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Abstract

The present paper explores a novel method that integrates efficient distributed representations
with terminology extraction. We show that the information from a small number of observed
instances can be combined with local and global word embeddings to remarkably improve the
term extraction results on unigram terms. To do so, we pass the terms extracted by other tools
to a filter made of the local-global embeddings and a classifier which in turn decides whether
or not a term candidate is a term. The filter can also be used as a hub to merge different term
extraction tools into a single higher-performing system. We compare filters that use the skip-
gram architecture and filters that employ the CBOW architecture for the task at hand.

1 Introduction

The terminology of a domain encodes the existing knowledge in that domain. Hence understanding
and interpreting a message belonging to a domain cannot be fully achieved without knowing its termi-
nology. This makes Automatic Terminology Extraction (ATE) an important task in Natural Language
Processing (NLP). ATE methods have been conventionally classified as linguistic, statistical, and hybrid
(Cabre-Castellvi et al., 2001; Chung, 2003). Linguistic methods implement formal rules to detect terms;
statistical methods exploit some measures based on relative frequency of terms in general and target
corpora by means of which they can tell apart a term from a word in its generic sense; and, the hybrid
methods combine the advantages of both of these techniques (Frantzi et al., 1998; Park et al., 2002;
Drouin, 2003; Chung and Nation, 2004; Yoshida and Nakagawa, 2005; Vu et al., 2008; VRL, 2009;
Yang et al., 2010; Zervanou, 2010; Broß and Ehrig, 2013; Conrado et al., 2013). These methods often
regard words in a document as atomic elements; that is, they are manifested as their symbolic alphabet-
ical form in the algorithm (such as in ’a’ below) and/or as some measure of their relative frequency (as
in ’b’ below). But, in a distributed approach (as in ’c’ below) each word has tens or hundreds of real-
valued components, as opposed to a single linguistic form or a termhood score1. The idea is that such
finer-granularity may grant more access to the information that a word contains, potentially resulting in
a better detection of terms in a document.

(a) apple

(b) 0.0003654

(c) [0.54407, 0.9233, 0.50644, 0.46454, -0.62015, -0.35166, ... -0.93253]n

where n is often between 50 and 1000 for different types of word embeddings, almost similar to other
vector space models such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA). In
addition to the richer representation, the rise of distributed methods in NLP, especially the recent word
embeddings surge, makes it relevant to explore the ways current model architectures may fit into the

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1Termhood is the degree of a linguistic unit being related to a domain-specific concept (Kageura and Umino, 1996)
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automatic terminology extraction picture. However, the fact that makes them particularly appealing is
their computational efficiency and scalability as compared to the available alternatives, including LSA
and LDA (Mikolov et al., 2013).

We present a simple method that harnesses the rich distributed representation acquired by a log-bilinear
regression model called GloVe (Pennington et al., 2014), as well as the efficiency of log-linear mod-
els with CBOW2 and skip-gram architectures (Mikolov et al., 2013), which is a step forward towards
language-independent ATE. In our method, the GloVe model is used to preserve the global3 scope of a
word in a general corpus (i.e., its general sense(s)) and the CBOW or the skip-gram model is used to
capture the local scope for a word in a technical corpus (i.e., its technical usage).

Currently, we use our method as a filter on top of a previously-developed hybrid term extraction
algorithm, namely, TermoStat (Drouin, 2003; Serrec et al., 2010) along with two simpler methods (refer
to section 4 for further details) and focus on the unigram4 term extraction. TermoStat has been previously
tested on mathematics domain where it performed well on the extraction of multi-word expressions, but
lower on unigram terms (Inkpen et al., 2016), hence the present work is an attempt to improve unigram
term extraction for the same domain.

As mentioned, the target domain of the present study is mathematics textbooks. A significant compo-
nent of any academic subject is its terminology. Knowledge of the terminology of a field enables students
to engage with their discipline more effectively by enhancing their ability to understand the related aca-
demic texts and lectures, and allowing them to use the subject-specific terminology in their discussions,
presentations, and assignments. Therefore, generating lists of terms specific to various fields of study is
a significant endeavor. However, these lists have often been generated manually or through corpus-based
studies, which are time consuming, labor-intensive, and prone to human error. This can be facilitated by
a great extent with high-performance automatic term extraction.

To the best of our knowledge, the present method is the first to successfully apply neural network word
embeddings to the terminology extraction task. This method can be combined with any term extraction
algorithm for any non-polysynthetic5 language and any domain.

2 Related Work

As described in section 1, ATE approaches traditionally fall into three categories, namely, linguistic,
(unsupervised) statistical6, and hybrid methods (Cabre-Castellvi et al., 2001; Chung, 2003). These TE
methods have been applied to both monolingual and multilingual corpora (Ljubešić et al., 2012). Lin-
guistic methods apply hand-coded rules to the target corpus to extract technical terms. Statistical meth-
ods are often unsupervised and apply some measure of relative frequency to a technical target corpus,
a reference (general) corpus and sometimes a (contrastive) corpus from another domain, to identify the
existing terms in the technical corpus (Frantzi et al., 1998; Chung, 2003; Vu et al., 2008; Conrado et al.,
2013). Hybrid methods combine statistical and linguistic methods to extract terminology from a target
corpus and often perform well (Drouin, 2003; Serrec et al., 2010; Ismail and Manandhar, 2010; Vintar,
2010). The above-mentioned approaches, in contrast to the method put forth in this paper, regard words
as atomic units represented by their linguistic forms and their statistical scores that indicate their like-
lihood to be terms. They may, however, implement rules associated with some linguistic features (e.g.,
their POS tags, their position in the POS sequence, their position in the parse tree, phrase, and/or in the
sentence). These linguistic rules make an algorithm language-dependent and even sometimes to some
degree domain-dependent. On the contrary, our method, if used independently, can be used for any non-
polysynthetic language and for any domain as long as domain-specific and general corpora are available.

2Continuous Bag Of Words. See section 4 for further details.
3We use the terms ”global” and ”local” with a different sense from Pennington et al. (2014). They used ”global” to denote

a model that captures a wider set of co-occurrence statistics being computed globally (e.g., document-wide) such as in LSA, as
compared to the ”local” methods that use a relatively small context window for co-occurrence computation such as CBOW and
skip-gram (Mikolov et al., 2013) or similarly vLBL and ivLBL (Mnih and Kavukcuoglu, 2013).

4Singe-words
5A polysynthetic language has a richer morphology than syntax, where the words are much longer and can convey full

sentence-like messages
6These statistical methods are distinct from statistical learning approaches.
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In this study, we do not use our method independent of other methods, but it can still be regarded as a step
towards a language independent ATE algorithm that benefits from latent linguistic information encoded
in the vectors used (see section 4 for further details on the method) in comparison to purely statistical
methods that do not capture such information.

Supervised methods have been recently7 designed for terminology extraction. Nazar and Cabré (2012)
used examples of terms from the domain of interest and a reference corpus of general language, which
represent positive and negative examples of terms, and a three-level (i.e., syntactic, lexical, and mor-
phological) learning algorithm to detect the terms. They used the frequency distribution for POS tag
sequences at the syntactic level. At the lexical level, they accounted for the frequency of the lexical
units within the terms (word forms, as well as lemmas). Finally, at their morphological level, from
each word type they extracted initial and final character n-grams where: 1 ≤ n ≤ 5 (Nazar and Cabré,
2012). Their term extractor is an online web-based system that is constantly being updated when used
by terminologists. More recently, Conrado et al. (2013) achieved state-of-the-art performance for uni-
gram term extraction in Brazilian Portuguese using supervised learning algorithms and a rich feature set.
They used eight linguistic features, seven statistical features, and four hybrid features in their method.
The present work would be the next phase for these supervised methods, since we move closer to a rich,
language-independent, resource-independent, and fully data-driven representation. It is worth noting that
modern word embeddings have been successfully employed in many tasks, including the related areas of
keyphrase extraction (Wang et al., 2015) and aspect term extraction8 (Yin et al., 2016); nevertheless, this
is the first time they are leveraged for the general terminology extraction task.

3 Corpus

The domain corpus that we used for the purpose of this study is comprised of 5 English high school
mathematics textbooks used in Ontario, Canada (Small et al., 2005; Small et al., 2007a; Small et al.,
2007b; Kirkpatrick et al., 2007; Crippin et al., 2007), which were concatenated into a corpus consisting
of 1,127,987 tokens.

4 Methodology

In this study, we merged the results of three tools (see below) that we used for terminology extraction. We
improved the performance of these tools by adding local-global distributed word representations coupled
with a classifier as a filter. The basic idea is if a candidate term in a technical corpus is being used in
a distinctly different manner and context than in a general corpus, then it is likely to be a term9. For
each Candidate Term (CT) extracted by TermoStat, two separate embedding vectors are constructed and
then concatenated. One is a global vector pre-trained on general corpora, and the other is a local vector
trained on the target corpus from which the terms are extracted. Each of these two vectors portrays
distinct regularities about the CT at hand, as discussed below.

The idea behind using a general global vector is to encapsulate the behavior of the CT in its generic
sense(s), the intuition being that the generic sense(s) have a predominant presence in general corpora and
will, therefore, dominate the vector. We use the pre-built GloVe vectors as our global vectors, created
by Pennington et al. (2014)10. These global vectors are of 50 dimensions and were built on Wikipedia
2014 + the Gigaword 5 corpus; that is, approximately 6 billion tokens. GloVe is a log-bilinear regression
model. More specifically:

J =
V∑

i,j=1

f(Xij)(wT
i w̃j + bi + b̃j − log Xij)2 (1)

7There has, however, been earlier supervised work in keyword/keyphrase extraction such as Turney (2000), as opposed to
terminology extraction which is the topic of this paper. While Keyword extraction is the task of extracting only a few keywords
in a text, terminology extraction needs to detect all the terms, usually from a large domain corpus.

8Aspect term extraction is the task to identify the aspect expressions which refer to a products or services properties or
attributes, from customer reviews (Pontiki et al., 2014; Pontiki et al., 2015; Yin et al., 2016).

9This is similar to the premise of traditional statistical ATE methods except that those models carry less local information
such as syntactic behavior.

10Available at: http://nlp.stanford.edu/projects/glove/
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where V is the size of the vocabulary, f(Xij) is the weighting function, wi and wj are two separate
context word vectors and their sum constructs the final GloVe vector, and finally bi and bj are biases
for their corresponding word vectors. GloVe has been shown to adequately reflect both semantic and
syntactic regularities in the data (Pennington et al., 2014); we require both for our global embeddings.

In contrast to global embeddings, technical local embeddings are built on the domain corpus. These
vectors are valuable since they capture the behavior of the candidate terms in the technical domain. To
construct the local embeddings, we use two neural network architectures introduced by Mikolov et al.
(2013) on our corpus (discussed in section 3 above), namely, the CBOW and the skip-gram architectures
shown in Figure 1. CBOW and skip-gram are efficient algorithms trained by stochastic gradient descent
and backpropagation. Below are their complexities, respectively:

QCBOW = N ×D + D × log2(V ) (2)

Qskipgram = C × (D + D × log2(V )) (3)

where N is the number of context words, D the vector dimensionality, V the vocabulary size, and C is
roughly the maximum distance for the context from the target word. CBOW is trained to predict a target
word based on its surrounding words, and the skip-gram model is trained to predict the surrounding
words given a single word. The CBOW architecture tends to have better performance in discovering
syntactic regularities as compared to semantic regularities, whereas the skip-gram architecture tends to
have a higher performance in finding semantic regularities rather than syntactic ones (Mitkov et al., 2012;
Pennington et al., 2014). Because we are dealing with unigram terms and not multi-word terms at this
stage, we expect a skip-gram filter to outperform a CBOW filter. We used the gensim11 implementation
(Řehůřek and Sojka, 2010) of word2vec12 to build vectors of 100 dimensions with context window of
size 5 and minimum frequency of 5. The rest of the parameters were left with their default values.

Figure 1: The CBOW architecture predicts the current word given the surrounding words, and the skip-
gram predicts the surrounding words given a word (Mikolov et al., 2013).

After having the local and global vectors ready, they are concatenated and the resultant local-global
vector is fed to the classifier to make the final decision. We experimented with several classification
algorithms. Following Conrado et al. (2013) (see section 2 for more details), we used JRip13, Naı́ve
Bayes, J4814, and SMO15(Platt, 1998). We also tested a few other classifiers of our choice to find the

11Available at: https://radimrehurek.com/gensim/models/word2vec.html
12Available at: https://code.google.com/archive/p/word2vec/
13A rule induction classifier
14A decision tree algorithm. We used it with confidence factor of 0.25.
15A Support Vector Machine classifier from Weka
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most suitable ones for the task, including logistic regression, multi-layer perceptron and PART16. Default
parameters were used for these classifiers. We employed the Weka implementation of all the above-
mentioned classifiers. We tested all the classifiers for both the CBOW and the skip-gram architecture.

As mentioned above, our method operates on the results of three other term extraction tools. The
first is a full-fledged hybrid ATE tool called TermoStat17 (Drouin, 2003). It statistically computes the
specificity of a word in a multi-word expression with reference to a general corpus and uses POS-tag
patterns to detect head nouns and term phrases. The second term extraction tool is called Topia18. We
augmented it by a filter that removed all the candidate terms that had less than 3 letters and took out
numbers or special characters from candidate terms. Topia uses the majority POS tag for each word, and
applies only a frequency threshold to extract terms. Third, we extracted most frequent unigrams using
AntConc1920 (Anthony, 2012), and filtered out all the stop-words.

Figure 2 illustrates our overall system. First, the term extraction tools operate on the target corpus.
Then, the resultant TC’s from all of them are pooled together (with no repetition) and fed to the filter.
The filter uses the local vectors trained on the technical corpus as well as the global vectors trained on
the general corpus to represent the received CT’s in 150 dimensional vectors. These vectors are then
forwarded to the classifier to tell apart terms from non-terms. The highest-performing classifier is then
found and used to initialize the system. We compare the results of our system with the results received
from each of the term extraction tools used in isolation.

Figure 2: The figure depicts the overall system architecture of our method.

5 Annotation

To evaluate the performance of our system and compare it with the ATE tools used in isolation, two
human annotators judged the terms extracted by the term extraction tools. The annotators used Term
Evaluator21 (Inkpen et al., 2016), a software program for annotating and evaluating terminology extrac-
tion, to judge the results. The annotators were asked to use their background knowledge of mathematics
as the primary source of their judgment. In case of confusion, they could consult a mathematics dictio-
nary of their choice. The annotations had kappa agreement scores of k = 0.70 for Topia, k = 0.84 for
AntConc and, k = 0.53 for TermoStat. The annotation resulted in a dataset consisting of 954 instances
with 325 positive and 629 negative cases, by which we assess the performance of the systems used in

16Another rule induction algorithm
17Available at: http://termostat.ling.umontreal.ca/
18topia.termextract 1.1.0 library available at: https://pypi.python.org/pypi/topia.termextract/
19Available at: http://www.laurenceanthony.net/software/antconc/
20AntConc has a keyword extraction module but no term extraction module.
21Available at: https://sourceforge.net/projects/termevaluator/
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this study.

6 Experiments and Results

First, we aim to find the best-performing classifier(s), out of the ones tested, to be used in our system for
each of the two architectures (CBOW and skip grams). We noticed that three classifiers, namely, SMO,
logistic regression, and the multi-layer perceptron consistently outperformed the rest of the classifiers
we examined (the full list is provided in section 4). JRip performed well, but its performance was
consistently lower than the above-mentioned three classifiers. It should be noted, however, that we also
have a greater dimension size for our vectors than Conrado et al. (2013), that is, 150 versus 19. Also the
nature of the vectors is different in that they used feature vectors but we used embeddings. Nevertheless,
we only show the results for these three classifiers. Figure 3 depicts the classifiers’ performance with
local-global vectors (LGVs) where the local vectors are trained with the CBOW architecture, and Figure
4 depicts the classifiers’ performance with local-global vectors where the local vectors are trained with
the skip-gram architecture. The classifiers’ performance is presented as a function of the number of
observed instances22 (the amount of training data used), and the classifiers are tested on the rest of the
instances (954 minus the number of observed instances). Instances are chosen randomly for training
with a positive/negative ratio proportional to the dataset (i.e., 1/2 respectively). All of the instances in
the entire dataset are unique candidate terms. The performance is measured by F-measure in the figures.
We compute only relative recall23 throughout the experiments at this stage.

Figure 3: The figure displays the performance (F-measure) of the classifiers on local-global vectors with
CBOW local vectors as a function of number of observed instances.

As shown in Figures 3 and 4 the CBOW architecture with the logistic regression classifier generalizes
really well with as little data as only 9 instances. However, as soon as we add more instances, the
multi-layer perceptron and SMO take the lead, outperforming one another in the process. However, the
logistic regression classifier shows less improvement when subjected to more training data. Overall, we
did not notice any considerable difference between the skip-gram and the CBOW architectures across
the classifiers used for the purpose of unigram term extraction.

In practice, we prefer to show the system as little data as possible since extracting a few high-precision
terms is relatively easy in real-world ATE; hence, we choose the local CBOW architecture with logistic

22The numbers shown on the X axes of Figures 3 and 4 (i.e., 9, 47, 95, 190, and 477) are the results of splitting training and
test data such that the training data is approximately 1%, 5%, 10%, 20%, and 50% of the entire dataset respectively. The most
notable improvement is when we increase the training set from 9 to 47 and that is only 4% variation in the size of the test set
but 10% improvement of performance on average for LGV’s with local CBOW (Figure 3) and an average of 13% improvement
of performance for LGV’s with local skip-gram (Figure 4).

23The reason for resorting to relative recall is that having annotators go through the entire corpus to compute recall is time-
consuming and labor-intensive at this phase of the project.
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Figure 4: The figure displays the performance (F-measure) of the classifiers on local-global vectors with
skip-gram local vectors as a function of number of observed instances.

regression classifier (trained on only 9 instances) as one configuration (our quickest learner), and the
local skip-gram architecture coupled with multi-layer perceptron as the other configuration of our system
(performs best among those trained on up to 47 instances) for the next experiment. We compare these
two system configurations with a baseline and the initial term extraction tools, all tested on 907 (i.e., 954
- 47) remaining instances that are unseen to all of the systems under experiment. Table 1 compares the
results of our system in unigram term extraction with individual term extraction tools and a frequency
baseline that uses a stop-word filter (refer to section 4 for further details on the tools and the baseline).
The results show that both of our system configurations achieve a substantial improvement over the other
tools.

Method Precision Recall F-Measure
TermoStat 0.371 0.528 0.436

Improved Topia 0.426 0.702 0.552
Frequency + Stopword Filter 0.407 0.514 0.454
LGV9 (CBOW) + Logistic 0.728 0.734 0.728

LGV47 (skip-gram) + Multi-layer Perceptron 0.809 0.811 0.810

Table 1: The table compares the results of two configurations of our system, LGV9 (using CBOW local
vectors) and LGV47 (using skip-gram local vectors), with the term extraction tools used in isolation and
with a frequency baseline.

7 Conclusion & Future Work

This paper offered a new ATE method that uses the distributed representation of words as a filter for
the task of unigram term extraction. To do so, we leveraged the local-global embeddings to represent
a term, its senses, and its behavior. The global word embeddings GloVe were pre-trained on general
corpora, and we used the skip-gram and CBOW architectures to train local vectors on a technical domain
corpus. This was done in order to preserve both the domain-specific and the general-domain information
a word may possess, including its syntactic and semantic behavior. We showed that such a filter, with
only as few instances as 9, can substantially improve the output of the three ATE tools in unigram term
extraction. This indicates that with a) any high-precision (even with very low recall and F-measure) term
extraction tool that outputs a few terms, b) a few random generic words in a language, and c) our filter,
one can create a high-performance term extraction system for that language. Our method can also be
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used as a way to combine different tools to benefit from the advantages that each can offer, resulting
in gain in performance. The use of the filter is not restricted to multiple term extraction tools and it
can be applied as feasibly to any individual term extraction method. It is important to note that in our
study the improvement in performance is not due to the merger of different tools but to a richer, more
elaborate, and more informative representation of candidate terms. It was observed that the two local
architectures, CBOW and skip-gram, do not show a considerable difference in capturing the technical
sense and behavior of a word for unigram term extraction.

In future work, we plan to apply our local-global vectors directly to the corpus as a standalone term
extraction tool. We also plan to extend the algorithm to detect multi-word terms in addition to unigram
terms. It would be worthwhile to investigate if skip-gram and CBOW architectures can diverge in per-
formance in extraction of terms that contain more than one word. Polysynthetic languages have a high
morpheme-to-word ratio, that is, most of the grammatical and semantic information of a sentence is
carried inside individual words, but continuous distributed models, including our LGV’s, predominantly
disregard word-internal structures. A very recent method based on the skip-gram architecture captures
subword information in its word vectors (Bojanowski et al., 2016). We will address polysynthetic lan-
guages using enhanced LGV’s as a next step. We further intend to compare our method with more
available term extraction tools and methods. Applying our method to other domain corpora and datasets
is another future direction for this research.
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