
Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016),
pages 70–79, Osaka, Japan, December 12th 2016.

A Corpus of Tables in Full-Text Biomedical Research Publications

Tatyana Shmanina1,3, Ingrid Zukerman1, Ai Lee Cheam1, Thomas Bochynek2,3, Lawrence Cavedon4

1Clayton School of Information Technology, Monash University, Australia
2Caulfield School of Information Technology, Monash University, Australia

3Data61, CSIRO, Melbourne, Australia
4School of Science, RMIT University, Australia

1,2firstname.lastname@monash.edu, 4firstname.lastname@rmit.edu.au

Abstract

The development of text mining techniques for biomedical research literature has received in-
creased attention in recent times. However, most of these techniques focus on prose, while
much important biomedical data reside in tables. In this paper, we present a corpus created
to serve as a gold standard for the development and evaluation of techniques for the automatic
extraction of information from biomedical tables. We describe the guidelines used for corpus
annotation and the manner in which they were developed. The high inter-annotator agree-
ment achieved on the corpus, and the generic nature of our annotation approach, suggest that
the developed guidelines can serve as a general framework for table annotation in biomed-
ical and other scientific domains. The annotated corpus and the guidelines are available at
http://www.csse.monash.edu.au/research/umnl/data/index.shtml.

1 Introduction
Biomedical science generates vast quantities of data, which reside in publicly available databases and
repositories of structured biomedical information, such as the Catalogue of Somatic Mutations in
Cancer (Bamford et al., 2004) and the International Society for Gastrointestinal Hereditary Tumours
Database (Plazzer et al., 2013). In order to be useful to researchers, data sources must contain precise
and reliable information, and therefore are typically manually curated by biomedical professionals (Cam-
pos et al., 2013), which leads to a “curation bottleneck”. As a result, automatic information extraction
from biomedical literature has become an important task.

The development of approaches for automatic and semi-automatic information extraction requires
annotated corpora for training and evaluating text mining systems. To date, biomedical text mining
has focused on extracting information from prose, yielding a wealth of diverse annotated corpora for
unstructured text. For example, gold and silver standard corpora have been developed for a variety of
tasks, such as named entity recognition (Doğan et al., 2014; Kim et al., 2003; Rebholz-Schuhmann et
al., 2010; Verspoor et al., 2013), entity linking (Bada et al., 2012; Doğan et al., 2014), and relation and
event extraction (Kim et al., 2003; Lee et al., 2016; Rosario and Hearst, 2004; Verspoor et al., 2013).
The source of these datasets also varies, e.g., corpora comprising research abstracts (Doğan et al., 2014;
Kim et al., 2003; Rebholz-Schuhmann et al., 2010) versus full-text journal articles (Bada et al., 2012;
Lee et al., 2016; Verspoor et al., 2013).

In addition to prose, biomedical literature frequently presents information in other forms, such as tables
and graphs. Several studies have shown that tables often contain important data and experimental results
that are not mentioned in the main text of publications (Jimeno Yepes and Verspoor, 2013; Wong et al.,
2009). At the same time, Jimeno Yepes and Verspoor (2013) have shown that text mining techniques
developed for prose tend to under-perform when applied to tables, because of the difference in how
information is presented in tables and in text. For example, the arrangement of cells, which is meaningful
for understanding table contents, is not taken into account by classical prose mining techniques. This
calls for the development of specialised approaches to information extraction from tables (Table IE) in
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the biomedical literature. Advances in Table IE have been made in general and Web domains (Cafarella
et al., 2008; Hignette et al., 2009; Hurst, 2000; Jannach et al., 2009; Limaye et al., 2010; Mulwad et
al., 2013; Quercini and Reynaud, 2013; Van Assem et al., 2010; Venetis et al., 2011; Wang et al., 2012;
Yakout et al., 2012; Yin et al., 2011; Yosef et al., 2011). However, Table IE has received comparatively
little attention from the biomedical text mining community, which may be partly attributed to the limited
availability of suitable annotated corpora.

In this paper, we introduce a new corpus of tables obtained from full-text biomedical research papers
in two areas of genetics: human cancer and mouse — the tables in the human cancer papers cover topics
such as genetic aberrations and patient and tumour characteristics; and the tables in the mouse papers
include distributions of genotypes and phenotypes, and parameters and outcomes of genetic analyses.
This corpus was developed to support our work in Table IE, which focuses on relation extraction and
fine-grained named entity recognition. The tables in our corpus were supplemented with the following
annotations: (1) concepts in table cells; (2) classification of table cells into homogeneous cell groups;
(3) fine-grained cell types of each homogeneous cell group; and (4) relations between cell groups.

In Section 2, we motivate the design of the corpus, and describe the created corpus, the annotation
schema and the annotation guidelines. Section 3 details the corpus construction process. The character-
istics of the developed corpus are discussed in Section 4, followed by concluding remarks in Section 5.

2 Corpus Design
The design of our corpus and associated annotation schemas is closely aligned with the requirements of
our project on information extraction from tables in biomedical research papers. However, both the cor-
pus and the schemas are general enough to be of value to the broader biomedical text mining community.

The presented corpus is the gold standard for two information extraction tasks: (1) mapping of table
cells into fine-grained entity types, and (2) identification of relations between table cells. Both fine-
grained entity types and relations are drawn from a domain vocabulary. The design of the corpus was
strongly influenced by the characteristics of the biomedical tables we encountered, which have a variety
of structures, and tend to be more complex than the structures typically considered by researchers in
information extraction. For example, Limaye et al. (2010) and Mulwad et al. (2013), who worked on
a table information extraction task similar to ours, but for a Web domain, assumed that tables have
lattice-like structures, and that the objective of information extraction is to identify table column types
and relations between columns. However, even for simple lattice-like biomedical tables, we often found
that interesting relations could be built between columns and their headers, and between the headers
themselves. For instance, the relation associated with can be built between the header “Diet-induced
Obesity” and the data cells “S [8]”, “R [8]”, “S [41]”, “R [44]” and “S [18]” in the table in Figure 1b.

This motivated us to view each table as a collection of homogeneous groups of cells, rather than a
collection of columns. We assume that (1) all cells within each homogeneous group of cells share the
same fine-grained type, and (2) it is possible to define relations among cell groups that hold for each
corresponding pair of cells inside the groups. These assumptions motivated the creation of four types
of annotation: (1) cell group, which splits each table into sets of homogeneous cell groups; (2) cell

(a) Concept annotations. The annotated text spans are un-
derlined, concept annotations are pictured in boxes.

(b) Cell group, cell type and relation annotations. Cell
groups (CG1)–(CG4) are highlighted, cell types are pictured
in boxes, relations are represented as arrows.

Figure 1. Annotation example for a sample biomedical table from (Hoover-Plow et al., 2006)
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type, which represents the mapping of all cells in a homogeneous group into a single fine-grained named
entity label; (3) concept, which represents the mapping of utterances inside table cells (i.e., the syntactic
heads of the utterances expanded with their modifiers) into their semantic equivalents from a domain
vocabulary; and (4) relation, which represents relations between cell groups. Figure 1 illustrates a table
annotated with these types of information.

2.1 Annotation Schema
Cell Group Annotation. Each set of homogeneous cells in a table is assigned a unique identifier to
distinguish between different cell groups.
Concept, Cell Type and Relation Annotation. To generate fine-grained entity and relation labels, we
used the National Cancer Institute (NCI) subset (Sioutos et al., 2007) of the Unified Medical Language
System® (UMLS®) Metathesaurus (UMLS-NCI) and the UMLS Semantic Network (UMLS SN) as the
basis for our annotation schema (UMLS release 2015AA). To illustrate, using this annotation schema,
the text spans “Obesity” and “S” in Figure 1a are mapped to the UMLS-NCI concepts Obesity and
Predisposition respectively to create concept annotations. The single-cell group “Diet-induced Obesity”
is assigned the fine-grained cell type Obesity (Figure 1b) and the coarser cell type Disease or Syndrome
from the UMLS SN. Finally, the relation associated with from the UMLS SN is built between the cell
group “Diet-induced Obesity” and the cell group comprising the data cells “S [8]”, “R [8]”, “S [41]”, “R
[44]” and “S [18]” (Figure 1b). No relations from UMLS-NCI can be built between these cell groups.

We chose the UMLS because of the lexical and information extraction tools for unstructured text that
are distributed with the UMLS. We decided to use one subset of the UMLS Metathesaurus, because
(1) the reduced size of the annotation schema reduces the complexity of the annotation tasks; and (2) the
UMLS combines over 100 source vocabularies, and does not resolve conflicts among these vocabularies.

The UMLS-NCI subset was chosen because it is a large, comprehensive and heterogeneous controlled
vocabulary, which focuses on genetics. It comprises over 110,000 biomedical Concept Unique Identifiers
(CUIs) (e.g., C0028754 for Obesity and C0220898 for Predisposition), and more than one million rela-
tionships between concepts, drawn from 208 unique relation types (e.g., the generic hierarchical relations
parent-child, and many specialised relations, such as is grade of disease and gene mapped to disease),
thus providing a large set of fine-grained entity and relation labels. The concepts and relations from
UMLS-NCI were used as the primary set of labels for concept, cell-type and relation annotation. How-
ever, despite its extensive scope, the UMLS-NCI’s coverage of relations between the concepts in our
dataset was very sparse. Specifically, it yielded only 222 relations in total for the entire corpus. We
therefore expanded the set of relations in the UMLS-NCI schema with SRs from the UMLS SN.

The UMLS SN provides an alternative set of labels for cell types and relations that is smaller, and
hence of lower granularity, than the labels in UMLS-NCI. It consists of (1) a set of Semantic Types
(STs) that provide a broad subject categorisation of the concepts represented in the UMLS-NCI; and
(2) a set of Semantic Relations (SRs) that can hold between STs. The UMLS SN contains 127 STs (e.g.,
Organism Attribute for the concepts Age and Gender, Clinical Attribute for the concepts Tumour Stage
and Cellular Differentiation) and 54 SRs (e.g., isa, causes, consists of, interacts with, assesses effect of
and location of). Each concept in UMLS-NCI is assigned one or more STs;1 and SRs defined between
the STs in UMLS SN may or may not hold between particular concepts assigned to these STs. The
incorporation of UMLS SN into our schema enabled the creation of 1625 additional relation annotations.

3 Corpus Construction
The construction of the dataset involved the following activities, described below: (1) document selec-
tion, (2) development of annotation guidelines, (3) document pre-processing and choice of distribution
format, (4) annotation tool configuration and development, and (5) actual annotation process.

3.1 Document Selection
The following criteria were applied to select documents for our corpus: (1) the documents must represent
full-text biomedical research articles containing at least one table; (2) the corpus must be diverse with

1When a concept was linked to several STs, our annotation guidelines required the exclusion of STs that were irrelevant in
the context of the source table.

72



respect to the structure of tables, and representative of their distribution in biomedical research publica-
tions, in order to eliminate selection bias based on table structure; (3) the documents must be available in
a structured format, preferably XML, to avoid the need to programmatically determine document and ta-
ble structure; and (4) the articles must be available under non-restrictive licensing terms to enable future
public release of our dataset. Finally, we preferred articles that were already included in other corpora
with existing concept, named entity or relation annotations of unstructured text, in order to facilitate the
future development of text mining tools for the joint analysis of free text and tabular content.

The application of these criteria resulted in the inclusion of papers from the following datasets:2

1. CRAFT Corpus (Bada et al., 2012). A subset of the CRAFT Corpus comprising 24 papers (50 tables)
was included in our dataset. The CRAFT dataset, which comprises articles drawn from the Open
Access subset of PubMed Central, is heterogeneous with respect to the content of the papers, and
covers topics related to mouse genetics. The CRAFT dataset contains a mapping of concepts that
appear in its free-text parts into seven open biomedical ontologies.

2. The Human Variome Project (HVP) Corpus (Verspoor et al., 2013). Nine out of ten papers (28 tables)
from the HVP Corpus were included in our dataset. This corpus covers topics related to the genetics of
human colon cancer. The free-text parts of the papers are annotated using a small annotation schema
comprising eleven named entity classes and thirteen binary relations between the entity classes.

3. An additional subset of ten papers (22 tables) was randomly sampled from Open Access subsets of
three datasets comprising papers about genomic variation (Jimeno Yepes and Verspoor, 2013; Wong
et al., 2009). These datasets did not contain annotations of unstructured text, but several of these
papers were previously used in (Shmanina et al., 2014).

3.2 Development of Annotation Guidelines
The table annotation guidelines were developed by the first author, who is a researcher in biomedical text
mining. The guidelines contain four parts, each corresponding to a single annotation task: (1) cell group,
(2) concept, (3) cell type, and (4) relation annotation.

The initial versions of the guidelines were developed through several iterative attempts to annotate ten
tables using the guidelines. After each annotation iteration, we tested whether the strict application of
the guidelines yielded consistent and objective annotations, and revised the guidelines as necessary. The
final version of the guidelines was 49 pages long.
Cell Group Annotation. Cells were collated into homogeneous cell groups according to two main
guidelines: (1) every header cell should form its own cell group, and (2) data cells should be merged into
maximum-size cell groups.
Concept Annotation. These annotations were created due to the potential subjectivity of assigning
a cell type to a cell group. For example, a cell group comprising the entries “C57/LJ”, “AKR/J” and
“NZB/BiNJ” can be potentially assigned UMLS-NCI concepts [C0026809] Mice, [C1518614] Organ-
ism Strain or [C2985604] Biologic Entity Group. By first annotating concepts for each table cell, it
was relatively straightforward to derive cell type annotations. For example, the mentions above can
be mapped into the concepts [C1511387] C57L/J Mouse, [C1515841] AKR/J Mouse and [C1513862]
NZB/BlNJ Mouse — all of which have a common parent [C0025927] Inbred Mouse Strains in the UMLS-
NCI concept hierarchy, which is then chosen to represent the cell type.

We based our concept annotation guidelines on those used in the CRAFT Corpus, which resulted
in high inter-annotator agreement for concept annotations of free text (Bada et al., 2012). The main
characteristics of these guidelines are: (1) a text is mapped into a concept from a vocabulary only if the
concept is an exact semantic match for the text; and (2) the rules for the identification of text segments are
syntax-based, and specify how to annotate nouns and noun phrases, adjectival and prepositional phrases,
nested and overlapping mentions, etc.

We slightly modified the original CRAFT guidelines to better suit our table annotation task. Firstly,
for each table cell, we annotated only the syntactic head of an utterance, expanded with as many of

2All the articles in our table dataset belong to the Open Access subset of PubMed Central.
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its modifiers as possible. For example, given the table entry “Fragment length”, UMLS-NCI contains
concepts that are semantically equivalent to “Fragment” and “length”, but there is no concept that is
semantically equivalent to “Fragment length”. Therefore, only “length”, which is the syntactic head of
the phrase, receives a concept annotation, and its modifier is excluded from the annotation. Secondly,
the text inside table cells tends to be more concise than unstructured text. For instance, in a column
listing colon cancer stages, such as “A”, “B” and “C”, “B” could stand for “stage B” or “Dukes B rectal
cancer”. We addressed this problem by stipulating that if it was not possible to annotate a concept using
the guidelines from (Bada et al., 2012), its mention should be mapped into the semantically closest
concept available in the vocabulary, e.g., “B” should be mapped to Dukes B rectal cancer.

Cell Type Annotation. The cell type is the most specific superclass of all the entries in a cell group. It
must first be obtained for entries with concept annotations (if they exist) using the UMLS-NCI concept
hierarchy, and possibly generalised to entries without concept annotations. However, if there are no
concept annotations for the cells in a cell group (54.22% of cell groups in our dataset), or the concept
annotations do not have an informative superclass in UMLS-NCI (e.g., when the most specific common
ancestor of concept annotations in UMLS-NCI is Conceptual Entity, NCI Administrative Concept or
NCI Thesaurus), the annotator must retrieve the most specific concept in UMLS-NCI that best describes
the content of the cells in the cell group. For example, a cell group that lists chromosomes (e.g., “1”,
“2”, “18”) is annotated with the concept [C0008633] Chromosome.

Relation Annotation. The relation annotation guidelines were developed under the assumption that
the relation annotation phase would follow the cell type annotation phase. This meant that all relation
hypotheses could be automatically pre-computed using the constraints from the UMLS Metathesaurus
and the UMLS SN, and suggested to the annotators, who in turn could accept or reject the suggestions.
Therefore, the relation annotation guidelines contain the following information: (1) definition and exam-
ples of what constitutes a valid relation between two cell groups; (2) a definition and use cases for the
isa relation; and (3) a list of cases where no relation should be built between two cell groups.

3.3 Choice of Corpus Distribution Formats and Pre-processing of the Documents
When choosing formats for the articles and annotation, we considered the following criteria: (1) they
must preserve information about table structure; (2) they should preferably preserve information about
the structure and formatting of the original paper; and (3) they should be flexible and expressive enough
to uniformly encode all the annotation types and schemas described above.

We considered various linguistic annotation formats, such as BRAT stand-off, BioC and XML/JSON
stand-off. However, neither BRAT nor BioC satisfy the first two criteria, as they convert tables into plain
text, and BRAT also stores documents in plain text. We therefore decided to distribute the articles in the
original XML format used by PubMed Central for archiving. Such XML versions of articles use The
Journal Archiving and Interchange Tag Set,3 which preserves the content, structure and format of the
articles and the tables within. The created annotations were stored in stand-off JSON format – one JSON
annotation file per paper.

To construct the dataset, we downloaded the XML versions of the papers from the FTP service of
PubMed Central.4 We then automatically assigned unique IDs to all the XML tags that contained actual
content (as opposed to article meta-data), such as paragraphs <p>, section titles <title>, article titles
<article-title>, table headers <th> and data cells <td>. The templates of the JSON annotation files
for each paper in the dataset were automatically generated by a script.

3.4 Annotation Process
The annotation process was conducted in three stages. First, cell groups were annotated, followed by the
annotation of concepts and cell types for each cell group; relations between cells were annotated last.

Cell group annotation was carried out by the first author for the 100 tables of the dataset (43 papers)
using a text editor with programming language support.

3http://dtd.nlm.nih.gov/archiving/
4ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/
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Owing to budgetary constraints, the annotation for the second and third stages was done on a subset
of 83 tables in 39 papers. The annotation was performed by the first author and two specialist annotators
who hold post-graduate degrees in Biology and are familiar with the subject matter. The annotators re-
ceived extensive annotation guidelines for each stage, were instructed in the use of the annotation tools,
and were advised to consider information from the full text of the papers during the annotation process.
Thereafter, the annotators performed a double-blind annotation of a subset of five tables (two papers),
to assess the level of inter-annotator agreement, and to discover any problems related to the guidelines
and tools. The budgetary constraints also led us to perform a single-blind annotation for the remaining
78 tables (37 papers), which were distributed between the first author and the annotators: each partici-
pant annotated their assigned tables, which were then passed to another team member for verification.
Throughout the annotation process (130 hours per person) the first author and the annotators met after
every 6 to 8 hours of annotation, in order to measure the agreement between the original annotator of a
table and the “reviewing” team member; annotation disagreements were resolved by consensus, and the
annotation guidelines were amended where necessary, which happened rarely. At the end of each anno-
tation stage, the master version of the annotations for the entire corpus was verified by the first author for
consistency and compliance with the guidelines. Annotations were corrected where necessary.

Concept and cell-type annotations were carried out using a modified version of the BRAT annotation
tool. Prior to loading the corpus into the tool, the XML files were automatically mapped into plain text
(the input format of BRAT). Upon completion of the annotation, the files were mapped back into the
XML/JSON distribution format.5 We employed an in-house Web interface to integrate the NCI subset of
the UMLS Metathesaurus into our BRAT installation. The annotators used BRAT to select text spans for
annotation, and to query the Web interface for concepts related to these text spans. The Web interface
allowed annotators to browse the lists of returned concepts, and to look up information about these
concepts, such as name, STs, definition and position in the NCI concept hierarchy. If a suitable concept
was found, the annotation was sent back to BRAT.

Finally, relations between cells were annotated using an in-house online Relation Annotation Tool,
which suggested relation annotations drawn from UMLS-NCI and the UMLS Semantic Network on the
basis of existing cell type annotations.

4 Results and Discussion
4.1 Corpus and Annotation Statistics
83 tables from our corpus were manually annotated with cell groups, Concepts, Cell Types and Relations
(denoted CCTR-83); 17 additional tables were annotated with cell groups only. Table 1 details the
composition of the dataset. As seen in Table 1, the corpus is evenly split between two main topics, human
cancer and mouse genetics (43 and 40 tables in CCTR-83 respectively), offering interesting opportunities
for cross-domain training and testing. Statistics about the dimensions of the tables (average, median,
minimum and maximum per table, and total counts) appear in Table 2. Table 3 shows statistics of cell-
group, concept, cell-type and relation annotations, both for all annotations (left-hand side) and unique
annotations (right-hand side).

As seen in Table 3, the unique concept and cell-type annotations constitute a relatively high percentage
of their total counts (528 out of 3042 concepts, and 375 out of 2545 cell types based on UMLS CUIs).
However, the distributions of the unique annotations are skewed. For example, the top-three most fre-
quent cell-type annotations based on UMLS-NCI (Count, Percent and Biologic Entity Group Quantity)
together constitute 36% of the 2545 cell types based on UMLS CUIs, while 178 cell-type annotations
appear only once in the corpus. The most frequent cell-type annotation based on UMLS STs is Quan-
titative Concept, comprising 49.7% of the 2089 UMLS ST cell-type annotations; followed by the label
Organism Attribute, which constitutes only 6% of the annotations. Such a strong bias towards Quantita-
tive Concept may be explained by the predominantly quantitative nature of biomedical tables: 43.5% of
the cell groups in our corpus contain numbers and numerical expressions, while 25.8% and 23.7% of the
cell groups contain free text (terms and phrases) and abbreviations respectively; the remaining 7% of the

5To our knowledge, currently there is no annotation tool that natively supports table annotation. Due to our budgetary
constraints, we were unable to develop such an annotation tool ourselves, and had to resort to partial suboptimal solutions.

75



Source Dataset Domain Full dataset CCTR-83
Papers Tables Papers Tables

CRAFT Mouse genetics 24 50 22 40
HVP Corpus Human colorectal cancer genetics 9 28 8 24
Jimeno Yepes and Verspoor (2013) Human cancer genetics 8 17 8 17
Wong et al. (2009) Human cancer genetics 2 5 1 2

Table 1. Article and table counts and domains

Full dataset CCTR-83
Table Element Total # # per table Total # # per table

Avg. Med. Min. Max. Avg. Med. Min. Max.
Cells 13061 130.61 78 12 1300 9753 117.51 64 12 1300
Rows 1929 19.29 13 3 100 1500 18.07 10 3 100
Columns 631 6.31 5 2 16 500 6.02 5 2 13

Table 2. Counts of table cells, rows and columns in the dataset

All annotations Unique annotations
Annotation Type Total # # per table Total # # per table

Avg. Med. Min. Max. Avg. Med. Min. Max.
Cell Group 2443 24.43 15.0 4 163 – – – – –

CCTR-83 2134 25.71 15.0 4 163 – – – – –
Concept 3042 36.65 23 1 296 528 13.83 11 1 37
Cell Type

UMLS CUI 2545 30.66 20 4 148 375 11.28 10 3 25
UMLS ST 2089 25.17 16 4 122 52 6.75 6 2 15

Relation
All labels 1847 22.52 9 1 113 31 3.22 3 1 12
UMLS MetaTh. 222 2.71 0 0 32 4 0.61 0 0 2
UMLS SN 1625 19.82 9 1 109 27 2.61 2 1 10

Table 3. Annotation counts (including ambiguous annotations)

cell groups have mixed content (e.g., “MSI-H (n = 19)”). The breakdown for cells is 52.4% numerical,
14% text, 26.7% abbreviations and 6.9% mixed content.

Another noteworthy observation is the relatively modest corpus coverage provided by our concept and
relation annotations. Concept annotations were assigned to only 30.47% of the non-empty table cells,
which corresponds to 45.78% of the cell groups. This may be explained by (1) the quantitative nature
of many biomedical tables combined with the difficulty of mapping numbers to concepts; and (2) the
insufficient coverage of table entries by UMLS-NCI for non-numerical concepts such as specific muta-
tions (e.g., “c.1886 A > G”), base sequences (e.g., “5’-dT20-ACTGGC. . .GAAAAC-3’”) and patient
IDs (e.g., “IC628”). With regard to relations, even after we expanded the relation annotation schema
with labels from UMLS SN, we annotated only 1847 relations between the available 2134 cell groups in
the CCTR-83 dataset, yielding a small set of only 31 unique labels, and a median of nine relations per
15-cell-group table (column 4 in Table 3). The distribution of the relation labels in the corpus is even
more skewed than the distribution of the concept and cell-type labels, with about 75% of the relations
being quite general: the isa relation from UMLS SN constitutes 51% of the relation labels, followed
by the labels associated with from UMLS SN (11.3%), and isa and inverse isa from UMLS-NCI (each
6%). This imbalance may be attributed to the discrepancy between the information in our tables and the
relations available in UMLS, which may be mitigated by employing a different annotation schema.
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Annotation Kappa values Kappa values (per paper)
(entire corpus) Avg. Med. Min. Max.

Concept 0.88 0.90 0.96 0.13 1.0
Cell Type

UMLS CUI 0.87 0.82 0.92 0.15 1.0
UMLS ST 0.87 0.86 0.94 0.23 1.0

Relation 0.82 0.87 0.91 0.49 1.0

Table 4. Inter-annotator agreement for concept, cell-type and relation annotation

4.2 Inter-Annotator Agreement
To enable the prompt resolution of problems in the annotation guidelines, and to map the progression
of inter-annotator agreement (IAA) over time, per-paper IAA was measured at every conflict-resolution
meeting throughout the annotation process. We used Cohen’s Kappa statistic (Cohen, 1960) to evaluate
IAA for all types of annotations.

Two concept annotations were deemed to match if their UMLS CUIs and text spans were equal; two
UMLS CUI cell-type annotations matched if their CUIs were equal, and similarly, two UMLS ST cell-
type annotations matched if their STs were equal; and two relation annotations were deemed to match
if they had the same relation label, direction and arguments. It is worth noting that every cell group
received at least one cell-type label; if there was more than one label (ambiguous annotation), each label
was considered separately when computing IAA. In contrast, some table-entries did not have concept
annotations, and similarly, some pairs of cell groups did not have relation annotations. In order to handle
these cases, as well as ambiguous annotations, we added the label No Annotation, so that IAA could be
computed between absent and present labels.

IAAs computed over the entire corpus and per-paper IAAs appear in Table 4. For all annotation types,
the average and median IAA values exceeded 0.82 and 0.91 respectively. This shows that, for most
papers in our dataset, the application of our annotation guidelines yielded highly consistent annotations.
However, the low minimum IAA values indicate that a few papers posed a significant challenge. This
was variously due to (1) ambiguities in the annotation guidelines, which were fixed after discussing the
relevant part of the guidelines;6 (2) erroneous annotations caused by lack of clarity and ambiguity of
some concepts and relations in the UMLS; and (3) absence of a concept annotation from which a cell-
type annotation could be derived — these cases were less consistent across annotators than those where
concept annotations were available.

5 Conclusion
We have offered a corpus comprising 100 tables sourced from 43 biomedical journal articles on the topic
of genetics. All the tables in the corpus were manually annotated with information about homogeneous
cell groups, and a subset of 83 tables was annotated with a total of more than 3000 concepts, 2000 cell
types and 1800 relations, drawn from the Unified Medical Language System®. Our annotation schema
was designed to accurately capture fine-grained semantic classes of table entries and the relationships
between them. This annotation schema, combined with the stringent table annotation guidelines we de-
veloped, enabled a high average inter-annotator agreement of over 0.82 for all annotation types. This
makes both the annotated corpus and the guidelines used to create it a valuable resource for the develop-
ment and evaluation of tools for information extraction from biomedical tables. Furthermore, although
our guidelines were developed for a particular biomedical corpus, they may be adapted to tables from
other scientific fields, thus providing a general framework for table annotation.
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web data tables driven by a domain ontology. In Proceedings of the 6th European Semantic Web Conference
(ESWC 2009), pages 638–653, Heraklion, Crete, Greece. Springer-Verlag.

Jane Hoover-Plow, Aleksey Shchurin, Erika Hart, Jingfeng Sha, Annie E. Hill, Jonathan B. Singer, and Joseph H.
Nadeau. 2006. Genetic background determines response to hemostasis and thrombosis. BMC Hematology,
6(1):1.

Matthew Francis Hurst. 2000. The interpretation of tables in texts. Ph.D. thesis, University of Edinburgh.

Dietmar Jannach, Kostyantyn Shchekotykhin, and Gerhard Friedrich. 2009. Automated ontology instantiation
from tabular web sources – the AllRight system. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(3):136–153.

Antonio Jimeno Yepes and Karin Verspoor. 2013. Towards automatic large-scale curation of genomic variation:
improving coverage based on supplementary material. In Proceedings of BioLINK SIG 2013: Roles for text
mining in biomedical knowledge discovery and translational medicine, pages 39–43, Berlin, Germany.

Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Junichi Tsujii. 2003. GENIA corpus – a semantically annotated
corpus for bio-textmining. Bioinformatics, 19(suppl 1):i180–i182.

Kyubum Lee, Sunwon Lee, Sungjoon Park, Sunkyu Kim, Suhkyung Kim, Kwanghun Choi, Aik Choon Tan,
and Jaewoo Kang. 2016. BRONCO: Biomedical entity relation oncology corpus for extracting gene-variant-
disease-drug relations. Database: The Journal of Biological Databases and Curation, 2016.

Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. 2010. Annotating and searching web tables using
entities, types and relationships. Proceedings of the VLDB Endowment, 3(1-2):1338–1347.

Varish Mulwad, Tim Finin, and Anupam Joshi. 2013. Semantic message passing for generating linked data
from tables. In Proceedings of the 12th International Semantic Web Conference (ISWC 2013), pages 363–378,
Sydney, Australia. Springer-Verlag.

John-Paul Plazzer, Rolf H. Sijmons, Michael O. Woods, Päivi T. Peltomäki, Bryony A. Thompson, Johan T.
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