Example of label assignments for a English-Spanish

codeswitched tweet

ne (named entity), unknown or fw (foreign word).
Lang1 and lang2 are the two languages presented in
a codeswitched language pair. There are two lan-
guage pairs available in this shared task: Modern
Standard Arabic-Arabic Dialects (MSA-DA) and
English-Spanish (EN-ES). An example of token lan-
guage identification is shown in Table 1.

Our work covers only the EN-ES language pair.
We use FastText (Bojanowski et al., 2016) to train a
subword information enhanced word vectors model
from the datasets of the shared task. We then use
these vectors and, in addition, custom features ex-
tracted from the words to train a linear-chain Con-
ditional Random Field model that predicts the lan-
guage label of each word. Our system requires only
the dataset provided by the shared task, without any
external resource. The final model scores 0.83 in
weighted tweet-level F1 and 0.949 in overall token-
level accuracy.

2 Related Work

Seven systems were submitted for the previous
shared task. The system with the highest predic-
tion result for the EN-ES language pair scores 0.822
in F-measure (Bar and Dershowitz, 2014). Solorio
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et al. (2014) shows that Conditional Random Field
(CRF) and Support Vector Machines (SVM) are
the most popular supervised machine learning al-
gorithms used for this task. Similar approach have
been found outside of the share tasks, including
Nguyen and Dogruoz (2013). All of these systems
rely on external resources, while our system relies
only on data prepared by the shared task.

Aside from the last shared task, previous work
on identifying languages emphasizing on word-level
identification includes Yamaguchi and Tanaka-Ishii
(2012; VRL (2014; Zubiaga et al. (2015). There
are also studies on multilingual documents, focusing
on inter-sentential codeswitching (King and Abney,
2013; Singh and Gorla, 2007).

Previous work on language models that encode
syntactic constraints from codeswitching theory in-
cludes Li and Fung (2013; Li and Fung (2014).
These models require a parser for the codeswitched
input, while our work only requires word-level tok-
enization.

3 System Description

Our system contains two steps to identify tokens in
a codeswitched input.

In the first step, we use FastText (Bojanowski
et al., 2016) to train a subword information en-
hanced skipgrams word vectors model, using the
tweets presents in the train and the dev dataset.
Word vectors are vector representations of the words
learned from their raw form, using models such as
Word2Vec (Mikolov and Dean, 2013). When used
as the underlying input representation, word vectors
have been shown to boost the performance in NLP
tasks (Socher et al., 2013). FastText word vectors
are used instead of standard word2vec because Fast-
Text can obtain representations of out-of-vocabulary
words by summing the representations of character
n-grams. This feature is particularly useful because
the size of the training data is relatively small. We
expect the test dataset to contain words not found in
the training dataset. Another motivation for using
FastText word vectors is for its ability to take into
account morphological information. We trained a
skipgram FastText word vector representation model
from the train datasets, using the default parameters
provided by FastText (size of word vectors: 100, size

of the context window: 5, number of epochs 5, min-
imal number of word occurences: 5, max length of
word ngram: 1 and loss function: ns)1.

In the second step, We use supervised machine
learning to train a Linear-Chain Conditional Ran-
dom Field (CRF) (Lafferty et al., 2001) classifier
that predicts the label of every token in the order
given by the EN-ES token assigner. CRF is natu-
rally suited for sequence labeling tasks and it has
been shown to perform well in previous work on lan-
guage identification tasks (King and Abney, 2013;
Chittaranjan et al., 2014; Lin et al., 2014). We use
CRFsuite(Okazaki, 2007) in our experiment.

3.1 Feature Extraction

For each token, we extract three types of features:
word features, spelling features and intra-word fea-
tures.

3.1.1 Word features
Word features contain the word vector represen-

tation of the current token and that of the token di-
rectly before and after the current one. We use the
word vector model trained in the first step to obtain
the word vector of each token. Word vectors of out-
of-vocabulary tokens are automatically predicted in
FastText by summing up the vector representations
of character n-grams.

3.1.2 Spelling features
The following boolean features are extracted from

the current token and that of the token directly be-
fore and after the current one:

• whether the token capitalized

• whether the token is all uppercase

• whether the token is all lowercase

• whether the token contains an uppercase char-
acter anywhere but in the beginning

• whether the token is alphanumeric

• whether the token contains any punctuation

• whether the token ends by an apostrophe
1https://github.com/facebookresearch/

fastText#full-documentation
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• whether the token contains no roman alphabets

• whether the token is in the beginning of the sen-
tence

• whether the token is in the end of the sentence

Capitalization is a strong indicator of a proper
noun, hence a named entity. However, this is not
always the case with social media texts, where gram-
matical rules are not always followed. The boolean
feature of the lack of roman alphabets is added be-
cause of our observation on the training data – most
tokens classified as other do not have roman alpha-
bets.

We also considered adding a boolean feature of
whether the token contains Spanish-only accented
characters (i.e. ı́, ú, é). However, it did not
positively impact the prediction performance when
tested against the dev dataset. This is possibly
due to that social media users are more casual with
spelling and replace accented characters with their
non-accented counterpart. For example, both the
correct spelling ası́ como2 and the incorrect spelling
asi como are found in the training data.

3.1.3 Intra-word features
In contrast to English, Spanish is a morpholog-

ically rich language, demonstrating a complicated
suffixed-based derivational morphology (Bar and
Dershowitz, 2014). To capture repeating prefixes
and suffixes that characterize each language, we ex-
tract the first 1-3 and the last 1-3 characters of each
token as intra-word features. These features have
also been shown to help predicting named entities
and tokens labelled as other. For example, hashtags
(tokens that begin with a # sign) are often named en-
tities; twitter handles always begin with an @ sign.

4 Experiment

The shared task maintains three sets of dataset: a
training dataset, a development dataset and a test-
ing dataset. Each dataset contains rows of token
extracted from EN-ES codeswitched tweets and the
respective gold standard label for each token. We
train an unsupervised FastText word vectors model

2Meaning as well as in English

using the training dataset. Then we train a super-
vised CRF model using the same dataset. The super-
vised model is validated on the development dataset
by evaluating standard metrics: precision, recall and
F-measure of the predictions (Powers, 2011). We
make hyper-parameter tuning to the CRF classifier
using grid search.

To verify that all our features were contributing
to the model’s performance, we also did an ablation
study, removing one group of features at a time.

Using the final model which consist of all the fea-
tures, we compute predictions for the tokens in the
testing dataset and submit the result to the workshop
as final result.

5 Result and Analysis

5.1 Feature ablation

Table 2 shows the F1 scores on the dev dataset re-
sulting from training with each group of feature re-
moved. Note that although the removal of word fea-
tures has no impact on the overall average F1, we
decide to keep it because of the extra boost in per-
formance it provides for named entities.

5.2 Final model performance

Our final model, when evaluated on the test dataset,
has a tweet-level performance of 0.83 in weighted
F1 as shown in Table 3. In terms of token-level per-
formance, our model has an overall token accuracy
of 0.949. The detailed metrics for each label are
shown in Table 4.

We observe that the model is not able to predict
mixed, foreign word, ambiguous and unknown la-
bels. This is due to the lack of sufficient training
data for these labels.

Our model has relatively low precision and re-
call with the NE labels. This suggests that our sys-
tem is weak in recognizing named entities. While
Bar and Dershowitz (2014) describe improvements
of name entity recognition by using a gazetteer of
proper nouns, our system did not benefit from hav-
ing such a gazetteer. In fact, when validating on the
development set, having such a gazetteer feature in-
troduces over-fitting and decreases the overall accu-
racy of the model. The result suggests that named
entity recognition remains a challenge in the context
of codeswitched text.
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Features lang1 lang2 ne other unk Average
All 0.965 0.945 0.355 0.995 0.095 0.946
– Word features 0.965 0.944 0.331 0.997 0.058 0.946
– Intra-word 0.957 0.936 0.228 0.981 0.126 0.936
– Spelling 0.963 0.944 0.353 0.989 0.093 0.944

Table 2: Feature ablation study. F1 on dev dataset after training with individual feature groups removed. The F1 for mixed, fw and

ambiguous are all 0, hence omitted in this table. The average F1 is micro-averaged, taking into account all eight labels. The number

of tokens for each label are the following: lang1: 16813, lang2: 8653, ne: 740, mixed: 14, ambiguous: 70, unk: 133, other: 6853

and fw: 0

Monolingual F1 Codeswitched F1 Weighted F1
0.86 0.79 0.83

Table 3: Tweet-level performance – there are in total 4626

codeswitched tweets and 6090 monolingual tweets.

Label Recall Precision F1
lang1 0.879 0.866 0.873
lang2 0.968 0.962 0.965
other 0.993 0.994 0.993
ne 0.313 0.421 0.359
mixed 0 0 0
fw 0 0 0
ambiguous 0 0 0
unknown 0 0 0

Table 4: Token-level performance – the number of tokens for

each label are the following: ambiguous: 4, lang1: 16944,

lang2: 77047, mixed: 4, ne: 2092, fw: 19, other: 25311, un-

known: 25, Total : 121446.

6 Conclusion

We participated in the shared task of the second
codeswitching workshop by creating a supervised
machine learning model that identifies the languages
given a English-Spanish codeswitched input. Our
model uses FastText to train a subword information
enhanced word vectors model from the shared task
datasets. In addition to these vectors, we add custom
features extracted from the words to train a linear-
chain Conditional Random Field model that predicts
the language label of each word. Our system uses
only the training data provided by the shared task
and requires no external resource. The final model
scores 0.83 in weighted tweet-level F1 and 0.949
in overall token-level accuracy. Our result suggests
that named entity recognition remains difficult for
codeswitched text and warrants future work.
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