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Abstract

We present the results of the third edition of the Discriminating between Similar Languages
(DSL) shared task, which was organized as part of the VarDial’2016 workshop at COLING’2016.
The challenge offered two subtasks: subtask 1 focused on the identification of very similar lan-
guages and language varieties in newswire texts, whereas subtask 2 dealt with Arabic dialect
identification in speech transcripts. A total of 37 teams registered to participate in the task, 24
teams submitted test results, and 20 teams also wrote system description papers. High-order
character n-grams were the most successful feature, and the best classification approaches in-
cluded traditional supervised learning methods such as SVM, logistic regression, and language
models, while deep learning approaches did not perform very well.

1 Introduction

The Discriminating between Similar Languages (DSL) shared task on language identification was first
organized in 2014. It provides an opportunity for researchers and developers to test language identifica-
tion approaches for discriminating between similar languages, language varieties, and dialects. The task
was organized by the workshop series on NLP for Similar Languages, Varieties and Dialects (VarDial),
which was collocated in 2014 with COLING, in 2015 with RANLP, and in 2016 again with COLING.

In its third edition, the DSL shared task grew in size and scope featuring two subtasks and attracting
a record number of participants. Below we present the task setup, the evaluation results, and a brief
discussion about the features and learning methods that worked best. More detail about each particular
system can be found in the corresponding system description paper, as cited in this report.

2 Related Work

Language and dialect identification have attracted a lot of research attention in recent years, covering
a number of similar languages and language varieties such as South-Slavic languages (Ljubešić et al.,
2007), English varieties (Lui and Cook, 2013), varieties of Mandarin in China, Taiwan and Singapore
(Huang and Lee, 2008), Malay vs. Indonesian (Ranaivo-Malançon, 2006), Brazilian vs. European Por-
tuguese (Zampieri and Gebre, 2012), and Persian vs. Dari (Malmasi and Dras, 2015a), to mention just a
few. The interest in this aspect of language identification has motivated the organization of shared tasks
such as the DSL challenge, which allowed researchers to compare various approaches using the same
dataset.

Along with the interest in similar languages and language variety identification, we observed sub-
stantial interest in applying natural language processing (NLP) methods for the processing of dialectal
Arabic with special interest in methods to discriminate between Arabic dialects. Shoufan and Al-Ameri
(2015) presented a comprehensive survey on these methods including recent studies on Arabic dialect
identification such as (Elfardy and Diab, 2014; Darwish et al., 2014; Zaidan and Callison-Burch, 2014;
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Tillmann et al., 2014; Malmasi and Dras, 2015a). Methods for Arabic dialect detection present signif-
icant overlap with methods proposed for similar language identification. For this reason, in the 2016
edition of the DSL challenge we offered a subtask on Arabic dialect identification.

Below, we discuss some related shared tasks including the first two editions of the DSL challenge.

2.1 Related Shared Tasks
Several shared tasks related to the DSL task have been organized in recent years. Two examples are
the ALTW language identification shared task (Baldwin and Lui, 2010) on general-purpose language
identification, and the DEFT 2010 shared task (Grouin et al., 2010), which focused on language variety
identification of French texts with a temporal dimension. In the DEFT 2010 shared task, systems were
asked to predict when and where texts were published. The DEFT 2010 shared task is most similar to our
DSL task, but is limited to French language varieties, while our task is multilingual and includes several
groups of similar languages and language varieties.

Language identification on Twitter and other platforms of user-generated content is a popular research
direction (Ljubešić and Kranjčić, 2015). This interest has motivated the shared task on Language Identi-
fication in Code-Switched Data (Solorio et al., 2014), which focused on tweets containing a mix of two
or more languages, and the TweetLID shared task (Zubiaga et al., 2014; Zubiaga et al., 2015), which
targeted language identification of tweets focusing on English and on languages spoken on the Iberian
peninsula, namely Basque, Catalan, Spanish, and Portuguese.

The most recent related shared task is the task on geolocation prediction in Twitter (Han et al., 2016).1

The organizers of this task provided a large training set collected from one million users, and asked to
predict the location of each user (user-level prediction) and of each tweet (tweet-level prediction).

2.2 Previous Editions of the DSL Task
For the first edition of the DSL task (Zampieri et al., 2014), we compiled v1.0 of the DSL corpus collec-
tion (DSLCC), which contained excerpts of newspaper texts written in thirteen languages divided into
the following groups: Group A (Bosnian, Croatian, Serbian), Group B (Indonesian, Malay), Group C
(Czech, Slovak), Group D (Brazilian Portuguese, European Portuguese), Group E (Peninsular Spanish,
Argentinian Spanish), and Group F (American English, British English).2

Team Closed Open System Description Paper
NRC-CNRC 0.957 - (Goutte et al., 2014)
RAE 0.947 - (Porta and Sancho, 2014)
UMich 0.932 0.859 (King et al., 2014)
UniMelb-NLP 0.918 0.880 (Lui et al., 2014)
QMUL 0.906 - (Purver, 2014)
LIRA 0.766 - -
UDE 0.681 - -
CLCG 0.453 - -
Total 8 2 5

Table 1: Results for the DSL 2014 shared task: accuracy.

Eight teams developed systems and submitted results for this first edition of the task. All eight teams
participated in the closed track, which was limited to training on the DSL corpus only, and two teams
took part in the open track, which also allowed using external resources; five teams submitted system
description papers. The results are summarized in Table 1, where the best-performing submissions, in
terms of accuracy, are shown in bold.3

The best score in the closed submission track was achieved by the NRC-CNRC team (Goutte et al.,
2014), which used a two-step classification approach: they first predicted the language group, and then

1https://noisy-text.github.io/2016/geo-shared-task.html
2Group F was excluded from the official evaluation results due to a number of republications present in the dataset.
3For a comprehensive discussion of the first two editions of the DSL shared task, see (Goutte et al., 2016).
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discriminated between the languages from this predicted language group. Members of this team also
participated in 2015 under the name NRC. UMich (King et al., 2014) and UniMelb-NLP (Lui et al., 2014)
were the only teams that compiled and used additional training resources and the only teams to make
open submissions. However, their open submissions performed worse than their closed submissions:
accuracy dropped from 93.2% to 85.9% for UMich, and from 91.8% to 88.0% for UniMelb-NLP.

For the 2015 edition of the task (Zampieri et al., 2015b), we created v2.0 of the DSLCC, which
included the following languages and language varieties grouped by similarity: Bulgarian vs. Macedo-
nian, Bosnian vs. Croatian vs. Serbian, Czech vs. Slovak, Malay vs. Indonesian, Brazilian vs. European
Portuguese, Argentinian vs. Peninsular Spanish, and a group of various other languages,4 which were
included to emulate a more realistic language identification scenario. We had two test datasets. Test set
A contained the original unmodified text excerpts, while in test set B we replaced the capitalized named
entities by placeholders. The results for the participating systems in the 2015 edition of the DSL task are
presented in Table 2; again, the best submissions are shown in bold. We can see that the 2015 edition of
the task attracted more submissions compared to 2014.

Team Closed A Closed B Open A Open B System Description Paper
BOBICEV 0.941 0.922 - - (Bobicev, 2015)
BRUNIBP 0.937 - - - (Ács et al., 2015)
INRIA 0.839 - - - -
MAC 0.955 0.940 - - (Malmasi and Dras, 2015b)
MMS* 0.952 0.928 - - (Zampieri et al., 2015a)
NLEL 0.640 0.628 0.918 0.896 (Fabra-Boluda et al., 2015)
NRC 0.952 0.930 0.957 0.934 (Goutte and Léger, 2015)
OSEVAL - - 0.762 0.753 -
PRHLT 0.927 0.908 - - (Franco-Salvador et al., 2015)
SUKI 0.947 0.930 - - (Jauhiainen et al., 2015)
Total 9 7 3 3 8

Table 2: Results for the DSL 2015 shared task: accuracy.

The best-performing system in the open submission track, that of MAC, used an ensemble of SVM
classifiers and achieved 95.5% accuracy on test set A and 94.0% accuracy on test set B. Unlike in the
2014 edition, in which open submissions performed substantially worse than closed ones, this time this
was not the case, e.g., for the NRC team. However, the additional resource they used was external only
technically; in fact, it was the previous version of the DSL corpus.5

Moreover, the use of two test sets allowed us to evaluate the impact of named entities. In the 2014
edition of the task, we had noticed that names of people, places, and organizations could be quite helpful
for discriminating texts from different geographical locations, e.g., Argentinian vs. Peninsular Spanish,
and we were worried that this is what systems critically relied on, i.e., that they were focusing on country
of origin rather than language variety prediction. However, the results for test set A vs. B in 2015 show
that the influence of named entities was not as great as we feared, and that the participating systems
were able to capture lexical and, in some cases syntactic, variation using n-gram models even when the
original named entities were not present.

3 Task Setup

Here, we describe the setup of the 2016 DSL shared task: the subtasks, the tracks, and the data.

3.1 General Setup

This year, the DSL challenge included two subtasks:

4This group of languages included Catalan, Russian, Slovene, and Tagalog.
5The NLEL team reported a bug in their closed submission, which might explain their low performance in this track.
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• Subtask 1: Discriminating between Similar Languages and Language Varieties
For this subtask, we compiled a new version of the DSL corpus, which included for the first time
French language varieties, namely Hexagonal French vs. Canadian French, and further excluded
pairs of similar languages that proved to be very easy to discriminate between in previous editions
(e.g., Czech vs. Slovak and Bulgarian vs. Macedonian).

• Subtask 2: Arabic Dialect Identification
This subtask focused on discriminating Arabic dialects in speech transcripts. We used the dataset
compiled by Ali et al. (2016), which contained Modern Standard Arabic (MSA) and four Arabic
dialects: Egyptian (EGY), Gulf (GLF), Levantine (LAV), and North African (NOR).

As in previous editions of the DSL task, we allowed teams to use external data. We therefore divided
each subtask in two tracks:

• Closed: using only the corpora provided by the organizers;

• Open: using any additional data.6

Participation this year increased substantially compared to previous years, as the statistics in Table 3
show. We believe that this is due to the addition of an Arabic subtask as well as to the out-of-domain
tweet test sets for the English subtask.

Year Venue (Sub-)tasks Subscriptions Submissions Papers
2014 VarDial at COLING 1 22 8 5
2015 LT4VarDial at RANLP 1 24 10 8
2016 VarDial at COLING 2 37 24 20

Table 3: The evolution of the DSL task from 2014 to 2016.

3.2 Data
In this section, we present the datasets we used this year. For subtask 1, we compiled v3.0 of DSLCC
with a new language variety (French) as well as out-of-domain test sets with tweets, and for subtask 2,
we use a corpus of Arabic transcribed speeches presented in (Ali et al., 2016).

3.2.1 Subtask 1 Data
We compiled a new version 3.0 of DSLCC, following the methodology we used in previous years (Tan et
al., 2014).7 The resulting corpus contains short newspaper texts written in twelve languages and language
varieties. Table 4 shows the languages included in the DSL v3.0 grouped by similarity.

We provided participants with 20,000 instances per language variety divided into 18,000 instances for
training and 2,000 for development. Most language groups included in v3.0 were also present in v1.0
and v2.0. We further added French from Canada and from France, as well as Mexican Spanish.8

We used three test sets for subtask 1: one in-domain (A), and two out-of-domain (B1 and B2). Test set
A contained journalistic data including 1,000 instances per language sampled from the same distribution
as for the DSLCC v3.0. It is also comparable to the test sets released in DSLCC v1.0 and v2.0.

We further created test sets B1 and B2 in order to evaluate the performance of the participating systems
on out-of-domain data. Each of the two datasets included 100 Twitter users per language/variant, and
a varying number of tweets per user. Note that these test sets cover only two groups of closely-related
languages: South-Slavic (Bosnian, Croatian, Serbian) and Portuguese (Brazilian and European).

We used the TweetGeo (Ljubešić et al., 2016) and TweetCat (Ljubešić et al., 2014) tools for data col-
lection. TweetGeo allows us to collect geo-encoded tweets over a specified perimeter via the Twitter

6For subtask 1, using previous versions of the DSL corpus also made a submission open.
7The dataset is available at http://ttg.uni-saarland.de/resources/DSLCC
8Mexican Spanish was already present for the unshared task in 2015, but now it is part of the main DSL shared task.
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Train and Dev. Testing
Language/Variety Class Instances Tokens A Tokens B1 Tokens B2 Tokens
Bosnian bs 20,000 743,732 1,000 37,630 100 209,884 100 170,481
Croatian hr 20,000 874,555 1,000 42,703 100 179,354 100 119,837
Serbian sr 20,000 813,076 1,000 41,153 100 181,185 100 124,469
Indonesian id 20,000 831,647 1,000 42,192 — — — —
Malay my 20,000 618,532 1,000 31,162 — — — —
Brazilian Portuguese pt-BR 20,000 988,004 1,000 49288 100 151,749 100 19,567
European Portuguese pt-PT 20,000 908,605 1,000 45173 100 134,139 100 13,145
Argentine Spanish es-AR 20,000 999,425 1,000 50,135 — — — —
Castilian Spanish es-ES 20,000 1,080,523 1,000 53,731 — — — —
Mexican Spanish es-MX 20,000 751,718 1,000 47,176 — — — —
Canadian French fr-CA 20,000 772,467 1,000 38,602 — — — —
Hexagonal French fr-FR 20,000 963,867 1,000 48,129 — — — —
Total 240,000 10,346,151 12,000 527,074 500 856,331 500 323,030

Table 4: DSLCC v3.0: the languages included in the corpus grouped by similarity. Note that a test
example in test set A is an excerpt of text, whereas in test sets B1 and B2 it is a collection of multiple
tweets by the same user (with 98.88 and 50.47 tweets per user on average for B1 and B2, respectively).

Stream API. We set up one perimeter over the South-Slavic speaking countries, another one over Por-
tugal, and a final one over Brazil. We then collected data over a period of one month. Once ready, we
filtered the users by number of tweets collected per user and by language the user predominantly used.
Finally, we used the TweetCat tool to collect whole timelines for users matching the following crite-
ria: the user has posted at least five tweets (otherwise language identification would be hard), and the
language(s) given langid.py’s prediction are (hr, sr, bs) for the first variant and (pt) for the second one.

We then proceeded to manual annotation. We had a single human annotator for each language/variety
group. The annotation procedure was the following: the annotator read one tweet after the other, start-
ing with the most recent tweet, and marking the tweet at which he made the decision about the lan-
guage/variety used by the Twitter user. In the South-Slavic group, the average number of analyzed
tweets per user was 70.5 for Bosnian, 51.5 for Croatian, and 49 for Serbian. In the Portuguese group,
these were 6 for European Portuguese, and 8 for Brazilian Portuguese. While part of the difference
between the two groups may be due to different criteria the two annotators used, the differences inside
groups show important trends, e.g., that identifying Bosnian users requires on average 40% more tweets
compared to identifying Serbian or Croatian ones.

Having the information about the number of tweets that were needed for a human decision enabled
us to prepare the harder B2 test set in which only that minimum number of tweets was included. On
the other hand, the B1 test set, being a proper superset of B2, contained much more tweets per user,
and we had to cap the overall number of tweets in the dataset at 50,000 due to restrictions of the Twitter
Developer Agreement.

It is important to stress that no filtering over the user timeline (such as removing tweets written in
different languages or with no linguistic information) was performed, offering thereby a realistic setting.

3.2.2 Subtask 2 Data
For the Arabic subtask, we used transcribed speech in MSA and in four dialects (Ali et al., 2016):
Egyptian (EGY), Gulf (GLF), Levantine (LAV), and North African (NOR). The data comes from a
multi-dialectal speech corpus created from high-quality broadcast, debate and discussion programs from
Al Jazeera, and as such contains a combination of spontaneous and scripted speech (Wray and Ali, 2015).
We released 7,619 sentences for training and development, without a train/dev split;9 a breakdown for
each dialect is shown in Table 5. We further used 1,540 sentences for evaluation. We extracted text from
ten hours of speech per dialect for training, and from two hours per dialect for testing.

9http://alt.qcri.org/resources/ArabicDialectIDCorpus/varDial_DSL_shared_task_2016_
subtask2
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Note that even though the origin of our data is speech, in our corpus we only used written transcripts.
This makes the task hard as it may be difficult, or even impossible in certain contexts, to determine
unambiguously the dialect of a written sentence if it contains graphemic cognates common across mul-
tiple dialects of colloquial and of Standard Arabic. This ambiguity is less pronounced in the presence of
speech signal. Thus, we plan to make available acoustic features in future challenges.

Training Testing
Dialect Dialect Examples Words Examples Words
Egyptian EGY 1,578 85K 315 13K
Gulf GLF 1,672 65K 256 14K
Levantine LAV 1,758 66K 344 14K
Modern Standard MSA 999 49K 274 14K
North African NOR 1,612 52K 351 12K
Total 7,619 317K 1,540 67K

Table 5: The Arabic training and testing data.

3.3 Evaluation
Regarding evaluation, in the previous editions of the DSL task, we used average accuracy as the main
evaluation metric. This was because the DSL datasets were balanced with the same number of examples
for each language variety. However, this is not true for this year’s Arabic dataset, and thus we added
macro-averaged F1-score, which is the official score this year.

Moreover, following common practice in other shared tasks, e.g., at WMT (Bojar et al., 2016), this
year we carried out statistical significance tests using McNemar’s test in order to investigate the variation
of performance between the participating systems. Therefore, in all tables with results, we rank teams in
groups taking statistical significance into account,10 rather than using absolute performance only.

4 Results for Subtask 1: DSL Dataset

A total of 17 teams participated in the shared task. Table 6 shows statistics about the participating teams.

Team A (Closed) A (Open) B (Closed) B (Open) System Description Paper
andre X (Cianflone and Kosseim, 2016)
ASIREM X (Adouane et al., 2016)
Citius Ixa Imaxin X X X X (Gamallo et al., 2016)
eire X X (Franco-Penya and Sanchez, 2016)
GW LT3 X X (Zirikly et al., 2016)
HDSL X X —
hltcoe X X (McNamee, 2016)
mitsls X (Belinkov and Glass, 2016)
nrc X X X X (Goutte and Léger, 2016)
PITEOG X X X (Herman et al., 2016)
ResIdent X X (Bjerva, 2016)
SUKI X X X X (Jauhiainen et al., 2016)
tubasfs X X (Çöltekin and Rama, 2016)
UniBucNLP X X (Ciobanu et al., 2016)
Uppsala X X —
UPV UA X X —
XAC X X (Barbaresi, 2016)
Total 17 3 14 4 14

Table 6: Teams participating in subtask 1 (here, we group test sets B1 and B2 under B).

10This means that systems not significantly different to the top system are also assigned rank 1, and so on.
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4.1 Results on Test Set A
We received submissions by 17 teams for the closed training training condition. The results and a brief
description of the algorithm and of the features used by each team are shown in Table 7. Note that the
teams were allowed to submit up to three runs, and here we only show the results for the best run from
each participating team. The best results in the closed condition were achieved by the tubasfs team with
F1-score of 89.38% and by the SUKI team with F1-score of 88.77% (both ranked first, as they are not
statistically different). A group of five teams scored between 88.14% and 88.70%, and they were all
ranked second (as they were not statistically different).

Rank Team Run Accuracy F1 Approach
1 tubasfs run1 0.894 0.894 SVM, char n-grams (1-7)

SUKI run1 0.888 0.888 Lang. models, word uni-, char n-grams (1-6)
2 GW LT3 run3 0.887 0.887 Hierarchical log. regression, char/word n-grams

nrc run1 0.886 0.886 Two-stage probabilistic and SVM, char 6-grams
UPV UA run1 0.883 0.884 String kernels and kernel discriminant analysis
PITEOG run3 0.883 0.883 Chunk-based language model
andre run1 0.885 0.881 Language models, char n-grams

3 XAC run3 0.879 0.879 Unsupervised morphological model
ASIREM run1 0.878 0.878 SVM, char 4-grams
hltcoe run1 0.877 0.877 Prediction by partial matching, char 5-grams

4 UniBucNLP run2 0.865 0.864 Hierarchical log. reg. w/ word 1/2-grams
5 HDSL run1 0.853 0.852 SVM, word and char n-grams

Citius Ixa Imaxin run2 0.853 0.850 Naive Bayes, word unigrams
ResIdent run3 0.849 0.846 Deep neural net with byte embeddings

6 eire run1 0.838 0.832 Naive Bayes, char bigrams
mitsls run3 0.830 0.830 Character-level convolutional neural network

7 Uppsala run2 0.825 0.824 Word-level convolutional neural network

Table 7: Results for subtask 1, test set A, closed training condition.

Rank Team Run Accuracy F1 Approach
1 nrc run1 0.890 0.889 Two-stage probabilistic and SVM, char 6-grams

SUKI run1 0.884 0.884 Lang. models, word uni-, char n-grams (1-7)
2 Citius Ixa Imaxin run2 0.871 0.869 Naive Bayes, word unigrams

Table 8: Results for subtask 1, test set A, open training condition.

The open training track for test set A attracted only three teams as shown in Table 8. For the first
two teams, the difference compared to their closed submission is marginal: nrc gained less than half a
point absolute in terms of accuracy and F1, while SUKI lost about the same. However, the third team,
Citius Ixa Imaxin, managed to gain about two points absolute in both measures.

Overall, we observe that the teams used a wide variety of algorithms and features, which are summa-
rized in the results tables. They are also described in more detail in the corresponding system description
papers. Note that some teams, such as ResIdent and Uppsala, used neural network-based approaches,
but their results were not competitive to those that used simpler, standard classifiers such as SVM and
logistic regression.

4.2 Results on Test Sets B1 and B2
The results of the participating teams on test set B1 (out-of-domain, tweets) for the closed training
condition are shown in Table 9. Once again, we group the submissions based on statistical significance.
Three teams shared the first place, namely GW LT3, nrc, and UniBucNLP, with an F1-score ranging
from 89.69% to 91.94%.
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Rank Team Run Accuracy F1 Approach
1 GW LT3 run1 0.920 0.919 Log. reg. with char/word n-grams

nrc run1 0.914 0.913 Two-stage probabilistic and SVM, char 6-grams
UniBucNLP run1 0.898 0.897 Log. reg. w/ word 1/2-grams

2 UPV UA run2 0.888 0.886 String kernels and kernel discriminant analysis
tubasfs run1 0.862 0.860 SVM, char n-grams (1-7)

3 eire run1 0.806 0.793 Naive Bayes, char bigrams
PITEOG run1 0.800 0.793 Expectation maximization, word unigrams

4 Citius Ixa Imaxin run1 0.708 0.713 Dictionary-based ranking method
ResIdent run3 0.688 0.687 Deep neural net with byte embeddings
HDSL run1 0.698 0.686 SVM, word and char n-grams
Uppsala run2 0.682 0.685 Word-level convolutional neural network
SUKI run3 0.688 0.672 Lang. models, word uni-, char n-grams (1-8)

5 XAC run2 0.618 0.594 Unsupervised morphological model
6 hltcoe run1 0.530 0.510 Prediction by partial matching, char 5-grams

Table 9: Results for subtask 1, test set B1, closed training condition.

Rank Team Run Accuracy F1 Approach
1 nrc run1 0.948 0.948 Two-stage probabilistic and SVM, char 6-grams
2 SUKI run3 0.822 0.815 Lang. models, word uni-, char n-grams (1-8)

PITEOG run1 0.800 0.815 Expectation maximization, word unigrams
4 Citius Ixa Imaxin run1 0.664 0.634 Dictionary-based ranking method

Table 10: Results for subtask 1, test set B1, open training condition.

Rank Team Run Accuracy F1 Approach
1 GW LT3 run1 0.878 0.877 Log. reg. with char/word n-grams

nrc run1 0.878 0.877 Two-stage probabilistic and SVM, char 6-grams
UPV UA run2 0.858 0.857 String kernels and kernel discriminant analysis

2 UniBucNLP run2 0.838 0.838 Hierarchical log. reg. w/ word 1/2-grams
tubasfs run1 0.822 0.818 SVM, char n-grams (1-7)

3 PITEOG run1 0.760 0.757 Expectation maximization, word unigrams
eire run1 0.740 0.727 Naive Bayes, char bigrams

4 Citius Ixa Imaxin run1 0.686 0.698 Dictionary-based ranking method
ResIdent run2 0.698 0.694 Deep neural net with byte embeddings
Uppsala run2 0.672 0.675 Word-level convolutional neural network
HDSL run1 0.640 0.626 SVM, word and char n-grams
SUKI run1 0.642 0.623 Lang. models, word uni-, char n-grams (1-6)

5 XAC run2 0.576 0.552 Unsupervised morphological model
hltcoe run2 0.554 0.513 Prediction by partial matching, char 5-grams

Table 11: Results for subtask 1, test set B2, closed training condition.

Rank Team Run Accuracy F1 Approach
1 nrc run1 0.900 0.900 Two-stage probabilistic and SVM, char 6-grams
2 SUKI run2 0.796 0.791 Lang. models, word uni-, char n-grams (1-8)
3 PITEOG run1 0.728 0.759 Expectation maximization, word unigrams

Citius Ixa Imaxin run1 0.692 0.695 Dictionary-based ranking method

Table 12: Results for subtask 1, test set B2, open training condition.
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Note that the higher results obtained on test set B1 compared to test set A are somewhat misleading:
test set B1 is out-of-domain and is thus generally harder, but it also involves less languages (five for test
set B1 as opposed to twelve for test set A), which makes it ultimately much easier.

In Table 10 we present the results for the four teams that participated under the open training condition
for test set B1, i.e., using external data. We can see that the nrc team performed best with an F1 score
of 94.80%. This result is a few percentage points better than the 91.34% F1-score obtained by nrc in
the closed training condition, which indicates that the use of additional training data was indeed helpful.
This is an expected outcome as no suitable training data has been provided for test sets B1 and B2, which
contain tweets, and are out of domain compared to the training data (newspaper texts).

Table 11 shows the results on test set B2 under the closed training condition. As expected, this test set
turned out to be more challenging than test set B1, and this was the case for almost all teams. Moreover,
we can see that there was some minor variation in the ranks of teams on B1 and on B2 (closed training
condition), e.g., the UniBucNLP team was ranked among the first on B1, but for B2 it switched places
with the UPV UA team.

Finally, Table 12 presents the results on test set B2 in the open training condition. Once again, the
results of nrc were higher here than in the closed training condition.

4.3 Open Training Data Sources
Collecting additional training data is a time-consuming process. Therefore, in line with our expectations
given our past experience in the previous editions of the DSL task, we received far fewer entries in the
open training condition for both subtasks.

For subtask 1, a total of four teams used additional training data across the three test sets. According
to the system description papers, the data was compiled from the following sources:

• Citius Ixa Imaxin augmented the training data with the corpus released in the second edition of the
DSL task in 2015.

• nrc augmented the provided training data with the corpora from the two previous DSL shared tasks
(DSLCC v1.0 and DSLCC v2.1), plus additional text crawled from the web site of the newspaper
La Presse from Quebec.

• PITEOG used their own custom web-based corpus, with no further details provided.

• SUKI created an additional dataset using web pages in the Common Crawl corpus.

5 Results for Subtask 2: Arabic Dialect Identification

The eighteen teams that participated in subtask 2 along with the reference to their system description
papers are shown in Table 13.11

5.1 Results on Subtask C
The results obtained by the teams that participated in the closed training condition are shown in Table
14. The best results were obtained by MAZA, UnibucKernel, QCRI, and ASIREM, which achieved an
F1-score ranging between 49.46% and 51.32%, and thus shared the first place. The MAZA team proposed
an approach based on SVM ensembles, which was also ranked first in the 2015 edition of the DSL task
(Malmasi and Dras, 2015b), which confirms that SVM ensembles are a suitable method for this task.
The UnibucKernel team approached the task using string kernels, which were previously proposed for
native language identification (Ionescu et al., 2016).

Table 15 shows the results obtained by the three teams that participated in subtask 2 under the open
training condition. They showed very different performance (statistically different), and saw very differ-
ent outcomes when using external training data.

11We acknowledge that team MAZA included two DSL shared task organizers. Yet, the team had no unfair advantage, and
competed under the exactly same conditions as the other participants.
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Team C (Closed) C (Open) System Description Paper
AHAQST X (Hanani et al., 2016)
ALL X (Alshutayri et al., 2016)
ASIREM X X (Adouane et al., 2016)
cgli X (Guggilla, 2016)
Citius Ixa Imaxin X (Gamallo et al., 2016)
eire X (Franco-Penya and Sanchez, 2016)
GW LT3 X X (Zirikly et al., 2016)
HDSL X —
hltcoe X (McNamee, 2016)
MAZA X (Malmasi and Zampieri, 2016)
mitsls X (Belinkov and Glass, 2016)
PITEOG X (Herman et al., 2016)
QCRI X X (Eldesouki et al., 2016)
SUKI X (Jauhiainen et al., 2016)
tubasfs X (Çöltekin and Rama, 2016)
UCREL X —
UnibucKernel X (Ionescu and Popescu, 2016)
UniBucNLP X (Ciobanu et al., 2016)
Total 18 3 15

Table 13: The teams that participated in subtask 2 (Arabic).

Rank Team Run Accuracy F1 Approach
1 MAZA run3 0.512 0.513 Ensemble, word/char n-grams

UnibucKernel run3 0.509 0.513 Multiple string kernels
QCRI run1 0.514 0.511 SVM, word/char n-grams
ASIREM run1 0.497 0.495 SVM, char 5/6-grams

2 GW LT3 run3 0.490 0.492 Ensemble, word/char n-grams
mitsls run3 0.485 0.483 Character-level convolutional neural network
SUKI run1 0.488 0.482 Language models, char n-grams (1-8)
UniBucNLP run3 0.475 0.474 SVM w/ string kernels (char 2-7 grams)
tubasfs run1 0.475 0.473 SVM, char n-grams (1-7)

3 HDSL run1 0.458 0.459 SVM, word and char n-grams
PITEOG run2 0.461 0.452 Expectation maximization, word unigrams

4 ALL run1 0.429 0.435 SVM, char trigrams
cgli run3 0.438 0.433 Convolutional neural network (CNN)
AHAQST run1 0.428 0.426 SVM, char trigrams
hltcoe run1 0.412 0.413 Prediction by partial matching, char 4-grams

5 Citius Ixa Imaxin run1 0.387 0.382 Dictionary-based ranking method
5 eire run1 0.358 0.346 Naive Bayes, char bigrams
6 UCREL run2 0.261 0.244 Decision tree (J48), word frequencies

Table 14: Results for subtask 2 (Arabic), closed training condition.

Rank Team Run Accuracy F1 Approach
1 ASIREM run3 0.532 0.527 SVM, char 5/6-grams
2 GW LT3 run3 0.491 0.493 Ensemble, word/char n-grams
3 QCRI run1 0.379 0.352 SVM, word/char n-grams

Table 15: Results for subtask 2 (Arabic), open training condition.
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The best-performing system proposed by the ASIREM team achieved higher results in the open vs. the
closed training condition (52.74% vs. 49.46% F1-score); the second-best system by the GW LT3 team
performed very similarly in the two conditions (an F1-score of 49.29% for open and 49.22% for closed
training); and the third team, QCRI, actually performed much better in the closed training condition
than in the open one (51.12% vs. 35.20% F1-score). This variation can be explained by looking at the
additional training data these teams used, which we will do in the next subsection.

5.2 Open Training Data Sources
The three teams who participated in the open training condition used the following sources:

• ASIREM used 18,000 documents (609,316 words) collected manually by native speakers from social
media. This yielded results that outperformed the best system in the closed training track, thus
demonstrating that out-of-domain training data can be quite useful for this task.

• The GW LT3 team made use of dialectal dictionaries and data they collected from Twitter, which
also worked quite well.

• The QCRI team used a multi-dialect, multi-genre corpus of informal written Arabic (Zaidan and
Callison-Burch, 2011).

6 Approaches and Trends

6.1 Features
Almost all teams relied on standard word and character n-grams. Key trends here were that character n-
grams outperformed their word-based counterparts, and that higher-order n-grams (5-, 6- and 7-grams)
did very well. In fact, the top teams in all categories made use of high-order n-grams. The two teams
that were ranked first in test set A used only character n-grams of order 1–7, which demonstrates that
combining the n-grams of different orders can be useful.

6.2 Machine Learning Approaches: Traditional vs. Deep Learning Methods
When analyzing the results, we observed several trends about how machine learning approaches were
used. For example, we found that traditional supervised learning approaches, particularly SVM and
logistic regression, performed very well. In fact, the winner of each category used one of these ap-
proaches. This is not surprising given that these methods are suitable for tasks with large numbers of
features. Complex learning approaches, such as ensemble methods or hierarchical classifiers, also per-
formed well. Many of the winning runs or those in the top-3 for each category used such an approach.

In contrast, numerous teams attempted to use new deep learning-based approaches, with most of them
performing poorly compared to traditional classifiers. One exception is the character-level CNN used
by the mitsls team, which ranked in sixth place for test set C. Several teams submitted runs using both
simple classifiers and deep learning methods, with most noting that the simple methods proved difficult
to beat even when comparing against very sophisticated neural network architectures. Others noted the
memory requirements and long training times, which made the use of deep learning methods difficult.
For example, one team mentioned that their model needed ten days to train.

7 Conclusion

The 2016 DSL shared task was once again a very fruitful experience for both the organizers and the
participants. The record number of 37 subscriptions and 24 submissions confirms the interest of the
community in discriminating between dialects and similar languages.

This year, we split the task into two subtasks: one on similar languages and varieties and one on
Arabic dialect identification. For subtask 1, we provided an in-domain test set (A) compiled from news
corpora and an out-of-domain test sets (B1 and B2) collected from social media; the latter case was more
challenging. The new subtask on Arabic dialects and the new datasets we released brought even more
attention to the DSL task, which ultimately resulted in a record number of submissions.
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We are delighted to see many teams developing systems and testing approaches in both subtasks. We
observed that more teams used deep learning in comparison to previous editions of the DSL task. Yet, the
best results were obtained by simpler machine learning methods such as SVM and logistic regression.
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Pablo Gamallo, Iñaki Alegria, and José Ramom Pichel. 2016. Comparing two Basic Methods for Discriminating
Between Similar Languages and Varieties. In Proceedings of the VarDial Workshop.
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Nikola Ljubešić, Tanja Samardžić, and Curdin Derungs. 2016. TweetGeo – A Tool for Collecting, Processing and
Analysing Geo-encoded Data. In Proceedings of COLING.

Marco Lui and Paul Cook. 2013. Classifying English Documents by National Dialect. In Proceedings of ALTA.

13



Marco Lui, Ned Letcher, Oliver Adams, Long Duong, Paul Cook, and Timothy Baldwin. 2014. Exploring Meth-
ods and Resources for Discriminating Similar Languages. In Proceedings of VarDial.

Shervin Malmasi and Mark Dras. 2015a. Automatic Language Identification for Persian and Dari Texts. In
Proceedings of PACLING.

Shervin Malmasi and Mark Dras. 2015b. Language Identification using Classifier Ensembles. In Proceedings of
the VarDial Workshop.

Shervin Malmasi and Marcos Zampieri. 2016. Arabic Dialect Identification in Speech Transcripts. In Proceedings
of the VarDial Workshop.

Paul McNamee. 2016. Language and Dialect Discrimination Using Compression-Inspired Language Models. In
Proceedings of the VarDial Workshop.
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