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Abstract

In machine translation, we must consider the difference in expression between languages. For
example, the active/passive voice may change in Japanese-English translation. The same verb
in Japanese may be translated into different voices at each translation because the voice of a
generated sentence cannot be determined using only the information of the Japanese sentence.
Machine translation systems should consider the information structure to improve the coherence
of the output by using several topicalization techniques such as passivization.

Therefore, this paper reports on our attempt to control the voice of the sentence generated by
an encoder-decoder model. To control the voice of the generated sentence, we added the voice
information of the target sentence to the source sentence during the training. We then generated
sentences with a specified voice by appending the voice information to the source sentence. We
observed experimentally whether the voice could be controlled. The results showed that, we
could control the voice of the generated sentence with 85.0% accuracy on average. In the evalu-
ation of Japanese-English translation, we obtained a 0.73-point improvement in BLEU score by
using gold voice labels.

1 Introduction

In a distant language pair such as Japanese-English, verbs between the source language and the target
language are often used differently. In particular, the voices of the source and target sentences are some-
times different in a fluent translation when considering the discourse structure of the target side because
Japanese is a pro-drop language and does not the use passive voice for object topicalization.

In Table 1, we show the number of occurrences of each voice in high-frequency verbs in Asian Sci-
entific Paper Expert Corpus (ASPEC; Nakazawa et al. (2016b)). In the top seven high frequency verbs,
“show” tended to be used in active voice, whereas “examine,” “find,” and “observe” tended to be used
in the passive voice. However, “describe,” “explain,” and “introduce” tended not to be used in any par-
ticular voice. For example, the voice of the verb “introduce” could not be determined uniquely, because
it was sometimes used in phrases like “This paper introduces ...” and, sometimes, “... are introduced.”
Therefore, it is possible that the translation model failed to learn the correspondence between Japanese
and English.

Recently, recurrent neural networks (RNNs) such as encoder-decoder models have gained considerable
attention in machine translation because of their ability to generate fluent sentences. However, compared
to traditional statistical machine translation, it is not straightforward to interpret and control the output
of the encoder-decoder models. Several attempts have been made to control the output of the encoder-
decoder models. First, Kikuchi et al. (2016) proposed a new Long Short-Term Memory (LSTM) network
to control the length of the sentence generated by an encoder-decoder model in a text summarization task.
In their experiment, they controlled the sentence length while maintaining the performance compared
to the results of previous works. Second, Sennrich et al. (2016) attempted to control the honorific in
English-German neural machine translation (NMT). They trained an attentional encoder-decoder model
using English (source) data to which the honorific information of a German (target) sentence was added.
They restricted the honorific on the German side at the test phase.
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Verb # Active # Passive # Total
show 21,703 10,441 (32.5%) 32,144
describe 12,300 17,474 (58.7%) 29,774
explain 7,210 13,073 (64.5%) 20,283
introduce 6,030 9,167 (60.3%) 15,197
examine 3,795 11,100 (74.5%) 14,895
find 2,367 12,507 (84.1%) 14,874
observe 1,000 12,626 (92.7%) 13,626
All verbs 383,052 444,451 (53.7%) 827,503

Table 1: Number of occurrences of each voice in high-frequency verbs.

Figure 1: Flow of the automatic annotation for training an NMT.

Similar to Sennrich et al. (2016), this paper reports on our attempt to control the voice of a sentence
generated by an encoder-decoder model. At the preprocessing phase, we determined the voice of the root
phrase in the target side by parsing and added it to the end of the source sentence as a voice label. At the
training phase, we trained an attentional encoder-decoder model by using the preprocessed source data.
Lastly, we controlled the voice of the generated sentence by adding a voice label to the source sentence
at the test phase. We tested several configurations: (1) controlling all sentences to active/passive voices,
(2) controlling each sentence to the same voice as the reference sentence, and (3) predicting the voice
using only the source sentence. The result showed that we were able to control the voice of the generated
sentence with 85.0% accuracy on average. In the evaluation of the Japanese-English translation, we
obtained a 0.73-point improvement in BLEU score compared to the NMT baseline, in the case of using
the voice information of the references.

2 Controlling Voice in Neural Machine Translation

2.1 The Control Framework
In Japanese-English translation, the voices of the source and target sentences sometimes differ because
the use of the verbs between the source and the target languages is different. In particular, English
uses the passive voice to change the word order of a sentence for object topicalization to encode the
information structure. Thus, it is beneficial to control the syntactic structure of the English sentences for
discourse-aware machine translation. Moreover, if the voice of the generated sentence fluctuates at each
sentence, it is difficult to train a translation model consistently.

In this paper, we attempt to add a ability of voice control to an encoder-decoder model, based on Sen-
nrich et al. (2016), which controls the honorifics in English-German neural machine translation. They
restricted the honorifics of the generated sentence by adding the honorific information to the source side.
Instead of the honorific information, we extracted the voice information of the target sentence as a gold
standard label to annotate the source sentence. At the test phase, we specified the voice of the generated
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Figure 2: Flow of the voice prediction for testing an NMT.

sentence, and instructed the model to translate along with it.
In the following experiment, we used the attentional encoder-decoder model by Bahdanau et al. (2015).

It is the same model that Sennrich et al. (2016) used. This model uses a bi-directional RNN as an
encoder with attention structure. The proposed method can be adapted to any sequence-to-sequence
model because it does not depend on the network structure.

2.2 Automatic Labeling of the Voice for Training

The performance of this method depends on the annotation performance of the voice at the training phase.
Figure 1 shows the flow of the automatic annotation for training the attentional encoder-decoder model.
We recognized the voice of the target (English) sentence by parsing. Then, the result of the parsing was
checked to determine whether the root was a verb in the past participle form or not and whether it had
a be-verb in the children or not. If both conditions were satisfied, the target sentence was recognized as
being in the passive voice; otherwise, it was in the active voice1. For the voice controlling, we added a
special token, <Active> or <Passive>, as a word to the end of the sentence, which became the input to the
encoder. The special token, <Active> or <Passive>, encoded the voice of the root of the target sentence.
The decoder considered only these tokens to determine the voice of the target sentence. For simplicity,
we annotated only one voice for each sentence. In other words, if the sentence was a complex sentence,
we selected the root verb for annotation. How the non-root verb must be treated in order to obtain the
consistency of the document expression will be studied in a future work.

2.3 Voice Prediction for Testing

This study assumed that the voice label was determined in advance, but it was sometimes difficult to
determine which label was suitable just from the source sentence alone. Even in this case, we had to add
a voice label to the end of the source sentence to generate a target sentence because the proposed method
necessarily uses a voice label.

Thus, we attempted to predict the voice for each sentence. Figure 2 shows the flow of the voice
prediction. We investigated the voice distribution of the English verb in each root phrase of the Japanese
side in the training data to predict the voice of the generated sentence.

At the test phase, we also obtained the root phrase of the Japanese sentence. If the root phrase was
included in the training data, we added the majority label of the voice distribution in the training data as
a predicted label. If the root phrase was not in the training data, the voice label was <Active>.

3 Experiments

We conducted two types of evaluations: evaluation of the controlling accuracy and evaluation of the ma-
chine translation quality. We tested the following four patterns of labeling the voice features to evaluate

1Strictly speaking, we checked whether the target sentence was in the passive voice or not, but we did not distinguish “not
in passive voice” from “active voice.”
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# Active # Passive # Error Accuracy BLEU
Reference 100 100 0 — —
Baseline (No labels) 74 117 9 (72.0) 20.53
ALL_ACTIVE 151 36 13 75.5 19.93
ALL_PASSIVE 17 175 8 87.5 19.63
REFERENCE 97 94 9 89.5 21.26
PREDICT 72 121 7 87.5 20.42

Table 2: Accuracy of voice controlling and BLEU score of the translation.

the extent to which the voice of the generated sentence was controlled correctly.

ALL_ACTIVE. Controlling all target sentences to the active voice.

ALL_PASSIVE. Controlling all target sentences to the passive voice.

REFERENCE. Controlling each target sentence to the same voice as that of the reference sentence.

PREDICT. Controlling each target sentence to the predicted voice.

There were two reasons for testing ALL_ACTIVE and ALL_PASSIVE: to evaluate how correctly we
counld control the voice, and to discuss the source of errors. In REFERENCE, the generated sentences
tended to be natural. However, in ALL_ACTIVE and ALL_PASSIVE, the generated sentences were
sometimes unnatural in terms of the voice. We identified these sentences to investigate the reasons why
these errors occurred.

We checked the voice of the generated sentence and calculated the accuracy manually because the
performance of voice labeling depends on the performance of the parser. We used the Stanford Parser
(ver. 3.5.2) to parse the English sentence. The labelling performance was 95% in this experiment. We
used CaboCha (ver. 0.68; Kudo and Matsumoto (2002)) to obtain the root phrase of the Japanese sentence
in PREDICT. If the sentence was a complex sentence, we checked the voice of the root verb2.

The test data of ASPEC consisted of 1,812 sentences in total. The evaluation data for the voice
controlling consisted of 100 passive sentences and 100 active sentences chosen from the top of the test
data. We did not consider subject and object alternation because this evaluation only focused on the
voice of the sentence. Only one evaluator performed an annotation. In this experiment, the accuracy was
calculated as the agreement between the label and the voice of the generated sentence. “Error sentence”
means the root verb of the generated sentence could not be distinguished manually, or it did not include
a verb, and so on. The baseline was an attentional encoder-decoder by Bahdanau et al. (2015), which
does not control the voice. In the evaluation of the Japanese-English translation, we calculated the
BLEU (Papineni et al., 2002) score with the test data of all 1,812 sentences.

At the training phase, we used 827,503 sentences, obtained by eliminating sentences with more than 40
words in the first 1 million sentences of the ASPEC. Word2Vec3 (Mikolov et al., 2013) was trained with
all 3 million sentences of ASPEC. The vocabulary size was 30,0004. The dimension of the embeddings
and hidden units was 512. The batch size was 128. The optimizer was Adagrad, and the learning rate
was 0.01. We used Chainer 1.12 (Tokui et al., 2015) to implementing the neural network.

4 Result and Discussion

4.1 Experiments with a Gold Voice Label
Table 2 shows the accuracy of the voice control and the BLEU score of the translation5. In the baseline,
our system tended to generate a passive sentence compared to the voice distribution of the reference

2Even if the root phrase of the Japanese sentence was semantically different from the root of the English sentence, we still
checked the voice of the root of the English sentence without considering the meanings.

3https://radimrehurek.com/gensim/models/word2vec.html
4We did not perform any processing of unknown words because we focused on the control of the voice.
5In this experiment, the BLEU score was calculated before the detokenization because we focused on the voice controlling.

We submitted our system for the crowdsourcing evaluation after the detokenization.
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because the number of passive sentences was greater than that of the active sentences in the training
data. The accuracy of the baseline was calculated as the agreement between the voice of the generated
sentence and that of the reference.

ALL_ACTIVE and ALL_PASSIVE demonstrated that the voice could be controlled with high per-
formance. The BLEU score became lower than the baseline because some sentences were transformed
into different voices regardless of the contexts and voice distribution. In other words, active sentences in
the test data included sentences whose root verb of the reference was an intransitive verb. Even in that
case, we forced the voice of the generated sentence to become passive in ALL_PASSIVE. As a result,
the voice of some sentences did not become passive, compared to other sentences that were controlled to
become passive sentences if not natural.

REFERENCE achieved the highest accuracy, and its voice distribution was close to that of the refer-
ences. As mentioned earlier, the voice of REFERENCE was more natural than that of ALL_ACTIVE or
ALL_PASSIVE. We obtained a 0.73-point improvement in the BLEU score compared to the baseline6.
Therefore, we found that there is room for improvement if we can correctly predict the voice of the
reference.

PREDICT used the labels predicted from the voice distribution. It tended to generate a passive sen-
tence compared to the baseline. The controlling accuracy was 87.5% because the voice distributions were
skewed in many verbs. However, the agreement rate between the predicted and the reference voices was
63.7%. Therefore, PREDICT failed to predict the voice of the reference, especially with high-frequency
verbs, resulting in decrease in the BLEU score. We leave the prediction of the voice of references as a
future work.

We show the output examples in Table 3. Examples 1, 2, and 3 are the success cases, whereas Exam-
ples 4 and 5 are the failure cases.

Examples 1 and 2 showed that the voice of the generated sentence was correctly controlled. When a
passive sentence was changed into an active sentence, a subject was needed. Both examples generated
adequate subjects depending on the context. In Example 3, although the voice was controlled, the subject
and object were not exchanged. Besides this example, there were many sentences that persisted the “be-
verb + verb in past participle form” structure when adding the <Passive> label was added. For example,
the “... can be done ...” structure was changed into the “... is able to be done ...” structure. In this
experiment, we did not evaluate whether the subject and object were exchanged, but it may be necessary
to distinguish these patterns for the purpose of improving the coherence of the discourse structure.

In Example 4, it was impossible to make a passive sentence because the root verb in the target sen-
tence should be an intransitive verb. Most of the active sentences in ALL_PASSIVE should stay active
sentences that used intransitive verbs. Like Example 3, there were many sentences that were successfully
controlled by using the “be found to be ...” structure when an intransitive verb was included as a root
verb. Example 5 showed the case wherein the voice could not be controlled despite the attempt to control
it to the active voice. The frequency of the voice of the verb “detect” in the training data consisted of 468
active-voice sentences and 2,858 passive sentences. When we forced the voice of the generated sentence
to become active, the result of generation tended to fail sometimes if we input the verb that had few
examples of active sentences in the training data. The subject should be generated if we forced the voice
of the generated sentence to become active. However, the encoder-decoder model did not know what
to generate as a subject if the training data had only a few examples of an active sentence for that verb.
On the other hand, when we forced the voice of the generated sentence to become passive, we failed to
find any tendencies of this type of the failure. We would like to do some additional investigation on the
tendency of this result.

4.2 Experiments with Predicated Voice: TMU at WAT 2016

Table 4 shows the results of two methods submitted for the shared task at WAT 2016 (Nakazawa et al.,
2016a). The BLEU, RIBES (Isozaki et al., 2010), and AMFM (Banchs et al., 2015) were calculated

6We were not able to submit REFERENCE for the human evaluation because we were not allowed to look at the references
in WAT 2016.
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Example 1 Source 熱戻り反応の機構を議論した。
Reference This paper discusses the mechanism of the heat return reaction.
Controlling to Active We discuss the mechanism of the thermal return reaction.
Controlling to Passive The mechanism of the thermal return reaction is discussed.

Example 2 Source リサイクルに関する最近の話題を紹介した。
Reference Recent topics on recycling are introduced.
Controlling to Active This paper introduces recent topics on recycling.
Controlling to Passive Recent topics on recycling are introduced.

Example 3 Source 自己組織化構造に分子の形と分子間相互作用が大きく影響する。
Reference Molecular shape and intermolecular interaction influence self-assembled struc-

tures greatly.
Controlling to Active The molecular structure and molecular interaction greatly affect the self-

organization structure.
Controlling to Passive The molecular structure and molecular interaction are greatly affected by the

self-organization structure.
Example 4 Source テロメラーゼ活性は生殖細胞と癌細胞で高い。

Reference Telomerase activity is high in reproductive cells and cancer cells.
Controlling to Active The telomerase activity is high in the reproductive cell and cancer cells.
Controlling to Passive The telomerase activity is high in the reproductive cell and cancer cells.

Example 5 Source その結果, thz波は stjでのトンネリング電流信号として検出できる。
Reference Consequently, the thz waves can be detected as tunneling current signals at stj.
Controlling to Active As a result, the thz wave can be detected as a current current signal in the <unk>.
Controlling to Passive As a result, the thz wave can be detected as a current current signal in the <unk>.

Table 3: Examples of the generated sentences

System BLEU RIBES AMFM HUMAN
NMT Baseline 16.89 0.700849 0.546038 —
6 ensemble 18.45 0.711452 0.546880 +25.000
PREDICT 18.29 0.710613 0.565270 +16.000

Table 4: Evaluation scores of WAT 2016.

automatically, and HUMAN was evaluated by the pairwise crowdsourcing. Note that the NMT baseline
is different from the baseline of the voice controlling experiment reported in the previous section.

6 ensemble: We performed an ensemble learning of the NMT baseline. Because of the lack of time,
we trained the baseline NMT only twice. Thus, we chose three models that showed the three highest
BLEU scores from all epochs of the development set for each NMT baseline, resulting in 6 ensemble.
As a result, BLEU score achieves 18.45. It improves 1.56 point compared with the result of the single
NMT Baseline.

PREDICT (2016 our proposed method to control output voice): We submitted our system in the
configuration of PREDICT for pairwise crowdsourcing evaluation. It improved by 1.40 points in the
BLEU score compared to the NMT baseline. Since we did not perform an ensemble learning for PRE-
DICT, we expected a similar improvement in the BLEU score if we combined multiple models of PRE-
DICT using an ensemble technique.

5 Related Work

An NMT framework consists of two recurrent neural networks (RNNs), called the RNN encoder-decoder,
proposed by Cho et al. (2014) and Sutskever et al. (2014). The accuracy of NMT improves by using the
attention structure (Bahdanau et al., 2015; Luong et al., 2015). However, the optimization of an RNN
using log-likelihood does not always yield a satisfactory performance depending on the tasks at hand.
For example, one may prefer a polite expression for generating conversation in a dialog system. Thus,
several methods have been proposed several methods to control the output of encoder-decoder models.

First, Kikuchi et al. (2016) tried to control the length of the sentence generated by an encoder-decoder
model in a text summarization task. They proposed four methods for restricting the length in the text
summarization task and compared them. In their result, they obtained a learning-based decoder for
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controlling the sentence length without compromising on the quality of the generated sentence.
Second, Sennrich et al. (2016) tried to control the honorifics in the task of English-German NMT. They

trained an attentional encoder-decoder model by modifying the English data to include the honorific
information of the German side. The result showed that the accuracy of enforcing the honorifics to the
sentence was 86%, and that of constraining the sentence to not have the honorifics was 92%. They
obtained an improvement of 3.2 points in the BLEU score when the sentence was limited to the gold
honorifics as the reference sentence.

6 Conclusion

This paper reported on our attempt to control the voice of the sentence generated by in an encoder-
decoder model. At the preprocess phase, we determined the voice of the root verb of the target language
by parsing, and added a voice label to the end of the source sentence as a special token. At the training
phase, we trained an attentional encoder-decoder model by using a preprocessed parallel corpus. At the
test phase, we restricted the target sentence to have a particular voice by specifying a voice label in the
encoder. The result showed that we were able to control the voice of the generated sentence with 85.0%
accuracy on average. In the evaluation of the Japanese-English translation, we obtained a 0.73-point
improvement in the BLEU score by using gold voice labels compared to the baseline.

Our future work includes making a supervised classifier for predicting the voice, controlling another
stylistic expression, and implementing the control function into the network structure such as a gate in
an LSTM.
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