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Abstract

The DSL 2016 shared task continued previous evaluations from 2014 and 2015 that facilitated the
study of automated language and dialect identification. This paper describes results for this year’s
shared task and from several related experiments conducted at the Johns Hopkins University Hu-
man Language Technology Center of Excellence (JHU HLTCOE). Previously the HLTCOE has
explored the use of compression-inspired language modeling for language and dialect identifi-
cation, using news, Wikipedia, blog, and Twitter corpora. The technique we have relied upon
is based on prediction by partial matching (PPM), a state of the art text compression technique.
Due to the close relationship between adaptive compression and language modeling, such com-
pression techniques can also be applied to multi-way text classification problems, and previous
studies have examined tasks such as authorship attribution, email spam detection, and topical
classification. We applied our approach to the multi-class decision that considered each dialect
or language as a possibility for the given shared task input line. Results for testset A were in
accord with our expectations, however results for testsets B and C were notably worse.

1 Introduction

Automated language identification (LID) can be defined as the task of predicting the dominant language
being used by the author of a text. Often the decision task is formulated as selecting one language from a
fixed inventory of languages, although it is not uncommon to extend the problem to indicating “none of
the above” when it is believed that the text is not written in one of the listed languages. For comparatively
large input texts (i.e., texts longer than a sentence or two), choosing between only a few languages, or
when it is diverse languages that are being considered, high levels of accuracy can be achieved (i.e., over
99%).

The Discriminating between Similar Languages (DSL) shared task was started in 2014 and it is now in
its third year. The DSL’16 task (Malmasi et al., 2016) is focused on distinguishing between highly related
languages, which is a more challenging problem than the general case. Examples include distinguishing
between mutually-intelligible variants of a regional language (e.g., Bosnian, Croatian, and Serbian vari-
ants of Serbo-Croatian) or among dialects of imperial languages (e.g., between African, European, and
South American Portuguese).

A variety of approaches have been used for language identification since the increased availability
of multilingual corpora in the early 1990s. These include vector comparisons (e.g., cosine similarity)
(Damashek, 1995), language modeling (Dunning, 1994; Grefenstette, 1995), and supervised machine
learning (Baldwin and Lui, 2010; Zampieri, 2013).

In recent years, there has been increased interest in LID due to the the growth of international (i.e.,
multilingual) social media platforms. Such user-generated texts tend to be short, less grammatical, and
contain highly variable spellings and the frequent use of abbreviations, shorthands, emoticons, and other
confounding phenomena which can complicate language identification.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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In this paper we discuss the use of compression-inspired language models for predicting the language
of texts. In Section 2 we describe classification using the prediction by partial matching algorithm. In
Section 3 we report experiments on language identification. In Section 4 we discuss our participation in
the DSL’16 challenge and briefly summarize results. Section 5 briefly mentions a few related studies.

2 Prediction by Partial Matching

Prediction by Partial Matching (PPM) is a data compression algorithm developed in the early 1980s when
RAM, external storage, and network bandwidth were considerably less abundant than is the case today.

2.1 Overview

Cleary and Witten described the algorithm (1984) and presented two methods for smoothing probabil-
ity estimates (termed Methods A and B). A few years later Moffat investigated engineering improve-
ments to the algorithm and introduced a set of parameter estimation enhancements collectively known as
Method C (or PPM-C).

PPM is based on a variable-order Markov language model that contains a parameter N which is the
maximal order. When used to compress data files, observations from previously seen data are used
to estimate the likelihood of observing a symbol1 in a given context. Generally longer contexts are
used when available, starting with the maximal order N . However, the method backs off to use shorter
contexts when a symbol has not been observed in a longer context. Crucially, a context-dependent
penalty2 is applied when backing off is required.

As an example, seeing a ‘z’, ’t’, or ’c’ is not uncommon following a left-context of “[space] q u i” in
English. But an ’h’ would be very unlikely. To represent ‘h’ after “q u i” it will be necessary to back-off
using the estimates from shorter contexts such as “u i”. If an ’h’ has never been observed after “u i” then
the process continues, with an additional penalty, and further recursive backoff for ’h’ after a context of
a single symbol (‘i’).

The A/B/C/D variants of PPM differ in how they model backoff, or “escape” probabilities. The later
variants of PPM (e.g., PPM-C or PPM-D) are considered to achieve more compact codes than the earlier
versions.

2.2 Compression-inspired Classification

Adaptive compression is concerned with representing symbols in a minimal number of bits, based on a
model trained from a given history (or dataset). This approach can be turned on its head in the follow-
ing way. Given several models M1, M2, ...,Mn, each trained from different datasets, and a input text
fragment T , choose the model that will encode T in the fewest number of bits. This type of analysis is
commonly used with traditional Markov language models (e.g., Dunning (1994)).

PPM and related compression techniques have been applied to a variety of classification tasks. Frank
et al. (2000) used PPM for topical text classification tasks using the Reuters 21578 dataset; their results
were not at the level of the state of the art.

The earliest use of entropy-based compression techniques for language identification can probably be
attributed to Teahan (2000). He examined several large texts in six Western European languages; his
illustration of the method was simplistic, but clear. In the same study he conducts additional experiments
in authorship attribution and topic identification.

Between 2005 and 2007, the NIST Text REtrieval Conference (TREC) ran an evaluation of email spam
detection. Methods based on compression-inspired language models such as PPM and Dynamic Markov
Compression (DMC) were among the top performing approaches (Bratko et al., 2006; Cormack, 2008).

One explanation for why compression-based methods succeed for authorship attribution, language
identification, and spam detection, is that decisions can be informed based on short contexts (e.g., char-
acter n-grams of lengths 3 to 7). Tasks like topic classification would appear to be a less good fit.

1This could be a byte, an UTF-8 character, or a even a word if the stream was at the word level.
2This penalty is sometimes called the escape probability.
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Figure 1: F1 score by language for 47-way LID classification. Data are single sentences. Both training
and test exemplars were drawn from ”high quality” corpora (e.g., Europarl, EMILLE, Leipzig, and other
national corpora).

3 LID Experiments

In these experiments we use PPM-A, a decision that was undertaken based on the fact our existing
software (Bergsma et al., 2012) relies on hash-tables to store frequency counts. Refactoring the source
code to use suffix trees would make it easier to adopt the parameter estimate techniques in PPM-C, but
we did not have time before this year’s evaluation to consider such a change.

3.1 Initial Testing

For some very preliminary experiments, we begain by assembling a 47-language collection from extant
corpora, including well-known sources such as Europarl (v5), the Leipzig corpus, the EMILLE corpus,
and other available national corpora. Using 90k sentences for training, and 10k sentences for testing, we
attempted the 47-way classification task using PPM-A with order n = 4, attaining a macro-averaged F1

score of 99.4%. This seemed promising. Furthermore, the majority of the mistakes were in Bosnian,
Croatian, and English data, and much of the error was due to mis-labelled data. The per-language F1

scores are shown in Figure 1.
The use of Wikipedia text was considered for training and experimentation in a greater number of

languages. However, there are a great many instances of code switching or ”English pollution”, where
articles in a given language’s Wikipedia contain much text written in other languages, especially English.
For these and other pragmatic reasons, we encourage caution when using Wikipedia corpora for language
identification training or testing.

3.2 DSL ’15

To prepare for the DSL’16 shared task, we experimented with the shared task data from 2015 (DSLCC
version 2.0, test set A). We sought to investigate the effects of the PPM maximal order, the use of case
normalization, the directionality of scoring text, additional text normalizations, and the use of outside
data.

In the sections below we report our findings using the accuracy scores reported by the evaluate.py
script released with the 2015 data. Because the compression-based classifier does not require tuning
hyper-parameters, both the task1-train and task1-dev files were used to build a model and scoring was
done against the task1-test file.

As we were not concerned with confusions between dissimilar languages (e.g., we were not worried
about confusing Argentine Spanish for Indonesian or Serbian), we did not rely on hierarchical decision
making (e.g., predicting language family first, and then a specific language or dialect).
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3.2.1 Maximal order
Maximal orders of n = 4 or n = 5 often seem to work well. To consider a wider range of possibilities,
we looked at values of n from 3 to 6. In this first trial, no normalization of case, punctuation, etc... was
performed. Each input line was scored in two ways, either from left-to-right (LTR) or from right-to-left
(RTL). Results are shown in Table 1.

Order LTR RTL
3 90.96 90.99
4 92.87 92.78
5 93.11 93.03
6 92.93 92.79

Table 1: Comparison of PPM order and direction of processing.

Using a maximal order of n = 5 achieved the overall best result, and n = 3 was notably worse.

3.2.2 Case normalization
Next transformation of the input texts to lower-case was examined. Results are shown in Table 2. Some-
what surprisingly, a slight decline in performance occurs when case information is removed. An order
of n = 5 is still the best choice.

Order LTR RTL
3 89.75 89.96
4 92.85 92.85
5 92.96 92.89
6 92.80 92.67

Table 2: Comparison of PPM order and case-folding. Performance drops without case information.

3.2.3 Digit conflation and bidirectionality
Arguably Roman digits should not be very indicative of language. Therefore we explored mapping the
digits [1− 9] to the digit 1 (chosen as a representative). Also, rather than score the input text in only one
direction, we also considered bidirectional scoring. To produce a bidirectional score the forward (i.e.,
LTR) and backward (i.e., RTL) probabilities were combined. The bidirectional probability was computed
as follows:

pbi =
√

pltr × prtl (1)

Table 3 shows a very slight adjustment from conflating digits compared to the results in Table 1
when scoring in only one direction. However, combining evidence from both directions seems to help
materially.

A score of 93.34 would have been ranked 7th if it were an official submission in 2015 according to
Table 5 in Zampieri et al. (2015).

Order LTR RTL Both
3 91.01 91.01 91.06
4 92.92 92.82 93.04
5 93.13 93.16 93.34
6 92.99 92.79 93.15

Table 3: Use of case preservation, digit conflation, and combination of directionality. Our best results
for the DSL’15 dataset.

198



3.2.4 External Data
Generally with supervised learning using greater amounts of data to build models leads to higher levels
of performance. Therefore we tried one additional experiment where 20k sentences were added to the
training set. We used 20k sentences from Wikipedia text for Bosian, Croatian, Serbian, Indonesian,
and Malaysian. We used newspaper sources for Iberian Spanish (EFE), Brazilian Portuguese (Folha),
and European Portuguese (Publico). No data were added for Czech, Slovakian, Bulgarian, Macedonian,
Argentine Spanish, or the unknown category “xx”.

The results in Table 4 were disappointing; an average of about 1.3 points in accuracy were lost. One
possible conjecture could be that the test data are drawn from a similar distribution as the training data.
Were that to be the case, then adding external data that is not i.i.d. to the training and test data could be
expected to be more harmful than helpful.

Order LTR RTL Both
3 88.54 88.41 88.55
4 91.25 90.91 91.15
5 92.07 01.67 92.06
6 91.70 91.54 92.00

Table 4: Augmenting training data using external corpora – compare results to Table 3. The use of
additional data degrades performance.

4 Participation in DSL’16

As a result of the trials reported in Section 3 we anticipated that our best results would be obtained using
an order of n = 5, preserving case, conflating digits, and scoring text bidirectionally. As use of external
corpora had not improved in our earlier results, we did not submit any “open” results, restricting models
to using the provided training data.

We spent approximately one day working with the DSL’15 data in preparation for the current evalua-
tion. About 3 hours was spent working on the DSL’16 task and preparing submissions.

4.1 Submitted Runs
Table 5 describes the characteristics of the submitted runs. The B1 and B2 partitions were treated iden-
tically to each other.

Task Run Conditions
A 1 - closed PPMA (5), bidirectional, case preserved, digit-folding
A 2 - closed PPMA (5), bidirectional, lower-cased, all non-letter, non-whitespace characters deleted
B 1 - closed PPMA (5), bidirectional, case preserved, digit-folding
B 2 - closed PPMA (5), bidirectional, lower-cased, all non-letter, non-whitespace characters deleted
C 1 - closed PPMA (4), bidirectional, no text normalization
C 2 - closed PPMA (5), bidirectional, no text normalization
C 3 - closed PPMA (6), bidirectional, no text normalization

Table 5: Characteristics of submitted runs.

Results for each run are given in Table 6 below.

4.2 Discussion
4.2.1 Test Set A
The Task 1 (Test Set A) data (Tan et al., 2014) was fairly similar to the DSL’15 task, and our submission
was ranked around what we would expect. The accuracy of our hltcoe-closed-A-run1 (A1) submission
was 0.8772 and ranked 10th out of 17 teams. The maximum reported accuracy was 0.8938, and the
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Test Set Track Run Accuracy F1 (micro) F1 (macro)
A closed run1 0.8772 0.8772 0.8769
A closed run2 0.8727 0.8727 0.8729
B1 closed run1 0.5300 0.5300 0.5101
B1 closed run2 0.5460 0.5460 0.4934
B2 closed run1 0.5100 0.5100 0.4965
B2 closed run2 0.5540 0.5540 0.5132
C closed run1 0.4123 0.4123 0.4111
C closed run2 0.3870 0.3870 0.3803
C closed run3 0.3909 0.3909 0.3858

Table 6: Results for all hltcoe runs.

lowest score was 0.8253. With twelve classes, a purely random baseline would have an accuracy of only
0.083; however, most languages or dialects only have one or two other confusable classes, so it is natural
to expect performance above 0.33 or 0.50.

From Table 6 we can compare the effectiveness of our two Task-1 submissions. Run 1 (case preserved,
minimal normalization) was marginally more effective than Run 2 which employed more aggressive text
normalization. The confusion matrix3 for Run 1 is given below in Table 7 and graphially in Figure 2.
Bosnian and Mexican Spanish proved to be the most challenging classes.

bs es-ar es-es es-mx fr-ca fr-fr hr id my pt-br pt-pt sr
bs 749 0 0 0 0 0 132 0 0 0 0 119
es-ar 0 869 58 71 0 0 1 0 0 1 0 0
es-es 0 56 813 126 0 3 0 0 0 0 2 0
es-mx 0 111 178 711 0 0 0 0 0 0 0 0
fr-ca 0 0 0 0 875 125 0 0 0 0 0 0
fr-fr 0 0 0 0 17 981 0 0 1 1 0 0
hr 137 1 0 0 0 0 852 0 0 0 0 10
id 0 0 0 0 0 0 0 984 15 0 0 1
my 0 0 0 0 0 0 0 40 960 0 0 0
pt-br 0 0 0 0 0 0 0 0 0 947 53 0
pt-pt 0 0 0 0 0 0 0 0 0 84 916 0
sr 116 0 0 0 0 1 13 0 0 0 0 870

Table 7: Confusion maxtrix for hltcoe run 1 (test set A – closed training).

4.2.2 Social Media data

As the DSL’15 data had been single sentences from journalistic texts, we had expected the DSL’16
social media data to be single tweets with one message per line. We were preparing submissions just
hours before the deadline, and it came as quite a surprise upon unpacking the test-set zip file to find that
the data contained multiple tweets per line, and that a given user’s tweets could be in multiple languages.
Due to time limitations it wasn’t feasible for us to do anything other than treat the input like the data
in Test Set A and simply ignore this phenomena. Thus, the input line was treated as one, possibly long
message.

Additionally, we did not remove any hashtags, URLs, or other potentially English-looking twitter
phenomena. Together these two factors contributed to our very low ranking on this test set (i.e., last of
14 systems).

3Note the ISO 639-1 digraph for Malaysian is ms, however, the released data was mistakenly labeled as my, the code for
Burmese. The my label was retained for consistency with other papers.
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Figure 2: Graphical depiction of the confusion matrix for hltcoe run 1 (test set A – closed training).

4.2.3 Task 2 / Test Set C dataset
It also came as a last-minute surprise to find that the dialectal Arabic dataset was phonetically encoded
and not expressed in native orthography. We had previously worked with written dialect identification
using the test sets produced by Zaidan and Callison-Burch (2011; 2014). Working with automatically
produced phonetic representations is undoubtably a more challenging task, but not one that we were
prepared for. In hindsight, it would have been worthwhile to examine the training data beforehand. Our
runs were ranked 15th of 18 systems.

5 Related Work

Use of character-level n-grams for LID is not new. Cavnar and Trenkle (1994) developed the TextCat
system, which has served as a publicly available LID baseline for over two decades.

Information-theoretic and compression-based techniques have been used for LID for some time. Be-
sides Teahan’s early work (2000), such approaches were “rediscovered” by Benedetto et al. (2002),
generating some controversy in the computational linguistics community (Goodman, 2002).

Bobicev submitted results to the DSL’15 shared task using the PPM-C variant (2015). Our results
appear similar to her published results on the 2015 task; we suspect that her use of PPM-C vs. our use
of PPM-A is probably responsible for her higher score (94.14 vs. 93.34) on that dataset.

Other recent work in language detection includes: (Baldwin and Lui, 2010; Gottron and Lipka, 2010;
Lui and Baldwin, 2011; Tromp and Pechenizkiy, 2011; Bergsma et al., 2012; Carter et al., 2013; Brown,
2014).

6 Conclusions

We think compression-inspired classification is a reasonable technique for tasks such as language and
dialect identification which are highly informed from short character n-grams. Use of PPM-A with
a maximal order of n = 5 was most effective and notably better than a value of n = 3. Scoring
texts bidirectionally consistently improved performance. Our middle of the pack ranking in the Task-1
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evaluation was on par with our expectations given our post-hoc testing with the DSL’15 dataset. In future
work we would like to determine whether different methods for estimating escape probabilities, such as
PPM-C, can yield superior results.
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