
Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects,
pages 126–134, Osaka, Japan, December 12 2016.

Classifying ASR Transcriptions According to Arabic Dialect

Abualsoud Hanani, Aziz Qaroush
Electrical & Computer Engineering Dept

Birzeit University
West Bank, Palestine

{ahanani,qaroush}@birzeit.edu

Stephen Taylor
Computer Science Dept

Fitchburg State University
Fitchburg, MA, USA

staylor@fitchburgstate.edu

Abstract

We describe several systems for identifying short samples of Arabic dialects, which were pre-
pared for the shared task of the 2016 DSL Workshop (Malmasi et al., 2016). Our best system,
an SVM using character tri-gram features, achieved an accuracy on the test data for the task of
0.4279, compared to a baseline of 0.20 for chance guesses or 0.2279 if we had always chosen the
same most frequent class in the test set. This compares with the results of the team with the best
weighted F1 score, which was an accuracy of 0.5117. The team entries seem to fall into cohorts,
with the all the teams in a cohort within a standard-deviation of each other, and our three entries
are in the third cohort, which is about seven standard deviations from the top.

1 Introduction

In 2016 the Distinguishing Similar Languages workshop (Malmasi et al., 2016) added a shared task
to classify short segments of text as one of five Arabic dialects. The workshop organizers provided a
training file and a schedule. After allowing the participants development time, they distributed a test file,
and evaluated the success of participating systems.

We built several systems for dialect classification, and submitted runs from three of them. Interestingly,
our results on the workshop test data were not consistent with our tests on reserved training data.

Our accuracy rates cluster around 40%; the rates of the best systems were a little better than 50%. If we
take the raw scores as drawn from a binomial distribution, the standard deviation is

√
p(1− p)n. With

n = 1540, and p = 0.5 or p = 0.4 the standard deviation is 19.2 or 19.6 correct answers respectively,
corresponding to a difference in accuracy of about 1.25%. Since the best overall accuracy score is
51.33%, our best score is 6.9 standard deviations below it. (The scores of the top three teams don’t seem
to be significantly different from each other.)

On reserved training data, our systems all scored much better than they did on the test data, with
our best system achieving an accuracy rate of 57%. No doubt the best systems in the trial also scored
better in training. In addition to describing our systems, we speculate what factors might account for the
difference in training and test results.

2 Related Work

The Arabic dialects have a common written form and unified literary tradition, so it seems most logical to
distinguish dialects on the basis of acoustics, and there is a fair amount of work there, including (Hanani
et al., 2013; Hanani et al., 2015; Ali et al., 2016). Determining the contents of a transcript, i.e. what word
that sound sequence is most likely to be, is easier if you know what language model and what dictionary
to apply. (Najafian et al., 2014)

Language modeling of Arabic dialects has been held back by an absence of appropriate corpora. Work
has been done by Al-Haj et al. (2009; Ali et al. (2008; Elmahdy et al. (2012; Elmahdy et al. (2010;
Novotney et al. (2011; Elmahdy et al. (2013; Vergyri et al. (2005; Zaidan and Callison-Burch (2011) and

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

126



EGY Egyptian The dialect most often called Egyptian is an ur-
ban dialect used in Cairo and Alexandria. The
next largest Egyptian dialect, Sa’idi, with 20 million
speakers, is said to be incomprehensible to Cairene
speakers.

GLF Gulf The dialects from the Arabic Gulf countries of
Bahrain, Kuwait, Oman, Saudi Arabia, United Arab
Emirates, and sometimes Iraq are often grouped to-
gether.

LAV Levantine This group may include dialects from Jordan, Pales-
tine, Syria. (The label LAV is used consistently in
this corpus.)

MSA Modern Standard Arabic This includes most Arabic literature and most formal
speech, including television news.

NOR North African Dialects from north Africa including the countries
of Algeria, Libya, Morocco, Tunisia.

Table 1: Dialect Labels

Ali et al. (2016), most of whom developed corpora for the purpose, several of which are now publicly
available.

Ali et al. (2016) developed the corpus on which the DSL Arabic shared task is based. Their own
dialect detection efforts depended largely on acoustical cues. Malmasi et al. (2015) do Arabic dialect
identification from text corpora, including the Multi-Dialect Parallel Corpus of Arabic (Bouamor et al.,
2014) and the Arabic Online Commentary database (Zaidan and Callison-Burch, 2011). Zaidan and
Callison-Burch (2014) builds on their own corpus to do dialect identification. ElFardy and Diab (2013)
also build a classifier based on the Zaidan and Callison-Burch (2011) corpus.

Most of the work identifying Arabic dialects from text uses character features; many also use word
features. Many use Support Vector Machines (SVM.) We investigated building SVM models using
character n-gram features.

In the 2014 DSL workshop shared task, the second place entry (Porta and Sancho, 2014) used a
whitelisted words feature, the 10,000 most frequent words in each language, which is slightly similar
to the idea we implement in Section 4.3. However, given the substantial overlap in vocabulary between
Arabic dialects, our approach is to look for unusual frequencies, both excesses and scarcities.

3 Methodology and Data

3.1 Training and Test Data

The training data is drawn from the speech corpus collected by Ali et al. (2016). The text is provided in
the Buckwalter transcription (Buckwalter, 2002). There are no vowels, and no punctuation, except for
the space character.

The training data comprises 7619 segments, ranging in size from one to 18017 characters each. Each
segment is labeled with one of five Arabic dialects as shown in table 3.1. The labels are broad and
imprecise. For example rural and urban dialects in a single country are likely to differ a great deal,
and both accents and vocabulary might have big differences between countries. For another example,
urban Palestinian and urban Syrian are both Levantine, but are easily distinguished by pronunciation,
vocabulary, and the grammar of negation.

Many of the very short segments appear more than once, with different dialect labels. For example,
B lA “no” appears three times, labelled Gulf, Levantine, and North African. This reflects vocabulary
overlap between dialects, as well as a small sample bias (less than 300 of the segments are only a single
word) since this word could also appear in Egyptian and MSA.

127



The number of segments of various sizes is shown in table 2. Notice that almost 20% of the segments
are less than 40 characters long, but less than 2% of the data is in these segments. Similarly only 10%
of the segments are greater than 520 characters, but 38% of the training data is in these segments, with
18017 characters, 1% of the data, in a single segment.

The most common segment size is seven characters, with 61 occurences, slightly less than 1% of the
segments. Three and five character segments are in second and third place, with 3.4% of all segments
less than eight characters in length. One might expect that segmental structure would be an unreliable
feature for small segments.

In contrast, the test data for the shared task, also shown in Table 2, has less than 8% of the segments
less than 40 characters in size. The largest segment is 2454 characters, the mean is 239 characters. There
are only 21 segments, or 1.4% less than 10 characters in length. The twenty commonest sizes are all
larger than 90 characters. This is much more suitable for discovering features in segments, but doesn’t
perfectly match the training data.

segment size number of segments total characters in all in this range
training test training test

1 - 40 1510 119 30027 2576
41 - 80 1063 169 64032 10593
81 - 120 898 224 89242 23002
121 - 160 702 227 98197 31975
161 - 200 556 219 99443 39220
201 - 240 512 145 112377 31748
241 - 280 387 110 100655 28418
181 - 320 327 60 98136 18192
321 - 360 251 51 85298 17276
360 - 400 215 23 81505 8759
401 - 440 167 21 70047 8724
441 - 480 155 15 71291 6904
481 - 520 114 14 57125 7012
521 -∞ 762 143 651156 132073

sums 7619 1540 1708531 366472

Table 2: Training and Test data by segment size

3.2 Character N-gram feature vectors
The N-gram components of the sequence of characters generated from a sentence S can be represented
as a D-dimensional vector p where, D is the number of all N-grams, Cj is the jth N-gram and the
probability pj of Cj is estimated using counts of N-grams,

pj =
count(Cj)∑
i count(Ci)

(1)

Where the sum in (1) is performed over all N-grams and Count(Cj) is the number of times the N-gram
component Cj occurs in the produced sequence of tokens.

Assuming ptar and pbkg are probability vectors of the target and background Arabic dialects respec-
tively, the SVM can be applied to find a separating hyperplane h by using different kinds of kernel
functions. The most commonly used SVM kernels are the Gaussian and the polynomial. The simple
linear dot-product kernel is used in this system because other kernels gave no improvement.

3.3 Weighting
Before applying SVM, the generated probabilities vectors, pj , are weighted to emphasize the most dis-
criminative components (i.e. those which occur frequently in one dialect and infrequently in others). The

128



N-gram components which are common in most dialects, such as common characters or words, contain
little discriminative information and are de-emphasized. Numerous weighting techniques are available
for this purpose, such as the Inverse Document Frequency (IDF) from Information Retrieval (IR), Use-
fulness from Topic Spotting and Identification, and the Log-Likelihood Ratio (LLR) weighting technique
proposed in (Campbell et al., 2007).

The LLR weighting wj for component Cj is given by:

wj = g

(
1

P (Cj/all)

)
(2)

Here g() is a function used to smooth and compress the dynamic range (for example, g(x) =
√

x, or
g(x) = log(x) + 1). p(Cj/all) is the probability of N-gram component Cj across all dialects.

The components which have zero occupancy in all dialects are removed since they do not carry any
useful information. A benefit of discarding these non-visited components is that it reduces the feature
dimension dramatically, particularly for the high order N-gram system as the dimension of the N-gram
increases exponentially (Mn), where M is the number of distinct Buckwalter Arabic transcription char-
acters in the data set (M = 51 for the training data.)

Those N-gram components which have a very small probability have a very high weighting, allowing
a minority of components to dominate the scores. To prevent this, a minimum threshold T1 on the
weighting wj was applied. According to Zipfs law, the rank-frequency distribution of words in a typical
document follows a decaying exponential. The high ranking words with high probability are not useful
for discrimination because they appear in most of the documents. Conversely, the low-rank words are too
rare to gather useful statistical information. The area of interest is somewhere in the middle. To address
this we apply a second, maximum, threshold T2 on the weighting vector to deemphasize the common
components. The values of T1 and T2 were determined empirically on the training data set.

3.4 Feature Selection

In addition to the weighting and thresholds described in the above sub-section, a feature selection tech-
nique is needed to minimize the number of N-gram components by keeping only those which are most
discriminative. This is particularly necessary in high-order N-gram systems because the dimension is
increased exponentially. Consequently, reducing the number of N-gram components decreases the com-
putational cost and the required amount of memory.

A powerful feature selection technique based on the information entropy is applied to all n-gram
feature vectors.

4 The systems

Six different systems were investigated during development; test runs were submitted for three of these.
In addition, after the testing was completed, we ran some experiments on three additional SVM variants.

• Two of the systems, discussed in section 4.1, are based on the same set of extracted character n-
grams. One run was submitted from these two systems, an SVM based on a subset of 3-gram
character sequences.

• Our second run is the output of a system based on word frequencies (section 4.3.)

• Two neural network models were built (section 4.2.) Neither appears as a stand-alone run, but their
output is incorporated into into the input for the system used for our final run.

• A neural network system (section 4.4) was built to combine the word and neural-network models,
and this system was used for our third run.

129



4.1 Characteristics of the SVM systems

In developing these system, the provided training data was split, with 70% going into a training set, and
30% retained for validation and testing.

For the submitted system, the model was built using the WEKA tool (Hall et al., 2009).
The model was trained on all training tri-gram data set using 10-fold cross validation on SVM classifier

after doing feature selection using information gain.
This system gave our best run on the test data, with an accuracy of 0.4279220779 and a weighted F1

score of 0.4264282701. It performed much better against the reserved test data, achieving an accuracy
rate on that set of 57% with character trigram features.

4.2 LSTM systems

For the LSTM and word-feature systems, we chose a different split of the training data, into 90% training,
5% validation, and 5% test.

Our LSTM system is based on the char rnn software described in (Karpathy et al., 2016). This is a
character-based language model for text, built with a neural net.

The char rnn software implements a Long Short Term Memory recurrent neural network (LSTM
RNN) which reads the test or training data one character at a time. In training, the error function is
effectively the entropy of the next character; in testing, the same network is repeatedly used to predict
the most likely next character, resulting in excerpts in the style of the training data.

We modified the program1, which is written in the Torch language (Collobert et al., 2011) so that it
classifies text samples, instead of predicting the next character.

We developed two LSTM RNN models. Both have one-of-48 character inputs, and the hidden (LSTM)
layers have forget gates, etc. at each node. As in other RNN models, the state of each node in a hidden
layer is an input to the next input step, so that at each character input, not only the current input character,
but the past input history affects the output.

We specify a maximum sequence length n in training, and at each training step the past states of the
neural net are unrolled, so that internal states of the hidden layers for past states are considered while
adjusting the parameters being trained.

Our better-performing LSTM has two hidden layers of 128 nodes each. This amounts to 223877
parameters to train. It was trained with a maximum sequence length of 520 characters, so during training
up to 520 complete past states of the neural net need to be retained. (520 was chosen as the 90th
percentile of sizes from the training data.) In addition, Karpathy’s code was built to take advantage of
parallel processing in a graphics controller, and handles batches of sequences at a time. Typically, at each
training step a batch of sequences, all the same length, would be processed through a single character of
input, and the single set of parameters used by all batches would be adjusted to optimize the loss function
for the current character, given that changes in the parameters would have affected previous states.

Although we did not use a graphics controller, we kept the batch structure, which averages out the
parameter changes, and reduces the training time per segment, since all the segments in a batch contribute
to the training step.

We trained with a maximum batch size of 50, but given the training data, such large batches occurred
only for small sequence sizes.

Our training technique was to check the loss function for the validation set every thousand training
steps, roughly seven times an epoch. When the validation loss began to diverge, we’d reduce the learning
rate and continue to train from the last good point. Our best loss function is 1.3176 (compare below.)
This gave us an accuracy rate on the reserved test data of 0.4368.

We also experimented with a three hidden layer LSTM, again with 128 nodes in each hidden layer.
The number of parameters in this LSTM is 355973, and this proved to be an issue. For longer sequences,
there was not enough memory available to keep copies of the state for each character in the sequence for
modest batch sizes. It proved necessary to train with a smaller batch size (25) and a smaller sequence

1Our changes are available at https://github.com/StephenETaylor/varDialNN

130



length (420.) For whatever reason, this network did not converge as well. We achieved a best loss
function of 1.4369.

4.3 Outlier unigram system
This system uses word features, in the hope that they would be independent of the character features other
models were using. It goes through the training data, and builds frequencies for uni-grams, bi-grams,
and tri-grams for the whole set and for each dialect.

For n-grams which occur five or more times in the training set, it estimates by how many standard
deviations the count in each dialect diverges from the expected mean, assuming a binomial distribution.

An advantage feature of this model is that it gives an intermediate result which is easily interpretable.
The list of common and uncommon words is interesting, and probably forms a big part of how a human
would make the distinction between dialect samples. Of course, many of the most-divergent words are
named entities. The commonness of place names in language samples supposedly tied to geographic
areas isn’t surprising, but there’s no reason that a discussion of Casablanca shouldn’t be carried out in
Gulf Arabic, so the fact that it happens not to have been doesn’t convey deep information about the
dialect.

Tallying standard deviations of words in a sample as positive and negative votes for whether the sample
is in a dialect turns out to be very effective.

Using unigrams alone, it gave an accuracy rate on the 5% reserved test data of 0.5103.
Before considering how to merge in bigram and trigram data, we turned to attempting to combine the

results from this program with the output of our two LSTM models.

4.4 System Combiners
As soon as it became clear that the two-layer LSTM was nearing a local if not global maximum per-
formance, we looked for models with independent errors which could be combined with it (or replace
it.)

The three-layer LSTM and two-layer LSTM use a soft-max function to determine the dialect; we
arranged to normalize and output the assigned probabilities for each dialect from the two LSTMs and the
unigram frequency model. A Python script was written to combine the probabilities from each model
with addition. This is the plurality model of Malmasi and Dras (2015).

However, the normalized output of the section 4.3 model was too extreme. The rankings were not
probabilities and after normalization, ”probabilities” came out to either almost zero or almost one. We
tried various rescaling functions to get the ”probabilities” better distributed, without hurting the accuracy
rate. This helped the voting work better, but not significantly. And it seemed logical that the two LSTMs,
which have lower accuracy, should be down-weighted somehow.

Therefore we trained a simple neural network on the validation data. This combiner network has 15
inputs – the dialect weights from each system, one hidden layer of 10 nodes, and 5 softmax outputs. This
system accepted the outputs from the two LSTM systems and the outlier system, and gave us an accuracy
rate of 0.57 on our reserved training data.

4.5 Post-test experiments
After the results of the test runs came back, we conducted some experiments to see whether using all
7619 segments of the training data would have made any difference to our SVM models.

Three different orders of n-grams, 2, 3 and 4-gram, are used to model the sentences of training and
testing data set. The n-gram feature vectors produced from training data are used to train Multi-class
SVM model. This results in three SVMs; 2, 3 and 4-gram based models.

After removing the n-gram components with zero counts over all training data, the dimensions of
resulted feature vectors are 2601, 13656 and 82790 for 2-gram, 3-gram and 4-gram, respectively.

Three SVM systems were trained on bigram features, trigram features and 4-gram features respec-
tively, and evaluated on testing data (1540 sentences.) The bigram system achieved a score of 515 out
of 1540 correct, or 0.3344. The trigram system’s score was 597 out of 1540, or 0.3877. The 4-gram
system’s score was 649 out of 1540 or 0.4214, essentially the same as our best submitted system.

131



5 Results

The results are rather modest – substantially above the baseline, but significantly below the best systems.
In the discussion below, we attempt to address why our test results in the shared task were so far below

our test results during development.
Herewith the judgement on our runs:

Run Accuracy F1 (micro) F1 (macro) F1 (weighted)
SVM 0.4279 0.4279 0.4257 0.4264
unigram outliers 0.3948 0.3948 0.3462 0.3409
combined unigram and LSTMs 0.4091 0.4091 0.4112 0.4117

Table 3: Results for test set C (closed training).

6 Discussion and ideas for future work

There are a few possible reasons our results on the training data were better than our results on the test
data. Dealing with some of them might have made our systems not only more robust, but perform better
in both contexts.

For the two SVM systems, we split the training data into 70% training data, 30% evaluation data. For
the LSTM and word-feature systems, we chose a different split of the training data, into 90% training,
5% validation, and 5% test. A consequence of the small amount of validation and testing data is a
fairly large standard deviation in the test results, not observed during our testing, but perhaps apparent in
the difference between results with the reserved training data (380 samples) and the workshop test data
(1540 samples.) With accuracy/error rates about 0.50 we’d expect standard deviations of 8.5 out of 380
or 2.2% and 20 out of 1540 or 1.2%, respectively. While a jack-knife approach to cross-validation might
have given us a better judgement for the mean accuracy achieved by this technique, the time involved in
re-training the LSTM would have been substantial.

There are numerous experiments that we did not carry out, which might also have improved our
development.

• Experimenting with shorter sequence lengths should have sped up training our LSTM systems. This
would have let us experiment more with different configurations.

• Seeking out a system or cloud system with a graphics coprocessor could have also sped up neural
network development.

• In general, we did not experiment with many constants, but chose them based on plausibility.

• Our word and neural net systems are both attentive to segment size, and the distribution of segment
sizes in the test data is different than the training data.

• In spite of its surprising effectiveness on the reserved training data, our unigram word system isn’t
well-thought-out. A better mathematical foundation for combining standard deviations of words is
the cumulative probability distribution of the normal curve. Adding logs of the cpdf is equivalent to
multiplying probabilities, and seems mathematically justified, whereas adding positive and negative
deviations is very ad-hoc.

Even using the cpdf will over-emphasize variability in common words, however. Reviewing the

132



standard deviations of words, we see that, for example, ú

	æªK
 yEny “that is”, which occurs in MSA in

the training data 16 standard deviations less frequently than might be expected from its occurrence
in the whole corpus, still has 190 occurrences in 917 MSA training segments, and a frequency of
190/44932 = 0.004 in MSA data. So the presence of yEny in a test segment, while interesting, is
nowhere near as exciting for ruling out MSA as its standard deviation indicates.

In fact, the second and fourth ’most unusually frequent’ words in the MSA training data, respec-
tively 18.2 and 16.3 standard deviations more common than expected, are �éJ
 	�J
¢�Ê 	®Ë @ AlflsTynyp

“female Palestinian” and �é J
 Ê J
 K @Qå�B @ Al<srA}ylyp “female Israeli”. These words are probably
topical, rather than typical of MSA. The frequency of AlflsTynyp in the MSA training data is about
0.002 (87 occurences) – and once in EGY, twice in GLF, eleven times in LAV. Judging from the
metadata labels in the original dataset, it is used in six or more different stories in MSA. AlflsTynyp
occurs twice in the training data we reserved for testing. In the test data, it occurs twice in EGY,
seven times in LAV, and seven times in MSA.

Similarly, Al<srA}ylyp occurs 45 times in the MSA training data and five times in all other dialects,
and occurs three times in the reserved testing data. In the test data it occurs once in EGY, 8 times in
LAV, 6 times in MSA.

It seems plausible that this story-topic effect may apply to other words in the training data, and that
this alone might be sufficient to account for a fall-off in the performance of our software on the test
task.

• Our procedure for splitting the training data was non-random, so that evaluation, verification and
test data may have shared common prefixes, since the training sentences were sorted.

• We should have used a common split of the training data for all systems, so that the SVM systems
could be combined with the others. As things stand, testing data reserved for one set of systems
overlaps training data for others.

In the months to come, we hope to use the training and test data from the workshop to carry out some
of the experiments we did not do in time to present. We owe a big ‘thank you’ to the organizers for giving
us this opportunity!

References

Hassan Al-Haj, Roger Hsiao, Ian Lane, Alan W. Black, and Alex Waibel. 2009. Pronunciation modeling for
dialectal Arabic speech recognition. In Automatic Speech Recognition and Understanding Conference.

Mohammed Ali, Moustafa Elshafei, Mansour Al-Ghamdi, Husni Al-Muhtaseb, and Atef Al-Najjar. 2008. Gen-
eration of Arabic phonetic dictionaries for speech recognition. In International Conference on Innovations in
Information Technology, 2008., pages 59–63. IEEE.

Ahmed Ali, Najim Dehak, Patrick Cardinal, Sameer Khurana, Sree Harsha Yella, James Glass, Peter Bell, and
Steve Renals. 2016. Automatic dialect detection in Arabic broadcast speech. In Proceedings of Interspeech
2016, pages 2934–2938.

Houda Bouamor, Nizar Habash, and Kemal Oflazer. 2014. A multidialectal parallel corpus of Arabic. In Pro-
ceedings of the Ninth International Conference on Language Resources and Evaluation (LREC14). European
Language Resources Association (ELRA), May.

133



Tim Buckwalter. 2002. Aramorph 1.0 program.

William M. Campbell, Joseph P. Campbell, Terry P. Gleason, Douglas A. Reynolds, and Wade Shen. 2007.
Speaker verification using support vector machines and high-level features. IEEE Transactions on Audio,
Speech, and Language Processing, 15(7):2085–2094.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A MATLAB-like environment for
machine learning. In BigLearn, Neural Information Processing Systems Workshop.

Heba ElFardy and Mona Diab. 2013. Sentence level dialect identification in Arabic. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (ACL), pages 456–461.

Mohamed Elmahdy, Rainer Gruhn, Wolfgang Minker, and S. Abdennadher. 2010. Cross-Lingual Acoustic Model-
ing for Dialectal Arabic Speech Recognition. In International Conference on Speech and Language Processing
(Interspeech), September.

Mohamed Elmahdy, Mark Hasegawa-Johnson, and Eiman Mustafawi. 2012. A baseline speech recognition system
for Levantine colloquial Arabic. In 12th ESOLEC conference on Language Engineering.

Mohamed Elmahdy, Mark Hasegawa-Johnson, and Eiman Mustafawi. 2013. A transfer learning approach for
under-resourced Arabic dialects speech recognition. In The 6th Language and Technology Conference.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The
WEKA data mining software: An update. SIGKDD Explorations, 11(1).

Abualsoud Hanani, Martin J. Russell, and Michael J. Carey. 2013. Human and computer recognition of regional
accents and ethnic groups from British english speech. Computer Speech and Language, 27(1):5974.

Abualsoud Hanani, Hanna Basha, Yasmeen Sharaf, and Stephen Taylor. 2015. Palestinian Arabic regional accent
recognition. In The 8th International Conference on Speech Technology and Human-Computer Dialogue.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2016. Visualizing and understanding recurrent networks. In 5th
International Conference on Learning Representations.

Shervin Malmasi and Mark Dras. 2015. Language identification using classifier ensembles. In Proceedings of the
Joint Workshop on Language Technology for Closely Related Languages, Varieties and Dialects (LT4VarDial),
pages 35–43, Hissar, Bulgaria.

Shervin Malmasi, Eshrag Refaee, and Mark Dras. 2015. Arabic dialect identification using a parallel multidi-
alectal corpus. In Proceedings of the 14th Conference of the Pacific Association for Computational Linguistics
(PACLING 2015), pages 209–217, Bali, Indonesia, May.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić, Preslav Nakov, Ahmed Ali, and Jörg Tiedemann. 2016.
Discriminating between similar languages and Arabic dialect identification: A report on the third DSL shared
task. In Proceedings of the 3rd Workshop on Language Technology for Closely Related Languages, Varieties
and Dialects (VarDial), Osaka, Japan.

Maryam Najafian, Andrea DeMarco, Stephen Cox, and Martin Russell. 2014. Unsupervised model selection for
recognition of regional accented speech. In Proceedings of Interspeech 2014.

Scott Novotney, Rich Schwartz, and Sanjeev Khudanpur. 2011. Unsupervised Arabic dialect adaptation with
self-training. In Proceedings of Interspeech 2011, pages 1–4.

Jordi Porta and José-Luis Sancho. 2014. Using maximum entropy models to discriminate between similar lan-
guages and varieties. In Proceedings of the First Workshop on Applying NLP Tools to Similar Languages,
Varieties and Dialects (VarDial), pages 120–128, Dublin, Ireland.

Dimitra Vergyri, Katrin Kirchhoff, Venkata Raman Rao Gadde, Andreas Stolcke, and Jing Zheng. 2005. Devel-
opment of a conversational telephone speech recognizer for Levantine Arabic. In Proceedings of Interspeech
2005, pages 1613–1616.

Omar F. Zaidan and Chris Callison-Burch. 2011. The Arabic Online Commentary dataset: An annotated dataset
of informal Arabic with high dialectal content. In Proceedings of ACL, pages 37–41.

Omar F. Zaidan and Chris Callison-Burch. 2014. Arabic dialect identification. Computational Linguistics,
40(1):171–202.

134


