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Abstract

The proliferation of deep learning methods in natural language processing (NLP) and the large
amounts of data they often require stands in stark contrast to the relatively data-poor clinical NLP
domain. In particular, large text corpora are necessary to build high-quality word embeddings,
yet often large corpora that are suitably representative of the target clinical data are unavailable.
This forces a choice between building embeddings from small clinical corpora and less repre-
sentative, larger corpora. This paper explores this trade-off, as well as intermediate compromise
solutions. Two standard clinical NLP tasks (the i2b2 2010 concept and assertion tasks) are eval-
uated with commonly used deep learning models (recurrent neural networks and convolutional
neural networks) using a set of six corpora ranging from the target i2b2 data to large open-domain
datasets. While combinations of corpora are generally found to work best, the single-best corpus
is generally task-dependent.

1 Introduction

The use of vector representations in natural language processing (NLP) has a solid foundation (Turian et
al., 2010; Collobert et al., 2011). These enable dense representations that often encode semantic proper-
ties and are particularly useful for machine learning tasks as an alternative to extremely sparse, “one-hot”
vocabulary-length vector representations. Many ways of building these vectors exist, including random
indexing (Sahlgren, 2006), clustering (Brown et al., 1992), regression (Pennington et al., 2014), and
neural (Mikolov et al., 2013) methods. This paper focuses on the last such type of vector representation,
often referred to as embeddings, and exemplified by the popular method word2vec (Mikolov et al.,
2013).

Embeddings are particularly useful in neural network architectures, which due to their heavy use
of matrix multiplication typically favor low-dimensional, dense representation. In particular, neural net-
work models that utilize multiple layers of operations to find abstractions in the data (collectively referred
to as deep learning models) are a natural fit for these dense semantic representations.

In what is typically a semi-supervised process, word embeddings are generated from a large, repre-
sentative sample of data. Then, a smaller manually annotated sample is used to train the deep learning
models. However, this results in a common problem for clinical NLP: large representative corpora (at
least comparable to those used in much open-domain NLP research) are not often available for building
these embeddings. This is due to the significant restrictions on the use of electronic health record (EHR)
data, especially narrative notes, for research purposes. Clinical NLP researchers and practitioners are of-
ten then left with a trade-off: using a small-but-representative corpus versus a large-but-unrepresentative
corpus. The former may not be large enough to properly capture the necessary semantics, while the latter
might not be representative enough to capture the semantics of some of the most important words in the
corpus. For instance, a large open-domain corpus might associate the abbreviation ms with millisecond
(or Mississippi) rather than multiple sclerosis (or mitral stenosis).

In theory, one could simply experiment with multiple corpora to see what works best for a given task.
But in practice this may be overly burdensome, especially in the context of deep learning models that
have many, many other important parameters and architectural choices to consider, in addition to their
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long training times. What would be useful, then, is some intuitive notion or rule-of-thumb on what
corpora to use for building word embeddings for clinical NLP. From a practical point-of-view, one can
see two ideal scenarios:

1. A small target corpus (several hundred or a few thousand documents) that is highly representative
of the annotated notes in the clinical NLP task (possibly including the annotated notes themselves).

2. A large corpus (millions of documents) that is completely general-purpose (likely not containing
clinical note text at all).

If the first scenario were to result in optimal system performance, this would be quite easy for the
clinical NLP practitioner: for each NLP task, generate a set of embeddings specific to the corpus. The
second scenario is even easier: simply use an “off-the-shelf” set of word embeddings. However, there are
many possible compromise solutions between these two extremes. For example, a medium-size corpus
of clinical notes from a different corpus, or a large corpus of scientific articles, or even a combination of
two or more of these. The goal of this paper is to explore this size vs. similarity trade-off, specifically
for clinical NLP purposes. A handful of corpora ranging from a small target corpus to a large general-
purpose corpus are used to build embeddings. Experiments using two common deep learning models in
combination with two standard clinical NLP datasets are used to evaluate this trade-off.

The remainder of this paper is organized as follows. Section 2 describes related work with word
embeddings, including its use in clinical NLP. Section 3 describes the tasks used to evaluate the em-
beddings. Section 4 describes the datasets used to generate the embeddings. Section 5 describes the
experimental setup, including the parameters for generating the word embeddings as well as the param-
eters for the deep learning models. Section 6 shows the results of the experiments. Section 7 discusses
the implications, with some practical considerations.

2 Related Work

As mentioned above, there are various types of word vector representations for use in NLP (Brown et
al., 1992; Sahlgren, 2006; Mikolov et al., 2013; Pennington et al., 2014). By themselves, these are well-
known to be easily integrateable into common NLP tasks (Turian et al., 2010; Collobert et al., 2011).
Generally, the best types of representations have semantic properties, notably that synonyms are nearby
in vector space, and certain types of vector operations (addition and subtraction) roughly correspond to
semantic operations. This largely holds for neural word embeddings, which allow for the induction of
additional semantic properties, such as hypernymy relations (Fu et al., 2014). As embeddings become
more and more important in NLP, work continues on analyzing their usefulness, such as how to interpret
specific vector dimensions (Luo et al., 2015), but most work focuses on applying embeddings to well-
defined NLP tasks.

Further, the increased importance of deep learning methods in NLP has resulted in a significant num-
ber of uses of embeddings to represent words. Wang and Manning (2013) help clarify the relationship
between embeddings and deep learning models: these models excel with low-dimensional, continuous
representations, but offer no benefit over more traditional models like conditional random fields (CRF)
(Lafferty et al., 2001) when used with high-dimensional, discrete representations. Embeddings for NLP
are commonly used in sequence classification tasks such as part-of-speech tagging and chunking (Huang
et al., 2015), named entity recognition (Chiu and Nichols, 2016; Lample et al., 2016), and semantic
role labeling (Zhou and Xu, 2015). Typically, these sequence models are based on recurrent neural net-
works (RNN). Classification models, on the other hand, are often based on convolutional neural networks
(CNN). These models are more adept at picking out a relevant piece of information in a relatively long
span of text, and so are often used for sentence classification (Kim, 2014; Zhang and Wallace, 2016),
or sentiment and topic prediction (Zhang et al., 2015). Note that many other deep learning methods are
possible with embeddings, such as sentiment classification with recursive autoencoders (Socher et al.,
2011), but this paper focuses on the use of RNNs and CNNs specifically for clinical NLP.

While less explored than the open domain, research exists on the uses of word embeddings for clinical
NLP (though less so in the context of a deep learning model). Several non-neural vector representations
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3. Echocardiogram on **DATE[Nov 6 2007] , showed ejection fraction of 55% , mild mitral
insufficiency , and 1+ tricuspid insufficiency with mild pulmonary hypertension .
DERMOPLAST TOPICAL TP Q12H PRN Pain DOCUSATE SODIUM 100 MG PO BID PRN
Constipation IBUPROFEN 400-600 MG PO Q6H PRN Pain
The patient is struggling to breathe at this time , and she is tachypneic , and she might have to be
intubated right now but ; however , the patient ’s family did not wish the patient to be intubated
even after I explained to them that she could potentially die if she was not on a breathing machine ;
but however , the patient ’s family stressed to me again and wished that they do not want her
mother to be on a breathing machine .
The patient had headache that was relieved only with oxycodone . A CT scan of the head showed
microvascular ischemic changes . A followup MRI which also showed similar changes . This was
most likely due to her multiple myeloma with hyperviscosity .

Table 1: Examples of concepts (Problem, Treatment, and Test) from the i2b2 2010 corpus.

have been used for named entity recognition style tasks, notably random indexing (Jonnalagadda et al.,
2012; Henriksson et al., 2014). Most uses of neural embeddings have likewise been through non-deep
learning models. Wu et al. (2015) explored different feature representations for embeddings, showing
that for CRFs both binarized and distributed prototype embeddings (Guo et al., 2014) out-performed
the raw embeddings. Related, but outside of clinical NLP, Tang et al. (2014) study the use of word
representations, including embeddings, for gene/protein NER, also within the context of CRF features.

Finally, there has been some study on the use of multiple word embeddings in the context of deep
learning models. Luo et al. (2014) learn new task-specific embeddings from multiple pre-trained embed-
dings for the purpose of search ranking and text similarity. Yin and Schütze (2015) treat multiple word
embeddings as different channels in a CNN. This achieves great performance, but requires all the embed-
dings be of the same dimension. In contrast, the method in this paper uses simple concatenation, which
does not require equal dimensions, but Yin and Schütze (2015) may still have some desirable semantic
properties. Finally, Zhang et al. (2016) proposes a multi-group norm constraint CNN (MGNC-CNN) that
separates the convolutional layers for different sets of embeddings. This model also has a lot of promise,
but it beyond the scope of this work. Additionally, all of these multi-embedding models have focused on
CNNs, while it is not clear whether Yin and Schütze (2015) or Zhang et al. (2016) could be successfully
applied to RNNs. However, the focus in this paper is on devising an intuition behind choosing the right
sets of embeddings (or ideally, only one set of embeddings).

3 Tasks

Two common clinical NLP tasks are considered: sequence classification and multi-class text classifica-
tion. While sequence classification is often a type of multi-class text classification (if there is more than
one type of phrase to be recognized), it nonetheless is often treated differently in regards to the “default”
machine learning algorithm (i.e., SVM vs. CRF). For each type of task, a specific task from the i2b2 2010
Shared Task (Uzuner et al., 2011b) is selected for the experiments. While the deep learning-based models
used for each task are mentioned here, Section 5 contains more details on the actual implementations.

3.1 Sequence Classification

Word embeddings for sequence classification are evaluated using the i2b2 2010 concept recognition task.
A medical concept in this task is a problem (e.g., disease or symptom), treatment (e.g., drug or therapeutic
procedure), or test (e.g., diagnostic procedure). This is an especially difficult problem in clinical NLP
due to the compact nature of text in EHR notes. Table 1 shows examples of different concept types from
the i2b2 2010 corpus, while Table 2 shows their distributions in the train and test sets.

To model concept recognition, a bi-directional recurrent neural network (RNN) using long short-term
memory (LSTM) units (Hochreiter and Schmidhuber, 1997) is used. LSTM-RNNs are heavily used in
named entity recognition and other sequence-based NLP tasks (Hammerton, 2003; Huang et al., 2015;
Zhou and Xu, 2015; Chiu and Nichols, 2016; Lample et al., 2016).
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Train Set Test Set Total
Documents 349 477 826
Concepts 27,831 45,009 72,840

Problems 11,967 18,550 30,517
Treatments 8,496 13,560 22,056
Tests 7,368 12,899 20,267

Table 2: Frequencies of concept types in the i2b2 2010 corpus.

Present ... a short - term temporary measure , and after her pneumonia gets better ...
... demonstrating a low fibrinogen , positive D-dimer , and ...
... admitted with vomiting and fever and found to have urinary tract infection ...

Absent ... patient ’s left back pain was evaluated and ruled out for MI and the back pain ...
His neck was supple with no jugular venous distention or thyromegaly .
He denied any fevers , chills , or night sweats .

Hypothetical The patient was instructed to report any new or increased shortness of breath ...
The patient is to expect some blood in his urine for the first couple of days .
... her steroid inhalers and PO prednisone for COPD exacerbation .

Possible ... who came to the hospital with what appears to be acute coronary syndrome .
... multiple bilateral pulmonary nodules compatible with inflammatory disease .
The patient did not have any EKG changes consistent with hyperkalemia .

Conditional ... chest tightness ( pressure ) approximately every three months with stress .
He reports severe dyspnea on exertion .
... pt slightly lightheaded and with increased HR when getting up out of bed .

Associated with She has no family history of gallbladder or pancreatic disease .
Someone Else His mother and father both died secondary to myocardial infarction .

The patient’s sister has a history of cervical cancer .

Table 3: Examples of assertions types for Problems from the i2b2 2010 corpus.

3.2 Multi-class Text Classification

Word embeddings for multi-class text classification are evaluated using the i2b2 2010 assertion task. An
assertion is a belief state about a medical problem (present, absent, hypothetical, etc.). This is especially
important in clinical NLP as diagnoses are often ruled out or speculated about during the diagnostic
process. Table 3 shows examples of different assertion types from the i2b2 2010 corpus, while Table 4
shows their distributions in the train and test sets.

To model assertion classification, a 2-layer convolutional neural network (CNN) with a max-pooling
layer and softmax classifier is used. While more noteworthy for imaging tasks, CNNs have been heavily
utilized in text classification as well (Collobert et al., 2011; Kim, 2014; Zhang et al., 2015; Zhang and
Wallace, 2016).

4 Data

Six datasets are utilized for generating word vectors (see Table 5):

i2b2 is the “target” dataset. This is a combination of multiple years worth of i2b2 shared tasks: 2010
(Uzuner et al., 2011b), 2011 (Uzuner et al., 2011a), and 2012 (Uzuner et al., 2013) tasks. However, the
vast majority come from the same data pull(s) used to build the training and testing data (87%) for the
2010 tasks described in Section 3. This dataset corresponds to the first ideal scenario described above,
since it would be practical if this data alone would be sufficient to generate optimal word embeddings
as additional corpora would never be needed. However, as is often the case in practice, far less data is
available in this dataset compared to what is typically used to generate word embeddings.
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Train Set Test Set Total
Documents 349 477 826
Problems 11,967 18,550 30,517

Present 8,052 13,025 21,077
Absent 2,535 3,609 6,144
Hypothetical 651 883 1,534
Possible 535 717 1,252
Conditional 103 171 274
Associated with Someone Else 92 145 237

Table 4: Frequencies of assertion types in the i2b2 2010 corpus.

MIMIC3 (Johnson et al., 2016) is a freely-accessible database of intensive care unit (ICU) encounters
from a large hospital. It is significantly larger than the i2b2 dataset, and some of the i2b2 data was even
drawn from MIMIC-II. MIMIC-III represents the next-best case scenario to having a large clinical target
dataset: it is both large and fairly similar to the i2b2 data. MIMIC is commonly used to generate word
embeddings for clinical NLP, but its exact utility in comparison to the target dataset is rarely, if ever,
measured.

MEDLINE is a collection of scientific article abstracts maintained by the National Library of
Medicine. While a large dataset, these are not clinical notes and lack many of the peculiarities of clinical
notes (e.g., abbreviations, telegraphic text). Further, while clinical notes are written by clinicians largely
to communicate with other clinicians, MEDLINE abstracts are written by researchers largely to com-
municate with other researchers. However, MEDLINE does discuss almost all the diseases, conditions,
treatments, and techniques that are described in clinical notes.

WebMD Forum is a collection of forum posts on the WebMD Community1. The forum posts are writ-
ten largely by health consumers, who are known to write health-related text quite differently than clin-
icians (Roberts and Demner-Fushman, 2016). This dataset is intended to represent a small-to-medium-
size medically-related corpus that is nonetheless quite different from clinical notes.

Wikipedia is a large, online encyclopedia. Wikipedia has extensive coverage of medical topics, but
also many other topics as well. Wikipedia represents the other best-case scenario for generating word
embeddings: if near-optimal performance could be obtained using such a general corpus, it could be used
in all experiments without the need to generate new word embeddings for each task.

Gigaword is a large newswire corpus (Parker et al., 2009). It has extensive coverage of topics that
typically dominate the news media, including politics and sports, but its coverage of medicine is largely
limited to newsworthy studies and announcements. Gigaword represents a control corpus: it should be
less useful than Wikipedia, but if it were to be beneficial then one could argue that using several arbitrary
corpora simultaneously (like an ensemble) is useful simply to provide multiple views of each word, or
even just more free parameters for the neural network to work with.

Instead of creating word embeddings for each combination of corpora, the embeddings are built for
each individual corpus independently. This has several advantages. First, it prevents the smaller, more
similar corpora from being “drowned out” by the larger, more distant corpora. Second, it dramatically
reduces the time needed to produce the embeddings since only N embeddings are needed. Third, pro-
viding the neural networks with multiple sets of embeddings allows for a kind of domain adaptation to
take place: the networks can learn to take different information from different corpora, which it would
not be able to do with a single, unified embedding vector built from all the data. As mentioned above,
multi-embedding models have been utilized for neural networks before. The implementation here is
intentionally one of the simplest forms of embedding combinations: simple concatenation of the em-

1http://exchanges.webmd.com/
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Corpus # Documents # Sentences # Tokens % diabetes % myocardial % tumor
i2b2 3k 158k 1.7m 2.9e-4% 2.4e-4% 1.3e-4%

MIMIC 876k 17m 366m 1.0e-4% 1.2e-4% 9.1e-5%
MEDLINE 24m 138m 3.7b 2.2e-4% 1.5e-5% 7.9e-4%

WebMD 232k 1.5m 24m 1.3e-4% 4.5e-7% 3.4e-5%
Wikipedia 4.8m 96m 2.1b 7.0e-6% 1.0e-6% 1.1e-5%
Gigaword 8.5m 169m 4.1b 9.3e-6% N/A 7.5e-6%

Table 5: Basic corpus statistics, including the proportion of three important clinical terms (diabetes,
myocardial, tumor) to illustrate how representative each corpus is of clinical text. Note that this excludes
common clinical abbreviations (e.g., dm or dm2 for diabetes). “N/A” indicates the word was not in the
top 100k terms and thus not included in the embeddings.

bedding vectors. Other methods are possible (Zhang et al., 2016), but it is unclear whether these more
specialized methods would produce results as generalizable as simple vector concatenation.

5 Experimental Setup

Both word embeddings and deep learning models have very many possible parameters that can impact
downstream tasks. The following experimental description is by no means likely to be optimal for the
tasks, but was made based on a combination of default parameters, conventional wisdom, and practical
necessity. In some cases experiments were conducted to test parameter impact on the downstream tasks
(mostly with the more crucial deep learning model parameters). See Section 7.1 for a discussion of the
limitations of these experiments.

5.1 Word Vectors
Each corpus was pre-processed with tokenization and sentence segmentation. Case was removed. Num-
bers were altered to just the most significant digit (e.g., 929 becomes 900). Word occurring less than
5 times were changed to UNK. Finally, a maximum vocabulary of 100k word types was applied, keep-
ing only the most frequent words. The numbers in Table 5 reflect these transformations. The gensim
(Řehůřek and Sojka, 2010) version of word2vec was then applied to create 100-dimensional embed-
dings largely using default parameters (CBOW, α=0.025, 5-word window, 50 epochs).

5.2 Recurrent Neural Network
The RNN uses a bi-directional, 3-layer LSTM implemented in TensorFlow (Abadi et al., 2015). Each
LSTM cell uses 256 hidden units. Dropout is set to 0.5. A maximum sequence length of 50 tokens
per sentence is used, which includes 98.4% of the concepts in the test set. Of the 30k sentences in the
training set, 5k are used as a validation set for early stopping, evaluated up to 100 training epochs. The
i2b2 concepts are represented in IOB format.

5.3 Convolutional Neural Network
The CNN uses 2 convolutional layers with a ReLU activation followed by a max-pooling layer and a
softmax classifier, again implemented in TensorFlow. Optimization is performed with the Adam algo-
rithm. Filters of sizes 1, 2, 3, and 4 are used, each replicated 400 times. No dropout is used. A context
window of 3 tokens around the problem’s first token is used for a total input width of 7 tokens. Of the
12k problems in the training set, 1k are used as a validation set for early stopping, evaluated up to 300
training epochs.

6 Results

The results of the experiments are shown in Table 6 and Table 7.
Concept recognition is measured in precision, recall, and micro-averaged F1-measure. The single best

corpus for this task was the MIMIC data, which out-performed the target i2b2 corpus in F1 by 2.7 points.
It also outperformed the more general-purpose Wikipedia and Gigaword corpora in F1 by 4.7 and 7.5
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Corpus P R F1

i2b2 74.47 80.12 77.19
MIMIC 77.99 81.97 79.93
MEDLINE 76.64 82.83 79.61
WebMD 71.95 77.72 74.72
Wikipedia 72.40 78.25 75.21
Gigaword 71.64 76.98 74.22

Corpus combination, starting with i2b2
+ MIMIC 78.30 82.86 80.52
+ MEDLINE 79.65 83.71 81.63
+ WebMD 79.10 83.99 81.47
+ Wikipedia 79.64 83.62 81.58
+ Gigaword 78.78 83.89 81.25

Table 6: Results for RNN-based concept recognition on the i2b2 2010 corpus, measured with precision
(P), recall (R), and F1-measure.

Corpus Accuracy P A H B C O
i2b2 91.29 96.24 95.45 87.14 86.27 81.58 91.84
MIMIC 91.16 96.10 96.15 85.60 85.58 81.63 92.73
MEDLINE 90.98 95.70 95.92 86.59 90.51 85.25 91.59
WebMD 90.22 95.40 95.14 86.65 88.50 83.87 92.59
Wikipedia 90.36 95.71 94.84 86.05 86.37 82.35 96.06
Gigaword 90.33 95.59 95.39 86.11 85.60 78.38 94.44

Corpus combination, starting with i2b2
+ MIMIC 91.26 96.29 95.36 86.44 86.58 86.96 85.48
+ MEDLINE 91.56 96.24 96.29 85.11 88.25 83.78 95.16
+ WebMD 91.39 96.46 95.43 85.76 85.79 86.75 89.33
+ Wikipedia 91.58 96.35 96.79 82.61 88.06 80.00 92.65
+ Gigaword 91.57 96.42 95.85 87.60 86.17 80.52 83.78

Table 7: Results for CNN-based assertion classification on the i2b2 2010 corpus, measured with accu-
racy, along with the F1-measure for present (P), absent (A), hypothetical (H), possible (B), conditional
(C), and associated with someone else (O).

points, respectively. MEDLINE did almost as well as MIMIC, while WebMD did poorly, only slightly
better than Gigaword. Results improve when the corpora are combined. The best overall results are
achieved by combining i2b2, MIMIC, and MEDLINE. Adding in the other corpora hurt performance
slightly, by at most 0.4.

Assertion classification is measured in accuracy, with F1-measures for the individual assertion type
provided in Table 7. Unlike concepts, the single best corpus is the target i2b2 data. All other corpora
performed close, with the worst performance being WebMD with a 1.1 point drop in accuracy. Only
slight gains are seen by adding in other corpora, the best being all corpora except Gigaword for a 0.3
point improvement, but no substantial losses are seen either.

7 Discussion

It would first be useful to compare the results obtained above with the state-of-the-art methods for the
concept and assertion tasks (Uzuner et al., 2011b). In both cases, the results are less than the best
performing scores on the tasks, but they are quite close. The best concept RNN would have placed
6th overall (out of 22) and well above the median (77.78). The best assertion CNN would have done a
bit worse, performing near the median. However, these models were built using not particularly well-
optimized parameters and furthermore they only had access to word information. The many features used
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by participants in the i2b2 tasks (e.g., UMLS (Lindberg et al., 1993), NegEx (Chapman et al., 2001), and
task-specific patterns) could be incorporated into these models for superior performance. The fact that
near state-of-the-art performance is achieved without any medical knowledge or custom features speaks
to the power of these models.

Regarding the ideal scenarios for embeddings discussed in the Introduction (target data only and
general-purpose only embeddings), these turned out to unfortunately not be the best performing condi-
tions. i2b2 was the single best corpus for assertions, but not for concepts. Rather, MIMIC and MEDLINE
greatly outperformed i2b2 for concepts, and were only slightly behind for assertions. This difference is
likely due to the small number of relevant phrases that indicate assertion types compared to the vast vo-
cabulary of medical concepts. The second ideal scenario, using a general-purpose corpus only, performs
quite poor as a single corpus for both tasks. If only one set of embeddings can be used, then, it seems a
compromise corpus such as MIMIC might be best.

The multi-embedding experiments reveal an important point, however. Combining multiple sets of
embeddings can help quite a bit (e.g., i2b2 + MIMIC + MEDLINE did 1.7 points better than MIMIC
alone for concepts), while adding “bad” corpora only will only hurt slightly (adding a single corpus
never brought the score down more than 0.3 points). Therefore, if it is not possible to perform many
experiments with embeddings on the task data (a common case in many applied clinical NLP settings),
using several corpora at once seems relatively safe.

7.1 Limitations
This paper seeks to identify best practices experimentally, so its limitations revolve around reasons why
the results may not be generalizable. In this sense, the possible limitations are vast, including:

• Only two clinical NLP datasets were evaluated, so the results obtained here may vary greatly with
other tasks.

• Only a handful of experiments (just less than a week of computing time) were conducted to optimize
the parameters of the various models: every choice made in Section 5 may be suboptimal. This may
have reduced performance inconsistently, changing the relative performance of the various corpora.

• As an explicit example of the above point, the use of 100-dimension embeddings is less than what is
typically used (often 300). Since embedding combination was an intentional goal of this paper, the
embedding dimensionality was kept small to reduce training time (e.g., 600 vs. 1800 dimensions
for the final experiment).

• It would have been useful to evaluate on more corpora–clinical, medical, and general-purpose–to
measure intra-domain variance.

• Multi-embedding methods (Yin and Schütze, 2015; Zhang et al., 2016) could have improved results
over simple vector concatenation.

Despite the extent to which these limitations may reduce the ability to generalize the experiments,
the results largely do match the intuitions gained elsewhere in NLP. For ensembles, for example, adding
additional weak classifiers is more likely to have a strong positive effect than a strong negative effect,
which is consistent with the above results.

8 Conclusion

This paper presented a series of experiments to evaluate the trade-off between small-but-representative
corpora versus large-but-unrepresentative corpora for building word embeddings for clinical NLP tasks.
Two standard clinical NLP tasks (i2b2 2010 concepts and assertions) were used in combination with two
appropriate deep learning methods (RNNs and CNNs) to evaluate six text corpora of varying size and
similarity to the target corpus. While using only the small target corpus or a large general-purpose corpus
would have been ideal from a practical standpoint, empirically it was found that combining multiple
corpora, especially a corpus like MIMIC, is the safest option for choosing embeddings.
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