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Abstract

Grammatical error diagnosis is an important task in natural language processing. This paper
introduces our Chinese Grammatical Error Diagnosis (CGED) system in the NLP-TEA-3 shared
task for CGED. The CGED system can diagnose four types of grammatical errors which are
redundant words (R), missing words (M), bad word selection (S) and disordered words (W). We
treat the CGED task as a sequence labeling task and describe three models, including a CRF-
based model, an LSTM-based model and an ensemble model using stacking. We also show in
details how we build and train the models. Evaluation includes three levels, which are detection
level, identification level and position level. On the CGED-HSK dataset of NLP-TEA-3 shared
task, our system presents the best F1-scores in all the three levels and also the best recall in the
last two levels.

1 Introduction

Chinese has been considered as one of the most difficult languages in the world. Unlike English, Chinese
has no verb tenses and pluralities, and there usually exist various ways to express the same meaning in
Chinese. Consequently, it is common for non-native speakers of Chinese to make grammatical errors of
various types in their writings. The goal of Chinese Grammatical Error Diagnosis (CGED) is to build
a system that can automatically diagnose errors in Chinese sentences. Evaluation is carried out in three
levels, based on the detection of error occurrences in a sentence, as well as their types and positions.

In this work, we formalize the CGED task as a sequence labeling problem, which assigns each Chi-
nese character in a target sentence with a tag indicating both the error type (R, M, S, W) and position
(Beginning, Inside). Therefore, the CGED task can be readily solved with a typical conditional random
fields (CRF) model (Lafferty et al., 2001).

However, the main challenge for CGED is that the detection of errors usually requires long-term
dependencies. For example, in Table 1, the grammatical error at “表示(represent)” may not be detected
until the last word “损害(damage)” shows up. Traditional models with features extracted from a limited
context window may not be able to handle these situations.

Neural network-based models have been extensively used in natural language processing (NLP) during
recent years, due to their strong capability of automatical feature learning. In particular, the long short-
term memory (LSTM) (Hochreiter and Schmidhuber, 1997) based recurrent neural networks (RNN)
have been proved to be highly effective in various applications that involves sequence modeling, such as
language modeling, named entity recognition (Lample et al., 2016) and parsing (Vinyals et al., 2015),
etc. Therefore, in this paper, we propose to use LSTM-based RNNs to solve the CGED problem. In order
to leverage both the merits of CRF models and LSTM models, we further present an ensemble model
using Stacking (Nivre and McDonald, 2008). Evaluations on the NLP-TEA-3 shared task for CGED
show that our models achieve the best F1-scores in all levels and the best recall in two levels.

The rest of the paper is organized as follows: Section 2 gives the definition of the CEGD task. Section 3
describes how LSTM network is used to predict errors and what other works we have done. Section 4
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shows the evaluation results. Section 5 gives some related works. Section 6 gives conclusion and future
work of this paper.

2 Task Definition

The shared task of CGED in NLP-TEA-3 is defined as follows: given a Chinese sentence, a CGED
system is expected to diagnose four types of grammatical errors, including redundant words (R), missing
words (M), bad word selection (S) and disorder words (W). Once an error is found, the system should
be able to recognize its beginning and ending positions.

Table 1 and Table 2 show two examples in the dataset:

这1 种2 材3 料4 表表表5 示示示6 吸7 烟8 引9 起10 了11 人人人12 们们们13 多14 么15 大16 的17 损18 害19 。20

Error Interval 5, 6 12, 13

Error Type S R

Correction
这种材料表表表明明明吸烟引起了多么大的损害。

This material shows how much harm smoking causes.

Table 1: Two errors are found in the sentence above, one is bad word selection (S) error from position 5
to 6, the other one is redundant words (R) error from position 12 to 13.

但1 是2 文3 章4 中5 的6 妻7 子8 是是是9 还还还10 有11 意12 识13 的14 ，15 她16 还17 有18 活19 的的的20 意21 义22 。23

Error Interval 9, 10 20, 20

Error Type W M

Correction
但是文章中的妻子还还还是是是有意识的。她还有活着着着的意义。

But the wife in the passage is still conscious, she still has a meaning to live.

Table 2: Two errors are found in the sentence above, one is disordered words (W) error from position 9
to 10, the other one is missing words (M) error in position 20.

3 Methodology

In this work, we treat the CGED task as a sequence labeling problem. Specifically, given a sentence x,
our model generates a corresponding label sequence y. Each label in y is a token from a specific tag set.
Here we have tag ‘O’ indicating correct characters, ‘B-X’ indicating the beginning positions for errors
of type ‘X’ and ‘I-X’ as middle and ending positions for errors of type ‘X’.

We first examine the traditional CRF model and use symbolical represented features. Then we propose
our LSTM-based model that use distributed feature representations. At last, we present an ensemble
model that combines the two models using Stacking.

In this section, we will first introduce how we prepare the data, and then describe the three models we
used in this task.

3.1 Data Preparation

Since the CGED task involves identifying the error boundaries, segmenting a sentence into words will
bring a lot of misalignments between the words and the endpoints of a corresponding error interval. An
example of misalignment is shown in Table 3. Therefore, we decided to solve the problem at character
level. Other than the misaligned interval problem, there are many error intervals of different types which
may overlap with others. One way to avoid this overlapping problem is to deal with the four types of
errors separately. However, we think the four types of errors may have mutual effects on each other,
so we pre-processed the training data so that we can keep as many errors as possible by deleting the
least numbers of overlapped error intervals. We finally deleted a small part of error intervals which is
acceptable. An example of overlapping problem is shown in Table 4.
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如1 果2 你3 是4 青5 少6 年7 你8 多9 想10 自11 己12 的13 未14 来15 ；16 那17 你18 可可可19 以20 禁禁禁烟21−22 了23 。24

Error Interval 19, 19 21, 21

Error Type M S

Correction
如果你是青少年你要多想想自己的未来；那你就就就可以戒戒戒烟了。

If you are a teenager you should think about your future so you can quit smoking.

Table 3: An misalignment example. The two characters “禁(forbid)” and “烟(cigarette)” would be one
word after segmenting the sentence into words, which would cause a misalignment problem because
only the character “禁(forbid)”.

每1 年2 暑3 假4 是是是5 我我我6 们们们7 运运运8 动动动9 员员员10 来来来11 说说说12 很13 苦14 的15 时16 候17 。18

Error Interval 5, 12 6, 6

Error Type W M

Correction
每年暑假对对对我我我们们们运运运动动动员员员来来来说说说是是是很苦的时候。

Every summer is hard for us athletes.

Table 4: An overlapping example. The two error intervals are overlapped. In this situation, we will delete
the least number of intervals to eliminate the problem.

One kind of features that may be useful in this task is the Part-of-speech (POS) of words. Table 5
shows a snapshot of training data after the pre-processing. Note that our task is being solved at the
character level, so we split the POS tag of a word to character level by attaching position indicators (‘B-’
and ‘I-’) to the POS of a word.

Character POS Label

像 B-p O
我 B-r B-W
对 B-p I-W
不 B-d B-M
吸 B-n O
烟 I-n O
者 I-n O
来 B-u O
说 I-u O

Table 5: A snapshot of our training data after the pre-processing

In the training phase, a sentence is first segmented into terms. Each term is consisted with a character,
a corresponding POS tag and an error type tag.

3.2 CRF-Based Model
CRF has been successfully used in various natural language processing applications, especially sequence
labeling tasks. Formally, the model can be defined as:

P (y | x) =
1

Z (x)
exp (Σkλkfk) (1)

where Z(x) is the normalization factor, fk is a set of features, λk is the corresponding weight. In this
task, x is the input sentence, and y is the corresponding error type label. The feature templates are
defined in Table 6. We use stochastic gradient descent (SGD) for training, with L2 regularization to
prevent overfitting.
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Feature templates
00: chi+k,−2 ≤ k ≤ 2
01: chi+k ◦ chi+k+1,−1 ≤ k ≤ 0
02: posi+k,−2 ≤ k ≤ 2
03: posi+k ◦ posi+k+1,−2 ≤ k ≤ 1
04: posi+k ◦ posi+k+1 ◦ posi+k+2,−2 ≤ k ≤ 0

Unigram Features
yi ◦ 00− 04

Bigram Features
yi−1 ◦ yi

Table 6: feature templates of CRF-based model. chi refers to the ith character, posi refers to the POS of
ith character, yi refers to the output tag of ith character.

3.3 LSTM-Based Model

LSTM network is a variant of recurrent neural network (RNN) and have better ability to capture long-
term dependencies. At each time step t, LSTM networks read a current input vector xt and the hidden
state of the previous time step ht−1, and use them to compute a new hidden state ht.

Vanilla RNNs (Pascanu et al., 2013) typically suffer from the gradient vanishing problem while LSTM
networks solve it with an extra memory “cell” (ct). Specifically, LSTM networks are controlled by three
kinds of gates, each gate consists of a sigmoid neural net layer and a point-wise multiplication operation.
The three gates are input gate, forget gate and output gate. The input gate controls what proportion of
the current input to pass into the memory cell (it), and the forget gate controls what proportion of the
previous memory cell to “forget” (ft). When here comes the input xt, the memory cell is updated as
follows:

it = σ (Wixxt +Wihht−1 +Wicct−1 + bi) (2)

ft = σ (Wfxxt +Wfhht−1 +Wfcct−1 + bf ) (3)

ct = ft � ct−1 + it � tanh (Wcxxt +Wchht−1 + bc) (4)

where σ represents point-wise logistic sigmoid function, and � is the point-wise Hadamard product.
The output gate (ot) controls the hidden state ht at each time step, and they are computed as follows:

ot = σ (Woxxt +Wohht−1 +Wocct + bo) (5)

ht = ot � tanh (ct) (6)

We use the hidden state ht to calculate the output label at each time step at last. The architecture of
our bidirectional LSTM-based model is illustrated in Figure 1. We used the concatenation of character
embeddings and bigram embeddings as lexicalized input features at each position.

The character embeddings are initialized randomly. To obtain the bigram embeddings, we first convert
the original character sequence to a bigram sequence. For example, the bigram sequence of sentence “我
是中国人” will be [“我是”, “是中”, “中国”, “国人”]. Then we can train bigram embeddings readily
using word2vec (Mikolov et al., 2013) on the resulting bigram sequences. In addition, we also used the
POS of words as a discrete feature to improve the performance of our model.

We give the comparison between LSTM-based model with unigram feature and LSTM-based model
with bigram and also unigram feature in next section. We also adjusted the model by tuning the value of
the input dimension of LSTM and the dimension of bigram embeddings.
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Figure 1: An illustration of the LSTM-based model. The concatenated character embedding, POS em-
bedding and two bigram embeddings are used as the input of the neural network.

3.4 Stacking Model

After preliminary experiments using the two models above, we found that the LSTM-based model has a
high recall rate and the CRF-based model has a high precision rate. To take advantage of both models,
we further present an ensemble model using stacking (Nivre and McDonald, 2008).

We conducted 10-fold cross-validation on the training dataset and obtained the tagging results auto-
matically. Then we put the result of the CRF-based model as a discrete feature to the LSTM layer by
adding an additional feature to the input layer of LSTM. We expect that by combining the two models
together, the LSTM-based model can achieve higher precision rate.

Results show that after combining the two models, the recall of the LSTM-based model increases, but
unfortunately, the precision decreases. The reason could be the results of CRF-based model help LSTM
find errors which LSTM-based model wasn’t able to find. We will discuss it specifically in the next
section.

4 Experiments

4.1 Data and Settings

We obtain the full dataset from the shared task CGED-HSK of NLP-TEA-3 for training and validation,
of which 16,142 sentences are used for training and the rest 4000 sentences for validation. The ratio
of training dataset size to validation dataset size is about 4:1. Table 7 shows the data distribution in
the CGED-HSK training data. In addition, we use the Chinese Gigawords to get the pretrained bigram
embeddings. For the CRF-based model, we adopt the CRFsuite toolkit (Okazaki, 2007).

The criterias for evaluation include:

(1) Detection level: this is a binary classification of a given sentence, i.e. correct or incorrect should be
completely identical with the gold standard. All error types will be regarded as incorrect.

(2) Identification level: this could be considered as a multi-class categorization problem. In addition
to correct instances, all error types should be clearly identified.

(3) Position level: besides identifying the error types, this level also judges the positions of erroneous
range. That is, the system results should be perfectly identical with the quadruples of gold standard.
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Type Train Validation

Redundant 4374 1074

Missing 5250 1203

Selection 8533 2177

Disorder 1196 291

Correct 8086 2002

Table 7: Data statistics.

4.2 Experiment Results

We first conduct experiments with the CRF-based and the LSTM-based model. After that, we examine
the effect of Stacking by taking the output of the CRF model as features of the LSTM model.

4.2.1 Results on Validation Dataset
We use the validation dataset to select the best hyper-parameters in both the CRF-based model and the
LSTM-based model. Table 8 shows the results. As we can see, the LSTM-based model (LSTM (U+B))
has better Recall and F1-score than the CRF-based model, but lower in precision. Besides, the bigram
embeddings has a very significant impact on the LSTM-based model.

Model
Detection Level Identification Level Position Level

P R F1 P R F1 P R F1

CRF 0.7500 0.2282 0.3500 0.7154 0.1663 0.2699 0.6507 0.1296 0.2162

LSTM (U) 0.5188 0.2908 0.3727 0.4458 0.1925 0.2689 0.3329 0.1197 0.1761

LSTM (U+B) 0.6526 0.3629 0.4664 0.5625 0.2484 0.3446 0.4115 0.1587 0.2290

Stacking 0.6344 0.3909 0.4837 0.5401 0.2565 0.3478 0.3797 0.1513 0.2164

Table 8: Results on Validation Dataset. ‘U’ in the bracket after LSTM refers to using unigram of charac-
ters and ‘B’ refers to using bigram of characters.

4.2.2 Results on Evaluation Dataset
When testing on the final evaluation dataset, we merged our training dataset and validation dataset, and
retrain our models. Table 9 shows the results of our three submissions.

Submission
Detection Level Identification Level Position Level

P R F1 P R F1 P R F1

HIT-Run1 0.6111 0.712 0.6577 0.5146 0.5219 0.5182 0.4034 0.3691 0.3855

HIT-Run2 0.6108 0.7099 0.6566 0.5224 0.5094 0.5185 0.397 0.3483 0.3711

HIT-Run3 0.6071 0.7296 0.6628 0.5002 0.5447 0.5215 0.3695 0.3697 0.3696

Table 9: Results on Evaluation Dataset.

The three models we submitted includes the LSTM-based model (HIT-Run1), Stacking model (HIT-
Run2) and LSTM-based model with some post-process (HIT-Run3). The post-process mainly includes
changing the ‘I-X’ errors without a ‘B-X’ error before it into a single ‘B-X’ error. This increases the
recall rate on three levels but slightly decreases the precision.
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The stacking model increases the precision on the identification level while it reduces overall per-
formance. The reason could be that our CRF-based model doesn’t have good feature templates or the
inherent properties of the task.

Our system presents the best F1 scores in all three levels and also the best recall rates in the last two
levels on evaluation dataset. However, the results of this task are not that credible because there are many
ways to correct a wrong Chinese sentence. For example, deleting some redundant words may replace
errors of missing words.

5 Related Works

In NLP-TEA-1 (Yu et al., 2014) shared task for CGED, there were four types of errors, which were
the same as the task of this year. The evaluation was only based on detection of error occurrence,
disregarding the recognization of boundaries. In NLP-TEA-2 (Lee et al., 2015) shared task for CGED,
the participating systems are required to not only detect the errors but also locate them. Evaluations were
focused on traditional Chinese texts rather than simplified Chinese, and one sentence includes one error
at most in last two years.

There have been several studies focused on Chinese grammatical error detection. Wu et al. (2010)
proposed a method using both Relative Position Language Model and Parse Template Language Model
to detect Chinese errors written by US learner. Yu and Chen (2012) proposed a classifier to detect word-
ordering errors in Chinese sentences from the HSK dynamic composition corpus. Lee et al. (2013)
proposed linguistic rule based Chinese error detection for second language learning. Lee et al. (2014)
developed a sentence judgment system using both rule-based and n-gram statistical methods to detect
grammatical errors in Chinese sentences. However, all of these previous works used hand-crafted fea-
tures which may be incomplete and cause the loss of some important information. Comparatively, our
neural network approaches have strong capability of automatical feature learning and are completely
data-driven.

6 Conclusion

This paper describes our system in the NLP-TEA-3 task for CGED-HSK. We explored the CRF-based
model, the LSTM-based model and further used stacking to combine the two models. We achieved
highest F1 scores in all three levels and highest Recall rates in identification level and position level.

In our future work, we plan to try more methods such as bagging or adding more features to the CRF-
based model. Since Chinese grammar is flexible and irregular, it is difficult to judge the credibility of
these results on testing data. In our future work, we will try more models and find better ways to judge
the result if possible.
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