
WLSI-OIAF4HLT 2016

Third International Workshop on
Worldwide Language Service Infrastructure

and
Second Workshop on

Open Infrastructures and Analysis Frameworks for
Human Language Technologies

Proceedings of the Workshop

December 12, 2016
Osaka, Japan

Copyright of each paper stays with the respective authors (or their employers).

ISBN978-4-87974-720-4

ii

Preface

Language technologies and tools (hereafter called language resources) increasingly require sophisticated
infrastructures to share, deploy as services, and combine to support research, development, innovation
and collaboration. To address this need, several infrastructures have been recently established,
including the Language Grid, the Language Application Grid, META-SHARE, DKPro, and CLARIN’s
Weblicht. While these infrastructures allow users to develop applications using deployed language
resources/services, users are typically restricted to tools and resources available through a single
infrastructure due to a lack of interoperability. The lack of interoperability among infrastructures has
led to duplicated software development efforts as well as redundancy among efforts to manage language
resource access, handle licensing concerns, etc.

WLSI-3/OIAF4HLT-2 focuses on the technological and institutional challenges that impact an effort to
construct a worldwide interoperable language service infrastructure. It aims to bring together members
of the NLP community, including operators of language service infrastructures, but also resource users,
developers, and providers, in order to explore and discuss the requirements and desiderata for NLP
infrastructures, as well as the opportunities and challenges for enabling interoperable communication
among existing infrastructures. The combination of two previously successful workshops addressing
NLP infrastructure development and interoperability reflects the recognition of the need for a global
effort to achieve mutual interoperability among tools and platforms, and will bring together communities
that have previously had little contact.

This volume contains 10 papers from the Third International Workshop on Worldwide Language Service
Infrastructure and Second Workshop on Open Infrastructures and Analysis Frameworks for Human
Language Technologies (WLSI-3/OIAF4HLT-2). The papers are categorized into three parts.

The first part introduces five language service infrastructures that combine natural language processing
(NLP) components to develop a language application or analyze text data. Mohanty et al. have
proposed Kathaa that enables users to design a language application as an edge-labeled directed acyclic
MultiGraph with NLP components. Ide et al. have integrated a workflow system called Galaxy with their
Language Application Grid platform to provide users with automated multi-step analyzes and evaluation
capabilities. Castilho have analyzed 274 pre-trained models for six NLP tools and reported four potential
causes of interoperability problems: encoding, tokenization, normalization, and change over time. Based
on these analyses, he has introduced a new tool called Model Investigator to allow model creators to
perform automatic sanity checks on their models. To address interoperability problems among language
services, Murakami et al. have designed Language Service ontology that enables uses to freely bind
language services to a workflow while verifying their composability. Kano have suggested a simplified
API for interoperability in order for the developers to more easily employ the functions of Kachako
platform.

The second part reports on language service application. Nakaguchi et al. have developed a multi-
language support system for international symposiums by combining human inputters and language
services on the Language Grid. Assawinjaipetch et al. have proposed complaint classification by
employing deep learning techniques with word embedding.

The third part focuses on development of language resources and services, especially low-resourced
languages. Aili and Mushajiang have presented how to convert Uyghur dependency Treebank to a
universal dependencies version. Luong and Vu have provided a non-expert setup for Kaldi, an open
source speech recognition toolkit, to develop a Vietnamese Speech Recognition System. Lastly, to
construct annotated corpora, Lu et al. have evaluated an ensemble based pre-annotation approach
that combines multiple existing named entity taggers and categorizes annotations into normal ones and
candidate ones.

We hope this book will strongly support and encourage researchers who are willing to utilize various

iii

language services worldwide to create customized language applications and multilingual environments.
We are grateful to all the participants and those who have supported this workshop.

November 2016 Yohei Murakami (Kyoto University, Japan)
Donghui Lin (Kyoto University, Japan)

Nancy Ide (Vassar College)
James Pustejovsky (Brandeis University)

Workshop Co-Chairs
WLSI-3/OIAF4HLT-2

iv

Organisers

Yohei Murakami (Kyoto University, Japan)

Donghui Lin (Kyoto University, Japan)

Nancy Ide (Vassar College, USA)

James Pustejovsky (Brandeis University, USA)

Programme Committee

Mirna Adriani (University of Indonesia, Indonesia)

Mairehaba Aili (Xinjiang University, China)

Nuria Bel (Universitat Pompeu Fabra, Spain)

Kalina Bontcheva (University of Sheffield, UK)

Nicoletta Calzolari (CNR-ILC, Italy)

Richard Eckart de Castilho (Technische Universität Darmstadt, Germany)

Christopher Cieri (LDC, USA)

Khalid Choukri (ELDA, France)

Riccardo Del Gratta (CNR-ILC, Italy)

Luca Dini (Holmes Semantic Solutions, France)

Zhiqiang Gao (Southeast University, China)

Jens Grivolla (GLiCom, Universitat Pompeu Fabra, Spain)

Hitoshi Isahara (Toyohashi University of Technology, Japan)

Toru Ishida (Kyoto University, Japan)

Yoshinobu Kano (Shizuoka University, Japan)

Monica Monachini (CNR-ILC, Italy)

Weinila Mushajiang (Xinjiang University, China)

Masayuki Otani (Kyoto University, Japan)

Stelios Piperidis (ILSP, Greece)

Vu Hai Quan (University of Natural Sciences, Vietnam National University, Vietnam)

Virach Sornlertlamvanich (SIIT, Thailand)

Andrejs Vasiljevs (Tilde, Latvia)

v

Table of Contents

Kathaa : NLP Systems as Edge-Labeled Directed Acyclic MultiGraphs
Sharada Mohanty, Nehal J Wani, Manish Srivastava and Dipti Sharma. .1

LAPPS/Galaxy: Current State and Next Steps
Nancy Ide, Keith Suderman, Eric Nyberg, James Pustejovsky and Marc Verhagen 11

Automatic Analysis of Flaws in Pre-Trained NLP Models
Richard Eckart de Castilho . 19

Combining Human Inputters and Language Services to provide Multi-language support system for In-
ternational Symposiums

Takao Nakaguchi, Masayuki Otani, Toshiyuki Takasaki and Toru Ishida . 28

Recurrent Neural Network with Word Embedding for Complaint Classification
panuwat assawinjaipetch, Kiyoaki Shirai, Virach Sornlertlamvanich and Sanparith Marukata . . . 36

Universal dependencies for Uyghur
marhaba eli, Weinila Mushajiang, Tuergen Yibulayin, Kahaerjiang Abiderexiti and Yan Liu 44

A non-expert Kaldi recipe for Vietnamese Speech Recognition System
Hieu-Thi Luong and Hai-Quan Vu . 51

Evaluating Ensemble Based Pre-annotation on Named Entity Corpus Construction in English and Chi-
nese

Tingming Lu, Man Zhu, Zhiqiang Gao and Yaocheng Gui . 56

An Ontology for Language Service Composability
Yohei Murakami, Takao Nakaguchi, Donghui Lin and Toru Ishida . 61

Between Platform and APIs: Kachako API for Developers
Yoshinobu Kano . 70

vii

Conference Program

Monday, December 12, 2016

9:00–9:10 Opening

9:10–10:40 Language Service Infrastructure 1

9:10–9:40 Kathaa : NLP Systems as Edge-Labeled Directed Acyclic MultiGraphs
Sharada Mohanty, Nehal J Wani, Manish Srivastava and Dipti Sharma

9:40–10:10 LAPPS/Galaxy: Current State and Next Steps
Nancy Ide, Keith Suderman, Eric Nyberg, James Pustejovsky and Marc Verhagen

10:10–10:40 Automatic Analysis of Flaws in Pre-Trained NLP Models
Richard Eckart de Castilho

10:40–11:00 Coffee Break

11:00–12:00 Language Service Application

11:00–11:30 Combining Human Inputters and Language Services to provide Multi-language sup-
port system for International Symposiums
Takao Nakaguchi, Masayuki Otani, Toshiyuki Takasaki and Toru Ishida

11:30–12:00 Recurrent Neural Network with Word Embedding for Complaint Classification
panuwat assawinjaipetch, Kiyoaki Shirai, Virach Sornlertlamvanich and Sanparith
Marukata

ix

Monday, December 12, 2016 (continued)

12:00–13:30 Lunch

13:30–15:00 Language Resources and Services

13:30–14:00 Universal dependencies for Uyghur
marhaba eli, Weinila Mushajiang, Tuergen Yibulayin, Kahaerjiang Abiderexiti and
Yan Liu

14:00–14:30 A non-expert Kaldi recipe for Vietnamese Speech Recognition System
Hieu-Thi Luong and Hai-Quan Vu

14:30–15:00 Evaluating Ensemble Based Pre-annotation on Named Entity Corpus Construction
in English and Chinese
Tingming Lu, Man Zhu, Zhiqiang Gao and Yaocheng Gui

15:00–15:50 Demo Session and Coffee Break

15:50–16:50 Language Service Infrastructure 2

15:50–16:20 An Ontology for Language Service Composability
Yohei Murakami, Takao Nakaguchi, Donghui Lin and Toru Ishida

16:20–16:50 Between Platform and APIs: Kachako API for Developers
Yoshinobu Kano

x

Monday, December 12, 2016 (continued)

16:50–17:00 Closing

xi

Proceedings of WLSI/OIAF4HLT,
pages 1–10, Osaka, Japan, December 12 2016.

Kathaa : NLP Systems as Edge-Labeled Directed Acyclic MultiGraphs

Sharada Prasanna Mohanty1,2,3, Nehal J Wani1,
Manish Srivastava1, Dipti Misra Sharma1

1 LTRC, International Institute of Information Technology, Hyderabad
2 School of Computer and Communication Sciences , EPFL, Switzerland

3 School of Life Sciences, EPFL, Switzerland
sharada.mohanty@epfl.ch, nehal.wani@research.iiit.ac.in

{m.shrivastava, dipti}@iiit.ac.in

Abstract

We present Kathaa, an Open Source web-based Visual Programming Framework for Natural
Language Processing (NLP) Systems. Kathaa supports the design, execution and analysis of
complex NLP systems by visually connecting NLP components from an easily extensible Module
Library. It models NLP systems an edge-labeled Directed Acyclic MultiGraph, and lets the user
use publicly co-created modules in their own NLP applications irrespective of their technical
proficiency in Natural Language Processing. Kathaa exposes an intuitive web based Interface for
the users to interact with and modify complex NLP Systems; and a precise Module definition API
to allow easy integration of new state of the art NLP components. Kathaa enables researchers to
publish their services in a standardized format to enable the masses to use their services out of
the box. The vision of this work is to pave the way for a system like Kathaa, to be the Lego blocks
of NLP Research and Applications. As a practical use case we use Kathaa to visually implement
the Sampark Hindi-Panjabi Machine Translation Pipeline and the Sampark Hindi-Urdu Machine
Translation Pipeline, to demonstrate the fact that Kathaa can handle really complex NLP systems
while still being intuitive for the end user.

1 Introduction

Natural Language Processing systems are inherently very complex, and their design is heavily tied up
with their implementation. There is a huge diversity in the way the individual components of the com-
plex system consume, process and spit out information. Many of the components also have associated
services which mostly are really hard to replicate and/or setup. Hence, most researchers end up writ-
ing their own in-house methods for gluing the components together, and in many cases, own in-house
re-implementations of the individual components, often inefficient re-implementations.

On top of that, most of the popular NLP components make many assumptions about the technical
proficiency of the user who will be using those components. All of these factors clubbed together shut
many potential users out of the whole ecosystem of NLP systems, and hence many potentially creative
applications of these components. With Kathaa, we aim to separate the design and implementation
layers of Natural Language Processing systems, and efficiently pack every component into consistent
and reusable black-boxes which can be made to interface with each other through an intuitive visual
interface, irrespective of the software environment in which the components reside, and irrespective of
the technical proficiency of the user using the system. Kathaa builds on top of numerous ideas explored
in the academia around Visual Programming Languages in general (Green and Petre, 1996) (Shu, 1988)
(Myers, 1990), and also on Visual Programming Languages in the context of NLP (Cunningham et al.,
1997). In a previous demonstration (Mohanty et al., 2016) at NAACL-HLT-2016, we showcased many
of the features of Kathaa, and because of the general interest in Kathaa, we are now making an attempt
to more formally model Kathaa in this paper.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1

Figure 1: Example of a Hindi-Panjabi Machine Translation System, visually implemented using Kathaa.

2 Kathaa Modules

Kathaa Modules are the basic units of computation in the proposed Visual Programming Framework.
They consume the input(s) across multiple input ports, process them, and finally pass on their output(s)
across the many output ports they might have. The user has access to a whole array of such modules
with different utilities via the Kathaa Module Library. The user can connect together these modules in
any combination as he pleases (as long as the connections between the said modules are compatible with
each other). The user also has the ability to tinker with the functionality of a particular module in real
time by using an embedded code editor in the Kathaa Visual Interface during or before the execution
of the Kathaa Graph. The inspiration behind Kathaa Modules comes from the Black Box approach in
Integrated Digital Circuits, where rather complex combinations of Logic Gates are arranged in complex
arrangements to get a desired behavior from the circuit, and then finally the overall arrangement is treated
as a black box. The ’users’ of this particular Integrated Circuit or ’chip’, just need to refer to the Data
Sheet of the chip for the input and output specifications to be able to use the said chip for designing more
complex and high-level circuits.

Kathaa Modules aim to be the Integrated Circuits for NLP, which can be mixed and matched together
to create interesting NLP Applications while hiding the complex implementation details in a black box.

2.1 Kathaa Data Blobs and Kathaa Data Sub Blobs

The input received at a particular input port, or the output generated at a particular output port of a mod-
ule is always a collection of kathaa-data-sub-blobs. Each input port receives exactly the same number
(as the rest of the input ports) of kathaa-data-sub-blobs, and similarly each output port holds exactly the
same number (as the rest of the output ports) of kathaa-data-sub-blobs. A kathaa-data-blob is also a
collection of kathaa-data-sub-blobs, but every kathaa-data-blob contains just one kathaa-data-sub-blob
from each of the input ports (or the output ports, depending on if its a kathaa-data-blob at the Input Layer
of the module or at the Output Layer of the module). The n-th kathaa-data-sub-blob of all the input ports,
contributes to the n-th Input kathaa-data-blob of the Module Instance; similarly, the m-th kathaa-data-
sub-blob of all the output ports, contributes to them-th Output kathaa-data-blob of the Module Instance.
A Kathaa Module has the capability to process multiple kathaa-data-blobs in parallel by spawning mul-
tiple instances of the same module during execution. The concept of numerous data blobs spread across
multiple input ports (or output ports) enables us to efficiently empower module writers to leverage from

2

the inherent parallelizability in tasks performed by numerous NLP components. For example, some
modules are parallelizable at the level of sentences, so if we have multiple sentences as inputs to this
module, all those sentences are passed as different kathaa-data-blobs so that the framework can paral-
lelize their processing depending on the availability of resources. Similarly, other modules could expect
parallelizability at the level of words, or phrases or even a whole discourse. The kathaa-data-blobs were
very much inspired by the data-blobs used in Caffe (Jia et al., 2014).

2.2 Formal definition of Kathaa Modules

A Kathaa Module can very simply be modeled as :

F (IP) = OP (1)

where, F () refers to the overall function the Module represents; IP refers to the overall Input object that
the Module receives; and OP refers to the overall Output object that the Module produces.

The inputs and outputs for Kathaa Modules are spread across multiple input ports and output ports, so
IP and OP can basically be represented as a collection of input and output values across all the input
and output ports

IP = [IP0, IP1,, IPN−1, IPN] OP = [OP0, OP1,, OPM−1, OPM] (2)

where IPn refers to the input received on input port n, where n ∈ [0, N); andN is the maximum number
of Input Ports supported by Kathaa for Kathaa Modules; OPm refers to the output generated on output
port m, where m ∈ [0,M); and M is the maximum number of Output Ports supported by Kathaa for
Kathaa Modules.

Every input received on any of the input ports IPn or every output generated on any of the output
ports OPm is but a collection of kathaa-data-sub-blobs, which are the basic primitives of data handling
in Kathaa. So, IPn and OPm can be further represented as :

IPn = [IPn,0, IPn,1,, IPn,X−1, IPn,X] OPm = [OPm,0, OPm,1,, OPm,Y−1, OPm,Y]
(3)

WhereX and Y refer to the number of kathaa-data-sub-blobs in each of the ports in the Input and Output
layers respectively.

Now by substituting Equation 3 in Equation 2, we can represent IP and OP as a combined input and
output matrices as follows :

IP =

IP0,0 IP0,1 . . P0,X−1 IP0,X

IP1,0 IP1,1 . . P1,X−1 IP1,X

.

.
IPN−1,0 IPN−1,1 . . IPN−1,X−1 IPN−1,X

IPN,0 IPN,1 . . IPN,X−1 IPN,X

OP =

OP0,0 OP0,1 . . OP0,Y−1 OP0,Y

OP1,0 OP1,1 . . OP1,Y−1 OP1,Y

.

.
OPM−1,0OPM−1,1 . .OPM−1,Y−1OPM−1,Y

OPM,0 OPM,1 . . OPM,Y−1 OPM,Y

(4)

where IPn,x refers to the x-th kathaa-data-sub-blob on the n-th Input Port of the kathaa module; and
OPm,y refers to the y-th kathaa-data-sub-blob on the m-th Output Port of the kathaa module.

Now lets define IP∗,k as the collection of the k-th corresponding kathaa-data-sub-blobs across all the
Input ports; and OP∗,p as the collection of the p-th corresponding kathaa-data-sub-blobs across all the
Output ports. So,

IP∗,k = [IP0,k, IP1,k,, IPN−1,k, IPN,k] OP∗,k = [OP0,k, OP1,k,, OPM−1,k, OPM,k]
(5)

IP∗,k and OP∗,k represent a single kathaa-data-blob in the Input and the Output layers respectively.
Figure 2 shows the organization of kathaa-data-blobs, kathaa-data-sub-blobs and Input and Output Port
values in the Combined Input and Output Matrices as defined in Equation 4.

3

Figure 2: Organization of kathaa-data-blobs, kathaa-data-sub-blobs and Input and Output Port values
in the Combined Input and Output Matrices as defined in Equation 4.

By using Equation 5, we can represent IP and OP as a collection of kathaa-data-blobs in the Input
and Output layers as follows :

IP = [(IP∗,0)T , (IP∗,1)T ,, (IP∗,X−1)T , (IP∗,X)T]
OP = [(OP∗,0)T , (OP∗,1)T ,, (OP∗,Y−1)T , (OP∗,Y)T]

(6)

Finally, substituting Equation 6 in Equation 1, we obtain :

F ([(IP∗,0)T , (IP∗,1)T ,, (IP∗,X−1)T , (IP∗,X)T]) =

[(OP∗,0)T , (OP∗,1)T ,, (OP∗,Y−1)T , (OP∗,Y)T]
(7)

For easy readability, we can define the substitutions IBi = (IP∗,i)T and OBi = (OP∗,i)T , which
represent an Input kathaa-data-blob and an Output kathaa-data-blob respectively. We can now rewrite
Equation 7 as :

F ([IB0, IB1,, IBX−1, IBX]) = [OB0, OB1, OB2,, OBY−1, OBY] (8)

which captures the crux of how Kathaa Modules manipulate data, by consuming a collection of kathaa-
data-blobs, and finally spitting out a bunch of kathaa-data-blobs as Output.

2.3 Types of Kathaa Modules
2.3.1 Kathaa General Modules
Kathaa General Modules are the class of Kathaa Modules which output the exact same number of kathaa-
data-blobs as the number of kathaa-data-blobs in their Input Layer. Or more formally, in case of Kathaa
General Modules, we will have X = Y in Equation 8. As every Input kathaa-data-blobs independently
maps to a single Output kathaa-data-blobs, we can imagine a function f() which processes a single Input
kathaa-data-blobs, to produce the corresponding Output kathaa-data-blobs.

F ([IB0, IB1,, IBX−1, IBX]) = [f(IB0), f(IB1),, f(IBX−1), f(IBX)]
= [OB0, OB1,, OBX−1, OBX]

(9)

Kathaa General Modules are the most common type of Kathaa Modules, and they are defined simply
by defining the single function f() which takes a single kathaa-data-blob as input, and finally returns
a single kathaa-data-blob as output. The kathaa-orchestrator internally deals with the spawning of
multiple instances of the said function f() and processing all the Input kathaa-data-blobs in parallel,
and then aggregating and writing their output as a collection of Output kathaa-data-blobs. The idea is
that module developers just have to focus on the basic functionality of their module, and the efficient

4

parallelized execution of the same is automatically dealt by the framework, making it much easier for
developers to get started with writing really powerful modules for Kathaa. To help developers get started,
we also have a very flexible implementation of a Custom Module (Mohanty, 2016d) which can act as
a quick starting point when defining Kathaa General Modules.

2.3.2 Kathaa Blob Adapters
Kathaa Blob Adapters, on the other hand, are a class of Kathaa Modules, which are provided with
all the blobs from the Input Layer at the same time, and they have the ability to modify the number
of blobs and pass it over to their output layer. They give the user a more fine grained control over the
parallelizability of different parts of their Kathaa Graphs by varying the number of kathaa-data-blobs
flowing through a particular point in the graph. More formally, Kathaa Blob Adapters are all the classes
of Kathaa Modules whereX 6= Y in Equation 8. As a use case for Kathaa Blob Adapters, we can imagine
a Kathaa Graph which receives a whole discourse as a single kathaa-data-blob, and it might benefit from
processing the sentences parallely, and it could use a Line Splitter (Mohanty, 2016f) to split the
whole discourse which was passed on as a single kathaa-data-blob into multiple kathaa-data-blobs each
representing a single sentence, and when finally the user desired processing of the individual sentences
are complete, a Line Aggregator (Mohanty, 2016e) could aggregate the processed sentences again
into a single kathaa-data-blob. Similar kathaa-blob-adapters could be implemented to deal with splitting
and aggregation of kathaa-data-blobs at the level of words, phrases,etc. For example, in contrast to
the example cited above, if we are dealing certain language processing tasks which are inherently not
parallalizable after a certain level of granularity, like, for e.g. Anaphora Resolution, Multi Document
Summarisation, etc, the user will have to use an appropriate kathaa-blob-adapter, to make sure that all
the information that is required for the particular task is available as a single kathaa-data-blob. In the case
of Anaphora Resolution, a single kathaa-data-blob will contain a string of N sentences, and in the case
of Multi Document Summarisation, a single kathaa-data-blobs will contain a string of M Documents.

2.3.3 Kathaa User Intervention Module
During the execution of a Kathaa Graph, the Kathaa Orchestrator ensures that the execution of a particular
Kathaa Module Instance starts only after all its dependencies complete their execution and write their
output. But in some NLP systems, the overall execution of the system might have to halt for some kind
of user feedback. Like in the case of resource creation, where for example, you might want to start
with a bunch of sentences, parse them using an available parser module, and then you would want to
add Anaphora annotations by a human annotator (Sangal and Sharma, 2001). In that case, a Kathaa
User Intervention Module can be used, where the overall execution at the particular Kathaa Module in
the Kathaa Graph pauses till the user modifies the kathaa-data-blobs as she pleases and then resumes
the execution at the said node. Internally, in case of Kathaa User Intervention Module, the Kathaa
Orchestrator simply copies all the kathaa-data-blobs from the Input Layer to the Output Layer, and lets
the user edit the Output Layer of the module through the Kathaa Visual Interface; and finally adds a
User Feedback from the Kathaa Visual Interface as one of the dependencies of the Module. Kathaa Core
Module group implements a User Intervention (Mohanty, 2016g) module, which can be used for
the described use case in Kathaa Graphs.

2.3.4 Kathaa Resource Module
Kathaa Resource Modules are the class of Kathaa Modules which do not do any processing of the data,
but instead they store and provide a corpus of text which can be used by any of the modules in the whole
graph during execution. They do not have any Inputs, and they start executing right at the beginning
of execution of the parent Kathaa Graph. More formally, they are the class of Kathaa Modules where
X = 0 and Y > 0 in Equation 8.

2.3.5 Kathaa Evaluation Module
The aim of Kathaa is to provide an intuitive environment not only for prototyping and deployment but
also debugging and analysis of NLP systems. Hence, we include a class of modules called as Kathaa
Evaluation Modules which very much like kathaa-blob-adapters receive all the blobs across all the input

5

ports, do some analysis and spit out the results into the output ports. While in principle, this a subset
of kathaa-blob-adapters, these modules enjoy a separate category among Kathaa Modules because of
their utility in debugging and analyzing NLP systems. We implement a sample Classification Evaluator
(Mohanty, 2016c) to help researchers quickly come up with easy to visualize confusion matrices to aid
them in evaluating the performance of any of their subsystems. This could act as a starting point for
easily implementing any other Evaluation Modules.

2.4 Kathaa Module Services
Most popular NLP Components work in completely different software environments, and hence stan-
dardizing the interaction between all of them is a highly challenging task. Kathaa can allow every
module to define an optional service by referencing a publicly available docker container in the module
definition. Kathaa can deal with the life-cycle management of the referenced containers on a configurable
set of Host Machines. The corresponding kathaa-modules function definition then acts as a light weight
wrapper around this service. This finally enables different research groups to publish their service in a
consistent and reusable way, such that it fits nicely in the Kathaa Module ecosystem.

2.5 Kathaa Module Packaging and Distribution
By design, the definition of Kathaa Modules is completely decoupled from the actual code base of the
Kathaa Framework. The idea was to facilitate the possibility of a large community of independent and
unsupervised contributors and a swarm of community contributed modules which would ultimately be
available by a simple to use Kathaa-Package-Manager. While the Kathaa-Package-Manager is not yet
implemented, we believe it would be pretty trivial to implement the same because of the way Kathaa
Modules are designed. A set of related Kathaa Modules reside as a Kathaa Module Group in a publicly
accessible gitRepository, and the Kathaa Framework downloads and loads these Modules on the fly just
by referencing their publicly accessible URI in the overall configuration file. Detailed documentation on
the definition, packaging and distribution of Kathaa Modules along with a list and description of all the
available Kathaa Modules can be found online at : Kathaa Module Packaging and Distribution (Mohanty,
2016b).

3 Kathaa Graph

A Kathaa Graph is an edge-labeled Directed Acyclic MultiGraph of ’instances’ of Kathaa Modules, with
Edges connecting one or more Output Ports of one instance of a Kathaa Module to one or more Input
Ports of an instance of the same or different Kathaa Module. A Kathaa Graph can have multiple instances
of the same Kathaa Module at different positions in the graph, and also with different configurations of
the said instances. Each Module Instance maintains its own state, and there can be multiple directed
edges between any two Module Instances. We start by defining a few key variables:

• Mk represents a Kathaa Module Instance, where k ∈ [0,K) and K is the total number of Kathaa
Module Instances in a Kathaa Graph G.
• ψ(Mk) represents the state of a Kathaa Module Instance, where state being all configurable param-

eters of the Module, a copy of the data present at all the Input and the Output ports and the definition
of the associated computational function.
• τ(Mk)I represents the set of all input ports of the Kathaa Module Instance Mk

• |τ(Mk)I | represents the cardinality of the set τ(Mk)I and hence represents the total number of Input
Ports in the Module Instance Mk

• τ(Mk)I
i represents the i-th input port of the Kathaa Module Instance Mk

• η(τ(Mk)I
i) represents the total number of incoming edges into the i-th input port of the Kathaa

Module Instance Mk

• τ(Mk)O represents the set of all output ports of the Kathaa Module Instance Mk

• |τ(Mk)O| represents the cardinality of the set τ(Mk)O and hence represents the total number of
Output Ports in the Module Instance Mk

6

• τ(Mk)O
j represents the j-th output port of the Kathaa Module Instance Mk

• η(τ(Mk)O
j) represents the total number of outgoing edges from the j-th output port of the Kathaa

Module Instance Mk

(10)

We define a Kathaa Graph G as an ordered pair of its vertices V and edges E:

G = (V,E) (11)

The Vertices of a Kathaa Graph are composed of Kathaa Module Instances, so we can write

V = {Mk|k ∈ [0,K)} (12)

There can be multiple edges between two Nodes in a Kathaa Graph, for example when you add a
directed edge between the output-port-1 of a Kathaa Module instance M1 to the input-port-1 of another
Kathaa Module instance M2. Then you add another directed edge between the output-port-2 of the
Kathaa Module Instance M1 to the input-port-2 of the Kathaa Module instance M2. Or more formally,
Kathaa Graphs can have parallel edges.

So we define an Edge e in a Kathaa Graph G as an ordered 3-tuple :

e = (s, t, L) (13)

Where, s (s ∈ V) is the Source Node of the edge; t (t ∈ V) is the Target Node of the edge, and L is the
edge-label of the edge e which is represented as an ordered tuple

L = (sOP , tIP) (14)

• sOP refers to the output port of the Source Node of the edge e. And sOP ∈ τ(s)O

• tIP refers to the input port of the Target Node of the edge e. And tIP ∈ τ(t)I

Substituting Equation 14 in Equation 13 we obtain :

e = (s, t, (sOP , tIP)) (15)

Now the set of edges E of the Kathaa Graph G can defined as :

E = {(s, t, (sOP , tIP)) | s, t ∈ V ∧ s 6= t ∧ SOP ∈ τ(s)O ∧ tIP ∈ τ(t)I ∧ κ(sOP , tIP) ∧ η(tIP) = 1}
(16)

Where, s, t are defined in Equation 13; sOP , tIP are defined in Equation 14; τ()O and τ()I and η() are
defined in Equation 10; and κ(sOP , tIP) refers to a boolean function which determines the compatibility
of a particular Input port and Output port pair based on meta structure definition of the corresponding
modules.

The conditions in Equation 16 represent some of the key properties of a Kathaa Graph. s, t ∈ V
asserts that both the Source Node and the Target Node have to be from the set of Nodes or the Module
Instances in the Kathaa Graph. s 6= t asserts that self loops are not allowed in a Kathaa Graph, so the
Source Node and the Target Node in a Kathaa Graph cannot be the same. SOP ∈ τ(s)O asserts that the
Output Port from the Source Node that is associated with an edge has to be a valid Output Port from the
set of Output Ports of the Source Node. tIP ∈ τ(t)I asserts that the Input Port from the Target Node that
is associated with an edge has to be a valid Input Port from the set of Output Ports of the Target Node.
κ(sOP , tIP) asserts that the Output Port from the Source Node and the Input Port at the Target Node
have to be compatible with each other based on the meta structure definition of the Source and Target
Nodes. η(tIP) = 1 asserts that there can be only a single edge that can be associated with an Input Port
of any Module Instance in the Kathaa Graph. Now, Equation 16 defines E and Equation 12 defines V ,
hence we can use them in Equation 11 to finally be able to formally define a Kathaa Graph G.

7

4 Kathaa Orchestrator

Kathaa Orchestrator obtains the structure of the Kathaa Graph and the initial state of the execution
initiator modules from the Kathaa Visual Interface, and then it efficiently orchestrates the execution
of the graph depending on the nature and state of the modules, while dealing with process parallelisms,
module dependencies, etc under the hood. The execution of a Kathaa Graph starts by collecting all the
Nodes in the Kathaa Graph from which it should start the execution. In the case that the Visual Interface
provides a Module Instance to begin execution from, the Kathaa Graph starts execution from just that
Node, else it collects all the sentence input nodes and the resource nodes. The collected nodes
are simply queued in a global Job Queue. A background process, in the meantime, listens on the Job
Queue, and whenever a Job is added to the queue, it tries to execute the Job on any of the available
resources. The execution of the Job starts by trying to execute the actual function associated with the
particular Node, and if its successful, it passes the data along all its outgoing edges to the designated input
ports of module instances further along the graph, and then finally returns the obtained result object. A
Job Complete event handler is called with the final result (or the exception in case of errors), and the Job
Complete event handler passes along the data to the Visual Interface to update the state of the graph in the
Visual Interface and provide the user with the result associated with the Module or the actual exception
and the error message to help the user debug the particular Kathaa Graph. Detailed documentation on
Kathaa Orchestrator can be found at : Kathaa Orchestrator (Mohanty, 2016a).

5 Kathaa Visual Interface

Kathaa Interface lets the user design any complex NLP system as an edge-labeled Directed Acyclic
MultiGraph with the Kathaa Module Instances as nodes, and edges representing the flow of kathaa-data-
blobs between them. Users have the option to not only execute any such graph, but also interact with it in
real time by changing both the state and functionality of any of the module right from within the interface.
It can be a really useful aid in debugging complex systems, as it lets the User easily visualize and modify
the flow of kathaa-data-blobs across the whole Kathaa Graph. Apart from that, it also encourages code-
reuse by lettings users ’Fork’ a graph, or ’Remix’ the designs of NLP systems to come up with better
and adapted versions of the same systems. Figure 1 shows the visual implementation of a Hindi Panjabi
Machine Translation system in the Kathaa Visual Interface.

6 Use Cases

Kathaa, as a Visual Programming Framework was developed with Sampark Machine Translation System
as a use case. We ported all the modules of the Hindi-Panjabi (Mohanty, 2016h) and Hindi-Urdu (Mo-
hanty, 2016i) Translation Pipelines of Sampark Machine Translation System(SAM, 2016) into Kathaa.
We then demonstrated the use of Kathaa in creation of NLP Resources by the use of Kathaa User Inter-
vention modules, and also moved on to demonstrate visual analysis of different classification approaches
by using the Kathaa-Classification-Evaluation module. We are currently also exploring the use of Kathaa
in classrooms to help students interact with and design complex NLP systems with a much lower bar-
rier to entry. All these example Kathaa Graphs are the seed Graphs that are included in the repository,
and can be used out of the box. It is important to note that these use cases that we managed to explore
are only the tip of the iceberg when it comes to what is possible using a framework like Kathaa. One
of the key features in Kathaa which enables for it to be used in a whole range of use cases is the easy
extensibility. The Kathaa Module Definition API, enables the user of the system to theoretically define
any function as a Kathaa Module. Also, Kathaa internally works using event triggers, hence making it a
practical possibility to define modules which may run for days or weeks, quite helpful when exploring
Kathaa for use cases where the user might want to define a Kathaa Module which trains a model based
on some pre-processed data. The NPM (Tilkov and Vinoski, 2010) inspired packaging system, is again
something which we believe can help with large scale adoption of a system like Kathaa. It paves the
way for a public contributed repository of NLP components, all of which can be mashed together in
any desired combination. The ability to optionally package individual services using Docker Containers

8

also helps make a strong case when pitching for the possibility of a large public contributed repository
of NLP components. These are a few things which set Kathaa apart from already existing systems like
LAPPS Grid (Ide et al., 2014), ALVEO (Cassidy et al., 2014) where the easy extensibility of the system
is a major bottleneck in its large scale adoption. The inter-operability between existing systems is also
of key importance, and the design of Kathaa accommodates for its easy adaptation to be used along with
other similar system. The assumption, of course, is that a wrapper Kathaa Module has to be designed for
each target system using the Kathaa Module Definition API. The wrapper modules would be completely
decoupled from the Kathaa Core codebase, and hence can be designed and implemented by anyone just
like any other Kathaa Module.

A demonstration video of many features and use cases of Kathaa is also available to view at :
https://youtu.be/woK5x0NmrUA

7 Conclusion

We demonstrate an open source web based Visual Programming Framework for NLP Systems, and make
it available for everyone to use under a MIT License. We hope our efforts can, in some way, catalyze
more new and creative applications of NLP components, and enables an increased number of researchers
to more comfortably tinker with and modify complex NLP Systems.

Acknowledgements

The first real world implementation of a Kathaa Graph was achieved by porting numerous modules from
Sampark MT system developed during the ”Indian Language to Indian Language Machine translation”
(ILMT) consortium project funded by the TDIL program of Department of Electronics and Information
Technology (DeitY), Govt. of India. Kathaa is built with numerous open source tools and libraries, an
(almost) exhaustive list of which is available in the Github Repository of the project, and we would like
to thank each and every contributor to all those projects.

References
Steve Cassidy, Dominique Estival, Tim Jones, Peter Sefton, Denis Burnham, Jared Burghold, et al. 2014. The

alveo virtual laboratory: A web based repository api.

Hamish Cunningham, Kevin Humphreys, Robert Gaizauskas, and Yorick Wilks. 1997. Gate - a general archi-
tecture for text engineering. In Proceedings of the Fifth Conference on Applied Natural Language Processing:
Descriptions of System Demonstrations and Videos, pages 29–30, Washington, DC, USA, March. Association
for Computational Linguistics.

Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual programming environments: A ’cogni-
tive dimensions’ framework. J. Vis. Lang. Comput., 7(2):131–174.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg, Di Wang, Keith Suderman, Marc Verhagen, and
Jonathan Wright. 2014. The language application grid. In LREC, pages 22–30.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,
and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the
22Nd ACM International Conference on Multimedia, MM ’14, pages 675–678, New York, NY, USA. ACM.

Sharada Prasanna Mohanty, Nehal J. Wani, Manish Shrivastava, and Dipti Misra Sharma. 2016. Kathaa: A visual
programming framework for NLP applications. In Proceedings of the Demonstrations Session, NAACL HLT
2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages 92–96.

Sharada Prasanna Mohanty. 2016a. Kathaa Documentation : Kathaa Orchestrator. https://github.
com/kathaa/kathaa/blob/master/docs/kathaa-orchestrator.pdf. [Online; accessed 16-
October-2016].

Sharada Prasanna Mohanty. 2016b. Kathaa Documentation : Module Packaging and Distribution. https://
github.com/kathaa/kathaa/blob/master/docs/ModulePackagingAndDistribution.
pdf. [Online; accessed 16-October-2016].

9

Sharada Prasanna Mohanty. 2016c. Kathaa Module : Classification Evaluator. https://git.io/vV40f.
[Online; accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016d. Kathaa Module : Custom Module. https://git.io/vV4Rp. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016e. Kathaa Module : Line Aggregator. https://git.io/vV40v. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016f. Kathaa Module : Line Splitter. https://git.io/vV4Rj. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016g. Kathaa Module : User Intervention. https://git.io/vV40U. [Online;
accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016h. Kathaa Module Group : Sampark Hindi Panjabi Translation Pipeline Modules.
https://github.com/kathaa/hindi-panjabi-modules. [Online; accessed 16-October-2016].

Sharada Prasanna Mohanty. 2016i. Kathaa Module Group : Sampark Hindi Urdu Translation Pipeline Modules.
https://github.com/kathaa/hindi-urdu-modules. [Online; accessed 16-October-2016].

Brad A. Myers. 1990. Taxonomies of visual programming and program visualization. J. Vis. Lang. Comput.,
1(1):97–123.

2016. Sampark: Machine translation among indian languages. http://sampark.iiit.ac.in/sampark/
web/index.php/content. Accessed: 2016-02-10.

Rajeev Sangal and Dipti Misra Sharma. 2001. Creating language resources for nlp in indian languages 1. back-
ground.

Nan C Shu. 1988. Visual programming. Van Nostrand Reinhold.

Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using javascript to build high-performance network programs.
IEEE Internet Computing, 14(6):80.

10

Proceedings of WLSI/OIAF4HLT,
pages 11–18, Osaka, Japan, December 12 2016.

The LAPPS Grid: Current State and Next Steps

Nancy Ide, Keith Suderman
Department of Computer Science

Vassar College
Poughkeepsie, New York USA
{ide,suderman}@cs.vassar.edu

Eric Nyberg
Language Technology Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania USA

ehn@cs.cmu.edu

James Pustejovsky, Marc Verhagen
Department of Computer Science

Brandeis University
Waltham, Massachusetts USA

{jamesp,marc}@cs.brandeis.edu

Abstract

The US National Science Foundation (NSF) SI2-funded LAPPS Grid project has developed an
open-source platform for enabling complex analyses while hiding complexities associated with
underlying infrastructure, that can be accessed through a web interface, deployed on any Unix
system, or run from the cloud. It provides sophisticated tool integration and history capabili-
ties, a workflow system for building automated multi-step analyses, state-of-the-art evaluation
capabilities, and facilities for sharing and publishing analyses. This paper describes the current
facilities available in the LAPPS Grid and outlines the project’s ongoing activities to enhance the
framework.

1 Introduction

The US National Science Foundation (NSF) SI2-funded LAPPS Grid project is a collaborative effort
among Vassar College, Brandeis University, Carnegie-Mellon University (CMU), and the Linguistic
Data Consortium (LDC) at the University of Pennsylvania. The LAPPS Grid is an open-source plat-
form for enabling complex analyses while hiding complexities associated with underlying infrastructure.
The platform can be accessed through a web interface, deployed on any Unix system, or run from the
cloud. It provides sophisticated tool integration and history capabilities, a workflow system for build-
ing automated multi-step analyses, state-of-the-art evaluation capabilities, and facilities for sharing and
publishing analyses. The LAPPS Grid is highly customizable and integrates with a wide variety of com-
puting environments, ranging from laptop computers to clusters to compute clouds. The LAPPS Grid is
part of the Federated Grid of Language Services (FGLS) (Ishida et al., 2014), a multi-lingual, interna-
tional network of web service grids and providers in Asia and Europe, and is currently federating with
two major frameworks in the pan-European CLARIN project. Through these federations, LAPPS Grid
users have interoperable access to all the tools and modules in the other platforms, thus creating the
largest network of interoperable components for language-related analysis and activity in the world.

This paper describes the current facilities available in the LAPPS Grid, which have been continually
expanded over the past year, and provides an overview of the ways in which the LAPPS Grid compares
to similar frameworks. We also outline the project’s ongoing activities to enhance the framework, in
particular its collaboration with the developers of the Galaxy framework and creation of educational
materials.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

11

2 Current facilities

The LAPPS Grid currently provides a broad suite of interoperable Human Language Technologies (HLT)
tools and data, and provides facilities for service discovery, service composition (including automatic
format conversion between tools where necessary), performance evaluation (via provision of component-
level measures for standard evaluation metrics for component-level and end-to-end measurement), and
resource delivery for a range of language resources, including holdings of the Linguistic Data Consortium
(LDC).1 The list of HLT processing tools and resources currently available in the LAPPS Grid can be
found at http://www.lappsgrid.org/language-services and includes dozens of the most commonly used
HLT toolkits. In addition, through our federation with international partners, LAPPS Grid users have (or
will soon have) access to hundreds of multi-lingual and multi-modal tools, applications, evaluation tools,
lexicons, and data sources2.

The key feature of the LAPPS Grid that differentiates it from most other platforms is the interoper-
ability among tools and services, which is achieved through adoption of standard protocols and formats
together with the development of additional standards for interchange. Syntactic interoperability among
LAPPS Grid services is ensured by a JSON-LD format called the LAPPS Interchange Format (LIF) that
groups annotations in views, where each view contains metadata that spells out the information con-
tained in that view, including information necessary to determine compatibility with other tools and data.
Semantic interoperability is achieved via references to definitions in the Web Services Exchange Vocab-
ulary (WSEV). The WSEV has been built bottom up, driven by the needs of components in the LAPPS
Grid and closely following standard practice in the field as well as adopting, where possible, existing
terminology and type systems. Both LIF and the WSEV are described in detail elsewhere (Verhagen et
al., 2016; Ide et al., 2014; Ide et al., 2016).

Another distinctive feature of the LAPPS Grid is its Open Advancement (OA) Evaluation system,
a sophisticated environment that was used to develop IBM’s Jeopardy-winning Watson. OA can be
simultaneously applied to multiple variant workflows involving alternative tools for a given task, and the
results are evaluated and displayed so that the best possible configuration is readily apparent. Similarly,
the weak links in a chain are easily detected, which can lead to module-specific improvements that
affect the entire process. The inputs, tools, parameters and settings used for each step in an analysis are
recorded, thereby ensuring that each result can be exactly reproduced and reviewed later, and any tool
configuration can be repeatedly applied to different data.

Several HLT software developers and projects have contributed their components and systems for in-
clusion in the LAPPS Grid, in order to provide exposure of these tools to a wide user audience and,
crucially, to render them interoperable with other tools in the LAPPS Grid, thus allowing for their
immediate inclusion in workflows supporting sophisticated applications as well as evaluation of their
performance side-by-side with comparable components. Although many contributors host their own
contributed services (which are called from within the LAPPS Grid), where necessary the LAPPS Grid
provides hosting to ensure that software remains available to the community. Recently contributed tools
include all core tools from University of Darmstadt’s DKPro3, the AIFdb services for Argumentation
analysis4 (Lawrence et al., 2012), the SWIFT Aligner for cross-lingual transfer (Gilmanov et al., 2014),
the EDISON feature extraction framework5 (Sammons et al., 2016) and other tools available from the
University of Illinois (e.g., semantic role labelers, entity extractors), among others. In addition, several of
the basic components produced by the ARIEL team working within DARPA’s Low Resource Languages
for Emergent Incidents (LORELEI) program have been integrated into the LAPPS Grid, which include
tools and data to support a wide array of under-resourced languages.

The LAPPS Grid has been adopted by a Mellon-funded project at the University of Illinois, which
is utilizing the platform to apply sophisticated HLT text mining methods to the HathiTrust Research

1http://www.ldc.upenn.edu
2For example, see http://langrid.org/service manager/language-services for a partial list of services available though the

FGLS, and https://vlo.clarin.eu/ for tools and resources available through CLARIN.
3https://dkpro.github.io
4http://www.aifdb.org
5https://cogcomp.cs.illinois.edu/page/software view/Edison

12

Center’s (HTRC) massive digital library)6, in order enhance search and discovery across the library
by complementing traditional volume-level bibliographic metadata with new metadata, using specially-
developed LAPPS Grid-based CL applications. Finally, we are currently working with IBM to integrate
its Watson services into the LAPPS Grid so that they will be available for community use for the first
time, and interoperate with the very wide range of HLT modules the LAPPS Grid provides. This will
open the door to rapid evaluation of alternative component pipelines using state-of-the-art metrics and
procedures.

The LAPPS Grid uses Docker7, a recently developed and increasingly popular virtualization platform,
as a way to distribute and deploy the complete LAPPS Grid or parts thereof. Docker images are com-
pletely self-contained: users can download docker images and run them on their own servers or laptops or
in the cloud without the need to install supporting components. We currently have several docker virtual
servers running versions of the LAPPS Grid on Amazon Web Services and JetStream (http://jetstream-
cloud.org).

To provide an intuitive, easy-to-use interface and management system, the LAPPS Grid project
adopted the Galaxy framework (Giardine et al., 2005), a robust, well-developed platform that includes
tool integration and history capabilities. together with a workflow system for building automated multi-
step analyses, a visualization framework including visual analysis capabilities, and facilities for sharing
and publishing analyses (Goecks et al., 2012). In addition to providing an intuitive user interface for
workflow composition appropriate for non-technical users, Galaxy also provides support for replication
of experiments and sharing of methods and results via automatic recording of all inputs, tools, param-
eters and settings in an experiment and provisions for sharing datasets, histories, and workflows via
web links.8 Replication capabilities are a vital need in the field of HLT, which has been plagued by a
chronic lack of potential for replicability and reuse described in several recent publications (Pedersen,
2008; Fokkens et al., 2013), blogs9, and workshops10. Facilities for reproducibility also enable users to
develop organized catalogs of reusable workflows, rather than starting from scratch each time or trying
to navigate a collection of ad hoc analysis scripts, and/or apply a command history to different data.

We have contributed Galaxy wrappers to call all LAPPS Grid web services to the Galaxy ToolShed11.
The enables user to create a LAPPS/Galaxy instance locally or in the cloud that includes only the Galaxy
“NLP Flavor” (in Galaxy terminology), which comprises all and only LAPPS Grid services and re-
sources, if so desired.

The LAPPS Grid benefits from the Galaxy team’s integration of interactive analysis environments,
including Jupyter (Perez and Granger, 2007) and RStudio (Gandrud, 2013). Jupyter in particular is of
interest to LAPPS Grid users; the LAPPS Grid team has developed a LAPPS Grid Services DSL12 (LSD)
kernel that can be used to interact with the LAPPS Grid services.13 Jupyter Notebooks can contain
executable code and documentation in one location, thus allowing fast templating and prototyping of
services. There is no need to compile Java/Groovy code and deploy services to web servers for evaluation
and testing, thus making it easy for students and non-technical users to develop sophisticated workflows
and/or add their own components with no programming effort. Jupyter also provides “human in the
loop” functionality, by allowing one to run a pipeline in the LAPPS Grid, manipulate the Galaxy history
items in Jupyter, and finally upload the results to Galaxy for further processing. This facility is especially
important for HLT development that involves iterative enhancement of training data on the basis of error
analysis, etc.

6https://www.hathitrust.org
7https://www.docker.com/
8See (Goecks et al., 2010) for a comprehensive overview of Galaxy’s sharing and publication capabilities.
9E.g., http://nlpers.blogspot.com/2006/11/reproducible-results.html

10E.g., Replicability and Reusability in Natural Language Processing: from Data to Software Sharing:
http://nl.ijs.si/rrnlp2015/

11https://toolshed.g2.bx.psu.edu
12Groovy Domain Specific Language.
13The kernel is available from https://github.com/lappsgrid-incubator/jupyter-lsd-kernel; see also

http://wiki.lappsgrid.org/technical/jupyter.html. A Docker image is also available including Jupyter and the LSD kernel,
for installation-free usage.

13

3 Comparison with other frameworks

The LAPPS Grid differs from existing frameworks primarily because of the standards for interoperability
it implements to enable components from different sources to be seamlessly interfaced, and the result-
ing ease and transparency with which components can be added and manipulated. Frameworks such
as UIMA and GATE, which also provide multiple tools that can be pipelined together, require a rela-
tively steep learning curve to use and considerable programming effort to add or modify components.
Similarly, the Natural Language Toolkit (NLTK) requires Python programming and effectively limits the
user to the tools that are built-in to the system. In contrast, modules can be easily added to the LAPPS
Grid by wrapping them as a service, using provided templates; and, more importantly, no programming
experience or technical expertise is required, since workflows are constructed using the Galaxy project’s
workflow management framework. This makes the LAPPS Grid ideal for instructional use.

The recently introduced Kathaa system (Mohanty et al., 2016) provides functionality similar to the
LAPPS Grid, but allows modules to be interfaced only if compatible with one another–i.e., there is no
attempt to standardize inputs and outputs among modules, so that mixing and matching of different tools
that perform the same function is limited. The LAPPS Grid’s Open Advancement evaluation modules,
which exploit the ability to construct alternative pipelines in order produce statistics identifying the most
effective tool sequence and/or components accounting for the largest proportion of error, are also unique;
Kathaa in contrast has only basic evaluation facilities.

Another similar framework is the Alveo system (Cassidy et al., 2014), which also uses Galaxy as its
workflow engine and renders tools interoperable using representations that are the same as, or isomorphic
to, the LAPPS Grid’s. Alveo is dedicated primarily to multi-modal data and applications and therefore
includes a very different suite of modules and datasets; in the future, federating with Alveo could enable
access to its facilities from within the LAPPS Grid.

4 Collaboration with Galaxy

Since the LAPPS Grid project adopted Galaxy in late 2014, we have had multiple interactions with the
Galaxy development team to extend and/or modify Galaxy to meet some of our needs. These interactions
have been so successful and mutually beneficial that our two projects are establishing a collaboration that
will contribute to the continued development of both infrastructures. We believe that the synergistic de-
velopment of capabilities supporting both HLT and genomic analysis within the Galaxy framework could
have a significant impact on both fields, not only by enhancing Galaxy functionality overall, but also by
integrating data, tools, as well as workflows and methods from previously distinct scientific communi-
ties. For example, HLT researchers will benefit from access to sophisticated visualization software for
display and analysis of results common to research in the life sciences, but rarely used in HLT research,
and biologists will be able to take advantage of bio-oriented HLT web services for mining of bio-entities
and relations from textual sources and (via capabilities already present in Galaxy) integrate them into
existing bio-data resources and analysis tools.

There are several key enhancements to Galaxy that are necessary to scale the LAPPS Grid to handle
sophisticated HLT development and education that are synergistic with enhancements that the Galaxy
team is already proposing to benefit life sciences research. These include the ability to efficiently handle
large data collections (i.e., a large number of small datasets, vs. the single large dataset common in
genomics research); and enhanced ability to investigate data using Interactive Environments (IEs), which
is intended to assist life sciences research by allowing for injection of visual analytics in a workflow, but
for HLT would provide “human-in-the-loop” capabilities to support iterative improvement in machine
learning. At the same time, the Galaxy developers have proposed enhancements to their framework
that are already in development for LAPPS Grid tools, for example, automatic management of software
dependencies (both syntactic and semantic), and systematic workflow exploration and optimization, as
provided in our OA evaluation suite of tools. Thus the collaboration can provide significant benefits to
both the HLT and life sciences communities.

The two projects are also working together to create automatic workflow creation capabilities, such as a
“Pipeline Wizard” to provide a wizard-like interface to guide the user through the logical steps in creating

14

instances of known workflow(s); and/or a “Pipeline-via-Dialog” that allows the user to specify the desired
analytic goal in simple English, where the system constructs the desired workflow automatically.

The LAPPS Grid will also benefit from Galaxy’s efforts to expand their access to the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE) (Towns et al., 2014) and JetStream, to which the
LAPPS Grid has recently deployed several cloud-based instances for use in courses and specific projects.
The Galaxy team is implementing means to take full advantage of High Performance Computing re-
sources, including parallelization and scaling support, as well as the latest dependency management,
code versioning, and virtualization techniques, all of which will serve LAPPS Grid needs. Our collabo-
ration will ensure that implementation within Galaxy of these and other capabilities that can serve both
disciplines are flexible and scalable to other disciplines’ needs in the future. It will also enable gathering
user feedback from the perspectives of both communities to feed development of both platforms.

4.1 Federation with CLARIN
The Mellon Foundation recently funded a collaborative effort make the LAPPS Grid interoperable with
the pan-European CLARIN project’s WebLicht/Tübingen14 and LINDAT/CLARIN (Prague)15 frame-
works. The effort will create a “trust network” among the LAPPS Grid and CLARIN sites, in order to to
make the services we currently provide, as well as future services we will develop, transparently inter-
operable and mutually accessible from our respective infrastructures. A focus of activity will be to adapt
the LAPPS Grid to accommodate the Shibboleth (SAML 2) protocol in order to allow access to login-
protected (but otherwise generally accessible) content and services by anyone authenticated through the
CLARIN authentication and identification mechanism.

Collaborative access between the LAPPS Grid and CLARIN is achievable largely due to standards and
best practices for interoperability that have emerged over the past decade and that were applied internally
to both the LAPPS Grid and CLARIN. The federation with CLARIN complements the LAPPS Grid’s
membership in the Federated Grid of Language Services (FGLS), which provides interoperable access to
the University of Kyoto’s Language Grid16 and four other Asian grids, plus a grid under development at
the European Language Resources Association (ELRA)17. Through these two federations we have vastly
increased the availability of multi-lingual and multi-modal resources and tools in the LAPPS Grid and
expanded the range of users beyond the HLT community we originally intended to serve, including users
involved in inter-cultural communication and the digital humanities research.

4.2 Course development
The LAPPS Grid team recently developed and delivered a four-day short course on Intelligent Infor-
mation Systems for Analysts, using a purpose-built instance of the LAPPS Grid software deployed in
the cloud. The LAPPS Grid “Discovery” instance supports access to selected corpora from the LDC
Gigaword data source, along with a variety of open-source HLT tools (sentence splitters, named entity
recognizers, passage extractors, passage rankers), and was the focus of hands-on exercises for compara-
tive evaluation of HLT components, composition of analytic pipelines from individual components, and
analytic approaches that can learn from user knowledge and feedback.

Based on this experience, we recognized that the LAPPS Grid is an ideal framework to help students
interact with and design complex HLT systems without the need for sophisticated technical skills. To that
end, we are focusing on the development of curriculum materials to enable students to learn the skills re-
quired to rapidly analyze large bodies of language data in practical contexts, in collaboration with several
partners at universities in the US, Canada, and Europe (Brandeis University, Carnegie Mellon Univer-
sity, Vassar College, University of Dundee (Scotland), George Washington University, and University of
British Columbia). The course materials are being designed to effectively teach to a first-year computer
science or computational linguistics student the skills required to create new analytic modules, compose
pipelines integrating those modules, and compare them to pipelines which integrate existing services–all

14http://weblicht.sfs.uni-tuebingen.de/
15https://lindat.mff.cuni.cz/
16http://langrid.org
17http://www.elra.info.

15

without the often prohibitive need to acquire and manage data sets and software suites on an individual
basis–within the context of on-line, self-driven, hands-on exercises supported by the LAPPS Grid.

A secondary goal is to effectively teach to a first-year computer science graduate student the skills
required to compose, evaluate and optimize state-of-the-art software solutions using standard datasets,
evaluation metrics and corpora for multi-language, multi-media information systems that process text,
audio, images and video. Providing such a capability for graduate instruction would unlock the potential
of the vast store of data present in repositories such as the Linguistic Data Consortium and the multi-
lingual resources available from federated grids. The end result will be to train the next generation of
HLT researchers, developers, and language analysts, who will use advanced technologies such as the
LAPPS Grid on a regular basis to augment simpler analyses available via web search and the use of
standalone tools.

All course materials will be freely available from the Open Learning Initiative (OLI)18 and a dedicated
repository maintained by the LAPPS Grid project. The materials will be accompanied with ready-made
docker images that can be used as is or easily customized to suit specific pedagogical goals.

5 Enhancement of Open Advancement Evaluation Capabilities

A final focus of current activity is extension of the component and pipeline evaluation capabilities in
the LAPPS Grid to support parallel evaluation and broader adoption by end-user communities. These
include

• parallel exploration of alternative pipelines, drawing on recent work on Configuration Space Explo-
ration (CSE) and Phased Ranking Models (Garduno et al., 2013; Yang et al., 2013; Liu and Nyberg,
2013). We will provide the capability to specify an abstract pipeline with multiple possible compo-
nents per phase, and the corresponding capability to explore the different alternatives automatically
in parallel using the CSE technique.

• accessible display of results, with support for different visualizations for pipeline results (both the
data objects produced by the pipeline as well as the evaluation metrics measured for each pipeline
test).

Our federation with multiple grids and frameworks will make it possible to evaluate the performance
of vast arrays of alternative tool pipelines that would otherwise be unavailable or prohibitively difficult to
use together. It will also provide, for the first time, the capability to study and evaluate tools performance
on data in a huge set of different languages.

6 Future Developments and Conclusion

The LAPPS Grid project is developing in two main directions. First, it is expanding not only the range
of tools, resources, and components available within the framework itself, but also providing access to
hundreds, if not thousands, of resources and tools available from federated partners. Second, it is fo-
cusing on development of cloud-deployed, customizable course materials that can dramatically enhance
the training of the next generation of HLT researchers, and provide significantly improved materials for
non-technical users.

In addition to the above developments, we are also engaging in significant community outreach to
encourage tool developers to contribute to the LAPPS Grid repository, through which process they be-
come interoperable with all other the LAPPS Grid tools and components. Ultimately, by this means and
federation with other grids and frameworks throughout the world, we hope to develop a massive library
of interoperable components for HLT research, development, and education.

Acknowledgements

The work described here is supported by US National Science Foundation awards ACI-1147912, ACI-
1147944, ACI-1547621, and ACI-1547270, and a grant from the Mellon Foundation.

18http://oli.cmu.edu
16

References
Steve Cassidy, Dominique Estival, Timothy Jones, Denis Burnham, and Jared Burghold. 2014. The Alveo Virtual

Laboratory: A Web based Repository API. In Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), Reykjavik, Iceland, may. European Language Resources Association
(ELRA).

Antske Fokkens, Marieke van Erp, Marten Postma, Ted Pedersen, Piek Vossen, and Nuno Freire. 2013. Offspring
from Reproduction Problems: What Replication Failure Teaches Us. In Proceedings of the Conference of The
Association for Computational Linguistics, pages 1691–1701. The Association for Computational Linguistics.

C. Gandrud. 2013. Reproducible Research with R and RStudio. CRC Press.

Elmer Garduno, Zi Yang, Avner Maiberg, Collin McCormack, Yan Fang, and Eric Nyberg. 2013. CSE Frame-
work: A UIMA-based Distributed System for Configuration Space Exploration Unstructured Information Man-
agement Architecture. In Peter Klgl, Richard Eckart de Castilho, and Katrin Tomanek, editors, UIMA@GSCL,
CEUR Workshop Proceedings, pages 14–17. CEUR-WS.org.

B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, D. Blankenberg, I. Albert,
J. Taylor, W. Miller, W. J. Kent, and A. Nekrutenko. 2005. Galaxy: a platform for interactive large-scale
genome analysis. Genome Research, 15(10):1451–55.

Timur Gilmanov, Olga Scrivner, and Sandra Kbler. 2014. SWIFT Aligner, A Multifunctional Tool for Parallel
Corpora: Visualization, Word Alignment, and (Morpho)-Syntactic Cross-Language Transfer. In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland,
may. European Language Resources Association (ELRA).

Jeremy Goecks, Anton Nekrutenko, and James Taylor. 2010. Galaxy: a comprehensive approach for supporting
accessible, reproducible, and transparent computational research in the life sciences. Genome biology, 11:R86.

Jeremy Goecks, Nate Coraor, The Galaxy Team, Anton Nekrutenko, and James Taylor. 2012. NGS Analyses by
Visualization with Trackster. Nature Biotechnology, 30(11):10361039.

Nancy Ide, James Pustejovsky, Keith Suderman, and Marc Verhagen. 2014. The Language Application Grid
Web Service Exchange Vocabulary. In Proceedings of the Workshop on Open Infrastructures and Analysis
Frameworks for HLT (OIAF4HLT), Dublin, Ireland.

Nancy Ide, Keith Suderman, Marc Verhagen, and James Pustejovsky. 2016. The Language Application Grid Web
Service Exchange Vocabulary. In Revised Selected Papers of the Second International Workshop on Worldwide
Language Service Infrastructure - Volume 9442, WLSI 2015, pages 18–32, New York, NY, USA. Springer-
Verlag New York, Inc.

Toru Ishida, Yohei Murakami, Donghui Lin, Takao Nakaguchi, and Masayuki Otani. 2014. Open Language
Grid–Towards a Global Language Service Infrastructure. In The Third ASE International Conference on Social
Informatics (SocialInformatics 2014), Cambridge, Massachusetts, USA.

John Lawrence, Floris Bex, Chris Reed, and Mark Snaith. 2012. AIFdb: Infrastructure for the Argument Web. In
Computational Models of Argument - Proceedings of COMMA 2012, Vienna, Austria, September 10-12, 2012,
pages 515–516.

Rui Liu and Eric Nyberg. 2013. A Phased Ranking Model for Question Answering. In Proceedings of the
CIKM’13.

Sharada Prasanna Mohanty, Nehal J Wani, Manish Srivastava, and Dipti Misra Sharma. 2016. Kathaa: A visual
programming framework for nlp applications. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Demonstrations, pages 92–96, San Diego, California,
June. Association for Computational Linguistics.

Ted Pedersen. 2008. Empiricism is Not a Matter of Faith. Computational Linguistics, 34(3), September.

Fernando Perez and Brian E. Granger. 2007. IPython: A System for Interactive Scientific Computing. Computing
in Science and Engg., 9(3):21–29, May.

Mark Sammons, Christos Christodoulopoulos, Parisa Kordjamshidi, Daniel Khashabi, Vivek Srikumar, Paul Vi-
jayakumar, Mazin Bokhari, Xinbo Wu, and Dan Roth. 2016. EDISON: Feature Extraction for NLP, Simplified.
In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016).
European Language Resources Association (ELRA).

17

John Towns, Timothy Cockerill, Maytal Dahan, Ian T. Foster, Kelly P. Gaither, Andrew S. Grimshaw, Victor
Hazlewood, Scott Lathrop, David Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, and Nancy Wilkins-
Diehr. 2014. XSEDE: Accelerating Scientific Discovery. Computing in Science and Engineering, 16(5):62–74.

Marc Verhagen, Keith Suderman, Di Wang, Nancy Ide, Chunqi Shi, Jonathan Wright, and James Pustejovsky.
2016. The LAPPS Interchange Format. In Revised Selected Papers of the Second International Workshop on
Worldwide Language Service Infrastructure - Volume 9442, WLSI 2015, pages 33–47, New York, NY, USA.
Springer-Verlag New York, Inc.

Zi Yang, Elmer Garduno, Yan Fang, Avner Maiberg, Collin McCormack, and Eric Nyberg. 2013. Building Opti-
mal Information Systems Automatically: Configuration Space Exploration for Biomedical Information Systems.
In Proceedings of the CIKM’13.

18

Proceedings of WLSI/OIAF4HLT,
pages 19–27, Osaka, Japan, December 12 2016.

Automatic Analysis of Flaws in Pre-Trained NLP Models

Richard Eckart de Castilho
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science
Technische Universität Darmstadt

http://www.ukp.tu-darmstadt.de/

Abstract

Most tools for natural language processing (NLP) today are based on machine learning and come
with pre-trained models. In addition, third-parties provide pre-trained models for popular NLP
tools. The predictive power and accuracy of these tools depends on the quality of these models.
Downstream researchers often base their results on pre-trained models instead of training their
own. Consequently, pre-trained models are an essential resource to our community. However,
to be best of our knowledge, no systematic study of pre-trained models has been conducted so
far. This paper reports on the analysis of 274 pre-models for six NLP tools and four potential
causes of problems: encoding, tokenization, normalization, and change over time. The analysis
is implemented in the open source tool Model Investigator. Our work 1) allows model consumers
to better assess whether a model is suitable for their task, 2) enables tool and model creators to
sanity-check their models before distributing them, and 3) enables improvements in tool inter-
operability by performing automatic adjustments of normalization or other pre-processing based
on the models used.

1 Introduction

As natural language processing (NLP) has become a pervasive technology in many research and appli-
cation domains, NLP tools and the pre-trained models that ship with them or that are provided by third
parties have become essential resources. Often, researchers and other users do not have access to text
corpora from which they could train suitable models themselves or simply prefer the convenience of
using existing models. Users of centrally provided NLP infrastructures may not even have the option
of using models other that those offered within the platform. However, this entails that any problems
with these models, propagate into subsequent NLP components in a pipeline or into data analytics and
negatively influence them. Worst of all, the consumers of pre-trained models may not even be aware of
the problems the models exhibit.

We hope to raise more awareness through this paper by reporting on an analysis of pre-trained models
for typical sources of problems: encoding, tokenization, normalization, and changes between different
released versions (Section 3). The analysis is based on a dataset of 274 pre-trained models for six popular
NLP tools. To the best of our knowledge, this is the first systematic analysis of pre-trained models for
flaws and other sources of problems. We have observed that some models have been distributed with
serious flaws for years and have informed the model creators of the problems.

The open source tool Model Investigator1 that was created and used to perform this analysis (Sec-
tion 2). It can be used by model creators to perform automatic sanity checks on their models and by
model consumers to obtain detailed information about new models as they become available. The mod-
ular tool can easily be extended to support pre-trained models of new NLP tools.

Finally, we investigate the negative impact of flawed models in a case study: models trained with a
bad character encoding (Section 4).

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://creativecom-
mons.org/licenses/by/4.0/

1https://github.com/UKPLab/coling2016-modelinspector

19

1.1 The role of models in NLP pipelines
Before going into the details, we briefly motivate why the analyzed issues are typical sources of problems
in NLP pipelines, in particular when mixing components and models from different vendors.

Combining multiple NLP tools into pipelines is a typical task that is hindered by the fact that the tools
tend to come with different APIs and input/output formats. There is a range of frameworks and platforms
such as UIMA (Ferrucci and Lally, 2004), GATE (Cunningham et al., 2011), WebLicht (Hinrichs et al.,
2010), LAP (Lapponi et al., 2013), DKPro Core (Eckart de Castilho and Gurevych, 2014) and LAPPS
Grid (Ide et al., 2014) that address this problem by each respectively providing common data exchange
models between NLP tools. Tool wrappers ensure that the data is transformed between the common
exchange model and the tool-specific input/output formats, e.g. between the UIMA CAS exchange
model and the input/output format used by the Stanford Parser. This process of wrapping NLP tools
coming from entirely different contexts requires paying close attention to all kinds of variations in data
representation, tagsets being used, etc. This requires not at last having detailed information about models
and their characteristics.

A tool wrapper needs to know how to transform the data, e.g. which kinds normalization to apply to
the text before passing it on to the tool, which character encoding to use, etc. This information can be
hard-coded into the wrapper, but this is inflexible. It can be provided via parameters that a user needs
to supply, but this is error prone. It could also be automatically obtained directly from the model file
the tool is configured to use, but models are typically treated as black boxes. Extracting the necessary
information is often not possible via the standard API. In many cases, we had to use invasive methods to
extract e.g. lexicon information directly from private variables2 in the model data objects.

Also, the interaction between components in a pipeline can have an impact. For example tokenization
is typically the initial step in a pipeline and the resulting tokens are used by the other components. If the
pipeline tokenization scheme does not correspond to the one that was used when a model was created, a
negative impact on the pipeline results can be expected.

Some NLP tools have been around for many years and have seen multiple updates to their code and to
their models. The models may have changed in significant, yet typically undocumented ways, e.g. with
respect to normalization or lexicon size, which can have an impact on existing pipelines being upgraded
to newer model versions. One might expect that there have been improvements that would produce
better results when upgrading an old experimental setup to using a newer version of a tool or model. A
positive change could be that newer models have been trained on more data and offer a larger vocabulary
coverage. However, changes may also easily lead to decreased performance, e.g. if the normalization
steps used when creating the model were changed and the pipeline setup is not adjusted accordingly.

2 The Model Investigator tool

To perform our analysis, we have implemented the open-source software Model Investigator. For the
analysis, Model Investigator relies on extracting the lexicon information encoded in the models, i.e. the
tokens the model was trained on. The lexicon is not always explicitly represented in a model. In some
cases, it has to be extracted from different types of features representations according to the machine
learning approach used by the respective tool.

Model Investigator can be used either as a command line tool or as a software library. Its architecture
consists of three main component types: model analyzers, checks, and reports.

Model Analyzers A model analyzer extracts the lexicon information from a given model file. To
support a new NLP tool, a new model analyzer needs to be implemented. The method of extracting the
lexicon is specific for each tool. While some models contain an explicit lexicon, for others it needs to be
extracted from an inventory of feature names that are used by the machine learning part of the tool.

Typically, the model analyzer loads a model into memory using the deserialization provided by the re-
spective tool. As most of the analyzed tools have been implemented for the Java Virtual Machine (JVM),

2Many programming languages allow to control the visibility of data and functionality. The private functions and variables
are meant not to be used by third parties, usually because they may be subject to change between different version of a software
package without further notice. Without special effort, such functions and variables cannot be accessed.

20

we used the JVM-based language Groovy to implement our tool. Groovy has the benefit being able
to ignore the typical Java access-modifiers (private, protected) and greatly facilitates accessing the of-
ten access-restricted data structures containing the lexicon information. Through integration with the
Maven Central software repository, we could make it easy to automatically test a given model against
different versions of a NLP tool, e.g. to test with which versions of the Stanford Parser and CoreNLP
packages a given model is compatible. This way, we could inspect the models of all of the analyzed tools
except TreeTagger, which is not implemented in Java. To analyze the TreeTagger models, we had to
reverse-engineer the undocumented format of the binary model files to extract the lexicon information.

Checks The checks are then used to test the extracted lexicon for potential problems. A range of checks
related to encoding, tokenization, and normalization have been implemented (cf. Sections 3.1-3.3). New
checks can be added easily. The checks performed by the tool fall into two categories: boolean checks
(e.g. if escaped and non-escaped brackets appear at the same time) and frequency checks (e.g. how many
lexicon words contain encoding problems). As most of the models contain a small number of problems,
we report only those frequency check results that affect more than 1% of the lexicon entries. Not all
models are versioned and not all models change across releases of a tool. Thus, as the model version
we use the date of the first change detected by calculating and comparing a checksum over the different
model files in a series. If exactly the same model is contained in multiple versions of a NLP software
package, we count it only once.

Reports The primary output of Model Investigator are detailed per-model analysis reports that are
written as machine-processable JSON files. In addition, Model Investigator also generates comparative
diachronic reports for models which are available in multiple versions. We leveraged this to analyze the
ways in which models in a series change from one release to the next (cf. Section 3.4). Overview reports
are generated as CSV files which can be opened using most spreadsheet applications.

3 Model Analysis

This section examines different types of issues related to encoding, tokenization, and normalization that
were observed in the analyzed models. We exclude questions related to coverage because typically
a frequency cutoff is applied during the training process and thus the lexicon extracted from a model
usually does not give a complete account of the tokens in the training corpus.

As the basis for our analysis, we have compiled a dataset3 of 274 pre-trained models for six NLP tools:
POS tagger and named entity recognizer from Apache OpenNLP4; POS tagger, parser, and named entity
recognizer from Stanford CoreNLP (Manning et al., 2014); TreeTagger (Schmid, 1994) (Table 1).

In order to track changes over time, we have organized the 274 models into series. Each series repre-
sents what should be considered as a set of different versions of essentially the same model. Such a series
would e.g. cover the English PCFG models from the Stanford Parser that were included with different
releases of the Stanford Parser package and the Stanford CoreNLP package. We have analyzed 48 series
of size > 1.

3.1 Character Encoding

Problem description Special care has to be taken when creating a model with respect to 1) the encod-
ing of the corpora used as training data and 2) with respect to the default encoding used on the platform
where the model is created. Older (western) corpora often use variations of the ISO 8859 encoding,
whereas newer corpora tend to use a Unicode encoding, often UTF-8. As for the platforms that models
are trained on: the default (western) encoding for Windows is ISO 8859; UTF-8 is commonly the default
on Linux and OS X (depending on the version, also Mac OS Roman). This heterogeneity of encod-
ings makes training a model an error-prone task that requires careful attention. We observe two typical
problems related to encoding:

3Some TreeTagger models that were collected in the past are no longer publicly available from the TreeTagger homepage.
Since the license of the TreeTagger models does not allow for redistribution, we can unfortunately not make them available.

4http://opennlp.apache.org

21

Tool ID Product Tool Languages Series Models
C-TAG CoreNLP POS tagger 6 23 70
O-TAG OpenNLP POS tagger 8 22 22
T-TAG TreeTagger POS tagger 18 18 23
C-NER CoreNLP Named Entity Recognizer 3 15 33
O-NER OpenNLP Named Entity Recognizer 3 15 15
C-PAR CoreNLP Parser 6 25 111
Total 21 118 274

Table 1: Analyzed tools, series, and models

Type A) Non-UTF-8 data is read as UTF-8. Non-ASCII characters that are not valid in UTF-8
are replaced with the Unicode replacement character (U+FFFD). This is a destructive operation as the
original character information is lost. There are variation of this problem that use other characters as a
replacement, e.g. the question mark. We did not analyze these variations here.

Type B) UTF-8 is read as ISO 8859 and re-encoded into UTF-8. In this case, UTF-8 characters
are treated as one or more ISO 8859 characters, depending on the number of bytes used to encode the
character in UTF-8. E.g. ”á” (UTF-8) becomes ”Ã¡” (ISO 8859-1). This is a non-destructive operation
as the ISO 8859 byte sequence can be recovered and then re-interpreted as UTF-8.

Implementation The checks for type A flaws count the numbers of entries in the model lexicon con-
taining question marks and Unicode replacement characters respectively. The check for a type B flaw
is more sophisticated. Here, a set of seed characters is generated from those characters which differ
between the different ISO 8859 variants, i.e. non-ASCII characters in the code range from 0xA1 to
0xFF. These seed characters are converted from the source encoding to a UTF-8 sequence which is then
again re-encoded using the source encoding. The check then counts the number of model lexicon entries
containing these re-encoded seed characters.

Result We observe serious type A flaws in 5 models of 3 series. For type B flaws, we checked against
ISO 8859-(1,2,5,6) and used only the results for the encoding with the most hits. 7 models of 4 series
exhibit serious type B encoding problems likely due to misconfiguration during model training. In both
cases, we report only analysis results on the latest model version exhibiting the problem in the respective
series (Table 2), which is also the latest version available at the time of writing. Additionally, we list first
version affected version in each series from our dataset. It can be seen that the flaws in the models exist
for many years and have even be carried over to newer versions. A small number (2-50) of type A and B
errors was observed in 12 additional models and are likely spurious mistakes in the underlying corpora.

The problems listed in Table 2 have been reported to the respective model creators. Some have ac-
knowledged the problems and started looking into providing new fixed models.

First Most Affected
affected recent lexicon entries*

Tool ID Lang Model version version Type Rel. Abs.
C-NER de hgc 20120522 20150130 A 16.37 % 2616
C-NER de dewac 20120522 20150130 A 16.47 % 2800
C-PAR es pcfg 20140826 20150108 B 18.82 % 6492
C-PAR es sr 20140828 20141023 B 19.76 % 4495
C-PAR es sr-beam 20140828 20141023 B 19.51 % 5654
O-TAG de maxent 20120616 20120616 B 16.70 % 2442

Table 2: Models with encoding problems (* affected entires for most recent version).

22

Recommendation Developers of NLP tools should allow configuring the encoding independent of the
platform a model is created on. Model creators must pay attention to configure the tools for the proper
encoding of the source data. Model Investigator can be used to verify the encoding of the trained model.

3.2 Tokenization
Problem description Tokenization is typically the first step in an NLP pipeline and most subsequent
steps build on the generated units. This is true when training models, but also when applying them.
Thus, it is important that the same tokenization scheme is used at both stages. However, models are often
trained on manually segmented corpora which may be hard to reproduce automatically (cf. (Dridan
and Oepen, 2012)). Another common case is that the model creator did not document the tokenization
scheme and the unaware model consumer chooses to uses a different one. This leads to the question
whether information about this scheme can be extracted from a model and can be used to advise the
model consumer whether a particular given automatic segmentation tool is suitable in combination with
this model. As a subsequent step, the model consumer may be informed whether different models used
in a pipeline use similar or radically different segmentation schemes.

Implementation As a heuristic for the suitability of a tokenizer for a given model, we apply the tok-
enizer to each lexicon word in turn and count cases in which the tokenizer further splits the lexicon word.
For instance, if the lexicon word is [1-million-plus] and a given tokenizer splits it into [1, -, million, -,
plus], this is counted. In addition to tokenizers from already introduced tools, we used the Java BreakIter-
ator, JTok,5 LanguageTool,6 and LingPipe.7 Due to the modular structure of Model Investigator, support
for additional tokenizers can be easily added.

Result Exemplary results for all English models (max. over all versions/series) are shown in Table 3.
A high result should indicate that a tokenizer is not suitable. However, further interpretation of the results
is difficult. Obviously the heuristic has two major problems: 1) a trivial tokenizer that does nothing at
all produces optimal results; 2) most tokenizers are context sensitive but in our test each lexicon entry
is analyzed individually without context. Further in-depth analysis correlating results to different token
shapes (e.g. numbers, dates, chemical compounds, etc.) may yield additional insight as to whether a user
should be concerned about a high split rate or not.

Tokenizer O-NER O-TAG C-NER C-PAR C-TAG T-TAG
Java BreakIterator 0.05 4.94 5.17 7.72 61.32 0.24
JTok 0.03 2.88 1.14 1.44 49.68 0.08
LanguageTool 0.05 7.71 8.37 10.66 14.72 0.26
LingPipe 0.01 15.55 10.34 18.77 64.08 10.44
OpenNLP 0.02 0.74 1.13 0.77 17.59 0.11
CoreNLP 0.02 3.00 0.99 2.06 3.43 0.15

Table 3: Percentage of split lexicon entries for English pre-trained models of six NLP tools

Recommendation Model consumers should consider using Model Investigator to extract the lexicon
from a pre-trained model and to apply their tokenizer of choice to it. If the tokenizers splits a significant
number of the lexicon entries into smaller tokens, the tokenizer may not be suitable for use with the given
model. Based on our analysis of pre-trained models and tokenizers, we conjecture a ratio of more than
20% split lexicon entries as unnecessarily high and potentially problematic.

3.3 Normalization
Problem description Normalization is a common step while preparing corpora and training models on
them. The most common and prominent normalization may be the that of brackets and quotes introduced

5http://github.com/DFKI-MLT/JTok
6http://languagetool.org
7http://alias-i.com/lingpipe

23

by the Penn Treebank (PTB) (Marcus et al., 1993) and used in many corpora thereafter. Here, e.g. a right
round bracket ”(” gets normalized to ”-RRB-”. But we also observe other kinds of normalization in the
analyzed models, e.g. the escaping of slashes and underscores. Many models contain a small number
of XML entities (1-5), but we did not find this to be a systematically applied step. CoreNLP includes a
normalization step to americanize English text which we did not further analyze here.

In most cases, normalization can be easily detected from the model lexicon. However, to the best
of our knowledge, no NLP tool or wrapper actually does inspect the user-provided model to automat-
ically configure suitable normalization steps for the given model. Instead, it is assumed that the user
knows which normalization is required and configures the pipeline accordingly. In particular, if different
models for the same tool use different normalization schemes, the user may forget to adjust the settings
accordingly when changing models.

If normalization is applied inconsistently during model training, it can negatively affect the results. For
example, finding PTB-normalized and non-normalized brackets in a model lexicon may be a indicator of
an inconsistently normalized corpus or of a bug in the normalization code.

A particular problem are invisible characters such as the non-breaking space (NBSP) and the zero-
width soft hyphen (SHY). A visual scan of the corpus data does not reveal these. Normally, it cannot be
assumed that such characters are used systematically in input data. For most users, models trained on
corpora containing such characters will produce sub-optimal results.

Implementation The checks for normalization problems count the number of model lexicon entries
containing particular substrings or characters, e.g. entries containing SHY, NPSP, escaped slashes, or
PTB brackets and quotes respectively.

Result We analyzed the models looking for typical normalization steps (Table 4) and problem indica-
tors (Table 5). Inconsistent normalization of brackets appears to be a problem in some models, mostly for
CoreNLP NER. Mixed quotes are detected in a large number of models. We assume this to be an artifact
of the tokenization scheme not splitting adjacent quotes into separate tokens rather than being a normal-
ization problem. SHYs appear systematically in the Spanish CoreNLP models which were all trained
on AnCora 3.0 (Taulé et al., 2008) and also in the Spanish OpenNLP NER models. The latter were
trained on data from the Spanish EFE News Agency used in CoNLL-2002 which was later integrated
into AnCora. NBSPs appear in a many models but not systematically.

Normalization Series Models
PTB curly brackets -LCB-, -RCB- 27 82
PTB round brackets -LRB-, -RRB- 20 119
PTB square brackets -LSB-, -RSB- 10 26
PTB quotes ‘‘ ,’’ 43 103
Slash escaped \/ 2 6

Table 4: Common normalizations

Max. affected
Issue Series Models lexicon entries
Mixed round brackets 7 10 -
Mixed square brackets 2 4 -
Mixed quotes 42 102 -
Contains SHY 7 10 4.40 %
Contains NBSP* 22 58 0.11 %

Table 5: Normalization issues (* no 1% cutoff)

Recommendation NBSPs should be replaced by regular a space character and SHYs should be re-
moved from texts before training and analysis, actually even before tokenization. Model Investigator
includes checks to test whether a trained model still contains problematic invisible characters in its lexi-
con and can be used to verify the final model.

3.4 Change between Model Versions
Problem description Some tools, such as CoreNLP and TreeTagger, are regularly updated or released
in new versions. It is usually neither obvious nor documented if and in which way the models change
as part of an update. Models packaged with different versions of a tool may actually be the same. For
example the CoreNLP package has for a long time included a set of models with each released version
of the package, but between two releases, only a few of these models changed. We also observe that
models may change without any version number increasing. For example, the models available from

24

the TreeTagger website are regularly updated, but their file name or version does not change in most
cases. Users can only observe such changes if they download the models at different points in time and
compare the binary files to each other bit-by-bit. If there are changes, they may have impact on the
results. Negative impact could be caused e.g. by changes in the normalization. However, there could
also be positive impact, e.g. if new models are trained on additional data and thus may provide additional
coverage or accuracy.

Implementation To get an impression of the the change over time, we analyzed the oldest and the
most recent model within each series and compared the results.

Results Of the 118 analyzed series, 48 consist of more than one model. Most of these remain largely
stable in their lexicon size over time. Only 10 series exhibit a change of > 1% from the oldest to the
newest model in the series (Table 6). This indicates that results based on most models should remain
comparable irrespective of the model version used. On the other hand, it would have also been great to
observe that training data is continually extended over the years.

Affected
lexicon entries ∆

Tool ID Lang Model oldest newest Abs Rel %
C-NER en all.3class.caseless.distsim.crf 32809 41092 8283 25.25
C-NER en all.3class.distsim.crf 24008 40572 16564 68.99
C-NER en conll.4class.distsim.crf 13677 13952 275 2.01
C-NER en muc.7class.distsim.crf 10364 10901 537 5.18
C-PAR zh factored 37687 55943 18256 48.44
C-PAR zh pcfg 37687 55943 18256 48.44
C-TAG de dewac 44581 47916 3335 7.48
C-TAG de fast 44581 47916 3335 7.48
C-TAG de hgc 44581 47916 3335 7.48
T-TAG es le 74289 84217 9928 13.36

Table 6: Series with lexicon size changes (> 1%)

In terms of normalization, we find that some series switch from regular brackets to PTB brackets
(round 4, square 5), from escaped slashes to unescaped slashes (2), and two series fix their issues of mixed
PTB/normal brackets. It is also notable that in two cases (C-TAG bidirectional-distsim, left3words-
distsim) the lexicon entries split by the JTok tokenizer drop by over 50% from 1666 to 800 due to a
switch from escaped to unescaped slashes.

Recommendation Users should be careful when upgrading to a new version of a model and ensure that
after the upgrade their setup still produces comparable results to before the upgrade. If the results change
unexpectedly after the upgrade, Model Investigator can be used to get additional insight by generating a
report of the characteristics of the old and new model and to comparing these to each other.

4 Case study: Impact of bad character encoding

In this section, we revisit the issue of models that were trained with a bad character encoding (cf. Sec-
tion 3.1) and investigate the negative impact it has on the accuracy. We previously identified two series of
models to be affected by a type B encoding problem: during the training of the model, an UTF-8 corpus
was read as ISO 8859. Since this type of encoding problem is reversible, it is possible to transform the
corpus tokens to the same broken encoding that is used in the model without any loss of information.

We measured the tagging accuracy of the German OpenNLP maxent POS tagger model once out-of-
the-box and once transforming the tokens to the same broken encoding used in the model before passing
them to the tagger. As evaluation datasets, we used the TIGER treebank (Brants et al., 2002) and on
the TüBa D/Z treebank (Telljohann et al., 2004). Note that the German OpenNLP POS tagger model

25

was originally trained on the TIGER corpus, so the accuracy on this corpus should not be taken as an
indicator of the model quality, but only for the change in accuracy between broken and ”fixed” encoding.
The tagging accuracy of the model increases by 1.26 on the TüBa D/Z corpus and by 1.38 on the TIGER
corpus when the tokens are transformed to the broken model encoding before passing them to the tagger.

In the same way, we tested the broken Spanish CoreNLP PCFG parser model. Note that we evaluated
only the the POS tagging accuracy of the model, not the parsing accuracy. Due to a lack of any other
Spanish corpus with a comparable tagset, again, we evaluated the model’s accuracy against its training
corpus. The model was trained on the AnCore 3.0.0 corpus. We evaluated against the 3.0.1 version of
AnCora8 and measured an improvement 5.05 in tagging accuracy when ”fixing” the encoding.

Encoding Accuracy
Tool ID Lang Model Version Corpus defect in broken fixed ∆
O-TAG de maxent 20120616 TIGER 2.2 model 97.59 98.97 1.38
O-TAG de maxent 20120616 TüBa D/Z 10 model 92.66 93.92 1.26
C-PAR es pcfg 20150108 AnCora 3.0.1 model 86.27 91.32 5.05

Figure 1: Comparison of applying models with broken encoding 1) as-is to a corpus (column broken) vs.
2) transforming the corpus tokens to the same broken representation used in the model before applying
the model (column fixed).

5 Conclusion

In this paper, we have analyzed publicly distributed pre-trained models for NLP tools for issues related
to encoding, tokenization, normalization, and change. We found several serious flaws which have been
communicated to the respective model creators. To support model creators to perform automatic sanity
checks on their models and to allow model consumers to get a better understanding of the models they
use, we introduce a new tool called Model Investigator.

As future work, we plan to extend Model Investigator so it can be applied directly to training corpora
before creating models. In our opinion, certain normalization steps (e.g. removing SHY or NBSP char-
acters) should rather be fixed in the underlying corpora than during training or processing. Due to the
frequency cutoff often used when training models, systematic issues on low-frequency tokens may go
unnoticed and analyzing the corpora directly may, thus, reveal additional issues. Finally, more checks
should be implemented to investigate deeper into potential source of problems raised by the increasing
use of Unicode. For example, it should be investigated whether homoglyphs in Unicode (e.g. different
dashes) are problematic.

Our techniques can also be embedded e.g. into UIMA or GATE tool wrappers to dynamically config-
ure normalization steps or make up for bad encoding. This is another area we plan to investigate further
in future work.

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme (H2020-EINFRA-2014-2) under grant agreement No. 654021. It reflects only the author’s views
and the EU is not liable for any use that may be made of the information contained therein. It was further
supported by the German Federal Ministry of Education and Research (BMBF) under the promotional
reference 01UG1416B (CEDIFOR).

8The AnCora corpus is missing POS tags in several cases. To train the Spanish CoreNLP models, a heuristic was applied to
fill in missing POS tags. It is implemented in the CoreNLP class SpanishXMLTreeReader. We used the same heuristic to fill in
missing POS tags during evaluation.

26

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. The TIGER treebank.

In Proceedings of the Workshop on Treebanks and Linguistic Theories (TLT02), pages 24–41, Sozopol, Bulgaria,
September.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve
Gorrell, Adam Funk, Angus Roberts, Danica Damljanovic, Thomas Heitz, Mark A. Greenwood, Horacio Sag-
gion, Johann Petrak, Yaoyong Li, and Wim Peters. 2011. Text Processing with GATE (Version 6).

Rebecca Dridan and Stephan Oepen. 2012. Tokenization: Returning to a long solved problem – a survey, con-
trastive experiment, recommendations, and toolkit. In Proceedings of ACL-2012, pages 378–382, Jeju Island,
Korea, July. ACL.

Richard Eckart de Castilho and Iryna Gurevych. 2014. A broad-coverage collection of portable nlp components
for building shareable analysis pipelines. In Proceedings of OIAF4HLT, pages 1–11, Dublin, Ireland, August.
ACL and Dublin City University.

David Ferrucci and Adam Lally. 2004. UIMA: An Architectural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Language Engineering, 10(3-4):327–348, September.

Marie Hinrichs, Thomas Zastrow, and Erhard Hinrichs. 2010. WebLicht: Web-based LRT Services in a Distributed
eScience Infrastructure. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk,
Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, Proceedings of LREC-2010, pages 489–493, Valletta,
Malta, May. ELRA.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg, Di Wang, Keith Suderman, Marc Verhagen, and
Jonathan Wright. 2014. The Language Application Grid. In Nicoletta Calzolari, Khalid Choukri, Thierry
Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of LREC-2014, Reykjavik, Iceland, May. ELRA.

Emanuele Lapponi, Erik Velldal, Nikolay A. Vazov, and Stephan Oepen. 2013. Towards large-scale language
analysis in the cloud. In Proceedings of the workshop on Nordic language research infrastructure at NODAL-
IDA 2013; NEALT Proceedings Series 20, number 89, pages 1–10, Oslo, Norway, July. Linköping University
Electronic Press.

Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David McClosky. 2014.
The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of ACL-2014, pages 55–60,
Baltimore, Maryland, USA, June. Association for Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of
English: the Penn Treebank. Comput. Linguist., 19(2):313–330, June.

Helmut Schmid. 1994. Probabilistic part-of-speech tagging using decision trees. In Proceedings of International
Conference on New Methods in Language Processing, pages 44–49, Manchester, UK.

Mariona Taulé, M. Antònia Martı́, and Marta Recasens. 2008. AnCora: Multilevel annotated corpora for Cata-
lan and Spanish. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Ste-
lios Piperidis, and Daniel Tapias, editors, Proceedings of LREC-2008, Marrakech, Morocco, May. ELRA.
http://www.lrec-conf.org/proceedings/lrec2008/.

Heike Telljohann, Erhard Hinrichs, and Sandra Kübler. 2004. The TüBa-D/Z treebank: Annotating German with
a context-free backbone. In Proceedings of LREC-2004, pages 2229–2235, Lisbon, Portugal.

27

Proceedings of WLSI/OIAF4HLT,
pages 28–35, Osaka, Japan, December 12 2016.

Combining Human Inputters and Language Services to provide
Multi-language support system for International Symposiums

Takao Nakaguchi
Graduate School of Informatics

Kyoto University
nakaguchi@i.kyoto-u.ac.jp

Toshiyuki Takasaki
NPO Pangaea,

Graduate School of Informatics
Kyoto University

toshi@pangaean.org

Masayuki Otani
Graduate School of Informatics

Kyoto University
m-otani@i.kyoto-u.ac.jp

Toru Ishida
Graduate School of Informatics

Kyoto University
ishida@i.kyoto-u.ac.jp

Abstract

In this research, we introduce and implement a method that combines human inputters and ma-
chine translators. When the languages of the participants vary widely, the cost of simultaneous
translation becomes very high. However, the results of simply applying machine translation to
speech text do not have the quality that is needed for real use. Thus, we propose a method that
people who understand the language of the speaker cooperate with a machine translation service
in support of multilingualization by the co-creation of value. We implement a system with this
method and apply it to actual presentations. While the quality of direct machine translations is
1.84 (fluency) and 2.89 (adequacy), the system has corresponding values of 3.76 and 3.85.

1 Introduction

Multi-language support is used to reduce the language barriers in international symposia whose par-
ticipants come from various countries and who speak different languages. The de facto multi-language
support tool is simultaneous translation by human translators. Simultaneous translation is a very demand-
ing task, especially between languages with different structures like Japanese and English, and costs are
high because it takes long time to train the translators. In simultaneous translation, translators listen to
the speech, translate the text, and then speak the translation result while closely following the speaker.
Several studies have attempted to replace human translators with relatively low cost systems. Auto-
matic speech recognition (ASR) performs the listening task, machine translation the translation task, and
speech synthesis performs the speaking task; speech translation technologies like VoiceTra can perform
all tasks. Because machine translation receives text as its input, several captioning schemes, which are
normally to allow the deaf and hard of hearing to join in the dialogue, can be candidates for performing
the listening task. Figure 1 shows the relationships among these technologies.

Translators convert the speech of the speaker directly into a language some of the audience can un-
derstand. Trying to provide complete translation coverage for all speaker/audience combinations is im-
practically expensive and it may impossible to find translators for some minor languages. One solution
is using machines to replace or partly replace the translators. The first challenge is the creating inputs
that suit the machine translation (MT) service. MT is widely available at reasonable cost and MT results
can be given to the audience as text (text to speech (TTS) systems are also possible). Unfortunately,
translation quality is very sensitive to the input material. Given that speeches at public meetings tend to
be rather extemporaneous and not so fluent, we need to pre-edit the source text to suit the capabilities of
the machine translation service if we are to get good quality. Thus, we propose the method that could
combines the listening task with MT. We implement the method in a system that is put into practice in
two real fields: presentations at an international convention and presentations at a laboratory. This pa-
per introduces related works, describes our method and our implementation of a multi-language support
system, explains how it was put into practice, evaluates and discusses the results.

28

caption
(ja)

MT
translated
caption

(en)

speaker
(ja)

speech
(ja)

typing

translator

re-speaking

ASR

translated
speech

(en)
audiences

(ja,en)

TTS

Figure 1: Methods to realize multi-lingualization of speech.

2 Related works

Several research projects have tackled speech captioning in real time. ASR is a technology with a long
history, but because ASR accuracy is low, we need to train a recognition model, set-up a low-noise
environment or use another person to re-speak the text (Miyoshi et al., 2008) to achieve adequate ASR
accuracy.

Captioning is a manual way of creating text from speech. The captionist hears the speech and types
it into a computer. To achieve adequate speed, the captionist must be well-trained and use a special
keyboard, like a steganography keyboard, so costs get high. To reduce this, SCRIBE (Lasecki et al.,
2012) proposed to use crowd sourcing for captioning. They divide the speech voice data into small
parts, send them to many captionists and merge their outputs. This eases the speed requirements. IPTalk
(Kurita et al., 2013) proposed another method in which several captionist cooperate to input a speech.
All captionists hear the same voice data and decide who inputs which part of speech by monitoring what
the others are typing by using a type monitor module on the input screen. SCRIBE captionists need not
be aware of whole speech but can concentrate on that the part of the speech they must input, while each
IPTalk captionist is aware of the whole speech but input boundaries are decided by predicting the inputs
of others.

The goal of this work is to provide near real-time speech translations with high quality and wide
coverage at relatively low-cost. To achieve this, we focus on overcoming the problems raised by the
target application, MT of symposium speeches. To achieve adequate translation quality, the input text
must be recast (pre-edited) to suit the MT service used and then transcribed to allow MT processing. To
achieve acceptable quality and speed we modify the cooperative captioning approach.

3 Problems of multi-lingual support for international symposium

A key problem is that the sentences uttered in symposia tend to be longer and more ambiguous than
those in printed texts. The value of pre-editing as a preliminary step to MT has been confirmed for many
languages including English(Jachmann, Grabowski and Kudo., 2014), French(Bouillon et al., 2014) and
Japanese(Miyata et al., 2015). However, the studies published to date apply pre-editing to written texts,
not to spoken text. Accordingly, we evaluated the quality of translation with or without pre-editing
of speech material to confirm the effectiveness of pre-editing. Table 1 shows the results. We used
IPTalk, a cooperative input method, to do caption the speech and JServer in the Language Grid(Ishida,
2011) (Murakami et al., 2012) to translate Japanese into English and Chinese. We evaluated fluency and
adequacy based on the method written in the evaluation guideline(Linguistic Data Consortium, 2002).

As the translation inputs, we created sentences by concatenating IPTalk outputs and creating sentences
by setting periods. As evaluation metrics we used fluency, adequacy and concept preservation ratio;
maximum score (best) is 5 and minimum (worse) is 1. We also calculated word accuracy (WA) and
concept preservation rate to determine how well the surface meaning and intent of the speech text were

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

29

Table 1: Translation quality from Japanese speech dictation by cooperative input with or without preedit.

sentence number of
WA

concept target average average
creation method sentence saving rate language fluency adequacy

cooperated
22 79.98 4.8

Chinese 1.77 2.68
captioning English 1.91 3.09
pre-editing

40 42.63 4
Chinese 3.13 3.70

afterward English 3.18 3.25

retained. We did morphological analysis by applying Mecab to the IPTalk outputs (real-time input was
given) and the resulting transcript. WA was calculated by the following formula.

WA = 1− S + D + I

N

N denotes the number of words in final transcript, S denotes the number of replaced words, D denotes
the number of deleted words and I denotes the number of inserted words relative to real-time input. In
captioning, the inputters basically enter the words exactly as spoken, but may delete redundant words,
shorten sentences or insert words to allow easier comprehension when read. In terms of modifications
there were 56 replacements, 126 deletions, and 9 insertions. Concept preservation rate indicates how
well the original concepts were expressed by the final transcript (evaluated by Japanese native speakers).
The results in Table 1 show that simply applying MT to IPTalk output does not yield good translation
quality and we can improve the quality by pre-editing the MT inputs.

4 Online Multi-lingual Discussion Tool (OMDT)

Though existing studies considered only static text and not real-time speech texts, the simple modifica-
tion of simply shortening the text is known to be effective for improving translation quality. From this
viewpoint, we design a system that helps inputters to transcribe and pre-edit speech texts for creating MT
inputs.

The key components of our system are Input Screen, Collaboration Server, and Display Screen. Input
Screen is one screen of OMDT and inputters use this screen to input speech text. This screen runs on a
web browser and we can open this screen as necessary to support inputters and languages. The screen
also has the ASR Client function to recognize speech by using ASR services on the Cloud. OMDT
currently supports IBM, Google and Julius ASR engines. The result of ASR and typed entries are
shared between Input Screens and Display Screens via the Collaboration Server. The Collaboration
Server is responsible for message transfer among screens and invocation of the composite translation
service. When the server receives typed text from the Input Screen, the server invokes DictTrans service
to translate it. Though our system can access any translation service on Language Grid, we usually use
DictTrans as it offers a bilingual dictionary. DictTrans combines translation service, bilingual dictionary
service and morphological analysis service and can replace/modify special words in the dictionary to
enhance translation quality. The server sends the translation result to the user screens. Display Screen
shows the typed text and the translation result. That screen can show the results of several languages
together and also we can open several screens to show many languages. In addition, Collaboration
Server supports IPTalk as the input interface, so inputters can use it instead of the Input Screen.

Figure 2 shows one instantiation of our system. This construction is for translating Japanese speech
to English at a symposium that has Japanese speakers with Japanese and English audiences. The ASR
result is sent to the Input Screens for input processing as shown in Figure 3. Input Screen has several
display components: Log area, Back translation, Type monitor and Input area in addition to ASR results.
Log area shows the input history for the speech, Back translation shows the result of back translation of
the text of Input area, Type monitor shows the typing state of other inputters and Input area shows the
text currently being pre-edited.

30

human cooperation

OMDT
service composition

speaker
(ja)

inputter1
(ja)

inputter2
(ja)

Input Screen
(ASR Client)

Input Screen

Input Screen

audiences
(ja,en)

Collaboration
Server

Display Screen

ASR
(ja)

Language Grid DictTrans
(ja->en)

JServer
(ja->en)

Lab.Dict
(ja,en)

Mecab
(ja)

Figure 2: Example construction of whole system

Translated text is finally shown to the audience on the Display Screen as shown in Figure 4. We can
increase the number of Input Screens and Display Screens to cover more languages. We can also increase
the number of translation pairs the system can translate by adding translation settings (how to combine
language services for specific translation pairs) by using Language Grid.

!
"
#$
%&
'"
(
)*
"
+
,
(
%

-
.
/
0
%1

,
(
2&
,
'!

3(
/
4
&%
"
'0
"
!

5,
6
%"
'0
"
!

7
8
9
%

Figure 3: Input screen

5 Take the system into real use

5.1 Practice 1: International Symposium

We applied our system in an international symposium. Two inputters were used (Inputter A and B)
and their mother language was Japanese. To achieve adequate input speed, both were experienced in
data input work and to maximize translation quality, we trained them in pre-editing and the use of IPTalk
beforehand. For training, we had them perform, independently, three trial in 90 minutes. In each trial they
listened to and pre-edited speech (in Japanese) and then checked the translation result. Next, the inputters

31

Figure 4: Display screen

Figure 5: The look of conference hall

worked together in performing five trials in five hours. In the training sessions, inputter A entered 495
sentences while B entered 481. We provided multi-language support for Y’s Men International 26th Asia
Area Convention. This symposium drew 962 participants and was held over three days in Kyoto, Japan.
Figure 5 shows a picture of the conference hall. We used our system to provide real-time multi-language
translation for an 80 minute Japanese speech. The hall has three screens. The center screen shows the live
video or slides as determined by the presenter, left screen displayed Japanese text and English translation
and right screen displayed Japanese text and Chinese translation. 738 sentences were input, translated
and displayed during the speech.

The system consisted of one server machine (MacBook), two machines to display the translations
(Windows) and two machines to run IPTalk (used in the training sessions); all machines were notebook
PCs.

5.2 Practice2: Presentation at laboratory

We also applied our system to a 30 minute presentation in our laboratory. The audience consisted of 20
people. There were two inputters and the two speakers used English. The system translated the speech
into Vietnamese, Chinese, Dutch, Japanese and Korean. Two screens were used; the left one displayed
the first three languages and the right one for the last two languages.

The system for this support consisted of one server (MacBook), two machines for inputters (MacBook)
and two machines for displaying translation (Windows). We used one web screen of our system as the em
Input Screen. Both inputters had no experience in captioning but we trained them for two hours (input

32

Table 2: Status of input of multilingual support

Inputter Exp.1(ja) Exp.2(en)
Question A B C D
Number of input sentences 290 448 94 76
Ave. number of characters 12.8 10.8
Ave. numbers of words 6.68 7.7
Miss-inputs(%) 4(1.38) 1(0.22) 4(4.26) 2(2.63)
Redundant inputs(%) 7(2.41) 11(2.46) 0(0) 1(1.32)
Succession inputs(%) 32(11.03) 191(42.63) 36(38.3) 19(25)

Table 3: The questionnaire of inputter(1:worst-5:best)
Inputter Exp.1(ja) Exp.2(en)

Question A B C D
Was the input screen easy to look at? 4 4
Was the Back translation useful? 4 4
Was the Type monitor useful? 5 5
Was the whole input function easy to use? 4 3
Was the IPTalk easy to use? 4 4
Could you cooperate other inputter well? 5 4 4 5
Could you input whole speech? 4 4 3 3

separately for 30 minutes and input cooperatively for one and half hours) beforehand. 170 sentences
were inputted, translated and displayed during the presentation.

6 Results and discussions

6.1 Questionnaire

Table 2 shows the details of inputs in the two experiments. Inputters input in Japanese in Experiment
1 and English in Experiment 2. Average number of characters is the average number of characters per
Japanese sentence and average number of words is the average number of words per English sentence.
Miss-inputs indicates the number of sentences that have obvious input faults such as ”shrae”(should be
”share”). Redundant inputs is the number of sentences which are similar to previous input (i.e. one input-
ter input ”from Germany,” and the other inputter input ”From Germany and Denmark.” in succession).
Successive inputs is the number of sentences consecutively entered by the same inputter.

We conducted questionnaires after the experiments. Table 3 shows the results of inputters in Exp.1
and Exp.2. The questions examined the functionality or usability of input functions, the cooperation with
other inputter, and subjective evaluation of inputters about cover rate; a five-point scale was used. For
input functions, we used IPTalk in Exp.1 and the Input Screen of our system in Exp.2, so questions for
Exp.2 include each part of the Input Screen. Table 4 shows the impressions of the audience. We asked
five questions (five-point response) and totaled the number of people who choose the same point. From
Exp. 2, 16 of 20 people in the audience responded. Table 5 shows the translation quality of 50 sentences
extracted randomly from Exp.1.

6.2 Input method

We assume inputters of our system would enter sentences by turns by cooperating with each other while
the translation service would accept the pre-edited speech to keep translation quality as high as possible.
Thus we attempted to train the inputters well beforehand. As Table 2 shows, however, sequential input
was common. We considered that turn taking would be naturally selected but in practice the inputters

33

Table 4: The questionnaire of audience(Exp.2)(1:worst-5:best)

Question
Number of people

of each score
1 2 3 4 5

Was the translation screen easy to look at? 1 3 2 7 3
Was the translation displayed in a timely manner? 0 6 7 3 0
Was the content of the translation easy to understand? 1 9 5 1 0
Was the content of the translation helpful to understand the presentation? 0 5 5 5 1
Will you want to use this system in the future? 0 2 6 5 3

Table 5: The quality of translation of Exp.1

sentence number of target average average
creation method sentence language fluency adequacy

cooperated
50

Chinese 3.58 3.82
pre-editing input English 3.94 3.88

sometimes input sentences sequentially.
The inputters ’response showed that the systems were viewed very positively by all four inputters

(inputter D experienced some difficulty because f his customized keyboard). So we conclude that the
input function posed no obvious difficulties to the inputters.

6.3 Translation quality

The shorter training time is preferred because we assume that some of audience become inputter and
cooperate each other and translation service, and realize multi-language support. But we need certain
length of training because inputters of cooperated pre-editing input must get accustomed to pre-editing
and predicting which inputter inputs which part of speech. For Exp.1 we train them six and half hours,
and for Exp.2 three hours. Table 5 shows the certain translation quality enhancement, that average fluency
improved from 1.84 to 3.76 and average adequacy from 2.89 to 3.76, but the evaluation by audience of
Exp.2 was low. Though we could not simply compare the results of each experiments because the
language of input and output is different and the speech is also different, at least we can see the result
that by training inputters six hours we could get certain translation quality and we could assume that we
don’t need training and trained skills as simultaneous translators have. But we still need to improve input
functions or way to training to reduce training time and advance input efficiency.

7 Conclusion

In this paper, we tried to solve the following problems to realize low cost and high quality multi-language
support.

• Translation quality improvement by the cooperation of human inputters and language services.

• Realizing a multi-language support system whose user interface supports inputter cooperation and
language services.

The proposed method was shown to improve translation quality by keeping the original intent of the
speech; this is done by combining real-time cooperative captioning and pre-editing for input to an MT
service. We implemented the multi-language support system and put it into practice in actual inter-
national symposium and achieved fluency and adequacy scores of 3.58 and 3.82 for Japanese-Chinese

34

translation, and 3.94 and 3.88 for Japanese-English translation. While the content of speech itself is dif-
ferent between Table 1 and Table 5, the speaker was same. It shows some positive effect of our method.

At the implementation of the system, we developed Input Screen that has log area, type monitor and
back translation, and Translation Screen. By translating speech from Japanese to English and Chinese
at Exp.1 and English to five other languages at Exp.2, we show our user interface has some usability by
evaluation by users.

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (S) (24220002) of Japan Society for
the Promotion of Science (JSPS). The authors wish to thank members of Y’s men international Asia Area
and president Okano for supporting this research.

References
Pierrette Bouillon, Liliana Gaspar, Johanna Gerlach, Victoria Porro, Johann Roturier. 2014. Pre-editing by Forum

Users: a Case Study. 3-10. Controlled Natural Language Simplifying Language Use.

Torsten Jachmann, Robert Grabowski, and Mayo Kudo. 2014. Machine-Translating English Forum Posts to
Japanese: On Pre-editing Rules as Part of Domain Adaptation. 20th Annual Meeting. 808-811. Natural Lan-
guage Processing.

Toru Ishida (Ed.). 2011. The Language Grid: Service-Oriented Collective Intelligence for Language Resource
Interoperability., ISBN 978-3-642-21177-5. Springer.

Shigeaki Kurita, Sumihiro Kawano and Keiko Kondou. 2013. The remote computer assisted speech-to-text inter-
preter system for reducing operational costs, vol. 15, no. 8, SIG-ACI-10, 13-20. Human Interface Society.

Walter S. Lasecki, Christopher D. Miller, Adam Sadilek, Andrew Abumoussa, Donato Borrello, Raja Kushalnagar,
and Jeffrey P. Bigham. 2012. Real-Time Captioning by Groups of Non-Experts Proceedings of the 25th annual
ACM symposium on User interface software and technology.

Linguistic Data Consortium. 2002. Linguistic Data Annotation Specification: Assessment of Fluency and Ade-
quacy in Arabic-English and Chinese-English Translations.

Robert F. Lusch and Stephen L. Vargo. 2006. The service dominant logic of marketing: Dialog, debate and
directions. Armonk, NY. M.E. Sharpe.

Shodai Matsuda, Xinhui Hu, and Yoshinori Shiga. 2013. Multilingual speech-to-speech translation system: Voice-
Tra., Vol. 2. 14th International Conference on Mobile Data Management (MDM).

Rei Miyata, Anthony Hartley, Cécile Paris, Midori Tatsumi, and Kyo Kageura 2015. Japanese Controlled Lan-
guage Rules to Improve Machine Translatability of Municipal Documents. 90-103. MT Summit XV.

Shigeki Miyoshi, Hayato Kuroki, Sumihiro Kawano, Mayumi Shirasawa, Yasushi Ishihara, Masayuki Kobayashi.
2008. Support Technique for Real-Time Captionist to Use Speech Recognition Software, International Confer-
ence on Computers for Handicapped Persons. Springer Berlin Heidelberg.

Y. Murakami, M. Tanaka, D. Lin and T. Ishida. 2012. Service grid federation architecture for heterogeneous
domains. 539-546. IEEE International Conference on Services Computing,

Masahiro Tanaka, Yohei Murakami, Donghui Lin, and Toru Ishida. 2010. Language Grid Toolbox: Open
source multi-language community site. 4th International Conference on Universal Communication Symposium
(IUCS), IEEE.

35

Proceedings of WLSI/OIAF4HLT,
pages 36–43, Osaka, Japan, December 12 2016.

Recurrent Neural Network with Word Embedding for Complaint

Classification

Panuwat Assawinjaipetch, Virach Sornlertlamvanich
School of Information, Computer, and Communication Technology (ICT),

Sirindhorn International Institute of Technology,

Khlong Nung, Khlong Luang District, Pathum Thani, Thailand

panuwat.a@studentmail.siit.tu.ac.th, virach@siit.tu.ac.th

Kiyoaki Shirai

School of Information Science,

Japan Advanced Institute of Science and

Technology (JAIST),

1-1 Asahidai, Nomi,

1-2 Ishikawa 923-1292, Japan

kshirai@jaist.ac.jp

Sanparith Marukata

National Electronics and Computer Tech-

nology Center (NECTEC)

112 Phahonyothin Road, Klong Neung,

Klong Luang District,

Pathumthani, Thailand

sanparith.marukatat@nectec.or.th

Abstract

Complaint classification aims at using information to deliver greater insights to enhance user experience

after purchasing the products or services. Categorized information can help us quickly collect emerging

problems in order to provide a support needed. Indeed, the response to the complaint without the delay

will grant users highest satisfaction. In this paper, we aim to deliver a novel approach which can clarify

the complaints precisely with the aim to classify each complaint into nine predefined classes i.e. acces-

sibility, company brand, competitors, facilities, process, product feature, staff quality, timing respec-

tively and others. Given the idea that one word usually conveys ambiguity and it has to be interpreted by

its context, the word embedding technique is used to provide word features while applying deep learning

techniques for classifying a type of complaints. The dataset we use contains 8,439 complaints of one

company.

1 Introduction

While Space Vector Model (SVM) with TF-IDF is widely used as a traditional method for text classi-

fication, we cannot neglect that the deep learning with word embedding technique outperforms tradi-

tional method so far until now in many comparison reports such as sentiment analysis, named entity

recognition, semantic relation extraction and so on. It is undeniable truth that word embedding with

neural network can be effectively applied to the natural language processing task nowadays with high-

ly accurate results. This is the especially for the Recurrent Neural Network (RNN) which is able to

detect the hidden relationship between inputs as well as to provide a precise sequence prediction with

the state-of-the-art result in various machine learning domains such as computer vision (L. Yao, 2015)

and language modeling (Y. Kim, 2015). Because of the long term dependency detection capability,

pattern recognition tasks such as speech recognition (Y. Miao, 2015) and handwriting recognition (A.

Graves, 2009) also shown great results when applied with RNN. This paper presents a classification

recurrent neural network model that deals with the complaint classification task. The model is com-

pared with TF-IDF, SVM and CBOW methods which are widely used for the text classification. The

experiment shows that the model can outperform other methods for the complaint classification signif-

icantly.

This work is licensed under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer

are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/ 36

2 Related works

2.1 Text classification

The collection of complaints is clearly described in negative sense. Hence, sentiment analysis ap-

proaches will not work efficiently for this task, especially for the methods which rely on the counts of

positive and negative words. The similar work to us is a claim classification introduced by J. Park

(2014). The high accuracy model that can distinguish; verifiable with evidence, verifiable without evi-

dence and unverifiable claims, is achieved by using n-gram, handcrafted features and SVM. However,

the feature preparing task required prior knowledge of the language. Moreover, the handcrafted fea-

tures extraction is a very time consuming task and cannot be applied to every language because of the

difference between grammars.

2.2 Word2Vec

The word embedding technique recently becomes the most dominant in terms of the power in expand-

ing the meaning of each word by using its co-occurrence statistics of each word. In the previous half

decade of the research since R. Collobert (2011), the results show that the word and phrase

embeddings significantly boost the performance in many of NLP tasks such as syntactic parsing (D.

Zeng, 2014) and sentiment analysis (R. Socher, 2013). Introduced by T. Mikolov (2013), Word2Vec

has gained a lot of traction as it takes a very short time for training while providing a high quality of

word embeddings information. The tool can be derived into two types that are skip-gram model or

continuous bag-of-words model, with an optimization method such as negative sampling or hierar-

chical softmax. As in the recent research on Word2Vec, we found that skip-gram with negative

sampling is the best match to our data as the number of complaints is limited. This model shows a bet-

ter performance compared to bag-of-words while negative sampling is a most efficient method to de-

rive the word embedding. The objective function (Y. Goldberg, 2014) used to generate the word em-

bedding is described in Equation (1) where w is the words, c is the set of contexts of word w. D is the

set of all word and context pairs and D’ is a set of randomly negative samples.

 (1)

2.3 Long Short-Term Memory

Considering complaint classification is a sequence prediction, RNN become much useful in terms of
discovering the long-term dependencies. However, the learning of long-term dependencies with gradi-
ent descent is very difficult as stated by Y. Bengio et al. (1994). The reason occurs from the vanishing
gradient problem which causes the backpropagation through time to repeatedly multiply the gradient
value. If the amplitude of the gradient is lower than one then the repetition of multiplying it will push
this value towards zero. Therefore, the model cannot learn long-term dependency when we adjust a
new value using gradient descent method. LSTM is kind of RNN which has been introduced since
1997 by S. Hochreiter et al. (1997) that prevents vanishing gradient from occurring. For LSTM, Cell
state (Ct) are connected to three gates which are forget gate (ft), input gate (it) and output gate (ot) re-

spectively. Equation used to calculate these gates are shown in Equation (2), (3) and (4) respectively.

ft = sigmoid(Wf ∙ [ht-1, xt] + bf) (2)

it = sigmoid(Wi ∙ [ht-1, xt] + bi) (3)

C̄t = tanh(WC ∙ [ht-1, xt] + bC)

Ct = ft * Ct-1 + it * C̄t

ot = sigmoid(Wo ∙ [ht-1, xt] + bo)

ht = ot * tanh(Ct) (4)

37

2.4 Gated Recurrent Unit

Gate Recurrent Unit is a method proposed recently by K. Cho et al. (2014), with the ability to capture

the long-term dependencies as LSTM. Figure 1 shows the difference between GRU and LSTM that

GRU uses one less gate than LSTM. LSTM has i, f and o as input, forget and output gates respective-

ly. C and C̄ denote the current/new memory cell content. On the other hand, GRU only has r and z as

reset and update gates. The h and h̄ are the current and candidate activation gates respectively.

Figure 1: Illustration of LSTM and GRU

The model is designed to make each recurrent unit to be able to adaptively capture dependencies in
a different time scale. It is similar to LSTM unit by having gating units that calibrate the information
flow at the inside unit without creating new memory cells. We can compute updated gate (z), reset
gate (r), hidden state (h) and current state (st) of the GRU at time t using Equation (5), (6), (7) and (8).

For the pros and cons other than GRU has one less gate than LSTM which results that GRU consume
less memory, there is no concrete proof shows superiority of one to another.

z = sigmoid(xtU
z

+ st-1W
z
) (5)

r = sigmoid(xtU
r
+ st-1W

r
) (6)

h = tanh(xtU
h

+ (st-1 ∙ r)W
h
) (7)

st = ((1 - z) ∙ h) + (z ∙ st-1) (8)

2.5 Our work

As discussed above, there are several attempts in using the neural network model with word embed-

ding technique for basic task in NLP such as sentiment analysis and syntactic parsing i.e. A. Severyn

(2015), C.N. dos Santos (2014) and M. Ghiassi (2013). However, there has a few research works

using RNNs (S. Lai, 2015) and Bidirectional RNNs (O. Irsoy, 2014) with word embedding for text

classification rather than sentiment analysis. The current research of document classification still

mostly uses the so-called TF-IDF as it is a straightforward approach, for example, the word such as

stock tends to appear more in economic documents than politic documents. Also it can be efficiently

implemented and be improved by gathering more data that related to it. However, Word2Vec is be-

lievably considered to provide a better word features than TF-IDF.

The sentences are sent as input sequences connected to the embedding layer. Therefore, each word

in the sentence is mapped as input sequences for the bidirectional RNN (M. Schuster, 1997). The bidi-

rectional RNN that are our approach consist of forward-backward GRUs (gru-gru), forward-backward

LSTM (lstm-lstm), forward-LSTM backward-GRU (lstm-gru) and forward-GRU and backward-LSTM

(gru-lstm). The expectation is that to expose the dependency from both sides, i.e. forward and back-

ward, the bidirectional model can perform better than single direction model. The bidirectional RNN

connection shown in Figure 2 is a novel approach based on a combination of an existing model for a

new task to overcome the traditional method TF-IDF.

38

Figure 2: Unfold RNN for bidirectional.

3 Method

In our complaint classification model, the model must be able to distinguish the between nine classes

that are Accessibility, Company brand, Competitor, Facility, Process, Product feature, Staff quality,

Timing and Others. Each input of the model is a text contains one complaint that is passed through the

preprocessing step, embedding step, neural network layer, and max pooling the output to select the

category which it belongs to. The complaint classes are defined as following.

Accessibility is the complaint regarding the rarity to acquire products or services.

Company brand is the complaint about reliability of the company.

Competitor is the complaint that mentions about the business competitor in terms of comparison.

Facility is a complaint related to the difficulty from the uses of products or services.

Process is a complaint about the complexity of the procedure.

Product feature is a complaint about promotions or privileges.

Staff quality is a complaint about human resource in the department.

Timing is a complaint about the waiting time during using products or receiving services.

Others are complaints which could not be classified in any group.
Our proposed method consists of the word segmentation, word representation generating and neural

network modules that are sequentially applied.

3.1 Word Segmentation

Thai language has no punctuation marks and no spacing in a sentence. So in the preprocessing step,

word segmentation is one of the most crucial steps needed in order to be able to generate an input for

Word2Vec. The successfully preprocessing result can lead to a high accurate word unit which is used

to generate the word representation. On the other hand, the low accurate preprocessing results in a low

accurate word representation and deteriorate a prediction model trained in the succeeding steps. Our

preprocessing uses the existing dictionary to handle the word segmentation with error handling ex-

pression such as typos prevention, unnecessary symbols and whitespaces removing.

3.2 Word Representation Generating

After the word segmentation, Word2Vec is applied to obtain word embedding. The setting used here is

three negative sampling, 64 hidden units, and the frequency required for a word to be reserved in the

dictionary is two. Skip bi-gram method is applied as we have only 8,439 sentences, which are not ef-

fective enough for CBOW to generate a highly accurate word representation. In addition, if the accu-

racy of the word representation is good, the words which have similar meaning and similar usage must

have almost the same vector representation, as shown in Table 1 where ‘the’ and ‘a’ having almost the

same vector.

39

Table 1: Index mapping to the word and array representing each word.

3.3 Neural Network Layer

RNNs are introduced in our approach, it is important to keep input as a matrix shaped fit for training.

The output from Word2Vec looks like a dictionary of each word mapped to a list of array.

The complaint sentences are usually not very long so we can take the longest sentence to determine
the maximum number of word in a sentence. The sentences which are shorter than the maximum

length must be padded
1

to make it become 30 words sentence. Then we map these words to embed-
ding layer and connect it directly to a hidden layer of 64 units of neural network models i.e. fnn, gru,
lstm, gru-gru, lstm-gru, gru-lstm and lstm-lstm. Finally, the outputs from our hidden layer are connect-
ed to the softmax layer of predefined classes on top, of it as the shown in Figure 3.

Figure 3: a) Bidirectional LSTM/GRU. b) Single direction LSTM/GRU architectures for 9-classes

complaint classification.

4 Experiment

To conduct an empirical evaluation of our proposed method, we compare it with the traditional TF-

IDF model and also other popular machine learning model such as Feedforward Neural Network

(FNN), LSTM and also try with a different combination of LSTM and GRU with the same training

and test set.

F1 score is used to evaluate our result. With our data about 8,439 complaints annotated in nine clas-

ses, we separate our data into 80% and 20% for training and testing respectively. Therefore, we have

6,755 and 1,684 sentences for using in training set and test set respectively.

By using Bag-of-Words with TF-IDF, we can get the F1 score for prediction reach only about 75%,

which all of Embedding Layer with Neural Network hidden layer can completely surpass this F1 score

after a few epochs of training.

For the other models which are based on neural network, we first provide the same initial weight for

each word by using Word2Vec for representing each word in our embedding layer. The weight of un-

known word is obtained by replacing rare words to unknown word in the corpus before passing those

rare words into Word2Vec as we cannot obtain many information from the word that rarely appear in a

corpus. As a result, we could obtain a well-balanced weight for unknown word. As the training set is

not a very big corpus and the number of vocabularies is not quite high, the more dimensions for word

embedding seem to cause the extremely varying vector of similar words. The best word embed-

1
Bucketing and Padding idea from: https://www.tensorflow.org/versions/r0.10/tutorials/seq2seq/index.html

40

ding we can achieve is obtained by using 100 dimensions for word embedding with ADAM (D.

Kingma, 2014) optimization.

After running both training and test sets with fnn with 64 hidden units, the highest accuracy on

training set can almost get a perfect score on training set with a fastest convergence, but, for a test set,

it barely passed 80% which given the lowest F1 score among all other neural network models. By in-

creasing the number of hidden units, the gap of F1 score between training set and test set keeps in-

creasing.

LSTM and GRU are experimented with the same number of hidden units. The F1 score of the pre-

diction is clearly better than MLP. There is no doubt that it can find a long term dependency between

words. In addition, the model is able to Figure out some combination order of words used to classify

an output class. Also, it seems likely that GRU converges a little bit faster than LSTM, while the pre-

diction is almost on par, but much more stable for a long term training as shown in Figure 4a.

Table 2: Comparison result of NN model between best and average results.

Furthermore, the lstm-lstm, gru-gru, lstm-gru and gru-lstm combinations are experimented in bidi-

rectional architectures phase. The bidirectional GRU and LSTM are converged faster and more accu-

rate than the composition between LSTM and GRU. Also, the F1 score is same as a single direction

LSTM or GRU. However, the bidirectional models sometime provide better results than the single di-

rection average results and also converge much faster as shown in Figure 4b.

Table 2 shows that all of our approach with Neural Network model has surpassed the baseline set by

TF-IDF which is 75% with no difficulty. It is our concrete evidence that the word embedding provides

more information for the model to be able to detect dependencies used for classifying the document.

Moreover, the FNN can achieve best prediction result after a few epochs of training but self-declining

from an overfitting effect is inevitable after continuous training. The GRU recurrent neural network

has the most stability in maintaining its states once it converged. Also, it converges much faster than

LSTM. However, in a long-term training, the result of LSTM seems to be better. The bidirectional

model seems not to be very convinced. But, it is still too soon to conclude that backward dependency

detection is unnecessary. In the Figure 4, it can be seen that the model which uses a bidirectional GRU

or LSTM can converge much faster than the single direction GRU/LSTM. A comparison of F1 score

between fnn (red), lstm (green) and gru (blue) for training set (higher line) and test set (lower line) is

shown in Figure 4a. Also, the comparison of F1 score between lstm-gru (blue), lstm-lstm (green), gru-

lstm (red) and gru-gru (violet) for training set (higher line) and test set (lower line) is shown in Figure

4b.

41

Figure 4: Comparison of F1 score. a) FNN, LSTM and GRU. b) Combination of LSTM-GRU

5 Conclusion

In this paper, we present the word embedding used for complaint classification which combine with

recurrent neural network LSTM and GRU with a single direction and also bidirectional. Our evalua-

tion focuses on the comparison of F1 score between various combinations of bidirectional LSTM-

GRU. Bidirectional recurrent neural network can surpass the traditional method, TF-IDF (75% F1

score) while using the same amount of training data. The usage time for training is dependent upon the

processing unit. It requires about 2-3 hours for the training with a graphic processing unit NVIDIA

660M with 8 GB RAM with 64 word dimensions and 64 hidden units for each architecture. But the

execution time requires a few second to predict each sentence.

The bidirectional model tends to work better when it is combined with the same kind of network.

We consider this approach as our preliminary step for extending our research further to have better

understanding in bidirectional GRU and LSTM characteristic.

Although, bidirectional approach shows no significant result comparing to those single direction

GRU and LSTM, but it converges much faster. We also found that the misclassification occurs from

the multi-class relevance sentence such as ‘The staff has a low responsiveness which results in the

process took so long’. The problem defined here is one of our consideration to replace the last

activation layer of the model with sigmoid function instead of softmax function.

So, it is still too early to decide that the backward dependency is completely not needed. The model

improvement could be achieved by an increment of corpus and a better preprocessing step. The

recursive neural network is also one of our options, as it shows a very good result in a sentiment

analysis task recently.

6 Acknowledgement

This research is financially supported by National Science and Technology Development Agency

(NSTDA), National Electronics and Computer Technology Center (NECTEC), Japan Advanced

Institute of Technology (JAIST), Sirindhorn International Institute of Technology (SIIT), Thammasat

University (TU). Also, special thanks to Feedback180 Co., Ltd. for the corpus and verification of the

experiment correctness.

References

L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, A. Courville. 2015. Describing videos by

exploiting temporal structure. In Proceedings of the IEEE International Conference on Computer

Vision. pages 4507–4515.

Y. Kim, Y. Jernite, D. Sontag, A. M. Rush. 2015. Character-aware neural language models.

arXiv:1508.06615.

Y. Miao, M. Gowayyed, F. Metze. Eesen. 2015. End-to-end speech recognition using deep rnn models

and wfst-based decoding. arXiv:1507.08240.

A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, J. Schmidhuber. 2009. A Novel Con-

nectionist System for Improved Unconstrained Handwriting Recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 31, no. 5.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in

vector space. arXiv:1301.3781.

42

S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber. 2001. Gradient flow in recurrent nets: the dif-

ficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field Guide

to Dynamical Recurrent Neural Networks. IEEE.

J. Park, C. Cardie. 2014. Identifying Appropriate Support for Propositions in Online User Comments.

Proceedings of the First Workshop on Argumentation Mining, pages 29–38, Baltimore, Maryland

USA.

R. Socher, J. Bauer, C. D. Manning, A. Y. Ng. 2013. Parsing with Compositional Vector Grammars.

ACL.

R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts. 2013. Recursive

Deep Models for Semantic Compositionality Over a Sentiment Treebank. EMNLP.

D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao. 2014. Relation Classification via Convolutional Deep Neu-

ral Network. In Proceedings of the 25th International Conference on Computational Linguistics

(COLING), pages 2335–2344, Dublin, Ireland.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning Long-Term Dependencies with Gradient De-

scent is Difficult. IEEE Transaction on Neural Network. Vol. 5, No. 2.

S. Hochreiter, J. Schmidhuber. Long Short-Term Memory. Neural Computation 9 (8): 1735-1780,

1997.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. 2014. On the properties of neural machine

translation: Encoder-decoder approaches. arXiv:1409.1259.

M. Schuster, K. K. Paliwal. 1997. Bidirectional Recurrent Neural Networks. IEEE Transaction on

signal processing. vol. 45. No. 11.

D. P. Kingma, J. L. Ba. 2015. ADAM: A method for stochastic optimization. ICLR 2015.

arXiv:1412.6980.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa. 2011. Natural Language

Processing (Almost) from Scratch. Journal of Machine Learning Research, 12:2493-2537.

Y. Goldberg and Omer Levy. 2014. word2vec explained: deriving mikolov et al.’s negative sampling

word-embedding method. arXiv:1402.3722.

S. Lai, L. Xu, K. Liu, J. Zhao. 2015. Recurrent Convolutional Neural Networks for Text Classifica-

tion. In Proc. Conference of the Association for the Advancement of Artificial Intelligence (AAAI).

O. Irsoy, C. Cardie. 2014. Opinion Mining with Deep Recurrent Neural Networks. In Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 720–

728, Doha, Qatar. Association for Computational Linguistics.

C. N. dos Santos, Cicero, M. Gatti. 2014. Deep convolutional neural networks for sentiment analysis

of short texts. In Proceedings of COLING 2014, the 25th International Conference on Computa-

tional Linguistics: Technical Papers, pp. 69–78.

A. Severyn, A. Moschitti. 2015. Twitter sentiment analysis with deep convolutional neural networks.

In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in

Information Retrieval. pages 959–962.

M. Ghiassi, J. Skinner, D. Zimbra. 2013. Twitter brand sentiment analysis: A hybrid system using n-

gram analysis and dynamic artificial neural network. Expert Systems with Applications vol. 40,

page 6266–6282.

43

Proceedings of WLSI/OIAF4HLT,
pages 44–50, Osaka, Japan, December 12 2016.

 Universal dependencies for Uyghur

Mairehaba Aili

Xinjiang University,China

marhaba@xju.edu.cn

Weinila Mushajiang

Xinjiang University,China

winira@xju.edu.cn

Tuergen Yibulayin

Xinjiang University, China

turgun@xju.edu.cn

Kahaerjiang A. Yan Liu

Xinjiang University

kaharjan@xju.edu.cn

Xinjiang University
liuyuxiu@xju.edu.cn

Abstract

 The Universal Dependencies (UD) Project seeks to build a cross-lingual studies of treebanks, linguistic

structures and parsing. Its goal is to create a set of multilingual harmonized treebanks that are designed

according to a universal annotation scheme. In this paper, we report on the conversion of the Uyghur

dependency treebank to a UD version of the treebank which we term the Uyghur Universal Dependency

Treebank (UyDT). We present the mapping of the Uyghur dependency treebank’s labelling scheme to

the UD scheme, along with a clear description of the structural changes required in this conversion.

1 Introduction

Treebanks can be used for statistical learning as well as evaluation and are available for an increasing

number of languages. For instances: Czech (Hajičová, 1998), Danish (Kromann, 2003), Turkish

(Oflazer, 2003) Slovene (Džeroski et al., 2006), and Finnish (Haverinen et al., 2010). However, be-

cause of having been built with language-related specific schema, it leads to different treebanks with

different structure. It seems reasonable, but this has hampered to perform sound comparative evalua-

tions and cross-lingual learning experiments. It is reported that statistical parser output in one language

cannot be easily compared or transferred to another when using two training data which labelled with

different annotation schemes (McDonald et al, 2011; Søgaard, 2011). Mcdonald et al. (2013) reported

improved results on cross-lingual transfer parsing using 10 uniformly annotated treebanks.

The Universal Dependencies (UD) seeks to develop cross-linguistically consistent treebank annota-

tion guidelines and apply them to many languages to create treebank annotations, aiming to capture

similarities as well as idiosyncrasies among typologically different languages, and released guideline

to assist with the creation of new UD treebanks, or mapping and conversions of existing treebanks to a

new universal scheme. The UD scheme is built on the Google Universal part-of-speech (POS) tagset

(Petrov et al., 2012), the interset interlingua of morphosyntactic features (Zeman, 2008), and Stanford

Dependencies(Tsarfaty, 2013; de Marneffe et al., 2014). In addition to the abstract annotation scheme,

UD defines also a treebank storage format, CoNLL-U. The UD scheme accounts for varying linguistic

differences across language by providing the option of defining language–specific label sub-types

when the prescribed list of labels do not adequately cover all linguistic features of a given language.

Nivre (2015) explains the motivation behind the project. Since then, a large number of additional tree-

banks have been either built or converted from existing treebanks to form new UD treebanks. To date,

there are 54 treebanks representing 40 languages listed in the UD project.

We have mapped the Uyghur dependency Treebank (UyDT) (S.Mamitimin et al., 2013; M.Aili et

al., 2016) to the UD scheme (Version 1) for purposes of cross-lingual studies and parser improvement.

The UyDT is a corpus of Uyghur sentences that have been annotated manually. This paper summariz-

es the conversion and mapping of the UyDT to Uyghur Universal Dependency Treebank (UyUD), as

part of the Universal Dependencies (UD) Project.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:

http://creativecommons.org/licenses/by/4.0/

44

2 Brief introduction for UyDT

Uyghur is a Ural-Altaic language, has rich and complex morphological structure. As a typical aggluti-

native language, Uyghur displays rather different characteristics compared to those more well-studied

languages in the parsing literature. On the syntactic side, Uyghur has SOV constituent order, and con-

sidered a free-constituent order language. Uyghur is also a pro-drop language, as the subject can be

elided if necessary, and recovered from the agreement markers on the verb.

We aim at building a dependency treebank to provide basic resources for future NLP researches.

Morphological structure plays an important role in finding syntactic relations between words in Uy-

ghur sentences. So all texts are morphologically analysed by Uyghur Morphological Analyser (UMA)

software (M. Aili et al., 2012), There are 13 basic POS tags as shown in Table 1.

No tags POS No tags POS

1 N Noun 7 I Imitative

2 A Adjective 8 C Conjunction

3 M Numeral 9 T Particle

4 Q Quantifier 10 E Exclamation

5 D Adverb 11 V Verb

6 P Pronoun 12 R Postposition

 13 Y Punctuation

Table 1. Basic Post Tags in Uyghur Languages

There are 23 dependency relations scheme in UyDT as general as possible which are listed in Table 2.

No. Label Relations No. Label Relations

1 ABL Ablative Adjunct 13 OBJ Object

2 ATT Attributive Modifiers 14 POSS Possessor

3 ADV Adverbial Modifier 15 POST Postpositions

4 APPOS Apposition 16 QUOT Quotation

5 AUX Auxiliary Verb 17 ROOT ROOT of Sentence

6 CLAS Classifier 18 PRED predicate

7 COLL Collocation 19 SUBJ Subject

8 CONJ Conjunction 20 CL Clause

9 COORD Coordination 21 IND Independent component

10 DAT Dative Adjunct 22 COP Copula

11 INST Instrumental Adjuncts 23 COMP Comparison

12 LOC Locative Adjunct

Table 2. Dependency relation tags in Uyghur Dependency Treebank

3 mapping

3.1 mapping POS-tagset

The UD part-of-speech (POS) tagset is an extension of The Google Universal POS tagset (Petrov et al.,

2012) and contains 17 POS tags, whereas, in UyDT, there are only 13 POS tags. Fortunately, we could

map most of them to Universal POS tags (e.g. N Noun, AADJ).

However, only 10 POS tags in UyDT are mapped one by one to UD POS tags, six of the UD POS

tags are not used, two tags in Uyghur POS tags are mapped to a same UD POS tag , as : (1) we didn’t

identify auxiliary verbs in Uyghur which is actually a verb and called auxiliary verb only when com-

bining with other substantive word and indicating a grammatical meaning ; (2) In UyDT POS tagset,

pronoun is also tagged as noun, as a result, PROPN in UD POS tags is also not used as well; (3) there

are some discussion about DET, as there is not a tag called DET in Uyghur POS tagset, but some

words have the meaning in a specific situation, which are numbers most of time. (4) Other three tags

(SCONJ , SYM and X) are not used in UyDT. (5) According to the description of INTJ, two tags in

45

UyDT (exclamation and imitative) matched with it. We provide a mapping from the Uyghur POS

tagset to the UD tagset in Table 3.

UD
UyDT

UD
UyDT

tag POS tag POS

ADJ A Adjective NUM M Numeral

ADV D Adverb PART T Particle

ADP R Postposition PRON P Pronoun

* Q Quantifier PUNCT Y Punctuation

CONJ C Conjunction VERB V Verb

INTJ
E

I

Exclamation

Imitative
NOUN N Noun

PROPN * X *

AUX * SYM *

SCONJ * DET *

Table 3: Mapping of the UyDT’s POS tagset to the UD’s POS tagset

3.2 mapping relations

UD defines a set of 40 broadly applicable dependency relations, further allowing language – specific

subtypes of these to be defined to meet the needs of specific resources. However, there are only 23

types of dependent relations in UyDT. The conversion from UyDT dependency annotation to UD re-

quired not only relabelling types, but also changes to the tree structure, obviously, it isn’t a straight-

forward mappings. We use three steps to finish the conversing: rule based automatic label mappings;

structural changes; manual checking. The details are as follows:

3.2.1 rule based automatic label mapping

Most of the dependency relations which defined in UyDT are included in the UD, but isn’t one by one

mapping. After comparing the Uyghur treebank relation description with UD description, we mapped

Uyghur DT dependent relations to UD as following table. The relation ‘ATT’, for instance, could map

to ‘acl, amod, det, nummod’, which of them should be chosen is another problem. To tackle with this

problem, we settled priority and some limited rules on them according to our corpus features to choose

one of them.

Uyghur Universal Uyghur Universal

ATT acl, amod, det, nummod ADV advcl, advmod

CL advcl, parataxis APPOS appos

AUX aux POST case

CONJ cc QUOT ccomp

COLL
compound, mwe, list, name,

nummod, goeswith
COORD conj

COP cop, neg PRED nsubj

IND discourse, parataxis, vocative OBJ dobj, nmod:cau

LOC nmod DAT nmod

COMP nmod:comp POSS
nmod:poss, nmod:part,

nmod:poss

LOC nmod:tmod SUBJ nsubj

ROOT punct

Table 3 Mapping of the UyDT dependent relation to UD dependent relation

46

For example, the dependent relation ‘OBJ’ in UyDT could map to ‘dobj, dobj:cau, nmod:cau’ in

UD, considering that the rate of using causative word is less than using non-causative word, we decid-

ed map all the dependent relation ‘OBJ’ to ‘dobj’; the dependent relation ‘ATT’ in UyDT could map

to ‘acl, amod, det, nummod’. After adding some limitation on the dependent relation ‘ATT’, such as

when the word is tagged ‘NOUN’, map it to ‘amod’, when it is tagged ‘NUM’ map it ‘amod’, and

tagged ‘PRON’ map it to ‘det’. After rule based mapping, most of the dependent relations are trans-

formed correctly, certainly including some wrong labels as well. Then, we manually checked and cor-

rected them.

3.2.2 structural changes

The UD syntactic annotation is based on the universal Stanford Dependencies (SD) scheme (de

Marneffe et al., 2014). One of the key properties of these schemes is that they emphasizes direct rela-

tion between content words, treating function words as dependents of content words rather than as

their heads. However, it is not all the case in UyDT. Some function words such as copula or auxiliary

words were head of the predicative, for when a copula or auxiliary attaching a word, it would indicate

a grammatical meaning as well as get certain morphological forms. For example: ‘u hetni yezip boldi

(he had written the letter); yezip bolghan hetni oqudi (he read the letter which had been written)’. In

these examples, the word with bold font, generated from one stem bol, has different morphological

form in each sentences to combine these words around it. Though it is auxiliary verb, produce relation

‘aux’ and marked as the head of the relation in UyDT. It contrasts with UD and needs to make some

structural changes. We done this changes with manually, for structural changes were not easily auto-

mated. The following structural changes were made manually:

 aux & cop
In the UyDT, the auxiliary and copula are treated similarly to a verb, and can function as the

root of a sentence. However, the UD scheme analyses copula constructions differently: the

predicate is regarded as the head of the phrase, and the auxiliary or copula is its dependent, as

labelled by the ‘aux’ or ‘cop’. See Figure.1 (a) and (b) for comparison.

Gëpimni
(my word)

anglap
(listen)

bol
(completely)

OBJ AUX

 Listen to me

.

ROOT

(a)

Gëpimni
(my word)

anglap
(listen)

bol
(completely)

dobj aux

 Listen to me

.

punct

(b)

Figure 1: UD aux analysis

 punct
In the UyDT, the punctuations which appeared in the sentence was not considered in depend-

ent relation, instead, the last punctuation which appeared the end of a sentence was regarded as

the head of the sentence and labelled as ‘ROOT’. However, the UD defines a punctuation de-

pend on content word which it always attached to with the relation of ‘punct’ and can never

have dependents. It is need to change the relation structure and the label of the relation ‘ROOT’

in UyDT. (Figure 1)

 conj & cc

Significant changes were made to the analysis of coordination. In the UyDT， defined words

which formed coordinate relations depended from begin to end relatedly and the last one was

47

the head of them with the label of ‘COORD’ . Meanwhile, the conjunction was depend on the

coordinate word which it attached to with the label as ‘CONJ’ (Figure 2 (a)). The UD annota-

tion scheme, on the other hand, uses right-adjunctions, where the first coordinate is the head of

them, and the rest of phrase is adjoined to the right. We diverge from UD specification by

marking the last conjunct as the head of the relation. All the other conjuncts depend on the last

via labelling subsequent coordinates as ‘conj’ (Figure 2 (b))

men
(I)

alma
(apple)

banan
(banana)

COORD

 I bought apples, bananas and grapes.

we
(and)

COORD

,
üzüm

(grapes)

SUBJ

aldim
(bought)

CONJ
OBJ

ROOT

.

(a)

men
(I)

alma
(apple)

banan
(banana)

conj

 I bought apples, bananas and grapes.

we
(and)

conj

,
üzüm

(grapes)

subj

aldim
(bought)

cc
dobj

punct

punct

.

(b)

Figure 2: Coordination structure in the UD

3.2.3 Uyghur-specific relations

The UD scheme provides scope to include language-specific subtype labels. The label naming

format is unversal:extention, which ensures that the core UD relation remains identifiable,

making it possible to revert to this coarse label for cross-lingual analysis. During the conver-

sion of the UyDT, we defined some labels required to represent Uyghur syntax more concise-

ly. These labels are discussed below:
 advmod:emph

Some adverbial modifiers in Uyghur has served as the emphasizer or intensifier. We use the

subtype label ‘advmod:emph’ in cases where modifiers emphasize or intensify their heads. It

is also used in the Turkish, Ancient Greek, Arabic, Czech, Latin, Portuguese and Tamil

scheme as well. (Figure 3)

yene
(again)

tirishmisang
(study hard)

hetta
(even)

advcl:cond

If you didn t study hard futher, you even couldn t graduate

mektepnimu
(school)

advmod:emph

,
püttürelmeysen

(couldn t graduate)

advmod dobj pucnt

.

Figure 3: UD advmod and advcl analysis

 advcl:cond
It is used for conditional clauses. It is also used in Turkish scheme. (Figure 3)

 aux:q

48

In Uyghur, a question sentence is built by adding one of question particle to predicate (auxilia-

ry verb or copula). We use ‘aux:q’ for all uses of the question particle. It also used in He-

brew, Turkish. (see Figure 4)

shü
(that)

küni
(day)

qelem
(pen)

nmod:tmod

at that day, have you bought stationaries？

elip
(buy)

dobj

depter
(notebook)

boldingizmu
(already)

advmod aux:q pucnt

?

compund:redup

Figure 4: UD aux, compound and nmod analysis

 compound:redup
Reduplication is a common process especially for adverbs, adjectives, nouns in Uyghur. Re-

duplication typically involves two identical words, but some morpho- phonological alterna-

tions are possible. The forms of the reduplicate words in Uyghur are various, this subtype of

compound covers a range of reduplicated forms in Uyghur. It is also used in Turkish as well.

An example is given in Figure 4.

 dobj:cau & nmod:cau
We mark direct objects of causative verbs with ‘dobj:cau’, since the interpretation is different

in comparison to a direct object of a non-causative verb. In general, if the verb is intransitive,

direct object indicates the “causee”, the subject of the content verb, or the entity that performs

the action. If the verb is transitive, the direct object is the entity that is acted upon as in the

non-causative case use the subtype ‘nmod:cau’ . They are also used in Turkish as well.

 nmod:tmod
Temporal modifiers specifying time, in nominal form, are labelled as ‘nmod:tmod’. English,

Chinese, Danish, Russian etc. also uses this subtype label. See the Figure 4 for example.

 nmod:poss
This subtype is used in possessive constructions, typically, the head of the construction is a

possessive noun phrase, and the dependent is in genitive case. Danish, English, French, Ger-

man, Kazakh etc. also use the subtype. An example is giben in Figure 5.

 nmod:comp
This subtype of ‘nmod’ is used for marking comparative modifier of an adjective or adverb.

The specific feature of it is a nominal word or phrase which attached ablative case suffix and

an adjective or adverb. This subtype is also used in Turkish as well. See the Figure 5 for ex-

ample.

uning
(His)

oqughan
(read)

meningkidin
(than mine)

acl

He read more books than me.

köp

nmod:comp

kitawi
(book)

nmod:poss
pucnt

.

subj

iken

cop

Figure 5: UD nmod relation analysis

 nmod:part
This subtype of nmod is used for marking the part-whole relations. This structure is similar to

‘nmod:poss’ in most cases, but the range structures expressing “part of” is diverse, and distinc-

tion is often be useful.

4 summary and future work

In this paper, we have summarized the conversion of the Uyghur Dependency Treebank (UyDT) to

UD format. We have described in detail the mapping and conversion process, including structural

49

changes required, for the release of the UyDT as part of the Universal Dependencies project. We have

also discussed linguistic analyses and motivations for choosing of Uyghur language-specific label

types.

Acknowledgments

This work was funded by the Natural Science Foundation of China (Grant No. 61262061) and sup-

ported by Science & Technology Foundation of Xinjiang(Grant No. 201423120).

We are extremely thankful to the mathematical and physical department in Charles University and

in particular to Dan Zeman for his advice on the Uyghur conversion effort.

Reference

Aili, M., Xialifu, A., Maihefureti, & Maimaitimin, S. (2016). Building Uyghur Dependency Treebank: Design

Principles, Annotation Schema and Tools. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9442, pp. 124–136).

de Marneffe, M.-C., Dozat, T., Silveira, N., Haverinen, K., Ginter, F., Nivre, J., & Manning, C. D. (2014).

Universal Stanford Dependencies: A cross-linguistic typology. In Proceedings of the Ninth International

Conference on Language Resources and Evaluation (LREC’14), 4585–4592.

Džeroski, S., Erjavec, T., & Ledinek, N. (2006). Towards a Slovene dependency treebank. Proc. of the Fifth

Intern. …, (May), 1388–1391.

Hajičová, E. (1998). Prague Dependency Treebank: From Analytic to Tectogrammatical Annotation. In

Proceedings of the First Workshop on Text, Speech, Dialogue (pp. 45–50).

Haverinen, K., Viljanen, T., Laippala, V., Kohonen, S., Ginter, F., & Salakoski, T. (2010). Treebanking Finnish.

In In proc. of The Ninth International Workshop on Treebanks and Linguistic Treories (TLT-9) (pp. 79–

90).

Kromann, M. T. (2003). The Danish Dependency Treebank and the DTAG Treebank Tool. In Proceedings of the

Second Workshop on Treebanks and Linguistic Theories (pp. 217–220).

Lynn, T., & Foster, J. (2016). Universal dependencies for Irish. In Celtic Language Technology Workshop (pp.

79–92).

Mairehaba·, A., Jiang, W., Wang, Z., Tuergen·, Y., & Liu, Q. (2012). Directed Graph Model of Uyghur

Morphological Analysis. Journal of Software, 23(12), 3115–3129.

Mamitimin, S., Ibrahim, T., & Eli, M. (2013). The Annotation Scheme for Uyghur Dependency Treebank. 2013

International Conference on Asian Language Processing, 185–188.

Mcdonald, R., Nivre, J., Quirmbach-brundage, Y., Goldberg, Y., Das, D., Ganchev, K., … Lee, J. (2013).

Universal Dependency Annotation for Multilingual Parsing. Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics, 92–97.

McDonald, R., Petrov, S., & Hall, K. (2011). Multi-source transfer of delexicalized dependency parsers.

Proceedings of the Conference on Empirical Methods in Natural Language Processing, (2007), 62–72.

Oflazer, K. (2003). BUILDING A TURKISH TREEBANK, 1–17.

Petrov, S., Das, D., & Mcdonald, R. (2012). A Universal Part-of-Speech Tagset. Proceedings of the Eighth

International Conference on Language Resources and Evaluation (LREC ’12), 2089–2096.

Pyysalo, S., Kanerva, J., Missilä, A., Laippala, V., & Ginter, F. (2015). Universal Dependencies for Finnish.

Nordic Conference of Computational Linguistics NODALIDA 2015, (Nodalida), 163.

Søgaard, A. (2011). Data Point Selection for Cross-Language Adaptation of Dependency Parsers. Proceedings of

the 49th Annual Meeting of the Association for Computational Linguistics: Human Language

Technologies (HLT ’11): Short Papers, 682–686.

Tsarfaty, R. (2013). A Unified Morpho-Syntactic Scheme of Stanford Dependencies. Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 578–584.

Zeman, D. (2008). Reusable Tagset Conversion Using Tagset Drivers. Lrec, 213–218.

50

Proceedings of WLSI/OIAF4HLT,
pages 51–55, Osaka, Japan, December 12 2016.

A non-expert Kaldi recipe for Vietnamese Speech Recognition System

Hieu-Thi Luong
VNUHCM - University of Science

Ho Chi Minh City, Vietnam
luonghieuthi@gmail.com

Hai-Quan Vu
VNUHCM - University of Science

Ho Chi Minh City, Vietnam
vhquan@fit.hcmus.edu.vn

Abstract

In this paper we describe a non-expert setup for Vietnamese speech recognition system using
Kaldi toolkit. We collected a speech corpus over fifteen hours from about fifty Vietnamese native
speakers and using it to test the feasibility of our setup. The essential linguistic components for
the Automatic Speech Recognition (ASR) system was prepared basing on the written form of the
language instead of expertise knowledge on linguistic and phonology as commonly seen in rich
resource languages like English. The modeling of tones by integrating them into the phoneme
and using the phonetic decision tree is also discussed. Experimental results showed this setup for
ASR systems does yield competitive results while have potentials for further improvements.

1 Introduction

Thanks to the improvement by applying deep learning for speech recognition systems (Dahl et al., 2012;
Hinton et al., 2012), speech recognition has gained more attention from both research and industrial
community. However for minority languages such as Vietnamese, the number of research groups and
publications are still limited. One reason for this is the lack of available resources concern of speech
recognition and linguistic in general. There are a few attempts to enrich the resources for such lan-
guages. One notable example is the GlobalPhone database (Schultz et al., 2013; Schultz and Schlippe,
2014), which provide speech, text data as well as the pronunciation dictionary based on International
Phonetic Alphabet (IPA) (International Phonetic Association, 1999) for 20 languages, Vietnamese in-
cluded. Although for independent researchers it’s not feasible to access these public dataset as the cost
is quite expensive.

Kaldi (Povey et al., 2011) is an open source Speech Recognition Toolkit and quite popular among the
research community. Thanks to the active development, Kaldi is regularly updated with new implemen-
tation of state-of-the-art techniques and recipes for speech recognition systems. One motivation for us
to define a Vietnamese recipe is to take advantages of such available resources. Another reason is to es-
tablish a simple and straightforward Vietnamese recipe so more researchers can start to work on speech
recognition system for Vietnamese. In the remain of this paper, Section 2 describes the data we used
for the experiments. Section 3 shows the approach for preparing essential linguistic components and
describe unique characteristics of Vietnamese languages. Section 4 explains the acoustic modeling and
the techniques used to improve the performance of the ASR system. Section 5 evaluates all described
recipes while Sections 6 gives a conclusion for our work.

2 Data preparation

2.1 Speech corpus

To evaluate our recipe we prepared a speech corpus by recording speech data from more than 50 native
Vietnamese volunteers. For training, 46 speakers (22 males and 24 females) help record 15 hours of
speech with 11660 utterances in total. While for testing another set of 19 speakers (12 males and 7

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

51

females) recorded 50 minutes of speech with 760 utterances in totals. The recording sessions were
conducted in a quiet environment using quality equipments. The size of the corpus is quite small for
the current standard of ASR system, however similar size corpus have been commonly used to evaluate
Vietnamese ASR system (Quang et al., 2008; Le and Besacier, 2009). We refer to the corpus as VIVOS,
more details about the corpus can be found at http://ailab.hcmus.edu.vn/vivos.

Table 1: Speech corpus statistics
Set Speakers Male Female Utterances Duration Unique Syllables
Traing 46 22 24 11660 14:55 4617
Testing 19 12 7 760 00:45 1692

2.2 Text corpus
Language model is still an essential part of any state-of-the-art ASR system. In our experiment about 500
MB of text collected from online news and forum from the last 5 years was used to train the decoding
language model. The text was first normalized to remove symbols, tags or other non-language elements.
Popular abbreviation and numeric expression then replaced by their unrolled written form. The remain
text still contained a lot of foreign or incorrect words but was keep as it is and handled in later stage.

3 Linguistic components

3.1 Syllable-based Language Model
In the writing system of Vietnamese language, spaces are used to separated syllables instead of words
as in English. Some other languages that share similar trait are Chinese and Japanese. To follow the
conventional definition of word in an ASR system one extra step known as word segmentation need to
be taken. A Vietnamese word can contain from one up to four syllables, the boundary between words
then need to be determined in the segmentation step. Word segmentation is not a trivial task and there is
no perfect technique to solve this problem.

For simplification a syllable-based language model can be used instead of word-based. Syllable-
based language model helps avoid errors caused by segmentation step and reduce the complexity as the
number of syllables is fewer. In our work a trigram syllable-based language model was trained using
the text corpus described in previous section. The vocabulary contains 7746 most used Vietnamese-only
syllables and the language model was processed to only contain these syllables. As Kaldi would map
words and phonemes to their respective integer id, this allows all Vietnamese text to be kept in their
Unicode encoding.

3.2 Grapheme-based Pronunciation Dictionary
For Vietnamese ASR systemsm there isn’t an standard dominant pronunciation dictionary. In the Glob-
alPhone database, IPA was used to construct pronunciation dictionaries for all languages. This unified
phoneset open the possibility for multi-language speech recognition system. Although it would be harder
to model the unique characteristics of each languages. Another approach is following the Vietnamese
phonology definition which suggested that each syllables consist of five components with some compo-
nents can be redundant. This approach creates a bigger phoneset as it contains diphthong and triphthong.
Another approach is using grapheme as phoneme with each character considered as a phoneme as done
by Le and Besacier (2009).

In this paper we propose a grapheme-based pronunciation dictionary but not strictly mapping from one
character to one phoneme. To simplify the recipe the role and position of each component in syllable is
ignored and only two type of phonemes are defined: consonants and vowels. A consonant can be one or
up to three characters (instead of one character as grapheme phoneset) while a vowel is a standard vowel
with a respective tone. In this setup each tonal variations of a vowel is treated as different phonemes with
no relation. To regain tonal information, extra questions could be used to build the phonetic decision
tree, the details of this tonal modeling would be discussed in Sections 4.3.

52

Table 2: Tone integrated grapheme-based phoneset with 99 phonemes in total

Consonants
3 characters ngh
2 characters ch gh gi kh ng nh ph qu tr th
1 character b c d đ g h k l m n p r s t v

Vowels

[blank] a ă â e ê i o ô ơ u ư y
grave accent á ắ ấ é ế í ó ố ớ ú ứ ý
acute accent à ằ ầ è ề ì ò ồ ờ ù ừ ỳ
hook ả ẳ ẩ ẻ ể ỉ ỏ ổ ở ủ ử ỷ
tilde ã ẵ ẫ ẽ ễ ĩ õ ỗ ỡ ũ ữ ỹ
dot below ạ ặ ậ ẹ ệ ị ọ ộ ợ ụ ự ỵ

It’s a well known fact that [ngh] and [ng] is two written form of the same phoneme in Vietnamese. But
to keep our setup grapheme-based and easy to follow even for people who do not speak the language, we
decided to not combine them and leave such enhancements and other exceptions for future works.

Table 3: Example entries for grapheme-based pronunciation dictionary
nhanh nh a nh chào ch à o tôi t ô i
nghiêng ngh i ê ng ba b a tối t ố i

4 Systems description

4.1 Acoustic modeling
For acoustic modeling we followed standard recipes of Kaldi. The acoustic features used is 13 di-
mensions Mel-Frequency Cepstral Coeffiennts (MFCC) with Linear Discriminative Analysis (LDA) and
Maximum Likelihood Linear Transform (MLLT) applied to 7-splice (3 left and 3 right context) frames
and project to a 40-dimensions feature. This feature used to train a conventional triphone GMM acoustic
model. Next a discriminative training method Maximum Mutual Information (MMI) was used to train the
second model (Povey et al., 2008). A speaker dependent model then trained by applying feature-based
Maximum Likelihood Linear Regression (fMLLR) to the acoustic feature (Povey and Saon, 2006). The
last model is a hybrid HMM-DNN where DNN was trained to classification the input feature to the
corresponding HMM tied states, the fMLLR transformed feature are used to train the hybrid model.

For summary, we trained 4 models: a triphone GMM-based baseline (mGMM), one discriminative
trained (mGMM+MMI), one speaker adaptation for GMM (mGMM+SAT) and a hybrid HMM-DNN
model with speaker adapted feature (mDNN+SAT). All GMM models contains about 15000 gaussians
and 2500 leaves. As for HMM-DNN hybrid setup, DNN contains only 2 hidden layers each with just
300 nodes. The parameters was small when comparing with other Kaldi recipes as the data available for
our training is limited.

4.2 Pitch feature for tonal languages
Ghahremani et al. (2014) showed that pitch feature can be helpful for ASR systems especially for tonal
languages like Vietnamese and Cantonese. Their implementation for pitch feature extraction is dis-
tributed with Kaldi framework. To investigate the effectiveness of pitch in our setup another set of 4
models described above are trained with just one different: pitch feature was augmented into the acous-
tic features before applied LDA and MLLT.

4.3 Tones clustering using Phonetic Decision Trees
There are some study about modeling tonal information to improve the accuracy of Vietnamses ASR
system (Vu and Schultz, 2010; Nguyen et al., 2015) although they are all fall into one of these two
approaches: tones are considered as separate phonemes (explicit tone model), or tones are integrated
into a phoneme and creating 6 different variation of the same base phoneme (data-driven tone model).

53

As described in Section 3.2 a tone integrated phoneset is used for our recipes and without further
customization our setup is similar to the data-driven tone model (with a slightly different phoneset). To
help recreate the relations between the tonal variations of the same base phoneme we utilized the extra
questions used to build the phonetic decision tree (Young et al., 1994) to let it asks about tonal questions.
This way we can create a more sophisticated modeling for tones and it’s also a novel part in our work.

For a typical Kaldi recipe, the question used to build the decision tree are generated automatic based on
the tree-clustering of the phones (Povey et al., 2011). Thanks to the flexible structure of Kaldi framework,
extra questions about linguistic knowledge can be supplied to further tuning for a particular language.
As for Vietnamese we added two simple set of questions about tones: question to group phonemes with
same base vowel together and question to group phonemes with the same tone together.

Table 4: Examples of extra questions used to incorporate tones into the decision tree
Same base vowel Same tone
a á à ả ã ạ a ă â e ê i o ô ơ u ư y
ă ắ ằ ẳ ẵ ặ á ắ ấ é ế í ó ố ớ ú ứ ý

5 Evaluations

Three different recipes followed the description in Section 4 were prepared and evaluated, each with
4 models: the baseline setup using the grapheme-based pronunciation dictionary and standard MFCC
feature (baseline), the second recipe with the augmenting of pitch into the acoustic feature (+pitch) and
the last one with pitch feature and the incorporation of tones to the phonetic decision tree (+tone).

Table 5: %SyER for 3 recipe each with 4 different models
baseline +pitch +tones

mGMM 19.66 15.14 14.91
mGMM+MMI 18.08 14.96 13.91
mGMM+SAT 15.79 12.07 12.13
mDNN+SAT 13.34 9.54 9.48

Table 5 showed the Syllable Error Rate (%SyER) of three recipes described above. The baseline
recipe has a 19.66%SyER for mGMM model and gain 1.58% absolute improvement when training using
discriminative method. The mGMM+SAT model trained with the speaker adaptation method fMLLR
achieved the best result in all three GMM-based models. While the hybrid HMM-DNN system trained
with adapted featured further improve the performance to 13.34 %SyER. This result confirmed the va-
lidity of our non-expert recipe for Vietnamese ASR system.

The second recipe with the addition of pitch feature greatly improve the performance in all 4 models.
The lowest error is 9.54 %SyER achieved using mDNN+SAT. This once again shows the benefit of
using pitch for Vietnamese system. The last recipe with pitch and the incorporation of tones to the
decision tree slightly improve the results in the conventional mGMM model and a notable improvement
(1% absolute) in mGMM-MMI. However the improvement fades away with 2 models using speaker
adaptation technique. This showed the potential of using extra questions for more sophisticated modeling
of tones or other linguistic characteristic of Vietnamese.

6 Conclusions

In this work we prepared a toy Vietnamese speech corpus suitable for testing a new speech recognition
setup. A grapheme-based Kaldi recipe was established using common information about the language
instead of expert knowledge. The tonal information are incorporated into the phonetic decision tree and
also show promising result. Similar setups can be constructed for other languages and even if the results
do not surpass their counterpart phonetic approach, the using of grapheme-based approach can be useful
for tasks like multi-lingual or cross-lingual speech recognition and speech synthesis.

54

References
George E Dahl, Dong Yu, Li Deng, and Alex Acero. 2012. Context-dependent pre-trained deep neural networks

for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing,
20(1):30–42.

Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Korbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur.
2014. A pitch extraction algorithm tuned for automatic speech recognition. In Proc. ICASSP, pages 2494–2498.
IEEE.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, and Brian Kingsbury. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97.

International Phonetic Association. 1999. Handbook of the International Phonetic Association: A guide to the use
of the International Phonetic Alphabet. Cambridge University Press.

Viet-Bac Le and Laurent Besacier. 2009. Automatic speech recognition for under-resourced languages: applica-
tion to Vietnamese language. IEEE Transactions on Audio, Speech, and Language Processing, 17:1471–1482.

Thien Chuong Nguyen, Josef Chaloupka, and Jan Nouza. 2015. Study on incorporating tone into speech recogni-
tion of Vietnamese. In Proc. ECMSM, pages 1–6. IEEE.

Daniel Povey and George Saon. 2006. Feature and model space speaker adaptation with full covariance Gaussians.
In Proc. Interspeech.

Daniel Povey, Dimitri Kanevsky, Brian Kingsbury, Bhuvana Ramabhadran, George Saon, and Karthik
Visweswariah. 2008. Boosted MMI for model and feature-space discriminative training. In 2008 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, pages 4057–4060. IEEE.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-
mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovský, Georg Stemmer, and Karel Veselý. 2011. The
Kaldi speech recognition toolkit. In Proc. IEEE ASRU. IEEE Signal Processing Society.

Nguyen Hong Quang, Pascal Nocera, Eric Castelli, and Trinh Van Loan. 2008. A novel approach in continuous
speech recognition for Vietnamese, an isolating tonal language. Proc. SLTU.

Tanja Schultz and Tim Schlippe. 2014. Globalphone: Pronunciation dictionaries in 20 languages. In Proc. LREC,
pages 337–341.

Tanja Schultz, Ngoc Thang Vu, and Tim Schlippe. 2013. Globalphone: A multilingual text & speech database in
20 languages. In Proc. ICASSP, pages 8126–8130. IEEE.

Ngoc Thang Vu and Tanja Schultz. 2010. Optimization on Vietnamese large vocabulary speech recognition. In
Proc. SLTU, pages 104–110.

Steve J Young, Julian J Odell, and Philip C Woodland. 1994. Tree-based state tying for high accuracy acoustic
modelling. In Proc. ARPA Human Language Technology Workshop, pages 307–312. Association for Computa-
tional Linguistics.

55

Proceedings of WLSI/OIAF4HLT,
pages 56–60, Osaka, Japan, December 12 2016.

Evaluating Ensemble Based Pre-annotation on Named Entity Corpus
Construction in English and Chinese

Tingming Lu1,2, Man Zhu3, Zhiqiang Gao1,2, and Yaocheng Gui1,2

1Key Lab of Computer Network and Information Integration (Southeast University),
Ministry of Education, China

2School of Computer Science and Engineering, Southeast University, China
3School of Computer Science and Technology,

Nanjing University of Posts and Telecommunications, China
lutingming@163.com,mzhu@njupt.edu.cn,{zqgao,yaochgui}@seu.edu.cn

Abstract
Annotated corpora are crucial language resources, and pre-annotation is an usual way to reduce
the cost of corpus construction. Ensemble based pre-annotation approach combines multiple ex-
isting named entity taggers and categorizes annotations into normal annotations with high con-
fidence and candidate annotations with low confidence, to reduce the human annotation time. In
this paper, we manually annotate three English datasets under various pre-annotation conditions,
report the effects of ensemble based pre-annotation, and analyze the experimental results. In
order to verify the effectiveness of ensemble based pre-annotation in other languages, such as
Chinese, three Chinese datasets are also tested. The experimental results show that the ensem-
ble based pre-annotation approach significantly reduces the number of annotations which human
annotators have to add, and outperforms the baseline approaches in reduction of human annota-
tion time without loss in annotation performance (in terms of F1-measure), on both English and
Chinese datasets.

1 Introduction

The current success and widespread use of machine learning techniques for processing human language
make annotated corpora essential language resources. Many popular natural language processing (NLP)
algorithms require large amounts of high-quality training samples, which are time-consuming and costly
to build. One usual way to improve this situation is to automatically pre-annotate the corpora, so that
human annotators need merely to correct errors rather than to annotate from scratch.

Named Entity Recognition (NER), one of the fundamental tasks for building NLP systems, is a task
that detects Named Entity (NE) mentions in a given text and classifies these mentions to a predefined
list of types. Resulted from more than two decades of research, many named entity taggers are pub-
licly available now. Some of the taggers are integrated into NLP workflows based on Service Oriented
Architecture (Ide et al., 2015; Piperidis et al., 2015). And it is well known that multiple taggers can
be combined using ensemble techniques to create a system that outperforms the best individual tagger
within the system (Wu et al., 2003; Speck and Ngomo, 2014). However, only a few studies have been
reported on leveraging ensemble to combine multiple existing taggers to assist named entity annotation.

Lu et al. (2016) introduced ensemble based pre-annotation approach in named entity corpus construc-
tion. They conducted experiments on an English dataset, and the results showed that the ensemble based
pre-annotation approach outperforms the baseline approaches in reduction of human annotation time.

In this paper, we perform a more thorough evaluation on the ensemble based pre-annotation approach.
1) We manually annotate three English datasets under various pre-annotation conditions, report the ef-
fects of ensemble based pre-annotation, and analyze the experimental results. 2) We also manually
annotate three Chinese datasets, to verify the effectiveness of ensemble based pre-annotation in Chinese
language.

The remaining part of this paper is organized as follows: In Section 2, we mention related work.
Section 3 describes the experimental setup, followed by experimental results and analysis in Section 4.
Finally, we conclude and discuss future directions in Section 5.
This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

56

2 Related Work

Given the importance of annotated corpora to NLP system development, many applications for different
domains have been built in order to assist named entity annotation, using a single tagger (Lingren et al.,
2014; Ogren et al., 2008), or multiple taggers (Ganchev et al., 2007).

The goal of an ensemble learning algorithm is to generate a classifier with a high predictive perfor-
mance by combining the predictions of a set of basic classifiers. Previous work has already suggested
that ensemble learning can be used to improve NER (Wu et al., 2003; Speck and Ngomo, 2014; Florian
et al., 2003; Desmet and Hoste, 2010). Speck and Ngomo (2014) combined four state-of-the-art taggers
by using 15 different algorithms for ensemble learning and evaluated their performance on five datasets.
Their results suggested that ensemble learning can reduce the error rate of state-of-the-art NER systems
by 40%.

We follow Lu et al. (2016) and perform a more thorough evaluation on the ensemble based pre-
annotation. We manually annotate three English datasets and three Chinese datasets, report the perfor-
mance, and analyze the results.

3 Experimental Setup

3.1 Datasets

All the datasets used in our experiments are publicly available. There are three English datasets, and three
Chinese datasets. From each dataset, 60 articles are selected randomly. From each of the 60 articles, one
sentence is extracted to perform the actual assisted annotation experiments. Sentences containing more
NEs are preferred over ones containing less NEs. Sentences containing no NE will not be extracted. The
three English datasets have been described in Lu et al. (2016). The three Chinese datasets are People’s
Daily (Fu and Luke, 2005), Penn Chinese Treebank 5.1 (CTB5) (Xue et al., 2005), and ITNLP1.

3.2 Taggers

Six English NE taggers and three Chinese NE taggers are involved in our experiments. They are all
public available. For outputs of these taggers, only three types are considered in our experiments, namely
Person, Location, and Organization. The English NE taggers are the same as the ones described in Lu et
al. (2016). The Chinese NE taggers are ICTCLAS2 (Liu et al., 2004), FudanNLP3 (Qiu et al., 2013) and
Stanford Named Entity Recognizer4 (Stanford(zh))(Manning et al., 2014).

3.3 Pre-annotators

For the English taggers, the pre-annotator Ensemble(en) which combines six taggers and produces nor-
mal and candidate annotations is used to evaluate the ensemble based pre-annotation approach. One
baseline pre-annotator using a single tagger is denoted as Stanford(en). Another baseline pre-annotator
Stanford(en)+Illinois produces annotations which are union of the outputs of two taggers, namely Stan-
ford(en) and Illinois. No ensemble technique is applied on the pre-annotator Stanford(en) and Illinois.
We choose Stanford(en) and Illinois because they are the best two taggers in terms of F1-measure on the
test datasets.

Similarly, for the Chinese taggers, the pre-annotator Ensemble(zh) combines three taggers. One
baseline pre-annotator using a single tagger is ICTCLAS. Another baseline pre-annotator ICT-
CLAS+Stanford(zh) produces annotations which are union of the outputs of the two taggers.

For the ensemble based pre-annotators (Ensemble(en) and Ensemble(zh)), Weighted Voting (Zhou,
2012) is used to weight the different taggers. The ensemble based pre-annotators learn the weights
incrementally after each sentence in a dataset is annotated by human.

1http://www.datatang.com/data/44067/
2http://ictclas.nlpir.org/ (version 5.0).
3http://nlp.fudan.edu.cn/ (version 2.1).
4http://nlp.stanford.edu/software/CRF-NER.shtml (version 3.6.0).

57

Table 1: Assisted annotation experiments. Annotators are assigned to annotate sentences under various
pre-annotation conditions.

Dataset H1 H2 H3

AKSW-News Stanford(en) Ensemble(en) Stanford(en)+Illinois
CoNLL-Test Stanford(en)+Illinois Stanford(en) Ensemble(en)
Reuters-128 Ensemble(en) Stanford(en)+Illinois Stanford(en)

CTB5 ICTCLAS Ensemble(zh) ICTCLAS+Stanford(zh)
ITNLP ICTCLAS+Stanford(zh) ICTCLAS Ensemble(zh)
People’s Daily Ensemble(zh) ICTCLAS+Stanford(zh) ICTCLAS

Table 2: Results of assisted annotation experiments.

Pre-annotator Language Nadd Nmodify Precision Recall F1 Time

Stanford(en) English 0.47 0.16 0.947 0.923 0.935 18.8
Stanford(en)+Illinois English 0.37 0.46 0.942 0.924 0.933 18.7
Ensemble(en) English 0.11 0.67 0.950 0.930 0.940 18.2

ICTCLAS Chinese 1.32 0.08 0.948 0.936 0.942 14.6
ICTCLAS+Stanford(zh) Chinese 0.82 0.91 0.949 0.947 0.948 14.6
Ensemble(zh) Chinese 0.59 0.84 0.951 0.951 0.951 13.3

3.4 Assisted Annotation Experiments

Three human annotators (H1, H2, and H3) participate in our assisted annotation experiments. They are
graduate students in our school, and major in NLP study. After they have annotated some sentences in a
training dataset to get familiar with the Web based UI, each of them has to annotate all of the sentences in
the six datasets. The human annotators are presented with the sentences in the same order (Table 1), but
for different human annotators, each sentence is pre-annotated by different pre-annotators. We carefully
design the experiments, to ensure that each sentence will be pre-annotated by all the pre-annotators, and
will be annotated by all the human annotators.

4 Results and Analysis

The results of assisted annotation experiments under various pre-annotation conditions are presented in
Table 2. After the sentences are pre-annotated by ensemble based pre-annotators (Ensemble(en) and
Ensemble(zh)), human annotators take less annotation time per sentence without loss in annotation per-
formance (in terms of F1-measure), on both English and Chinese datasets.

The Web based UI automaticly records the number of adding actions (Nadd) and number of modifying
actions (Nmodify) when human annotators are annotating. As presented in Table 2, ensemble based
pre-annotation approach significantly reduces the number of adding actions. However, ensemble based
pre-annotation approach introduces more modifying actions, compared to single taggers (Stanford(en)
and ICTCLAS). We will analyze the results in the following.

We utilize linear regression to model the annotation time, where Ttotal is the total time in seconds spent
on a sentence, Ntoken is the number of English tokens or Chinese characters in the sentence, Ttoken is
the time taken on reading an English token or a Chinese character, Nadd is the number of adding actions,
Tadd is the time taken on performing an adding action, Nmodify is the number of modifying actions,
Tmodify is the time taken on performing a modifying action, and additionally, there is Tc seconds of
overhead per sentence.

TTotal = Ntoken · Ttoken +Nadd · Tadd +Nmodify · Tmodify + Tc

58

Table 3: Estimated time spent on reading a token, adding a new annotation, modifying an existed anno-
tation, etc.

Language Ttoken Tadd Tmodify Tc

English 0.25 4.79 1.95 7.45
Chinese 0.11 4.22 1.94 1.64

Figure 1: Estimated time taken by human annotators on performing adding and modifying actions on
English (a) and Chinese (b) datasets.

There are 180 sentences in the three English datasets. Each of them is pre-annotated by three pre-
annotators, and then annotated by three human annotators. Finally we get 540 instances. Similarly, from
the experimental results on the Chinese datasets, we get 540 instances. Based on the time model, we get
Ttoken, Tadd, Tmodify, and Tc, as listed in Table 3. As we can see, adding a new annotation takes twice
more time than modifying an existing annotation, both on English and Chinese datasets.

Given a sentence under different pre-annotation conditions, Ntoken · Ttoken + Tc is constant, while
the adding and modifying action time Ta+m = Nadd · Tadd +Nmodify · Tmodify varies. Now, we can
estimate the adding and modifying action time for the different pre-annotation approaches on all the
datasets. From Figure 1, we can see that after the sentences are pre-annotated by ensemble based pre-
annotators, human annotators take less time on performing adding and modifying actions than the two
baseline approaches on all datasets.

5 Conclusion

In this paper, we evaluate the effects of ensemble based pre-annotation which combines multiple exist-
ing NE taggers on three English datasets and three Chinese datasets. The experimental results show that
the ensemble based pre-annotation approach reduces the number of adding actions and the total human
annotation time, without loss in annotation performance (in terms of F1-measure). Based on a linear
regression model, we estimate the time taken on performing adding and modifying actions by human an-
notators, and conclude that ensemble based pre-annotation approach reduces the human annotation time
on all datasets. In future work, we will study how different ensemble algorithms affect the performance,
and will try to apply ensemble based pre-annotation approach to other NLP tasks, such as Entity Linking,
Relation Extraction, etc.

59

Acknowledgements

This work is partially funded by the National Science Foundation of China under Grant 61170165,
61602260, 61502095. We would like to thank all the anonymous reviewers for their helpful comments.

References
Bart Desmet, and Vronique Hoste 2010. Dutch named entity recognition using classifier ensembles. LOT Occa-

sional Series, vol 16, pp. 29–41.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. 2003. Named entity recognition through classifier
combination. Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL, vol 4.
Association for Computational Linguistics.

Guohong Fu, and Kang-Kwong Luke. 2005. Chinese named entity recognition using lexicalized HMMs. ACM
SIGKDD Explorations Newsletter, vol. 7, no. 1, pp.19–25.

Kuzman Ganchev, Fernando Pereira, and Mark Mandel. 2007. Semi-automated named entity annotation. Pro-
ceedings of the linguistic annotation workshop, pp. 53–56. Association for Computational Linguistics.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg, Denise DiPersio, Chunqi Shi, Keith Suderman,
Marc Verhagen, Di Wang, and Jonathan Wright. 2015. The language application grid. International Workshop
on Worldwide Language Service Infrastructure, (pp. 51–70). Springer International Publishing.

Todd Lingren, Louise Deleger, Katalin Molnar, Haijun Zhai, Jareen Meinzen-Derr, Megan Kaiser, Laura Stouten-
borough, Qi Li, and Imre Solti. 2014. Evaluating the impact of pre-annotation on annotation speed and potential
bias: natural language processing gold standard development for clinical named entity recognition in clinical
trial announcements. Journal of the American Medical Informatics Association, 21(3), 406-413.

Qun Liu, Huaping Zhang, Hongkui Yu, and Xueqi Cheng. 2004. Chinese lexical analysis using cascaded hidden
Markov model. Journal of Computer Research and Development, vol. 41, no. 8, pp. 1421–1429.

Tingming Lu, Man Zhu, and Zhiqiang Gao. (under publication) 2016. Reducing Human Effort in Named Entity
Corpus Construction Based on Ensemble Learning and Annotation Categorization.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language Processing Toolkit. Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations, pp. 55–60.

Philip V. Ogren, Guergana K. Savova, and Christopher G. Chute. 2008. Constructing evaluation corpora for au-
tomated clinical named entity recognition. Proceedings of the Language Resources and Evaluation Conference
(LREC), pp. 28–30.

Stelios Piperidis, Dimitrios Galanis, Juli Bakagianni, and Sokratis Sofianopoulos. 2015. Combining and extending
data infrastructures with linguistic annotation services. International Workshop on Worldwide Language Service
Infrastructure, (pp. 3–17). Springer International Publishing.

Xipeng Qiu, Qi Zhang and Xuanjing Huang. 2013. FudanNLP: A Toolkit for Chinese Natural Language Pro-
cessing. Proceedings of the 51nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations.

Ren Speck, and Axel C. N. Ngomo. 2014. Ensemble learning for named entity recognition. Semantic Web–ISWC
2014. LNCS, vol 8796, pp. 519–534. Springer, Heidelberg.

Decai Wu, Grace Ngai, and Marine Carpuat. 2003. A stacked, voted, stacked model for named entity recognition.
Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL 2003,
vol. 4, pp. 200–203. Association for Computational Linguistics, Stroudsburg

Naiwen Xue, Feixia Fu, Dong Chiou, and Marta Palmer. 2005. The Penn Chinese Treebank: Phrase structure
annotation of a large corpus. Natural Language Engineering, vol. 11, no. 2, pp.207–238.

Zhihua Zhou. 2012. Ensemble methods: foundations and algorithms. CRC Press, pp 74–75.

60

Proceedings of WLSI/OIAF4HLT,
pages 61–69, Osaka, Japan, December 12 2016.

An Ontology for Language Service Composability

Yohei Murakami
Unit of Design,

Kyoto University
yohei@i.kyoto-u.ac.jp

Donghui Lin
Department of Social Informatics

Kyoto University
lindh@i.kyoto-u.ac.jp

Takao Nakaguchi
Department of Social Informatics

Kyoto University
nakaguchi@i.kyoto-u.ac.jp

Toru Ishida
Department of Social Informatics

Kyoto University
ishida@i.kyoto-u.ac.jp

Abstract

Fragmentation and recombination is a key to create customized language environments for sup-
porting various intercultural activities. Fragmentation provides various language resource com-
ponents for the customized language environments and recombination builds each language en-
vironment according to user’s request by combining these components. To realize this fragmen-
tation and recombination process, existing language resources (both data and programs) should
be shared as language services and combined beyond mismatch of their service interfaces. To ad-
dress this issue, standardization is inevitable: standardized interfaces are necessary for language
services as well as data format required for language resources. Therefore, we have constructed
a hierarchy of language services based on inheritance of service interfaces, which is called lan-
guage service ontology. This ontology allows users to create a new customized language service
that is compatible with existing ones. Moreover, we have developed a dynamic service binding
technology that instantiates various executable customized services from an abstract workflow
according to user’s request. By using the ontology and service binding together, users can bind
the instantiated language service to another abstract workflow for a new customized one.

1 Introduction

Rapid internationalization accelerates expansion of multicultural society where local people and foreign-
ers coexist. As a result, intercultural and multilingual activities are often necessary in daily life, such as
questioning foreign patients in hospitals and teaching foreign students in schools, and so on. Although
there are many language resources (e.g. bilingual dictionaries, parallel corpora, machine translators,
morphological analyzers, and so on) on the Internet(Choukri, 2004), most intercultural collaboration ac-
tivities are still lacking multilingual support. This is because each activity requires a customized language
environment due to different purposes, domains, environments, and languages to be supported.

Many efforts have been put for combining language resources in some previous frameworks based
on web services. These efforts focus on wrapping the resources as services, and defining a standard
data format exchanged between language services and annotation vocabularies to be embedded in the
format. The format and vocabularies enable users to combine language services developed by different
providers. However, end users who need multilingual support in their intercultural fields have difficulties
in developing a reasonable logic flow to combine language services because they are not familiar with
the annotation vocabularies. Therefore, we aim at separating the logic flow from selecting language ser-
vices by introducing an abstract workflow into our platform. In our platform, web service professionals
develop an abstract workflow to combine language services, while users select language services to be

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

61

connected by the workflow in order to instantiate their customized language services from the abstract
workflow.

To realize this collaboration between web service professionals and end users, we addressed the fol-
lowing two issues.

Construct an ontology to define language services As web service professionals develop new lan-
guage services according to users’ request, it results in generating various service interfaces. To
invoke the new services from existing workflows while ensuring the diversity, we need an ontology
to verify composability of the new services.

Develop language service binding technology To instantiate various executable composite language
services from an abstract workflow, we need a technology that enables users to bind any language
services to the workflow when executing the workflow.

The remainder of this paper is organized as follows: in section 2 we will briefly discuss features of
the two approaches to combine language services. And then, our framework called Service Grid and our
proposed language service ontology will be presented in section 3 and 4. Moreover, we show how to
bridge our language services with ones in different frameworks in section 5. Finally, section 6 concludes
this paper.

2 Related Works

There are two types of frameworks supporting developers to combine language resources: pipeline pro-
cessing approach such as GATE(Cunningham et al., 2002) and UIMA(Ferrucci and Lally, 2004) (U-
compare(Kano et al., 2009) and DKPro(Eckart de Castilho and Gurevych, 2014)), and service composi-
tion approach such as PANACEA(Toral et al., 2011), LAPPS Grid(Ide et al., 2014), and the Language
Grid (Ishida, 2011). The former focuses on processing a huge amount of data at local with pipeline
technique. On the other hand, the latter aims to share language resources distributed on the Internet as a
web service and combine them in a workflow manner. As shown in Table 1, we summarized features of
these frameworks from view point of interfaces, data format, and type system.

2.1 Pipeline Processing Approach
This approach employs a common interfaces and common data format exchanged between language
resources. The resources are combined into a pipeline to analyze documents. Each resource called
a processing resource or analysis engine annotates a document flowed in the pipeline in the stand-off
annotation manner. The document together with annotations is formed in a common data format, such
as GATE format and CAS (Common Analysis Structure). The annotations comply with pre-defined
annotation type system. GATE provides annotation schemas to define annotation type for each case,
while U-Compare and DKPro contain pre-defined annotation types based on UIMA type system.

2.2 Service Composition Approach
This approach wraps language resources as web services, called language services, and standardizes
the language service interfaces. LAPPS Grid provides a single common method same as the pipeline
processing approach, while PANACEA and Language Grid define the interfaces according to language
service types because the workflow can freely assign outputs of a service to inputs of another one. The
unique feature of this approach is to combine language services distributed in the Internet. This fea-
ture requires interoperability of language services on different frameworks. To satisfy this requirement,
LAPPS Grid and PANACEA present several format converters between different format and their own
formats like LIF (LAPPS Interchange Format)(Verhagen et al., 2016) and Travelling Object. More-
over, LAPPS Grid defines LAPPS Web Service Exchange Vocabulary(Ide et al., 2016), an ontology of
terms for a core of linguistic objects and features exchanged among language services that consume and
produce linguistically annotated data. It is used for service description and input/output interchange to
support service discovery and composition. On the other hand, Language Grid enforces service providers
to wrap their resources with the standardized interfaces that expose every annotation data type, in order

62

Table 1: Comparison among Frameworks
GATE U-Compare DKPro LAPPS Grid PANACEA Language Grid

Standardized Interface ✓ ✓ ✓ ✓ ✓ ✓
(common) (common) (common) (common) (each type) (each type)

Common Format ✓ ✓ ✓ ✓ ✓
(GATE format) (CAS) (CAS) (LIF) (Traveling Object)

Format Converter ✓ ✓

Type System (Vocabularies) ✓ ✓ ✓ ✓ ✓

to remove the needs of a common format and converters. To bridge other service-based frameworks
and Language Grid, we have developed adapters that adapt Heart of Gold and UIMA component to our
standardized interfaces(Bramantoro et al., 2008; Trang et al., 2014).

The existing frameworks except for the Language Grid combine instances of language services in
a pipeline and workflow. The pipeline and workflow that tightly couple language services need to be
modified when changing a language service according to user’s request. This becomes a barrier for
end users to create their customized services by themselves. Therefore, we have introduced an abstract
workflow that is composed of interfaces of components and their dependencies. The abstract workflow
separates binding language services from designing it so that users can reuse the workflow to instantiate
it with combination of language services they want. In this composition method that delays service
binding, it is significant to verify which language services are compatible with the designed workflows.
Therefore, we describe two ontologies that defines language service type and organizes a hierarchy of
language services in section 3 and 4.

3 Service Grid

Interoperability of language services requires standardization of service interfaces and metadata accord-
ing to their functionalities. To this end, our service grid provides a service grid ontology for operators
to organize services in their domain into several service classes (Murakami et al., 2012). As illustrated
in Figure 1, the service grid ontology is not just an ontology of data exchanged between services, but
an ontology to define service metadata and resource metadata. ServiceGrid class has more than one
Resource class and Service class that is provided from the corresponding Resource class. Resource and
Service class have more than one attribute to describe features of their instances. Also, Service class has
one service interface to allow users to access the service instances via several protocols. A service grid
operator can define his domain service grid ontology by inheriting ServiceGrid, Resource, and Service
class.

Based on the service grid ontology, we constructed Language Grid Ontology shown in Figure 2. This

ServiceGrid	

Resource	 Service	

Interface	Thing	Thing	

hasInterface	hasServiceA6ribute	

hasService	hasResource	

hasResourceA6ribute	

providedFrom	 minCardinality=1	minCardinality=1	

cardinality=1	

minCardinality=0	
maxCardinality=1	

minCardinality=1	minCardinality=1	

Protocol	

hasProtocol	
minCardinality=1	

Figure 1: Service Grid Ontology

63

LanguageGrid	

Language	
Resource	

Language	
Service	

TextToSpeech	
Engine	

hasService	hasResource	

providedFrom	
minCardinality=1	minCardinality=1	

minCardinality=0	
maxCardinality=1	

ServiceGrid	

subClassOf	

TextToSpeech	

TranslaCon	

subClassOf	

…	

…	

AudioType	 VoiceType	

LanguagePair	

hasSupported	
AudioTypes	
minCardinality=1	

hasSupported	
VoiceTypes	
mingCardinality=1	

hasSupported	
LanguagePairs	
minCardinality=1	

Translator	

subClassOf	

providedFrom	

providedFrom	…	

…	

Resource	 Service	

hasService	hasResource	
minCardinality=1	minCardinality=1	

subClassOf	

Figure 2: Inheriting Service Grid Ontology

ontology defines LanguageGrid, LanguageResource, and LanguageService classes as subclasses of Ser-
viceGrid, Resource, and Service classes. Moreover, the LanguageResource and LanguageService classes
derive 14 types of language resource classes and 17 types of language service classes such as text to
speech engines, translator, and so on. Table 2 shows the language service classes. These service classes
are characterized with hasServiceAttribute property, indicating which objects a given service can pro-
cess and which methods the service can employ. The former is hasSupportedLanguages, hasSupported-
LanguagePairs, hasSupportedLanguagePaths, hasSupportedImageTypes, hasSupportedAudioTypes, and
hasSupportedVoiceTypes. They are used to specify languages, images, and audio files to be processed
by services. The latter is hasSupportedMatchingMethod. This is used to specify search functionalities
implemented on language data such as bilingual dictionaries, concept dictionaries, and so on.

Moreover, we defined a service interface for each service class. To standardize the interface, we ex-
tracted common parameters of language resources belonging to the same resource type. In case of mor-
phological analyzers, we have several morphological analysis services according to supported languages:
TreeTagger, MeCab, Juman, KLT, ICTCLAS. A source text and source language for input parameters
are common among all the existing morphological analyzers. On the other hand, we have many formats
of morphemes for output parameters. Every analyzer returns word, lemma, and part of speech tag except
for ICTCLAS. Therefore, we defined the output of morphological analysis service as an array of triples
consisting of word, lemma, and POS tag. Furthermore, we enumerated POS tags available in the output
of the analysis service. Since POS tags vary depending on languages, we selected a minimal set of POS
tags occurring in every language: noun, proper noun, pronoun, verb, adjective, adverb, unknown, and
other. Most morphological analyzers can be wrapped with this standard interface. A few morphological
analyzers not complying with this interface, such as ICTCLAS, return ”NULL” as unassigned param-
eters. This interface is designed for interoperability instead of completeness. As a result, information
generated by the original morphological analyzers can be lost.

Due to limitations of space, Table 2 shows only the operation name of Interface class except for input
and output parameters. Refer to http://langrid.org/service_manager/service-type
for the WSDL files and more information. The attributes and interfaces help service users to compose
services by searching services with the metadata and changing the services belonging to the same service
type.

64

Table 2: Language Service Classes
Service class hasServiceAttribute property Thing class Interface class

BackTranslation hasSupportedLanguagePaths LanguagePath backtranslate
BilingualDictionary hasSupportedLanguagePairs, LanguagePair, search

hasSupportedMatchingMethods MatchingMethod
BilingualDictionaryWith hasSupportedLanguagePairs, LanguagePair, search
LongestMatchSearch hasSupportedMatchingMethods MatchingMethod searchWithLongestMatch
ConceptDictionary hasSupportedLanguages, Language, searchConcepts,

hasSupportedMatchingMethods MatchingMethod getRelatedConcepts
DependencyParse hasSupportedLanguages Language parseDependency
DialogCorpus hasSupportedLanguages, Language, search

hasSupportedMatchingMethods MatchingMethod
LanguageIdentification hasSupportedEncodings, Encoding, identify

hasSupportedLanguages Language
MorphologicalAnalysis hasSupportedLanguages Language analyze
MultihopTranslation hasSupportedLanguagePaths LanguagePath translate

multihopTranslate
NamedEntityTagging hasSupportedLanguages Language tag
ParallelText hasSupportedLanguagePairs, LanguagePair, search

hasSupportedMatchingMethods MatchingMethod
Paraphrase hasSupportedLanguages Language paraphrase
PictogramDictionary hasSupportedLanguages, Language, search

hasSupportedMatchingMethods, MatchingMethod,
hasSupportedImageTypes ImageType

SimilarityCalculation hasSupportedLanguages Language calculate
SpeechRecognition hasSupportedLanguages, Language, recognize

hasSupportedAudioTypes, AudioType,
hasSupportedVoiceTypes VoiceType

TextToSpeech hasSupportedLanguages, Language, speak
hasSupportedAudioTypes, AudioType,
hasSupportedVoiceTypes VoiceType

Translation hasSupportedLanguagePairs LanguagePair translate
TranslationWith hasSupportedLanguagePairs LanguagePair translate
TemporalDictionary translateWithDict

4 Language Service Ontology

Service Grid ontology allows operators to add a new service type according to users’ requests. As
the number of service types increases, the reusability of workflows decreases because the service grid
may have many close but not the same interfaces for the common functionalities. For example, when
many service users need more detailed information of morphological analysis services, a new one may
be added. To increase the reusability of workflows, it is significant to verify which language services
are compatible with the existing workflows. In this section, we firstly describe semantic matching that
guarantees substitutability of language services in an abstract workflow. Based on the semantic matching,
we then construct a hierarchy of language services, and explain how to bind language services to the
workflow.

4.1 Semantic Matching

Semantic matching was introduced to discover a service whose capability satisfies user’s re-
quest(Paolucci et al., 2002). Since the goal of the previous research is to fulfill users’ request as much
as possible but not partially, the semantic matching prefers services that output a superclass of users’
required class. However, our goal is to find services whose capabilities are compatible with the existing
workflow. If a service that outputs a superclass of user’s required class is selected, the subsequent service
in a workflow may fail to run because the service has possibilities to receive an input different from its
expected input, such as a sibling class. This semantic matching causes a type-unsafety issue. Therefore,
we modify the semantic matching rules by considering type-safety in binding services to a workflow.

Firstly, we define notations relevant to an input-output of a service, and then modify the semantic
matching rules.

Definition 4.1 (Input-output of a service) A service s is defined as a tuple s = {Inputs, Outputs} ∈
S where Inputs is a set of inputs required to invoke s, Outputs is the set of outputs returned by s after
its execution, and S is the set of all services registered in a service grid. Each input and output is also a

65

Language	
Service	

Data	Service	 Analysis	
Service	

Transforma7on	
Service	

Transla7on	

Paraphrase	
Service	

Bilingual	
Dic7onary	

Pictogram	
Dic7onary	

Concept	
Dic7onary	

ParallelText	

DialogCorpus	

Dic7onary	
Service	

Corpus	
Service	

Parse	
Service	

Calcula7on	
Service	

Extrac7on	
Service	

Dependency	
Parse	

Back	
Transla7on	

Similarity	
Calcula7on	

Named	
En7ty	
Tagging	

Transla7on	
WithDictionary	

Bilingual	
Dic7onaryWith	
LongestMatch	

Search	

Morphological	
Analysis	

Class	

Abstract		
Class	

Iden7fica7on	
Service	

Language	
Iden7fica7on	

Mul7hop	
Transla7on	

Speech	
Service	

Speech	
Recogni7on	

TextTo	
Speech	

Figure 3: Language Service Ontology

class.

Exact An input is ∈ Inputs and an output os ∈ Outputs of a service s in a set of services S matches
an input iw ∈ Inputw and output ow ∈ Outputw of a service w in a workflow with a degree of
exact match if both of input and output classes are equivalent (is ≡ iw, os ≡ ow).

Plug-in An input is ∈ Inputs and an output os ∈ Outputs of a service s in a set of services S matches
an input iw ∈ Inputw and an outputow ∈ Outputw of a service w in a workflow with a degree of
plugin if is is a superclass of iw (is ⊒ iw) and os is a subclass of ow (os ⊑ ow).

Subsume An input is ∈ Inputs and an output os ∈ Outputs of a service s in a set of services S
matches an input iw ∈ Inputw and an output ow ∈ Outputw of a service w in a workflow with a
degree of subsume if either is is a subclass of iw (is ⊏ iw) or os is a superclass of ow (os ⊐ ow).

Fail When none of the previous matches are found, then both concepts are incompatible and the match
has a degree of fail.

Note that, in order to discover type safe services to satisfy data flow in a workflow execution, the only
two valid degrees of match are exact and plug-in. Based on the exact match, the Language Grid has
introduced inheritance of service interfaces, which guarantees that an inherited interface provides the
same methods as the superclass of a service. We construct a hierarchy of language services using the
inheritance of service interfaces in 4.2

4.2 Hierarchy of Language Services
When many service users need more additional detailed information, a new service class can be derived
by inheriting the service interface of the superclass, but not created from scratch. The inherited service
interface can add other interfaces while maintaining the consistency with the existing one. This inheri-
tance of service interfaces constructs a hierarchy of homogeneous services. This is similar to a OWL-S
profile hierarchy(Martin et al., 2007) and WSMO capability(Wang et al., 2012). However, they are used
to discover alternative services from property aspect but not interfaces like existing taxonomies of service
categories.

66

Language Service Ontology	

rdfs:subClassOf	

Forward	
Transla,on	

Backward	
Transla,on	

translate(sLang, tLang, source)	

translate(sLang, tLang, source)	

Abstract Workflow	

Bindable	

Back Translation 
backtranslate(sLang, iLang, source)	

 MultihopTranslation	
-translate(sLang, tLang, source)
-multihopTranslate(sLang, tLang,
iLang[], source)	

Translation 
-translate(sLang, tLang, source)	

 TranslationWithDictionary 
-translate(sLang, tLang, source)
-translateWithDict(sLang, tLang, source, dict)	

Transformation	
Service	

Figure 4: Service Binding with Language Service Ontology

Figure 3 illustrates our hierarchy of language services based on interface inheritance, called Language
Service Ontology. This ontology consists of abstract classes that have no interface and instance of ser-
vices and classes that have interfaces and instances. Firstly, LanguageService class is classified into
four abstract classes: SpeechService class that processes speech data, DataService class that deals with
linguistic data resources like lexical and corpus data, TransformationService class that transforms in-
put texts, and AnalysisService class that analyzes input data like parsing, calculating, extracting, and
identifying. By inheriting the abstract classes, we define 18 language service classes listed in Table 2.

Moreover, MultihopTranslation and TranslationWithDictionary class, and BilingualDictionaryWith-
LongestMatchSearch class are derived from Translation class and BilingualDictionary class, respectively.
Hence, they have the same interface as their superclass. For example, as shown in the left side of Fig-
ure 4, Translation class provides a translate method whose input parameters are source language, target
language, and source text (denoted by sLang, tLang, source, respectively). By extending this interface,
TranslationWithDictionary and MultihopTranslation class are defined as a subclass of Translation class.
The former introduces simple dictionary data into its input parameters in order to replace words in the
translated text with translated words in the dictionary. This aims at improving translation quality by
restricting context within the dictionary. Without the dictionary, this service returns a translated text like
Translation class. On the other hand, the latter introduces an array of intermediate languages to cascade
several translation services. Without intermediate languages, this service behaves like Translation class
by using default languages as intermediate languages.

Based on this ontology, we can bind any subclasses to an abstract workflow including the superclass’s
interface. The right side of Figure 4 shows the case of backtranslation. This workflow connects two
translation interfaces to translate the translated text into the source language again. Therefore, we can
select JServer, an instance of Translation class, and DictTrans, an instance of TranslationWithDictionary,
as a forward translation and backward translation, respectively. To dynamically bind these services in
invoking the backtranslation service, we have introduced a hierarchical service composition description
using higher-order functions as below(Nakaguchi et al., 2016). This syntax allows users to nest binding
in order to invoke a workflow from another one.

syntax :== service "." method "(" (arg ("," arg)*)? ")"
service :== serviceId | serviceBinding
method :== symbol
serviceId :== symbol
serviceBinding :== "bind(" serviceId bindingInfo+ ")"
bindingInfo :== "," invocationId ":" service
invocationId :== symbol
arg :== "’" symbol "’"
symbol :== LETTER+

67

Using this language, we can describe the above service binding as below. After executing this lan-
guage, this description is translated into a SOAP request embedding the binding information into the
header.

bind(BackTranslation,
ForwardTranslation:JServer,
BackwardTranslation:bind(DictTrans,
MorphologicalAnalysis:TreeTagger,
BilingualDictionary:AgriDict,
Translation:GoogleTranslate

).backtranslate(’en’,’ja’,’Land preparation needs puddling and levee painting.’)

5 Discussion

Our language service ontology focuses on interoperability among homogeneous language services.
Meanwhile, it is also significant to enhance interoperability among heterogenous language services. We
have two approaches.

One is to construct central ontology as a hub, which was proposed by (Hayashi et al., 2008). The
ontology consists of a top-level ontology and sub-ontologies. The top-level ontology defines the relations
among language service class, language processing resource class, language data resource class, and
linguistic object class. A language service is provided by an instance of the language processing resource
class, whose input and output are instances of linguistic object class. A language data resource consists
of instances of the linguistic object class. On the other hand, each sub-ontology organizes classes for
language processing resources, language data resources, and linguistic annotations of linguistic objects,
respectively.

The other is to connect type systems in different frameworks each other. By mapping LAPPS exchange
vocabulary type hierarchy and type system in DKPro and U-Compare with input and output classes of
language service interfaces in our ontology, it would be possible to discover type safe services with plug-
in match as well as exact match. Logically, covariant return type of services, which return a subclass
of the output class, and contravariant argument type of services, which receive a superclass of the input
class can be bindable to an abstract workflow.

6 Conclusions

We have introduced an abstract workflow to separate designing a logic flow and selecting language
services. By this abstract workflow, we aim at realizing collaboration between web service professionals
who develop a workflow and end users who select their needed language services. To this end, we
have constructed language service ontology by inheriting service interfaces to verify composability of
language services. Moreover, we have applied higher-order function to develop hierarchical language
service binding. By using the ontology and binding technology, end users can instantiate an abstract
workflow with type-safe language services.

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (S) (24220002) of Japan Society for
the Promotion of Science (JSPS).

References
Arif Bramantoro, Masahiro Tanaka, Yohei Murakami, Ulrich Schäfer, and Toru Ishida. 2008. A Hybrid Integrated

Architecture for Language Service Composition. In Proc. of the Sixth International Conference on Web Services
(ICWS’08), pages 345–352.

Khalid Choukri. 2004. European Language Resources Association History and Recent Developments. In SCALLA
Working Conference KC 14/20.

68

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. 2002. GATE: An Architecture
for Development of Robust HLT Applications. In Proc. of the Fortieth Annual Meeting on Association for
Computational Linguistics (ACL’02), pages 168–175.

Richard Eckart de Castilho and Iryna Gurevych. 2014. A Broad-Coverage Collection of Portable NLP Compo-
nents for Building Shareable Analysis Pipelines. In Proceedings of the Workshop on Open Infrastructures and
Analysis Frameworks for HLT, pages 1–11.

David Ferrucci and Adam Lally. 2004. UIMA: An Architectural Approach to Unstructured Information Processing
in the Corporate Research Environment. Journal of Natural Language Engineering, 10:327–348.

Yoshihiko Hayashi, Thierry Declerck, Paul Buitelaar, and Monica Monachini. 2008. Ontologies for a Global
Language Infrastructure. In Proc. of the First International Conference on Global Interoperability for Language
Resources (ICGL’08), pages 105–112.

Nancy Ide, James Pustejovsky, Christopher Cieri, Eric Nyberg, Di Wang, Keith Suderman, Marc Verhagen, and
Jonathan Wright. 2014. The Language Application Grid. In Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14), pages 22–30.

Nancy Ide, Keith Suderman, Marc Verhagen, and James Pustejovsky. 2016. The Language Application Grid
Web Service Exchange Vocabulary. In Worldwide Language Service Infrastructure, pages 18–32. Springer
International Publishing.

Toru Ishida, editor. 2011. The Language Grid: Service-Oriented Collective Intelligence for Language Resource
Interoperability. Springer-Verlag.

Yoshinobu Kano, William Baumgartner, Luke McCrohon, Sophia Ananiadou, Kevin Cohen, Larry Hunter, and
Jun’ichi Tsujii. 2009. U-Compare: Share and Compare Text Mining Tools with UIMA. Bioinformatics,
25(15):1997–1998.

David Martin, Mark Burstein, Drew McDermott, Sheila McIlraith, Massimo Paolucci, Katia Sycara, Deborah L.
McGuinness, Evren Sirin, and Naveen Srinivasan. 2007. Bringing Semantics to Web Services with OWL-S.
World Wide Web, 10(3):243–277.

Yohei Murakami, Masahiro Tanaka, Donghui Lin, and Toru Ishida. 2012. Service Grid Federation Architecture
for Heterogeneous Domains. In Proc. of the IEEE International Conference on Services Computing (SCC-12),
pages 539–546.

Takao Nakaguchi, Yohei Murakami, Donghui Lin, and Toru Ishida. 2016. Higher-Order Functrions for Modeling
Hierarchical Service Bindings. In Proc. of the Twelfth International Conference on Web Services (ICWS’08),
pages 798–803.

Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. 2002. Semantic Matching of Web
Services Capabilities. In Proc. of the First International Semantic Web Conference (ISWC’02), pages 333–347.

Antonio Toral, Pavel Pecina, Andy Way, and Marc Poch. 2011. Towards a User-Friendly Webservice Architecture
for Statistical Machine Translation in the PANACEA Project. In Proc. of the 15th Conference of the European
Association for Machine Translation (EAMT’11), pages 63–70.

Mai Xuan Trang, Yohei Murakami, Donghui Lin, and Toru Ishida. 2014. Integration of Workflow and Pipeline
for Language Service Composition. In Proc. of the 9th International Conference on Language Resources and
Evaluation Conference (LREC’14), pages 3829–3836.

Marc Verhagen, Keith Suderman, Di Wang, Nancy Ide, Chunqi Shi, Jonathan Wright, and James Pustejovsky.
2016. The LAPPS Interchange Format. In Worldwide Language Service Infrastructure, pages 33–47. Springer
International Publishing.

Hai H. Wang, Nick Gibbins, Terry R. Payne, and Domenico Redavid. 2012. A Formal Model of the Semantic
Web Service Ontology (WSMO). Information Systems, 37(1):33–60.

69

Proceedings of WLSI/OIAF4HLT,
pages 70–75, Osaka, Japan, December 12 2016.

Between Platform and APIs: Kachako API for Developers

Yoshinobu Kano
Faculty of Informatics, Shizuoka University, Japan

kano@inf.shizuoka.ac.jp

Abstract

Different types of users require different functions in NLP software. It is difficult for a single
platform to cover all types of users. When a framework aims to provide more interoperability,
users are required to learn more concepts; users’ application designs are restricted to be compli-
ant with the framework. While an interoperability framework is useful in certain cases, some
types of users will not select the framework due to the learning cost and design restrictions. We
suggest a rather simple framework for the interoperability aiming at developers. Reusing an
existing NLP platform Kachako, we created an API oriented NLP system. This system loosely
couples rich high-end functions, including annotation visualizations, statistical evaluations, an-
notation searching, etc. This API do not require users much learning cost, providing customiza-
tion ability for power users while also allowing easy users to employ many GUI functions. 1

1 Introduction

A platform type of NLP software tends to provide rich GUI functions for easy users to help avoiding
burdensome tasks that are not essential for their purposes. However, power users require customization
ability in an API oriented way. There has been many efforts to create interoperable NLP systems, in-
cluding GATE (Cunningham et al., 2002), Taverna (Hull et al., 2006), Galaxy (Blankenberg et al., 2010),
Langrid (Ishida, 2006), Heart of Gold (Schäfer, 2006), PANACEA (Bel, 2010), etc.

UIMA (Unstructured Information Management Architecture) is an interoperability framework origi-
nally developed by IBM (Ferrucci et al., 2006), currently an open source project in Apache UIMA2.
Most of UIMA related works are UIMA component implementations, including OpenNLP, JulieLab
(Hahn et al., 2008), CCP BioNLP (Baumgartner Jr. et al., 2008), U-Compare (Kano et al., 2009),
UIMA-fr (Hernandez et al., 2010), DKPro (Müller et al., 2008), cTAKES (Savova et al., 2010), etc.

Among the UIMA based systems, Kachako (Kano, 2012b) provides many generic features useful for
developers to analyze and improve their applications. Unfortunately, these features are parts of a large
integrated system which are not easy for the developers to partially reuse. Furthermore, certain number
of developers avoid learning UIMA due to UIMA’s rich but complex higher interoperability concepts.

We suggest a simplified interface that just requires the so-called stand-off annotation style data struc-
ture. In order for developers to more easily reuse Kachako’s features, we built an API oriented NLP
system based on Kachako, changing to the simplified interface discarding its UIMA compliancy.

We describe points of the UIMA framework (Section 2), the features of the Kachako platform (Sec-
tion 3), and our suggested simple framework with actual API oriented system (Section 4), finally con-
cluding this paper (Section 5).

2 UIMA

We introduce the basic architecture of UIMA briefly in this section. We refer to the Java implementation
of Apache UIMA as UIMA here.

A tool is represented as a component in UIMA. A component is a processing unit of UIMA. In UIMA,
components are combined in a workflow. Processing order of components can be programmable, while
most workflows are simple pipelines. UIMA’s data structure, CAS (Common Analysis Structure), is in
the so-called stand-off format, which consists of a raw (text) data part and an annotation part. The Java
version of CAS is called JCas. An annotation should be typed by a type system, a user defined type

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/
2 http://uima.apache.org/

70

hierarchy. A component receives a CAS, may update the CAS and returns the CAS. A component may
have its input and output types specified. These types are defined in a UIMA’s type system descriptor
XML file by the user. Each type is also defined in a corresponding Java class. Basically, CAS should
include everything in UIMA. A CAS has one or more sofa (Subject OF Analysis, or sometimes called
view) to hold multi-modal information such as text and audio, original and translated text, etc.

As a whole, in order to use UIMA for combining various NLP tools, researchers should create work-
flows for combining tools and define types for connecting the input and output of these tools. When
running a UIMA workflow, users normally use UIMA’s workflow API where CAS creation and disposal
are controlled by the UIMA framework side, not by Java VM. A CAS is passed from component to
component, then disposed from the Java heap memory after returned by a final component of a workflow.
Therefore, developers need to pay attention not to hold any reference to content of a CAS after the CAS
finished a workflow, else memory leak occurs even this is a Java API. Its reason is explained as an
efficient memory usage by the Apache UIMA documentation. This makes a pitfall to developers.

3 Kachako Platform

The Kachako platform aims to provide automation features on top of the UIMA framework (Kano,
2012a)(Kano, 2012b). If the users can complete their tasks by GUI operations, most UIMA things are
obscured in Kachako. However, users are required knowledge of some UIMA concepts.

Roughly speaking, Kachako has four features: automatic workflow creation, automatic workflow ex-
ecution, Annotation Viewer GUI for result analysis with statistical table for comparison and evaluation,
Annotation Searcher to index and search the results. We explain each feature below.

As Kachako aims to provide automation features, installation, update and execution of the platform
itself is automatic in a web-based way. Kachako has its tens of own UIMA components that are also
ready-to-use by automatic installation feature. Users can also register their own UIMA components to
create a UIMA workflow using these UIMA components. Users can create a UIMA workflow automat-
ically or manually by selecting UIMA components. Figure 1 shows the Kachako’s workflow creation
GUI. Each round-bordered box corresponds to a UIMA component, which input ports are shown in the
right, output ports are shown in the right. These I/O ports are specific to Kachako, which ensures con-
nections between components. The automatic workflow creation feature uses these I/O information to
calculate (partial) workflow candidates when a start component and an end component are specified by
users. These ports may belong to different sofas, shown as thick coloured labels in Figure 1. Each com-
ponent may have configuration parameters, whose setting panel is available in this GUI.

Figure 1. A screenshot of workflow creation GUI. This complex example shows a workflow of the
History examination solver for the Todai Robot project (Kano, 2014).

71

Once a workflow is created, installation and execution of the workflow and its components are avail-
able automatically. As this is a UIMA workflow, workflow results are stored as CASes. Figure 2 shows
a screenshot of the Annotation Viewer GUI that fully visualizes contents of a CAS. The leftmost panel
shows the visualization result where each annotation is displayed as an underline with the raw text part.
Users can filter which annotation types to show in the middle panel. The rightmost panel shows all of
field values of annotations in a sortable way. Users can select a specific annotation to jump and highlight.

Figure 2. A screenshot of Annotation Viewer GUI.

Kachako has a comparison and evaluation feature where users can plug their own evaluation metrics
as UIMA components. Figure 3 shows an example of a comparison workflow. Purple boxes in the right
are evaluation components that receives a pair of input ports of same type, performs comparisons.

Figure 3. A screenshot of a comparison/evaluation workflow.

Figure 4. A screenshot of the Annotation Viewer for a comparison/evaluation workflow.

72

Figure 4 shows a result window of such an evaluation workflow. The upper-left panel shows statistics
for each CAS, e.g. numbers of annotations. The upper-right panel shows statistics of evaluation metrics,
e.g. precision, recall, and F-score while these metrics could be customized as shown in the figure. Com-
parison/evaluation components should be implemented by developers as there could be variety of dif-
ferent metrics depending on the individual developers’ purposes. The lower-left panel is the Annotation
Viewer, while sofa selector is shown in the left as this is a multi-sofa case. The Annotation Viewer
shows rather a complex example, where many inter-annotation links are shown as arcs. The lower-right
panel shows the feature values of annotations. Users can also highlight which specific annotation was
matched with respect to a given metric.

Annotation Searcher is an optional function in Kachako to enable indexing and searching of CAS
contents. As the example screenshots illustrate, annotations could be very complex, whose number can
be huge. It is not realistic to manually check interested patterns of annotations. However, existing search
engines assume to index textual information and simple values in their default. Annotation Searcher
provides a special function to search by region algebra (Clarke et al., 1995)(Jaakkola et al.,
1999)(Masuda et al., 2009) which can cover most of required complex queries, including AND/OR
operators, inter-annotation relationships of overlap, follow, include, etc., and inter-annotation links
while mixing with the normal textual search conditions. The Annotation Searcher is built on top of
Apache Solr/Lucece3 search engine, adding this region algebra feature in an efficient way, allowing
automatic parallel indexing/searching. The Annotation Searcher can be called by just checking an option,
receiving any CAS content to index its text and annotations. Search result can be shown in the Annota-
tion Viewer to highlight corresponding annotations.

4 Simplified Interoperability and Kachako API

We suggest a simplified interface for interoperability in order for the developers to more easily employ
the functions of Kachako platform. We built an API version of Kachako based on this interface.

Firstly, we discard functions related to the workflow construction. Discarded functions include the
automatic workflow creation and its GUI.

Secondly, we designed a pseudo JCas interface which is similar to the original UIMA JCas but just a
normal Java class. This pseudo JCas has a text part and an annotations part as same as the original JCas.
The annotations part assumes to hold instances of a pseudo TOP type or descendants we define. That is,
the original type system is defined as a Java class hierarchy. Developers are simply required to produce
this pseudo JCas to use the Kachako API functions.

By these designs, we could reuse the Kachako platform functions without much changes. Most of the
functions are now available as API by these changes. For example, if developers generate any pseudo
JCas, they can simply call the Annotation Searcher API to index and search the content of the pseudo
JCas. The Annotation Viewer GUI is available just reading the pseudo JCas. The comparison and eval-
uation features of the Annotation Viewer GUI is also available by storing groups of annotations.

Modifying existing components into this simplified API is straightforward, because we used similar
names for corresponding classes and methods. We discarded the original JCas’s index feature, because
the pseudo JCas could be extended to store any field, while the annotations part could be used as the
original indexed annotations. We have already modified a couple of Kachako UIMA components into
this new interface style, which simply required to change several lines of codes per component.

5 Conclusion and Future Work

Interoperability framework is useful but we need different level of interfaces depending on the types of
users. UIMA provides a good framework for NLP users but it also restricts users’ design due to its
workflow management system. Kachako, a UIMA based NLP platform, also suffers the same problem
just because it is compliant with UIMA. We build a new API oriented system reusing the Kachako
platform, where the interoperability interface is simplified to be only stand-off annotations. This new
system allows developers to use its functions without learning costs. Future work includes a new feature
to employ machine learning features.

3 https://lucene.apache.org/

73

Acknowledgement

This work was partially supported by MEXT Kakenhi.

Reference
Baumgartner Jr., W. A., Cohen, K. B. and Hunter, L. (2008). An open-source framework for large-scale,

flexible evaluation of biomedical text mining systems. J Biomed Discov Collab, 3(1), 1. Journal Article, .
doi:1747-5333-3-1 [pii]10.1186/1747-5333-3-1

Bel, N. (2010). Platform for automatic, normalized annotation and cost-effective acquisition of language
resources for human language technologies. panacea. Procesamiento del Lenguaje Natural, 45, 327–328.
article, .

Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A. and Taylor,
J. (2010). Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol, Chapter
19, Unit 19 10 1-21. Journal Article, . doi:10.1002/0471142727.mb1910s89

Clarke, C. L. A., Cormack, G. V. and Burkowski, F. J. (1995). An Algebra for Structured Text Search and a
Framework for its Implementation. The Computer Journal, 38(1), 43–56. doi:10.1093/comjnl/38.1.43

Cunningham, H., Maynard, D., Bontcheva, K. and Tablan, V. (2002). GATE: A framework and graphical
development environment for robust NLP tools and applications. 40th Anniversary Meeting of the
Association for Computational Linguistics (pp. 168–175). Conference Proceedings, Philadelphia, USA.

Ferrucci, D., Lally, A., Gruhl, D., Epstein, E., Schor, M., Murdock, J. W., Frenkiel, A., Brown, E. W., Hampp,
T., et al. (2006). Towards an Interoperability Standard for Text and Multi-Modal Analytics. Report, IBM
Research Report.

Hahn, U., Buyko, E., Landefeld, R., Mühlhausen, M., Poprat, M., Tomanek, K. and Wermter, J. (2008). An
Overview of JCoRe, the JULIE Lab UIMA Component Repository. LREC’08 Workshop, Towards
Enhanced Interoperability for Large HLT Systems: UIMA for NLP (pp. 1–8). Conference Proceedings,
Marrakech, Morocco.

Hernandez, N., Poulard, F., Vernier, M. and Rocheteau, J. (2010). Building a French-speaking community
around UIMA, gathering research, education and industrial partners, mainly in Natural Language
Processing and Speech Recognizing domains. LREC 2010 Workshop of New Challenges for NLP
Frameworks. Conference Proceedings, Valletta, Malta.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M. R., Li, P. and Oinn, T. (2006). Taverna: a tool for
building and running workflows of services. Nucleic Acids Res, 34(Web Server issue), W729-32. Journal
Article, . doi:34/suppl_2/W729 [pii]10.1093/nar/gkl320

Ishida, T. (2006). Language Grid: An Infrastructure for Intercultural Collaboration. Proceedings of the
International Symposium on Applications on Internet. Conference Paper, IEEE Computer Society.
doi:10.1109/saint.2006.40

Jaakkola, J. and Kilpeläinen, P. (1999). Nested Text-Region Algebra (techreport).

Kano, Y. (2012b). Kachako: a Hybrid-Cloud Unstructured Information Platform for Full Automation of Service
Composition, Scalable Deployment and Evaluation. the 1st International Workshop on Analytics Services
on the Cloud (ASC), the 10th International Conference on Services Oriented Computing (ICSOC 2012).
Shanghai, China.

Kano, Y. (2012a). Towards automation in using multi-modal language resources: compatibility and
interoperability for multi-modal features in Kachako. The Eighth edition of the International Conference
on Language Resources and Evaluation (LREC 2012). Istanbul, Turkey.

Kano, Y. (2014). Solving History Exam by Keyword Distribution: KJP System at NTCIR-11 QALab Task. the
11th NTCIR (NII Testbeds and Community for information access Research) workshop (pp. 530–531).

Kano, Y., Baumgartner, W. A., McCrohon, L., Ananiadou, S., Cohen, K. B., Hunter, L. and Tsujii, J. (2009). U-
Compare: share and compare text mining tools with UIMA. Bioinformatics, 25(15), 1997–1998. Journal
Article, . doi:10.1093/bioinformatics/btp289

74

Masuda, K. and Tsujii, J. (2009). Tag-Annotated Text Search Using Extended Region Algebra. IEICE
Transactions on Information and Systems, E92.D(12), 2369–2377. article, .
doi:10.1587/transinf.E92.D.2369

Müller, C., Zesch, T., Müller, M.-C., Bernhard, D., Ignatova, K., Gurevych, I. and Mühlhäuser, M. (2008).
Flexible UIMA Components for Information Retrieval Research. LREC 2008 Workshop “Towards
Enhanced Interoperability for Large HLT Systems: UIMA for NLP” (pp. 24–27). Conference Proceedings,
Marrakech, Morocco.

Savova, G. K., Masanz, J. J., Ogren, P. V, Zheng, J., Sohn, S., Kipper-Schuler, K. C. and Chute, C. G. (2010).
Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component
evaluation and applications. Journal of the American Medical Informatics Association : JAMIA, 17(5),
507–13. BMJ Publishing Group Ltd. doi:10.1136/jamia.2009.001560

Schäfer, U. (2006). Middleware for creating and combining multi-dimensional NLP markup. Proceedings of the
5th Workshop on NLP and XML: Multi-Dimensional Markup in Natural Language Processing,
NLPXML ’06 (pp. 81–84). inproceedings, Stroudsburg, PA, USA: Association for Computational
Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=1621034.1621050

75

Author Index

Abiderexiti, Kahaerjiang, 44
assawinjaipetch, panuwat, 36

Eckart de Castilho, Richard, 19
eli, marhaba, 44

Gao, Zhiqiang, 56
Gui, Yaocheng, 56

Ide, Nancy, 11
Ishida, Toru, 28, 61

Kano, Yoshinobu, 70

Lin, Donghui, 61
Liu, Yan, 44
Lu, Tingming, 56
Luong, Hieu-Thi, 51

Marukata, Sanparith, 36
Mohanty, Sharada, 1
Murakami, Yohei, 61
Mushajiang, Weinila, 44

Nakaguchi, Takao, 28, 61
Nyberg, Eric, 11

Otani, Masayuki, 28

Pustejovsky, James, 11

Sharma, Dipti, 1
Shirai, Kiyoaki, 36
Sornlertlamvanich, Virach, 36
Srivastava, Manish, 1
Suderman, Keith, 11

Takasaki, Toshiyuki, 28

Verhagen, Marc, 11
Vu, Hai-Quan, 51

Wani, Nehal J, 1

Yibulayin, Tuergen, 44

Zhu, Man, 56

77

	Program
	Kathaa : NLP Systems as Edge-Labeled Directed Acyclic MultiGraphs
	LAPPS/Galaxy: Current State and Next Steps
	Automatic Analysis of Flaws in Pre-Trained NLP Models
	Combining Human Inputters and Language Services to provide Multi-language support system for International Symposiums
	Recurrent Neural Network with Word Embedding for Complaint Classification
	Universal dependencies for Uyghur
	A non-expert Kaldi recipe for Vietnamese Speech Recognition System
	Evaluating Ensemble Based Pre-annotation on Named Entity Corpus Construction in English and Chinese
	An Ontology for Language Service Composability
	Between Platform and APIs: Kachako API for Developers

