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Introduction

Code-switching (CS) is the phenomenon by which multilingual speakers switch back and forth
between their common languages in written or spoken communication. CS is pervasive in informal
text communications such as news groups, tweets, blogs, and other social media of multilingual
communities. Such genres are increasingly being studied as rich sources of social, commercial and
political information. Apart from the informal genre challenge associated with such data within a
single language processing scenario, the CS phenomenon adds another significant layer of complexity
to the processing of the data. Efficiently and robustly processing CS data presents a new frontier for our
NLP algorithms on all levels. The goal of this workshop is to bring together researchers interested in
exploring these new frontiers, discussing state of the art research in CS, and identifying the next steps
in this fascinating research area.

The workshop program includes exciting papers discussing new approaches for CS data and the
development of linguistic resources needed to process and study CS. We received a total of 12 regular
workshop submissions of which we accepted nine for publication four of them as workshop talks and
five as posters. The accepted workshop submissions cover a wide variety of language combinations
from languages such as English, Hindi, Swahili, Mandarin, Dialectical Arabic and Modern Standard
Arabic. The majority of the papers focus on social media data such as Twitter, and discussion fora.

Another component of the workshop is the Second Shared Task on Language Identification of CS Data.
The shared task focused on social media and included two language pairs: Modern Standard Arabic-
Dialectal Arabic and English-Spanish. We received a total of 14 system runs from nine different teams.
All teams except one submitted a shared task paper describing their system. All shared task systems
will be presented during the workshop poster session and two of them will also present a talk. We
would like to thank all authors who submitted their contributions to this workshop and all shared task
participants for taking on the challenge of language identification in code switched data. We also thank
the program committee members for their help in providing meaningful reviews. Lastly, we thank the
EMNLP 2016 organizers for the opportunity to put together this workshop.

See you all in Austin, TX at EMNLP 2016!

Workshop co-chairs,

Mona Diab
Pascale Fung
Mahmoud Ghoneim
Julia Hirschberg
Thamar Solorio

Publications & Shared Task Chairs,

Fahad AlGhamdi
Mahmoud Ghoneim
Giovanni Molina
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Özlem Çetinoğlu and Sarah Schulz and Ngoc Thang Vu
IMS, University of Stuttgart

Germany
{ozlem,schulzsh,thangvu}@ims.uni-stuttgart.de

Abstract

This paper addresses challenges of Natural
Language Processing (NLP) on non-canonical
multilingual data in which two or more lan-
guages are mixed. It refers to code-switching
which has become more popular in our
daily life and therefore obtains an increasing
amount of attention from the research com-
munity. We report our experience that cov-
ers not only core NLP tasks such as normali-
sation, language identification, language mod-
elling, part-of-speech tagging and dependency
parsing but also more downstream ones such
as machine translation and automatic speech
recognition. We highlight and discuss the key
problems for each of the tasks with supporting
examples from different language pairs and
relevant previous work.

1 Introduction

Data that includes mixing of two or more languages
finds more place in the Natural Language Processing
(NLP) tasks over the last few years. This changing
picture induces its own challenges as well.

The analysis of mixed language is not a new
field, and has been extensively studied from several
sociological and linguistic aspects (Poplack, 1980;
Myers-Scotton, 1993; Muysken, 2000; Auer and
Wei, 2007; Bullock and Toribio, 2012). This has
also brought different perspectives on the definition
and types of mixed language. Switching between
sentences (inter-sentential) is distinguished from
switching inside of one sentence (intra-sentential).
Poplack (1980) defines code-switching as ‘the alter-
nation of two languages within a single discourse,

sentence or constituent’. Muysken (2000) avoids
this term arguing that it suggests alternation but
not insertion, and prefers code-mixing for intra-
sentential switching. Myers-Scotton (1993) em-
ploys the cover term code-switching for the use of
two languages in the same conversation, sentence,
or phrase. In this paper we use code-switching (CS)
as a cover term for all types of mixing. The termi-
nology is still controversial among researchers, but
there is no doubt that all types pose challenges for
computational systems built with monolingual data.

Computational approaches in the analysis of CS
data are quite recent as compared to linguistic stud-
ies. The first theoretical framework to parse code-
switched sentences dates back to the early 1980s
(Joshi, 1982), yet few studies are done in the 2000s
(Goyal et al., 2003; Sinha and Thakur, 2005; Solorio
and Liu, 2008a; Solorio and Liu, 2008b). With
the beginning of the last decade, this picture has
changed due to increasingly multi-cultural societies
and the rise of social media. Supported with the in-
troduction of annotated data sets on several language
pairs, different tasks are applied on CS data.

The characteristics of mixed data affect tasks
in different ways, sometimes changing the defini-
tion (e.g. in language identification, the shift from
document-level to word-level), sometimes by creat-
ing new lexical and syntactic structures (e.g. mixed
words that consist of morphemes from two different
languages). Thus, it is clear that mixed data calls
for dedicated tools tailored to the specific problems
and contexts encountered. In order to take these spe-
cialties into account, these different cases have to be
understood. This way, differences in techniques for
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monolingual and mixed language processing can be
unfolded to yield good results.

In this paper, we view CS processing from a va-
riety of perspectives, and discuss the unique chal-
lenges that one encounters. We redescribe NLP
tasks under the assumption that the data contains
more than one language. For tasks that are stud-
ied more compared to others we compile approaches
taken by previous work. Examples from different
language pairs highlight the challenges, supporting
the need for awareness about the nature of mixed
data for successful automatic processing.

2 Data

Nature of the data Annotated CS corpora, that are
designed for computational purposes, center around
three sources so far: spoken data (Solorio and Liu,
2008b; Lyu et al., 2015; Yılmaz et al., 2016), social
media (Nguyen and Doğruöz, 2013; Barman et al.,
2014; Vyas et al., 2014; Solorio et al., 2014; Choud-
hury et al., 2014; Jamatia et al., 2015; Çetinoğlu,
2016; Samih and Maier, 2016), and historical text
(Schulz and Keller, 2016). All these data sources
are challenging on their own even if they do not ex-
hibit CS. They are non-canonical in their orthogra-
phy, lexicon, and syntax, thus the existing resources
and tools should be adapted, or new ones should be
created to handle domain-specific issues in addition
to the challenges of CS itself.
Accessing the data Although CS is prominent in
every day life, especially in countries with a high
percentage of multilingual communities, accessing
it is still problematic. Speech as one of the main
sources requires consent prior to recording. One
way to keep recordings as natural as possible is to
not mention the goal as capturing CS instances to
participants. Being recorded however raises self-
awareness, and could possibly change how the lan-
guage is used. Many bilinguals are not keen on mix-
ing languages, e.g. human annotators comment “we
shouldn’t code-switch” (Solorio and Liu, 2008a).

On this point, social media has an advantage:
users of Facebook, Twitter, forums, or blogs, are not
aware that their data will be used for analysis, which
therefore makes it a more naturalistic setting. They
give their consent after, once the content is created.
Among social media sites, Twitter has its disadvan-

tages like license issues, and limited characters per
tweet. Other media that does not have these advan-
tages remain popular sources.

3 Normalisation

Text normalisation is the task of standardising text
that deviates from some agreed-upon (or canonical)
form. This can e.g. refer to normalising social me-
dia language to standard language (“newspaper lan-
guage”) (cf. e.g. Schulz et al. (2016) and Aw et
al. (2006)) or historical language to its modern form
(Bollmann et al., 2011). Since mixed text often oc-
curs in spoken language or text close in nature to
spoken language like social media, normalisation is
a highly relevant task for the processing of such text.
In the case of mixed text there are two languages em-
bedded into each other. Defining a canonical form is
a challenge because each of the languages should be
standardised to its own normal form.

Normalisation of text has started out as a task
mainly solved on token-level. Most of the recent
approaches are based on context e.g. in character-
based machine translation (Liu et al., 2012; Schulz
et al., 2016). This results from the fact that normal-
isation requires a certain degree of semantic disam-
biguation of words in context to determine if there
is a normalisation problem. These problems can
appear on two levels: a) The word is an out-of-
vocabulary (OOV) word (which are the easy cases),
thus it does not exist in the lexicon. b) The word
is the wrong word in context (often just the wrong
graphematic realisation e.g. tree instead of three).

This context dependency results in issues for
mixed text. The presence of CS increases the num-
ber of possible actions regarding an erroneous word.
The word could be incorrect in one language and
not in the other, or incorrect in both. Either way,
the intended language should be decided as well as
the usage. (1) emphasises the need for semantic un-
derstanding in context (Çetinoğlu, 2016) in which
Turkish (in italics) is mixed with German (in bold).

(1) meisten
Meis.Abl(TR)/mostly(DE)

kıyımıza
shore.P1pl.Dat

vurmuş
hit.EvidPast

olmasi
be.Inf

muhtemel
possible

:)

‘It is possible that it hit our shore from
Meis.’/‘Mostly it is possible that it hit our shore.’
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The first word in the example can be interpreted in
two different ways. In Turkish it could be an ortho-
graphically incorrect form of Meis’ten ‘from Meis’
which refers to the Greek island Kastellorizo. Or
it could be a typo where the s of German meistens
‘mostly’ is missing. Such uncertainty might be ob-
served more when language pairs are from similar
languages, and share identical and similar words.

Another example is taken from a corpus of Face-
book chats (Androutsopoulos, 2015). In this exam-
ple, three languages, Greek (in italics), German (in
bold) and English, are used within one sentence:

(2) hahahahaha
hahahahaha

ade
come on(GR)/goodbye(DE)

ok
okay(GR/DE/EN)

tanz
dance

zebekiko
zebekiko

aber
but

bei
on

billy
Billy

jean
Jean

please
please

‘hahahahaha come on ok dance zebekiko but on
Billy Jean please’

Androutsopoulos (2015) explains that the post
starts with a bilingual discourse marker that indexes
concessiveness (ade ok ‘come on, ok’). The Greek
vernacular item ade is combined with ok, which
could be assigned to any of the three languages
whereas the preceding hahahahaha is not a word in
any of them. Ade ‘goodbye’, however, is an exist-
ing German word and without larger context of the
sentence it is hard to determine if the German Ade is
intended, in which case a normalisation action (cap-
italisation) is required, or indeed the Greek vernac-
ular ade. Semantic contextualisation is aggravated
due to the trilingual context.

One solution is the approach by Zhang et al.
(2014). They use a neural net based translation ar-
chitecture for Chinese-English text normalisation. It
includes a Chinese language model and a Chinese-
English translation model as well as user history-
based context. Since training material for such sys-
tems might be sparse for some language pairs, meth-
ods for mixed text tend to return to smaller con-
text windows as done by Dutta et al. (2015). They
suggest to use two monolingual language models
with context windows depending on the neighbour-
ing words using language identification information.
In case of a high density of switch points between
languages, the context window might be small.

As another normalisation challenge, Kaur and
Singh (2015) describe issues emerging from mix-
ing different scripts in Punjabi-English and Sarkar
(2016) for Hindi-English and Bengali-English social
media text. Since text is often realised in Roman
script, in order to utilise resources from other writing
systems, the text has to be mapped back to the sys-
tem of the respective language. Due to this problem
Barman et al. (2014) do not use existing Bengali and
Hindi resources in their dictionary-based approach.
Das and Gambäck (2014) Romanised the resources
whereas Vyas et al. (2014) go in the opposite direc-
tion and develop a back-transliteration component.

4 Language Modelling

A statistical language model assigns a probability to
a given sentence or utterance. Models such as n-
gram models (Brown et al., 1992), factored language
models (Bilmes and Kirchhoff, 2003) and neural
language models (Bengio et al., 2003) are used in
many NLP applications such as machine translation
and automatic speech recognition. One can consider
mixed text as an individual language and use exist-
ing techniques to train the model. Tokenisation and
normalisation are the first steps to prepare the train-
ing data. Hence, one will face the problems pre-
sented in Section 3 first. Another serious problem
is the lack of CS training data which makes statis-
tical language models unreliable. We consider three
kinds of CS to identify challenges of code-switching
language modelling (LM).
Inter-sentential CS In addition to the CS data cor-
pus, we can use monolingual data to train several
language models and interpolate them. Under the
assumption that we can find monolingual data which
has the same domain as the CS data, there is no ob-
vious problem in this case.
Intra-sentential CS The only available data re-
source is the code-switching training data. Previ-
ous work suggests to add syntactic and semantic in-
formation into the original statistical model to first
predict the CS points and then the current word. It
shows improvement when integrating additional re-
sources such as language identification and POS tags
into the recurrent neural language model (Adel et
al., 2013a), the factored language model (Adel et
al., 2015) and their combination (Adel et al., 2013b).
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Their statistical analysis in Table 1 on the Mandarin-
English CS data set (Lyu et al., 2015) gives some
insights on how accurate one can predict CS points
based on POS tags. Additional information such as

Tag Meaning Frequency CS-rate
DT determiner 11276 40.44%
MSP other particle 507 32.74%
NN noun 49060 49.07%
NNS noun (plural) 4613 40.82%
RP particle 330 36.06%
RB adverb 21096 31.84%

Table 1: Mandarin and English POS tags that trigger a code-

switching (First two columns: Man→ En, rest: En→Man)

language identification and POS tags might not be
accurate due to problems presented in Section 5 and
Section 6. In their work, they propose to combine
Stanford Mandarin and English POS taggers to gen-
erate POS tags. There is, however, no report on POS
tagger performance due to the lack of gold data.

Li and Fung (2012;2014) propose another re-
search direction which assembles syntactic inver-
sion constraints into the language model. Instead of
learning to predict the CS points alone, they suggest
to learn the permission probabilities of CS points
from a parallel corpus as to not violate the gram-
matical rules of both languages. This information is
then integrated in a language model to constrain the
CS points. It appears to be a promising approach
if a large amount of parallel data of the two lan-
guage exists and if the assumption holds that people
do not change the grammatical rules of the mixed
languages.1

Intra-word CS In addition to challenges presented
in the previous paragraphs, one has to face the out-
of-vocabulary problem when CS appears within a
word. This word has a high potential to be an un-
known word. For example in the German-Turkish
corpus (Çetinoğlu, 2016), 1.16% of the corpus are
mixed words. 93.4% of them appear only once
which indicates a big challenge not only for lan-
guage modelling but also for other tasks.

1This assumption is quite controversial among CS re-
searchers, even Section 7 has counter-examples that show gram-
mar changes. The assumption, however, could still be useful in
statistical systems if the majority of switches follow the rules.

5 Language Identification

Identifying the language of a text as one of the given
languages is considered to be a solved task (Mc-
Namee, 2005). Simple n-gram approaches (Cav-
nar and Trenkle, 1994), character encoding detection
(Dunning, 1994) or stop word lists (Grefenstette,
1995) can lead to a recognition accuracy of up to
100% on benchmark data sets.

Discriminating between closely related languages
that show a significant lexical and structural over-
lap, like Croatian and Serbian, already poses a big-
ger problem. Stop word list approaches are prob-
lematic in such language pairs. N-gram approaches
show an accuracy of up to 87% (Tan et al., 2014).

However, all these techniques rely on the assump-
tion that the input text is encoded in exactly one lan-
guage. As soon as different languages are mixed in-
side a text or further within a sentence, a more fine-
grained detection is needed. CS reduces the mini-
mum unit of detection to a token.

Language identification (LID) is the most well-
studied task among computational CS approaches:
there is relatively more annotated data; it is one of
the preprocessing steps for more complex tasks; and
shared tasks (Solorio et al., 2014; Choudhury et al.,
2014) attract more research.

Language identifiers with good performance on
monolingual input (Cavnar and Trenkle, 1994; Lui
and Baldwin, 2012) encounter accuracy loss due
to shorter and/or unobserved context (Nguyen and
Doğruöz, 2013; Volk and Clematide, 2014). Thus
researchers have chosen to build new tools tai-
lored to CS, using simple dictionary-based meth-
ods or machine learning techniques such as Naive
Bayes, CRF, and SVM (Lignos and Marcus, 2013;
Nguyen and Doğruöz, 2013; Voss et al., 2014; Das
and Gambäck, 2014; Barman et al., 2014 and cf.
Solorio et al., 2014). While they outperform lan-
guage identifiers trained on monolingual data, they
reach accuracies in the mid-90s. Shared task results
(Solorio et al., 2014) report even lower F-scores (80-
85%), for some language pairs (Modern Standard
Arabic- Egyptian Arabic, and surprise data sets for
Nepalese-English, Spanish-English).

Some of the challenges CS poses are inherent
to the languages involved, which then propagate to
language annotation and identification. One of the
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language-specific challenges is language annotation
when the mixed languages are closely related either
linguistically or historically, e.g., Modern Standard
Arabic and dialects (Elfardy and Diab, 2012; Samih
and Maier, 2016) and Frisian-Dutch (Yılmaz et al.,
2016). In such cases it is hard to find a clear distinc-
tion between code-switching and borrowing, thus
deciding the language ID of a particular token. For
English-Hindi, Das and Gambäck (2014) give the
word ‘glass’ as an example. The concept was bor-
rowed during the British colonisation in India, and
Indian dictionaries contain the transliterated version.
Yet, annotators sometimes labelled it as English.

The opposite is also observed. Both Vyas et al.
(2014) and Barman et al. (2014) propose to label
English borrowings in Hindi and Bengali as English.
However, Barman et al. (2014) report that some an-
notators still annotated them as Hindi and Bengali.
In the end almost 7% of the unique tokens were la-
belled in more than one language during annotation,
which demonstrates that it is challenging to decide
language IDs even for humans.

Vague division between CS and borrowing par-
tially affects the language pairs when one or both
are influenced by another language, e.g. English in
present day. For instance in the Turkish-German
corpus (Çetinoğlu, 2016), the word leggings was
controversial among annotators, as some think it is
English while others believe it is already integrated
in the German language. This phenomenon could be
challenging for statistical systems too, if the mono-
lingual resources contain those controversial words
inconsistently or in the opposite label of gold data.

Another big challenge for LID is mixing two lan-
guages inside one single word. These mixed words
are treated differently among researchers. While
many do not specify a special tag for intra-word
mixing due to very infrequent representation in their
corpus, Das and Gambäck (2014) propose 10 tags
that mark the combinations of root and suffix lan-
guages. The CodeSwitch Workshop 2014 Shared
Task (Maharjan et al., 2015), Barman et al. (2014),
and Çetinoğlu (2016) use a Mixed tag.

This pattern is e.g. very productive in German-
Turkish code-switching where the suffixes of Turk-
ish, as an agglutinating language, are attached to

German words.2 This can result in words like Aufga-
beler ‘assignments’ in (3) where the Turkish plural
suffix -ler is appended to the German word Aufgabe
‘assignment’ and poses problems not only for LID
but also for existing tools for POS tagging and mor-
phological analysis.

6 POS Tagging

POS tagging assigns a category from a given set to
each input token. It has a popular use as a stan-
dalone application or as part of a preprocessing step
for other tasks, e.g., parsing. It is the second most
popular task after language identification in the cur-
rent state of CS research. Unlike LID, CS does not
change the definition of the task. Nevertheless, the
task gets harder compared to tagging monolingual
text. While state-of-the-art models reach over 97%
accuracy on canonical data3, in work on CS data
scores mostly around 70% are reported.

One problem, as expected, is the lack of large an-
notated data. Table 2 shows all the POS-annotated
CS corpora to our knowledge and their sizes. CS
POS tagging requires more annotated data compared
to monolingual tagging, as CS increases the possible
context of tokens.

Corpus Language Tokens Tag set
S&L’08 En-Es 8k PTB4 + 75 Es
V’14 En-Hi 4k 12 UT + 3 NE
J’15 En-Hi 27k 34 Hi + 5 Twitter
ICON’155 En-Hi 27k 34 Hi + 5 Twitter

En-Bn 38k 34 Hi + 5 Twitter
En-Ta 7k 17 UD

Ç&Ç’16 De-Tr 17k 17 UD
S’16 En-Hi 11k 12 UT
S&K’16 midEn-La 3k 12 UT

Table 2: Overview of POS-annotated CS corpora.

S&L’08:Solorio and Liu (2008b), V’14:Vyas et al. (2014),

J’15:Jamatia et al. (2015), Ç&Ç’16:Çetinoğlu and Çöltekin

(2016), S’16:Sharma et al. (2016), S&K’16:Schulz and Keller

(2016). UT: Google Universal Tags (Petrov et al., 2012). UD:

Universal Dependencies tag set (Nivre et al., 2016).

2The Turkish-German CS tweets (Çetinoğlu, 2016) have
1.16% Mixed tokens as compared to 0.32% Mixed in En-Bn-Hi
(Barman et al., 2014) and 0.08-0.60% in Ne-En and 0.04-0.03%
in Es-En (Maharjan et al., 2015) corpora.

3https://aclweb.org/aclwiki/index.php?
title=POS_Tagging_(State_of_the_art)
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The last column of Table 2 shows the tag sets used
in annotating POS. Only one corpus uses language-
specific tags (Solorio and Liu, 2008b), which pre-
dates universal tag sets. With the introduction of
Google Universal Tags (UT) (Petrov et al., 2012)
and later, its extended version Universal Dependen-
cies (UD) tag set (Nivre et al., 2016) preference
has moved to using a common tag set for all to-
kens. Vyas et al. (2014) employ 3 additional tags
for named entities. Jamatia et al. (2015) and ICON
2015 Shared Task use a Hindi tag set that is map-
pable to UT. They also adopt 5 Twitter-specific tags.

Solorio and Liu (2008b) show that high accuracy
English and Spanish taggers achieve only 54% and
26% accuracy respectively on their data, indicating
that off-the-shelf monolingual taggers are not suit-
able for CS text. Common methods applied to over-
come this problem in several experiments (Solorio
and Liu, 2008b; Vyas et al., 2014; Jamatia et al.,
2015; Sharma et al., 2016; Schulz and Keller, 2016)
are to choose between monolingual tagger outputs
based on probabilities, utilising monolingual dictio-
naries and language models, and applying machine
learning on the annotated CS data. One feature that
deviates from standard POS tagging is language IDs,
which are shown to be quite useful in previous work.
Thus another challenge that comes with CS is pre-
dicting language IDs as a prior step to POS tagging.

Solorio and Liu (2008b) achieve a high score of
93.48% with an SVM classifier, but this could be
partly due to monolingual English sentences that
constitute 62.5% of the corpus. In corpora with
higher level of mixing, e.g. (Vyas et al., 2014; Jama-
tia et al., 2015; Sharma et al., 2016) best scores drop
to 65.39%, 72%, and 68.25% respectively. Schulz
and Keller (2016) have an accuracy of 81.6%. At
the ICON 2015 Shared Task, the best system has
an average of 76.79% accuracy. These scores show
POS-tagging on CS data has room for improvement.

7 Parsing

Parsing, the task of determining syntactic relations
between words and phrases of a given sentence, has

4Solorio and Liu (2008b) report the tagset is a slightly mod-
ified version of PTB, but do not give the exact number of tags.

5Data from the ICON 2015 Shared Task on Pos Tagging
For Code-mixed Indian Social Media Text. It is available at
http://amitavadas.com/Code-Mixing.html

advanced substantially over the last decade. With
the current rise of deep learning, a lot of parsers
are developed, that, e.g. go above 93% unlabelled
attachment score in dependency parsing of English
(cf. Kiperwasser and Goldberg (2016) for a recent
comparison of various high-performing parsers).

While theories on parsing CS text have started
quite early (Joshi, 1982) and a rule-based HPSG pro-
totype is available (Goyal et al., 2003), there are no
statistical parsers developed to handle CS. The main
reason is the lack of treebanks that contain CS in-
stances. Nevertheless, two recent works signal that
research is moving in this direction.

Sharma et al. (2016) build a pipeline for Hindi-
English social media text. They create a corpus
with four layers of annotation: language IDs, nor-
malisation, POS tags, and for the first time, chunk
boundaries and labels. Each component of their
pipeline predicts one layer with data-driven ap-
proaches. When all steps are predicted the accuracy
for chunking is measured as 61.95%.

Vilares et al. (2016) train lexicalised bilingual
parsers by merging the training sets of two lan-
guages into one. They compare these models
to monolingual ones on 10 Universal Dependen-
cies treebanks (Nivre et al., 2016). The authors
also apply their approach on English-Spanish code-
switching data in a toy experiment. They have anno-
tated 10 tweets exhibiting CS according to UD rules.
They train an English-Spanish POS tagger by merg-
ing the training sets of both languages. Their ex-
periments show that using the bilingual tagger and
parser is a promising direction for parsing CS.

Challenges in parsing CS stem from error pro-
pogation in previous steps, but also from the syntac-
tic constructions that are not native to monolingual
languages. (3) is such an example from an ongoing
corpus collection.

(3) birkaç
a few

Aufgabeler
assignment(DE).Pl(TR)

yaptık
make.Past.1Pl

arkadaşla
friend.Sg.Ins
‘We made a few assignments with a friend.’

The sentence above contains a German-Turkish
mixed word Aufgabeler (German portion in italics)
as explained in Section 5 and the rest of the words
are Turkish. The whole sentence employs Turkish
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syntax, except that in the NP birkaç Aufgabeler, the
noun modified by birkaç should be singular to be
grammatical in Turkish. Perhaps the speaker utilises
the German syntax where the noun is expected to be
plural for this construction.

(4) is a similar example from Broersma (2009)
where the word order is from the embedded lan-
guage (English, in italics), and shows how the syn-
tactic and lexical systems of the two languages are
combined during production: lexical items of one
language are ordered according to the syntax of the
other.

(4) Later
Later

ik
I

naaide
sewed

voor
for

mensen.
people.

‘Later I sewed for people.’
correct: ‘Later naaide ik voor mensen.’

Although not explicitly CS, code-switching bilin-
guals produce monolingual instances that do not fol-
low the syntax of the uttered language. (5) and (6)
show such instances where German syntax interferes
with English (Albrecht, 2006, p.130) and Dutch syn-
tax interferes with Turkish (Doğruöz and Backus,
2009). We include them into parsing challenges as
the CS corpora to be parsed is likely to contain sim-
ilar monolingual constructions.

(5) Daniel: but me too not
Faye: no, no, that goes not
correct: ‘Daniel: but me neither
Faye: no, no, that does not go’

(6) Beyimin
Husband.Gen

ailesi
family.Poss

hep
all

o
it

da
also

burda.
here

‘My husband’s family is also all here.’
correct: ‘Beyimin ailesi de hep burda.’

Repeating a word or a whole clause in both lan-
guages in a loose or direct translation is a common
CS phenomenon, especially in speech or historical
documents, and it might pose syntactic challenges
e.g. when repetitive subordinate clauses exist which
lead to complex coordinations (7) (Lodge and Wood,
2008, p.259). In this example the French portion
(in italics) affirmatively translates and completes the
Latin Pater Noster verse.

(7) Sed
But

libera
deliver

nos,
us,

mais
but

livre
deliver

nous,
us,

Sire,
God,

a
from

malo,
evil,

de
of

tout
all

mal
evil

et
and

de
of

cruel
cruel

martire
martyrdom

‘But deliver us, God, of all evil and martyrdom’

All these examples demonstrate that, in addition
to the solutions that would improve preprocessing
steps of parsing, new models and methods should be
developed to handle parsing-specific problems.

8 Machine Translation

Machine translation (MT) explores methods to
translate text from one language to another. Like
all other tasks that rely on large amounts of data for
training, MT quality decreases when encountering
CS text. Not only the parallel text used for com-
piling phrase tables and translation probabilities but
also the language models included are trained on
monolingual data. Mixed text results in a high num-
ber of words unknown to the system and low prob-
abilities for translations. Training dedicated trans-
lation systems for mixed text is, however, often not
feasible due to the insufficient availability of data.

Moreover, translation quality increases with in-
creasing context lengths (cf. phrase-based MT). CS,
however, leads to limited accessibility of context (in
form of phrases included as such in the phrase table)
and thus leads to a decrease in translation quality.

A solution is to detect foreign words and then
translate them into the matrix language before trans-
lating into a third language (Sinha and Thakur,
2005). Identifying foreign material and translating
them into the fitting word in context poses similar
problems as described in Sections 3 and 5. The
lexical translations of inserted parts can be consid-
ered as a normalisation approach. In addition, an
underlying assumption of this approach is the avail-
ability of a bilingual lexicon for the mixed language
pairs which is not always a given. Even in a perfect
foreign word translation scenario, it is questionable
if the “monolingualised” text syntactically and lexi-
cally behaves like any other monolingual text so that
a conventional MT system can handle it.

Another challenge is intra-word CS due to mor-
phological binding of one language to a stem from
another language as often observed in e.g. Hindi-
English text (Sinha and Thakur, 2005) or Turkish-
German (Çetinoğlu, 2016) which is shown in (8) .

(8) Lehrerzimmerde
staff room(DE).Loc(TR)

schokolade
chocolate

dağıtıyorlar
distribute.Prog.3Pl
‘They give away chocolate in the staff room.’
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(9) Handing schokolade Lehrerzimmer

Google translate6 returns (9) as a translation from
Turkish to English. The Turkish morpheme de is
correctly recognised as an inflectional suffix and
severed from the base word Lehrerzimmer ‘staff
room’. Yet, it is not translated as the preposition
in as expected. The German word is present, but
without a translation. Moreover, the subject of the
sentence (which should be they) is not translated at
all even though the information is contained in the
purely Turkish word dağıtıyorlar ‘they distribute’.
Another word oblivious to the translation is schoko-
lade ‘chocolate’. When the same sentence is input to
Google Translate, all in German and all in Turkish,
both cases receive a fully-translated output.7 Thus,
the mixed context seems to harm the correct transla-
tion of the sentence.

Manandise and Gdaniec (2011) describe a way to
deal with morphological bindings in the context of
MT. They use a morphological analyser to first sep-
arate the base word from its morphological affixes.
Those are then analysed and translated according to
the morphology of the target base. They give Ex-
ample (10), an English-Spanish mixed word anti-
cooldad ‘anti-coolness’:

(10) a. anticooldad
b. anticool: dad
c. cooldad:anti
d. cool: anti, dad
e. dummy: anti, dad

The analyser returns all possible base terms
(shown as the string before the colon in (10)) along
with the possible morphemes (shown as the strings
after the colon in (10)). Since the word cool appears
in the English dictionary and the other suggested
base terms do not, the translation of the morphemes
along with the correct morphological analysis and
language-specific rules lead to the translation anti-
coolness.

Even though there might be suggested solutions
for token-based translations of embedded words as
a preprocessing step, translation of the monolin-
gualised sentence might still pose problems due to
syntactic specificities as described in Section 7. In

6Google Translate, translate.google.com, 29.07.16.
7The outputs are grammatical in both languages yet the se-

mantics do not exactly match the original sentence.

case the sentence is monolingualised into one lan-
guage and uses the syntax of the other original lan-
guage, MT faces the problem of two separate com-
bined systems: the lexical system of one language
and the syntax of another.

9 Automatic Speech Recognition

For automated processing of spoken communica-
tion, an automatic speech recognition (ASR) system,
which transforms speech signal to text, is an essen-
tial component. In the context of CS, ASR is im-
portant because CS appears mainly in conversational
speech. To develop an ASR system, three major
components need to be built: a pronunciation dictio-
nary, a language model and an acoustic model (AM)
(Young, 1996). In general, there are two possible
ways to build an ASR system for CS speech (Vu et
al., 2012). In the first approach, a LID system is used
to split the CS speech into monolingual parts and,
afterwards, monolingual recognisers are applied to
the corresponding speech segments. This method is
straightforward since the monolingual systems are
already available. We lose, however, the semantic
information between the segments and the mistakes
of the LID system cannot be recovered especially
if speech segments are short (e.g. < 3s). The sec-
ond approach is building an integrated system with
a multilingual AM, dictionary and language model.
Compared to the first approach, it allows handling
of CS within a word and the semantic information
can be used between languages. Therefore, we focus
only on identifying challenges of developing pro-
nunciation dictionaries and acoustic models for mul-
tilingual ASR.
Pronunciation dictionary A pronunciation dictio-
nary is a collection of words and phoneme se-
quences which describe how a word is pronounced.
A straightforward implementation of a dictionary is
to combine pronunciations of the mixed languages.
This is often not suitable because pronunciation of-
ten changes in a CS context due to the articulation
effect when speakers switch from one language to
another. Another challenge is how to automatically
create the pronunciation for CS words. To our best
knowledge, this is a difficult task which has never
been addressed so far.
Acoustic modelling An AM estimates the proba-

8



bility of sound state given a speech frame. The
most crucial problem is again the lack of transcribed
CS data. Another one is the phonetic transfer phe-
nomenon which occurs even when the speaker is
proficient in both languages. Hence, most recent
proposed approaches focus on bilingual acoustic
models which combine the properties of both lan-
guages and to some extent overcome the sparsity
problem. Vu et al. (2012) merge the phoneme sets
based on the International Phonetic Alphabet (IPA)
manual mapping to share training data between
phonemes across languages. Furthermore, their sys-
tem allows to ask language specific questions dur-
ing the context dependent decision tree building pro-
cess. They achieve an improvement over the base-
line with concatenated phoneme sets. Li and Fung
(2013) propose an asymmetric AM which automati-
cally derives phone clusters based on a phonetic con-
fusion matrix. In the decision tree building process,
they identify similar context dependent tree states
across languages. The new output distribution is
a linear interpolation of the pretrained monolingual
state models. Their proposed approach outperforms
the baseline with a large margin.

Another direction is to integrate LID prediction
into ASR during testing. The LID gives the proba-
bility of a language given a speech frame which can
be combined directly with the acoustic score for test-
ing. Weiner et al. (2012) show good improvement
when the LID system is sufficiently accurate. It is,
however, a challenging task to develop a LID system
on the acoustic frame level.

10 Conclusion

In this paper, we discuss the challenges that sur-
face when well-established NLP tasks deal with CS
data. Some of these challenges are language-pair de-
pendent e.g. Romanisation and back-translation in
Hindi or Bengali. Others are recurring throughout
various tasks regardless of the language such as the
increased amount of unseen constructions caused by
combining lexicon and syntax of two languages.

Working on NLP for mixed data yields the ad-
vantage that resources and tools for the respective
languages can be beneficial. Although we do not
have to start from scratch, the tasks and required
techniques are significantly different from those for

monolingual data. Context-sensitive methods suffer
due to increased combinatoric possibilities crossing
syntactic and lexical systems of different languages.

In addition, CS is a phenomenon that appears in
data with hard-to-process factors other than mixing.
CS-typical genres are often close to spoken text and
thus have to deal with problems that colloquial text
poses from non-canonicity to incomplete syntactic
structures to OOV-words. Although this would al-
ready suggest that a higher number of training in-
stances are needed, there are just small amounts of
annotated data available. So far there are annotated
bilingual training resources for just three of the tasks
(LID, POS and ASR) for specific language pairs.
Since each mixed language comes with its own chal-
lenges, each pair requires a dedicated corpus.

To alleviate the data sparsity problem, some ap-
proaches work by generating artificial CS text based
on a CS-aware recurrent neural network decoder (Vu
and Schultz, 2014) or a machine translation sys-
tem to create CS data from monolingual data (Vu
et al., 2012). Such techniques would benefit from
better understanding of the characteristics of code-
switching data. This is why we enriched our paper
with examples from data sets covering different lan-
guage pairs. So far, very little NLP research makes
use of linguistic insights into CS patterns (cf. Li and
Fung (2014)). Such cues might improve results in
the discussed tasks herein.

Another recurring and not yet addressed issue8,
is the inter-relatedness of all these tasks. Features
required for one task are the output of the other.
Pipeline approaches cannot take advantage of these
features when task dependencies are cyclic (e.g.,
normalisation and language identification). More-
over pipelines cause error propagation. This fact
asks for attention on joint modelling approaches.
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Ö. Çetinoğlu and Ç. Çöltekin. 2016. Part of speech tag-
ging of a turkish-german code-switching corpus. In
Proceedings of LAW-X.
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Abstract

One of the benefits of language identification
that is particularly relevant for code-switching
(CS) research is that it permits insight into
how the languages are mixed (i.e., the level
of integration of the languages). The aim of
this paper is to quantify and visualize the na-
ture of the integration of languages in CS doc-
uments using simple language-independent
metrics that can be adopted by linguists. In
our contribution, we (a) make a linguistic
case for classifying CS types according to
how the languages are integrated; (b) describe
our language identification system; (c) intro-
duce an Integration-index (I-index) derived
from HMM transition probabilities; (d) em-
ploy methods for visualizing integration via
a language signature (or switching profile);
and (e) illustrate the utility of our simple met-
rics for linguists as applied to Spanish-English
texts of different switching profiles.

1 Introduction

Sociolinguists who focus on CS have been reluc-
tant to adopt automatic annotation tools in large part
because of the Principle of Accountability (Labov,
1972), which demands an exhaustive and accurate
report for every case in which a phenomenon (e.g.,
a switch) occurs or could have occurred. Thus,
in order to encourage linguists to move beyond
slow but accurate manual coding and to take ben-
efit of computational methods, the tools need to be
precise and intuitive and consistent with linguistic
concepts pertaining to CS. Herein, we provide a
means of quantifying language integration and of

visualizing the language profile of documents, al-
lowing researchers to isolate events of single-word
other-language insertions (borrowing, nonce bor-
rowing) versus spans of alternating languages (code-
switching) versus lengthy sequences of monolingual
text (translation, author/speaker change). Our meth-
ods differ from existing NLP approaches in attend-
ing to some issues that are relevant for linguists but
neglected in other approaches, e.g., in classifying the
language of Named Entities as they can trigger CS
(Broersma & De Bot, 2006) , in using ecologically
valid training data, and in not assuming that each
text or utterance has a main language.

2 Related Work

2.1 Mixed Texts

Multilingual documents may comprise more than
one language for various reasons, including trans-
lation, change of author/speaker, use of loanwords,
and code-switching (CS). For this reason, the term
bilingual (or multilingual) as applied to corpora can
be ambiguous, referencing a parallel corpus such as
Europarl (Koehn, 2002) as well as a speech corpus
in which more intimate language mixing is present
(e.g., the BilingBank Spanish-English Miami Cor-
pus (Deuchar, 2010)). King & Abney (2013) have
noted that it is desirable that a language identifica-
tion annotation system operate accurately irrespec-
tive of whether it is processing a document that
contains monolingual texts from different languages
or texts in which single authors are mixing differ-
ent languages (Das & Gambäck, 2013; Gambäck
& Das, 2014, Gambäck & Das, 2016; Nguyen &
Doğruöz, 2013; Chittaranjan et al., 2014) . For lin-
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guists with interests in patterns of CS there is also a
need to be able to classify types of mixed multilin-
gual documents. CS is not monolithic—it can range
from switching for lone lexical items and multi-
word expressions to alternation of clauses and larger
stretches of discourse within an individual’s speech
or across speech turns—and different types of CS in-
vite different types of analyses and reflect different
social conditions and types of grammatical integra-
tion.

2.2 Mixing Typology

There is consensus that ‘classic’ or intrasentential
code-switching, of all mixing phenomena, is most
revealing of the interaction of grammatical systems
(Joshi 1982, Muysken 2000, Myers-Scotton 1993,
Poplack 1980). Muysken (2000) presents a typology
of mixing, identifying three processes—insertion,
alternation, and congruent lexicalization—each re-
flecting different levels of contributions of lexical
items and structures from two (or more) languages
and each associated with different historical and cul-
tural embedding. Insertional switching, (Example
1, Rampton et al. 2006:1) involves the grammat-
ical and lexical properties of one language as the
Matrix Language (Myers-Scotton, 1993) which sup-
plies the morphosyntactic frame into which chunks
of the other language are introduced (e.g., borrow-
ing and small constituent insertion). Insertion is ar-
gued to be prevalent in postcolonial and immigrant
settings where there is asymmetry in speakers’ com-
petence of both languages. In alternational switch-
ing (Example 2, Nortier 1990: 126) the participating
languages are juxtaposed and speakers are said to
draw on ‘universal combinatory’ principles in build-
ing equivalence between discrete language systems
while maintaining the integrity of each (MacSwan,
2000; Sebba, 2009). Alternation is purported to be
most common among proficient bilinguals in situa-
tions of stable bilingualism. In a third type, congru-
ent lexicalization (Example 3, Van Dulm, 2007:7;
cited in Muysken 2014), the syntax of the languages
are aligned and speakers produce a common struc-
ture using words from both languages; it is claimed
to be attested among bilinguals who are fluent in ty-
pologically similar languages of equal prestige as
well as in dialect/standard and post-creole/lexifier
mixing. Muysken (2013) augments this tripartite

taxonomy by incorporating a fourth strategy, back-
flagging (Example 4, DuBois & Horvath, 2002:
276), in which the grammatical and lexical prop-
erties of the majority language serve as the base
language into which emblematic minority elements
are inserted (e.g., greetings, kinship terms); speak-
ers may select this strategy to signal ethnic identities
once they have shifted to the majority language.

• Example 1, English/Punjabi
I don’t mix with <kAíe:> (‘black boys’)

• Example 2, Moroccan Arabic/Dutch
<Maar ’t hoeft niet> li-?anna ida seft ana (‘But
it need not be, for when I see, I . . . ’)

• Example 3, English/Afrikaans
You’ve got no idea how <vinnig> I’ve been
<slaan-ing> this <by mekaar>
(‘You have no idea how quickly I’ve been
throwing this together’)

• Example 4, English/French in Louisiana
<Ça va>. Why don’t you rewire this place and
get some regular light switches? (‘It’s okay.’)

2.3 Mixing types as correlates of social
differences

Social factors are the source of variation in CS
patterns (Gardner-Chloros, 2009). The same lan-
guage pairings can be combined in various ways
and with varying frequency depending on a range
of social variables. Post (2015) found gender to be
a significant predictor of both frequency and type
of switching among Arabic-French bilingual uni-
versity students in Morocco. Vu, Adel & Schultz
(2013) showed that syntactic patterns of Mandarin-
English CS differ according the regional origin of
the speaker (Singapore vs. Malaysia). Poplack
(1987) observed that CS patterns reflected the dif-
ferential status of French and English in the adjacent
Canadian communities of Ottawa and Hull. Larsen
(2014) demonstrated that there are significant differ-
ences in the frequency of English unigram and bi-
gram insertions in Argentine newspapers destined
for distinct social classes of readerships. In con-
trast, Bullock, Serigos & Toribio (2016) report that
in Puerto Rico, where degree of language contact is
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stronger, it is the presence of longer spans of En-
glish (3+gram but not uni- and bigram) that corre-
lates with higher social prestige.

2.4 Matrix language

In linguistic CS research, the Matrix Language (ML)
refers to the morphosyntactic frame provided by the
grammar of one of the contributing languages as dis-
tinct from lexical items or spans (islands) from em-
bedded languages (Myers-Scotton, 1993). The ML
cannot be assumed to be the most frequent language,
instead it must be discovered via grammatical anal-
ysis.

2.5 Multilingual Indexes

For sociolinguists, Barnett et al. (2000) created a
mixing index M to calculate the relative distribution
of languages within a given document. Values range
from 0 (a monolingual text) to 1 (a text with even
distribution of languages). The M-index is valuable
in that it indicates the degree to which various lan-
guages are represented in a text; its limitation is that
it does not show how the languages are integrated
and, as a consequence, cannot provide an index of
CS versus the wholesale shift from one monolingual
text to another in a document. Methods of estimat-
ing the proportion of languages in large corpora like
Wikipedia have been proposed by Lui, Lau & Bald-
win (2014) and by Prager (1999).

2.6 Integration Index

Gambäck & Das (2014) created an initial Code-
Mixing Index (CMI) based on the ratio of language
tokens that are from the majority language of the
text, which they call the matrix language. Like the
M-index, CMI does not take account of the integra-
tion of CS, thus Gambäck & Das (2016) present a
more complex formulation that enhances the CMI
with a measure of integration that is applied first to
the utterance level and then at the corpus level.

2.7 Language Signature of a document

In their description of the Bangor Autoglosser,
a multilingual tagger for transcriptions of Welsh,
Spanish, and English conversations in which
languages are manually annotated, Donnelly &
Deuchar (2011) underline the utility of their system
for visualizing the shifting of languages during the

course of a conversation, but they make no attempt
to quantify language integration, a central point of
interest for linguists and one we address here.

2.8 Language Identification

Language identification in multilingual documents
continues to present challenges (Solorio et al. 2014
for the first shared task on language identification in
CS data). Researchers have tested a combination of
methods (dictionaries, n-grams, and machine learn-
ing models) for identifying language or for predict-
ing switching, mostly at the word level, with varying
degrees of accuracy (Elfardi & Diab, 2014; King &
Abney, 2013; Solorio & Liu, 2008a, 2008b; Nguyen
& Doğruöz, 2013; Rodrigues, 2012 ). Because tran-
scriptions of spoken CS are rare, researchers have
drawn on social media, particularly Twitter (Bali
et al., 2014; Vilares, Alonso, & Gómez-Rodrı́guez,
2016; Çetinoglu, 2016; Jurgens, Dimitrov & Ruths,
2014; Samih & Maier, 2016), as well as artificially
generated texts to develop NLP tools that support
the processing of mixed-language data (Lui, Lau &
Baldwin, 2014; Yamaguchi & Tanaka-Ishii, 2012) .

3 Language Model

Our language model produces two tiers of anno-
tation: language (Spanish, English, Punctuation,
or Number) and Named Entity (yes or no). For
the language tier, two heuristics are applied first
to identify punctuation and number. For tokens
that are not identified as either, a character n-gram
(5-gram) and first order Hidden Markov Model
(HMM) model, trained on language tags from the
gold standard, are employed to determine whether
the token is Spanish or English. Two versions of
the character n-gram model were tested. One is
trained on the CALLHOME American English and
CALLHOME Spanish transcripts. The second n-
gram model is trained on two subtitle corpora: the
SUBTLEXUS corpus representing English and the
ACTIV-ES representing Spanish. Though in its en-
tirety, the SUBTLEXUS corpus contains 50 million
words, only a 3 million-word section was used to
remain consistent with the ˜3 million words in the
ACTIV-ES corpus. Both these corpora provide bal-
anced content as they include subtitles from film and
television covering a broad range of genres. The
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validity of film and television subtitle corpora to
best represent word frequency has been successfully
tested by Brysbaert & New (2009). For the Named
Entity tier, we use the Stanford Named Entity rec-
ognizer with both the English and Spanish param-
eters. If either Entity recognizer identified the to-
ken as a named entity, it was tagged as a named en-
tity. Unlike other taggers where named entities are
viewed as language neutrals, our named entities re-
tained their language identification from their first
tier of annotation (Çetinoglu, 2016).

4 Integration Index

In order to quantify the amount of switching be-
tween languages in a text, we offer the I-Index,
which serves as a complement to the M-index (Bar-
nett et al., 2000). It is a computationally simpler
version of the revised CMI index of Gambäck & Das
(2016) and one which does not require the segmenta-
tion of the corpus into utterances or require comput-
ing weights. Consistent with principles of CS, our
approach does not assume a matrix language. Con-
sider the two examples below.

• Example 5 (Spanish-English, KC)
Anyway, al taxista right away le noté un acen-
tito, not too specific.

• Example 6 (Spanish-English, YYB)
Sı́, ¿y lo otro no lo es? Scratch the knob and
I’ll kill you.

Ex. 1 2 3 4 5 6
Lg. 1 4 4 8 2 6 7
Lg. 2 1 5 4 12 6 7
CS 1 1 5 1 4 1
M 0.47 0.98 0.8 0.32 1 1
I 0.25 0.125 0.45 0.08 0.36 0.08

Table 1: Spans for Examples

Examples 5 and 6 contain perfectly balanced
Spanish/English usage, reflected in their M-index of
1. However, the two languages are much more inte-
grated in the first sentence, with four switch points,
when compared to the second sentence, with just
one switch point. Their respective integration, or I-
index, captures this difference. Additionally, Exam-
ple 2 and 3 each have high M-index values but differ

in the I-index values in ways that might be predicted
by social context: English-Afrikaans contact lends
itself to congruent lexicalization, while Moroccan-
Arabic-Dutch shows low integration insertion com-
mon of immigrant settings. The I-index is calcu-
lated as follows. Given a corpus composed of tokens
tagged by language {li} where i ranges from 1 to n,
the size of the corpus, the I-index is calculated by
the following expression:

1
n− 1

∑
1≤ i < j≤n

S(li, lj),

where S(li, lj) = 1 if li 6= lj and 0 otherwise.The
factor of 1/(n − 1) reflects the fact that there are
n − 1 possible switch sites in a corpus of size n.
The I-index can also be calculated using the transi-
tion probabilities generated from a first-order Hid-
den Markov Model on an annotated corpus (ignor-
ing the language independent tags) by summing only
the probabilities where there has been a language
switch. The I-index is an intuitive measure of how
much CS is in a document, where the value 0 repre-
sents a monolingual text with no switching and 1 a
text in which every word switches language, a highly
unlikely real-world situation. For a 10-word sen-
tence in which each word is contributed by a differ-
ent language, Gämback & Das’s (2016) maximum
integration is .90 rather than 1.

5 Language Signature

Figure 1: Example 5 Span Distribution

In order to visualize the level of language integra-
tion along with language spans, we offer the concept
of a language signature that takes into account span
length and frequency to derive a unique pattern per
document. For Example 5,
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ACTIV-ES & SUBTLEXUS CALLHOME
Language Accuracy Precision Recall Accuracy Precision Recall
English 0.9507 0.9332 0.9729 0.9343 0.8931 0.9893
Spanish 0.9479 0.9021 0.9853 0.9442 0.9286 0.9422

Table 2: Accuracy of language detection on KC using different training corpora

Figure 2: Example 5 Span Plot

Figure 3: Example 6 Span Plot

there are spans in English of length one, two and
three words. In Spanish, there are language spans
of length two and four words. Although not particu-
larly revealing with such a short segment, these dis-
tributions result in a histogram plot as shown (Figure
1).

In combination with the I-indices, these plots
(Figures 1, 2, and 3) display a unique insight into
the nature of language mixing and the extent of inte-
gration. In contrast to the singular data point of the
I-index, the span plots provide a multi-level view of
how and to what extent CS occurs in the text.

6 Experiments

6.1 Dataset

Because our interest here is in exploiting language
identification for the purpose of detecting vari-
able CS patterns, we draw on two literary texts
that we know to employ extensive Spanish-English

CS but in two distinctly different styles. Killer
Crónicas: Bilingual Memoires (KC), by the Jewish
Chicana writer Susana Chávez-Silverman (2004),
is a 40,469-word work of creative nonfiction that
chronicles the author’s daily life through a series of
letters that began as email messages written entirely
in ‘Spanglish’. Yo-Yo Boing! (YYB), by the Puerto
Rican writer Giannina Braschi (1998), is a 58,494-
word hybrid of languages and genres, incorporating
Spanish, English, and ‘Spanglish’ monologues, dia-
logues, poetry, and essays. These popular press texts
are available online and were used with the permis-
sion of the authors.

6.2 Evaluation

The effectiveness of our model was evaluated on a
gold standard of 10k words from KC. The segment
was selected from the middle of the text, beginning
at token 10,000. It was tagged for language by a
Spanish-English bilingual professional linguist and
10% was inspected by a second bilingual profes-
sional linguist for accuracy. The annotators agreed
on all but 2 of the 1000 tokens. The gold standard
includes the following tags: Spanish, English, Punc-
tuation, Number, Named Entity, Nonstandard Span-
ish, Nonstandard English, Mixed along with three
other language tags (French, Italian, Yiddish). The
Nonstandard tags included forms such as cashe ˜
calle ‘street’ to represent dialectal differences, and
the Mixed tags included any tokens with morphol-
ogy from two or more languages such as hangue-
ando ˜ hanging out. Since Spanish, English, Punc-
tuation, Number and Named Entity account for over
98% of the gold standard, only those tags were used
in our model. For the evaluation, we relabel the non-
standard tags to their respective languages and the
other languages were ignored.

6.3 Results

As seen in Table 3, despite the close similarity in M-
index for the two corpora, the I-index demonstrates
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Figure 4: Span Distributions

Figure 5: Distribution of Tags

the difference in CS between them; KC has a higher
integration of languages than YYB. In Figure 4, we
see that even though both corpora contain switches,
KC has a much higher incidence of short, switched
spans in both languages, increasing its I-index rela-
tive to YYB.

As shown in Figure 4, KC displays a rapid expo-
nential decay in span length vs. frequency, whereas
YYB does not. In addition, YYB displays a heavy
tail, indicating a higher frequency of large spans in
both languages compared to KC, which has very few
spans longer than twenty words.

Table 2 shows our model’s performance on lan-
guage tagging the 10k gold standard of KC using
two separate sets of training corpora.

However, as shown in Table 2, our original results

Corpus M-index I-index
Killer Crónicas 0.96 0.197
Yo-Yo Boing! 0.95 0.034
EN-ES 0.72 0.067

Table 3: Language Integration and Mixing

Accuracy Precision Recall
Same 96.72% 79.19% 65.30%
Opposite 88.92% 33.24% 74.85%
English 96.65% 83.94% 58.08%
Spanish 89.00% 34.42% 82.06%

Table 4: NER Classification Performance

using the CALLHOME corpus reflect a lower per-
formance due to the disparity in size of the corpora
(3.1M Eng, 976K Mex). Using these corpora re-
sulted in recurring mistakes such as identifying the
word “ti” as English due to the overabundance of the
acronym “TI” in the English CALLHOME corpus
relative to the Mexican Spanish corpus. Addition-
ally, common words in both languages such as “a”
or “me” were initially tagged as English for similar
reasons. In contrast, changing to equal-size corpora
of 3.5M words (ACTIV-ES and SUBTLEXUS) re-
sulted in a quantitative increase of 1% in language
accuracy for both languages as seen in Table 2 and
better tagging of “ti”, “me” and “a” in mixed con-
texts.

Furthermore, we chose four different methods of
classifying named entities as shown in Table 4: us-
ing the classifier in the same language as the token,
the opposite language, only the English classifier,
and only the Spanish classifier. The Stanford Named
Entity Recognizer clearly over identifies named en-
tities, reflected in its low precision scores. We found
that using only the English classifier in all cases rec-
ognized named entities with the highest precision,
but the Spanish classifier resulted in the highest re-
call rate. Finally, using the classifier in the same
language as the token is only marginally better in
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accuracy than relying purely on the English classi-
fier.

7 Conclusion

In this paper we provided an intuitively simple and
easily calculated measure—the I-index—for quan-
tifying language integration in multilingual texts
that does not require weighting, identification of
a matrix language, or dividing corpora into utter-
ances. We also presented methods of visualiz-
ing the language profile of mixed-language docu-
ments. To illustrate the I-index and how it differs
from a measure that shows the ratio of languages
mixed in a text (the M-index), we created an au-
tomatic language-identification system for classify-
ing Spanish-English bilingual documents. Our an-
notation system is similar to that of Solorio & Liu
(2008a, 2008b), which includes an n-gram method
and a bi-gram HMM model for probabilistically as-
signing language tags at the word level. We im-
proved accuracy by 1% in our model by using train-
ing corpora that reflected natural dialogue and we
used different methods of classifying Named Enti-
ties in an attempt to reduce the greediness of the
Named Entity Recognizer. Our automatic proce-
dure achieves high accuracy in language identifica-
tion, and although the texts examined proved to be
equally bilingual, our analysis demonstrated that the
languages are integrated very differently in the two
data sets, a distribution that can be intuitively de-
picted visually.

The implication is that though texts might be
mixed, only some texts are suitable for the study
of intrasentential CS. For instance, the I-index met-
ric indicates that any random selection from KC,
but not YYB, would likely contain intersentential
CS. As linguists move to exploit larger multilingual
datasets to examine language interaction (Jurgens et
al., 2014; Bali et al., 2014), it is crucial to have an
uncomplicated metric of how the languages are in-
tegrated because different types of integration corre-
late with different social contexts and are of interest
for different domains of linguistic inquiry.
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Amitava Das and Björn Gambäck. 2014. Identifying lan-
guages at the word level in code-mixed indian social
media text. 11th International Conference on Natural
Language Processing.

Margaret Deuchar. 2010. BilingBank Spanish-English
Miami Corpus.

18



Kevin Donnelly and Margaret Deuchar. 2011. The Ban-
gor Autoglosser: a multilingual tagger for conversa-
tional text. ITA11, Wrexham, Wales.

Sylvie Dubois and Barbara M. Horvath. 2002. Sounding
Cajun: The Rhetorical Use of Dialect in Speech and
Writing. American Speech, 77(3):264–287.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona Diab.
2014. A hybrid system for code switch point detection
in informal Arabic text. XRDS: Crossroads, The ACM
Magazine for Students, 21(1):52–57, October.

Björn Gambäck and Amitava Das. 2014. On Measur-
ing the Complexity of Code-Mixing. In Proceedings
of the 11th International Conference on Natural Lan-
guage Processing, Goa, India, pages 1–7.
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Abstract

Codeswitching is a very common behavior
among Swahili speakers, but of the little com-
putational work done on Swahili, none has
focused on codeswitching. This paper ad-
dresses two tasks relating to Swahili-English
codeswitching: word-level language identifi-
cation and prediction of codeswitch points.
Our two-step model achieves high accuracy at
labeling the language of words using a simple
feature set combined with label probabilities
on the adjacent words. This system is used to
label a large Swahili-English internet corpus,
which is in turn used to train a model for pre-
dicting codeswitch points.

1 Introduction

Language technology has progressed rapidly in
many applications (speech recognition and synthe-
sis, parsing, translation, sentiment analysis, etc.),
but efforts have been focused mainly on large, high-
resource languages and on monolingual data. Many
tools have not been developed for low-resource lan-
guages nor can they be applied to mixed-language
data containing codeswitching. In many cases, deal-
ing with low-resource languages requires the ability
to deal with codeswitching. For example, it is quite
common to codeswitch between the lingua franca
and English in many former English colonies in
Africa, such as Kenya, Zimbabwe and South Africa
(Myers-Scotton, 1993b). Thus, expanding the reach
of language technologies to users of these languages
may require the ability to handle mixed-language
data, depending on which domains it is intended for.

Codeswitching produces additional challenges for
NLP due to the simple fact that monolingual tools
cannot be applied to mixed-language data. Beyond
that, codeswitching also has its own peculiarities
and can convey meaning in and of itself, and these
aspects are worthy of study as well. Codeswitch-
ing can be used to increase or decrease social dis-
tance, indicate something about a speaker’s social
identity or their stance towards the subject of dis-
cussion, or to draw attention to particular phrases
(Myers-Scotton, 1993b). Sometimes, of course, it
may simply indicate that the speaker does not know
the word in the other language, or is not able to re-
call it quickly in this instance. Computational ap-
proaches to discourse analysis will require tools spe-
cific to codeswitching in order to be able to make use
of these social meanings.

Multiple theories propose grammatical con-
straints on codeswitching (Myers-Scotton, 1993a),
and computational approaches may contribute to
providing stronger evidence for or against these the-
ories (Solorio and Liu, 2008). These grammatical
constraints also can inform the social interpretation
of codeswitching. If a codeswitch occurs in a po-
sition that is less expected, it may be more likely
to have been used for effect. Similarly, when a
codeswitch occurs in a less likely context based on
features of the discourse, this also affects the inter-
pretation. The longer a discussion is carried out in a
single language, the more likely it would seem that
a switch indicates a change in the discourse. For
example, Carol Myers-Scotton (1993b) analyzes a
conversation where a switch to Swahili and then to
English after small talk in the local language adds
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force to the speaker’s rejection of a request. This
type of switch could also be precipitated by a change
in conversation topic, task (e.g. pre-class small talk
transitioning into the beginning of lessons), location,
etc. By contrast, in conversations where participants
switch frequently between languages, each individ-
ual switch carries less social meaning. In those situ-
ations, it is the overall pattern of codeswitching that
conveys meaning (Myers-Scotton, 1993b). A model
should be able to see this pattern and adjust the like-
lihood of switches accordingly. Being able to pre-
dict how likely a switch is to occur in a particular
position may thus provide information to aid in the
social analysis of codeswitching behavior.

In this paper, we will be introducing two cor-
pora of Swahili-English data. One is comprised of
live interviews from Kenya, while the other was
scraped from a large Tanzanian/Kenyan Swahili-
language internet community. We will be ana-
lyzing codeswitching in both data sets. Human-
annotated interviews and a small portion of human-
annotated internet data are used to train a language
identification model, which is then applied to the
larger internet corpus. The interview data and this
automatically-labeled data are then used in training
a model for predicting codeswitch points.

There are few NLP tools for Swahili and we could
find no prior computational work on Swahili that ad-
dressed codeswitching. Additionally, available cor-
pora in Swahili are monolingual, so the creation of
two sizable corpora of mixed Swahili-English data
will be valuable to research in this area.

2 Prior Research

2.1 Language Identification

Until recent years, most work on automatic lan-
guage identification focused on identifying the lan-
guage of documents. Work on language identifi-
cation of very short documents can be found, for
example, in Vatanen et al. (2010). But language
identification at the word level in codeswitching data
has begun to receive more attention in recent years,
particularly with the First Workshop on Computa-
tional Approaches to Codeswitching (FWCAC). The
workshop had a shared task in language identifi-
cation, with eight different teams submitting sys-
tems on the four language pairs included (Spanish-

English, Nepali-English, Mandarin-English and
Modern Standard Arabic-Egyptian Arabic) (Solorio
et al., 2014). Additionally, prior to this workshop,
some work had been done on word-level language
identification in Turkish-Dutch data (Nguyen and
Doğruöz, 2013) and on language identification on
isolated tokens in South African languages (Giwa
and Davel, 2013), both with an eye towards analyz-
ing codeswitching.

Most, if not all, of the previous approaches to
word-level language identification utilized character
n-grams as one of the primary features (Nguyen and
Doğruöz, 2013; Giwa and Davel, 2013; Lin et al.,
2014; Chittaranjan et al., 2014; Solorio et al., 2014).
Those focused on intrasentential codeswitching also
utilized varying amounts of context. Nguyen and
Doğruöz (2013) and all but one of the systems sub-
mitted to the shared task at FWCAC used contex-
tual features. A number of other types of features
have been utilized as well, including capitalization,
text encoding, word embedding, dictionaries, named
entity gazetteer, among others (Solorio et al., 2014;
Volk and Clematide, 2014). Significant variation in
the difficulty of the task has been found between lan-
guage pairs. More closely related languages can be
more difficult if they also share similar orthographic
conventions, as was found with the MSA-Egyptian
Arabic language pair (Solorio et al., 2014). In the
FWCAC shared task, notable declines in system per-
formance were found when introduced to out-of-
domain data.

2.2 Codeswitch Point Prediction

There has been significantly less work done on the
task of predicting codeswitch points. We could
only find two articles that deal precisely with this
task, Solorio and Liu (2008) and Papalexakis,
Nguyen and Doğruöz (2014). The two groups take
fairly different approaches to feature design and
performance evaluation, while both groups use
naı̈ve Bayes classifiers. Solorio and Liu also explore
Voting Feature Intervals.

Solorio and Liu look at English-Spanish
codeswitching in a relatively small conversational
data set created for the study. They use primarily
phrase constituent position and part-of-speech
tagger outputs as features. The word, its language
and its human-annotated POS were also used. These
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Interviews JamiiForums
# Utterances/Posts 10,105 220,434
# Words (tokens) 188,188 16,176,057
Avg. words/item 18.6 73.4
% English words 84.5% 45.8%
% Swahili words 15.4% 54.1%
% Mixed words <0.1% <0.1%
% Other words <0.1% <0.1%

Table 1: Data set Stats

were tested both with and without the features for
the previous word. Initial evaluation was done using
F1-scores, but as noted in the paper, codeswitching
is never a forced choice. As such, the upper-bound
on this task should be relatively low. To get around
this issue, Solorio and Liu came up with a novel
approach to test performance by artificially gen-
erating codeswitched sentences. These sentences
were scored for naturalness by bilingual speakers
and compared to naturally-occurring codeswitched
sentences. Their model achieved scores not far
from the natural examples. This approach seems
well-justified but requires significant human input.

Papalexakis et al. use simpler features focused
on the context of the word. These include the
language of the word and the two previous words,
whether there was codeswitching previously in the
document, the presence of emoticons in the previous
two words and the following words, and whether the
word is part of a common multi-word expression.
These features are applied on a large data set from
a Turkish-Dutch internet forum. The language
of tokens in this data was labeled automatically
using the system in Nguyen and Doğruöz (2013).
They find that these features are useful, particularly
the language sequence features. The exception is
that the emoticon-based features actually reduced
performance when combined with other features.

3 Data Sets

The two data sets we use in this paper come from
very different domains. The first is comprised of live
interviews, and as such is spoken conversation. The
second is from a large internet forum, and so is ca-
sual, written data with use of emoticons and other
behaviors specific to computer-mediated communi-
cation. The use of data from two linguistic domains
also provides a test of the robustness of our model.

Some descriptive statistics about the two data sets
can be seen in Table 2.2. The forum data set is
a couple of orders of magnitude larger than the
interview data set. Our utterances are similar in
length to the posts analyzed in Nguyen and Doğruöz
(2013). JamiiForums posts are considerably longer
than both.

3.1 Kenyan Interviews
The interviews in this data set were conducted in
Kenya. The participants were students at a Kenyan
university and the interviewers were a combination
of other students and professors at the same uni-
versity. Most of the participants were interviewed
twice, once by a student and once by a professor.
This provides two social contexts, one in which the
participant and interviewer have the same social sta-
tus, and one in which the interviewer has a higher
social status. In our examination of the data, some
differences can be seen in codeswitching behavior in
these two situations, but this is beyond the scope of
this paper.

The interviews were transcribed, translated, and
the words were tagged by language by native speak-
ers of Swahili who are fluent in English. Words
were labeled as either English, Swahili, mixed,
or other. Some words were originally labeled as
Sheng, which is a term used in Kenya for a regis-
ter of heavy codeswitching with urban street slang
(Mazrui, 1995). The annotators were not instructed
to use this label. Since most Sheng words clearly
originate in either Swahili or English, they were
relabeled accordingly. In contrast to the FWCAC
shared task (Solorio et al., 2014), we did not la-
bel named entities or ambiguous words. Words that
might have been labeled that way were instead la-
beled according to the context – a proper name was
labeled as English if it was surrounded by English,
or Swahili if it was surrounded by Swahili. Such
words that occurred at language boundaries were la-
beled with the following words or the words within
the same sentence (if it occurred at the end of a sen-
tence). There were relatively few instances of this.

3.2 JamiiForums Internet Data
The internet data comes from a large Tanzania-based
internet forum named JamiiForums1. It was scraped

1https://www.JamiiForums.com
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by a Python script, but due to changes in the forum
software and increased security, scraping was not
completed. Thus the data only comprises a small
fraction of the entire forum. As we already had a
large amount of data, we did not feel it necessary
to continue immediately2. Since our interview data
came from Kenya, we prioritized scraping the entire
Kenyan subforum first.

During scraping, full URLs, embedded images
and email addresses were replaced with placeholder
terms. Bare hostnames3 were left alone since they
can double as the name of an organization or web-
site. Emoticons were replaced with the name of the
emoticon as defined by the hover text or image file
name. Text within quotation boxes was separated
from text in the main body of the post. However,
given that users do not always format their posts cor-
rectly, some improperly formatted forum code will
inevitably have been included in our data.

Language labels for 22,592 tokens of the Jamii-
Forums data were annotated by a native English
speaker. These were annotated according to the
same rules as the interview data. Annotation was
done after applying the initial language identifica-
tion model to the forum data, with only disagree-
ments being labeled by the annotator. This signifi-
cantly increased the speed that annotation could be
done.

4 Language Identification Task

4.1 Methodology
For the language identification task, we applied
some additional preprocessing to the data. First, the
data was tokenized to split words from punctuation
marks other than word-internal periods, apostrophes
and hyphens. Then all punctuation except for peri-
ods, question and exclamation marks were removed.
Prior work has explored whether emoticons have
any influence on codeswitching behavior (Papalex-
akis et al., 2014), but did not find them to be signifi-
cantly useful. Therefore other symbols with no lex-
ical content such as emoticons and the placeholders
for embedded images, etc. were also removed.

After this, we experimented with a few different
features before settling on the final set. The first type

2We discuss other aspects of the site in Section 6
3For example, Pets.com

of feature we used was character n-grams (unigrams,
bigrams and trigrams), filtered to exclude n-grams
that occurred less than 25 times. The symbol # was
appended to the beginning and end of the word to
enable the n-gram features to capture prefixes and
suffixes. Additionally, we used a capitalization fea-
ture, English and Swahili dictionary features and a
regular expression feature. The capitalization fea-
ture categorized words by whether the first letter
only was capitalized and if so, whether it occurred at
the beginning of a sentence. Otherwise, words were
categorized as either all lower case, all upper case,
or all numbers and symbols. Words which did not
match any of those patterns were labeled as “other”.
The dictionary-type features were generated using
the English and Swahili models using the TreeTag-
ger tool (Schmid, 1994). They were binary features
based on whether the word was recognized by the
English tagger or the Swahili tagger. The final fea-
ture we explored was a regular expression designed
to match Swahili phonology. Since Swahili orthog-
raphy is highly regular and native Bantu vocabu-
lary conforms strictly to certain phonological con-
straints, it was possible to write a regular expression
that matches >95% of Swahili words, with the pri-
mary exceptions being words borrowed from Ara-
bic.

We found that the Swahili regular expression was
redundant with the use of character n-grams. Addi-
tionally, the English TreeTagger was highly overin-
clusive, marking many Swahili words as recognized,
while the Swahili TreeTagger was underinclusive,
making those features relatively weak. So we set-
tled on using only the n-gram features along with
the capitalization feature.

We then used the LIBLINEAR algorithm (Fan
et al., 2008) with L2-regularization to generate
context-free predictions over the words from the in-
terview data. Punctuation tokens were excluded
from this model since classifying them would be
trivially easy. This context-free model was then used
to expand the feature vector for each word. In addi-
tion to the original features, the generated probabil-
ities for each class (English, Swahili, mixed, other)
on the previous and following word were added to
the feature vector. Punctuation was included as part
of the context for generating these features. This
achieved a high performance within our training set
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Train / Interview Interview Intvw & JF Small
Test Set 10-fold CV JF Small JF Large

Context Features None Word±1 None Word±1 None Word±1

English
Precision 94.2% 99.4% 41.6% 87.6% 90.1% 99.2%
Recall 99.0% 99.7% 95.9% 96.6% 96.5% 98.8%
F1 Score 96.5% 99.5% 58.0% 91.9% 93.2% 99.0%

Swahili
Precision 92.1% 97.9% 98.1% 99.0% 83.7% 95.3%
Recall 67.0% 97.2% 62.4% 96.2% 64.1% 97.7%
F1 Score 77.6% 97.5% 76.3% 97.6% 72.6% 96.5%

Accuracy 94.0% 99.3% 69.7% 96.5% 89.0% 98.4%
Cohen’s Kappa 0.74 0.98 0.40 0.92 0.66 0.96

Table 2: Performance of Word-Level Language Identification Models

over a 10-fold cross-validation.
Next, we applied this model to a subset of the

JamiiForums data. These labels were used to aid in
annotating a portion of the forum data (JF Small).
The 6,118 words annotated were then added to the
training set and the resulting model was applied to
an additional 16,475 words which were then hand-
labeled (JF Large). The final model used all of the
annotated data and was applied to the full 16+ mil-
lion word JamiiForums data set.

4.2 Results
The results of the various iterations of the model are
summarized in Table 3.2. We used Cohen’s Kappa
in addition to the measures of accuracy, precision,
recall and F1 scores. Cohen’s Kappa is used to mea-
sure inter-annotator agreement and is suitable for
measuring performance across multiple classes and
unbalanced label distributions. Effectively, we con-
sider the model as one annotator and our annotators
as the other. This measure is more robust across
test sets with different label distributions, as is the
case with the interview data, which is mostly En-
glish, and the JamiiForums data, which is balanced
between English and Swahili.

As can be seen, the language probability scores of
the word context improve performance significantly.
Error analysis suggests that it primarily reduces the
errors on named entities and numbers. Since we
consider named entities and numbers as belonging
to the language they’re embedded in, it makes sense
that these can sometimes only be correctly labeled
using information about the context. But it also re-
duces errors on other words. For example, “wake”
can be a word in both English and Swahili and con-
text is necessary to disambiguate which language it

is.
Overall, performance within the training set was

highly accurate. The greater test was applying it to
the out-of-domain forum data. As expected, per-
formance decreased noticeably, with the context-
dependent model going from 99.3% to 96.5% ac-
curacy, and 0.98 Cohen’s Kappa to 0.92. Never-
theless, this performance compares favorably to the
performance of the systems in the FWCAC shared
task on the out-of-domain “surprise” data (Solorio et
al., 2014). There are several potential explanations
for this. One obvious hypothesis is that the Swahili-
English language pair is simply easier to distinguish
than the language pairs in the shared task. English
and Swahili are quite distinct phonologically; for ex-
ample, Swahili words of Bantu stock universally end
in vowels, so a final consonant is a strong indicator
that a word is not Swahili. Another potential ex-
planation is that our language label set was differ-
ent and so the fact that we did not attempt to label
named entities or ambiguous words explains the dif-
ference in performance. A final hypothesis is that
using fewer features made our model more robust
across domains. These explanations are difficult to
disambiguate without direct comparisons of systems
on similar data.

Error analysis on the JF Small set suggested
that many of the errors were simply due to out-of-
vocabulary n-grams. Our interview data included
very few numerals and no symbols such as ‘&’,
since transcribers were instructed to write only the
words as spoken. However, these characters are
common in written communication. Rather than ad-
justing our feature set, we decided to add this anno-
tated data to the training set and see how this im-
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Interviews JamiiForums
# Codeswitches 8,508 922,547
Codeswitch % 4.5% 5.7%

Table 3: Codeswitch Point Statistics

proved performance. Adding the JF Small set to the
interview data and testing on the JF Large set cut
the error rate by over half and brought the Cohen’s
Kappa up to 0.96, almost as high as the performance
within the training set. The accuracy of over 98%
made us feel confident in applying this model to the
full JamiiForums set, which would be used for the
codeswitch point prediction task, discussed below.

5 Predicting Codeswitch Points
The second task was to explore how well we
could predict whether a speaker or writer would
codeswitch based on the language behavior prior to
the current word. In this task, if the current word is
wordi, then wordi is labeled as a codeswitch point if
wordi+1 is of a different language. Otherwise it is a
non-switch point.

(1) Okay, na unafikiria ni important kujua native
language?
(Translation: Okay, and do you think it is im-
portant to know native language?)

Consider example (1) from our interview data. At
each word in the sentence, we want to predict
whether a codeswitch will occur in the next word.
The words “okay”, “ni”, “important” and “kujua”
would all be codeswitch points. If the current word
is “ni”, we want to be able to predict that the next
word “important” would be in English. For this, we
use only the evidence available in the utterance to
that point: “Okay, na unafikiria ni”. This task is ob-
viously more difficult with less evidence, as would
be the case for the word “okay”.

5.1 Methodology
As mentioned, we labeled the 16,176,057 words in
the full JamiiForums data set using the language
identification system we described above. The data
used to train the language identification model was
excluded from this set. In generating these labels
for codeswitch points, we ignored punctuation.
We then experimented with predicting codeswitch
points using the Kenyan interview data and this

much larger internet forum data set. The distribution
of codeswitch points in our data sets can be seen in
Table 5. The amount of codeswitching appears to
be fairly similar, despite the difference in language
distribution.

Previous approaches to this problem have used
naı̈ve Bayes classifiers trained using contextual
and POS features (Solorio and Liu, 2008; Papalex-
akis et al., 2014). We explored a similar set of
features, but additionally tried to represent a few
other intuitions. The set of features for a potential
codeswitch point at wordi are shown in Table 5.
In total, we explored eleven features. For features
6-10, we used binning to make the values more
appropriate for the naı̈ve Bayes algorithm. Features
1-3 and 11 were previously used in either Solorio
and Liu (2008), Papalexakis et al. (2014), or both
and found to have predictive value. Features 4
and 5 are meant as alternative versions of 2 and
3. The idea was that this can reduce sparsity in
the data since a three-word sequence of Swahili
generates the same values as a three-word sequence
of English. Features 6-9 represent the intuition that
the longer a speaker continues in a single language,
the less likely a switch is at any particular point.
We explored using a logarithmic scale since it
seemed that after a long stretch of words in the same
language, the likelihood of a codeswitch would not
decrease much after a few more. The documents
in our data have a large variation in length, as can
be seen in Table 2.2. There are a number of very
long documents in the JamiiForums data, which
increases the range of values for these features.
Finally, feature 10 is similar to features 6-9, but is
not influenced by the length of the document. We
had also explored using the POS taggers, as POS
had been a useful feature in Solorio and Liu (2008).
It did not provide an increase in performance on the
interview data, and since applying the TreeTagger
algorithm to 16 million words would have been
very time-consuming, we did not explore it further.
Other free POS taggers are not available for Swahili,
nor could we find any large, easily accessible and
POS-annotated Swahili corpus available to train our
own.

Using these features, a naı̈ve Bayes model was
trained on the two data sets. In the unbalanced con-
dition, this was done with a 10-fold cross-validation
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Feature # Feature Name Description
1 langi Language of wordi

2 langi−1 Language of wordi−1

3 langi−2 Language of wordi−2

4 match(langi−1) Are langi and langi−1 the same?
5 match(langi−2) Are langi and langi−2 the same?
6 # same lang words # of words of langi in words[0..i]

7 # diff lang words # of words not of langi in words[0..i]

8 log # same lang words log2(1+value(feature 6))
9 log # diff lang words log2(1+value(feature 7))
10 % same lang words % of words of langi in words[0..i]

11 Previous codeswitch Did a codeswitch occur before wordi?
Table 4: Classification features for codeswitch point at wordi

on the full set. In the balanced condition, random
samples of approximately 10,000 switch points
and 10,000 non-switch points were taken from the
data sets in a manner similar to Papalexakis et al.
(2014). This allows a more direct comparison to
both previous papers.

5.2 Results
The results of our prediction experiments are
summarized in Table 5.2. The precision, recall and
F1 score are for the codeswitch point class. Since
our data is highly unbalanced, you could achieve an
accuracy of 94% and 95% on our data sets by never
predicting a codeswitch, so we also provide Cohen’s
Kappa which accounts for the label distribution.

The combination of features that worked best on
our data was (1, 4, 5, 6, 9, 11). Reducing sparsity
by making features 2 and 3 relative to the language
of wordi appears slightly better. It is less clear
why using the raw number of same language words
worked better in combination with the logarithmic
scale on different language words.

Performance on the two data sets is fairly similar
despite the differing language distribution, the spo-
ken vs. written domain, and the human-annotated
vs. automatic language labels. This could indicate
that English-Swahili codeswitching conventions
are similar across these two domains. Relative
to previous work on codeswitch prediction, our
F1 score is similar but higher than in Solorio and
Liu (2008) in the unbalanced condition. In the
balanced condition, our F1 scores are similar to
those reported in Papalexakis et al. (2014) on the
interview data.

As mentioned earlier, codeswitching is never
a forced choice (Solorio and Liu, 2008), so it
would not be expected that these types of features
could fully predict codeswitching behavior. In
many sentences, there are multiple valid points
at which one could codeswitch, and whether one
does is informed by social considerations as well
as grammatical constraints (Myers-Scotton, 1993a;
Myers-Scotton, 1993b).

Given the important social component of
codeswitching behavior, another avenue we would
like to explore is the use of conversational fea-
tures. Who someone is communicating with and
why can also influence codeswitching behavior
(Myers-Scotton, 1993b). Our interview data has a
structure of questions and replies, making it possible
to examine the influence of previous utterances.
The JamiiForums data also has structure in the
forum threads, although who is talking to whom is
not always obvious since it does not use a nested
reply structure. We discuss some of these future
directions in the next section.

6 Discussion & Future Directions
As mentioned in our introduction, one of the motiva-
tions for predicting codeswitch points is that it could
be used to aid in a social analysis of codeswitch-
ing behavior. Knowledge of when a decision to
codeswitch – or not to – is more or less likely
can mark such a decision as more or less mean-
ingful. If the other participant in a conversation
has been engaging in frequent codeswitching, this
may generally lead the speaker to engage in more
codeswitching. If the speaker does not accommo-
date to their interlocutor, it can give insight into the
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Measure Interviews JamiiForums
unbal bal unbal bal

Model accuracy 97.5% 74.4% 96.9% 67.4%
Precision 28.5% 78.3% 27.4% 81.4%
Recall 52.2% 72.6% 51.3% 58.1%
F1 Score 36.8% 75.3% 35.7% 67.8%
Cohen’s Kappa 0.327 0.524 0.306 0.448

Table 5: Codeswitch point prediction performance

social relationship between the participants. For ex-
ample, Myers-Scotton (1993b) noted that power re-
lations can be reflected in codeswitching behavior. If
one participant is more powerful, they may be able
to control the language of the interaction and how
much language mixing is allowed within it. Other
computational studies of linguistic accommodation
have found correlations between with power rela-
tions (Danescu-Niculescu-Mizil et al., 2012). It is
likely that accommodation in codeswitching behav-
ior would follow similar patterns.

The data sets we have collected have metadata
that can be used for such social analyses. The
Kenyan interview data set has, in addition to con-
versational structure, pairs of interviews of the same
students conducted by another student and by a pro-
fessor, creating a difference in power across those
conditions. The JamiiForums data has less explicit
power relations to exploit, with the only easily rec-
ognizable hierarchy being between regular users,
moderators and administrators, and only a handful
of members fall into the latter categories. How-
ever, social closeness can be represented by cer-
tain interactions between users, such as quotation
replies, “liking” each others posts, and following
other users. Exploiting these social relations to in-
form our analysis could yield improvements in our
prediction of codeswitching behavior. It would also
be possible to track changes in behavior over time,
given the decade-long history of the site. An impor-
tant note about this data set is that while we have
approximately 220,000 posts in our collection, the
full JamiiForums site has over 17 million posts and
an estimate of over 1 billion words. Gaining access
to the full data set would increase the scale of the
corpus by a couple of orders of magnitude.

Finally, going beyond analyzing patterns of
codeswitching to interpreting individual instances of
codeswitching will require a finer-grained analysis.

For example, differentiating between quotative, par-
enthetical and emphatic uses of codeswitching re-
quires not merely an estimate of how expected a
codeswitch is in that position, but some understand-
ing of the semantics of the language used. While
some uses may be easier to distinguish (codeswitch-
ing to quote someone is likely to be preceded by a
quotative verb, for example), interpreting the socio-
pragmatic meaning of codeswitching will generally
be far more difficult. Distinguishing between what
Myers-Scotton (1993b) refers to as “codeswitch-
ing as the unmarked choice” and marked uses of
codeswitching is an important first step in that di-
rection.

7 Conclusion
In this paper, we built models for language iden-
tification and to predict codeswitching using
Swahili-English data. This is, to our knowledge,
the first computational paper addressing Swahili
codeswitching. We achieved a high accuracy on the
language identification task, and modest improve-
ment on the codeswitch point prediction task.

Future directions of study will focus on social
analyses of codeswitching behavior, such as the
connection between power and linguistic accom-
modation, or codeswitching and social solidarity.
Further work can be done on the Kenyan interview
data, while the language identification model will
enable analysis of other aspects of codeswitching
within the large JamiiForums corpus.
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Abstract

Multilingual users of social media some-
times use multiple languages during conver-
sation. Mixing multiple languages in content
is known as code-mixing. We annotate a sub-
set of a trilingual code-mixed corpus (Barman
et al., 2014) with part-of-speech (POS) tags.
We investigate two state-of-the-art POS tag-
ging techniques for code-mixed content and
combine the features of the two systems to
build a better POS tagger. Furthermore, we
investigate the use of a joint model which per-
forms language identification (LID) and part-
of-speech (POS) tagging simultaneously.

1 Introduction

Automatic processing of code-mixed social media
content is an emerging topic in NLP (Solorio et
al., 2014; Choudhury et al., 2014). Code-mixing
is a linguistic phenomenon where language switch-
ing occurs at a sentence boundary (inter-sentential),
or within a sentence (intra-sentential) or within a
word (word-level). This phenomenon can be ob-
served among multilingual speakers and in many
languages. Additionally, non-English speakers of-
ten use Roman script to write something in social
media. This is known as Romanisation. The follow-
ing comment taken from a Facebook group of Indian
students is an example of trilingual code-mixed con-
tent:

Original: Yaar tu to, GOD hain. tui JU te
ki korchis? Hail u man!

Translation: Buddy you are GOD. What
are you doing in JU? Hail u man!

Three languages are present in this comment: En-
glish, Hindi (italics) and Bengali (bold). Bengali
and Hindi words are written in romanised forms.
These phenomena (code-mixing and Romanisation)
can occur simultaneously and increase the ambigu-
ity of words. For example, in the previous comment,
‘to’ could be mistaken as an English word but it is
a romanised Hindi word. Moreover, the romanised
form of a native word may vary according to the
user’s preference. In such situations automatic pro-
cessing is challenging.

POS tagging in code-mixed data (Solorio and Liu,
2008; Vyas et al., 2014) is an interesting prob-
lem because of its word-level ambiguity. Tradi-
tional NLP systems trained in one language perform
poorly on such multilingual code-mixed data. In this
paper, we present a data set manually annotated with
part of speech and language1. We implement and
explore two state-of-the-art methods for POS tag-
ging in code-mixed data, i.e. (1) a stacked system
(Solorio and Liu, 2008)2 and (2) a pipeline system
(Vyas et al., 2014). To our knowledge, a compar-
ison between these two POS tagging methods for
code-mixed content, i.e. (1) and (2), has not been
carried out before. In our study we compare these
two POS tagging approaches which is an important
contribution of this paper.

In romanised and code-mixed text, words of dif-
ferent languages may take the same lexical form.
As a result, language and POS ambiguity are in-

1This is a subset of the romanised English-Bengali-Hindi
code-mixed corpus described by Barman et al. (2014).

2In a stacking approach one learner is used to perform a cer-
tain task and the output of this learner is used as features for a
second learner performing the same task (in our case POS tag-
ging).
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creased. POS labels often depend on the language
in code-mixed content. Thus, modelling the inter-
action between language labels and POS labels may
be useful. Furthermore, joint modelling avoids er-
ror propagation. We compare our joint model for
LID and POS tagging to the stacked model and the
pipeline system. We use Factorial Conditional Ran-
dom Fields (FCRF) (Sutton et al., 2007) as the joint
model in our study.

The rest of the paper is organised as follows: in
Section 2, we discuss related work. In Section 3 we
describe our data for this task. Our experiments are
described in Section 4. Section 5 contains analy-
sis of the results. Finally, we conclude and suggest
ways to extend this work in Section 6.

2 Related Work

POS tagging with code-mixed social media content
is attracting much attention these days (Das, 2016).
Different machine learning solutions are being pro-
posed, e.g. Hidden Markov Models (Sarkar, 2015),
Conditional Random Fields (Sharma and Motlani,
2015), Decision Trees (Jamatia and Das, 2014; Pim-
pale and Patel, 2015) and Support Vector Machines
(SVM) (Solorio and Liu, 2008). Combining mono-
lingual taggers in a pipeline (Vyas et al., 2014) is
also another approach. The POS tagging methods
used in these studies can be divided into the follow-
ing approaches: (i) using a single machine learn-
ing classifier (Sarkar, 2015; Sharma and Motlani,
2015; Jamatia and Das, 2014; Pimpale and Patel,
2015), (ii) stacking (Solorio and Liu, 2008) and (iii)
pipeline architectures (Vyas et al., 2014).

POS tagging with Spanish-English code-mixed
data is first explored by Solorio and Liu (2008).
They use two monolingual POS taggers (Spanish
and English) to extract the lemma, POS tag and POS
confidence scores for each word according to both
taggers. First they investigate heuristic methods.
These methods are based on handcrafted rules and
use the prediction confidence, the predicted tag and
the lemma for a particular word from each POS tag-
ger as well as language information of the word gen-
erated from a LID system to select the tag from one
of the (English or Spanish) POS taggers. Further,
they employ an SVM classifier with the extracted
information as features and achieve higher accuracy

than their heuristic methods.
Vyas et al. (2014) implement a pipeline approach

for POS tagging in English-Hindi code-mixed data.
They divide the text into contiguous maximal word
chunks which are in the same language according
to the language identifier. These chunks are further
processed through normalisation and transliteration
modules. Normalisation is carried out if the chunk
is in English, otherwise transliteration is performed
to convert the non-English romanised chunk to its
Hindi transliterated form. Afterwards, language-
specific POS taggers are applied to predict the POS
labels of the word chunks. They identify that nor-
malisation and transliteration are two challenging
problems in this pipeline approach.

Our inspiration behind the joint modelling of LID
and POS tagging comes from the work of Sutton
et al. (2007). They use Factorial Conditional Ran-
dom Fields (FCRF) to jointly model POS tagging
and noun-phrase chunking. In their work the FCRF
achieves better accuracy than a cascaded CRF ap-
proach. FCRF is also found to be useful in joint la-
belling of sentence boundaries and punctuations (Lu
and Ng, 2010).

3 Data

We use a subset3 of 1,239 code-mixed posts and
comments from the English-Bengali-Hindi corpus (a
trilingual code-mixed corpus of 12K Facebook posts
and comments) of Barman et al. (2014). This cor-
pus contains word-level language annotations. Each
word in the corpus is tagged with one of the fol-
lowing labels: (1) English, (2) Hindi, (3) Bengali,
(4) Mixed, (5) Universal, (6) Named Entity and (7)
Acronym. The label Universal is associated with
symbols, punctuation, numbers, emoticons and uni-
versal expressions (e.g. hahaha and lol).

We manually annotate POS using the universal
POS tag set 4 (Petrov et al., 2012). These annota-
tions were performed by an annotator who is profi-
cient in all three languages of the corpus. As we had
no second annotator proficient in all three languages,

3We are preparing to release the data set. For more informa-
tion please contact the first author.

4An alternative tag set is the one introduced for code-mixed
data by Jamatia and Das (2014). However, we prefer the uni-
versal tag set because of its simplicity, its applicability to many
languages and its popularity within the NLP community.
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we cannot present the inter-annotator agreement for
the annotations.

The language and POS label distributions for our
data set are shown in Table 1 and 2. In terms of
tokens, Bengali (47.9%) is the majority language.
23.2% tokens are English but the amount of Hindi
tokens is low, only 6.3%. We analyse the ambiguity
of word types in this subset. Our subset contains
7,959 word types, among which only 297 (3.7%)
types are ambiguous according to language labels
and 569 types (7.1%) are ambiguous according to
POS labels.

Label Count
English 6,383
Bengali 13,171
Hindi 1,746
Universal 5,209
Name Entity 712
Acronym 229
Mixed 69

Table 1: Language label distri-

bution.

Label Count
NOUN 8,376
PRT 1,332
VERB 4,422
ADV 754
DET 893
ADP 1,358
CONJ 745
ADJ 1,999
PUNCT 4,321
PRON 2,484
NUM 164
X 671

Table 2: POS label distribu-

tion.

4 Experiments and Results

We divide the experiments into four parts. We im-
plement baselines for POS tagging in Section 4.1.
In Section 4.2 we implement pipeline systems. In
Section 4.3 we present our stacking systems and in
Section 4.4 we present our joint model.

We perform five fold cross-validation with the
data and report average cross-validation accuracy.
We investigate the use of handcrafted features and
features that can be obtained from monolingual POS
taggers (stacking). We perform experiments with
different combinations of these feature sets. The fol-
lowing are the features used in our experiments.

1. Handcrafted Features: Following Barman et
al. (2014), we use prefix and suffix character-
n-grams (n = 1 to 5), presence in dictionaries,
length of the word, capitalisation information

and the previous and the next word as hand-
crafted features.

2. Stacking Features: These features are ob-
tained from the output of a POS tagging sys-
tem. These features are tokens, predicted la-
bels, and prediction confidence of a POS tag-
ging system.

3. Combined Features: This feature set is a
union of the previous two feature sets.

Following Barman et al. (2014) we train an LID
SVM classifier using handcrafted features. Its pre-
dictions are used in the POS tagging experiments
below. The LID classifier achieves 91.52% average
accuracy in 5-fold cross-validation.

4.1 Baseline

This method only uses the code-mixed romanised
data and handcrafted features. We try an linear ker-
nel SVM and a linear chain CRF classifier (see Tab-
ble 3). In terms of average cross-validation accu-
racy, the SVM classifier (85.00% for C = 0.00097)
performs better than the CRF classifier (83.89%) in
optimised settings.

4.2 Pipeline

Following Vyas et al. (2014), we design a pipeline
system. The training data for this method is mono-
lingual non-romanised. First, it uses an LID system
(trained on romanised data) to identify language-
specific chunks. After that it applies monolingual
POS taggers to the relevant language chunks to pro-
duce the output. The component POS taggers are
trained on monolingual non-romanised data.

In this system, code-mixed romanised data passes
through a pipeline of LID, transliteration and POS
tagging modules. For example, for Bengali-English
romanised code-mixed content, the LID module pro-
duces Bengali and English chunks, and the Bengali
chunks are transliterated into Bengali script and are
sent to a Bengali tagger. The English chunks are
sent to an English tagger as they are. The final out-
put combines the results from the individual taggers.
To implement this method we carry out the follow-
ing steps:
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Figure 1: Pipeline systems: system V1 and V2 (Section 4.2).

1. We perform transliteration based on language
using Google Transliteration5 for Hindi and
Bengali tokens. (Vyas et al. (2014) use an in-
house tool).

2. For the next step of the pipeline, we train mono-
lingual POS taggers for Bengali and Hindi us-
ing the SNLTR Bengali and Hindi corpus6 with
TreeTagger7 (Schmid, 1994). For English we
use the default English model which is avail-
able with the TreeTagger package8. We also
use a lightweight Bengali and Hindi stemmer
(Ganguly et al., 2012) to provide a stemmed
lexicon to TreeTagger during training. We use
these taggers to make predictions on English,
transliterated Bengali and transliterated Hindi
chunks.

The black lines in Figure 1 shows the pipeline of
this method (V1). The three training data sets for the
three POS taggers follow different tag sets, we map
these tags to the universal POS tags after predic-
tion.9 We achieve 71.12% average cross-validation
accuracy with this method (V1) (third row of Table
3).

In method V1, the TreeTagger models are trained
on full monolingual sentences. If language-specific
text fragments are presented to such monolingual
taggers, the taggers may treat these fragments as full

5https://developers.google.com/transliterate
6http://nltr.org/snltr-software/
7http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
8We use the English TreeTagger module to keep our setup

as similar as possible to Solorio and Liu (2008). Other taggers
such as the CMU ARK tagger (Owoputi et al., 2013) could also
be tried.

9We also implement a system where all the tags in the
SNLTR corpus are converted to universal POS tags before train-
ing. This variant does not outperform the current system.

sentences. At the start and at the end of the input,
the prediction of such taggers may become biased to
some specific patterns (e.g. NOUN + PUNCT) that
have been observed frequently as a start and an end
tag sequence of sentences during training. To avoid
this problem we implement a variant (V2) of this
system in which we present full sentences (that may
contain junk transliteration) to each POS tagger. We
perform transliteration as the first component of the
system. We present the transliterated content in Ben-
gali script to the Bengali tagger, original romanised
content to the English tagger and transliterated con-
tent in Hindi script to the Hindi tagger. Finally, we
choose from the outputs of these three taggers based
on the language prediction by the SVM classifier for
the original (romanised) content. The pipeline of
this system (V2) is shown by the dotted lines in Fig-
ure 1. We achieve 71.27% average cross-validation
accuracy in this method (V2) (fourth row of Table
3).

4.3 Stacking
This method uses non-romanised monolingual and
romanised code-mixed data with handcrafted, stack-
ing and combined features. This method follows the
approach of Solorio and Liu (2008) with necessary
adjustments. In this method, romanised code-mixed
content is transliterated blindly in all languages and
is presented to different POS taggers (trained with
non-romanised monolingual data) as in method V2.
The romanised words and the output from the mono-
lingual taggers are used as features to train an SVM
classifier on romanised code-mixed content. To keep
our methodology as similar as possible to Solorio
and Liu (2008) we follow the steps described below:

1. We train a Bengali and a Hindi TreeTagger
(Schmid, 1994) using the SNLTR corpus with
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Figure 2: Stacked systems: system S1 and S2 (Section 4.3).

default settings as described in Section 4.2.

2. We transliterate each token of a sentence into
Hindi and Bengali irrespective of its language
using Google Transliteration as in system V2.

3. After transliteration we send each transliter-
ated output to the respective TreeTagger, i.e.
we send the original sentence to the English
TreeTagger, Bengali transliterated output to the
Bengali TreeTagger and the Hindi transliterated
output to the Hindi TreeTagger.

After that we follow the stacking approach of
Solorio and Liu (2008). Here, we stack an SVM
classifier on top of the predictions generated by the
TreeTaggers. We train a linear kernel SVM with
stacking features and optimise parameter C in five
fold cross-validation. The black lines in Figure 2
show the pipeline of this system (S1). The average
cross-validation accuracy of this system is shown
in the fifth row of Table 3 – 86.57% . Given the
setup, we further experiment by using the com-
bined features from romanised and transliterated to-
kens and also consider SVM language predictions
as a feature. We observe that combining these fea-
tures boosts the accuracy. After trying combina-
tions of these features the best accuracy (87.59%) is
achieved by adding all features together (S2) (sixth
row of Table 3). The architecture of the system is
shown by the dotted lines in Figure 2.

We also investigate the use of pipeline systems
in stacking. The idea is to use all the predic-
tions from a pipeline system and feed them into
an SVM classifier. The stacked version of V1
(stacked-V1) achieves 85.99% and the stacked ver-
sion of V2 (stacked-V2) achieves 85.83% average
cross-validation accuracy with SVM using com-
bined features. The black lines in Figure 3 show the

pipeline of S3, stacked-V1 and dotted lines show the
pipeline of S4, stacked-V2. These methods do not
outperform our implementation of Solorio and Liu
(2008)’s method S1 or its extended version S2.

4.4 Joint Modelling

To reduce error propagation from the LID module
to POS tagging, we jointly model these two tasks
using a 2-level factorial CRF (FCRF). In a linear-
chain CRF, there is only one input level (x = x1:T )
and one output level (y = y1:T ) (see Figure 4). The
conditional probability in a linear-chain CRF is ex-
pressed by Equation 1:

p(y|x) =
1

z(x)

T∏
t=1

ψt(yt, yt−1, xt) (1)

ψt(yt, yt−1, xt) = exp

K∑
k=1

λkfk(yt, yt−1, xt). (2)

z(x) =
∑

y

T∏
t=1

ψt(yt,l, yt−1,l, xt) (3)

p(y|x) =
1

z(x)

T∏
t=1

L∏
l=1

ψt(yt,l, yt−1,l, xt)

ϕt(yt,l, yt,l+1, xt)
where, yT,L+1 = 1. (4)

where, ψt represents clique10 potential functions
and is expressed by Equation 2. Here,K is the num-
ber of feature functions (fk). The denominator z(x)
is the partition function, which is the sum over all
‘y’s and it is expressed by Equation 3.

10A clique in an undirected graph is formed with two vertices
if there exists an edge connection between them.
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Figure 3: Pipeline systems in stacking: S3 (stacked-V1) and S4 (stacked-V2).

y1

x1

...

...

yT

xT

Figure 4: Graphical structure of a linear-chain CRF, where

(y1, ..., yT ) represents language or POS labels and (x1, ..., xT )

is the observed sequence (tokens).

A factorial CRF (see Figure 5) combines multiple
linear-chain CRFs, one for each output level. Un-
like linear-chain CRFs, an FCRF deals with a vec-
tor of labels. In our case, the vector contains two
labels, a language label (y1 = y1

1:T ) and a POS la-
bel (y2 = y2

1:T ). The inputs (x = x1:T ) are shared
among these output labels (e.g. y1

1:T and y2
1:T ) and

the output labels also have interconnections (y1
i and

y2
i ∀i = 1, 2, ..., T ). The conditional probability is

expressed by Equation 4, where L is the number of
levels (in our case L = 2), ψt represents transitions
in each level (e.g. y1

1 to y1
2) and ϕt represents con-

temporal connections between two levels (e.g. y1
1 to

y2
1). The denominator z(x) is the partition function.

We implement this FCRF using the GRMM
toolkit (Sutton, 2006). We use three different feature
sets in our experiments. In cross-validation we find
that, using handcrafted features, the average lan-
guage tagging accuracy is 89.37% and average POS
tagging accuracy is 81.77%. Use of stacked fea-
tures gives 90.60% LID accuracy and 85.28% POS
tagging accuracy. Finally, the combined feature set
achieves 92.49% accuracy in LID and 85.64% in
POS tagging (see Table 6 and the last row of Ta-
ble 3).

y2
1

y1
1

x1

...

...

...

y2
T

y1
T

xT

Figure 5: Graphical structure of the 2-Level factorial CRF,

where (y1
1 , ..., y1

T ) represents language labels, (y2
1 , ..., y2

T ) rep-

resents POS labels and (x1, ..., xT ) is the observed sequence

(tokens).

5 Analysis and Discussion

We perform manual error analysis on the first test
split of cross-validation. This split is a collection of
246 posts and comments with 5,044 tokens.

5.1 Effect of LID and Transliteration as
Pre-processing modules

The most frequent error category for the SVM LID
classifier is the confusion of Hindi words as Ben-
gali words. We believe that the reason behind this
is the small number of Hindi tokens in our training
data. Most of these errors occur for tokens which are
lexically identical in Hindi and Bengali, e.g. ‘na’,
‘chup’, ‘sale’ and ‘toh’. All systems are trained with
our SVM language classifier prediction. To quantify
the error propagation from SVM language predic-
tion we repeat the experiments of V1, V2 and S2
with the gold language labels and observe that the
performance of each systems is slightly increased
(Table 5).

We manually evaluate the accuracy of Google’s
transliterations for Bengali and Hindi. For Hindi,
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Type Systems Acc.

Baseline
SVM 85.00%
CRF 83.89%

Pipeline
V1: Vyas 71.12%
V2: Extn. of V1 71.27%

Stacking

S1: Solorio 86.57%
S2: Extn. of S1 87.59%
S3: Stacked-V1 85.99%
S4: Stacked-V2 85.83%

Joint Model FCRF 85.64%
Table 3: Average cross-validation accuracy of POS tagging sys-

tems.

% of Total Error
Total Gold Pred. V2 S2 FCRF
41 NUM PRT 0.73 0.00 0.00
138 X NOUN 0.57 0.10 0.00
138 X ADJ 0.36 0.00 0.00
421 ADJ NOUN 0.32 0.26 0.29
150 CONJ NOUN 0.26 0.06 0.08
246 ADP NOUN 0.15 0.08 0.12
147 ADV NOUN 0.23 0.15 0.19
843 VERB NOUN 0.26 0.12 0.14
246 ADP PRON 0.09 0.09 0.10

Table 4: Top error categories produced by top three POS tagging

systems.

Systems Gold LID SVM LID
V1 72.09 71.12
V2 72.07 71.27
S2 88.92 87.59

Table 5: POS tagging accuracy of V1, V2 and S2 with gold

language labels and predicted (SVM) language labels.

Features LID Accuracy POS Accuracy
Handcrafted 89.37% 81.77%
Stacking 90.60% 85.28%
Combined 92.49% 85.64%

Table 6: Performance of FCRF with handcrafted, stacking and

combined feature set. The detail of these features are described

in Section 4.

transliteration accuracy is 82.63% and for Bengali
it is 86.71%. Most of the transliteration errors oc-
curs for those tokens which (i) have a single char-
acter (e.g. ‘k’, ‘j’, ‘r’), (ii) have digits (e.g. ‘2mi’,
‘2make’, ‘as6e’) and (iii) have shortened spellings
(e.g. ‘amr’, ‘tmr’, ‘hygche’). Our inspection of
transliteration errors reveals that the transliteration
accuracy depends on the normalisation of romanised
tokens.

5.2 Statistical Significance Testing
For statistical significance testing we use two-sided
bootstrap re-sampling (Efron, 1979) by implement-
ing the pseudo-code of Graham et al. (2014). We
find that the small improvement of V2 over V1 is
statistically significant (p = 0.0313). However,
the 0.93% improvement of S1 over system FCRF is
not. Among other systems, we find that FCRFs and

SVMs are significantly better than the monolingual
tagger combinations (V1 and V2).

5.3 Stacked vs Pipeline Systems

A reason for the poor accuracy of V1 and V2 is the
difference between training and test data. The Tree-
Taggers are trained on monolingual non-romanised
formal content while the test data is romanised code-
mixed social media content. Secondly, error propa-
gation through transliteration and LID also have a
role to play. We find that the accuracy of Bengali
transliteration is 86.71% and for Hindi it is 82.63%.
This can be a reason for the poor performance of
the Bengali and the Hindi TreeTagger. Furthermore,
Table 5 shows that errors introduced by automatic
LID cause an absolute loss of accuracy of 0.97% for
V1 and 0.80% for V2. The accuracy of these sys-
tems improves (12.98% for V1 and 12.97% for V2)
when we engage these systems in stacking using in-
domain training data (see stacked-V1 and stacked-
V2 in Table 3). We find that choosing the tagger(s)
based on LID does not help in stacking approaches
(e.g. stacked-V1 and stacked-V2) but using all tag-
gers to generate features for the stacked classifier re-
sults in higher accuracy (e.g. S1 and S2). We find
that the stacked system S2 outperforms other POS
tagging systems in our experiments (see Table 3).

5.4 Effect of Joint Modelling

The accuracy of POS tagging in our joint modelling
approach using romanised code-mixed data is higher
than monolingual tagger combinations V1 and V2,
but it is outperformed by S2 and other stacking ap-
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ings. The analysis is based on the first test split of cross-

validation.

proaches. Table 6 shows the performance of FCRF
with different feature sets. We find that combining
handcrafted and stacking features achieves highest
accuracy for both LID and POS tagging. In cross-
validation FCRF with the combined feature set out-
performs our SVM language classifier and achieves
a reasonable cross-validation POS tagging accuracy
of 85.64%, which is 2.05% less than the best stack-
ing approach S2.

5.5 Monolingual vs Code-mixed Sentences

We choose the top POS tagging systems of each
kind (V2, S2 and FCRF) and analyse the results in
more detail on the first test split of cross-validation.
First we test the accuracy on code-mixed sentences
and on monolingual sentences. The results are de-
picted in Figure 7. V2 achieves 70.49% accuracy on
code-mixed sentences and 72.20% on monolingual
sentences. S2 achieves 83.42% on code-mixed sen-
tences and 86.23% on the monolingual sentences.
FCRF achieves 81.78% in code-mixed and 84.58%
on monolingual sentences. All these systems per-
form better for monolingual sentences than their per-
formance in code-mixed sentence. This result sup-
ports the hypothesis that performing POS tagging is
harder on code-mixed sentences than it is on mono-
lingual sentences.

5.6 Known and Unknown Words

Figure 7 also shows the performance of each sys-
tem for known and unknown words based on the
first training fold of romanised code-mixed data.

All systems perform better for known words than
for unknown words, as expected. We find that S2
and FCRF perform very closely for unknown words.
For known words, S2 achieves 2.82% better accu-
racy than FCRF. The known-unknown analysis for
pipeline system, e.g. V2, differs from the stack-
ing (S2) and the FCRF-based methods. All pipeline
systems are trained on non-romanised monolingual
data (SNLTR Bengali and Hindi corpus). On the
other hand, stacking and FCRF based systems are
trained on romanised code-mixed data. Hence, for
V2, we compare tokens of the test split with the
tokens of the SNLTR Bengali and Hindi corpus to
complete the analysis. We find that 52% of test to-
kens (Bengali and Hindi) are present in the monolin-
gual training data, these are known words to the sys-
tems. V2 achieves 78.30% accuracy for the known
Bengali and Hindi words and 43.80% for the un-
known Bengali and Hindi words. As we use the de-
fault English model (distributed with the TreeTagger
package) and not an English corpus, we do not per-
form this analysis for English words for V2.

5.7 Code-mixing Points

We also observe that the POS tagger accuracy de-
pends on the distance to the code-mixed points. We
consider a token as a code-mixed point (token-0) if
the language of the token has been changed com-
pared to the language of the previous token. Figure 6
shows the result of our analysis, where +1 means one
token to right of a code-mixed point and -1 means
one token to the left. It can be seen that all tested
methods perform poorly at code-mixed points. Per-
formance of these systems increases by the distance
to code-mixed points. Among these systems, the
ranking is independent of the distance to the code-
mixed point.

5.8 Error Categories

The top error categories produced by different sys-
tems are shown in Table 4. The most common error
pattern produced by all three systems (see fourth row
of Table 4) is ADJ-NOUN, i.e. English adjectives
that are classified as NOUN. The number of these er-
rors decreases with the better performing models, as
expected. We observe that most of the chat-specific
tokens (e.g. emoticons) are misclassified by V2.
This system is trained with formal content. There-
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fore, these tokens are misclassified as noun and ad-
jectives by V2. These errors are rectified in S2 and
FCRF. Other common error categories produced by
the three systems are ADV-NOUN (adverb predicted
as noun), VERB-NOUN (verb predicted as noun),
CONJ-NOUN and ADP-NOUN.

6 Conclusion

We have presented a trilingual code-mixed corpus
with POS annotation. We have performed POS tag-
ging using state-of-the-art methods and also investi-
gated the use of an FCRF-based joint model for this
task. We find that the best stacking method (S2) that
uses the combined features (see Section 4) performs
better than the joint model (FCRF) and the pipeline
systems. We also observe that joint modelling out-
performs the pipeline systems in our experiments.

FCRF lags behind the best POS tagging system
S2. Perhaps, using more training data would help
FCRF to achieve better performance than S2. We
consider this as a future work. The tagger combina-
tions use either no context or junk context (translit-
erations) for POS tagger input. As a future work it
would be interesting to modify these junk transliter-
ations using a language model to provide meaning-
ful context to the POS tagger.
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Abstract

We present an overview of the second shared
task on language identification in code-
switched data. For the shared task, we
had code-switched data from two different
language pairs: Modern Standard Arabic-
Dialectal Arabic (MSA-DA) and Spanish-
English (SPA-ENG). We had a total of nine
participating teams, with all teams submitting
a system for SPA-ENG and four submitting
for MSA-DA. Through evaluation, we found
that once again language identification is more
difficult for the language pair that is more
closely related. We also found that this year’s
systems performed better overall than the sys-
tems from the previous shared task indicating
overall progress in the state of the art for this
task.

1 Introduction

With the First Shared Task on Language Identifica-
tion in Code-Switched Data we managed to raise
awareness and shine a spotlight on the difficult prob-
lem of automatic processing of Code-Switched (CS)
text. This year our goal is not only to maintain re-
search interest in the problem, but also to bring in
new ideas to tackle it. With the continuing growth
of social media usage, it is more likely to find CS
text and thus the problem becomes more relevant.

Code-switching is a linguistic phenomenon where
two or more languages are used interchangeably in
either spoken or written form. It is important to

study and understand CS in text because any ad-
vancement in solving the problem will positively
contribute to other NLP tasks such as Part-of-Speech
tagging, parsing, machine translation, among oth-
ers. In order to achieve this, we organized this year’s
shared task with the intention of providing our peers
with new annotated data, to further develop a univer-
sal annotation scheme for CS text and most signifi-
cantly to motivate high quality research.

Language Pair Example
MSA-DA Buckwalter:1 *hbt AlY AlmHAkm

wAlnyAbAt fy Ehd mbArk HwAly
17mrp, EAyzyn nqflhm rqm mHtrm,
xmsyn mvlA
English Translation: I went to courts
in Mubark’s era almost 17 times. I
would like to reach a respectful num-
ber, for example 50 times.

SPA-ENG Original: Styling day trabajando con
@username vestuario para #ElFactorX
y soy hoy chofer. I will get you there in
pieces im a Safe Driver.
English Translation: Styling day
working with @username wardrobe for
#ElFactorX and today I drive. I will get
you there in pieces im a Safe Driver.

Table 1: Twitter code-switched data examples.

This shared task covers two different language
pairs and is focused on social media data obtained

1We use the Buckwalter encoding to present all the Arabic
data in this paper: It is an ASCII only transliteration scheme,
representing Arabic orthography strictly one-to-one.
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from Twitter. The language pairs used this time are
Spanish-English (SPA-ENG) and Modern Standard
Arabic-Dialect Arabic (MSA-DA). These languages
are widely used around the world and are good ex-
amples of language pairs that are easily interchanged
by the speakers. Participants are tasked with predict-
ing the correct language label for each token in the
unseen test sets.

We provide a full description of the shared task
in the following section and we talk about related
work in section 3. The data sets used for the task
are described in section 4, followed by an overview
of the submitted systems in section 5. Finally, we
show the results, lessons learned and conclusion in
sections 6, 7 and 8, respectively.

2 Task Description

Similar to the first edition, the task consists of la-
beling each token/word in the input test data with
one out of 8 labels: lang1, lang2, fw, mixed, unk,
ambiguous, other and named entities (ne). The la-
bels fw and unk were added in this edition of the
shared task and are derived from tokens that used
to be labeled as other. The lang1, lang2 labels cor-
respond to the two languages in the language pair,
for example with SPA-ENG, lang1 would be ENG
and lang2 would be SPA. The fw label is used to
tag tokens that belong to a language other than the
two languages in the language pair. The mixed la-
bel is used to tag words composed of code-switched
morphemes, such as the word ubereando (’driving
for Uber’) in SPA-ENG. The unk label is used to tag
tokens that are gibberish or unintelligible. The am-
biguous label is used to tag words that could be la-
beled as either language in the language pair and the
context surrounding the word is not enough to deter-
mine a specific language, for example the word a is
a determiner in English and a preposition in Spanish
and it can be hard to tell which language it belongs
to without the surrounding context. The other la-
bel is used to tag usernames, emoticons, symbols,
punctuation marks, and other similar tokens that do
not represent words. Lastly, the ne label is used to
tag named entities, which are proper nouns and must
be identified correctly in order to properly conduct
an analysis of CS data. This is due to the fact that
named entities are usually kept the same even as lan-

guages switch. Named entities are problematic even
for human annotators and require a lot of work, in-
cluding defining absolute and correct guidelines for
annotation.

In Table 1 we show examples of code-switched
tweets that are found in our data. We have posted
the annotation guidelines for SPA-ENG, but it can be
generalized to the MSA-DA language pair as well.
This is possible because we want to have a univer-
sal set of annotation labels that can be used to cor-
rectly annotate new data with the least amount of
error possible. We keep improving the guidelines to
accommodate findings from the previous shared task
as well as new relevant research.

3 Related Work

The earliest work on CS data within the NLP com-
munity dates back to research done by Joshi (1982)
on an approach to parsing CS data. Following work
has been described in the First Shared Task on Lan-
guage Identification in Code-Switched Data held at
EMNLP 2014 (Solorio et al., 2014). Since the first
edition of the task, new research has come to light
involving CS data.

There has been work on language identification
of different language pairs in CS text, such as im-
provements on dialect identification in Arabic (Al-
Badrashiny et al., 2015) and detection of intra-
word CS in Dutch and dialect varieties (Nguyen
and Cornips, 2016). There has also been work on
POS tagging and parsing such as parsing of bilin-
gual code-switched text (Vilares et al., 2015a), POS
tagging of Hindi-English CS social media text (Se-
quiera et al., 2015; Jamatia et al., 2015) and shal-
low parsing of Hindi-English CS social media text
(Sharma et al., 2016). Another area where there has
been some new research work is in sentiment anal-
ysis, such as emotion detection in Chinese-English
code-switched texts (Lee and Wang, 2015) and sen-
timent analysis on Spanish-English Twitter posts
(Vilares et al., 2015b).

(Kosoff, 2014) carried out a sociolinguistic in-
vestigation focused on the use of code-switching in
the complex speech community of Egyptian Twit-
ter users. It studies the combinations of Modern
Standard Arabic(MSA), Egyptian Colloquial Ara-
bic, English, and Arabizi; whether it is a Modern
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Standard Arabic or Egyptian Colloquial Arabic. The
research goal was to describe the code switching
phenomena situation found in this Egyptian twitter
community.

We also had contributions of new CS corpora,
such as a collection of Arabic-Moroccan Darija so-
cial media CS data (Samih and Maier, 2016), a
collection of Turkish-German CS tweets (Özlem
Çetinoğlu, 2016), a large collection of Modern Stan-
dard Arabic and Egyptian Dialectal Arabic CS data
(Diab et al., 2016) and a collection of sentiment
annotated Spanish-English tweets (Vilares et al.,
2016). Other work includes improving word align-
ment and MT models using CS data (Huang and
Yates, 2014), improving OCR in historical docu-
ments that contain code-switched text (Garrette et
al., 2015), the definition of an objective measure
of corpus level complexity of code-switched texts
(Gambäck and Das, 2016) and (Begum et al., 2016)
presented an annotation scheme for annotating the
pragmatic functions of CS in Hindi-English code-
switched tweets. There is still more research to be
done involving CS data, and we hope this second
edition of the shared task will help motivate further
research.

4 Data Sets

The data for the shared task was collected from Twit-
ter. We decided to use Twitter because it has a large
user base from a multitude of countries and this pro-
vides a good space to find code-switched data. Twit-
ter also provides an API which makes it easier to
crawl and collect data. However, there are limita-
tions to the amount of data that can be collected and
restrictions to how we can share data.

Language Pair Training Development Test
MSA-DA 8,862 1,117 1,262 (1,258)
SPA-ENG 8,733 1,857 18,237 (10,716)
Table 2: Data set statistics for SPA-ENG and MSA-DA.

In Table 2 we show the statistics for the data sets
used in the shared task. These statistics were taken
at the moment the data was released, but they can
change with time due to tweets becoming unavail-
able. To account for this limitation, we used the
maximum amount of tweets that all participants had
in common after submission of the test data, which

we show in parenthesis.

4.1 SPA-ENG
For SPA-ENG, we used the training and test cor-
pora from the EMNLP 2014 shared task as this
year’s training corpus and development corpus, re-
spectively. However, the previous shared task did
not have the same labels we are using this year. We
had in-lab annotators follow a simple mapping pro-
cess: they went through all the tokens previously la-
beled as other that are not usernames, emoticons or
symbols and either changed them to fw, unk or kept
them as other. The annotators used the annotation
guidelines posted on the shared task website to make
the decisions required for the mapping.

We made improvements to the quality of the data
with the help of our in-lab annotators. We performed
quality checks for label inconsistencies by manually
looking at the labels of word types that had more
than one label and changing them to the correct one
if needed. We also verified and fixed the tokeniza-
tion of the data to remove single whitespaces that
appeared as tokens and to correctly tokenize emoti-
cons and other symbols.

Building the new test corpus consisted of first
finding code-switched data and secondly annotating
the data. Finding code-switched tweets is not an
easy task, so we followed a series of steps to help us
locate a good amount of code-switched tweets. First,
similar to the previous task, we selected geographi-
cal areas where there is a strong presence of bilin-
gual speakers, specifically Miami and New York.
Secondly, we performed a search within these areas
for popular Spanish language radio stations with ac-
tive Twitter accounts. Then, we selected the Twitter
accounts of radio stations that code-switched in their
tweets and collected them. From here, we looked for
code-switched tweets within the accounts of users
that are followed by and that follow the radio sta-
tions and collected them as well. Finally, we exam-
ined the accounts of users that interact with these
users and check for code-switched tweets. In to-
tal, we obtained tweets from 21 users and a total of
61,943 tweets.

The annotation process consisted of three steps:
in-lab pre-annotation, crowd-sourcing and in-lab
quality check. Our in-lab pre-annotation was per-
formed by training an SVM with the training corpus
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from the previous shared task and then annotating
our test data with the language label. We then used
a pattern matching algorithm with regular expres-
sions to label tokens with other. Following that, we
ranked our word types by token frequency score and
selected the top thousand most frequent words and
manually verified the labels and fixed them where
necessary. We then propagated this to the entire data
set and separated the affected tokens and considered
them as annotated. Next, we took the rest of the
unannotated data set and used CrowdFlower to an-
notate it. We used a subset of the training corpus
(one that contained roughly equally distributed to-
kens for each label) as our gold data for quality con-
trol within the crowd-sourcing task. After the first
round of annotation was completed, we took tokens
with a confidence score under 0.75 and resubmit-
ted them to CrowdFlower in an attempt to improve
the quality of the tags. Finally, we manually went
through the most frequent tokens that had more than
one label assigned and verified them to get rid of in-
consistencies and further improve the quality. This
whole process of annotation cost us roughly $1,100,
which comes out to about $0.02 per tweet. In or-
der to have the best possible quality in the data, we
first selected the top 35K tweets ranked by overall
tweet confidence, which was taken to be the lowest
confidence among the tokens for that tweet. From
here we selected all the code-switched tweets and
10k monolingual tweets. This became the official
test data set for the shared task. We later decided to
remove tweets that contain URLs in them for consis-
tency with the training and development corpora as
they did not contain URLs. This is the subset of test
data that we end up using to rank the participating
systems.

In Table 3 we show the statistics of the data set
used to evaluate the participating systems. This in-
cludes only the tweets that all the participants man-
aged to crawl from Twitter, and it is not the complete
data set.

4.2 MSA-DA

For the MSA-DA language pair, the Egyptian di-
alect is used as the Arabic dialect, EGY. We com-
bined the Train, Test-1, and Test-2 corpora that we
used in the EMNLP 2014 shared task to create the
new training and development corpora. The data

Monolingual Tweets Code-Switched Tweets
4,626 6,090
Label Tokens

ambiguous 4
lang1 16,944
lang2 77,047
mixed 4

ne 2,092
fw 19

other 25,311
unk 25

Total 121,446
Table 3: Test Data statistics for SPA-ENG.

was crawled and collected from Twitter. We per-
form a number of quality checks on the old data to
overcome any issues that the participants may face.
One of these checks is that all the old tweets are
re-crawled from Twitter to reduce the percentage of
missing tweets. The missing tweets and the tweets
that contained white spaces were removed. This step
was performed as a validation step. After the valida-
tion step, we accepted and published 9,979 Tweets
(8,862 tweets for the training set, and 1,117 tweets
for the development set).

Building a new test corpus required crawling new
data and annotating the crawled data. As we did
in the previous shared task, we used the Tweepy li-
brary to harvest the timeline of 26 Egyptian Pub-
lic Figures. We have some filtration criteria that
we applied on the new test set. Since we are using
the tweets that we introduced in the EMNLP 2014
CS shared task, we set the crawling script to har-
vest only the tweets that were created in 2014, to
maintain consistency in topics with the training/dev
data sets. Also, the tweets that contain URLs and
re-tweets were excluded. The total number of har-
vested tweets after applying the filtration criteria
was 12,028 tweets. This number of tweets was big-
ger than what we needed for the test set. So, we
chose only 1,262 tweets. However, before choos-
ing the 1,262 tweets, we wanted to consider the pub-
lic figure whose tweets contain more code-switching
points. So, we input all the tweets into the Au-
tomatic Identification of Dialectal Arabic (AIDA2)
tool (Al-Badrashiny et al., 2015) to perform token
level language identification for the EGY and MSA
tokens in context. According to AIDA2s output we
chose a certain percentage of tweets from the Pub-
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lic Figure whose CS percentage in his/her tweets is
more than 35%. We used the improved version of
the Arabic Tweets Token Assigner which is made
available through the shared task website 3 to avoid
the misalignment issues and guarantee consistency.

Two Egyptian native speakers were asked to per-
form the annotation. They were trained to get in-
volved with the project’s concepts and related lin-
guistic issues to increase their productivity and ac-
curacy. Our Annotation team used two types of CS
tag-sets: a) a rich version which is Arabic dialects
oriented and it is used in our lab; and, b) a reduced
CS tag-set which is consistent. The two tag-sets are
mappable to each other (we mapped our tag set to
the six tags). In our annotation, we used lang1 to
represent MSA, and lang2 for Egyptian words, am-
biguous when the context cant help decide if a word
is MSA or DA, and foreign word (fw) for non-Arabic
word even it is in Arabic script or Latin script. To
manage the annotation quality, the annotations were
checked when initially performed and then checked
again at the end of the task. The Inter-Annotator
Agreement (IAA) was measured by using 10% of
the total number of data to ensure the performance
and agreement among annotators. A specialist lin-
guist carried out adjudication and revisions of accu-
racy measurements. We approached a stable Inter
Annotator Agreement (IAA) of over 90% pairwise
agreement.

Monolingual Tweets Code-Switched Tweets
1,044 214
Label Tokens

ambiguous 117
lang1 5,804
lang2 9,630
mixed 1

ne 2,363
fw 0

other 2,743
unk 0

Total 20,658
Table 4: Test Data statistics for MSA-DA.

Table 4 shows the statistics of the MSA-DA test
set used to evaluate the participating systems. It con-
tains only the tweets that all the participants man-
aged to crawl from Twitter, and it’s not the complete

3http://care4lang1.seas.gwu.edu/cs2/call.html

data set.

5 Survey of Shared Task Systems

This year we received submissions from nine differ-
ent teams, which is two more teams than the previ-
ous shared task. All teams participated in the SPA-
ENG task, while four teams also participated in the
MSA-DA task. There was a wide variety of system
architectures ranging from simple rule based sys-
tems all the way to more complex machine learning
implementations. Most of the systems submitted did
not change anything in the implementation to tackle
one language pair or the other, which implies that
the participants were highly interested in building
language independent systems that could be easily
scaled to multiple language pairs.

In Table 5 we show a summary of the the ar-
chitectures of the systems submitted by the partic-
ipants. All teams, with the exception of (Chanda et
al., 2016), used some sort of machine learning al-
gorithm in their systems. The algorithm of choice
by most participants was the Conditional Random
Fields (CRF). This is no surprise since CRFs fit
the problem nicely due to the sequence labeling na-
ture of the task as it was evidenced in the high per-
formance by CRFs achieved in the previous shared
task.

A new addition this year is the use of deep learn-
ing algorithms by two of the participants. Deep
learning is now much more prevalent in NLP than
it was two years ago when the previous shared task
was held. (Jaech et al., 2016) used a convolu-
tional neural network (CNN) to obtain word vectors
which are then fed as a sequence to a bidirectional
long short term memory recurrent neural network
(LSTM) to map the sequence to a label. The sys-
tem submitted by (Samih et al., 2016) used the out-
put of a pair of LSTMs along with a CRF and post-
processing to obtain the final label mapping. These
systems are perhaps more complex than traditional
machine learning algorithms, but the trade off for
performance is evident in the results.

Most of the participants included some sort of ex-
ternal resource in their system. Among them we
can find large monolingual corpora, language spe-
cific dictionaries, Part-of-Speech taggers, word em-
beddings and Named Entity Recognizers. Other fea-
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System
Traditional
Machine
Learning

Deep
Learning Rules External Resources LM Case Affixes Context

(Al-Badrashiny and
Diab, 2016) CRF - - SPLIT, Gigaword ! - - -

(Xia, 2016) CRF - - fastText - ! ! ±1

(Jaech et al., 2016) - CNN,
LSTM - - - - - -

(Shirvani et al.,
2016)

Logistic
Regres-
sion

- -
GNU Aspell, NER,
POS tagger - - ! -

(Chanda et al., 2016) - - ! NER, Dictionaries - - - ±1
(Samih et al., 2016) CRF LSTM - Gigaword, word2vec - ! ! ±1
(Shrestha, 2016) CRF - - - - ! ! -
(Sikdar and Gambck,
2016) CRF - - Babelnet, Babelfy - ! ! ±2

Table 5: Summary of the architectures of the systems submitted.

tures used in some of the systems were language
models, word case information (Title, Uppercase,
Lowercase), affixes and surrounding context.

6 Results

Same as the previous shared task, we used the fol-
lowing metrics to evaluate the submitted systems:
Accuracy, Precision, Recall and F-measure. We use
regular F-measure to rank the systems at the tweet
level and the weighted average F-measure to rank
the systems at token level to account for the imbal-
anced distribution of the labels.

To evaluate the systems, we first took the subset of
tweets that all participants had in common to provide
a fair comparison among them. We designed a sim-
ple lexicon-based baseline system by taking only the
lexicon for lang1, lang2 from the training corpus.
We labeled symbols, emoticons, usernames, punctu-
ation marks and URLs as other. If we find an unseen
token or have a tie, we assign the majority class la-
bel. We compare the results of all participants to this
baseline.

To calculate the performance of the systems at the
tweet level, we use the predicted token level infor-
mation to determine if a tweet is code-switched or
monolingual. If the tweet has at least one token from
each language (lang1, lang2), then it is labeled a
code-switched. Otherwise, the tweet is labeled as
monolingual. Table 6 shows the tweet level results
for all submitted systems in both language pairs,

ranked by the average weighted f-measure. We can
see that the best performing systems in SPA-ENG
perform better than the best performing systems in
MSA-DA, which indicates that this is a more diffi-
cult task for the MSA-DA language pair as both lan-
guages are closely related, as opposed to SPA-ENG.

In Table 7 we show the token level results for
all submitted systems. We report the F-measure
for each class and the weighted average F-measure,
Avg-F, which we used to rank the systems. From
the results, we can see that the least difficult class
to predict is the other class, where most systems ob-
tained an F-measure over 97%. We can also discern
that for the classes with a minority amount of tokens
(ambiguous, mixed, fw, unk) were the hardest to pre-
dict, with most systems obtaining an F-measure of
0%. This is to be expected as we only had a small
number of samples in our training and test data and
in the case of the MSA-DA data set, there were no
samples for fw or unk. Precisely because of the small
amount of samples for these classes, the results do
not affect in a significant way the weighed averaged
F-measure score used to rank the systems. However,
it is still important to correctly predict these classes
in order to make a more thorough analysis of CS
data.

For SPA-ENG, all the systems beat the baseline
at the tweet level evaluation by at least 16%. The
best performing system here was (Shirvani et al.,
2016) with an Avg-F-measure of 91.3%, which is
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Test Set System Monolingual F-1 Code-switched F-1 Weighted F-1
Baseline 0.54 0.69 0.607

(Al-Badrashiny and Diab, 2016)*† 0.83 0.69 0.77
(Chanda et al., 2016)δ 0.83 0.75 0.79

(Xia, 2016) 0.86 0.79 0.83
(Shrestha, 2016) 0.90 0.86 0.88

SPA-ENG (Sikdar and Gambck, 2016) 0.91 0.87 0.89
IIIT Hyderabad> 0.91 0.88 0.898

(Jaech et al., 2016) 0.91 0.88 0.898
(Samih et al., 2016)* 0.92 0.88 0.90
(Shirvani et al., 2016) 0.93 0.9 0.913

Baseline 0.47 0.31 0.44
(Shrestha, 2016) 0.72 0.34 0.66

(Al-Badrashiny and Diab, 2016)-1* 0.75 0.43 0.69
MSA-DA (Jaech et al., 2016) 0.83 0.25 0.73

(Al-Badrashiny and Diab, 2016)-2* 0.83 0.37 0.75
(Samih et al., 2016)* 0.89 0.50 0.83

Table 6: Tweet level performance results. We ranked the systems using the weighted average F-measure, Weighted-F1. A ’†’

denotes a late submission. A ’*’ denotes systems submitted by co-organizers of the shared task. A ’δ’ denotes the participant

submission is missing a small number of tokens from one tweet. A > denotes the participant did not submit a system description.

1.3% higher than the second best system (Samih et
al., 2016). At the token level, all but one system out-
performed the baseline. The best performing sys-
tem was also (Shirvani et al., 2016) with an Avg-
F-measure of 97.3%, which is 0.4% higher than the
second best performing system (IIIT Hyderabad).4

For MSA-DA, all the submitted systems outper-
form the baseline at the tweet level by at least 20%.
At tweet level, (Samih et al., 2016) achieved 83%,
which the highest Avg-F-measure. The second high-
est Avg-F-measure was achieved by (Al-Badrashiny
and Diab, 2016)-2. Their Avg-F-measure was 75%.
At the token level, all systems beat the baseline by
at least 7%. Also, (Samih et al., 2016) succeed
in achieving the highest Avg-F-measure which is
87.6%. citegwu:16-2 and (Al-Badrashiny and Diab,
2016)-1 achieve the second and the third best per-
forming systems, with Avg-F-measures of 85.1%,
82.8%, respectively.

It is not easy to determine overall winners be-
cause not all participants submitted a system for
both language-pairs. However, for the SPA-ENG
data set the system by (Shirvani et al., 2016) was
the best performing at both the tweet and token
level evaluations. On the other hand, the system by
(Samih et al., 2016) was the best performing at both
tweet and token level for the MSA-DA data set.

4The participants did not submit a system description.

7 Lessons Learned

This year we had to deal with the same issues we en-
countered with Twitter, including data loss and shar-
ing restrictions. However, we decided to cope with
these issues as we found it harder to identify other
sources of data where we could easily search and
find samples of code-switched text.

In the process of annotation, we believe that pre-
annotating the data using our previous data as train-
ing helps speed up the process of in-lab annotations
and thus reduces the amount of data that has to be
annotated through crowd-sourcing. We took several
measures to ensure we obtained high quality data
from crowd-sourcing, but it still proves to be a chal-
lenge and we obtain a fair amount of noise. The
problem is exacerbated in the MSA-DA set due to
the fact that there is inherently considerable amount
of data overlap due to homographs between the two
varieties of the language. Also, a big part of the
errors made by crowd-sourcing annotators involve
named entities, probably because the annotators do
not take the context into account in an effort to be
fast and collect money quickly.

For a future shared task, we will consider giving
the crowd-sourcing annotators less choices in order
to reduce error, along with providing a simpler anno-
tation guideline with a greater amount of examples.
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Test Set System lang1 lang2 NE other ambiguous mixed fw unk Avg-F Avg-A
(Chanda et al., 2016) 0.478 0.689 0.153 0.466 0.0 0.0 0.01 0.003 0.603 0.536

Baseline 0.595 0.852 0.0 0.979 0.0 0.0 0.0 0.0 0.828 0.811
(Al-Badrashiny and Diab, 2016)*† 0.828 0.959 0.256 0.982 0.0 0.0 0.0 0.0 0.933 0.938

(Xia, 2016) 0.873 0.965 0.379 0.993 0.0 0.0 0.0 0.0 0.947 0.949
(Shrestha, 2016) 0.919 0.978 0.481 0.994 0.0 0.0 0.0 0.0 0.964 0.965

SPA-ENG (Sikdar and Gambck, 2016) 0.928 0.979 0.510 0.996 0.0 0.0 0.0 0.045 0.967 0.965
(Jaech et al., 2016) 0.929 0.982 0.480 0.994 0.0 0.0 0.0 0.0 0.968 0.969

(Samih et al., 2016)* 0.930 0.980 0.551 0.995 0.0 0.0 0.0 0.034 0.968 0.967
IIIT Hyderabad> 0.931 0.979 0.645 0.991 0.0 0.0 0.0 0.013 0.969 0.966

(Shirvani et al., 2016) 0.938 0.984 0.603 0.996 0.0 0.0 0.0 0.029 0.973 0.973
Baseline 0.534 0.421 0.0 0.883 0.0 0.0 - - 0.463 0.513

(Jaech et al., 2016) 0.603 0.603 0.468 0.712 0.0 0.0 - - 0.594 0.599
(Shrestha, 2016) 0.699 0.722 0.745 0.975 0.0 0.0 - - 0.747 0.747

MSA-DA (Al-Badrashiny and Diab, 2016)-2* 0.767 0.833 0.828 0.986 0.0 0.0 - - 0.828 0.826
(Al-Badrashiny and Diab, 2016)-1* 0.802 0.860 0.827 0.988 0.0 0.0 - - 0.851 0.852

(Samih et al., 2016)* 0.854 0.904 0.77 0.957 0.0 0.0 - - 0.876 0.879
Table 7: Token level performance results. We ranked the systems using the weighted average F-measure, Avg-F. A ’-’ indicates that

there were no tokens labeled under this class in the test data set. A ’†’ denotes a late submission. A ’*’ denotes systems submitted

by co-organizers of the shared task. A ’δ’ denotes the participant submission is missing a small number of tokens from one tweet.

A > denotes the participant did not submit a system description.

Another thing we have in mind is to further improve
our code-switched tweet evaluation by taking into
account the predicted positions of the code-switch
points instead of just labeling the tweets as CS or
monolingual.

8 Conclusion

We had a very successful second shared task on lan-
guage identification on code-switched data. We re-
ceived submissions from 9 different teams, up from
7 teams in the previous task. Overall, this year’s sys-
tems achieved a higher level of performance when
compared to previous shared task. This is a good in-
dicator of a higher understanding and interest in the
problem. We also see that the results of the previous
shared task influenced the decisions the participants
made when designing their systems, as evidenced by
the majority of the systems relying on a CRF for se-
quence labeling. In contrast to the previous shared
task, we received submissions that used deep learn-
ing algorithms and techniques, which shows that the
participants are thinking of different ways to take on
the problem. On the other end, we had one rule-
based system that didn’t perform as well as the oth-
ers and perhaps is an indicator that machine learning
is definitely the baseline architecture to use for lan-
guage identification in CS data.

In contrast to the previous shared task, the results
are more consistent between token/tweet level per-
formance, with the same teams ranking first at both
levels of the same language pair. This is an indica-
tion that there were less errors made, leading to less
confusion of the CS points. Also different from the
previous task, this year we only looked at two differ-
ent language pairs, but we maintain that these two
pairs are a good representation of CS occurrences.

We have shown that there is great interest in re-
searching language identification on code-switched
data and we have provided a competitive shared task
that will help push forward the development of sys-
tems and corpora with the goal of improving our un-
derstanding of code-switching.
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Abstract

This paper describes the HHU-UH-G system
submitted to the EMNLP 2016 Second Work-
shop on Computational Approaches to Code
Switching. Our system ranked first place for
Arabic (MSA-Egyptian) with an F1-score of
0.83 and second place for Spanish-English
with an F1-score of 0.90. The HHU-UH-
G system introduces a novel unified neural
network architecture for language identifica-
tion in code-switched tweets for both Spanish-
English and MSA-Egyptian dialect. The sys-
tem makes use of word and character level rep-
resentations to identify code-switching. For
the MSA-Egyptian dialect the system does not
rely on any kind of language-specific knowl-
edge or linguistic resources such as, Part Of
Speech (POS) taggers, morphological analyz-
ers, gazetteers or word lists to obtain state-of-
the-art performance.

1 Introduction

Code-switching can be defined as the act of al-
ternating between elements of two or more lan-
guages or language varieties within the same ut-
terance. The main language is sometimes re-
ferred to as the ‘host language’, and the embed-
ded language as the ‘guest language’ (Yeh et al.,
2013). Code-switching is a wide-spread linguis-
tic phenomenon in modern informal user-generated
data, whether spoken or written. With the advent
of social media, such as Facebook posts, Twitter

tweets, SMS messages, user comments on the ar-
ticles, blogs, etc., this phenomenon is becoming
more pervasive. Code-switching does not only occur
across sentences (inter-sentential) but also within the
same sentence (intra-sentential), adding a substan-
tial complexity dimension to the automatic process-
ing of natural languages (Das and Gambäck, 2014).
This phenomenon is particularly dominant in multi-
lingual societies (Milroy and Muysken, 1995), mi-
grant communities (Papalexakis et al., 2014), and
in other environments due to social changes through
education and globalization (Milroy and Muysken,
1995). There are also some social, pragmatic and
linguistic motivations for code-switching, such as
the the intent to express group solidarity, establish
authority (Chang and Lin, 2014), lend credibility, or
make up for lexical gaps.

It is not necessary for code-switching to oc-
cur only between two different languages like
Spanish-English (Solorio and Liu, 2008), Mandarin-
Taiwanese (Yu et al., ) and Turkish-German (Özlem
Çetinoglu, 2016), but it can also happen between
three languages, e.g. Bengali, English and Hindi
(Barman et al., 2014), and in some extreme cases
between six languages: English, French, German,
Italian, Romansh and Swiss German (Volk and
Clematide, 2014). Moreover, this phenomenon can
occur between two different dialects of the same lan-
guage as between Modern Standard Arabic (MSA)
and Egyptian Dialect (Elfardy and Diab, 2012),
or MSA and Moroccan Arabic (Samih and Maier,

50



2016a; Samih and Maier, 2016b). The current
shared task is limited to two scenarios: a) code-
switching between two distinct languages: Spanish-
English, b) and two language varieties: MSA-
Egyptian Dialect.

With the massive increase in code-switched writ-
ings in user-generated content, it has become im-
perative to develop tools and methods to handle and
process this type of data. Identification of languages
used in the sentence is the first step in doing any kind
of text analysis. For example, most data found in so-
cial media produced by bilingual people is a mixture
of two languages. In order to process or translate this
data to some other language, the first step will be to
detect text chunks and identify which language each
chunk belongs to. The other categories like named
entities, mixed, ambiguous and other are also impor-
tant for further language processing.

2 Related Works

Code-switching has attracted considerable attention
in theoretical linguistics and sociolinguistics over
several decades. However, until recently there has
not been much work on the computational pro-
cessing of code-switched data. The first compu-
tational treatment of this linguistic phenomenon
can be found in (Joshi, 1982). He introduces a
grammar-based system for parsing and generating
code-switched data. More recently, the detection of
code-switching has gained traction, starting with the
work of (Solorio and Liu, 2008), and culminating in
the first shared task at the “First Workshop on Com-
putational Approaches to Code Switching” (Solorio
et al., 2014). Moreover, there have been efforts
in creating and annotating code-switching resources
(Özlem Çetinoglu, 2016; Elfardy and Diab, 2012;
Maharjan et al., 2015; Lignos and Marcus, 2013).
Maharjan et al. (2015) used a user-centric approach
to collect code-switched tweets for Nepali-English
and Spanish-English language pairs. They used two
methods, namely a dictionary based approach and
CRF GE and obtained an F1 score of 86% and 87%
for Spanish-English and Nepali-English respectively
at word level language identification task. Lig-
nos and Marcus (2013) collected a large number of
monolingual Spanish and English tweets and used
ratio list method to tag each token with by its dom-

inant language. Their system obtained an accuracy
of 96.9% at word-level language identification task.

The task of detecting code-switching points is
generally cast as a sequence labeling problem. Its
difficulty depends largely on the language pair be-
ing processed.

Several projects have treated code-switching be-
tween MSA and Egyptian Arabic. For example, El-
fardy et al. (2013) present a system for the detec-
tion of code-switching between MSA and Egyptian
Arabic which selects a tag based on the sequence
with a maximum marginal probability, considering
5-grams. A later version of the system is named
AIDA2 (Al-Badrashiny et al., 2015) and it is a more
complex hybrid system that incorporates different
classifiers and components such as language mod-
els, a named entity recognizer, and a morphological
analyzer. The classification strategy is built as a cas-
cade voting system, whereby a conditional Random
Field (CRF) classifier tags each word based on the
decisions from four other underlying classifiers.

The participants of the “First Workshop on Com-
putational Approaches to Code Switching” had ap-
plied a wide range of machine learning and sequence
learning algorithms with some using additional
online resources like English dictionary, Hindi-
Nepali wiki, dbpedia, online dumps, LexNorm,
etc. to tackle the problem of language detec-
tion in code-switched tweets on Nepali-English,
Spanish-English, Mandarin-English and MSA Di-
alects (Solorio et al., 2014). For MSA-Dialects,
two CRF-based systems, a system using language-
independent extended Markov models, and a system
using a CRF autoencoder have been presented; the
latter proved to be the most successful.

The majority of the systems dealing with word-
level language identification in code-switching rely
on linguistic resources (such as named entity
gazetteers and word lists) and linguistic informa-
tion (such as POS tags and morphological analysis),
and they use machine learning methods that have
been typically used with sequence labeling prob-
lems, such as support vector machine (SVM), con-
ditional random fields (CRF) and n-gram language
models. Very few, however, have recently turned
to recurrent neural networks (RNN) and word em-
bedding with remarkable success. (Chang and Lin,
2014) used a RNN architecture and combined it
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with pre-trained word2vector skip-gram word em-
beddings, a log bilinear model that allows words
with similar contexts to have similar embeddings.
The word2vec embeddings were trained on a large
Twitter corpus of random samples without filtering
by language, assuming that different languages tend
to share different contexts, allowing embeddings to
provide good separation between languages. They
showed that their system outperforms the best SVM-
based systems reported in the EMNLP’14 Code-
Switching Workshop.

Vu and Schultz (2014) proposed to adapt the re-
current neural network language model to different
code-switching behaviors and even use them to gen-
erate artificial code-switching text data. Adel et
al. (2013) investigated the application of RNN lan-
guage models and factored language models to the
task of identifying code-switching in speech, and re-
ported a significant improvement compared to the
traditional n-gram language model.

Our work is similar to that of Chang and Lin
(2014) in that we use RNNs and word embed-
dings. The difference is that we use long-short-
term memory (LSTM) with the added advantage
of the memory cells that efficiently capture long-
distance dependencies. We also combine word-
level with character-level representation to obtain
morphology-like information on words.

3 Model

In this section, we will provide a brief description
of LSTM, and introduce the different components
of our code-switching detection model. The archi-
tecture of our system, shown in Figure 1, bears re-
semblance to the models introduced by Huang et al.
(2015), Ma and Hovy (2016), and Collobert et al.
(2011).

3.1 Long Short-term Memory

A recurrent neural network (RNN) belongs to a fam-
ily of neural networks suited for modeling sequential
data. Given an input sequence x = (x1, ..., xn), an
RNN computes the output vector yt of each word xt
by iterating the following equations from t = 1 to n:

ht = f(Wxhxt +Whhht−1 + bh)
yt = Whyht + by

Figure 1: System Architecture.

where ht is the hidden states vector, W denotes
weight matrix, b denotes bias vector and f is the ac-
tivation function of the hidden layer. Theoretically
RNN can learn long distance dependencies, still in
practice they fail due the vanishing/exploding gra-
dient (Bengio et al., 1994). To solve this problem ,
Hochreiter and Schmidhuber (1997) introduced the
long short-term memory RNN (LSTM). The idea
consists in augmenting the RNN with memory cells
to overcome difficulties with training and efficiently
cope with long distance dependencies. The output
of the LSTM hidden layer ht given input xt is com-
puted via the following intermediate calculations:
(Graves, 2013):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ot tanh(ct)
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where σ is the logistic sigmoid function, and i,
f , o and c are respectively the input gate, forget
gate, output gate and cell activation vectors. More
interpretation about this architecture can be found
in (Lipton et al., 2015). Figure 2 illustrates a sin-
gle LSTM memory cell (Graves and Schmidhuber,
2005)

Figure 2: A Long Short-Term Memory Cell.

3.2 Word- and Character-level Embeddings
Character embeddings A very important ele-
ment of the recent success of many NLP applica-
tions, is the use of character-level representations
in deep neural networks. This has shown to be ef-
fective for numerous NLP tasks (Collobert et al.,
2011; dos Santos et al., 2015) as it can capture word
morphology and reduce out-of-vocabulary. This ap-
proach has also been especially useful for handling
languages with rich morphology and large charac-
ter sets (Kim et al., 2016). We also find this impor-
tant for our code-switching detection model partic-
ularly for the Spanish-English data as the two lan-
guages have different orthographic sequences that
are learned during the training phase.

Word pre-trained embeddings Another crucial
component of our model is the use of pre-trained
vectors. The basic assumption is that words from
different languages (or language varieties) may ap-
pear in different contexts, so word embeddings
learned from a large multilingual corpus, should
provide an accurate separation between the lan-
guages at hand. Following Collobert et al. (2011),
we use pre-trained word embeddings for Arabic,
Spanish and English to initialize our look-up table.

Words with no pre-trained embeddings are randomly
initialized with uniformly sampled embeddings. To
use these embeddings in our model, we simply re-
place the one hot encoding word representation with
its corresponding 300-dimensional vector. For more
details about the data we use to train our word em-
beddings for Arabic and Spanish-English, see Sec-
tion 4.

3.3 Conditional Random Fields (CRF)
When using LSTM RNN for sequence classification,
the resulting probability distribution of each step is
supposed to be independent from each other. Still
we assume that code-switching tags are highly re-
lated to each other. To exploit these kind of labeling
constraints, we resort to Conditional Random Fields
(CRF) (Lafferty et al., 2001). CRF, a sequence
labeling algorithm, predicts labels for a whole se-
quence rather than for the parts in isolation as shown
in Equation 1. Here, s1 to sm represent the labels of
tokens x1 to xm respectively, where m is the num-
ber of tokens in a given sequence. After we have this
probability value for every possible combination of
labels, the actual sequence of labels for this set of
tokens will be the one with the highest probability.

p(s1...sm|x1...xm) (1)

p(~s|~x; ~w) =
exp(~w.~Φ(~x,~s))∑

~s′εSm exp(~w.~Φ(~x,~s′))
(2)

Equation 2 shows the formula for calculating the
probability value from Equation 1. Here, S is the
set of labels. In our case S ={lang1, lang2, am-
biguous, ne, mixed, other, fw, unk }. ~w is the weight
vector for weighting the feature vector ~Φ.

3.3.1 Feature Templates
The feature templates extract feature values based

on the current position of the token, current token’s
label and previous token’s label and the entire tweet.
These functions normally output binary values (0 or
1). These feature functions can be represented math-
ematically as Φ(~x, j, sj−1, sj). We use the following
feature templates.
Morphological Features: In order to capture the in-
formation contained in the morphology of tokens,
we used features like, all upper case, title case, be-
gins with punctuation, @, is digit, is alphanumeric,
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contains apostrophe, ends with a vowel, consonant
vowel ratio, has accented characters, prefixes and
suffixes of the current token and of its previous or
next token.
Character n-gram Features: character bigrams
and trigrams.
Word Features: This feature uses token in its low-
ercase (hash-tag is removed from the token). Also,
it tries to capture the context surrounding the token
using the previous and next two tokens as features.
Shape Features: Collins (2002) defined a mapping
from each character to its type. The type function
blinds all characters but preserves the case informa-
tion. The digits are replaced by # and all other punc-
tuation characters are copied as they are. For ex-
ample: "London" is transformed to "Xxxxxx", "PG-
500’ is transformed to "XX-###’. Another variation
of the same function maps each character to its type
but the repeated characters and not repeated in the
mapping. So "London" is transformed to "Xx*". We
use both of these variations in our system. These
features are designed to capture the named entity.
Word Character Representations: The final repre-
sentations from the char-word LSTM model before
feeding to softmax layers for each token are used as
features to the CRF.

3.4 LSTM-CRF for Code-switching Detection

Our neural network architecture consists of the fol-
lowing three layers:

• Input layer: comprises both character and word
embeddings.

• Hidden layer: two LSTMs map both words and
character representations to hidden sequences.

• Output layer: a Softmax or a CRF computes the
probability distribution over all labels.

At the input layer a look-up table is randomly
initialized mapping each word in the input to d-
dimensional vectors for sequences of characters and
sequences of words. At the hidden layer, the out-
put from the character and word embeddings is
used as the input to two LSTM layers to obtain
fixed-dimensional representations for characters and
words. At the output layer, a softmax or a CRF is
applied over the hidden representation of the two

LSTMs to obtain the probability distribution over all
labels. Training is performed using stochastic gradi-
ent descent with momentum, optimizing the cross
entropy objective function.

3.5 Optimization

Due to the relatively small size the training data
set and development data set in both Arabic and
Spanish-English, overfitting poses a considerable
challenge for our code-switching detection system.
To make sure that our model learns significant repre-
sentations, we resort to dropout (Hinton et al., 2012)
to mitigate overfitting. The basic idea of dropout
consists in randomly omitting a certain percentage
of the neurons in each hidden layer for each presen-
tation of the samples during training. This encour-
ages each neuron to depend less on other neurons
to detect code-switching patterns. We apply dropout
masks to both embedding layers before inputting to
the two LSTMs and to their output vectors as shown
in Fig. 1. In our experiments we find that dropout
decreases overfitting and improves the overall per-
formance of the system.

4 Dataset

The shared task organizers made available the
tagged dataset for Spanish-English and Arabic
(MSA-Egyptian) code-switched language pairs. The
Spanish-English dataset consists of 8,733 tweets
(139,539 tokens) as training set, 1,587 tweets
(33,276 tokens) as development set and 10,716
tweets (121,446 tokens) as final test set. Simi-
larly, the Arabic (MSA-Egyptian) dataset consists of
8,862 tweets (185,928 tokens) as training set, 1,117
tweets (20,688 tokens) as development set and 1,262
tweets (20,713 tokens) as final test set.

For Arabic we trained different word embeddings
using word2vec (Mikolov et al., 2013) from a cor-
pus of total size of 383,261,475 words, consisting of
dialectal texts of Facebook posts (8,241,244), Twit-
ter tweets (2,813,016), user comments on the news
(95,241,480), and MSA texts of news articles of
276,965,735 words. Likewise, for Spanish-English,
we combined English gigaword corpus (Graff et al.,
2003) and Spanish gigaword corpus (Graff, 2006)
before we trained different word embeddings on the
final corpus.
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Labels CRF
(feats)

CRF
(emb)

CRF
(feats+

emb)

word
LSTM

char
LSTM

char-
word

LSTM
ambiguous 0.00 0.02 0.00 0.00 0.00 0.00
fw 0.00 0.00 0.00 0.00 0.00 0.00
lang1 0.97 0.97 0.97 0.93 0.94 0.96
lang2 0.96 0.95 0.96 0.91 0.89 0.93
mixed 0.00 0.00 0.00 0.00 0.00 0.00
ne 0.52 0.51 0.57 0.34 0.13 0.32
other 1.00 1.00 1.00 0.85 1.00 1.00
unk 0.04 0.08 0.10 0.00 0.00 0.04
Accuracy 0.961 0.960 0.963 0.896 0.923 0.954

Table 1: F1 score results on Spanish-English development

dataset. (feats = hand-crafted features, emb = representations

for each token) The last three columns use softmax.

Labels CRF
(feats)

CRF
(emb)

CRF
(feats+
emb)

word
LSTM

char
LSTM

char-
word

LSTM
ambiguous 0.00 0.00 0.00 0.00 0.00 0.00
lang1 0.80 0.88 0.88 0.86 0.57 0.88
lang2 0.83 0.91 0.91 0.92 0.23 0.92
mixed 0.00 0.00 0.00 0.00 0.00 0.00
ne 0.83 0.84 0.86 0.84 0.66 0.84
other 0.97 0.97 0.97 0.92 0.97 0.97
Accuracy 0.829 0.894 0.896 0.896 0.530 0.900

Table 2: F1 score results on MSA-Egyptian development

dataset. (feats = hand-crafted features, emb = representations

for each token) The last three columns use softmax.

Data preprocessing: We transformed Arabic scripts
to SafeBuckwalter (Roth et al., 2008), a character-
to-character mapping that replaces Arabic UTF al-
phabet with Latin characters to reduce size and
streamline processing. Also in order to reduce data
sparsity, we converted all Persian numbers (e.g.
2 ,1) to Arabic numbers (e.g. 1, 2), Arabic punc-

tuation (e.g. ‘,’ and ‘;’) to Latin punctuation (e.g. ‘,’
and ‘;’), removed kashida (elongation character) and
vowel marks, and separated punctuation marks from
words.

5 Experiments and Results

We explored different combinations of hand-crafted
features (Section 3.3.1), word LSTM and char-word
LSTM models with CRF and softmax classifier to
identify the best system. Table 1 and 2 show the re-
sults for different settings for Spanish-English and
MSA-Egyptian on the development dataset respec-
tively. For the Spanish-English dataset, we find
that combining the character and word representa-
tions learned with a char-word LSTM system with
hand-crafted features and then using CRF as a se-
quence classifier gives the highest overall accuracy

Scores Es-En MSA
Monolingual F1 0.92 0.890
Code-switched F1 0.88 0.500
Weighted F1 0.90 0.830

Table 3: Tweet level results the test dataset.

Label Recall Precision F-score
ambiguous 0.000 0.000 0.000
fw 0.000 0.000 0.000
lang1 0.922 0.939 0.930
lang2 0.978 0.982 0.980
mixed 0.000 0.000 0.000
ne 0.639 0.484 0.551
other 0.992 0.998 0.995
unk 0.120 0.019 0.034
Accuracy 0.967

Table 4: Token level results on Spanish-English test dataset.

of 0.963. Also, we notice that the addition of charac-
ter and word representations improves the F1-score
for named entity and unknown tokens. For the MSA-
Egyptian dataset, we find that a char-word LSTM
model with softmax classifier is better than the CRF
as this setting gives us the highest overall accuracy
of 0.90. Moreover, the addition of character and
word representations to hand-crafted features im-
proves the F1 score for named entity. Based on
these results, our final system for Spanish-English
uses CRF with hand-crafted features and character
and word representations learned with a char-word
LSTM model and the MSA-Egyptian uses char-
word LSTM model with softmax as classifier. We
do not use any kind of hand-crafted features for the
MSA-Egyptian dataset.

Our final system outperformed all other partic-
ipants’ systems for the MSA-Egyptian dialects in
terms of tweet level and token level performance.

Label Recall Precision F-score
ambiguous 0.000 0.000 0.000
fw 0.000 0.000 0.000
lang1 0.877 0.832 0.854
lang2 0.913 0.896 0.904
mixed 0.000 0.000 0.000
ne 0.729 0.829 0.777
other 0.938 0.975 0.957
unk 0.000 0.000 0.000
Accuracy 0.879

Table 5: Token level results on MSA-DA test dataset.
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For the Spanish-English dataset, our system ranks
second in terms of tweet level performance and
third in terms of token level accuracy. Table 3,
4 and 5 show the final results for tweet and to-
ken level performance for the Spanish-English and
MSA-Egyptian datasets. For the MSA dataset, the
difference between our system and the second high-
est scoring system is 8% and 2.7% in terms of tweet
level weighted F1 score and token level accuracy.
Similarly for the Spanish-English dataset, the dif-
ference between our system and the highest scoring
system is 1.3% and 0.6% in terms of tweet level
weighted F1 score and token level accuracy. Our
system consistently ranks first for language identi-
fication for the MSA-Egyptian dataset (5% and 4%
above the second highest system for lang1 and lang2
respectively). For the Spanish-English dataset, our
system ranks third (0.8% below the highest scor-
ing system) and third (0.4% below the highest scor-
ing system) for lang1 and lang2 respectively. How-
ever, our system has consistently shown weaker
performance in identifying nes. Nonetheless, the
overall results show that our system outperforms
other systems with relatively high margin for the
MSA-Egyptian dataset and lags behind other sys-
tems with relatively low margin for the Spanish-
English dataset.

6 Analysis

6.1 What is being captured in char-word
representations?

In order to investigate what the char-word LSTM
model is learning, we feed the tweets from the
Spanish-English and MSA-Egyptian development
datasets to the system and take the vectors formed
by concatenation of character representation and
word representation before feeding them into soft-
max layer. We then project them into 2D space by
reducing the dimension of the vectors to 2 using
Principle Component Analysis (PCA). We see, in
Figure 3, that the trained neural network has learned
to cluster the tokens according to their label type.
Moreover, the position of tokens in 2D space also
revels that ambiguous and mixed tokens are in be-
tween lang1 and lang2 clusters.

Figure 3(a) for Spanish-English shows that the
char-word LSTM model has learned to separate the

(a) Spanish-English

(b) MSA-Egyptian Dialects

Figure 3: Projection of char-word LSTM representation into

2D using PCA. The tokens belonging to different categories are

mapped as ambiguous: purple, ne: blue, mixed: black, other:

orange, lang1: red, lang2: green

other tokens from rest of the tokens. These tokens
are well separated and are situated at the bottom of
the figure. Moreover, the unknown token are closer
to the other tokens. The nes as spread between lang1
and lang2 clusters. Named entities like ELLEN,
beyounce, friday, March, Betty are closer to lang1
cluster whereas, other named entities like Mexico,
Santino, gustavo, Norte are closer to lang2 cluster.
Not only the named entities, the mixed, ambiguous
tokens also exhibit the similar phenomena.

Similarly, Figure 3(b) for MSA-Egyptian gen-
erally shows successful separation of tokens, with
lang1 in red on the right, lang2 in green on the left
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Most likely Score Most unlikely Score
unk ⇒ unk 1.789 lang1⇒ mixed -0.172
ne⇒ ne 1.224 mixed⇒ lang1 -0.196
fw ⇒ fw 1.180 amb⇒ other -0.244
lang1⇒ lang1 1.153 ne⇒ mixed -0.246
lang2⇒ lang2 1.099 mixed⇒ other -0.254
other ⇒ other 0.827 fw ⇒ lang1 -0.282
lang1⇒ ne 0.316 ne⇒ lang2 -0.334
other ⇒ lang1 0.222 unk ⇒ ne -0.383
lang2⇒ mixed 0.216 lang2⇒ lang1 -0.980
lang1⇒ other 0.191 lang1⇒ lang2 -0.993

Table 6: Most likely and unlikely transitions learned by CRF

model for the Spanish-English dataset.

and ne in blue on the top. The other token occupies
the space between the clusters for lang1, lang2 and
ne with more inclination toward lang1. We also no-
tice that other in Arabic contains a large amount of
hashtags, due to their particular annotation scheme.

6.2 CRF Model
Table 6 shows the most likely and unlikely transi-
tions learned by the CRF model for the Spanish-
English dataset. It is interesting to see that the transi-
tion from lang1 to lang1 and from lang2 to lang2 are
much likely than lang1 to lang2 or lang2 to lang1.
This suggests that people especially in Twitter do
not normally switch from one language to another
while tweeting. Even, if they switch, there are very
few code-switch points in the tweets. However, peo-
ple tweeting in Spanish have more tendency to use
mixed tokens than people tweeting in English. We
also dumped the top features for the task and found
that word.hasaps is the top feature to identify token
as English. Moreover, features like word.startpunt,
word.lower:number are top features to identify to-
kens as other. The features like char bigram, tri-
gram, words, suffix and prefix are the top features to
distinguish between English and Spanish tokens.

6.3 Error Analysis for Arabic
When we conducted an error analysis on the output
of the Arabic development set for our system, we
found the following mistagging types:

• Punctuation marks, user names starting with
‘@’ and emoticons are not tagged as other.

• Bad segmentation in the text affects the de-
cision, e.g. ú
æ�ñÓðQÔ« EamormuwsaY “Amr

Musa”.

• Abbreviations:

@ ’A’ “Mr.” and Ð ’m’ “eng.” are

not consistently treated across the dataset.

• There are cases of true ambiguity, e.g. Õç'
Q»
’kariym’, which can be an adjective “generous”
or a person’s name “Kareem”.

• Clitic attachment can obscure tokens, e.g.
ø
 ðA¢	J£ð waTanoTAwiy “and-Tantawy”.

• Spelling errors can increase data sparsity, e.g.�éK
Q 	�º�@ Asokanoriy~ap “Alexandria”.

Based on this error analysis we developed a post-
processor to handle deterministic annotation deci-
sion. The post-processor applies the tag other in the
following cases:

• Non-alphabetic characters, e.g. punctuation
marks and emoticons.

• Numbers already receiving ne tag, e.g. QK
A 	JK
 25
“25 January”.

• Strings with Latin script.

• Words starting with a @ character that usually
represents user names.

6.4 Error Analysis for Spanish-English
From Table 1, it is clear that the most difficult cat-
egories are ambiguous and mixed. These are rare
tokens and hence the system could not learn to dis-
tinguish them. During analyzing the mistakes on the
development set, we found that the annotation of fre-
quent tokens like jaja, haha with their spelling vari-
ations were inconsistent. Hence, even though the
system was correctly predicting the labels, they were
marked as incorrect. In addition, we also found that
some lang2 tokens like que, amor, etc were wrongly
annotated as lang1.

In most cases, the system predicted either lang1
or lang2 for names of series, games, actor, day, apps
(friday, skype, sheyla, beyounce, walking dead, end-
less love, flappy bird, dollar tree). We noticed that
all these tokens were in lowercase. Similarly, the
system mis-predicted all uppercase tokens as ne. For
eg. RT, DM, JK, GO, BOY were annotated as lang1
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but, the system predicted them as ne. Moreover, we
found that the tokens like lol, lmao, yolo, jk were
incorrectly annotated as ne.

The system predicted the interjections like aww,
uhh, muah, eeeahh, ughh as either lang1 or lang2
but they were annotated as unk.

In order to improve the performance for ne,
we tagged each token with Ark-Tweet NLP tag-
ger (Owoputi et al., 2013). We then changed the
label for the tokens tagged as proper nouns with con-
fidence score greater than 0.98 to ne. This improved
the F1-score for ne from 0.53 to 0.57.

7 Conclusion

In this paper we present our system for identify-
ing and classifying code-switched data for Spanish-
English and MSA-Egyptian. The system uses a neu-
ral network architecture that relies on word-level
and character-level representations, and the output is
fine-tuned (only in the Spanish-English data) with a
CRF classifier for capturing sequence and contextual
information. Our system is language independent
in the sense that we have not used any language-
specific knowledge or linguistic resources such as,
POS taggers, morphological analyzers, gazetteers or
word lists, and the main architecture is applied to
both language sets. Our system considerably out-
performs other systems participating in the shared
task for Arabic, and is ranked second place for the
Spanish-English at tweet-level performance.
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Abstract

Language identification systems suffer when
working with short texts or in domains with
unconventional spelling, such as Twitter or
other social media. These challenges are ex-
plored in a shared task for Language Identi-
fication in Code-Switched Data (LICS 2016).
We apply a hierarchical neural model to this
task, learning character and contextualized
word-level representations to make word-level
language predictions. This approach performs
well on both the 2014 and 2016 versions of the
shared task.

1 Introduction

Language identification (language ID) remains a
difficult problem, particulary in social media text
where informal styles, closely related language
pairs, and code-switching are common. Progress on
language ID is needed especially since downstream
tasks, like translation or semantic parsing, depend
on it.

Continuous representations for language data,
which have produced new states of the art for lan-
guage modeling (Mikolov et al., 2010), machine
translation (Bahdanau et al., 2015), and other tasks,
can be useful for language ID. For the Language
Identification in Code-Switched Data shared task
(LICS 2016), we submitted a hierarchical character-
word model closely following Jaech et al. (2016b),
focusing on word-level language ID. Our discussion
of the model closely follows that paper.

This model, which we call C2V2L (“character
to vector to language”) is hierarchical in the sense
that it explicitly builds a continuous representation
for each word from its character sequence, captur-
ing orthographic and morphology-related patterns,

and then combines those word-level representations
to use context from the full word sequence before
making predictions for each word. The use of char-
acter representations is well motivated for code-
switching tasks, since the presence of multiple lan-
guages means that one is more likely to encounter a
previously unseen word.

Our model does not require special handling of
casing or punctuation, nor do we need to remove the
URLs, usernames, or hashtags, and it is trained end-
to-end using standard procedures.

2 Model

Our model has two main components, though
they are trained together, end-to-end. The first,
“char2vec,” applies a convolutional neural network
(CNN) to a whitespace-delimited word’s Unicode
character sequence, providing a word vector. The
second is a bidirectional LSTM recurrent neural net-
work (RNN) that maps a sequence of such word vec-
tors to a language label.

2.1 Char2vec

The first layer of char2vec embeds characters. An
embedding is learned for each Unicode code point
that appears at least twice in the training data, in-
cluding punctuation, emoji, and other symbols. If
C is the set of characters then we let the size of the
character embedding layer be d = dlog2 |C|e. (If
each dimension of the character embedding vector
holds just one bit of information then d bits should
be enough to uniquely encode each character.) The
character embedding matrix is Q ∈ Rd×|C|. Words
are given to the model as a sequence of charac-
ters. When each character in a word of length l is
replaced by its embedding vector we get a matrix
C ∈ Rd×(l+2). There are l + 2 columns in C be-
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cause padding characters are added to the left and
right of each word.

The char2vec architecture uses two sets of fil-
ter banks. The first set is comprised of matrices
Hai ∈ Rd×3 where i ranges from 1 to n1. The
matrix C is narrowly convolved with each Hai , a
bias term ba is added and an ReLU non-linearity,
ReLU(x) = max(0, x), is applied to produce an
output T1 = ReLU(conv(C,Ha) + ba). T1 is
of size n1 × l with one row for each of the filters
and one column for each of the characters in the in-
put word. Since each Hai is a filter with a width
of three characters, the columns of T1 each hold a
representation of a character tri-gram. During train-
ing, we apply dropout on T1 to regularize the model.
The matrix T1 is then convolved with a second set
of filters Hbi

∈ Rn1×w where bi ranges from 1 to
3n2 and n2 controls the number of filters of each of
the possible widths, w = 3, 4, or 5. Another con-
volution and ReLU non-linearity is applied to get
T2 = ReLU(conv(T1,Hb) + bb). Max-pooling
across time is used to create a fix-sized vector y from
T2. The dimension of y is 3n2, corresponding to the
number of filters used.

Similar to Kim et al. (2016) who use a highway
network after the max-pooling layer, we apply a
residual network layer. The residual network uses
a matrix W ∈ R3n2×3n2 and bias vector b3 to cre-
ate the vector z = y + fR(y) where fR(y) =
ReLU(Wy + b3). The resulting vector z is used as
a word embedding vector in the word-level LSTM
portion of the model.

There are three differences between our version
of the model and the one described by Kim et al.
(2016). First, we use two layers of convolution in-
stead of just one, inspired by Ling et al. (2015a)
which uses a 2-layer LSTM for character modeling.
Second, we use the ReLU function as a nonlinear-
ity as opposed to the tanh function. ReLU has been
highly successful in computer vision in conjunction
with convolutional layers (Jarrett et al., 2009). Fi-
nally, we use a residual network layer instead of a
highway network layer after the max-pooling step,
to reduce the model size.

2.2 Sentence-level Context
The sequence of word embedding vectors is pro-
cessed by a bi-LSTM, which outputs a sequence of

Figure 1: C2V2L model architecture. The model takes the

word “esfuezo,” a misspelling of the Spanish word “esfuerzo,”

and maps it to a word vector via the two CNN layers and the

residual layer. The word vector is then combined with others

via the LSTM, and a prediction made for each word.

vectors, [v1,v2,v3 . . .vT ] where T is the number
of words in the tweet. All LSTM gates are used as
defined by Sak et al. (2014). Dropout is used as a
regularizer on the inputs to the LSTM (Pham et al.,
2014). The output vectors vi are transformed into
probability distributions over the set of languages by
applying an affine transformation followed by a soft-
max:

pi = fL(vi) =
exp(Avi + b)∑T
t=1 exp(Avt + b)

The final affine transformation can be interpreted
as a language embedding, where each language is
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represented by a vector of the same dimensional-
ity as the LSTM outputs. The goal of the LSTM
then is (roughly) to maximize the dot product of
each word’s representation with the language em-
bedding(s) for that token. The loss is the cross-
entropy between each word’s prediction and the cor-
responding gold label for that word.

3 Implementation Details

3.1 Preprocessing

The data contains many long and repetitive charac-
ter sequences such as “hahahaha...” or “arghhhhh...”.
To deal with these, we restricted any sequence of re-
peating characters to at most five repetitions where
the repeating pattern can be from one to four charac-
ters. There are many tweets that string together large
numbers of usernames or hashtags without spaces
between them. These create extra long “words”
that cause our implementation to use more mem-
ory and do extra computation during training. We
therefore enforce the constraint that there must be
a space before any URL, username, or hashtag. To
deal with the few remaining extra-long character se-
quences, we force word breaks in non-space charac-
ter sequences every 40 bytes. This primarily affects
languages that are not space-delimited like Chinese.
We do not perform any special handling of casing
or punctuation nor do we need to remove the URLs,
usernames, or hashtags as has been done in previous
work (Zubiaga et al., 2014).

3.2 Training and Tuning

Training is done using minibatches of size 25 and a
learning rate of 0.001 using Adam (Kingma and Ba,
2015), and continued for 50,000 minibatches.

There are only four hyperparameters to tune for
each model: the number of filters in the first con-
volutional layer, the number of filters in the second
convolutional layer, the size of the word-level LSTM
vector, and the dropout rate.

To tune hyperparameters, we trained 10 models
with random parameter settings on 80% of the data
from the Spanish-English training set, and chose the
settings from the model that performed best on the
remaining 20%. We then retrained on the full train-
ing set with these settings (respectively, 59, 108, 23,
and 25%). Our final model architecture has roughly

177K parameters.

4 Experiments

Because C2V2L produces language predictions for
every word, the architecture is well suited to analysis
of code-switched text, in which different words may
belong to different languages. We used the Spanish-
English dataset from the EMNLP 2014 shared task
on Language Identification in Code-Switched Data
(Solorio et al., 2014), and the Spanish-English and
Arabic-MSA datasets from the EMNLP 2016 ver-
sion of the shared task. Each dataset is a collec-
tion of monolingual and code-switched tweets in
two main languages: English and Spanish, or Mod-
ern Standard Arabic (MSA) and Arabic dialects.

4.1 LICS 2014

The LICS 2014 dataset (Zubiaga et al., 2014) comes
from a language ID shared task that focused on
tweets that code-switch between two languages.
While several language pairs were included in the
shared task, we evaluated only on Spanish-English
in these experiments. There are approximately
110,000 labeled examples in the training data and
34,000 in the test set. The data is unbalanced, with
over twice as many examples in English (74,000)
as in Spanish (35,000). A further 30,000 are la-
beled “other” for punctuation, emoji, and unintelli-
gible words. There are also a small number of ex-
amples labeled “NE” for named entities (2.16%),
“mixed” for words that include both English and
Spanish (0.03%), and “ambiguous” for words that
could be interpreted as either language in context
(0.22%). “NE” and “other” are predicted as if they
were separate languages, but the ’ambiguous’ label
is ignored.

C2V2L performed well at this task, scoring 95.1
F1 for English (which would have achieved second
place in the 2014 shared task, out of eight entries),
94.1 for Spanish (second place), 36.2 for named en-
tities (fourth place) and 94.2 for Other (third place).1

While our code-switching results are not quite state-
of-the-art, they show that our model learns accurate
word-level predictions.

1Full results for the 2014 shared task can be found at
http://emnlp2014.org/workshops/CodeSwitch/
results.php.
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Lang. pair (L1-L2) L1 L2 NE other
Spanish-English (ours) 0.931 0.977 0.454 0.910
Spanish-English (best) 0.931 0.977 0.537 0.994
Arabic-MSA (ours) 0.603 0.603 0.468 0.712
Arabic-MSA (best) 0.854 0.904 0.828 0.988

Table 1: F1 scores for the LICS 2016 shared task. The best

result from any system in each category is provided for com-

parison.

4.2 LICS 2016

The LICS 2016 shared task uses a similar format.
Here, the training and development sets for each lan-
guage pair correspond to the training and test sets
from LICS 2014, and new data was added to create
a new test set. However, labels were updated to cor-
rect errors and add two new categories: “fw” (for-
eign word) for examples that belong to a language
other than the main two, and “unk” for examples that
cannot be classified. We ignore “unk” and “fw.”

We submitted labels for both available language
pairs: Spanish-English and Arabic-MSA (distin-
guishing Modern Standard Arabic from Arabic di-
alects). Partial results,2 showing only the four
largest categories, are given in Table 1.

Our results for Spanish-English are competitive
with the best submitted systems. We ranked first or
tied for first in F1 for the primary categories, English
and Spanish, out of nine submitted systems. On
Arabic-MSA, we came in last among five systems.
This is likely due in part to the fact that we tuned
only on Spanish-English data and did not make any
adjustments when training the Arabic-MSA model.
A model that is tuned to the specific language pair,
and perhaps handled the ’other’ category with reg-
ular expressions in preprocessing, would likely per-
form better.

5 Related Work

Language ID has a long history both in the speech
domain (House and Neuburg, 1977) and for text
(Cavnar and Trenkle, 1994). Previous work on
the text domain mostly uses word or character n-
gram features combined with linear classifiers (Hur-
tado et al., 2014; Gamallo et al., 2014). Chang
and Lin (2014) outperformed the top results for

2Full results can be found at http://care4lang1.
seas.gwu.edu/cs2/results.html

English-Spanish and English-Nepali in the EMNLP
2014 Language Identitication in Code-Switched
Data (Solorio et al., 2014), using an RNN with skip-
gram word embeddings and character n-gram fea-
tures. Word-level language ID has also been studied
by Mandal et al. (2015) in the context of question an-
swering and by King and Abney (2013). Both used
primarily character n-gram features.

Several other studies have investigated the use of
character sequence models in language processing.
These techniques were first applied only to create
word embeddings (dos Santos and Zadrozny, 2015;
dos Santos and Guimaraes, 2015) and then later ex-
tended to have the word embeddings feed directly
into a word-level RNN. Applications include part-
of-speech (POS) tagging (Ling et al., 2015b), lan-
guage modeling (Ling et al., 2015a), dependency
parsing (Ballesteros et al., 2015), translation (Ling
et al., 2015b), and slot filling text analysis (Jaech et
al., 2016a). A more extensive discussion of related
work on language ID and character sequence models
can be found in Jaech et al. (2016b).

6 Conclusion

We present C2V2L, a hierarchical neural model for
language ID that preforms competitively on chal-
lenging word-level language ID tasks. Without fea-
ture engineering, we achieved the best performance
in two common categories and good results in two
others. Future work could include adapting C2V2L
for other sequence labeling tasks, having shown that
the current architecture already performs well.
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Abstract

We present SAWT, a web-based tool for the
annotation of token sequences with an arbi-
trary set of labels. The key property of the tool
is simplicity and ease of use for both anno-
tators and administrators. SAWT runs in any
modern browser, including browsers on mo-
bile devices, and only has minimal server-side
requirements.

1 Introduction

Code-switching (Bullock and Toribio, 2009) occurs
when speakers switch between different languages
or language variants within the same context. In
the Arab world, for instance, it is a common phe-
nomenon. Both Modern Standard Arabic (MSA)
and Dialectal Arabic (DA) variants co-exist, MSA
and DA being used for formal and informal com-
munication, respectively (Ferguson, 1959). Par-
ticularly recently, the computational treatment of
code-switching has received attention (Solorio et al.,
2014).

Within a project concerned with the processing
of code-switched data of an under-resourced Ara-
bic dialect, Moroccan Darija, a large code-switched
corpus had to be annotated token-wise with the ex-
tended label set from the EMNLP 2014 Shared Task
on Code-Switching (Solorio et al., 2014; Samih
and Maier, 2016). The label set contains three la-
bels that mark MSA and DA tokens, as well as to-
kens in another language (English, French, Spanish,
Berber). Furthermore, it contains labels for tokens
which mix two languages (e.g., for French words to

which Arabic morphology is applied), for ambigu-
ous words, for Named Entities, and for remaining
material (such as punctuation).

The annotation software tool had to fulfill the fol-
lowing requirements.

• It should excel at sequence annotation and not
do anything else, i.e., ”featuritis” should be
avoided, furthermore it should be as simple as
possible to use for the annotators, allowing for
a high annotation speed;

• It should not be bound to a particular label
set, since within the project, not only code-
switching annotation, but also the annotation of
Part-of-Speech was envisaged;

• It should allow for post-editing of tokenization
during the annotation;

• It should be web-based, due to the annotators
being at different physical locations;

• On client side, it should be platform-
independent and run in modern browsers in-
cluding browsers on mobile devices, using
modern technologies such as Bootstrap1 which
provide a responsive design, without requiring
a local installation of software;

• On server side, there should be safe stor-
age; furthermore, the administration overhead
should be kept minimal and there should
only be minimal software requirements for the
server side.

1http://getbootstrap.com
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Even though several annotation interfaces for
similar tasks have been presented, such as COLANN
(Benajiba and Diab, 2010), COLABA (Diab et al.,
2010), and DIWAN (Al-Shargi and Rambow, 2015),
they were either not available or did not match our
needs.

We therefore built SAWT. SAWT has been suc-
cessfully used to create a code-switched corpus
of 223k tokens with three annotators (Samih and
Maier, 2016). It is currently used for Part-of-Speech
annotation of Moroccan Arabic dialect data. The re-
mainder of the article is structured as follows. In
section 2 we present the different aspects of SWAT,
namely, its data storage model, its server side struc-
ture and its client side structure. In section 3, we
review related work, and in section 4, we conclude
the article.

2 SAWT

SAWT is a web application. Its client side is ma-
chine and platform independent and runs in any
modern browser. On the server side, only a PHP-
enabled web server (ideally Apache HTTP server)
and a MySQL database instance are needed.

We now describe our strategy for data storage, as
well as the server side and the client side of SAWT.

2.1 Data storage

Data storage relies on a MySQL database. One ta-
ble in the database is used to store the annotator ac-
counts. At present, there is no separate admin role,
all users are annotators and cannot see or modify
what the other annotators are doing.

The annotation of a text with a label set by a given
user requires two MySQL tables. One table contains
the actual text which is to be annotated by the user,
and the other table receives the annotation; this ta-
ble pair is associated with the user account which is
stored in the user table mentioned above. In the first
table, we store one document per row. We use the
first column for a unique ID; the text is put in the
second column. It is white-space tokenized at the
moment it is loaded into the annotation interface (see
below). In the second table, we store the annotation.
Again, the document ID is put into the first column.
The labels are stored in the remaining columns (one
column per label).

2.2 Server side and administration

The complete code of SAWT will be distributed on
github. The distribution will contain the complete
web application code, as well as two Python scripts
to be used for configuration.

The first script configures the SAWT installation
and the database. It takes a configuration file as pa-
rameter (the distribution will contain a configura-
tion file template), in which the following parame-
ters must be specified:

• List of tags: A space-separated list of tags to
be used in the annotation. From this list, the
PHP code for the model and the view are gen-
erated which handle the final form in the inter-
face. The generated code is then copied to the
correct locations within the complete web ap-
plication code.

• Server information: MySQL server IP, port and
user account information.

• Predictor: The interface can show sugges-
tions for each token, provided that a suitable
sequence labeling software with a pre-trained
model runs on the web server. If suggestions
are desired, then in the configuration file, the
corresponding path and parameters for the soft-
ware must be given. If the parameter is left
blank, no suggestions are shown.

• Search box activation: A boolean parameter in-
dicating if a search box is desired. In the search
box, the annotator can look up his previous an-
notations for a certain token.

• Utility links: The top border of the user inter-
face consists of a link bar, the links for which
can be freely configured. In our project, e.g.,
they are used for linking to the list of Univer-
sal POS tags (Petrov et al., 2012), to a list of
Arabic function words, to an Arabic Morpho-
logical Analyzer (MADAMIRA) (Pasha et al.,
2014), and to an Arabic screen keyboard, as can
be seen in figures 2 and 3.

Once the configuration script has been run, the
web application code must be copied to a suitable
place within a web server installation.
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In order to upload a text which is to be annotated
by a certain user, the second script must be used. It
takes the following command line parameters.

• Input data: The name of the file containing the
data to be annotated. The text must be pre-
tokenized (one space between each token), and
there must be one document per line.

• Server information: MySQL server IP, port,
and user account information.

• Annotator information: Annotator user name.
If the annotator account does not exist in the
respective database table, it is created, and a
password must be specified.

Of course, this script can be used any number of
times. At runtime, it will connect to the database and
create two tables for the annotation (as mentioned
above, one for the data itself and one for the anno-
tation). It will insert the data in the first one, and
insert the user account in the user account table, if
necessary.

In general, for security reasons, two different
servers should be used for front-end (web applica-
tion) and back-end (database), but in principle, noth-
ing stands in the way of installing everything on a
single machine or even locally.

2.3 Client side and annotator interface

The client side interface is written with several tech-
nologies. As a basis, we have used a MVC PHP
framework, namely CodeIgniter version 3.0.2 Fur-
thermore, in order to achieve a responsive mobile-
ready design, we have employed to the Bootstrap
framework, HTML 5, and JQuery.3

When accessing the URL where SAWT is located,
the annotator is queried its user name and password.
After logging in, the annotation interface is shown.
On top of the page, a link bar makes available several
tools which are useful for the annotation, to be freely
configured during installation (see above). If config-
ured (see above), a search box is shown, in which
the annotator can look up his previous annotations
of a token. In a top line above the text, the ID of the

2http://codeigniter.net
3http://jquery.com

document is shown, the number of tokens to be an-
notated, and the annotation progress, i.e., the num-
ber of tokens which have already been annotated (in
previous documents). Also it is shown if the current
document itself has already been annotated. Finally,
there are buttons to navigate within the documents
(first, previous, next, last).

For the annotation, the interface pulls the first
document to be annotated from the database, applies
white-space tokenization, and renders it for presen-
tation to the user. The material to be annotated is
presented with one document per page and token
per line. Each line has four columns, the first one
showing the absolute token ID within the complete
corpus, the second one showing the token to be an-
notated, the third one showing a prediction of a pos-
sible tag (if configured), and the fourth one showing
the possible labels. There is an edit facility, in which
the annotator can correct an erroneous tokenization
of the document. If an edit is performed, the mod-
ified document is white-space tokenized again and
reloaded in the interface.

For label selection, we offer check-boxes. Even
though radio buttons would seem to be the more
natural choice, check-boxes allow us to assign sev-
eral tags to a single token. This is, e.g., essential
for Part-of-Speech annotation in Arabic: Due to a
rich morphology, a single word can incorporate sev-
eral POS functions (Habash, 2010). When the user
has finished the annotation of a document, a button
must be clicked. This button first triggers a valida-
tion function which checks the annotation for com-
pleteness. If there are tokens which have not been
annotated, a colored alert bar is shown. Otherwise,
a form is submitted which saves the annotation in
the database; then the next document is loaded and
rendered for annotation. We have implemented the
policy that an annotator cannot change the annota-
tion of a document once it is submitted. However,
a minimal change in the code could allow a post-
editing of the annotation.

We have tested the interface extensively in Google
Chrome (on both PC and Android) and Mozilla Fire-
fox.

As an example, figure 2 shows a screenshot
of the annotator interface configured for Part-of-
Speech annotation with the Google Universal Part-
of-Speech tag set (Petrov et al., 2012). Figure 3
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Figure 1: Screenshot of SAWT: Annotation on Android device

shows a screenshot of code-switching annotation
done in the context of our earlier work (Samih and
Maier, 2016). Finally, figure 1 shows a screenshot
of the POS annotation interface used on the Asus
Nexus 7 2013 tablet running Google Chrome on An-
droid 6.

3 Related Work

As mentioned above, we are not aware of a software
which would have fulfilled our needs exactly. Previ-
ously released annotation software can be grouped
into several categories.

Systems such as GATE (Cunningham et al.,
2002), CLaRK (Simov et al., 2003) and MMAX2
(Müller and Strube, 2006) are desktop-based soft-
ware. They offer a large range of functions, and are
in general oriented towards more complex annota-
tion tasks, such as syntactic treebank annotation.

In the context of Arabic dialect annotation, sev-
eral systems have been created. COLANN GUI
(Benajiba and Diab, 2010), which unfortunately was
not available to us, is a web application that special-
ized on dialect annotation. DIWAN (Al-Shargi and
Rambow, 2015) is a desktop application for dialect
annotation which can be used online.

The systems that came closest to our needs were
WebANNO (Yimam et al., 2013) and BRAT (Stene-
torp et al., 2012). Both are web-based and built
with modern technologies. They allow for a multi-
layered annotation, including a token-wise annota-
tion. However, we decided against them due to fact
that we just needed the token-wise annotation and
we wanted the simplest annotator interface possible.
For just sequence annotation, our annotator interface

allows for a very high speed, since only one click per
token is required.

4 Conclusion

We have presented SAWT, a web-based tool for se-
quence annotation. The main priorities of the tool
are ease of use on the client side and a low require-
ments for the server side.

SAWT is under active development. We are cur-
rently simplifying the installation process on server
side and plan to offer an admin role in the front-end.
Furthermore, we want to provide a way of obtain-
ing the annotation in a standardized format (TEI) di-
rectly from the database.
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Figure 2: Screenshot of SAWT: Annotation with Universal Part Of Speech tags

Figure 3: Screenshot of SAWT: Annotation with code-switching labels
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Abstract

Pinyin is the most widely used romaniza-
tion scheme for Mandarin Chinese. We
consider the task of language identification
in Pinyin-English codeswitched texts, a task
that is significant because of its application
to codeswitched text input. We create a
codeswitched corpus by extracting and auto-
matically labeling existing Mandarin-English
codeswitched corpora. On language identifi-
cation, we find that SVM produces the best
result when using word-level segmentation,
achieving 99.3% F1 on a Weibo dataset, while
a linear-chain CRF produces the best result at
the letter level, achieving 98.2% F1. We then
pass the output of our models to a system that
converts Pinyin back to Chinese characters to
simulate codeswitched text input. Our method
achieves the same level of performance as
an oracle system that has perfect knowledge
of token-level language identity. This result
demonstrates that Pinyin identification is not
the bottleneck towards developing a Chinese-
English codeswitched Input Method Editor,
and future work should focus on the Pinyin-
to-Chinese character conversion step.

1 Introduction

As more people are connected to the Internet around
the world, an increasing number of multilingual
texts can be found, especially in informal, online
platforms such as Twitter and Weibo1(Ling et al.,
2013). In this paper, we focus on short Mandarin-

1Weibo is a micro-blogging service similar to Twitter that is
widely used in China.

English mixed texts, in particular those that involve
intra-sentential codeswitching, in which the two lan-
guages are interleaved within a single utterance or
sentence. Example 1 shows one such case, includ-
ing the original codeswitched text (CS), and its Man-
darin (MAN) and English (EN) translations:

(1) CS:这个thermal exchanger的thermal
conductivity太低.
MAN:这个换热器的热传导系数太低.
EN: The thermal conductivity of this thermal
exchanger is too low.

A natural first step in processing codeswitched
text is to identify which parts of the text are ex-
pressed in which language, as having an accurate
codeswitched language identification system seems
to be a crucial building block for further processing
such as POS tagging. Recently, Solorio et al. (2014)
organized the first shared task towards this goal. The
task is to identify the languages in codeswitched so-
cial media data in several language pairs, including
Mandarin-English (MAN-EN). Since Chinese char-
acters are assigned a different Unicode encoding
range than Latin-script languages like English, iden-
tifying MAN-EN codeswitched data is relatively
straightforward. In fact, the baseline system in the
shared task, which simply stores the vocabularies
of the two languages seen during training, already
achieves 90% F1 on identifying Mandarin segments.
Most of the remaining errors are due to misclassi-
fying English segments and named entities, which
constitute a separate class in the shared task.

We focus in this paper on performing lan-
guage identification between Pinyin and English,
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where Pinyin is the most widely used romanization
schemes for Mandarin. It is the official standard in
the People’s Republic of China and in Singapore.
It is also the most widely used method for Man-
darin speaking users to input Chinese characters us-
ing Latin-script keyboards. Example 2 shows the
same codeswitched sentence, in which the Chinese
characters have been converted to Pinyin:

(2) Zhege Thermal Exchanger de Thermal
Conductivity taidi.

Distinguishing Pinyin from English or other lan-
guages written with the Roman alphabet is an
important problem with strong practical motiva-
tions. Learners of both English and Chinese could
benefit from a system that allows them to in-
put codeswitched text (Chung, 2002). More gen-
erally, accurate Pinyin-English codeswitched lan-
guage identification could allow users to input
Mandarin-English codeswitched text more easily. A
Chinese Input Method Editor (IME) system that de-
tects Pinyin and converts it into the appropriate Chi-
nese characters would save users from having to re-
peatedly toggle between the two languages when
typing on a standard Latin-script keyboard.

Since Pinyin is written with the same character set
as English2, character encoding is no longer a reli-
able indicator of language. For example, she, long,
and bang are Pinyin syllables that are also English
words. Tisane is a English word, and is also a con-
catenation of three valid Pinyin syllables: ti, sa, and
ne. Thus, contextual information will be needed to
resolve the identity of the language.

Our contributions are as follows. First, we con-
struct two datasets of Pinyin-English codeswitched
data by converting the Chinese characters in
Mandarin-English codeswitched data sets to Pinyin,
and propose a new task to distinguish Pinyin from
English in this codeswitched text. Then, we com-
pare several approaches to solving this task. We
consider the level of performance when training
the model at the level of words versus individ-
ual letters3 in order to see whether having word

2We consider the version of Pinyin without tone diacritics,
which is very common in Chinese IMEs.

3We chose the term letter rather than character to avoid con-
fusion with the use of character as in Chinese characters.

boundaries would affect performance. Two stan-
dard classification methods, SVMs and linear-chain
CRFs are compared for both settings. We find
that SVM produces better results on the word-level
setting, achieving 99.3% F1 on a Weibo dataset.
CRF produces better results on the letter-level set-
ting, achieving 98.2% F1 on the same dataset.
Lastly, we pass the output of our models to a sys-
tem that converts Pinyin back to Chinese characters
as an extrinsic evaluation. The result shows that
word-level models produce better conversion perfor-
mance. Our automatic conversion method achieves
the same level of performance as an oracle sys-
tem with perfect knowledge of token-level language
identity. This result demonstrates that Pinyin iden-
tification is not the bottleneck towards developing a
Chinese-English codeswitched IME, and that future
work should focus on the Pinyin-to-Chinese charac-
ter conversion step.

2 Related Work

Several models for MAN-EN codeswitched lan-
guage identification were developed as part of the
First Shared Task on Language Identification in
Codeswitched Data (Chittaranjan et al., 2014; King
et al., 2014). The most common technique was
to employ supervised machine learning algorithms
(e.g., extended Markov Models and Conditional
Random Field) to train a classifier.

Codeswitched language identification has been
previously studied with other language pairs, (Carter
et al., 2013; Nguyen and Dogruoz, 2014; Vyas et al.,
2014; Das and Gambäck, 2013; Voss et al., 2014).
However, very few articles discuss codeswitched
Pinyin-English input specifically. There has been re-
search on improving the error tolerance of Pinyin-
based IME. Chen and Lee (2000) propose a sta-
tistical segmentation and a trigram-based language
model to convert Pinyin sequences into Chinese
character sequences in a manner that is robust to
single-character Pinyin misspellings. They also pro-
pose a paradigm called modeless Pinyin that tries to
eliminate the necessity of toggling on and off the
Pinyin input method. While their modeless Pinyin
works on Pinyin generating a single Chinese char-
acter or a single English word, our experiments in
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this paper attempt to generate an entire sequence of
Chinese characters and English words.

Research in improving the codeswitched text
input experience also exists for other languages
that use a non-alphabetic writing system, such as
Japanese. Ikegami and Tsuruta (2015) propose a
modeless Japanese input method that automatically
switches the input mode using models with n-gram
based binary classification and dictionary.

3 Task and Dataset

3.1 Task Definition

Given a Pinyin-English codeswitched input as
shown in Example 2, the main task is to identify the
segments of the input that are in Pinyin as pinyin,
segments that are in English as non-pinyin, punctu-
ation and whitespaces as other as shown in Exam-
ple 3. The other label is used to tag tokens that do
not represent actual words in both languages.

(3) Input:

Zhege Thermal Exchanger de Thermal
Conductivity taidi.

Output:

Zhege Thermal Exchanger de Thermal
Conductivity taidi.

Segments in bold, italic and underlined are
labeled as non-pinyin, pinyin and others,
respectively.

Separating other label from non-pinyin prevents
such tokens identifiable using a simple dictionary
method from artificially inflating the performance of
the models during evaluation.

We do not follow the annotation scheme of the
shared task in putting named entities into their own
class (Solorio et al., 2014). In the Pinyin-English
case, named entities clearly belong to either the
pinyin class or the non-pinyin class, and Pinyin
named entities would eventually need to be con-
verted to Chinese characters in any case. Further-
more, named entity annotations are not available in
the Weibo corpus that we construct.

3.2 Corpus Construction

We created two Pinyin-English codeswitched cor-
pora automatically, by converting Mandarin-English
codeswitched data. Our Mandarin-English corpora
are obtained via two sources.

ENMLP We used the training data provided by
the First Workshop on Computational Approaches
to Code Switching of EMNLP 2014 (Solorio et
al., 2014). The workshop provides a codeswitched
Mandarin-English training data that contains 1000
tweets crawled from Twitter. The Chinese part of
the data is in traditional Chinese.

WEIBO We downloaded 102995 Weibo entries
using Cnpameng (Liang et al., 2014), a freely avail-
able Weibo crawler. Most of the entries are writ-
ten in Simplified Chinese. Only a small proportion
of the entries (about 1%) contain Mandarin-English
codeswitched content. We removed entries that are
not codeswitched and sampled 3000 of the remain-
ing entries. In this corpus, most tokens are Chi-
nese, with only one or two English words embed-
ded. Chinese characters account for about 95% of
the tokens.

Preprocessing and labeling The Mandarin-
English codeswitching corpora are not directly
usable in our experiments; we need to first convert
the Chinese characters to Pinyin. We used jieba4,
a library for segmenting a Chinese sentence into
a list of Chinese words. For each word, we used
pypinyin5, a Python library that converts Chinese
words, both Traditional Chinese and Simplified
Chinese, into Pinyin. We then label each Pinyin
sequence as pinyin, white spaces and punctuation
as other, and English words as non-pinyin, as
described above.

The Mandarin-English codeswitched data we col-
lected all contain short sentences6. This was
by design, as we are interested in intra-sentential
codeswitching. We expect that inter-sentential

4https://github.com/fxsjy/jieba
5https://github.com/mozillazg/

python-pinyin
6Twitter and Weibo impose 140 max characters per mi-

croblog

73



Segmentation Label Count Percentage

pinyin 2704 52.4%
word-based non-pinyin 716 13.8%

others 1736 33.8%
pinyin 12619 69.8%

letter-based non-pinyin 3659 20.3%
others 1777 9.9%

Table 1: Frequency count of labels on EMNLP corpus

Segmentation Label Count Percentage

pinyin 16883 61.3%
word-based non-pinyin 1506 5.5%

others 8970 33.2%
pinyin 84305 84.6%

letter-based non-pinyin 6294 6.3%
others 9105 9.1%

Table 2: Frequency count of labels on WEIBO corpus

codeswitching would not require frequent Pinyin
IME mode toggling, and labeling them for their lan-
guage would also be easier.

The frequency counts of each label in the EMNLP
corpus and the WEIBO corpus are shown in Tables 1
and 2, respectively.

4 Models

We propose two classes of models to solve the
task: Word-Based Models and Letter-Based Models.
They differ in how the input is segmented. We com-
pared these two segmentation schemes with the goal
to test whether automatic Pinyin word segmentation
is needed to accurately identify Pinyin and English
tokens.

Word-Based Models (WBM) The input is seg-
mented into one of (1) a Pinyin sequence represent-
ing Chinese words7, (2) an English word, or (3)
other (space and punctuation). Each chunk is labeled
as one of pinyin, non-pinyin or other. The Pinyin se-
quences representing Chinese words are indirectly
segmented according to the word segmentation of

7Note that a Chinese word can be either a single Chinese
character or a concatenation of multiple Chinese characters.

the corresponding Mandarin characters. Example 3
illustrates the WBM.

Letter-Based Models (LBM) The input is seg-
mented into individual letters. Each letter is labeled
as one of pinyin, non-pinyin or other.

For each of the schemes above, we experi-
mented with two discriminative supervised ma-
chine learning algorithms: Support Vector Ma-
chines (SVMs) and linear-chain Conditional Ran-
dom Fields (CRFs). We chose to experiment with
SVMs and CRFs in order to see whether a stan-
dard classification approach suffices or if a sequence
model is needed. These methods have also been
shown to perform well in previous work on language
identification tasks (King and Abney, 2013; Chit-
taranjan et al., 2014; Lin et al., 2014; Bar and Der-
showitz, 2014; Goutte et al., 2014).

4.1 Feature Extraction

We selected features to pass into our models by
drawing upon recent work in codeswitched language
identification (Chittaranjan et al., 2014; Lin et al.,
2014; Nguyen and Dogruoz, 2014). We explored a
number of different options for features, and the fi-
nal set was chosen based on performance on a held-
out development set, as follows.

Word-Based Models (WBM) The following fea-
tures were chosen for each segment s:

• Identity of s, converted to lower case
• Whether s is a legal sequence of Pinyin
• Whether s is upper-cased
• Whether s is capitalized
• Whether s is a number
• The token occurring prior to s in the sequence
• The token occurring after to s in the sequence

Letter-Based Models (LBM) The following fea-
tures were chosen for each segment t:

• Identity of t, converted to lower case
• Whether t is upper-cased
• Whether t is a number
• The token occurring prior to t in the sequence
• The token occurring after to t in the sequence
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We initially experimented with several other fea-
tures, but found that they did not improve perfor-
mance on the development set, so we did not include
them in the final system. In the WBM setting, we
tried adding Part-Of-Speech (POS) tags as features,
but found that existing POS taggers do not handle
codeswitched data well. For both WBM and LBM,
we tried to add a boolean feature to indicate whether
the segment is at the start or end of the input but this
turned out to be unhelpful.

4.2 Baseline Dictionary-Based Method

We compared these methods against a baseline,
which labels a concatenation of valid Pinyin sylla-
bles8 as pinyin, whitespaces and punctuation as oth-
ers and the rest as non-pinyin.

5 Experiment 1: Language
Identification

We tested our models on the two codeswitching cor-
pora that we created. We split each corpus into train-
ing (80%) and testing (20%) subsets. We also cre-
ated a held-out development set by randomly sam-
pling 100 entries from EMNLP corpus, and used it
to select the feature sets described in Section 4.1. We
kept the same set of features for the WEIBO corpus,
without performing any additional tuning.

We trained the CRF model using CRF-
suite (Okazaki, 2007) and the SVM model using
Scikit-learn (Pedregosa et al., 2011). The models
were tested using commonly defined evaluation
measures — Precision, Recall and F1 (Powers,
2011) at the word level for WBMs and at the letter
level for LBMs.

5.1 Results

As shown in Table 3, all the WBM machine learn-
ing algorithms performed better than the baseline.
The average P, R and F1 for each model were cal-
culated without taking into account the values from
the other label. This prevents the other class, which

8We used the list of 411 valid symbols available at
https://github.com/someus/Pinyin2Hanzi/
blob/master/Pinyin2Hanzi/util.py#L127

can largely be predicted by whether the segment is
a whitespace or punctuation character, from artifi-
cially inflating results. The SVM-WBM model per-
formed the best with an F1 of 0.980 on EMNLP
corpus and 0.993 on WEIBO corpus. In LBM set-
tings, only CRF outperformed the baseline with an
F1 of 0.962 on the EMNLP corpus and 0.982 on the
WEIBO corpus.

Note that the baseline F1 for the other class is not
at 1.0 because baseline method’s dictionary of punc-
tuation and whitespace characters were constructed
from the training set, and does not exhaustively
cover all possible characters of this class.

Since there is, to our knowledge, no previous
study on Pinyin-English codeswitched text input,
we cannot perform direct comparison against ex-
isting work. In terms of similar tasks involving
codeswitched text, the top-performing MAN-EN
language identification system achieved an F1 of
0.892 (Chittaranjan et al., 2014), but the annota-
tion scheme includes a category for named entities.
Ikegami and Tsuruta (2015) achieved an F1 of 0.97)
on codeswitched Japanese-English text input using
an n-gram-based approach.

In the WEIBO corpus, the F1 performances of
the models are very high, at up to 0.982 and 0.993.
This could be because each entry in the Weibo cor-
pus contains only one or two occurrences of sin-
gle English words embedded into a sequence of
Pinyin. The non-pinyin words are often proper
nouns (these tokens are often capitalized), English
words or acronyms that do not have a translation in
Chinese. In this context, it is less common to see
English words that are also valid Pinyin.

While SVM performs the best with WBM, it does
not perform as well with LBM. The lower perfor-
mance of SVM-LBM is caused by the limited access
to contextual information (only the letter directly be-
fore and after each token). By contrast, CRF-LBM
can naturally take into account the sequence order-
ing information. This result shows that a sequence
model like CRF is needed for LBM.
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Model label P R F1

baseline non-pinyin 0.762 0.875 0.815
pinyin 0.962 0.950 0.956
other 0.986 0.945 0.965
avg / total 0.920 0.934 0.926

SVM- non-pinyin 0.967 0.944 0.956
WBM pinyin 0.980 0.992 0.986

other 0.990 0.980 0.985
avg / total 0.977 0.982 0.980

CRF- non-pinyin 0.948 0.919 0.934
WBM pinyin 0.981 0.989 0.985

other 0.974 0.974 0.974
avg / total 0.974 0.974 0.974

(a) WBM performance on EMNLP corpus

Model label P R F1

baseline non-pinyin 0.865 0.880 0.872
pinyin 0.965 0.965 0.965
other 0.986 0.948 0.967
avg / total 0.943 0.946 0.944

SVM- non-pinyin 0.785 0.612 0.688
LBM pinyin 0.893 0.953 0.922

other 0.995 0.968 0.982
avg / total 0.869 0.877 0.870

CRF- non-pinyin 0.930 0.902 0.916
LBM pinyin 0.969 0.982 0.975

other 0.995 0.959 0.977
avg / total 0.960 0.964 0.962

(b) LBM performance on EMNLP corpus

Model label P R F1

baseline non-pinyin 0.510 0.905 0.652
pinyin 0.990 0.948 0.969
other 0.991 0.941 0.965
avg / total 0.951 0.945 0.943

SVM- non-pinyin 0.973 0.948 0.960
WBM pinyin 0.995 0.996 0.996

other 0.992 0.995 0.994
avg / total 0.993 0.992 0.993

CRF- non-pinyin 0.963 0.913 0.937
WBM pinyin 0.992 0.995 0.994

other 0.989 0.992 0.991
avg / total 0.990 0.988 0.989

(c) WBM performance on WEIBO corpus

Model label P R F1

Baseline non-pinyin 0.632 0.920 0.749
pinyin 0.993 0.966 0.979
other 0.990 0.935 0.962
avg / total 0.968 0.963 0.963

SVM- non-pinyin 0.932 0.565 0.703
LBM pinyin 0.967 0.997 0.982

other 1.000 0.987 0.993
avg / total 0.965 0.967 0.963

CRF- non-pinyin 0.929 0.820 0.871
LBM pinyin 0.986 0.995 0.990

other 0.997 0.988 0.992
avg / total 0.982 0.983 0.982

(d) LBM performance on WEIBO corpus
Table 3: The performance of the models in terms of precision (P), recall (R), and F1, for each of the three classes. The avg/total

row represents the average of the pinyin and non-pinyin classes, weighted by their frequencies in the dataset. We excluded the other

category from the avg, because that class mostly consists of whitespace and punctuation.

5.2 Discussion and error analysis

We consider here the causes of the remaining errors.
First, some errors are due to segments that are both
legal English words and legal Pinyin sequences, as
discussed in Section 4.2. For example, you (有), a
word that occurs both in Mandarin and English with
high frequency, is difficult for our models. Having
additional POS information available to the models
would be helpful, as有 is a verb in Mandarin, while
you is a pronoun in English.

Another source of errors is the presence of mixed
Pinyin, Chinese characters and English within indi-
vidual words. These errors are often found in user
names (i.e., Twitter handlers). For example:

(4) @eggchen呼叫nico我完全不到你耶

The twitter handle eggchen, labeled as non-pinyin
in the gold standard, is a concatenation of English
word egg and raw Pinyin chen. With CRF-LBM,
since the word boundary information was not avail-
able, CRF-LBM wrongly labels chen as pinyin, sep-
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arated from eggchen.

Finally, the LBMs sometimes fail to correctly
predict codeswitching boundaries. Taking an ex-
ample in the dataset: “desledge” was an input se-
quence where “de” has gold standard label pinyin
and “sledge” has gold standard label non-pinyin. In
the CRF-WBM, the word boundary information is
given, so the model is able to predict the labels cor-
rectly. The CRF-LEMB model predicted that the en-
tire sequence “deseldge” is “non-pinyin”.

6 Experiment 2: Converting Pinyin to
Chinese characters

Next, we experimented with converting the Pinyin-
English codeswitched inputs back to the original
Mandarin-English sentences in an end-to-end, ex-
trinsic evaluation. Pinyin is the most widely used
method for Mandarin users to input Chinese charac-
ters using Latin-script keyboards. Improvements in
the language identification step transfer over to the
next step of Chinese characters generation.

Converting Pinyin to Chinese characters is not an
easy task, as there are many possible Chinese char-
acters for each Pinyin syllable. Modern Pinyin Input
Methods use statistical methods to rank the possible
character candidates in descending probability and
predict the top-ranked candidate as the output (Chen
and Lee, 2000; Zheng et al., 2011).

Task Given a Pinyin-English codeswitched in-
put and the corresponding labels produced by our
codeswitched language identification models, pro-
duce Mandarin-English codeswitched output by
converting the parts labelled as Pinyin to Chinese
characters.

Method We use a representative approach that
models the conversion from Pinyin to Chinese char-
acters as a Hidden Markov model (HMM), in which
Chinese characters are the hidden states and Pinyin
syllables are the observations. The model is trained
from SogouT corpus (Liu et al., 2012), and the
Viterbi algorithm is used to generate the final output.

We used a Python implementation of this model9

to convert pinyin segments to Chinese characters
while leaving others and non-pinyin segments un-
changed.

We use the Pinyin-English codeswitched input,
paired with language identification labels from
Baseline, SVM-WBM, or CRF-LBM to generate
Mandarin-English codeswitched output. We then
evaluated these outputs against the gold standard
by measuring precision, recall, and F1 on the Chi-
nese characters. We also compare against an ora-
cle topline, which has perfect knowledge of the seg-
mentation of the input into Pinyin vs non-Pinyin.
For the CRF-LBM, we used the Smith–Waterman
algorithm (Smith and Waterman, 1981) to align the
output produced by the CRF-LBM method with the
gold-standard words.

6.1 Results

Model P R F1

Oracle 0.576 0.576 0.576
Baseline 0.511 0.576 0.541
SVM-WBM 0.571 0.562 0.566
CRF-LBM 0.405 0.407 0.406

Table 4: Performance of generated Mandarin-English

codeswitched sentences – EMNLP Corpus

Model P R F1

Oracle 0.590 0.590 0.590
Baseline 0.564 0.590 0.578
SVM-WBM 0.589 0.590 0.590
CRF-LBM 0.491 0.511 0.500

Table 5: Performance of generated Mandarin-English

codeswitched sentences – WEIBO Corpus

As shown in Tables 4 and 5, with SVM-WBM, the
F1 of the generated Mandarin-English codeswitched
outputs are better than the baseline in both corpora
for all labels, and achieves a level of performance
close to the oracle method. This result shows that
our contribution to accurate language identification
in transliteration codeswitching pairs is able to im-
prove the performance of Pinyin IME in codeswitch-
ing context. Furthermore, the result demonstrates

9Pinyin2Hanzi: https://github.com/someus/
Pinyin2Hanzi.
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that Pinyin identification is not the bottleneck to-
wards developing a Chinese-English codeswitched
IME, at least if word boundary information is given.
Future work should focus on the Pinyin-to-Chinese
character conversion step.

The higher performance of the WBM models
compared to the LBM models suggests that having
correct word boundaries is crucial for identifying
Pinyin-English codeswitched input at higher accu-
racies.

Note that F1 measure of both the oracle, Base-
line and SVM-WBM models are better in WEIBO
corpus in comparison to EMNLP corpus. This is
backed by their higher F1-measure in the language
identification step.

6.2 Error analysis

There is much room for improvement in the re-
sults. Despite CRF-LBM achieving higher than
Baseline F1-measure in the language identification
steps, the Mandarin-English generation accuracy of
CRF-LBM is lower than baseline. The sources of
this lower accuracy are the following:

Presence of mixed raw pinyin. As described in
Section 5.2, CRF-LBM labels the majority of raw
pinyin as “pinyin”. Consequently, it made the mis-
take of converting them to Chinese characters where
they should not be.

Failure to properly predict codeswitching word
boundary. An example was given previously in
Section 5.2. Each failure in predicting codeswitch-
ing word boundary produces two errors, one for
the first word and one for the second. This double
penalty explains why despite of CRF-LBM having
higher F1 than baseline in experiment 1, it is doing
worse than baseline in experiment 2.

7 Conclusion

Having an accurate codeswitched language identi-
fication system serves as a crucial building block
for further processing such as POS tagging. Our
results on Pinyin-English codeswitched language

identification experiments provide novel contribu-
tions to language identifications on transliteration
pairs. We find that SVM performs the best at the
word level while CRF performs the best at the letter
level.

In the second experiment, we developed an
automatic method that converts Pinyin-English
codeswitched text to Mandarin-English text as an
extrinsic evaluation of our models. We showed that
word-level models produce better conversion per-
formance. One of our automatic word-level meth-
ods achieves the same level of performance as an
oracle system that has perfect knowledge of token-
level language identity. This result demonstrates
that Pinyin identification is not the bottleneck to-
wards developing a Chinese-English codeswitched
IME, and future work should focus on the Pinyin-
to-Chinese character conversion step.

Our approach could also be considered for other
languages with non-Latin-based writing systems
and a corresponding romanization scheme, such
as Japanese and Romaji (Krueger and Neeson,
2000).
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Cyril Goutte, Serge Léger, and Marine Carpuat. 2014.
The NRC system for discriminating similar languages.
In Proceedings of the First Workshop on Applying NLP
Tools to Similar Languages, Varieties and Dialects,
pages 139–145.

Yukino Ikegami and Setsuo Tsuruta. 2015. Hybrid
method for modeless Japanese input using N-gram
based binary classification and dictionary. Multimedia
Tools and Applications, 74(11):3933–3946.

Ben King and Steven P Abney. 2013. Labeling the Lan-
guages of Words in Mixed-Language Documents us-
ing Weakly Supervised Methods.
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Abstract

Code-mixing is a prevalent phenomenon in
modern day communication. Though several
systems enjoy success in identifying a single
language, identifying languages of words in
code-mixed texts is a herculean task, more
so in a social media context. This paper ex-
plores the English-Bengali code-mixing phe-
nomenon and presents algorithms capable of
identifying the language of every word to a
reasonable accuracy in specific cases and the
general case. We create and test a predictor-
corrector model, develop a new code-mixed
corpus from Facebook chat (made available
for future research) and test and compare the
efficiency of various machine learning algo-
rithms (J48, IBk, Random Forest). The paper
also seeks to remove the ambiguities in the to-
ken identification process.

1 Introduction

Code-mixing is a phenomenon in linguistics which
is exhibited by multi-lingual people. Essentially,
an utterance in which the speaker makes use of the
grammar and lexicon of more than one language
is said to have undergone code-mixing or code-
switching (Appel and Muysken, 2005). Though
some linguists draw a distinction between the terms
”code-mixing” and ”code-switching”, we shall refer
to both phenomena as ”code-mixing” in general and
draw distinctions regarding the context of switching
when required (Muysken, 2000).

With English as the primary language on the in-
ternet, one would intuitively expect English to be the

major language of use in social media as well. How-
ever, it comes as a bit of a surprise that around half
of the messages on Twitter are in non-English lan-
guages (Schroeder, 2010). For multilingual people,
we notice a tendency to communicate in all/several
of the languages that they know. This arises from
the fact that some multilingual speakers feel a higher
level of comfort in their native language than in En-
glish. Apart from this, some conversational topics
are more fluid in a particular language and some ex-
pressions convey the message properly only in one’s
native language.

In social media, code-mixing between languages
such as English and Spanish (both of which employ
a Roman script) is much simpler to analyze (apart
from potential spelling mistakes) since the words
used in normal Spanish and used in social media are
spelled and used in almost entirely the same way and
using the same script. However, when we consider
languages that employ different scripts, most peo-
ple do not have patience to switch between scripts
while writing. Thus, people convert words from
their language into the Roman script when mixing
with English. In our analysis, we consider one such
language, which is extremely fertile when it comes
to code-mixing with English: Bengali. We wish to
explore some procedures to identify languages in
social media and internet search contexts in code-
mixed English-Bengali texts.

The rest of the sections are as follows. Section 2
introduces the background of English-Bengali code-
mixed data, especially in social media. Section 3
discusses the related work in the field of exploration.
Section 4 speaks of the difficulties and hurdles in
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this language identification task. In Section 5, we
talk about the nature of code-switching instances
that we have found in our corpora. Section 6 lists the
techniques and tools we use in our experiments and
Section 7 shares the details, results and observations
from those experiments. In Section 8, we have a
general discussion of our observations and we close
in Section 9 with conclusions and future goals.

2 Background of English-Bengali
Code-Mixing in Social Media

India is a linguistic area with one of the longest his-
tories of contact, influence, use, teaching and learn-
ing of English-in-diaspora in the world (Kachru and
Nelson, 2006). English is the de facto lingua franca
in India and also an official language of the coun-
try (Guha, 2011). Thus, a huge number of Indians
active on the internet are able in English communi-
cation to some degree. India also enjoys huge di-
versity in language. Apart from Hindi, it has sev-
eral regional languages that are the primary tongue
of people native to the region. Thus, a very vibrant
trilingualism exists in large parts of the nation- This
is seen more strongly in regions where the regional
language is very widely spoken, like Bengali, which
had an estimated 207 million speakers worldwide in
2007 (Microsoft Encarta, 2007). As a result, these
languages are very likely to have a strong influence
not only on daily speech, but also on internet and
social media activities.

A significant feature of Indian multilingualism is
that it is complementary. People speak in different
languages in different scenarios. For example, an
upper-middle class Bengali student would speak in
Bengali at home, communicate in public in Hindi
and in college in English. This is an integral part of
the Indian composite culture (Sharma, 2001).

Due to this usage of multiple languages, code-
mixing becomes inevitable and naturally spills over
to social media and internet as well. In case of Ben-
gali, since the language is very strongly tied to the
daily lives of people, people have a very strong ten-
dency to use it in written text as well. Bengali not
only has a different script, but a vastly different al-
phabet as well. This heralds several new problems,
which we discuss in the next section.

3 Related Work

Language identification and patterns in code-mixed
data by itself is a field that has been explored for
a very long time. Early linguistic research includes
the work done in Spanish-English verbal communi-
cation by John Lipski, where he identifies the levels
of linguistic competence in bilingual people as one
of the root causes of code-switching (Lipski, 1978).
Aravind Joshi presents a similar argument as well, in
the case of Marathi-English code-switching (Joshi,
1982).

While that certainly is a big factor, there are other
factors as well that we have spoken of earlier. The
varying levels of diversity at the national, regional
and local levels also influence different varieties of
code-switching and between different languages as
well (Singh and Gorla, 2007).

The Bengali-English code-switching phe-
nomenon has historically been explored very little.
A few groups have recently begun exploring the
possibilities of language identification in these
code-mixed situations. However, there are a few
fundamental differences between their works and
our work.

In other research works, some ambiguity is left
with regard to the words that are present in both En-
glish and Bengali either by removing them (Das and
Gambäck, 2013) or by classifying them as mixed
(Depending on suffixes or word-level mixing) (Bar-
man et al., 2014). However, such ambiguity needs
to be removed, if we are required to utilize such
type of data for further analysis or use them for
building models of sentiment and/or predictive anal-
ysis, since people generally use mixed or ambigu-
ous words in some single language context as well,
which is why they code-mix in the first place.

In both of the other research works mentioned, the
groups composed their own corpus from a Facebook
group and the posts and comments by members (Das
and Gambäck, 2013; Barman et al., 2014). Both of
the groups also use N-gram pruning and dictionary
checks.

Das and Gambäck (2013) also utilize SVM, while
Barman et al (2014) use a word-length feature along
with capitalization checks. We discuss relative ac-
curacy in section 8.
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4 Difficulties and Challenges in Language
Identification

We shall introduce some of the problems and hurdles
we faced during the system development and discuss
them here.

4.1 Scarcity of uniform transliteration rules

During conversion of scripts, different people use
different rules to decide the spellings of words. Sup-
pose for instance, the Bengali word for ”less”, which
contains the letters: ”k”+”short a”+”m”+”short a”.
The short ”a” vowel is a silent vowel in Bengali
and indicates the lingering consonant sound at the
end. In this case, this word would be transcribed
in the IPA (International Phonetic Alphabet) as:
IPA:[kOm].

Due to letterwise transliteration, this word would
be spelled in a dictionary conversion as ”kama” ow-
ing to it’s construction in Bengali language and the
presence of silent/transformed ”a” vowels.

However, interestingly, people tend to think of
pronunciation rather than construction when con-
verting the script, and the most socially acceptable
spelling of this word is ”kom”. Such instances dom-
inate a large portion of Bengali writing in social me-
dia.

Apart from this, there exist several occurrences of
spelling variations. The word for ”good” in Ben-
gali is pronounced IPA:[bhalo]. Since the [v] sound
doesn’t exist in Bengali, some assign the [bh] sound
to the letter ”V” and spell good as ”valo” rather than
the standard spelling, ”bhalo”. This type of spelling
variation exists in innumerable other words, but all
versions are easily recognized by readers.

4.2 English slang terms

There is also the problem of modern English chat
terms and colloquial terms like ”lol” for ”laughing
out loud” and ”gr8” for ”great”.

4.3 Bengali word forms

Bengali morphology relies heavily on ”sandhi”
and root transformation. For example, the word
for ”song” in Bengali is ”gaan” and ”singing” is
”gaowa”. However, ”sang” would be ”geyech-
hilam”/ ”geyechhilo”/ ”geyechhilen”/ ”geyechhile”
based on the subject and the honorific used. But,

none of these match with the basic words ”gaan” or
”gaowa”. This is very common in morphology and
causes serious problems, since these are not noted in
a dictionary. This would make us lose a huge num-
ber of words that come in sentences, because sev-
eral words in such sentences are not in raw form,
but transformed.

4.4 Ambiguous words
Generally, in many other studies, we have many
words which could be both English and Bengali ow-
ing to their spelling. For instance, ”hole” exists
in English (IPA:[hoUl]) and in Bengali (IPA:[hole]
meaning ”if {something} happens”). Individually,
there is no way of knowing whether the word writ-
ten in the English ”hole” or the Bengali ”hole”, since
they are spelled similarly. However, since we deal
with sentences, we take into consideration the lan-
guage that the surrounding words are in to get a
sense of the context of the sentence. The English
”hole” is likelier to be surrounded by more English
words while the Bengali ”hole” is likelier to be sur-
rounded by more Bengali words. Thus, we have this
context information that helps us.

4.5 Lack of Tagged Datasets
Being a less explored language, there is a dearth of
English-Bengali code-mixed tagged datasets. For
this reason, we use one corpus from the FIRE 2013
conference (hosted by the Information Retrieval So-
ciety of India), that consists of phrases such as
search terms, and one corpus that we have built and
tagged from social media messages exchanged on
Facebook by college students and adults from West
Bengal, India.

4.6 Imperfect English dictionary composition
in WordNet

In testing for English words, we initially used Word-
Net1online (Princeton University, 2010). However,
we faced some major obstacles with WordNet:

1. A lot of elementary English parts of speech in-
cluding pronouns, such as ”him”, ”her”; arti-
cles like ”the”; conjunctions like ”and”, ”be-
cause”, ”for”; prepositions such as ”into”,
”onto”, ”to” are missing.

1http://wordnet.princeton.edu
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Characteristics FIRE 2013 Facebook chat
Text units Phrases Sentences
Expected source Search terms Chat messages
No. of lines 100 81
No. of tokens 539 518

Table 1: Details and statistics on test corpora used.

2. On the other hand, the WordNet repository con-
tains a lot of foreign words and proper nouns,
which aren’t English words. Since we ana-
lyze and separate English from a foreign lan-
guage, this causes problems, as a word like
”Bharat” (native name for India) or ”kobe”
(Bengali word for ”when”) should ideally be
classified as Bengali, but WordNet makes the
system biased towards English.

4.7 Inappropriateness of Bengali dictionary
For checking the Bengali words, we use the
Samsad Bengali-English dictionary’s digital ver-
sion (Biswas, 2004). This contains the words in
Bengali text as well as a character-wise transliter-
ated versions of the words. However, these English
versions once again present to us the problem of
”kama” vs ”kom” as discussed in Section 4.1.

5 Descriptions of Datasets

The two test corpora we used:

1. FIRE 2013 corpus: The FIRE (Forum for In-
formation Retrieval Evaluation) 2013 shared
task had an annotated dataset corpus for De-
velopment, which we have used as one of our
test corpora. It consists of short code-mixed
phrases that resemble search queries on the in-
ternet (Information Retrieval Society of India,
2013).

2. Facebook chat corpus: We have composed
our own Facebook chat corpus from the Face-
book chats of various people of multiple age
ranges, genders, geographic location and topic
of discussion.

We also provide the statistics for our test corpora
in Table 1.

The Facebook corpus is composed from chat mes-
sages, because we felt that a chat was more likely
to have code-mixing, since one converses in a more

informal setting there, while public posts are less
likely to be influenced by code-mixing.

In the composition of our Facebook chat corpus
(which has been made publicly available for future
research2), we wanted to get a variety of styles of
texting and mixing. For that reason, we collected
text message conversations between Bengali col-
lege students, who are acquaintances, college stu-
dents who were childhood friends, school friends
and middle-aged women who are family friends.
The annotation was done by an author.

The two corpora vary in their content types. As
we see in Table 2, the FIRE 2013 corpus has the
Bengali words heavily outweigh the number of En-
glish words, whereas in the Facebook chat corpus,
we see an extremely level mix of words from both
languages.

The ”ambiguous words” row notes the number of
words (already considered in the Bengali and En-
glish counts) that could belong to the other language
too (based on our dictionary test). For example, the
Bengali word, ”more” IPA:[more] in the FIRE 2013
corpus could be the English ”more” IPA:[mor] as
well. The ambiguous words make up 29.68% of the
FIRE 2013 corpus and 41.31% of the Facebook chat
corpus. We divide these into two categories:

1. Bengali words that exist in the English dictio-
nary: Bengali (can be En) in the table. ”more”
discussed above is an example of this category.

2. English words that find a match our search in
the Bengali dictionary: English (can be Bn)
in the table. For example, ”to” IPA:[tu] in
our Facebook chat corpus is an English word.
However, a Bengali word, ”to” IPA:[To] also
exists.

We notice there are a lot more Bengali (can be
En) words than English (can be Bn) words in the
FIRE 2013 corpus, while it is the exact opposite in
the Facebook corpus. In fact, an interesting statis-
tic is that out of all the English words in the Face-
book chat corpus, 66.93% of the words register a
match in the Bengali dictionary, and thus have a
much higher likelihood of being wrongly classified.
We can attribute this in part to the ”Minimum Edit

2https://github.com/ArunavhaChanda/
Facebook-Code-Mixed-Corpus
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Characteristics FIRE 2013 Facebook chat
Total words 539 518

Bengali words 364 (67.53%) 261 (50.39%)
English words 175 (32.47%) 257 (49.61%)

Ambiguous words 160 214
Bengali (can be En) 115 (71.88%) 42 (19.63%)
English (can be Bn) 45 (28.13%) 172 (80.37%)

Table 2: Details and statistics on test corpora used.

Distance” check in our Bengali search described in
section 6.1.1.

6 Techniques and approaches

We have performed several versions of experiments
and used different techniques. Our experiments can
be divided into two major halves:

• The first half consisted of creating our own
algorithms and processes that predicted and
guessed the language of a word independently,
without any machine learning used.

• The second half of our experiments were pick-
ing and choosing out features for every word
and then using various machine learning algo-
rithms on them to classify each word.

6.1 Resources used

6.1.1 Lexicons used

The dictionaries we use are the following:

1. English dictionary: We use the Python En-
chant library3 for checking English words and
their existence in the dictionary. The good
thing about Enchant is that the words included
are not only in lemma form, but all kinds
of morphological transformations are also in-
cluded, making checks a lot easier. We also
create a slang dictionary of our own containing
colloquial English text words such as ”LOL”
and ”gr8”. We draw from the works of re-
searchers at the University of Melbourne and
University of Texas at Dallas (Han et al., 2012;
Liu et al., 2011; Liu et al., 2012). We use this
in both halves.

3https://pypi.python.org/pypi/pyenchant/

2. Bengali dictionary: The Samsada Bengali-
English dictionary’s digital edition4 was used
for the English transliterations of Bengali
words and for a dictionary lookup (Biswas,
2004). What we do here to deal with the
transliteration problem, is:

• If a word in the dictionary ends in ”a”,
we remove the ”a” first (to account for the
rarely used ”short a” in social typing).
• We then check for a Minimum Edit Dis-

tance of 1 character to the test word to in-
dicate a match.

For instance, when we check for ”kom” typed
in by someone, and our system is checking
against ”kama” (which is supposed to be the
matching word), we have the ”a” stripped from
the end and obtain ”kam” first. Then, we check
for the Minimum Edit Distance between ”kom”
and ”kam” and get 1. Thus, it is declared a
match. This also accounts for some of the var-
ied spellings discussed earlier. The Minimum
Edit Distance we use incorporates the Leven-
shtein Distance (Levenshtein, 1966). We use
this in both halves.

3. Bengali suffix list: We composed a list of com-
mon Bengali suffixes to check for transformed
words. As discussed earlier, this helps us to
deal with Bengali morphology, which is rather
different from English morphology. We use
this in both halves.

6.1.2 Training corpora used
These were two training corpora we used:

1. Brown corpus: We use the Brown corpus pro-
vided in the nltk5 library in Python for a list of
English words for creating an English language
n-gram profile (Francis and Kučera, 1979). We
use this in both halves.

2. SHRUTI corpus: We use the SHRUTI Ben-
gali Continuous ASR Speech Corpus6 to obtain

4http://dsal.uchicago.edu/dictionaries/
biswas-bengali/

5http://www.nltk.org
6http://cse.iitkgp.ac.in/˜pabitra/

shruti_corpus.html
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Bengali words. We use the same technique of
removing ”a”s from the ends of words, remov-
ing all punctuation, and lowering the case of all
the words. Then, we create the n-gram profile
for Bengali n-gram profile (Indian Institute of
Technology, Kharagpur, 2011). We use this in
both halves.

6.2 Algorithms and frameworks used

6.2.1 N-gram text categorization
We have developed an algorithm to using N-gram

categorization for individual words. We use the two
training corpora and extract every individual word
and build language 4-gram profiles with them (since
4-grams give the best results) for Bengali and En-
glish. The profile consists of a sorted dictionary
of the top 400 most frequently occurring 4-grams.
When testing for a word, we find all the 4-grams for
that word and then compute the distance of each 4-
gram to it’s counterpart in both the language profiles.
If not found, we just assign it the length of the sorted
language profile. We do this for each 4-gram in the
word and then find the distances for both languages.
The language that it is closer to is assigned as it’s
n-gram match. We use this in both halves.

6.2.2 WEKA
We use the WEKA (Waikato Environment for

Knowledge Analysis) 3 tool for running our Ma-
chine Learning Algorithms and finding the success
of our future algorithms (Hall et al., 2009). We use
this in the second half.

6.2.3 Predictor-corrector algorithm
We will explain this algorithm with an example

sentence from the FIRE 2013 corpus, which is en-
tirely in Bengali:

Tormuj noon die khete kemon lage
Watermelon salt with to eat how taste

Meaning, ”How does watermelon taste with salt?”

• Prediction: Our algorithm goes through the
sentence identifying the language of each word
by checking if it is English first and if not, if
it is Bengali. We also perform this the other
way around (Bengali, then English) depending
on the order we determined. If it is neither, we
find the n-gram match. This way, every word

in the sentence gets tagged. In our example
sentence, though all words are in Bengali, the
words ”noon” and ”die” are tagged as English,
since they are spelled the same way as words in
English.

• Correction: In the sentence, the language that
has more (predicted) words is declared the de-
fault language. After this, for each tagged
word, we check if it existed in the non-tagged
language’s dictionary. If it does, we check the
neighborhood (between 2-4 words depending
on position in the sentence) of the word, and
if the majority/half (depending on the default
language) of the words are of the other lan-
guage, it is corrected to the other language. In
our sentence, the default language is Bengali
and the words are checked one-by-one. ”noon”
is a word that can exist in Bengali and is sur-
rounded by 67% Bengali words (2/3). So, it
is corrected to Bengali. ”die” also can exist
in Bengali and is surrounded by 100% Bengali
words (4/4 after correcting ”noon”) and is also
corrected to Bengali.

This way, our predictor-corrector method helps
achieve better accuracy for ambiguous words.
We use this in the first half.

7 Experiments and results

7.1 First half experiments

The following tests were performed in the first half:

1. Regular dictionary search (predictor), in two
variants: (i) Check if word is Bengali first, then
English. (ii)The reverse. Check for English
first and then Bengali.

2. Predictor-corrector method (i) Check Bengali
first. (ii) Check English first.

In the first part, whose results are mentioned in
table 3, we note that the order in which we checked
the language of words played a huge role in our
accuracy (We measure accuracy as words correctly
classified out of all the words). However, the inter-
esting thing is that this gets reversed for both the cor-
pora. For the Facebook chat corpus, we get a higher
accuracy checking English first, while for the FIRE
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Tools/Algorithm used FIRE 2013 Facebook
Predictor (EB) 73.28% 88.22%

Predictor-corrector (EB) 82.56% 88.61%
Predictor (BE) 86.27% 64.86%

Predictor-corrector (BE) 86.09% 75.48%
Table 3: Results of first part. (BE: Bengali, then English; EB:

English, then Bengali.)

Process/step Accuracy
Regular dictionary 72.54%
+ Bengali suffixes 75.51%
+ ”a” removals 77.37%
+ n-gram 86.27%

Table 4: Progressive results with features

corpus, we get a higher accuracy checking Bengali
first. This knowledge fits in with the statistics we
found previously.

From table 2, of the ambiguous words, we noted
71.88% of those in the FIRE corpus were Bengali
and 80.37% of those in the Facebook chat corpus
were in English. This shows that there is a greater
chance of the Bengali words in the FIRE corpus
being wrongly classified if we check for them be-
ing English first and the reverse for the Facebook
chat corpus. However, if we check for words being
Bengali first, the FIRE corpus’ ambiguous Bengali
words have a much higher chance of being correctly
classified. This explains the varying effect order of
checking has on corpora depending on the composi-
tion. Thus, it is not really a viable method unless we
know details of word composition.

Another phenomenon we noted was the effect the
inclusion of each feature had on the accuracy (Table
4). Before using the n-gram feature in the predictor
for the first half experiments, we observed the fol-
lowing:

• Initially, we had only used regular dictionaries
(the Samsada dictionary and Python Enchant)
on the FIRE 2013 corpus and achieved an ac-
curacy of 72.54% only (Bengali checks first).
This was our baseline accuracy.

• After including our Bengali suffix repository,
our accuracy increases to 75.51%.

• We include the checks by removing ”a” from
the ends of words in the Bengali dictionary to
increment the accuracy to 77.37%.

• Finally, the accuracy increased with the n-gram
feature to 86.27%.

The corrector method is also more useful with the
less accurate predictor. This is likely because sev-
eral of the ambiguous words, which were wrongly
classified in the predictor, get accurately classified
by the corrector and there are a lot more such words
when we check words with the less ambiguous lan-
guage first (English for FIRE and Bengali for Face-
book; since words from the more ambiguous one get
wrongly classified more). Thus, the corrector does a
good job in such cases, giving accuracy boosts of
+9.28% for the FIRE corpus and +10.62% for the
Facebook corpus. However, it only marginally im-
proves or reduces the accuracy in the reverse cases
(-0.18% for FIRE and +0.39% for Facebook).

7.2 Second half experiments

The second half experiments were performed using
WEKA and its machine learning algorithms. We
used the following features of words as vectors:

1. Presence in Bengali dictionary (B in the table)

2. Presence in English dictionary (E in the table)

3. N-gram profile language match (N in the table)

4. Percentage of surrounding words that are ”pre-
dicted” as Bengali: We predict using presence
in one dictionary. If the word is in both or nei-
ther, we use the n-gram match as the predicted
language (S in the table). We also use a version
of this using majority language in the neighbor-
hood, rather than percentage ((s) in the table)

Once we had these, we created arff (Attribute-
Relation File Format) files of the words with these
features as vectors and then used various algorithms
in WEKA to classify the words.

The key results are summarized in table 5
We have listed results using three different classi-

fiers and then with no surrounding data (only dictio-
naries and n-gram), using binary surrounding data,
and using only the N-gram language categorizer.

In terms of classifiers, IBk performs the best, giv-
ing us accuracies of 91.65% and 90.54% as seen in
the table.
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FIRE 2013 Facebook chat
Classifier+Features Precision Recall F-score Accuracy Precision Recall F-score Accuracy

J48; BENS 0.895 0.896 0.895 89.61% 0.902 0.902 0.902 90.15%
IBk; BENS 0.918 0.917 0.915 91.65% 0.905 0.905 0.905 90.54%
RF; BENS 0.909 0.909 0.907 90.91% 0.893 0.892 0.892 89.19%
J48; BEN 0.900 0.887 0.880 88.68% 0.897 0.892 0.892 89.19%

J48; BEN(s) 0.909 0.905 0.902 90.54% 0.886 0.884 0.884 88.42%
J48; N 0.830 0.790 0.797 79.04% 0.812 0.805 0.804 80.50%

Table 5: Results of second part (Machine Learning). Key: RF=Random Forest

From the sixth row, it is evident that the N-
gram categorization is very helpful, but not help-
ful enough. The fourth row shows us the result
from using the dictionaries and breaking ties (word
present in both or neither) using the N-gram decision
is rather successful, though adding the surrounding
data definitely helps the accuracy.

The results of the majority language in the neigh-
borhood as a feature are in the fifth row. Interest-
ingly, this technique caused a drop in accuracy for
the Facebook chat corpus, but increased the accu-
racy for the FIRE 2013 corpus.

We did not use only the dictionaries as sole fea-
tures, because the classification would have been 2-
dimensional and much less useful than the dictionar-
ies with N-gram.

8 Discussion

Comparing to similar tasks (on different corpora) by
other groups, our system enjoys a fair amount of suc-
cess. Compared to Das and Gambäck, our system
has enjoyed greater success. They had a best accu-
racy of 76.37% compared to our 91.65% (Das and
Gambäck, 2014). Their system employed SVM im-
plementation, while ours did not. On the other hand,
Barman et al achieved 95.98%, which was higher
than ours (Barman et al., 2014) . The features used
by them have been discussed earlier in section 3.
Both these groups used their own corpora composed
from similar Facebook groups used by college stu-
dents. Our corpus has more variety in terms of age
group and topics discussed. However, their corpora
were larger in size.

One of the major points of discussion that we ob-
tain from our research and experiments is the varia-
tion of dominant language in text. In past research,
English (the language of the script) is considered the
dominant/default language and the mixed language

(Bengali, in our case) is considered secondary. How-
ever, this is not always the case. The Roman script is
not chosen because English is the primary language.
It is rather chosen out of convenience.

Hence, we assess the text first at the word level
and then at the sentence level. In our corrector
method, we assign the language with most words
in a sentence as the default language for that sen-
tence and then use our corrector method. It is like-
lier for a word surrounded by a lot of Bengali words
in an English sentence to be Bengali, since code-
switching happens mostly in a structured way. Lan-
guage switch happens for a part of the sentence
where the non-dominant language is more suitable.
For example (with each ’E’ and ’B’ representing an
English or Bengali word respectively), a code-mixed
sentence is much likelier to be EEEEBBBBEEEE or
BBBEEEBBBBEB, than EBEBBBEEBEBE. Con-
sidering this, we use the default language informa-
tion to find the likelihood of a word needing to be
corrected.

However, sometimes this correction in context
causes a problem. It takes into account that sen-
tences have certain points of code-switching and
the switching is not random. This does give us
an increase in accuracy for the Facebook chat cor-
pus. However, the FIRE 2013 corpus consists of
phrases and search terms and thus have random
code-switching points rather than a particular pat-
tern. For example:

She toh elo na song lyrics
He/She - come no

(Bengali in italics; English in bold). This refers to
the lyrics of a song called ”She toh elo na”. The way
this sentence begins, one doesn’t expect the last two
words to be in English. However, since this is not
a syntactical sentence, but a search phrase, we have
”song lyrics” appear at the end. When our system
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Predictor Corrector IBk
R\C E B E B E B

English 164 11 143 32 139 36
Bengali 132 232 62 302 9 355

Table 6: Confusion matrix, FIRE(EB) {R:Real, C:Classified}

checks for ”song”, it locates a Bengali word in the
dictionary spelled as ”cong” IPA:[tSoN]. Since the
MED (Minimum Edit Distance) from it is 1, it regis-
ters ”song” as a potential Bengali word as well. And
since it is heavily surrounded by Bengali words, it
incorrectly re-tags ”song” as a Bengali word. How-
ever, the edit check is extremely necessary. A sup-
porting example in our Facebook chat corpus itself
exists in the word IPA: [aSolE] (meaning ”actually”
or ”really”). It is spelled in two different ways:
”asole” and ”ashole”. Such variations in spelling ex-
ist largely among different people and we need the
MED test to verify.

To avoid such errors, in our second half, we do not
correct as a post-processing step, but rather choose
to include percentage of surrounding Bengali words
as a feature in our vector.

Table 6 shows the progressive improvement (and
errors) in classification. The number of Bengali
words wrongly classified vastly decreases, but the
number of English words being wrongly classified
slightly increases: a trade-off that seems worth it.

We have also discussed the variations in spelling
of Bengali words, and that remains a factor of con-
cern that we have mitigated slightly, but not enough.
For instance, people also tend to contract spellings
even in Bengali. The word for ”good” (”bhalo”
[bhalo]) is also spelled by some people as ”valo”,
which is further contracted to ”vlo”. There are also
acronyms, which can be Bengali or English, and we
have no way of identifying them without a reposi-
tory or a collection of common acronyms in both.
Such circumstances are still difficult to deal with and
need to be considered in future work.

Ambiguous words being assigned determined lan-
guages was one of the major decisions we took early
on in our research, since even ambiguous words are
written with a certain sentiment and language in
mind.

There are problems of using our Bengali suffix list
as well. For example, one of the most important suf-

fixes we have here is ”te” IPA:[Te], used in ”shute”
(to sleep), ”khete” (to eat), ”jete” (to go). One use of
this is to make the verb an object verb. For example:

O khete gechhe
He/She to eat has gone

This sentence means ”He has gone to eat”. It is nec-
essary to have the suffixes to identify ”khete” as a
Bengali word and we need to check for the suffix
”te” to achieve that. However, for this reason, En-
glish words like ”cute”, ”mute” and ”forte” are also
marked off as existing in the Bengali lexicon. The
trade-off is a small one and considering the suffixes
helps a lot in identifying Bengali words, it seems
justified.

9 Conclusion and Future Work

If we are to carry out sentiment analysis in the fu-
ture, it will be crucial to identify language and con-
text for every word to understand the sentiment it
conveys. Another tool required for sentiment analy-
sis of English-Bengali code-mixed data is a Part-of-
Speech tagger for Bengali. The way this will help
even in code-mixed context is that once we know
the default language of a sentence, it is likely to fol-
low the grammatical/syntactical structure of that lan-
guage. This helps put all the words in the sentence
into context and makes it easier to (a) correct lan-
guages, if necessary and (b) helps understand the
context of a word and by extension, its sentiment
better.

Since Bengali is still a relatively unexplored lan-
guage in Natural Language Processing, apart from
a Part-of-Speech tagger, another hurdle is proper
nouns: Names of people, places, landmarks etc are
not found in any dictionary. Though the N-gram cat-
egorization routine helps a lot in this regard, it would
still help to be able to identify these names.

In conclusion, we have given ways to improve
language identification in code-mixed English-
Bengali data to a large extent. If we are equipped
with the POS tagger and the other points mentioned
here, we will be at a stage to confidently work on the
sentiment analysis of code-mixed data as well.

88



References
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in Social Media Text. Traitement Automatique des
Langues, 54.

Amitava Das and Björn Gambäck. 2014. Identifying
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Abstract

A common step in the processing of any
text is the part-of-speech tagging of the input
text. In this paper, we present an approach
to tackle code-mixed text from three differ-
ent languages Bengali, Hindi, and Tamil -
apart from English. Our system uses Con-
ditional Random Field, a sequence learning
method, which is useful to capture patterns of
sequences containing code switching to tag
each word with accurate part-of-speech infor-
mation. We have used various pre-processing
and post-processing modules to improve the
performance of our system. The results were
satisfactory, with a highest of 75.22% ac-
curacy in Bengali-English mixed data. The
methodology that we employed in the task
can be used for any resource poor language.
We adapted standard learning approaches that
work well with scarce data. We have also en-
sured that the system is portable to different
platforms and languages and can be deployed
for real-time analysis.

1 Introduction

Part-of-Speech (POS) tagging a syntactic analysis
usually done after language identification - is one
of the key tasks in any language processing applica-
tions. It is the process of assigning the appropriate
part of speech or lexical category to each word in
a sentence. Apart from assigning grammatical cate-
gories to words in a text, POS tagging also helps in
automatic analysis of any text.

To develop an accurate tagger, it is essential to
develop various rules based on the language or large

annotated corpus which could be used for discover-
ing the rules and training the model. Accurate anno-
tation of a corpus requires the expertise of linguists
which is expensive and time consuming. Also it is
not extendable from one language to another. Use of
automatic machine learning approaches is inexpen-
sive, fairly accurate and can be extended between
languages.

The increasing popularity of social media plat-
forms blogs, micro-posts (e.g. Twitter1) and chats
(Facebook 2) - has ensured availability of large
amount of code-mixed data. But, texts obtained
from various online platforms differ from traditional
writings. These texts are predominantly unstruc-
tured. Also, many variations can be observed in
terms of writing style and vocabulary. Such texts
are mostly informal and have multiple languages in
a single sentence, or even in a single word. This
code-mixed nature of text, coupled with the fact that
they are written using Roman script (instead of na-
tive script), makes it extremely challenging for lin-
guists and data analysts to process such data. This
has given a new dimension to the traditional prob-
lems of language identification and POS tagging.

In this paper, we address the problem of part-of-
speech tagging in mixed social media data. India is
a land of many languages with Hindi and English
recognized as the more popular ones. From the In-
dian perspective, it is generally observed that one
of the languages used in social media conversations
are either English or Hindi. In this work, all the
three mixed scripts contain English as one of the lan-

1twitter.com
2www.facebook.com
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guages. The Indian languages present are Bengali,
Hindi and Tamil.

To tag the words with their corresponding part-of-
speech tags, we have used Stanford part-of-speech
tagger as our baseline and developed the final system
using Conditional Random Field (CRF). We have
obtained results for three language pairs, namely
Hindi-English (Hi-En), Bengali-English (Bn-En)
and Tamil-English (Ta-En). In this paper, we con-
centrate on building our POS tagger system with
minimal external resources. Both our models do not
use any language resource in addition to the dataset.
While the Stanford POS Tagger uses no additional
resource, the CRF model uses only a list of smileys.

The rest of the paper is organized as follows. We
present an account of the previous works done in the
part-of-speech tagging in Section 2. In Section 3, we
discuss the dataset. The system has been described
in Section 4. The results and observations have been
presented in Section 5 and the conclusion in Section
6.

2 Related Work

Part-of-Speech tagging has been a centre of many
researches for the past few decades. Since it started
in the middle sixties and early seventies (Greene and
Rubin, 1971), a lot of new concepts have been intro-
duced to improve the efficiency of the tagger and to
construct the POS taggers for several languages.

Rule based POS tagger was introduced in the
nineties (Karlsson et al., 1995) and gave better ac-
curacy than its predecessors. One of the most suc-
cessful rule based English tagger (Samuelsson and
Voutilainen, 1997) had a recall of 99.5% with a
precision of around 97%. The rule based taggers
consists of complex but accurate constraints which
makes them very efficient for disambiguation. Sta-
tistical model based tagger (DeRose, 1988; Cut-
ting et al., 1992; Dermatas and Kokkinakis, 1995;
Meteer et al., 1991; Merialdo, 1994) are widely used
because of the simplicity and the independence of
the language models. Most commonly used sta-
tistical models are bi-gram, tri-gram and Hidden
Markov Model (HMM). The only problem with sta-
tistical models is that these kinds of taggers require
a large annotated corpus. Machine learning algo-
rithms are statistical in nature but the models are

more complicated than simple n-gram. Models for
acquiring disambiguation rules and transformation
rules from the dataset were constructed in late 80’s
and early 90’s (Hindle, 1989; Brill, 1992; Brill,
1995a; Brill, 1995b). Neural networks have also
been used for POS tagging (Nakamura et al., 1990;
Schütze, 1993; Ma and Isahara, 1998; Eineborg and
Gambäck, 1994). POS taggers were also developed
using Support Vector Machine (SVM) (Nakagawa
et al., 2001). These taggers were more simple and
efficient than the previous taggers. The successor of
this tagger was developed by Giménez and Marquez
(2004) and the approach they used for POS tagging
was considerably faster than its predecessor. A more
recent development was the use of Conditional Ran-
dom Field (CRF) for POS tagging (Sha and Pereira,
2003; Lafferty et al., 2001; Shrivastav et al., 2006).
These taggers are better for disambiguation as they
find global maximum likelihood estimation.

2.1 POS Taggers for Indian Languages

Recently, a large number of researchers are trying to
expand the scope of automatic POS taggers so that
they can work on complex non European languages.
India is a country with rich linguistics so POS tag-
gers for Indian languages are one of the most ex-
plored topics. The first effort was to develop a Hindi
POS tagger dated back in the nineties (Bharati et al.,
1995). This tagger was based on a morphological
analyzer. The analyzer would provide the root word
with its morphological features and generalized POS
category. Shrivastav et al. (2006) slightly modified
this approach by using a decision tree based classi-
fier and achieved an accuracy of 93.45%. Instead
of using a full morphological analyzer Shrivastava
and Bhattacharyya (2008) used a stemmer to gener-
ate suffixes which was in turn used to generate POS
tags. Conditional Random Field was also used along
with morphological analyzer in a couple of works
(Agarwal and Mani, 2006; PVS and Karthik, 2007).

One of the earliest works on Bengali POS tag-
ger was conducted by Seddiqui et al. (2003) and
Chowdhury et al. (2004). (Chowdhury et al., 2004)
implemented a rule based tagger which hand written
rules formulated by expert linguists. In more recent
work, Hasan et al. (2007) developed a supervised
POS tagger. This method was less effective due to
lack of tagged training corpus. In later years, we
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have seen many works on Bengali POS tagger. One
of the most successful taggers was developed by us-
ing HMM and Maximum Entropy models (Danda-
pat and Sarkar, 2006; Dandapat, 2007). They also
used a morphological analyzer to compensate for the
lack of annotated training corpus. These two mod-
els were used to implement a supervised tagger and a
semi-supervised tagger. The accuracy achieved was
around 88% for both models. Ekbal et al. (2007)
carried out further research on the tagger. They an-
notated a news corpus and created two taggers - one
SVM based tagger and another CRF based tagger -
which reported an accuracy of 86.84% and 90.3%
respectively.

In Tamil, Selvam and Natarajan (2009) proposed
a rule based morphological analyzer to annotate the
corpora and used it to train the POS tagger. They
used the Tamil version of Bible for the tagged cor-
pus and achieved an accuracy of 85.56%. Dhanalak-
shmi et al. (2009) developed a SVM based tagger us-
ing linear programming and a new tagset for Tamil
with 32 tags. They used this tagset for building a
training corpus and reported an accuracy of 95.63%.
Another SVM based POS tagger (Dhanalakshmi et
al., 2008) was proposed by them in a different work.
They extracted linguistic information using machine
learning techniques which was then used to train the
tagger. This tagger achieved an accuracy of 95.64%.

Even after decades of research on monolingual
POS taggers for Indian languages(mostly Hindi),
there are just a few taggers with accuracy over 90%.
A new challenge has developed over the past few
years in the form of code mixed social media text.
This field of research is at a nascent stage. The basic
challenges and complexities of social media text are
spelling variations and word sense disambiguation.
As traditional POS taggers were not efficient for so-
cial media text, new taggers targeting social media
text were constructed. However, these taggers are
mostly monolingual and not suitable for code-mixed
text. The first was developed by Gimpel et al. (2011)
for tagging English tweets. They developed a new
POS tagset and tagged 1827 tweets for training cor-
pus for a CRF tagger with arbitrary local features in
log-linear model adaptation. Owoputi et al. (2013)
improved the original Twitter POS tagger as they in-
troduced lexical and unsupervised word clustering
features. This increased the accuracy from 90% to

93%.
One of the first POS taggers for code-mixed text

was developed by Solorio and Liu (2008). They con-
structed a POS tagger of English-Spanish text by us-
ing existing monolingual POS taggers for both the
languages. They combined the POS tag information
using heuristic procedures and achieved the maxi-
mum accuracy of 93.4%. However, this work was
not on social media text and hence the difficulties
were considerably less. Gella et al. (2013) devel-
oped a system to identify word level language and
then chunk the individual languages and produce
POS tags or every individual chunk. They used a
CRF based Hindi POS tagger for Hindi and Twit-
ter POS tagger for English and achieved maximum
accuracy of 79%. Vyas et al. (2014) developed a
English-Hindi POS tagger for code mixed social me-
dia text.

3 Dataset

A recent shared task was conducted by Twelfth In-
ternational Conference on Natural Language Pro-
cessing (ICON-2015)3 , for part-of-speech tagging
of transliterated social media text. Organizers re-
leased the code mixed train and test set for English-
Hindi, English-Bengali and English-Tamil language
pairs.

In Table 1, we provide a summary of the dataset
in terms of the utterances. The number of utter-
ances have been recorded for both the training and
test data. In Table 2, we present a statistics of the
number of sentences for each pair of languages in
training as well as test data.

Language Sentences
(Training)

Sentences
(Test)

Bengali-English 2837 1459
Hindi-English 729 377
Tamil-English 639 279

Table 2: Summary of Dataset (Sentences).

4 System Description

We have followed a supervised approach in this
work. We have extracted various features that are
pertinent to this task. The various steps involved in
POS tagging are listed as follows:

3http://ltrc.iiit.ac.in/icon2015/
contests.php
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Figure 1: Overview of the System Architecture.

Language
Tags

Utterances
(Training)

Utterances
(Test)

Hindi-English
English (EN) 6178 8553
Hindi (HI) 5546 411
Others (O) 4231 2248
Total 15955 11212

Bengali-English
English (EN) 9973 5459
Bengali (BN) 8330 4671
Others (O) 6335 3431
Total 24638 13561

Tamil-English
English (EN) 1969 819
Tamil (TA) 1716 1155
Others (O) 630 281
Total 4315 2255

Table 1: Summary of Dataset (Utterances).

4.1 Chunking

Each of the three given corpora (Hindi-English,
Bengali-English and Tamil-English) contains En-
glish as one of the dominant languages. The other
dominant language is Bengali, Hindi and Tamil
in each of the three texts. The various language
tags used in the training data are en (English), hi
(Hindi), bn (Bengali), ta (Tamil), ne (Named enti-
ties), acro (Acronyms), univ (Universal) and undef
(Undefined). For each input file, we have performed
chunking on the raw text to segment the words be-
longing to different language tag. We haves used the
language ids to perform chunking. For each of the
language tags, we have created a wordlist belonging
to that particular language tag. We also maintain a

table containing the file id, word id and position of
every word. This table is useful for obtaining the
output files from the chunked words.

4.2 Lexicons for Dominant Languages

English, Bengali, Hindi and Tamil were identified
as the dominant languages. For each of these four
languages, we have created a list of words which
belong to any particular POS tag. These lists were
constructed from the respective training files. We
maintain lists for nouns, verbs and other parts-of-
speech for each language. These lists are essential
for extracting feature for training our CRF model.

4.3 POS Tagging

We have used two different approaches for POS Tag-
ging of the test data. Both the models use training
data for learning and model construction.

4.3.1 POS Tagging Using Stanford POS Tagger
For our baseline, we trained our system using

Stanford POS Tagger (Toutanova et al., 2003). Us-
ing the training data, we trained the Stanford POS
Tagger initially. The architecture (arch property of
the tagger) that we used for training was: words(-
1,1), unicodeshapes(-1,1), order(2), suffix(4). Four
individual models were generated for English, Ben-
gali, Hindi and Tamil. The test data was tagged us-
ing these generated models.

4.3.2 POS Tagging Using CRF++
In this work, Conditional Random Field (CRF)

has been used to build the framework for word-
level language identification classifier. We have used
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CRF++ toolkit 4 which is a simple, customizable,
and open source implementation of CRF.

The following features were used to train the CRF
model:

• Length Of The Current Word

The length of the current word has been used as
one of the features. It is often noted that words
belonging to a specific language and part-of-
speech are often longer than others (Singh et
al., 2008). We have used this feature to exploit
word length in determining the part-of-speech
of the word.

• Current Word

For example, if the sentence is I have been told
of the place, then each word is analyzed at a
time. If the word currently being examined for
part-of-speech tagging is been, then the word
been is considered as one of the features.

• Previous Two Words

For example, if the sentence is I have been told
of the place and current word is been, then the
previous two words are I and have.

• Next Two Words

Using the previous example, if the sentence is
I have been told of the place and the current
word is been, then the next two words are told
and of.

• Suffix

This feature considers of the suffix of every
word. If length of a word is more than 3 then
suffix of length 3 and 2 are taken. e.g.: een and
en are the suffixes for been.

• Prefix

This feature considers of the prefix of every
word. If length of a word more than 3 then pre-
fix of length 3 and 2 are taken. e.g.: bee and be
are the suffixes for been.

• If Word Contains Any Symbol

4https://taku910.github.io/crfpp/\#
download

This feature is boolean in nature and represents
if the current word contains any symbol. Pres-
ence of symbol in a word gives a possible hint
about the part-of-speech of the word.

• If Word Contains Any Digit

Similar to the previous feature, this boolean
feature represents if the current word contains
any digit. Presence of digit in a word gives
a possible hint about the part-of-speech of the
word. e.g.: kheye6ilam, ki6u, ka6e, 6ghanta

• Is Noun

This feature represents if the current word is a
noun. During the training phase, we build up
a list of nouns for every language. This list is
used during test phase to evaluate this feature.
e.g.: match, love, khushi, kaam, meye

• Is Adjective

This feature represents if the current word is an
adjective. During the training phase, we build
up a list of adjectives for every language. This
list is used during test phase to evaluate this fea-
ture. e.g.: ekta, beshi, good, nice

• Is Verb

This feature represents if the current word is a
verb. During the training phase, we build up
a list of verbs for every language. This list is
used during test phase to evaluate this feature.
e.g.: hoy, lage, be, will

• Is Pronoun

This feature represents if the current word is a
pronoun. During the training phase, we build
up a list of pronouns for every language. This
list is used during test phase to evaluate this fea-
ture. e.g.: tomar, tumi, you, I

• Is Conjunction

This feature represents if the current word is
a conjunction. During the training phase, we
build up a list of conjunctions for every lan-
guage. This list is used during test phase to
evaluate this feature. e.g.: kintu, and, to, but
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• Is Adverb

This feature represents if the current word is an
adverb. During the training phase, we build up
a list of adverbs for every language. This list is
used during test phase to evaluate this feature.
e.g.: ekhon, takhon, just, very

• Is Determiner

This feature represents if the current word is
a determiner. During the training phase, we
build up a list of determiners for every lan-
guage. This list is used during test phase to
evaluate this feature. e.g.: the, this, a

• Is Dollar

This feature represents if the word represent
any numerical measure. e.g.: 1st, 26th, one,
two

• Is Q

This feature represents if the word represent
any quantitative measure. e.g.: enuf, more,
many, khub

• Is U

This feature represents if the word is website
link e.g.: pdf2fb.net

• Is X

This feature represents if the word is a non-
classified token or if it has no meaning. e.g.:
geetamroadpi

During the training phase, we train the CRF
model using all the above features. Four language
models are built, corresponding to the four dominant
languages English, Bengali, Hindi and Tamil. In the
test phase, we use the generated models to tag the
words with their appropriate part-of-speech tags.

4.3.3 Post-processing
All the words belonging to the four dominant

languages were tagged by the CRF model. The
acronyms, named entities and the universal words
were tagged by consulting the lists built during train-
ing. All the words which could not be tagged by our
model were subjected to a post-processing module.
For every language tag (acro, univ, ne), we found out

the most frequent part-of-speech tag. Also, we used
some logical reasoning to tag the words which were
not tagged by our tagger models. For example, any
untagged word which contains www, http or .com in
it is allotted the U tag. Similarly, we use a smiley
list to tag the smileys as E. Punctuations and hash-
tags were tagged likewise. Finally, we combine all
the words (which were chunked in initially) to ob-
tain the output files.

5 Results and Observations

We evaluated the POS-tagging done by our baseline
model (Stanford Parser) and the CRF model. The
results are presented in Table 3.

Accuracy in %
Language Pair Baseline

(Stanford
Model)

CRF Model

Bengali-English 60.05 75.22
Hindi-English 50.87 73.2
Tamil-English 61.02 64.83

Table 3: Accuracy of the system.

The results of Tamil-English are less than that of
Bengali-English and Hindi-English. The primary
reason for lower accuracy is the variation in tag used
in gold standard files of Tamil-English.

6 Conclusion

In this paper, we have addressed the POS tagging
of mixed script social media text. The texts con-
tained two or three languages, with English being
one of the three languages. The other languages
were Hindi, Bengali and Tamil. We have trained
Stanford POS Tagger to build a baseline model.
Our final model used Conditional Random Field for
part-of-speech tagging. Our results are encouraging
and the performance deterioration of Tamil-English
mixed text can be attributed to the mismatch of POS-
tags.

Currently, there is a lack of quality training data.
In the absence of sufficient training data, perfor-
mance deteriorates using neural network based mod-
els or deep learning methods. In future, we would
love to explore the effectiveness of Deep learning
based features. Word2vec models can also be used
to find out words which are semantically similar. We
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would also like to use of ensemble learning by using
various models and combining their results to arrive
at the final result. A step in that direction would be to
collect more mixed script data from social media and
building gold standards using that data. Building an
efficient normalization system and disambiguating
between similar tags should also improve the accu-
racy of the system.
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Abstract

We address the problem of Part of Speech tag-
ging (POS) in the context of linguistic code
switching (CS). CS is the phenomenon where
a speaker switches between two languages
or variants of the same language within or
across utterances, known as intra-sentential
or inter-sentential CS, respectively. Process-
ing CS data is especially challenging in intra-
sentential data given state of the art monolin-
gual NLP technology since such technology is
geared toward the processing of one language
at a time. In this paper we explore multiple
strategies of applying state of the art POS tag-
gers to CS data. We investigate the landscape
in two CS language pairs, Spanish-English
and Modern Standard Arabic-Arabic dialects.
We compare the use of two POS taggers vs. a
unified tagger trained on CS data. Our results
show that applying a machine learning frame-
work using two state fof the art POS taggers
achieves better performance compared to all
other approaches that we investigate.

1 Introduction

Linguistic Code Switching (CS) is a phenomenon
that occurs when multilingual speakers alternate be-
tween two or more languages or dialects. CS is
noticeable in countries that have large immigrant
groups, naturally leading to bilingualism. Typi-
cally people who code switch master two (or more)
languages: a common first language (lang1) and
another prevalent language as a second language
(lang2). The languages could be completely distinct

such as Mandarin and English, or Hindi and English,
or they can be variants of one another such as in the
case of Modern Standard Arabic (MSA) and Ara-
bic regional dialects (e.g. Egyptian dialect– EGY).
CS is traditionally prevalent in spoken language but
with the proliferation of social media such as Face-
book, Instagram, and Twitter, CS is becoming ubiq-
uitous in written modalities and genres (Vyas et al.,
2014; Danet and Herring, 2007; Cárdenas-Claros
and Isharyanti, 2009) CS can be observed in dif-
ferent linguistic levels of representation for different
language pairs: phonological, morphological, lex-
ical, syntactic, semantic, and discourse/pragmatic.
It may occur within (intra-sentential) or across ut-
terances (inter-sentential). For example, the follow-
ing Arabic excerpt exhibits both lexical and syntac-
tic CS. The speaker alternates between two variants
of Arabic MSA and EGY.

Arabic Intra-sentential CS:1 wlkn AjhztnA
AljnA}yp lAnhA m$ xyAl Elmy lm tjd wlw mEl-
wmp wAHdp.

English Translation: Since our crime investiga-
tion departments are not dealing with science fiction,
they did not find a single piece of information.

The speaker in the example switched from MSA
to EGY dialect by using the word m$/not which
is an Egyptian negation particle, while s/he could
have used the MSA word lyst/not. The span of
the CS in this example is only one token, but it
can be more than one example. Such divergence

1We use the Buckwalter encoding to present all the Arabic
data in this paper: It is an ASCII only transliteration scheme,
representing Arabic orthography strictly one-to-one
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causes serious problems for automatic analysis. CS
poses serious challenges for language technologies,
including parsing, Information Extraction (IE), Ma-
chine Translation (MT), Information Retrieval (IR),
and others. The majority of these technologies are
trained and exposed to one language at a time. How-
ever, performance of these technologies degrades
sharply when exposed to CS data.

In this paper, we address the problem of part
of Speech tagging (POS) for CS data on the intra-
sentential level. POS tagging is the task where each
word in text is contextually labeled with grammat-
ical labels such as, noun, verb, proposition, adjec-
tive, etc. We focus on two language pairs Spanish-
English (SPA-ENG) and Modern Standard Arabic-
and the Egyptian Arabic dialect (MSA-EGY). We
use the same POS tag sets for both language pairs,
the Universal POS tagset (Petrov et al., 2011). We
examine various strategies to take advantage of the
available monolingual resources for each language
in the language pairs and compare against dedicated
POS taggers trained on CS data for each of the lan-
guage pairs. Our contributions are the following:

• We explore different strategies to leverage
monolingual resources for POS tagging CS
data.

• We present the first empirical evaluation on
POS tagging with two different language pairs.
All of the previous work focused on a single
language pair combination.

2 Related Work

Developing CS text processing NLP techniques for
analyzing user generated content as well as cater
for needs of multilingual societies is vital (Vyas
et al., 2014). Recent research on POS for Hindi-
English CS social media text conducted by Vyas et
al. (2014), whereby social media text was proved to
pose different challenges apart from CS, including
transliteration, intentional and unintentional spelling
differences, short and ungrammatical texts among
others. Results indicated a significant improvement
where language detection as well as translation were
automatically performed. According to the study,
accurate language detection as well as translation
for social media CS text is important for POS tag-
ging. However, they note that the juxtaposition of

two monolingual POS taggers cannot solve POS tag-
ging for CS text. Barman et al. (2014) have also re-
ported the challenge in POS tagging transliterated as
well as CS social media text in Hindi English.

Solorio and Liu (2008) presents a machine learn-
ing based model that outperforms all baselines on
SPA-ENG CS data. Their system utilizes only a few
heuristics in addition to the monolingual taggers.

Royal Sequiera (2015) introduces a ML-based ap-
proach with a number of new features. The new fea-
ture set considers the transliteration problem inher-
ent in social media. Their system achieves an accu-
racy of 84%.

Jamatia et al. (2015) uses both a fine-grained and
coarse-grained POS tag set in their study. They try
to tackle the problem of POS tagging for English-
Hindi Twitter and Facebook chat messages. They in-
troduce a comparison between the performance of a
combination of language specific taggers and a ma-
chine learning based approach that uses a range of
different features. They conclude that the machine
learning approach failed to outperform the language
specific combination tagger.

3 Approach

The premise of this work is that monolingual re-
sources should be helpful in POS tagging CS data.
We adopt a supervised framework for our experi-
mental set up. Supervised POS taggers are known
to achieve the best performance, however they rely
on significant amounts of training data. In this pa-
per, we compare leveraging monolingual state of the
art POS taggers using different strategies in what we
call a COMBINED framework comparing it against
using a single CS trained POS tagger identified as
an INTEGRATED framework. We explore different
strategies to investigate the optimal way of tackling
POS tagging of CS data. To identify the underlying
framework we prepend all COMBINED frameworks
with the prefix COMB, and all the INTEGRATED
versions with the prefix INT. First we describe the
monolingual POS taggers used in our set up. We
consider the monolingual taggers to be our baseline
systems.
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3.1 Monolingual POS Tagging systems

We use a variant on the the publicly available
MADAMIRA tool (Pasha et al., 2014) for the Ara-
bic MSA-EGY pair. MADAMIRA is a supervised
morphological disambiguator/tagger for Arabic text.
MADAMIRA extracts a wide variety of morpho-
logical and associated linguistic information from
the input, including (among other things) detailed
morphology and part-of-speech information, lem-
mas, fully-diacritized forms, and phrase-level infor-
mation such as base phrase chunks and named entity
tags. MADAMIRA is publicly available in two ver-
sions, an MSA version and EGY version. However,
the publicly available version of MADAMIRA MSA
is trained on newswire data (Penn Arabic Treebanks
1,2,3) (Maamouri et al., 2004), while MADAMIRA
EGY is trained on Egyptian blog data which com-
prises a mix of MSA, EGY and CS data (MSA-
EGY) from the LDC Egyptian Treebank parts 1-5
(ARZ1-5) (Maamouri et al., 2012). For our pur-
poses, we need a relatively pure monolingual tag-
ger per language variety (MSA or EGY), trained
on informal genres for both MSA and EGY. There-
fore, we retrained a new version of MADAMIRA-
MSA strictly on pure MSA sentences identified in
the EGY Treebank ARZ1-5. Likewise we created
a MADAMIRA-EGY tagger trained specifically on
the pure EGY sentences extracted from the same
ARZ1-5 Treebank.2

For the SPA-ENG language pair we created mod-
els using the TreeTagger (Schmid, 1994) monolin-
gual systems for Spanish and English respectively
as their performance has been shown to be compet-
itive. Moreover, as pointed out in (Solorio and Liu,
2008) TreeTagger has attractive features for our CS
scenario. The data used to train TreeTagger for En-
glish was the Penn Treebank data (Marcus et al.,
1993), sections 0-22. For the Spanish model, we
used Ancora-ES (Taulé et al., 2008).

3.2 Combined Experimental Conditions

COMB1:LID-MonoLT: Language identification
followed by monolingual tagging Given a sen-
tence, we apply a token level language identification

2We are grateful to the MADAMIRA team for providing us
with the MADAMIRA training code to carry out our experi-
ments.

Figure 1: Graphic representation of the
COMB1:LID-MonoLT approach.

process to the words in the sentence. The chunks
of words identified as lang1 are processed by the
monolingual lang1 POS tagger and chunks of words
identified as lang2 are processed by the monolingual
lang2 POS tagger. Finally we integrate the POS tags
from both monolingual taggers creating the POS tag
sequence for the sentence. Figure-1 shows a dia-
gram representing this approach for the MSA-EGY
language pair. For MSA-EGY, we used the Au-
tomatic Identification of Dialectal Arabic (AIDA2)
tool (Al-Badrashiny et al., 2015) to perform token
level language identification for the EGY and MSA
tokens in context. It takes plain Arabic text in Ara-
bic UTF8 encoding or Buckwalter encoding as input
and outputs: 1) Class Identification (CI) of the input
text to specify whether the tokens are MSA, EGY,
as well as other information such as name entity,
foreign word, or unknown labels per token. Fur-
thermore, it provides the results with a confidence
score; 2)Dialect Classification (DC) of the input text
to specify whether it is Egyptian. For SPA-ENG, we
trained language models (LM) on English and Span-
ish data to assign Language IDs to each token in con-
text. We trained 6-gram character language models
using the SRILM Toolkit (Stolcke and others, 2002).
The English language model was trained on the AFP
section of the English GigaWord (Graff et al., 2003)
while the Spanish language model was trained on the
AFP section of the Spanish GigaWord (Graff, 2006).

COMB2:MonoLT-LID: Monolingual tagging
then Language ID Similar to Condition COMB1,
this experimental condition applies language ID
in addition to monolingual tagging, however the
order is reversed. In this condition we apply the
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two monolingual language specific POS taggers to
the input CS sentence as a whole, then apply the
language id component to the sentence, and then
choose the POS tags assigned by the respective
POS tagger per token as per its language id tag. The
difference between this condition and condition 1
is that the monolingual POS tagger is processing
an entire sentence rather than a chunk. It should
be highlighted that all four monolingual POS
taggers (ENG, SPA, MSA, EGY) are trained as
sequence taggers expecting full sentence data as
input. Figure- 2 shows a diagram representing this
approach

Figure 2: Graphic representation of the
COMB2:MonoLT-LID approach.

COMB3:MonoLT-Conf In this condition, we ap-
ply separate taggers then use probability/confidence
scores yielded by each tagger to choose which tag-
ger to trust more per token. This condition ne-
cessitates that the taggers yield comparable confi-
dence scores which is the case for the MADAMIRA-
EGY and MADAMIRA-MSA pair, and the SPA-
TreeTagger and EN-TreeTagger pair, respectively.

COMB4:MonoLT-SVM In this condition, we
combine results from the monolingual taggers (base-
lines) and COMB3 into an ML framework such as
SVM to decide which tag to choose from (MSA
vs. EGY for example or SPA vs. ENG). By us-
ing an SVM classifier, we train a model on 10-fold
cross-validation using the information generated by
the monolingual POS taggers. The feature sets used
for our model are the confidence scores and the POS
tags generated by each tagger. Then, we evaluate

our model on a held-out test set.

3.3 Integrated Experimental Conditions

INT1:CSD In this condition, we train a supervised
ML framework on exclusively code switched POS
manually annotated data. In the case of Arabic, we
retrain a MADAMIRA model exclusively with the
CS data extracted from ARZ1-5 training data, yield-
ing a MADAMIRA-CS model. For SPA-ENG, we
trained a CS model using TreeTagger. This provides
consistency to the experimental set up but also al-
lows us to compare the COMB and INT approaches.

INT2:AllMonoData Similar to Condition
INT1:CSD but changing the training data for each
of the language pairs. Namely, we train a supervised
ML framework on all the monolingual corpora that
is POS manually annotated. For Arabic, we merge
the training data from MSA and EGY, thereby cre-
ating a merged trained model. Likewise merging the
Spanish and English corpora creating an integrated
SPA-ENG model. The assumption is that the data
in MSA is purely MSA and that in EGY is purely
EGY. This condition yields an inter-sentential code
switched training data set. None of the sentences
reflect intra-sentential code switched data.

INT3:AllMonoData+CSD Merging train-
ing data from conditions ”INT1:CSD” and
”INT2:AllMonoData” to train new taggers for
CS POS tagging.

4 Evaluation

4.1 Datasets

For MSA-EGY, we use the LDC Egyptian Arabic
Treebanks 1-5 (ARZ1-5) (Maamouri et al., 2012).
The ARZ1-5 data is from the discussion forums
genre mostly in the Egyptian Arabic dialect (EGY).
We refer to this data set as ARZ. Each part of the
ARZ data set is divided into train, test and dev
sets. According to AIDA2 (Al-Badrashiny et al.,
2015), 38% of the data exhibits CS. In this paper
we combined the annotated test and dev set to form
a new Code Switching Test data set, we refer to as
ARZTest. The total number of words in the test data
ARZTest is 20,464 tokens.

As mentioned earlier, we created new base-
line POS tagging models for MADAMIRA-EGY,
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Dataset # sentences # Words # Types % CS
ARZ 13,698 175,361 39,168 40.78%

Spanglish 922 8,022 1,455 20.61%
Bangor 45,605 335,578 13,994 6.21%

Table 1: Data set details.

Dataset Train/Dev Tokens Test Tokens
ARZ 154,897 20,464

Spanglish 6,456 1,566
Bangor 268,464 67,114

Table 2: Data set distribution.

MADAMIRA-MSA and MADAMIRA-CS based on
training data from ARZ1-5 training data portion.
AIDA2 has a sentence level identification compo-
nent that we used to identify the purity of the
sentences from the training corpus ARZ1-5 train-
ing data. Specifically, we used the AIDA2 identi-
fied EGY sentences for training the MADAMIRA-
EGY models, the MSA AIDA2 identified sentences
for training the MADAMIRA-MSA models, and
the CS identified AIDA2 sentences for training the
MADAMIRA-CS models.

For SPA-ENG data, We used two SPA-ENG CS
data sets, one is the transcribed conversation used in
the work by Solorio and Liu (Solorio and Liu, 2008),
referred to as Spanglish. The Spanglish data set has
∼8K tokens and was transcribed and annotated by
the authors of that paper. While this is a small data
set we include it in our work since it allows us to
compare with previous work.

The second SPA-ENG CS data is the Bangor Mi-
ami corpus, referred to as Bangor. This corpus is
also conversational speech involving a total of 84
speakers living in Miami, FL. In total, the corpus
consists of 242,475 words of text from 35 hours of
recorded conversation. Around 63% of transcribed
words are in English, 34% in Spanish and 3% in
an indeterminate language. The transcriptions were
carried out manually at the utterance level by a team
of transcribers. They include beginning time and
end time of utterance as well as language id for each
word. Table 2 shows more details about the various
data sets.

4.2 Part of Speech Tagset
The ARZ1-5 data set is manually annotated using
the Buckwalter (BW) POS tag set. The BW POS

tag set is considered one of the most popular Arabic
POS tagsets. It gains its popularity from its use in
the Penn Arabic Treebank (PATB) (Maamouri et al.,
2004; Alkuhlani et al., 2013). It can be used for to-
kenized and untokenized Arabic text. The tokenized
tags that are used in the PATB are extracted from
the untokenized tags. The number of untokenized
tags is 485 tags and generated by BAMA (Buckwal-
ter, 2004). Both tokenized and untokenized tags use
the same 70 tags and sub-tags such as nominal suf-
fix, ADJ, CONJ, DET, and, NSUFF (Eskander et
al., 2013) (Alkuhlani et al., 2013). Combining the
sub-tags can form almost 170 morpheme sub-tags
such NSUFF FEM SG. This is a very detailed tagset
for our purposes and also for cross CS language
pair comparison, i.e. in order to compare between
trends in the MSA-EGY setting and the SPA-ENG
setting. Accordingly, we map the BW tagset which
is the output of the MADAMIRA tools to the univer-
sal tagset (Petrov et al., 2011). We apply the map-
ping as follows: 1) Personal, relative, demonstrative,
interrogative, and indefinite pronouns are mapped
to Pronoun; 2)Acronyms are mapped to Proper
Nouns; 3) Complementizers and adverbial clause
introducers are mapped to Subordinating Conjunc-
tion; 4)Main verbs (content verbs), copulas, par-
ticiples, and some verb forms such as gerunds and
infinitives are mapped to Verb; 5)Adjectival, ordi-
nal numerals and participles are mapped to Adjec-
tives; 5)Prepositions and postpositions are mapped
to Adpositions; 6)Interrogative, relative and demon-
strative adverbs are mapped to Adverb; 7)Tense,
passive and Modal auxiliaries are mapped to Aux-
iliary Verb; 8)Possessive determiners, demonstra-
tive determiners, interrogative determiners, quan-
tity/quantifier determiners, etc are mapped to De-
terminer; 9) Noun and gerunds and infinitives are
mapped to Noun; 10)Negation particle, question
particle, sentence modality, and indeclinable aspec-
tual or tense particles are mapped to Particle.

The Bangor Miami corpus has also been automat-
ically glossed and tagged with part-of-speech tags
in the following manner: each word is automati-
cally glossed using the Bangor Autoglosser (Don-
nelly and Deuchar, 2011).3 Subsequently, tran-

3http://bangortalk.org.uk/autoglosser.
php
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scripts were manually edited to fix incorrect glosses.
For the experiments presented here, the corpus went
through two edition/annotation stages. In the first
stage, a number of changes were performed man-
ually: a) those tokens ambiguously tagged with
more than one POS tag were disambiguated (e.g.
that.CONJ.[or].DET); b) ambiguous POS categories
like ASV, AV and SV were disambiguated into ei-
ther ADJ, NOUN, or VERB; c) for frequent tokens
like so and that, their POS tags were hand-corrected;
d) finally, mistranscribed terms which were origi-
nally labeled as Unknown were hand-corrected and
given a correct POS tag. The second stage con-
sisted in mapping the Bangor corpus original POS
tagset4 to the Universal POS tagset (Petrov et al.,
2011).5 After a careful examination of both tagsets,
the following mapping was applied: 1) All those cat-
egories with an obvious match (like Nouns, Adjec-
tives, Verbs, Pronouns, Determiners, Proper Nouns,
Numbers, etc.) were automatically mapped; 2) Ex-
clamations and Intonational Markers were mapped
to Interjections; 3) As per the Universal POS tagset
guidelines: Possessive Adjectives, Possessive Deter-
miners, Interrogative Adjectives, Demonstrative Ad-
jectives and Quantifying Adjectives were mapped to
Determiner; 4) Those tokens tagged as Relatives, In-
terrogatives and Demonstratives (with no specifica-
tion to whether they were Determiners, Adjectives
or Pronouns) were manually labeled; 5) All posses-
sive markers, negation particles, and infinitive to to-
kens were mapped to the PRT class; 6) Conjunc-
tions were mapped to Coordinating Conjunctions
and Subordinating Conjunctions using word lists;

MSA-EGY Baseline
Data set MADAMIRA-MSA MADAMIRA-EGY
ARZTest 77.23 72.22

SPA-ENG Baseline
Dataset TreeTagger SPA TreeTagger ENG

Spanglish 44.61 75.87
Bangor 45.95 64.05

Table 3: POS tagging accuracy (%) for monolingual
baseline taggers

7) Finally, a subset of English Verbs were mapped
4http://bangortalk.org.uk/docs/Miami_

doc.pdf
5http://universaldependencies.org/docs/

u/pos/index.html

to Auxiliary Verbs (could, should, might, may, will,
shall, etc.).

Approach Overall CS MSA EGY
COMB1:LID-MonoLT 77.66 78.03 76.79 78.57
COMB2:MonoLT-LID 77.41 77.41 78.31 77.01
COMB3:MonoLT-Conf 76.66 77.89 76.79 76.11
COMB4:MonoLT-SVM 90.56 90.85 91.63 88.91

INT1:CSD 83.89 82.03 82.48 83.26
INT2:AllMonoData 87.86 87.92 86.82 86%

INT3:AllMonoData+CSD 89.36 88.12 85.12 87

Table 4: Accuracy (%) Results for ARZTest Dataset

Approach Overall CS ENG SPA
COMB1:LID-MonoLT 68.35 71.11 66.36 76.02%
COMB2:MonoLT-LID 65.51 69.66 64.44 71.32%
COMB3:MonoLT-Conf 68.25 68.21 71.93 65.03
COMB4:MonoLT-SVM 96.31 95.39 96.37 96.60

INT1:CSD 95.28 94.41 94.41 95.15
INT2:AllMonoData 78.57 78.62 81.85 76.53%

INT3:AllMonoData+CSD 91.04 89.59 92.00 89.48

Table 5: Accuracy (%) Results for Bangor Corpus

Approach Overall CS ENG SPA
COMB1:LID-MonoLT 78.73 77.81 80.18 73.99
COMB2:MonoLT-LID 73.52 73.80 73.60 71.57
COMB3:MonoLT-Conf 77.39 76.11 80.20 65.43
COMB4:MonoLT-SVM 90.61 89.43 93.61 87.96

INT1:CSD 82.95 83.03 85.95 77.26
INT2:AllMonoData 84.55 84.84 88.50 76.59

INT3:AllMonoData+CSD 85.06 84.70 90.15 76.59

Table 6: Accuracy (%) Results for Spanglish Corpus

To evaluate the performance of our approaches we
report the accuracy of each condition by comparing
the output POS tags generated from each condition
against the available gold POS tags for each data set.
Also, we compare the accuracy of our approaches
for each language pair to its corresponding monolin-
gual tagger baseline. We consistently apply the dif-
ferent experimental conditions on the same test set
per language pair: for MSA-EGY we report results
on ARZTest, and for SPA-ENG, we report results on
two test sets: Spanglish and Bangor.

Baseline Results The baseline performance is the
POS tagging accuracy of the monolingual models
with no special training for CS data. Since we have
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four monolingual models, we consider four base-
lines. If CS data do not pose any particular challenge
to monolingual POS taggers, then we shouldn’t ex-
pect a major degradation in performance. Table 3
shows the performance of the 4 different baseline
POS tagging systems on the test data. For Arabic,
MSA monolingual performance for MADAMIRA-
MSA, when tested on monolingual MSA test data,
is around ∼97% accuracy, and for MADAMIRA-
EGY when tested in monolingual EGY data it is
∼93%. We note here that the presence of CS data in
the ARZ test data causes these systems to degrade
significantly in performance (77% and 72% accu-
racy, respectively). For SPA-ENG, state of the art
monolingual models achieve an accuracy of ∼96%
and ∼93 on monolingual English and monolingual
Spanish data sets, respectively. It is then clear that
CS data poses serious challenges to monolingual
technology. Other prior work has also reported sim-
ilar drops in performance because of having mixed
language data.

4.3 Results

Table 4, Table 5 and Table 6 show the results of
all our experimental conditions. For all language
pairs, we report four results, the accuracy results
for only lang1 sentences, lang2 sentences, CS sen-
tences, and all sentences. For example for MSA-
EGY, we extract the MSA, EGY, and CS sentences,
respectively, from each experimental setup to report
the breakdown of the performance of the condition
on the specific set, i.e. We calculate the accuracy
for the MSA, EGY, CS, and All (MSA+EGY+CS)
sentences. For MSA-EGY the highest accuracy
is 90.56%. It is achieved when we apply condi-
tion ”COMB4:MonoLT-SVM”. All the INT condi-
tions outperform the COMB conditions except for
COMB4:MonoLT-SVM. Among the COMB condi-
tions, we note that the MonoLT-SVM is the best
COMBINED condition. In the SPA-ENG, the high-
est accuracies are achieved when we apply con-
dition ”COMB4:MonoLT-SVM”. This finding of
having the best POS tagging results when using
the monolingual taggers output to train a machine
learning algorithm confirms the concluded results in
(Solorio and Liu, 2008). Our contribution is that
we replicate these results using a unified POS tag-
ging scheme using an additional, much larger data

set. The lowest accuracy in SPA-ENG is when we
apply ”COMB2:MonoLT-LID” condition. The ac-
curacy reaches ∼73% in the Spanglish dataset and
∼65% for the Bangor corpus. In this language
pair the INT conditions outperform all the COMB
except the one that uses the stack-based approach
(COMB4:MonoLT-SVM). It is interesting that we
observe the same trends across both language pairs.

5 Discussion

Combined conditions For MSA-EGY, all the
combined experimental conditions outperform the
baselines. Among the combined conditions we note
that applying language identification then applying
language specific monolingual taggers yields worse
results than applying the taggers on the input sen-
tence then assigning tags as per the language ID tool.
This is expected due to the fact that the taggers are
expecting well formed sentences on input. Apply-
ing condition LID-MonoLT forces the taggers to tag
chunks as opposed to sentences thereby leading to
degraded performance. For the first two conditions
COMB1:LID-MonoLT and COMB2:MonoLT-LID,
the performance increases slightly from 77.41% to
77.66%. The results for MonoLT-SVM are the high-
est for the combined conditions for MSA-EGY. The
worst results are for condition MonoLT-Conf. This
might be relegated to the quality of the confidence
values produced by the monolingual taggers, i.e.
not being very indicative of the confidence scores
for the tags chosen. For the SPA-ENG language
pair, almost all the accuracies achieved by the com-
bined conditions are higher than the Spanglish data
set’s baselines. The only combined condition that is
lower than the baselines’ of the Spanglish data set
is ”COMB2:MonoLT-LID” condition, where the ac-
curacy is 73.52% compared to the monolingual En-
glish tagger that reached a baseline performance of
75.87%. This difference can be attributed to mis-
takes in the automated language identification that
cause the wrong tagger to be chosen.

If we consider all accuracy results of the com-
bined conditions for the Bangor corpus and its base-
lines, we see that the boosts in accuracy are of at
least 2%. It is quite noteworthy that the trends
seem to be the same between the two language pairs.
Both language pairs achieve the highest perfor-
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mance with MonoLT-SVM and worse results with
MonoLT-Conf. The gains in performance from us-
ing a learning algorithm are likely due to the fact that
the learner is taking advantage of both monolingual
tagger outputs and is able to go beyond the available
tags for cases where there are errors in both. This re-
sult is also consistent with findings in the Spanglish
dataset by (Solorio and Liu, 2008). The weaknesses
of the MonoLT-Conf approach probably come from
the fact that if the monolingual taggers are weak,
their confidence scores are equally unreliable.

However the results are switched between condi-
tions LID-MonoLT (condition 1) and MonoLT-LID
(condition 2) for the two language pairs. Condition
1 outperforms condition 2 for MSA-EGY while we
see the opposite for SPA-ENG. This is an indica-
tion of the quality and robustness of the underlying
strength of the SPA and ENG monolingual taggers,
they can handle chunks more robustly compared to
the Arabic taggers. It is worth noting that the under-
lying Language id component for Arabic, AIDA2,
achieves a very high accuracy on token and sentence
level dialect id, F1 92.9% for token identification,
and an F1 of 90.2% on sentence level dialect iden-
tification. Also compared to manual annotation on
the TestDev set for dialect identification, we note an
inter-annotator agreement of 93% between human
annotation and AIDA2.

All COMB conditions use either out of context or
in context chunks as an input for the monolingual
taggers. We believe that the out of context chunks
especially in the MSA-DA language pair contributed
heavily in the noncompetitive results yielded.

Integrated conditions The rather simple idea of
throwing the monolingual data together to train a
model to label mixed data turned out to reach sur-
prisingly good performance across both language
pairs. In general, except the ”COMB4:MonoLT-
SVM” condition all the INT conditions outper-
formed the COMB conditions and in turn the
baselines for the MSA-EGY language pair. For
this language pair we note that adding more data
helps, INT2:AllMonoData outperforms INT1:CSD,
but combining the two conditions as training data,
we note that INT3:AllMonoData+CSD outperforms
the other INT conditions. Applying the INT
conditions on only the CS sentences yields the

highest accuracy compared to the other sentences
types. For SPA-ENG, the worse INT condition is
INT2:AllMonoData for Bangor (accuracy 78.57%)
and INT1:CSD for Spanglish (accuracy 82.95%),
compared to the best performing condition for both
SPA-ENG data sets, Spanglish (accuracy of 90.61%)
and Bangor (accuracy 96.31%). The largest dif-
ference is in the Bangor corpus itself and this gap
in performance could be due to a higher domain
mismatch with the monolingual data used to train
the tagger. Another notable difference between the
two language pairs is the significant jump in per-
formance for the Bangor corpus from the first three
COMB conditions from 68.35% to 96.31%. While
we observe a similar jump for the Spanglish corpus,
the gap is much larger for the Bangor corpus. Here
again, we believe the major factor is a larger mis-
match with the training corpus for the monolingual
taggers. It should be highlighted that even though
the language pairs are very different, there are
some similar trends between the two combinations.
COMB4:MonoLT-SVM is the best among combined
conditions and INT conditions for the two language
pairs. Moreover, except for the COMB4:MonoLT-
SVM condition, all the INT conditions outperform
combined conditions across the board. The percent-
age of the CS sentences in the ARZ dataset is∼51%.
Moreover, MSA and EGY share a significant num-
ber of homographs some of which are cognates but
many of which are not. This could be contrasted to
the SPA-ENG case where the homograph overlap is
quite limited. Adding the CSD to the monolingual
corpora in the INT3:AllMonoData-CSD condition
for MSA-EGY improves performance (1.5% abso-
lute increase in accuracy) allowing for more discrim-
inatory data to be included comparing to the other
INT conditions, while the results are not consistent
across the SPA-ENG data sets. In general, our re-
sults point to an inverse correlation between lan-
guage similarity and the challenge to adapt mono-
lingual taggers to a language combination. MSA-
EGY has higher average baseline performance than
SPA-ENG and all approaches outperform by a large
margin those baseline results. In contrast, the av-
erage baseline performance for SPA-ENG is lower
and the improvements gained by the approaches ex-
plored have different degrees of success. Additional
studies are needed to further explore the validity of

105



this finding.

6 Conclusions

We presented a detailed study of various strategies
for POS tagging of CS data in two language pairs.
The results indicate that depending on the language
pair and the distance between them there are vary-
ing degrees of need for annotated code switched
data in the training phase of the process. Languages
that share a significant amount of homographs when
code switched will benefit from more code switched
data at training time, while languages that are far-
ther apart such as Spanish and English, when code
switched, benefit more from having larger mono-
lingual data mixed. All COMB conditions use ei-
ther out of context or in context chunks as an in-
put for the monolingual taggers. We believe that out
of context chunks especially in the MSA-DA lan-
guage pair contributed heavily in the noncompetitive
results that we got for the COMB conditions. There-
fore, our plan for the future work that process the out
of context chunks to provide a meaningful context
to the monolingual taggers. Also, we plan to extend
our feature set used in the COMB4:MonoLT-SVM
condition to include Brown Clustering, Word2Vec,
and Deep learning based features.
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Abstract

We describe our work in the EMNLP 2016
second code-switching shared task; a generic
language independent framework for linguis-
tic code switch point detection (LCSPD). The
system uses characters level 5-grams and word
level unigram language models to train a con-
ditional random fields (CRF) model for classi-
fying input words into various languages. We
participated in the Modern Standard Arabic
(MSA)-dialectal Arabic (DA) and Spanish-
English tracks, obtaining a weighted average
F-scores of 0.83 and 0.91 on MSA-DA and
EN-SP respectively.

1 Introduction

Linguistic Code Switching (LCS) is a common prac-
tice among multilingual speakers in which they
switch between their common languages in written
and spoken communication. In Spanish-English for
example: “She told me that mi esposo looks like un
buen hombre.” (“She told me that my husband looks
like a good man”). In this work we care about de-
tecting LCS points as they occur intra-sententially
where words from more than one language is mixed
in the same utterance. LCS is observed on all levels
of linguistic representation. It is pervasive especially
in social media. LCS poses a significant challenge to
NLP, hence detecting LCS points is a very important
task for many downstream applications.

In this shared task(Molina et al., 2016), the partic-
ipants are asked to identify the language type of each
word in a large set of tweets. The shared task has
two language pair tracks; MSA-DA and Spanish-

English. For each language pair, the participants are
required to identify each word in each tweet to be:

• lang1: if the word is related to the first language
in each track (i.e. MSA or English) ;

• lang2: if the word is related to the second lan-
guage in each track (i.e. DA or Spanish);

• ambiguous: if the word can be in both lan-
guages and can’t decide which language should
be picked based on the context;

• mixed: if the word is consisted of mixed mor-
phemes from both languages (ex. prefix and
suffix form MSA attached to a DA word);

• fw: if the word is related to any other language
than the targeted language pair

• ne: if the word is named entity;

• other: if the word is number, punctuation,
emoticons, url, date, starts with #, @, or con-
tains underscore;

• unk: if can not be determined to by any of the
above tags.

Relevant work on thhe LCS problem among differ-
ent language pairs can be summarized in the follow-
ing work.

3ARRIB (Al-Badrashiny et al., 2014; Eskander et
al., 2014) addresses the challenge of how to distin-
guish between Arabic words written using Roman
script (Arabizi) and actual English words in the same
context/utterance. The assumption in this frame-
work is the script is Latin for all words. It trains
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a finite state transducer (FST) to learn the map-
ping between the Roman form of the Arabizi words
and their Arabic form. It uses the resulting FST to
find all possible Arabic candidates for each word
in the input text. These candidates are filtered us-
ing MADAMIRA (Pasha et al., 2014), a state of the
art morphological analyzer and POS disambiguation
tool, to filter out non-Arabic solutions. Finally, it
leverages a decision tree that is trained on language
model probabilities of both the Arabic and Roman-
ized forms to render the final decision for each word
in context as either being Arabic or English.

Bar and Dershowitz (2014) addresses the chal-
lenge for Spanish-English LCS. The authors use sev-
eral features to train a sequential Support Vector Ma-
chines (SVM) classifier. The used features include
previous and following two words, substrings of 1-
3 character ngrams from the beginning and end of
each word thereby modeling prefix and suffix in-
formation, a boolean feature indicating whether the
first letter is capitalized or not, and 3-gram charac-
ter and word n-gram language models trained over
large corpora of English and Spanish, respectively.

Barman et al. (2014) present systems for both
Nepali-English and Spanish-English LCS. The
script for both language pairs is Latin based,
i.e. Nepali-English is written in Latin script, and
Spanish-English is written in Latin script. The au-
thors carry out several experiments using differ-
ent approaches including dictionary-based methods,
linear kernel SVMs, and a k-nearest neighbor ap-
proach. The best setup they found is the SVM-based
one that uses character n-gram, binary features indi-
cates whether the word is in a language specific dic-
tionary of the most frequent 5000 words they have
constructed, length of the word, previous and next
words, 3 boolean features for capitalization to check
if the first letter is capitalized, if any letter is capital-
ized, or if all the letters are capitalized.

On the other hand, for within language varieties,
AIDA2(Al-Badrashiny et al., 2015) is the best pub-
lished system attacking this problem in Arabic for
the Arabic varieties mix problem. In this context,
the problem of LCS is more complicated than mix-
ing two very different languages since in the case
of varieties of the same language, the two varieties
typically share a common space of cognates and of-
ten faux amis, where there are homographs but the

words have very different semantic meanings, hence
adding another layer of complexity to the problem.
In this set up the assumed script is Arabic script.
AIDA2 uses a complex system that is based on a mix
of language dependent and machine learning com-
ponents to detect the linguistic code switch between
the modern standard Arabic (MSA) and Egyptian
dialect (EGY) that are both written using Arabic
script. It uses MADAMIRA(Pasha et al., 2014) to
find the POS tag, prefix, lemma, suffix, for each
word in the input text. Then it models these fea-
tures together with other features including word
level language model probabilities in a series of clas-
sifiers where it combines them in a classifier ensem-
ble approach to find the best tag for each word.

In this paper we address this challenge using a
generic simple language independent approach. We
illustrate our approach on both language pair tracks.

2 Approach

The presented system in this paper is based on
the idea we presented in (Al-Badrashiny and Diab,
2016). It is based on the assumption that each lan-
guage has its own character pattern behaviors and
combinations relating to the underlying phonology,
phonetics, and morphology of each language inde-
pendently. Accordingly, the manner of articulation
constrains the possible phonemic/morphemic com-
binations in a language.

Accordingly, we use a supervised learning frame-
work to address the challenge of LCS. We as-
sume the presence of annotated code switched train-
ing data where each token is annotated as either
Lang1 or Lang2. We create a sequence model using
Conditional Random Fields (CRF++) tool(Sha and
Pereira, 2003). For each word in the training data,
we create a feature vector comprising character se-
quence level probabilities, unigram word level prob-
abilities, and two binary features to identify if the
word is named entity or not and is other or not . Once
we derive the learning model, we apply to input text
to identify the tokens in context. For the charac-
ter sequence level probabilities, we built a 5-gram
character language model (CLM) using the SRILM
tool(Stolcke, 2002) for each of the two languages
presented in the training data using the annotated
words. For example, if the training data contains
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lang1 lang2 mixed ne ambiguous fw other unk
MSA-DA-Training 127626 21722 16 21389 1186 0 13738 0
MSA-DA-Dev 6406 9326 2 3024 10 0 1888 0
EN-SP-Training 58844 27064 44 2364 252 11 20705 153
EN-SP-Dev 7067 5207 8 368 22 0 3912 58
Table 1: Language distribution (words/language) in the training and test data sets for all language-pairs

the two languages “lang1” and “lang2”, we use all
words that have the “lang1” tags to build a character
5-grams LM for “lang1” and the same for “lang2”.
We apply all of the created CLM to each word in the
training data to find their character sequence prob-
abilities in each language in the training data. To
increase the difference between the feature vectors
of the words related to “lang1” and those related to
“lang2”, we use a word level unigram LM for one of
the two languages in the training data. In practice,
we pick the language where large corpora exist in or-
der to build the LM. Then we apply the unigram LM
to each word in the training data to find their word
level probability. For the “ne” feature, we use the
tagged named entities words from the training data
as a lookup table. Then we put one in this feature
if the word in the input tweet can be found in that
lookup table, otherwise it is zero. We use SPLIT
(Al-Badrashiny et al., 2016) to check if the word is
numbers, dates, urls, emoticons, sounds, or punctu-
ation. Then if the word is found to be any of these
types, we put one the “is other” feature, otherwise it
is zero.

3 Experimental Setup

Table 1 shows the labels distribution of each lan-
guage in the training and dev sets. The lang1, lang2
labels refer to the two languages addressed in the
dataset name, for example for the language pair
English-Spanish, lang1 is English and lang2 is Span-
ish, in that order.

We also used the English Gigaword (LDC, 2003b)
to build the unigram word level LM for the English
part in English-Spanish. And the Arabic Gigaword
(LDC, 2003a) to build the unigram word level LM
for the Arabic part in MSA-DA.

4 Evaluation

Table 2 shows the best results we got on the dev
sets of both language-pairs. The best results we got

was by tuning the CRF classifier to use a window of
17 words (eight words before and after the current
words).

MSA-DA-Dev EN-SP-Dev
lang1 81% 95%
lang2 83% 94%
mixed 0% 0%
ne 91% 70%
ambiguous 0% 0%
fw 0% 0%
other 99% 97%
unk 0% 12%
w-avg F-score 85% 94%

Table 2: Summary results of our system performance on the

dev data of both language-pairs. For each group, the F-score is

presented for all tags followed by the weighted average F-score

for all tags.

Table 3 shows the results on the test set.

MSA-DA-Test EN-SP-Test
lang1 77% 81%
lang2 83% 95%
mixed 0% 0%
ne 83% 23%
ambiguous 0% 0%
fw 0% 0%
other 99% 95%
unk 0% 0%
w-avg F-score 83% 91%

Table 3: Summary results of our system performance on the

test data of both language-pairs. For each group, the F-score is

presented for all tags followed by the weighted average F-score

for all tags.

The results show that the our system works bet-
ter on the EN-SP data than the MSA-DA because,
the words in the MSA and DA languages do not cre-
ate disjoint sets, there is significant overlap hence
they share significant character and word patterns.
Hence, modeling more nuanced features is needed
such as POS tags and morphological information to
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improve the performance on the MSA-DA data. The
main tag that need some more improvement is the
“ne”. It needs some other sophisticated techniques
other than just using a lookup table. We also mis-
understood the “others” tag in the Spanish-English
data. We gave any word that starts with # the “other”
label as in the Arabic guidelines, which affected our
final results.

The main advantage of the proposed system is that
it is language independent since it does not require
any language-dependent components. Finally, the
simplicity of our system made it very fast. It can
process up to 20,000 words/sec; which renders it
very efficient and amenable to large scale process-
ing especially if a language identification module is
required as a preprocessing step in some other appli-
cations (ex. Machine translation)
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Abstract

We describe our present system for language
identification as a part of the EMNLP 2016
Shared Task. We were provided with the
Spanish-English corpus composed of tweets.
We have employed a predictor-corrector algo-
rithm to accomplish the goals of this shared
task and analyzed the results obtained.

1 Introduction

Code-mixing, a phenomenon in linguistics, is ex-
hibited by multi-lingual people. Any utterance in
which the speaker makes use of the grammar and
lexicon of more than one language is said to have
undergone code-mixing or code-switching (Appel
and Muysken, 2005).

English is considered the primary language of
use, as well as the most widely used language on the
internet, accounting for around 53.6% content lan-
guage of websites (W3Techs, 2015). It may be a bit
of surprise that the value isn’t higher. However, the
statistics on social media re-inforce this idea, since
around half of the messages on Twitter are in non-
English languages (Schroeder, 2010).

In contrast to English, multilingual people tend to
communicate in several of the languages that they
know. This is because of several reasons: some
multilingual speakers feel higher level of comfort
in their native language than in English; some con-
versational topics are more fluid in a particular lan-
guage and some expressions convey the message
properly only in one’s native language.

In this paper, we describe our system based on
predictor-corrector algorithm as part of the shared

task of EMNLP 2016 Code-Switching Workshop.
The system has been applied on the English-Spanish
code-mixed corps of tweets. Several lexicons were
employed along with some rules into the system, the
results were obtained and discussed in detail.

Section 2 describes the conference task descrip-
tion, Section 3 deals with the tools and techniques
we used, Section 4 describes the system function-
ing, Section 5 talks about the results obtained and
finally, Section 6 closes with a discussion.

2 Task description

The EMNLP 2016 Code-Switching Workshop1 in-
cluded a Shared Task on two language pairs: (1)
English-Spanish and (2) Modern Standard Arabic-
Arabic dialects. In the present attempt, We worked
only on the English-Spanish task. The task or-
ganizers provided a corpora composed from code-
switched tweets on which annotation had to be done
using the following labels:

1. lang1: Language 1 of the pair- English in our
case. We use this if the word is undoubtedly
used in English in the given context.

2. lang2: Language 2 of the pair- Spanish for us.
It is same as lang1 and we use this as this word
is undoubtedly used as Spanish.

3. mixed: Mixed words for the words that are
composed of both the languages. An ex-
ample given was ”Snapchateame”, in which
”Snapchat” was used from English and ”-
eame” was from Spanish.

1http://care4lang1.seas.gwu.edu/cs2/call.html
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4. NE: Named Entities- used for proper nouns like
people, places, organizations, locations, titles
and such.

5. ambiguous: Ambiguous words that exist in
both English and Spanish and suh words are
hard to be clarified based on the context given.

6. FW: Foreign words, which do not appear either
in English or in Spanish, but exist in another
language and used in that context.

7. UNK: Unknown words which do not fit any of
the above categories and is unrecognizable.

8. Other: Numbers, symbols, emojis, URLs and
anything else that is not a ”word”. However,
the words beginning with a ”hashtag” (#) are
treated as other tag.

The tweets were provided in terms of sentences
and we were asked to develop a system that would
annotate every token in the entire corpus of tweets
as one of the given eight labels.

3 Tools and Techniques Used

3.1 Lexicons used

The dictionaries we used are the following:

1. English dictionary: We use the Python En-
chant library2 for checking the English words
and their existence in the dictionary. We also
create a slang dictionary of our own containing
colloquial English text words such as ”LOL”
and ”gr8”. We collected the lexicons from the
works of researchers at the University of Mel-
bourne and University of Texas at Dallas (Han
et al., 2012; Liu et al., 2011; Liu et al., 2012).

2. Spanish dictionary: We use the Python En-
chant library once again for checking of the
words’ existence in the Spanish dictionary.

3. Foreign dictionaries: We also use the Italian,
French, Portuguese (Brazil), Portuguese (Por-
tugal) and German dictionaries from Python
Enchant to check for words’ existence. Since
the geographical spread is given, any person

2https://pypi.python.org/pypi/pyenchant/

with code-switching possibility between En-
glish and Spanish would most likely borrow
words from one of these languages.

4. Stanford Named Entity Recognizer: For
identifying the named entities, we used
the Stanford NER (Named Entity Recog-
nizer) (Finkel et al., 2005) and it’s Python in-
terface in the nltk library3.

3.2 Algorithm
3.2.1 Word Slicing

For identifying the mixed words, we use a word-
slicing algorithm. It consists of the following steps:

1. We keep slicing a word into two parts of vary-
ing lengths. For example, for ”abcde”, we
would obtain four splits:

• ”a” and ”bcde”
• ”ab” and ”cde”
• ”abc” and ”de”
• ”abcd” and ”e”

2. For each of these splits, we check if one part
is present in the English dictionary and one
part appears in the Spanish dictionary. In such
cases, it would be declared as a mixed word.
For example, if ”abc” was identified as an
English word and ”de” was a Spanish word,
”abcde” would be declared a mixed word.

3.2.2 Predictor-Corrector algorithm
We use this algorithm for the words that are

present in both the English and Spanish dictionaries.

• Prediction: During initial tagging, if a word is
present in both the dictionaries, it is tagged as
”both”.

• Correction: During the second round, we return
to the point of words that are tagged ”both” and
if both the words on either side (or the adjacent
one if at the beginning or end) are in the same
language, it is corrected to that language, oth-
erwise marked as ambiguous.

This way, our predictor-corrector method helps us to
achieve better accuracy for identifying the ambigu-
ous words.

3http://www.nltk.org

113



4 System Description

We take every tweet at a time and come down to the
word level tagging before moving to the next tweet.

4.1 Dictionary words

• For every word, we first strip it of a ”hashtag”
(#), if there. Next, we run the Stanford Named
Entity Recognizer4. The words identified as a
Named Entity are tagged ”NE” within a sen-
tence.

• Before adopting our dictionary checking mod-
ule, we check whether the token is all-word or
it contains any punctuation mark/special char-
acter or number in it or not. If it does, we label
it as other. Otherwise, we advance to the next
step.

• Next, we check for the word’s presence in the
English and Spanish dictionaries. Based on
their presence or absence in either dictionary,
we take action:

– If the word is present in the English dictio-
nary and absent in the Spanish dictionary
or vice-versa, it is immediately tagged
lang1 or lang2 respectively.

– If the word is present in both the En-
glish and Spanish dictionaries, it is ini-
tially tagged as ”both” and then returned
to the Predictor-Corrector algorithm de-
scribed in section 3.2.2. According to
the results from that, we tag the word as
lang1, lang2 or ambiguous.

– If it is not present in either of the dictio-
naries, we go through another list of pro-
cesses described in section 4.2.

4.2 Non-dictionary words

If the word is not found in either the English or the
Spanish dictionary, we use the following techniques:

• We check for the word’s presence in the
French, Spanish, Portuguese (Portugal), Por-
tuguese (Brazil) and German dictionaries. If
found, we label the word as a foreign word
(FW).

4http://nlp.stanford.edu:8080/ner/

Tweet type No. of tweets F-score
Monolingual 6090 0.83

Code-switched 4626 0.75
Total 10716 0.79

Table 1: Tweet-level results

Label Tokens Precision Recall F-score
lang1 16944 0.509 0.449 0.478
lang2 77047 0.813 0.597 0.689

ambiguous 4 0.000 0.000 0.000
mixed 4 0.000 0.000 0.000

ne 2092 0.139 0.169 0.153
fw 19 0.000 0.158 0.010

other 25311 0.500 0.431 0.466
unk 25 0.002 0.240 0.003

Table 2: Word-level results

• If the word is still not found, we use the word-
slicing algorithm spoken about in section 3.2.1
to see if it is a mixed word or not. If it is, we
tag it as mixed.

• If the word is not mixed, we have failed to find
any of the given criteria in order to fit, we label
it as unk or unknown.

5 Results

Tables 1 and 2 summarize the tweet-level and word-
level results for the test data, while the overall accu-
racy was determined to be 0.536.

The accuracies are a bit lower than on the training
and development data (where we achieved a best F-
score of 0.772) and there are quite a few scopes for
improvement that we can think of:

• The Named Entity Recognizer works based
only on the English language. If we ran both
English and Spanish NERs, that might have
helped to improve the accuracy for ”ne”.

• For ambiguous words, our existing predictor-
corrector method would lead to tagging more
ambiguous words than there actually would be,
since a lot of the surrounding words would be
unknown/other. Moreover, those are simply
tagged as ambiguous, while they are not in-
deed. We expanded our search area on finding
non-tagged words, it may have helped increas-
ing the accuracy here.
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• For identifying the foreign words, we have con-
sidered the potential loss of accents while typ-
ing and that might have helped us to increase
our detection for foreign words a bit more.

• In case of identifying the mixed words, we
check the presence of word slices in dictionar-
ies. However, many of these slices would be
morphemes and not complete words and thus,
wouldn’t be found in a dictionary. We would
need to develop a way of detecting presence
of morphemes in a language for this. An N-
gram pruning technique may help, but in code-
switched contexts, with more than 2 labels to
classify words in, it may not be as helpful as in
a binary situation.

• Certain misspellings, typos, abbreviations and
contractions may not have carried and been
wrongly classified. We would need more
sophisticated algorithms for detecting these
cases.

6 Conclusion

We have achieved a healthy level of accuracy and
utilized a fully developed algorithm without any
machine learning or classifiers and also discover
and discuss some areas of improvement and poten-
tial correction. In future works, we would perhaps
tweak our algorithms in those ways to achieve a bet-
ter accuracy.
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Abstract

This paper describes the Howard University
system for the language identification shared
task of the Second Workshop on Computa-
tional Approaches to Code Switching. Our
system is based on prior work on Swahili-
English token-level language identification.
Our system primarily uses character n-gram,
prefix and suffix features, letter case and spe-
cial character features along with previously
existing tools. These are then combined with
generated label probabilities of the immediate
context of the token for the final system.

1 Introduction & Prior Approaches

The internet and social media have led to the emer-
gence of new registers of written language (Taglia-
monte and Denis, 2008). One of the effects of this is
the emergence of written codeswitching as a com-
mon occurrence (Cárdenas-Claros and Isharyanti,
2009). The First Workshop on Computational Ap-
proaches to Codeswitching brought increased atten-
tion to this phenomenon. This paper is our sub-
mission for the shared task in token-level language
identification in codeswitched data for the second
such workshop. Our submission is for the Spanish-
English language pair.

Our approach was informed particularly by the
submissions to the previous shared task in language
identification in codeswitched data. Most, if not all,
of the previous approaches to word-level language
identification utilized character n-grams as one of
the primary features (Solorio et al., 2014). Nguyen
and Doğruöz (2013) and all but one of the systems

Train Dev Test
# Tweets 11,397 3,011 17,723
# Tokens 139,539 33,276 211,474
Avg. tokens/tweet 12.2 11.1 11.9
% English words 56.5% 50.5% 15.3%
% Spanish words 24.1% 26.0% 58.6%
% Mixed <0.1% <0.1% <0.1%
% Ambiguous 0.2% 0.2% <0.1%
% Named Entities 2.1% 2.2% 2.1%
% Foreign words <0.1% 0.0% <0.1%
% “Other” 16.9% 20.6% 23.9%
% “Unknown” 0.1% 0.4% <0.1%

Table 1: Data set statistics

submitted to the previous shared task used some
form of context, several of which used conditional
random fields. A number of other types of features
have been utilized as well, including capitalization,
text encoding, word embedding, dictionaries, named
entity gazetteer, among others (Solorio et al., 2014;
Volk and Clematide, 2014).

2 Data Description

Several thousand tweets were collected from Twit-
ter and labeled by human annotators. Each to-
ken was labeled as being English, Spanish, ambigu-
ous (words like no which are valid words in both
languages and can’t be disambiguated by context),
mixed (tokens with elements from both languages),
foreign (words from other languages), a named en-
tity, “unknown” (tokens like “asdfhg”) and “other”.
The “other” category includes numbers (unless they
represent a non-numerical word, like <2> used
for “to”), punctuation, Twitter @-mentions, URLs,
emojis and emoticons. These tweets were divided
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into train, development and test sets and released1

to the participants in the shared task. Basic statis-
tics about the train, development and test sets can be
seen in Table 2. As can be seen, the proportion of
English and Spanish is significantly different for the
test set compared to the other two sets.

Systems were evaluated at the tweet level as
well. For this purpose, tweets are considered as ei-
ther monolingual or codeswitched. A codeswitched
tweet must have tokens from at least two of the fol-
lowing categories: English, Spanish, mixed and/or
foreign. All other tweets are considered monolin-
gual.

3 Methodology

In another paper, also submitted to this confer-
ence, we experimented with a number of features
for token-level language identification on mixed
Swahili-English data (Piergallini et al., 2016). For
this shared task, we modified our approach in a few
ways due to the parameters of the task and also ex-
plored the use of a few new features. These are de-
scribed below:

1) Word

2) Character n-grams (1- to 4-grams)

3) Word prefixes and suffixes (length 1 to 4)

For features 1-3, we filtered out words, n-grams, pre-
fixes and suffixes that occurred less than 25 times for
training our model. N-grams, prefixes and suffixes
were also converted to lower-case at the three and
four character length to reduce sparsity.

4) English-Spanish dictionary

The dictionary feature checks the token against the
English and Spanish dictionaries used in the GNU
Aspell package2 and marked according to whether it
was in one or both of the English or Spanish dictio-
naries, or neither.

5) English POS tag
1Data was released by providing tweet ID numbers. Partic-

ipants scraped the text of the tweets themselves. Since Twitter
users may delete or restrict access to their tweets, not all partic-
ipants may have had the exact same subset of the full data.

2Available here: https://github.com/WojciechMula/aspell-
python

6) Spanish POS tag

The part-of-speech tags were generated by the Stan-
ford NLTK POS tagger (Toutanova et al., 2003). The
Spanish tags were truncated at three characters to re-
duce sparsity.

7) Named entity tag

Tweets were labeled with the named entity recogni-
tion system described in Ritter et al. (2011). This
system was developed for use on Twitter data.

8) Brown cluster and cluster prefixes

Brown clustering groups word types into a binary
tree structure based on word context (Brown et al.,
1992). Clusters tend to correlate with syntactical and
semantic categories. They also correlate with lan-
guage, since words of one language tend to co-occur
with other words of the same language. To gen-
erate these clusters, we lower-cased all words and
replaced all Twitter user names with “@username”.
We used 400 clusters based on the size of the data
and the desire for some distinctions beyond basic
word classes. Words that occur infrequently tend to
be quite noisy in how they are clustered, so words
that occurred less than 10 times were not given a
cluster. To take advantage of the binary tree struc-
ture, we included features based on prefixes of the
cluster. For example, in our clusters, nodes begin-
ning with <0> were mostly Spanish words, while
nodes beginning with <11> were mostly English
words.

The remaining features are binary flags:

9) Is there a Latin alphabetic character?

10) Is there a Spanish-specific letter?

Spanish-specific characters are limited to accented
vowels, <ü> and <ñ>. These are strong indica-
tors of a word being Spanish, but they do not all oc-
cur equally frequently, so this feature reduces spar-
sity. For example, <ó> occurs approximately 40
times more frequently than <ü>. This is the most
language-specific feature we use. These characters
occur extremely infrequently in English text com-
pared to Spanish text. A language-independent con-
ceptualization of this would be whether the word
contains a member of the relative complement of
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the set of English letters in the set of Spanish let-
ters. Such a feature would not be useful in the other
direction since the 26 letters of the English alphabet
are all used in Spanish, particularly in online usage
(<w> and especially <k> are not limited to loan-
words in internet Spanish writing).

11) Is there a number character?

12) Is the token a numerical expression?

Feature 12 is true for tokens which consist entirely
of digits, mathematical symbols, and characters used
for expressions of time (“12:00”) or currency sym-
bols (<$>), etc.

13) Is there an emoji Unicode character?

Since all tokens composed of emojis are labeled as
“other”, this feature does not rely on a particular
emoji occurring in our training data to accurately
classify tokens in the test data.

14) Does the token begin a tweet/sentence?

15) Is the first letter capitalized?

16) Are all of the other letters upper case?

17) Are all of the other letters lower case?

The last four features consider capitalization. These
features was added particularly to account for named
entities and abbreviations, acronyms, etc. which
are typically capitalized or in all upper-case letters.
Since words at the beginning of sentences are fre-
quently capitalized, eliminating what is usually a
distinction between proper and common nouns, fea-
ture 14 should reduce the weight towards labeling a
word as a named entity.

Finally, we used logistic regression with L2-
regularization to generate label probabilities on to-
kens using the various combinations of the first 14
features. The label probabilities of the previous and
following tokens were then added to the feature vec-
tor for each token. Tokens at the beginning or end
of a tweet were given all zero probabilities for the
absent context. This was found to significantly im-
prove performance in our work on Swahili-English
codeswitching (Piergallini et al., 2016) and is sim-
pler than CRF3. A second logistic regression model
was then trained and applied to the final feature set.

3CRF using the same feature sets achieves improvements of
only 0.05-0.2% on accuracy but is also much slower.

3.1 Results & Discussion

The results of various feature combinations on the
development set are summarized in Table 3. Four
of the labels are excluded from the table. None of
our models ever predicted a token to be ambiguous,
mixed or foreign because these categories were all
very rare in the both the training and development
data. Conversely, the other category was very easily
predicted by even the baseline model and achieved
F1 scores of about 99.8% for all configurations.

There is not a high variation in the accuracy based
on the features used. What can be seen is that the
addition of the label probabilities for the previous
and following word consistently adds about 2% to
the overall accuracy and improves performance on
the English and Spanish categories. It seems that
part-of-speech tags and Brown clusters are not espe-
cially helpful. It is possible POS tags they could be
more useful with a coarser POS tag set, or that the
Brown clusters could be more useful with different
pre-processing. The use of the named entity recog-
nizer does improve performance on the named entity
category significantly, but it did not improve overall
accuracy much.

For our predictions on the test data, we used fea-
tures 2-7 and 9-14 with label probabilities on the
word context. Results for our submitted predic-
tions are summarized in Table 3.1. According to
the released results, our system never correctly la-
beled a token as ambiguous or mixed. It also never
labeled a token as foreign at all. There are two
versions: one with the original test data, and one
which excludes tweets which contained URLs. We
overlooked URLs in designing our model since they
never occurred in the training or development data,
although our model likely would’ve labeled them
correctly had they occurred in training. Neverthe-
less, we achieve an overall accuracy in line with
other systems without correcting for this. When
tweets containing URLs are excluded, we achieve
the highest performance on several measures. Those
measures which were highest among submitted sys-
tems are noted in bold.

To improve on our model, adding a feature or
procedure for properly handling URLs would be the
obvious first change to make. However, this does
not account for all of the errors in our predictions.
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Features Used Baseline +Dict +Binary +Brown clusters +POS/NER tags +Brown/NER
fts 1-3 fts 1-4, 9-14 fts 2-4, 8-14 fts 2-7, 9-14 fts 2-4, 7-14

Label Prob. none w±1 none w±1 none w±1 none w±1 none w±1

English
P 93.1 95.7 93.4 96.1 93.4 96.1 94.0 96.1 93.5 96.4
R 97.0 97.9 97.2 98.1 97.3 98.1 96.8 97.9 97.3 98.1
F1 95.0 96.8 95.3 97.1 95.3 97.1 95.4 97.0 95.4 97.2

Spanish
P 91.6 94.0 92.7 94.4 92.7 94.4 91.7 94.2 92.8 94.5
R 90.6 96.1 91.0 96.7 91.0 96.7 91.9 96.4 91.0 96.8
F1 91.1 95.0 91.8 95.5 91.9 95.5 91.8 95.3 91.9 95.6

Named Entity
P 60.4 62.7 61.9 63.1 62.0 63.3 70.3 69.6 68.1 70.5
R 26.6 29.7 33.5 32.3 33.1 32.6 38.4 39.9 38.7 41.6
F1 37.0 40.3 43.5 42.7 43.2 43.0 49.7 50.7 49.3 52.3

Unknown
P 0 0 0 25.0 33.3 33.3 33.3 16.7 50.0 0
R 0 0 0 0.8 0.8 0.8 0.8 0.8 0.8 0
F1 – – – 1.5 1.5 1.5 1.5 1.4 1.5 –

Accuracy 93.8 95.7 94.1 96.0 94.1 96.0 94.3 96.0 94.3 96.2
Table 2: Word-level performance of language identification models on development set (given in percentages)

Token-level Test w/o URLs
Overall Accuracy 95.1% 97.3%

English
P 90.9% 93.6%
R 92.9% 94.1%
F1 91.9% 93.8%

Spanish
P 97.6% 98.4%
R 97.8% 98.4%
F1 97.7% 98.4%

Named Entity
P 48.9% 60.6%
R 59.6% 59.9%
F1 53.7% 60.3%

Other
P 99.9% 99.9%
R 92.9% 99.3%
F1 96.3% 99.6%

Unknown
P 1.3% 1.8%
R 7.0% 8.0%
F1 2.1% 2.9%

Tweet-level Test w/o URLs
Weighted F1 89.0% 91.3%

Table 3: Performance of the final system on the test data

Notably, our system does poorly with ambiguous,
mixed and foreign words. This is largely due to there
being very few instances of these categories. We
also suspect that dealing with them would require
some special approaches to account for their partic-
ular features. For example, a mixed language word
would be expected to have some n-grams found in
both English and Spanish, but logistic regression
can’t easily account for this type of pattern. A fea-
ture designed to represent the interaction between
the English- and Spanish-like features of a mixed

word would be required. It is also possible that
some tokens were mislabeled. In our examination,
it seemed that the ambiguous and mixed categories
were not consistently distinguished.

It is also evident that our system does much worse
on named entities than on other large categories. It
could be that the tool we used did not have a com-
prehensive list of named entities (we missed “Or-
ange Is the New Black”, for example). It was also
only trained on English. Our case features may also
be more powerful when combined rather than made
into separate binary features. There is an interac-
tion between whether the first letter or all letters are
upper or lower case and whether the word is at the
beginning of a sentence, and the algorithm we used
cannot capture that easily. This could potentially
slightly improve performance on named entities. We
would also note that English and Spanish do not con-
sider the same types of words to be proper nouns,
and this may be the cause for some inconsistencies
in the annotations that we noticed.

4 Conclusion

In this paper, we described our system for Spanish-
English token-level language identification. We
achieved the highest performance on several mea-
sures using only the token’s immediate context. We
also found that POS/NE tagging tools and Brown
clusters did not significantly improve overall accu-
racy over using simpler features, but it is possible
refinements could make them more useful.
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Abstract

Half of the world’s population is estimated to
be at least bilingual. Due to this fact many
people use multiple languages interchange-
ably for effective communication. At the Sec-
ond Workshop on Computational Approaches
to Code Switching, we are presented with a
task to label codeswitched, Spanish-English
(ES-EN) and Modern Standard Arabic-Dialect
Arabic (MSA-DA), tweets. We built a Con-
ditional Random Field (CRF) using well-
rounded features to capture not only the two
languages but also the other classes. On the
Spanish-English(ES-EN) classification task,
we obtained weighted F1-score of 0.88 on the
tweet level and an accuracy of 96.5% on the
token level. On the MSA-DA classification
task, our system managed to obtain F1-score
of 0.66 on tweet level and overall token level
accuracy of 74.7%.

1 Introduction

It is very common to find people adept in two or
more languages (Ansaldo et al., 2008). During in-
teractions and conversations in real life as well as in
social media, multilingual people tend to switch be-
tween languages in written as well as verbal com-
munication. Hale (2014) found that over 10% of
Twitter users tweet in multiple languages and they
are in general more active users than their mono-
lingual counterparts. Modupeola (2013), in his re-
search of an effective way of teaching English to
Nigerian students, finds codeswitching from English
to Nigerian by teachers as a necessity for generating
interest, elaborating word meanings and the transfer

of knowledge of the secondary language in an effi-
cient manner. Codeswitching phenomenon is more
prevalent in multi-cultural societies, where means
of communication is not primarily in a single lan-
guage (Cheng and Butler, 1989; Auer, 2013). It can
also be attributed to the huge amount of exposure
to other languages due to social media, TV shows
and movies. Codeswitched text identification is of-
ten the first step for text to speech translation, auto-
matic speech recognition and sentiment analysis.

Our paper deals with the phenomenon of
codeswitching between Spanish and English (ES-
EN) words and Modern Standard Arabic to Dialect
Arabic (MSA-DA). The main aim of this paper is to
describe our system submitted to the Second Work-
shop on Computational Approaches to Code Switch-
ing shared task (Molina et al., 2016). We use Con-
ditional Random Fields (CRF) based system to cate-
gorize the codeswitched text into eight different cat-
egories: lang1, lang2, other, ne, mixed, unknown,
ambiguous, and fw(foreign words). The categories
lang1 and lang2 refer to the two main language
pairs, while ne refers to named entities. ES-EN
classification uses all these labels whereas MSA-DA
classification does not use the labels unk and fw la-
bels. First we elaborate on the various features we
chose to identify and distinguish one category from
the other. Then we elaborate on our results and
findings. Finally we will analyze the strengths and
weaknesses of our system.

2 Related Work

Research into codeswitching and codeswitching de-
tection is not new. There have been many studies on
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codeswitching at socio-cultural level. According to
Heredia and Altarriba (2001), the main reason mul-
tilingual people codeswitch is the lack of a single
language proficiency and frequency/ease of use of
word of one language than the other in given context.
Eldin (2014) highlight other factors such as clarifi-
cation, persuasion, effective interaction and current
mood and expression of the person for codeswitch-
ing.

Recently many researchers have tried various
computational methods for language identification
in codeswitched text. Yu et al. (2012), Garrette et al.
(2015) and Bacatan et al. (2014) use language mod-
els and word n-grams with position and frequency
data as part of their system to identify codeswitched
text. Both achieved an accuracy of over 80%. Ma-
harjan et al. (2015) collected codeswitched tweets
for Spanish-English and Nepali-English language
pairs. They first figured out some seed users who
codeswitched frequently and then followed him/her
to collect more codeswitched tweets.They obtained
an accuracy of 86% and 87% for Spanish-English
and Nepali-English dataset using CRF GE algo-
rithm.

CRF has been used for many different tasks,
especially dealing with sequence labeling such as
POS tagging (Lafferty et al., 2001a; Silfverberg et
al., 2014) and named entity recognition (McCal-
lum and Li, 2003; Settles, 2004). Similar to us,
three out of seven participating teams also used
CRF for codeswitching detection for the EMNLP
2014 language identification shared task (Solorio et
al., 2014). Other participants used Support Vector
Machines (SVM),k Nearest Neighbour (KNN), Ex-
tended Markov Models (eMM) and spell checker
methods with external resources to tackle the prob-
lem. In the same year of the shared task, we used
dictionaries to store and search prefix ngrams and
further used a spell checker to identify wrongly
spelled words from social media lingo so they can be
classified correctly (Shrestha and Dhulikhel, 2014).

3 Methodology

Our system uses CRF for modeling the sequence
of codeswitched tweets. CRF is a very popular se-
quence classifier for when constituents of a sequence
are dependent upon their adjacent context. Rather

than modeling for each part separately, it makes
more sense to model for the whole sequence. CRF
calculates the probability of a whole sequence of la-
bels given a sequence of tokens (words) by using
Equation 1. Here ~s represents a sequence of labels
and ~x represents a sequence of tokens. ~φ and ~w
are the feature vector and the weights for the feature
vector respectively.

p(~s|~x; ~w) =
exp(~w.~Φ(~x,~s))∑

~s′εSm exp(~w.~Φ(~x,~s′))
(1)

Using a CRF with task-specific features, given
a context can result in very robust systems for se-
quence labeling (Lafferty et al., 2001b; Ye et al.,
2009). CRF fits the problem of codeswitching de-
tection since frequent switching between languages
is not very common. For example, if a token is in
Spanish, it is very likely that the token before it and
after it are also in Spanish. We describe our features
in detail below.

3.1 Features
1. Token: The token itself is the biggest indicator

of which language it might belong to. Fry and
Kress (2012) estimate that the most frequent
1,000 words in the English language accounts
for 89% of the text written in English. If the
training data is large enough, even a dictionary
based approach can provide a very good base-
line to build upon. This feature is especially
helpful for the tokens that are not shared be-
tween the two languages.

2. Suffix: Most languages have distinctive suf-
fixes that tokens end in. For example: In En-
glish we add ly to adjectives to turn them into
adverbs similarly in Spanish -mente is added to
adjectives to turn them into adverbs. So simply
in English is simplemente in Spanish. For the
ing form of the verb in English there is a close
representation in Spanish using the characters
ando,iendo. English words ending in -tion have
a Spanish word equivalent in -cin. Similarly
English ency, ancy and Spanish encia, English
fic and Spanish fico,-fica etc are some of the
many equivalents. As there are many distinct
suffixes in both language it is a very helpful fea-
ture. We use 1-4 letter suffixes as features.
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3. Prefix: Although many common prefixes in
English have identical prefixes in Spanish
(eg:anti,auto,inter), similar to suffixes, these
languages also have distinctive prefixes. For
example pseudo in English is seudo in Spanish.
So pseudoscience in English is spelled as seu-
dociencia in Spanish. Other examples include,
words beginning in English with s,ph,poly gen-
erally begin in Spanish with es,f,poli respec-
tively. To incorporate these distinct prefixes
during classification, we use 1-4 letter prefixes
as features.

4. Prefix and Suffix bigrams: Rather than just
using prefixes and suffixes, we also used bi-
grams of prefixes and suffixes as features.

5. Titlecase: This feature can help catch named
entities as the most characteristic attribute of a
named entity in a properly written text is that it
is in titlecase.

6. Token is/has Punctuation(s): Punctuation to-
kens and tokens containing many punctuations
are more likely to fall in the other category.

7. has/all Unicode: Spanish tokens contain ac-
cented Unicode characters, whereas English
ones do not. Also, if the number of Unicode
characters in a word is very high, the word is
likely to be in the other category, for example,
in emoticons.

8. Number: Tokens containing numbers do not
belong to either language.

9. Uppercase: Token containing many upper-
case characters are usually abbreviations, NE
or slangs.

We use the same system with exactly the same
features for both ES-EN and MSA-DA language
pairs.

4 Implementation Details

We performed a very simple preprocessing step of
removing the hashtags since hashtags do not have
any significance for this task. The presence of hash-
tags might confuse the model instead. We also
removed non-ASCII quotation marks since these

Evaluation Metric ES-EN MSA-DA
Monolingual F1 0.90 0.72
Codeswitched F1 0.86 0.34
Weighted F1 0.88 0.66

Table 1: Tweet level results for both Spanish-English and Mod-

ern Standard Arabic-Dialect Arabic.

Label Recall Precision F1 score
ambiguous 0.000 0.000 0.000
lang1 0.919 0.919 0.919
lang2 0.981 0.975 0.978
mixed 0.000 0.000 0.000
ne 0.422 0.560 0.481
fw 0.000 0.000 0.000
other 0.993 0.994 0.994
unknown 0.000 0.000 0.000

Table 2: Recall, Precision and F1 score of token level results

for Spanish-English.

would wrongly be accounted as unicode features.
For CRF, we used the sklearn-crfsuite package (Ko-
robov, 2015), which itself is a wrapper over CRF-
suite (Okazaki, 2007). In order to obtain the best
model, we experimented over all of the available al-
gorithms in CRFsuite namely, lbfgs, l2sgd, ap, pa,
and arow. Using the provided development set, we
found the pa algorithm to perform the best among
them. We also performed hyperparamter optimiza-
tion by using randomized search over parameters
specific to each algorithm. We obtained the high-
est accuracy on the development set with pa type=1
and c=10.0. We used these parameters to train a fi-
nal model by combining both the training and the
development datasets. We used this model to obtain
our results on the test dataset.

5 Results

Tweet level results for both ES-EN and MSA-DA
are shown in Table 1. For ES-EN, our F1 scores for
both monolingual and codeswitched tweets are sim-
ilar, although the results for monolingual tweets are
slightly better. Our weighted F1 score is only 0.03
points below the system with the best weighted F1.
The token level results broken down by labels for
ES-EN are in Table 2. We could catch most of the
lang1, lang2 and other tokens. Both our precision
and recall are very high for these classes. We also
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Label Recall Precision F1 score
ambiguous 0.000 0.000 0.000
lang1 0.959 0.551 0.699
lang2 0.586 0.943 0.722
mixed 0.000 0.000 0.000
ne 0.662 0.851 0.745
other 0.977 0.973 0.975

Table 3: Recall, Precision and F1 score of token level results

for Modern Standard Arabic-Dialect Arabic.

catch nearly half of the name entities. Named enti-
ties are harder to capture with our system since we
do not have a specialized system for named entities,
apart from the features that check for titlecase and
uppercase. Our system did not catch any of the am-
biguous, mixed, fw or unknown tokens. The main
reason behind this might be how sparse these types
of tokens are in training. These comprised of only
0.408% and 0.652% of the total tokens in the train-
ing set the test set respectively. Most of the other
systems in the shared task also failed to catch these
tokens. Despite this, overall, our system was able
to obtain good results in the ES-EN language pair
codeswitching.

However, we did not fare as well for the MSA-DA
language pair. The monolingual F1 is a lot higher at
0.72 than the codeswitched F1 at 0.34 and as such
the weighted F1 also suffers. Our system has the
propensity of predicting a high number of tokens as
lang1, as evidenced by the token level results in Ta-
ble 3. The recall for lang1 is very high, while the
recall for lang2 is low. This might owe to the fact
that the ratio of tokens in lang1 and lang2 are re-
versed in training and test sets. In the training set,
68.74% of the tokens are lang1 and 11.70% of the to-
kens are lang2. Whereas in the test set, only 28.10%
of the tokens are lang1 and 46.62% of the tokens are
lang2. This might have led our model to predict high
number of lang2 tokens as lang1. Similar as in ES-
EN, we again perform very well for other tokens. A
surprising finding with the MSA-DA results is that
we have a lot better results for named entities than
for ES-EN in both precision and recall, although the
system used for both language pairs are exactly the
same. One reason might be that the model has a
higher number of named entities to learn from in
MSA-DA dataset than in the ES-EN dataset. Unfor-

State Coefficient Transition Coefficient
prefix:@,other 2.0138 lang1→ lang1 0.2050
suffix:os,lang2 0.6566 lang2→ lang2 0.2034
is number,other 0.5938 lang1→ ne 0.1629
has punct,other 0.5831 unk→ unk 0.1491
prefix:’,lang1 0.5704 ne→ ne 0.1087
suffix:as,lang2 0.5629 fw→ fw 0.1048
all punct,other 0.5563 ne→ lang1 0.0896
suffix:o,lang2 0.4872 lang1→ amb 0.0843
suffix:t,lang1 0.4663 lang2→mixed 0.0776
all unicode,other 0.4488 lang2→ amb 0.0712
suffix:a,lang2 0.4436 lang2→ ne 0.0651
suffix:tion,lang1 0.4264 mixed→ lang1 0.0455
prefix:th,lang1 0.4230 other→ lang1 0.0413
suffix:ed,lang1 0.3837 amb→ lang1 0.0412
suffix:ien,lang2 0.3830 unk→ other 0.0403
suffix:ing,lang1 0.3726 mixed→ lang2 0.0382
prefix:w,lang1 0.3517 unk→ lang1 0.0373
suffix:oy,lang2 0.3511 lang1→ unk 0.0371
prefix:Th,lang1 0.3302 lang1→mixed 0.0314
suffix:ly,lang1 0.3196 other→ unk 0.0276

Table 4: Most likely states (state:feature,label) and transitions

for the ES-EN model.

tunately, apart from that, we cannot provide any fur-
ther intuition into this due to our lack of knowledge
of Arabic. Overall, our results for the MSA-DA lan-
guage pair could definitely use some improvement.

6 Analysis

To gain an insight into what our model might be
learning, we look at the most likely states and tran-
sitions of our CRF model trained on the ES-EN lan-
guage pair dataset. These are shown in Table 4.
Most of the top likely states deal with prefixes and
suffixes. The state with the highest coefficient is the
one for tokens that have a prefix as @ being other.
This is very intuitive as most of the tokens that start
with @ are Twitter usernames and do indeed have
other as their label. The suffixes -os, as and a have
been associated with Spanish while t, tion, ed, ing,
and ly have been taken as indicators of the token be-
ing English by our model. Similarly, the tokens that
start with ’ as the prefix having label other has high
coefficient. This works for tokens such as ’s, ’ll, ’d.
Similarly most other top likely states are intuitive
and are aligned our knowledge of Spanish and En-
glish. The associations of is number, has punct and
all unicode with other also have high weight. This
reflects the data as numbers do not belong to either
language and tokens with all unicode characters are
mostly emoticons.
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Four out of five most likely transitions are be-
tween the same two labels. This shows that language
users do not switch between labels too often. The
most likely transitions are from English to English
and from Spanish to Spanish. The transition from
English to Spanish or vice versa did not fall under
the top 20 likely transitions. This might be because
a person can only use so many ne or other tokens
before switching back to a language but when a per-
son switches from one language to another, there is
no such constraint and people are likely to keep on
using the other language rather than switching back.

We also looked at some of the instances in the de-
velopment set where our system predicted the wrong
label. We made the most number of mistakes for
ne. Almost all of these mistakes were for tokens that
were not in titlecase. Since this was our only feature
specific to named entities, our model could not catch
these. There were also some cases where our model
did correctly label the tokens as named entities, such
as twitter, RT, iphones, etc but the labels given to
them in the dataset were different. The most con-
fusion between English and Spanish were for words
that are present in both languages such as yo, a, no,
senior, etc. But this was rare and most of the time
our model correctly labeled even these words.

7 Conclusion and Future Works

The task of codeswitching detection is highly suited
to be solved using CRF as evidenced by our results.
The performance of the system depends on the fea-
tures chosen and in our case, these features worked
for ES-EN and did not work too well for MSA-DA.
Our lack of knowledge of Arabic definitely proved
to be a hindrance in crafting sensible features for
MSA-DA. Nonetheless, we were able to obtain com-
petitive scores for both language pairs. We were
also able to see the characteristics of both English
and Spanish being captured by our model, especially
the most common prefixes and suffixes of both lan-
guages. In our further research, we will work to-
wards finding effective features for both ES-EN as
well as MSA-DA language pairs. One of the short-
comings of our system is also not being able to cap-
ture named entities. In the future, we will also look
into named entity recognition systems that work for
codeswitched texts.
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Abstract

The paper outlines a supervised approach to
language identification in code-switched data,
framing this as a sequence labeling task where
the label of each token is identified using a
classifier based on Conditional Random Fields
and trained on a range of different features,
extracted both from the training data and by
using information from Babelnet and Babelfy.

The method was tested on the develop-
ment dataset provided by organizers of the
shared task on language identification in code-
switched data, obtaining tweet level monolin-
gual, code-switched and weighted F1-scores
of 94%, 85% and 91%, respectively, with a
token level accuracy of 95.8%. When eval-
uated on the unseen test data, the system
achieved 90%, 85% and 87.4% monolingual,
code-switched and weighted tweet level F1-
scores, and a token level accuracy of 95.7%.

1 Introduction

Today many short messages contain words from dif-
ferent languages and it is a challenging task to iden-
tify which languages the different words are written
in. Often the messages contain text snippets from
several languages, that is, showing code-switching.
Sometimes the messages even contain code-mixing,
where there is a mix of the languages inside a single
utterance or even inside a token itself.

The first code-switching data challenge was orga-
nized at EMNLP 2014 (Solorio et al., 2014). The
task was to identify the language for each word in
a text, classifying the words according to six la-
bels: ‘Lang1’, ‘Lang2’, ‘Mixed’, ‘NE’, ‘Other’, and

‘Ambiguous’. The first two labels identify tokens
from the main languages that are mixed in the text,
while the third is for tokens with word-internal mix-
ing between these languages; ‘NE’ for named enti-
ties; ‘Other’ for language independent tokens (punc-
tuation, numbers, etc.) and tokens from other lan-
guages, and ‘Ambiguous’ denotes tokens that cannot
safely be assigned any (or only one) of the other la-
bels. This shared task was organized again this year
(Molina et al., 2016), with new datasets and slightly
different labels, adding ‘Unk’ for unknown tokens.1

Work on developing tools for automatic lan-
guage identification was initiated already in the
1960s (Gold, 1967), and although analysing code-
switched text is a research area which has started
to achieve wide-spread attention only in recent
years, the first work in the field was carried out
over thirty years ago by Joshi (1982), while Ben-
tahila and Davies (1983) examined the syntax of
the intra-sentential code-switching between Arabic
and French. They claimed that Arabic-French code-
switching was possible at all syntactic boundaries
above the word level.

Das and Gambäck (2013) give a comprehen-
sive overview of the work on code-switching un-
til 2015. Notably, Solorio and Liu (2008) trained
classifiers to predict code-switching points in Span-
ish and English, using different learning algorithms
and transcriptions of code-switched discourse, while
Nguyen and Doğruöz (2013) focused on word-
level language identification (in Dutch-Turkish news
commentary). Nguyen and Cornips (2016) describe

1An eighth label ‘FW’ was included for foreign words, but
no words in the English-Spanish corpora were tagged with it.
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work on analyzing and detecting intra-word code-
mixing by first segmenting words into smaller units
and later identifying words composed of sequences
of subunits associated with different languages in
tweets (posts on the Twitter social-media site).

The paper is organized as follows: Section 2 pro-
vides a description of the language identification
method, whereby a supervised model was built using
Conditional Random Fields to classify each token in
a tweet into one of the seven categories based on
different features, most of which are extracted from
the training data, as described in Section 3. Results
are then presented and discussed in Section 4, while
Section 5 addresses future work and concludes.

2 Language Identification Method

The language identification system was built around
a Conditional Random Field (CRF) classifier. We
used the C++-based CRF++ package (Kudo, 2013),
a simple, customizable, and open source implemen-
tation of Conditional Random Fields for segment-
ing or labelling sequential data. Conditional Ran-
dom Fields (Lafferty et al., 2001) are conditional,
undirected graphical models that can easily incor-
porate a large number of arbitrary, non-independent
features while still having efficient procedures for
non-greedy finite-state inference and training.

Conditional Random Fields calculate the condi-
tional probability of values on designated output
nodes given the values of (other) designated input
nodes. The conditional probability of a state se-
quence s =< s1, s2, . . . , sT > given an observation
sequence o =< o1, o2, . . . , oT > is calculated as in
Equation 1 (McCallum, 2003):

P∧(s|o) =
1
Zo

exp(
T∑

t=1

K∑
k=1

λk × fk(st−1, st, o, t))

(1)
where fk(st−1, st, o, t) is a feature function whose
weight λk, is to be learned via training. The feature
function values may range from −∞ to +∞.

To make all the conditional probabilities sum up
to 1, the normalization factor Zo is calculated in the
same fashion as in HMMs (Hidden Markov Mod-
els), that is, as given by Equation 2.

Zo =
∑

s

exp(
T∑

t=1

K∑
k=1

λk × fk(st−1, st, o, t)) (2)

To train a CRF, the objective function to be maxi-
mized is the penalized log-likelihood of the state se-
quences given the observation sequences:

L∧ =
N∑

i=1

log(P∧(s(i)|o(i)))−
K∑

k=1

λ2
k

2σ2
(3)

where {< o(i), s(i) >} is the labelled training data.
The second sum corresponds to a zero-mean, σ2-
variance Gaussian prior over parameters, which fa-
cilitates optimization by making the likelihood sur-
face strictly convex. Here, we set the parameter
λ to maximize the penalized log-likelihood using
Limited-memory BFGS (Sha and Pereira, 2003), a
quasi-Newton method that is highly efficient, and
which results in only minor changes in accuracy due
to changes in λ.

2.1 Features based on training data
Two sets of features were developed to train the
model: one extracted from the training data and the
other based on information from Babelnet (Navigli
and Ponzetto, 2012) and Babelfy (Moro et al., 2014),
with most of the features and their settings being
based on the training data. The complete set of fea-
tures induced from training data was as follows:

Local context. Local contexts play an important
role for identifying the languages. Here the two
preceding and two succeeding words were used
as local context.

Word suffix and prefix. Fixed length characters
stripped from the beginning and ending of the
current word. Up to 4 characters were removed.

Word length. Analysis of the training data showed
that the Spanish words on average were shorter
than the English words. Words with 1–4 char-
acters were flagged with a binary feature.

Word previously occurred. A binary feature
which checks if a word already occurred in the
training data or not.

Initial capital. In general, proper nouns tend to
start with capital letters, so this feature checks
whether the current word has an initial capital.
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All capitals. A binary feature which is set if the cur-
rent word contains only capital letters. The fea-
ture is very helpful for identifying named en-
tities (since, e.g., abbreviations often refer to
named entities).

Single capital letter: checks if the word contains a
single capital letter or not.

All digits: set to 1 if the word contains only numer-
ical characters. This is helpful for identifying
tokens belonging to the ‘Other’ category.

Alphanumeric: a binary feature which flags if
the word contains only digits and alphabetical
characters together.

All English alphabet: checks if all a word’s char-
acters belong to the English alphabet.

Special Spanish character: a flag which is set if
the current word contains any Spanish-specific
letters (á, é, etc.).

Hash symbol: set to 1 if a word contains the sym-
bol ‘#’, otherwise 0.

Rate symbol: set to 1 if the current word contains
the symbol ‘@’.

Word with single letter. Many single letter words
were observed to belong to Spanish, so this flag
is set if the word length is exactly 1.

Two consecutive letters. Some words repeat two
character sequences several times (e.g., ha-
haha, jaja). Each token is split into two char-
acter sequences and this binary feature is set if
each two letter character sequences matches.

Same letter occurred multiple times. Many
words in tweets contain sequences of the same
character repeated many times (e.g., ewww,
yaaaas). The feature is set if a letter occurred
in a word more than two times consecutively.

Gazetteer NE list. A list of named entities (NE)
was collected from the training data. This flag
is set if a token matches an item on the NE list.

Special character list. A list of special characters
(e.g., emojis) was collected from the training
data. If a tokens contains any character which
is on the list, the binary feature is set.

2.2 Babelnet and Babelfy features

Three further features were developed from external
resource, Babelnet (Navigli and Ponzetto, 2012) and
Babelfy (Moro et al., 2014):

Dataset Number of
tweets tokens

Training 11,400 140,745
Development 3,014 33,743
Test 18,237 218,138

Table 1: Statistics of the tweet datasets

WordNet feature: Every token is passed to the
Babelnet database for checking whether the to-
ken exists in the English WordNet or not. If the
token appears in the database, the feature is set
to 1, otherwise to 0.

Multilingual WordNet: The Babelnet Multilingual
WordNet is checked for Spanish, by passing
each token to the Babelnet database and check-
ing whether the token is present in the database
or not.

Babelfy Named Entity: Named entities are ex-
tracted from Babelfy and used as a feature,
which is utilized for identification of the ‘NE’
category tokens.

3 Datasets

We used the datasets provided by the organizers of
the EMNLP 2016 code-switching workshop shared
task on language identification in code-switched
data (Molina et al., 2016).2

Three types of data were provided: training, de-
velopment and test. In the training and development
datasets, the total number of tweets are 11,400 and
3,014, respectively, with language identification off-
sets given for each category. In the test data, the total
number of tweets is 18,237 without annotations.

The number of tweets and the number of tokens
in each of the three datasets are given in Table 1.

4 Results

We developed a supervised model for language iden-
tification using the CRF++ classifier, implemented
the different features described above, and trained
the CRF++ classifier using these features. Initially,
the classifier was trained using the training data and
tested on the development data for Spanish-English.

2care4lang1.seas.gwu.edu/cs2/call.html
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System setup Mono-lingual Code-switched Weighted Token-level
P R F1 P R F1 F1 Accuracy

Without external resources 0.94 0.92 0.93 0.82 0.85 0.83 0.904 0.943
With external resources 0.95 0.93 0.94 0.82 0.87 0.85 0.911 0.952

Table 2: System performance on the development data, with and without the external resources (Babelnet and Babelfy)

Team Accuracy

IIIT Hyderabad 0.961
NepSwitch 0.958
NTNU 0.957
HHU-UH-G 0.953
Howard U 0.951
McGill U 0.941
UW group 0.926
GWU* 0.918
Arunavha Chana 0.527

Team Mono- Code- Weightedlingual switched

Howard U 0.90 0.87 0.890
IIIT Hyderabad 0.90 0.86 0.886
HHU-UH-G 0.90 0.85 0.878
NTNU 0.90 0.85 0.874
NepSwitch 0.89 0.85 0.870
McGill U 0.86 0.78 0.820
UW group 0.78 0.78 0.780
Arunavha Chana 0.80 0.71 0.760
GWU* 0.93 0.54 0.740

Table 3: Token level accuracy (left) and tweet level F1 scores (right) on the test data for all participating systems

There were two types of evaluation, at tweet level
and at token level. The tweet level precision (P), re-
call (R) and F1-scores obtained on the monolingual
part of the development data were 95%, 93% and
94%, respectively. On the code-switched part of that
data, the precision, recall and F1-scores were 82%,
87% and 85%, giving a weighted, total F1-score of
91.1%. For token level evaluation, the development
data accuracy was 95.2%, as shown in Table 2.

Table 2 also gives the development data scores for
a system trained without the second feature set, i.e.,
without the Babelnet and Babelfy features. As can
be seen in the table, the contribution from those fea-
tures is small but useful, adding 0.9% to the token-
level accuracy and 0.7% to the tweet-level weighted
F1 score, with the main contribution (2%) being on
recall for the tweets containing code-switching.

Applying our system (NTNU) to the test data,
the tweet level monolingual, code-switched and
weighted F1-scores were 90%, 85% and 87.4%, with
a token level accuracy performance of 95.7%.

A comparison of the results of the different sys-
tems participating in the shared task is given in Ta-
ble 3, for both token level and tweet level evaluation,
with the performance of our system marked in bold
face. For token level evaluation, the NTNU system

achieved third place in the shared task, with an ac-
curacy difference between our system and the best
performing system (IIIT Hyderabad) of only 0.4%.

At the tweet level, the NTNU system performed
on par with the best systems on the monolingual
tweets, while it scored 2% lower on the tweets
that contained some code-switching, giving it fourth
place on weighted F1-score. However, as can be
seen from the tables, the top-5 teams actually ob-
tained very similar performance on all measures,
and both at token and tweet level.

5 Conclusion

For this shared task, we have outlined an approach
using a CRF based system for language identifica-
tion in code-switched data, implementing a range
of different features and achieving state-of-the-art
results. Most of the features are extracted directly
from training data, while some are induced by using
Babelnet and Babelfy as external resources.

In future, we will aim to optimize these features
using grid search and evolutionary algorithms, as
well as generate different models using several clas-
sification algorithms and utilize the predictions of
ensembles of such machine learners in order to en-
hance the overall system performance.
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Abstract

Codeswitching is a widely observed phe-
nomenon among bilingual speakers. By com-
bining subword information enriched word
vectors with linear-chain Conditional Ran-
dom Field, we develop a supervised machine
learning model that identifies languages in a
English-Spanish codeswitched tweets. Our
computational method achieves a tweet-level
weighted F1 of 0.83 and a token-level ac-
curacy of 0.949 without using any exter-
nal resource. The result demonstrates that
named entity recognition remains a challenge
in codeswitched texts and warrants further
work.

1 Introduction

Codeswitching (CS) is a widely observed phe-
nomenon in social media. Solorio et al. (2014) de-
fine CS broadly as a communication act, whether
spoken or written, where two or more languages are
being used interchangeably. Codeswitching is com-
mon among bilingual speakers, both in speech and in
writing. Identifying the languages in a codeswitched
input is a crucial first step before applying other nat-
ural language processing algorithms.

The second shared task, like the previous
one (Solorio et al., 2014), challenges the participants
to develop computational method for identifying the
language of each word in a dataset of codeswitched
tweets. For each word in the source, the goal is to
identify whether the word is lang1, lang2, mixed,
other (punctuation, emotion and everything that is
not a word in neither lang1 nor lang2), ambiguous,

Token Gold standard label
Hay lang2
Dios ne
, other
I lang1
’m lang1
tired lang1

Table 1: Example of label assignments for a English-Spanish

codeswitched tweet

ne (named entity), unknown or fw (foreign word).
Lang1 and lang2 are the two languages presented in
a codeswitched language pair. There are two lan-
guage pairs available in this shared task: Modern
Standard Arabic-Arabic Dialects (MSA-DA) and
English-Spanish (EN-ES). An example of token lan-
guage identification is shown in Table 1.

Our work covers only the EN-ES language pair.
We use FastText (Bojanowski et al., 2016) to train a
subword information enhanced word vectors model
from the datasets of the shared task. We then use
these vectors and, in addition, custom features ex-
tracted from the words to train a linear-chain Con-
ditional Random Field model that predicts the lan-
guage label of each word. Our system requires only
the dataset provided by the shared task, without any
external resource. The final model scores 0.83 in
weighted tweet-level F1 and 0.949 in overall token-
level accuracy.

2 Related Work

Seven systems were submitted for the previous
shared task. The system with the highest predic-
tion result for the EN-ES language pair scores 0.822
in F-measure (Bar and Dershowitz, 2014). Solorio
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et al. (2014) shows that Conditional Random Field
(CRF) and Support Vector Machines (SVM) are
the most popular supervised machine learning al-
gorithms used for this task. Similar approach have
been found outside of the share tasks, including
Nguyen and Dogruoz (2013). All of these systems
rely on external resources, while our system relies
only on data prepared by the shared task.

Aside from the last shared task, previous work
on identifying languages emphasizing on word-level
identification includes Yamaguchi and Tanaka-Ishii
(2012; VRL (2014; Zubiaga et al. (2015). There
are also studies on multilingual documents, focusing
on inter-sentential codeswitching (King and Abney,
2013; Singh and Gorla, 2007).

Previous work on language models that encode
syntactic constraints from codeswitching theory in-
cludes Li and Fung (2013; Li and Fung (2014).
These models require a parser for the codeswitched
input, while our work only requires word-level tok-
enization.

3 System Description

Our system contains two steps to identify tokens in
a codeswitched input.

In the first step, we use FastText (Bojanowski
et al., 2016) to train a subword information en-
hanced skipgrams word vectors model, using the
tweets presents in the train and the dev dataset.
Word vectors are vector representations of the words
learned from their raw form, using models such as
Word2Vec (Mikolov and Dean, 2013). When used
as the underlying input representation, word vectors
have been shown to boost the performance in NLP
tasks (Socher et al., 2013). FastText word vectors
are used instead of standard word2vec because Fast-
Text can obtain representations of out-of-vocabulary
words by summing the representations of character
n-grams. This feature is particularly useful because
the size of the training data is relatively small. We
expect the test dataset to contain words not found in
the training dataset. Another motivation for using
FastText word vectors is for its ability to take into
account morphological information. We trained a
skipgram FastText word vector representation model
from the train datasets, using the default parameters
provided by FastText (size of word vectors: 100, size

of the context window: 5, number of epochs 5, min-
imal number of word occurences: 5, max length of
word ngram: 1 and loss function: ns)1.

In the second step, We use supervised machine
learning to train a Linear-Chain Conditional Ran-
dom Field (CRF) (Lafferty et al., 2001) classifier
that predicts the label of every token in the order
given by the EN-ES token assigner. CRF is natu-
rally suited for sequence labeling tasks and it has
been shown to perform well in previous work on lan-
guage identification tasks (King and Abney, 2013;
Chittaranjan et al., 2014; Lin et al., 2014). We use
CRFsuite(Okazaki, 2007) in our experiment.

3.1 Feature Extraction

For each token, we extract three types of features:
word features, spelling features and intra-word fea-
tures.

3.1.1 Word features
Word features contain the word vector represen-

tation of the current token and that of the token di-
rectly before and after the current one. We use the
word vector model trained in the first step to obtain
the word vector of each token. Word vectors of out-
of-vocabulary tokens are automatically predicted in
FastText by summing up the vector representations
of character n-grams.

3.1.2 Spelling features
The following boolean features are extracted from

the current token and that of the token directly be-
fore and after the current one:

• whether the token capitalized

• whether the token is all uppercase

• whether the token is all lowercase

• whether the token contains an uppercase char-
acter anywhere but in the beginning

• whether the token is alphanumeric

• whether the token contains any punctuation

• whether the token ends by an apostrophe
1https://github.com/facebookresearch/

fastText#full-documentation
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• whether the token contains no roman alphabets

• whether the token is in the beginning of the sen-
tence

• whether the token is in the end of the sentence

Capitalization is a strong indicator of a proper
noun, hence a named entity. However, this is not
always the case with social media texts, where gram-
matical rules are not always followed. The boolean
feature of the lack of roman alphabets is added be-
cause of our observation on the training data – most
tokens classified as other do not have roman alpha-
bets.

We also considered adding a boolean feature of
whether the token contains Spanish-only accented
characters (i.e. ı́, ú, é). However, it did not
positively impact the prediction performance when
tested against the dev dataset. This is possibly
due to that social media users are more casual with
spelling and replace accented characters with their
non-accented counterpart. For example, both the
correct spelling ası́ como2 and the incorrect spelling
asi como are found in the training data.

3.1.3 Intra-word features
In contrast to English, Spanish is a morpholog-

ically rich language, demonstrating a complicated
suffixed-based derivational morphology (Bar and
Dershowitz, 2014). To capture repeating prefixes
and suffixes that characterize each language, we ex-
tract the first 1-3 and the last 1-3 characters of each
token as intra-word features. These features have
also been shown to help predicting named entities
and tokens labelled as other. For example, hashtags
(tokens that begin with a # sign) are often named en-
tities; twitter handles always begin with an @ sign.

4 Experiment

The shared task maintains three sets of dataset: a
training dataset, a development dataset and a test-
ing dataset. Each dataset contains rows of token
extracted from EN-ES codeswitched tweets and the
respective gold standard label for each token. We
train an unsupervised FastText word vectors model

2Meaning as well as in English

using the training dataset. Then we train a super-
vised CRF model using the same dataset. The super-
vised model is validated on the development dataset
by evaluating standard metrics: precision, recall and
F-measure of the predictions (Powers, 2011). We
make hyper-parameter tuning to the CRF classifier
using grid search.

To verify that all our features were contributing
to the model’s performance, we also did an ablation
study, removing one group of features at a time.

Using the final model which consist of all the fea-
tures, we compute predictions for the tokens in the
testing dataset and submit the result to the workshop
as final result.

5 Result and Analysis

5.1 Feature ablation

Table 2 shows the F1 scores on the dev dataset re-
sulting from training with each group of feature re-
moved. Note that although the removal of word fea-
tures has no impact on the overall average F1, we
decide to keep it because of the extra boost in per-
formance it provides for named entities.

5.2 Final model performance

Our final model, when evaluated on the test dataset,
has a tweet-level performance of 0.83 in weighted
F1 as shown in Table 3. In terms of token-level per-
formance, our model has an overall token accuracy
of 0.949. The detailed metrics for each label are
shown in Table 4.

We observe that the model is not able to predict
mixed, foreign word, ambiguous and unknown la-
bels. This is due to the lack of sufficient training
data for these labels.

Our model has relatively low precision and re-
call with the NE labels. This suggests that our sys-
tem is weak in recognizing named entities. While
Bar and Dershowitz (2014) describe improvements
of name entity recognition by using a gazetteer of
proper nouns, our system did not benefit from hav-
ing such a gazetteer. In fact, when validating on the
development set, having such a gazetteer feature in-
troduces over-fitting and decreases the overall accu-
racy of the model. The result suggests that named
entity recognition remains a challenge in the context
of codeswitched text.
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Features lang1 lang2 ne other unk Average
All 0.965 0.945 0.355 0.995 0.095 0.946
– Word features 0.965 0.944 0.331 0.997 0.058 0.946
– Intra-word 0.957 0.936 0.228 0.981 0.126 0.936
– Spelling 0.963 0.944 0.353 0.989 0.093 0.944

Table 2: Feature ablation study. F1 on dev dataset after training with individual feature groups removed. The F1 for mixed, fw and

ambiguous are all 0, hence omitted in this table. The average F1 is micro-averaged, taking into account all eight labels. The number

of tokens for each label are the following: lang1: 16813, lang2: 8653, ne: 740, mixed: 14, ambiguous: 70, unk: 133, other: 6853

and fw: 0

Monolingual F1 Codeswitched F1 Weighted F1
0.86 0.79 0.83

Table 3: Tweet-level performance – there are in total 4626

codeswitched tweets and 6090 monolingual tweets.

Label Recall Precision F1
lang1 0.879 0.866 0.873
lang2 0.968 0.962 0.965
other 0.993 0.994 0.993
ne 0.313 0.421 0.359
mixed 0 0 0
fw 0 0 0
ambiguous 0 0 0
unknown 0 0 0

Table 4: Token-level performance – the number of tokens for

each label are the following: ambiguous: 4, lang1: 16944,

lang2: 77047, mixed: 4, ne: 2092, fw: 19, other: 25311, un-

known: 25, Total : 121446.

6 Conclusion

We participated in the shared task of the second
codeswitching workshop by creating a supervised
machine learning model that identifies the languages
given a English-Spanish codeswitched input. Our
model uses FastText to train a subword information
enhanced word vectors model from the shared task
datasets. In addition to these vectors, we add custom
features extracted from the words to train a linear-
chain Conditional Random Field model that predicts
the language label of each word. Our system uses
only the training data provided by the shared task
and requires no external resource. The final model
scores 0.83 in weighted tweet-level F1 and 0.949
in overall token-level accuracy. Our result suggests
that named entity recognition remains difficult for
codeswitched text and warrants future work.
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