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Preface

This volume contains papers from the Workshop on Clinical Natural Language Processing
(ClinicalNLP).

Clinical text offers unique challenges that differentiate it both from open-domain data and from other
types of text in the biomedical domain. Narrative clinical notes are written by experts for other experts,
while also intended to serve as a legal record. Clinical jargon, non-standard document strucuture, privacy
and security concerns all present special challenges for natural language systems. The workshop’s goal
is to attract more quality NLP researchers to the clinical domain, and thereby to allow us as a community
to contribute more to the advancement of critical clinical research.
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Abstract

The goal of this paper is to examine the impact of simple feature engineering mechanisms before
applying more sophisticated techniques to the task of medical NER. Sometimes papers using
scientifically sound techniques present raw baselines that could be improved adding simple and
cheap features. This work focuses on entity recognition for the clinical domain for three lan-
guages: English, Swedish and Spanish. The task is tackled using simple features, starting from
the window size, capitalization, prefixes, and moving to POS and semantic tags. This work
demonstrates that a simple initial step of feature engineering can improve the baseline results
significantly. Hence, the contributions of this paper are: first, a short list of guidelines well sup-
ported with experimental results on three languages and, second, a detailed description of the
relevance of these features for medical NER.

1 Introduction

Named Entity Recognition (NER), such as the recognition of person names, organizations, locations or
medical entities, has become a crucial task in any Natural Language Processing (NLP) application, as a
first step to other types of processing as, for example, Relation Extraction (Oronoz et al., 2015). Several
tools have been developed for this task, such as CRF++ (Kudo, 2013), SVM (Kudo and Matsumoto,
2001) or Perceptron (Collins, 2002). Using these tools, and training them with a set of annotated data,
many people can obtain a NER system easily and apply it to the respective domain. In this paper the
experiments will be performed with clinical texts, on the recognition of Medical entities such as disorder
or drug brand names. The basic NER models make use of a sequence of (word form, features, tag)
elements for training. For inference, the system will give the tag sequence with the highest score given
a new text. Each model is defined by a set of features, taken from the surroundings of each word to be
tagged, usually by means of a sequential tagging approach.

Many techniques have been developed in order to improve the NER results, such as the incorpora-
tion of additional information, in the form of lemmatization, POS tagging, dictionaries and ontologies
(IHTSDO, 2016), or the inclusion of knowledge acquired by unsupervised techniques like Brown clus-
ters (Brown et al., 1992; Clark, 2003), word2vec neural models (Agerri and Rigau, 2016) or deep neural
network architectures (dos Santos and Guimarães, 2015) that yielded significant improvements.

However, this availability of tools and techniques has led to using only a limited set of predefined or
standard models that were successful for a prototypical NER task, without any kind of time-consuming
adjusting (Pradhan et al., 2014). Moreover, as most published papers center on novel techniques (Ratinov
and Roth, 2009; Turian et al., 2010), sometimes less effort is devoted to data analysis or to filtering and
tuning the models. Researchers rarely give the full details of feature engineering and they often present
their best configurations, or otherwise they only study the impact of one or two specific types of feature.
However, the benefits of sophisticated techniques would be better highlighted taking a stronger baseline
as departure. In this sense, this paper may be useful to researchers that are new to the field of medical
NER, showing the impact of simple feature engineering on medical texts in three languages.

As an example, looking at the systems presented at the Semeval 2014 Shared Task 7 on English
Medical texts (Pradhan et al., 2014), we see that most of the system descriptions do not give a precise
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overview of the contribution of the simplest feature types (Ramanan et al., 2014; Leal et al., 2014; Kate,
2014; Attardi et al., 2014) and they give at most a list of the used features, but without a detailed account
of each’s performance. For example, while Attardi et al. (2014) describe word shape features, they do
not describe the window of words used, while Parikh et al. (2014) use a window of three words ([-2,0]).

There exist several available systems for English, as cTAKES (Savova et al., 2010), which was used
by some of the participants at Semeval 2014 or cLiner (Boag et al., 2010). However, for other types of
languages, there is a scarcity of resources and information about the usefulness of the available features.

We will experiment the effect of using simple features on medical NER, giving a measure of the im-
provements that can be achieved without resorting to more sophisticated types of information. Although
most of these techniques have been previously applied in many works (Pradhan et al., 2014), we think
that their effectiveness has not always been clearly evaluated, and they are briefly described as a prepro-
cessing step before applying other, more complex, techniques. The main contribution of this paper will
be a thorough examination of simple features for the recognition of entities in the medical domain. To
give a better account of the generalization across different languages, we will perform our experiments
on English, Spanish and Swedish, hoping that these results will be useful for many researchers and will
help them to follow the principle of doing the easy things first, before resorting to more complex models.

2 Experimental Setup

We will perform a set of experiments using different types of features, starting from the most basic type
of information, the word form itself and its derivatives, and continuing with basic language processing
tools as lemmatization, POS tagging and medical dictionaries and ontologies: Phase 1: using only word
forms (plus lower-casing); Phase 2: using prefixes and suffixes of different length. For example, the four
letter suffix -itis indicates an inflamatory disease, as in meningitis or bronchitis; Phase 3: using different
patterns of capitalization of word forms (word starts with a letter, all letters are capitalized, or different
types of numbers); Phase 4: using lemmas; Phase 5: using POS tags. Phase 6: using Snomed-CT tags.

With the objective of establishing measures of the contribution of several features corresponding to
simple types of information to medical NER, we will examine three languages:
• English (EN) We will use data from the SemEval-2014 Task 7 Analysis of Clinical Text Shared Task

ShARe1. This corpus comprises annotations of disease entities (9,694 instances) over de-identified
clinical reports from a US intensive care department (version 2.5 of the MIMIC II database)
• Spanish (SP) The Spanish EHRs consist of patient records collected during 2008-2012 at the

Galdakao-Usansolo Hospital leading to 141,800 documents, 52 million word-forms (Oronoz et al.,
2015). The entire corpus was provided after anonymization, signing confidentiality agreements and
passing the corresponding ethical committees. From this set of raw clinical text, a subset of 121
texts was randomly selected for manual annotation (3,362 instances of diseases and 1,406 drugs).
• Swedish (SW) The Swedish clinical text2 origins from patient records from over 500 different

clinical units at Karolinska University Hospital. The texts were collected during 2009-2010 and are
stored in HEALTH BANK (Dalianis et al., 2015). For this study, a supervised corpora was created,
annotated with medical entities (4,000 entities corresponding to body parts, disorders and findings).

Regarding the English corpus, we only had access to the train and development sets, because the test
set was not public. This is not a problem, because from our experiments on the Semeval Shared Task
datasets, the results on the test set increased by about 2 percent points (Pradhan et al., 2014), as using the
train and development sets for training compensates the effect of evaluating on the unseen test set. For
that reason, we will use the train set for training and will evaluate on the development set.

For the experiments, we will use our own implementation of the averaged structured perceptron (Fre-
und and Schapire, 1999; Collins, 2002), a state of the art tagging model that relies on Viterbi decoding
of training examples combined with simple additive updates. The algorithm is competitive to maximum-
entropy taggers or CRFs (Collins, 2002). For each experiment, we trained 25 iterations on different
feature templates. Although not reported in this work, similar experiments have also been performed

1http://share.healthnlp.org
2This research was approved by the Regional Ethical Review Board in Stockholm, permission number 2014/1882-31/5
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Perceptron. Phase 1 (word forms)
Features Model EN SP SW
Window wf(-2, +2) 51.20 51.07 55.94
size wf(-2, +1) 49.20 52.46 56.09
(word wf(-2, 0) 46.80 50.70 55.61
unigrams) wf(-1, +1) 47.70 52.49 57.16

wf(-1, 0) 40.10 50.18 58.47
Window wf(-2, +2) 53.30 57.20 57.98
size wf(-2, +1) 54.30 57.74 57.84
(lowercase wf(-2, 0) 52.20 54.81 58.71
word wf(-1, +1) 49.80 56.37 58.98
unigrams) wf(-1, 0) 47.70 55.01 60.44

Table 1: Results changing the window size and
capitalization of words (wf(i, j) = unigram fea-
tures of words in a window from i to j).

Perceptron. Phase 2 (prefixes and affixes)
Features Model EN SP SW
Adding p2 + s2 59.40 60.74 62.27
prefixes/ p3 + s3 60.40 61.75 64.23
suffixes p4 + s4 59.90 60.73 64.50

p23 + s23 60.40 63.27 63.74
p34 + s34 60.40 61.82 65.34
p234 + s234 60.50 62.10 66.36

Adding p2 + s2 59.10 62.13 62.59
prefixes/ p3 + s3 60.50 63.43 64.69
suffixes p4 + s4 60.30 63.68 64.78
(lowercase) p23 + s23 60.30 64.94 64.45

p34 + s34 59.60 64.09 64.51
p234 + s234 61.00 65.23 66.07

Table 2: Results adding prefixes and suffixes
of word forms, using the best model of phase 1
as baseline. (pN1N2...Nk = prefix of size N1,
N2, ... Nk for the current word).

Perceptron. Phase 3 (capitalization and numbers)
Model EN SP SW
(1) all capital letters 60.30 65.99 66.66
(2) starts with capital letter 61.00 65.88 65.74
(3) number types 61.00 65.85 66.02
(4) mixed letters and numbers 60.10 64.59 65.68
(5) = (1) + (2) 61.80 66.04 65.72
(6) = (1) + (3) 60.20 66.22 66.02
(7) = (2) + (3) 60.90 65.34 66.06
(8) = (1) + (2) + (3) 61.20 65.86 65.45

Table 3: Results adding capitalization and
numbers to the best model of phase 2.

Perceptron. Phase 4 (lemmas)
Features Model EN SP SW
Window lem(0) 61.40 65.82 66.12
size lem(-1, +1) 62.10 66.13 65.31

lem(-2, +2) 60.00 65.67 65.74

Table 4: Results adding features based on lem-
mas (on the best model of phase 3) (lem(i, j) =
unigram features of lemmas in a window from
i to j).

with SVM and CRFs, obtaining results comparable but slightly lower than with the Perceptron. For
English and Spanish, we used FreelingMed for lemmatization, POS tagging, and annotating Snomed CT
concepts (Oronoz et al., 2013). For Swedish, we used Stagger (Östling, 2013). The experiments were
tested following a greedy approach, taking at each phase the best model in the previous phase as a base-
line. This approach can be debatable, as it could happen that the knowledge used in phase x+1 could not
be useful when applied with the best model in phase x, but perhaps it produced improvements at phases
earlier than x. We have also experimented the effect of applying each set of features independently, but
our aim is to get an account of the benefits obtained by applying a simple yet coherent approach (from
the simplest to more elaborated experiments), and we leave out of the scope of this work the development
of more time-consuming tests, such as grid search.

3 Results and Discussion

Table 1 shows the results (F-measure) with different values of the window size (WS). There is no use on
trying a single WS for all the languages as it has different impacts on different languages. Note that lower-
casing improved the results considerably for all three languages, specially for Spanish. We hypothesize
that this can be due to the informal writing used in the Spanish medical reports, characterized by big
differences in writing style and non-consistent use of casing (either lowercase, uppercase or mixed). The
use of prefix/suffixes in Phase 2 (see Table 2) helps significantly for all the languages with respect to
the best results from Phase 1 (above 5 absolute points in all cases). Lower casing does not seem useful
for English and Swedish (0.5 improvement for English over the best result without lower casing, and no
improvement for Swedish), but it gives an increase of 2 points on Spanish.

Table 3 presents the effect of adding features to represent capitalization patterns (words formed only
by capital letters and words that start with a capital letter) and number types3. The improvements are
modest for Swedish and slightly better for English (adding 0.8 points) and Spanish (almost one point).

3‘number types’ differentiates numbers according to four types: only digits (1234), digits with hyphen (23-35), digits with
‘/’ (2/2012), and measure (200 mg)).
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Perceptron. Phase 5 (POS)
Features Model EN SP SW
Window pos(0) 61.90 70.01 65.55
size pos(-1, +1) 63.80 69.95 65.50

pos(-2, +2) 63.10 68.94 66.21

Table 5: Results adding features based on POS
tags on the best model of the previous phase.

Perceptron. Phase 6 (Snomed CT, ...)
Features Model EN SP SW
Window snomed(0) 66.20 68.22 68.41
size snomed(-2, +2) 66.40 67.84 68.27

snomed(-2, +2) 65.60 67.67 68.31

Table 6: Results adding features based on
Snomed tags.

Using lemmatization, Table 4 shows that we get an improvement on English (+0.3) and a decrease for
Spanish and Swedish. This seems surprising, as in principle lemmatization could be useful to normalize
terms (e.g. singular/plural and feminine/masculine in Spanish). Note that, as we are performing a greedy
approach, the number of features used grows from one phase to the next one, and this is the main reason
why we limited the number of feature templates, because the gains are decreasing for each phase. It
should be clear that our experiments do not conclude that lemmatization is not useful but, rather, they
show that it is not useful after applying other features. Table 5 shows the results using POS features,
helpful for English and Spanish, but not for Swedish. We hypothesize that it could be due to the poorer
quality of the Swedish POS tagger (Dalianis et al., 2015). Finally, Table 6 presents the results using
specialized medical dictionaries, giving the best results for English and Swedish, but no improvement
for Spanish. This aspect deserves further work, because the Spanish Snomed has similar coverage to the
English version regarding concepts (around 300,000), but less terms (660,000 compared to 480,000).

4 Conclusion

Standard and well-known features together with model tuning are frequently being left aside by re-
searchers in favor of novel approaches, as though they were low-level or insignificant mechanisms. By
contrast, we have showed that these simple techniques lead us to achieve significant improvements at
really low computation expenses. As an example, looking at the Semeval 2014 Shared Task, we can say
from our results that a simple system using only word forms and POS would outperform more than half
of the presented systems4. It is not our aim to imply that other systems were poorly designed, as most of
them had other objectives in mind, such as experimenting new approaches but, rather, our objective is to
delve into the details of the simplest approaches, that are specially interesting for implemented systems,
but are often neglected in scientific papers5. The results for our best performing systems for Swedish and
Spanish are near to those obtained by more elaborated techniques like word embeddings, although they
are still far from the best performing system on the Semeval English test.

To summarize, we experimented the NER task related to the biomedical domain in three languages:
Semeval task in English, and EHRs in both Swedish and Spanish. The techniques presented tend to be of
much benefit, particularly for domains that lack of big amounts of data, as it is the case of biomedicine:
• It is recommendable to re-case the text and well-worthy trying different window-sizes on each

language (not simply using the default parameters adopted from other languages).
• While prefixes and suffixes have a different impact on each language, it seems as though taking all

prefixes and suffixes of lengths 3 and 4 is a generally recommendable configuration. These tech-
niques can be specially useful when analyzing non-formal text, as in the Spanish medical records.
• Regarding other types of information (capitalization, numbers, lemmas and POS) we have seen that,

although the features can be effective, they should be carefully tested on each language and corpus.
• Overall, we see that there are important differences on the impact of different features with respect

to each language. This fact opens an interesting research area for analyzing the effect of language
and corpus types on the effectiveness of each feature.

For future work we will take these results as a stronger baseline and delve into state-of-the art tech-
niques e.g. word embeddings (Bengio et al., 2006; Mikolov et al., 2013) and recursive neural net-
works (Lample et al., 2016) to gain an insight on their impact on medical NER for these three languages.

4Looking at Tables 5 and 6, and taking into account that the results on the test set bumped by 2 points (Pradhan et al., 2014).
5We think that, in fact, this low level tuning was performed for the Semeval 2014 best performing systems, although their

system description papers do not address this issue in detail.
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Abstract

Automated extraction of concepts from patient clinical records is an essential facilitator of clin-
ical research. For this reason, the 2010 i2b2/VA Natural Language Processing Challenges for
Clinical Records introduced a concept extraction task aimed at identifying and classifying con-
cepts into predefined categories (i.e., treatments, tests and problems). State-of-the-art concept
extraction approaches heavily rely on handcrafted features and domain-specific resources which
are hard to collect and define. For this reason, this paper proposes an alternative, streamlined
approach: a recurrent neural network (the bidirectional LSTM with CRF decoding) initialized
with general-purpose, off-the-shelf word embeddings. The experimental results achieved on the
2010 i2b2/VA reference corpora using the proposed framework outperform all recent methods
and ranks closely to the best submission from the original 2010 i2b2/VA challenge.

1 Introduction

Patient clinical records typically contain longitudinal data about patients’ health status, diseases, con-
ducted tests and response to treatments. Analysing such information can prove of immense value not
only for clinical practice, but also for the organisation and management of healthcare services. Concept
extraction (CE) aims to identify mentions to medical concepts such as problems, test and treatments in
clinical records (e.g., discharge summaries and progress reports) and classify them into predefined cate-
gories. The concepts in clinical records are often expressed with unstructured, “free” text, making their
automatic extraction a challenging task for clinical Natural Language Processing (NLP) systems. Tradi-
tional approaches have extensively relied on rule-based systems and lexicons to recognise the concepts
of interest. Typically, the concepts represent drug names, anatomical nomenclature and other special-
ized names and phrases which are not part of everyday vocabularies. For instance, “resp status” should
be interpreted as “response status”. Such use of abbreviated phrases and acronyms is very common
within the medical community, with many abbreviations having a specific meaning that differ from that
of other lexicons. Dictionary-based systems perform concept extraction by looking up terms on med-
ical ontologies such as the Unified Medical Language System (UMLS) (Kipper-Schuler et al., 2008).
Intrinsically, dictionary- and rule-based systems are laborious to implement and inflexible to new cases
and misspellings (Liu et al., 2015). Although these systems can achieve high precision, they tend to
suffer from low recall (i.e., they may miss a significant number of concepts). To overcome these limita-
tions, various machine learning approaches have been proposed (e.g., conditional random fields (CRFs),
maximum-entropy classifiers and support vector machines) to simultaneously exploit the textual and
contextual information while reducing the reliance on lexicon lookup (Lafferty et al., 2001; Berger et al.,
1996; Joachims, 1998). State-of-the-art machine learning approaches usually follow a two-step process
of feature engineering and classification. The feature engineering task is, in its own right, very laborious
and demanding on expert knowledge, and it can become the bottleneck of the overall approach. For this
reason, this paper proposes a highly streamlined alternative: to employ a contemporary neural network
- the bidirectional LSTM-CRF - initialized with general-purpose, off-the-shelf word embeddings such
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Sentence His HCT had dropped from 36.7 despite 2U PRBC and
Concept class O B-test O O O O O B-treatment I-treatment O

Table 1: Example sentence in a concept extraction task. The concept classes are represented in the
standard in/out/begin (IOB) format.

as GloVe (Pennington et al., 2014a) and Word2Vec (Mikolov et al., 2013b). The experimental results
over the authoritative 2010 i2b2/VA benchmark show that the proposed approach outperforms all recent
approaches and ranks closely to the best from the literature.

2 Related Work

Most of the research to date has framed CE as a specialized case of named-entity recognition (NER)
and employed a number of supervised and semi-supervised machine learning algorithms with domain-
dependent attributes and text features (Uzuner et al., 2011). Hybrid models obtained by cascading
CRF and SVM classifiers along with several pattern-matching rules have shown to produce effective
results (Boag et al., 2015). Moreover, (Fu and Ananiadou, 2014) have given evidence to the importance
of including preprocessing steps such as truecasing and annotation combination. The system that has re-
ported the highest accuracy on the 2010 i2b2/VA concept extraction benchmark is based on unsupervised
feature representations obtained by Brown clustering and a hidden semi-Markov model as classifier (de-
Bruijn et al., 2011). However, the use of a “hard” clustering technique such as Brown clustering is not
suitable for capturing multiple relations between the words and the concepts. For this reason, Jonnala-
gadda et al. (Jonnalagadda et al., 2012) demonstrated that a random indexing model with distributed
word representations can improve clinical concept extraction. Moreover, Wu et al. (Wu et al., 2015)
have jointly used word embeddings derived from the entire English Wikipedia (Collobert et al., 2011)
and binarized word embeddings derived from domain-specific corpora (e.g. the MIMIC-II corpus (Saeed
et al., 2011)). In the broader field of machine learning, the recent years have witnessed a proliferation
of deep neural networks, with outstanding results in tasks as diverse as visual, speech and named-entity
recognition (Hinton et al., 2012; Krizhevsky et al., 2012; Lample et al., 2016). One of the main ad-
vantages of neural networks over traditional approaches is that they can learn the feature representations
automatically from the data, thus avoiding the expensive feature-engineering stage. Given the promising
performance of deep neural networks and the recent success of unsupervised word embeddings in gen-
eral NLP tasks (Pennington et al., 2014a; Mikolov et al., 2013b; Lebret and Collobert, 2014), this paper
sets to explore the use of a state-of-the-art deep sequential model initialized with general-purpose word
embeddings for a task of clinical concept extraction.

3 The Proposed Approach

CE can be formulated as a joint segmentation and classification task over a predefined set of classes. As
an example, consider the input sentence provided in Table 1. The notation follows the widely adopted
in/out/begin (IOB) entity representation with, in this instance, HCT as the test and 2U PRBC as the
treatment. In this paper, we approach the CE task by the bidirectional LSTM-CRF framework where
each word in the input sentence is first mapped to either a random vector or a vector from a word
embedding. We therefore provide a brief description of both word embeddings and the model hereafter.

Word embeddings are vector representations of natural language words that aim to preserve the se-
mantic and syntactic similarities between them. The vector representations can be generated by either
count-based approaches such as Hellinger-PCA (Lebret and Collobert, 2014) or trained models such
as Word2Vec (including skip-grams and continuous-bag-of-words) and GloVe trained over large, unsu-
pervised corpora of general-nature documents. In its embedded representation, each word in a text is
represented by a real-valued vector, x, of arbitrary dimensionality, d.

Recurrent neural networks (RNNs) are a family of neural networks that operate on sequential data.
They take as input a sequence of vectors (x1, x2, ..., xn) and output a sequence of class posterior proba-
bilities, (y1, y2, ..., yn). An intermediate layer of hidden nodes, (h1, h2, ..., hn), is also part of the model.
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Training set Test set
notes 170 256

sentences 16315 27626
problem 7073 12592

test 4608 9225
treatment 4844 9344

Table 2: Statistics of the training and test data sets used for the 2010-i2b2/VA concept extraction.

In an RNN, the value of the hidden node at time t, ht, depends on both the current input, xt, and the
previous hidden node, ht−1. This recurrent connection from the past timeframe enables a form of short-
term memory and makes the RNNs suitable for the prediction of sequences. Formally, the value of a
hidden node is described as:

ht = f(U • xt + V • ht−1) (1)

where U and V are trained weight matrices between the input and the hidden layer, and between the past
and current hidden layers, respectively. Function f(·) is the sigmoid function, f(x) = 1/1 + e−x, that
adds non-linearity to the layer. Eventually, h(t) is input into the output layer and convolved with the
output weight matrix, W :

yt = g(W • ht), with g(zm) =
ezm

ΣK
k=1e

zk
(2)

Eventually, the output is normalized by a multi-class logistic function, g(·), to become a proper prob-
ability over the class set. Therefore, the output dimensionality is equal to the number of concept classes.
Although an RNN can, in theory, learn long-term dependencies, in practice it tends to be biased towards
its most recent inputs. For this reason, the Long Short-Term Memory (LSTM) network incorporates an
additional “gated” memory cell that can store long-range dependencies (Hochreiter and Schmidhuber,
1997). In its bidirectional version, the LSTM computes both a forward,

−→
ht , and a backward,

←−
ht , hid-

den representation at each timeframe t. The final representation is created by concatenating them as
ht = [

−→
ht ;
←−
ht ]. In all these networks, the hidden layer can be regarded as an implicit, learned feature

that enables concept prediction. A further improvement to this model is provided by performing joint
decoding of the entire input sequence in a Viterbi-style manner using a CRF (Lafferty et al., 2001) as
the final output layer. The resulting network is commonly referred to as the bidirectional LSTM-CRF
(Lample et al., 2016).

4 Experiments

4.1 Dataset
The 2010 i2b2/VA Natural Language Processing Challenges for Clinical Records include a concept ex-
traction task focused on the extraction of medical concepts from patient reports. For the challenge, a
total of 394 concept-annotated reports for training, 477 for testing, and 877 unannotated reports were de-
identified and released to the participants alongside a data use agreement (Uzuner et al., 2011). However,
part of this data set is no longer being distributed due to restrictions later introduced by the Institutional
Review Board (IRB). Thus, Table 2 summarizes the basic statistics of the training and test data sets which
are currently publicly available and that we have used in our experiments.

4.2 Evaluation Methodology
Our models have been blindly evaluated on the 2010 i2b2/VA CE test data using a strict evaluation crite-
rion requiring the predicted concepts to exactly match the annotated concepts in terms of both boundary
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Methods Precision Recall F1 Score
Hidden semi-Markov Model (deBruijn et al., 2011) 86.88 83.64 85.23

Distributonal Semantics CRF (Jonnalagadda et al., 2012) 85.60 82.00 83.70
Binarized Neural Embedding CRF (Wu et al., 2015) 85.10 80.60 82.80

CliNER (Boag et al., 2015) 79.50 81.20 80.00
Truecasing CRFSuite (Fu and Ananiadou, 2014) 80.83 71.47 75.86

Random - Bidirectional LSTM-CRF 81.06 75.40 78.13
Word2Vec - Bidirectional LSTM-CRF 82.61 80.03 81.30

GloVe - Bidirectional LSTM-CRF 84.36 83.41 83.88

Table 3: Performance comparison between the bidirectional LSTM-CRF (bottom three lines) and state-
of-the-art systems (top five lines) over the 2010 i2b2/VA concept extraction task.

and class. To facilitate the replication of our experimental results, we have used a publicly-available
library for the implementation of the LSTM (i.e. the Theano neural network toolkit (Bergstra et al.,
2010)) and we publicly release our code1. We have split the training set into two parts (sized at ap-
proximately 70% and 30%, respectively), using the first for training and the second for selection of the
hyper-parameters (“validation”) (Bergstra and Bengio, 2012).The hyper-parameters include the embed-
ding dimension, d, chosen over {50, 100, 300, 500}, and two additional parameters, the learning and
drop-out rates, that were sampled from a uniform distribution in the range [0.05, 0.1]. All weight matri-
ces were randomly initialized from the uniform distribution within range [−1, 1]. The word embeddings
were either initialized randomly in the same way or fetched from Word2Vec and GloVe (Mikolov et al.,
2013a; Pennington et al., 2014b). Approximately 25% of the tokens were alphanumeric, abbreviated
or domain-specific strings that were not available as pre-trained embeddings and were always randomly
initialized. Early stopping of training was set to 50 epochs to mollify over-fitting, and the model that
gave the best performance on the validation set was retained. The accuracy is reported in terms of micro-
average F1 score computed using the CoNLL score function (Nadeau and Sekine, 2007).

4.3 Results and Analysis
Table 3 shows the performance comparison between state-of-the-art CE systems and the proposed bidi-
rectional LSTM-CRF with different initialization strategies. As a first note, the bidirectional LSTM-CRF
initialized with GloVe outperforms all recent approaches (2012-2015). On the other hand, the best sub-
mission from the 2010 i2b2/VA challenge (deBruijn et al., 2011) still outperforms our approach. How-
ever, based on the description provided in (Uzuner et al., 2011), these results are not directly comparable
since the experiments in (deBruijn et al., 2011; Jonnalagadda et al., 2012) had used the original dataset
which has a significantly larger number of training samples. Using general-purpose, pre-trained embed-
dings improves the F1 score by over 5 percentage points over a random initialization. In general, the
results achieved with the proposed approach are close and in many cases above the results achieved by
systems based on hand-engineered features.

Conclusion

This paper has explored the effectiveness of the contemporary bidirectional LSTM-CRF for clinical con-
cept extraction. The most appealing feature of this approach is its ability to provide end-to-end recog-
nition using general-purpose, off-the-shelf word embeddings, thus sparing effort from time-consuming
feature construction. The experimental results over the authoritative 2010 i2b2/VA reference corpora
look promising, with the bidirectional LSTM-CRF outperforming all recent approaches and ranking
closely to the best submission from the original 2010 i2b2/VA challenge. A potential way to further
improve its performance would be to explore the use of unsupervised word embeddings trained from
domain-specific resources such as the MIMIC-III corpora (Johnson et al., 2016).

1https://github.com/raghavchalapathy/Bidirectional-LSTM-CRF-for-Clinical-Concept-Extraction
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Abstract 

Due to the recent replacements of physical documents with electronic medical records (EMR), 
the importance of information processing in medical fields has been increased. We have been 
organizing the MedNLP task series in NTCIR-10 and 11. These workshops were the first shared 
tasks which attempt to evaluate technologies that retrieve important information from medical 
reports written in Japanese. In this report, we describe the NTCIR-12 MedNLPDoc task which 
is designed for more advanced and practical use for the medical fields. This task is considered 
as a multi-labeling task to a patient record. This report presents results of the shared task, 
discusses and illustrates remained issues in the medical natural language processing field. 

1 Introduction 

Medical reports using electronic media are now replacing those of paper media. Correspondingly, the 
information processing techniques in medical fields have radically increased their importance. 
Nevertheless, the information and communication technologies (ICT) in medical fields tend to be 
underdeveloped compared to the other fields [1]. 
Processing large amounts of medical reports and obtaining knowledge from them may assist precise and 
timely treatments. Our goal is to promote developing practical tools that support medical decisions. In 
order to achieve this goal, we have been organizing ‘shared tasks (contests, competitions, challenge 
evaluations, critical assessments)’ to encourage research in medical information retrieval. Among the 
various shared tasks, one of the best-known medical-related shared tasks is the Informatics for 
Integrating Biology and the Bedside (i2b2) by the National Institutes of Health (NIH), which started in 
2006 [2]. The Text Retrieval Conference (TREC), which addresses more diverse issues, also launched 
the Medical Reports Track [3]. Shortly after the NTCIR-10 MedNLP task, the first European medical 
shared task, the ShARe/CLEF eHealth Evaluation Lab [4], was organized. This shared task focuses on 
natural language processing (NLP) and information retrieval (IR) for clinical care. While they are 
targeted only at English texts, medical reports are written in native languages in most countries. 
Therefore, information retrieval techniques in individual language are required to be developed. 
We organized the NTCIR-10 and NTCIR-11 MedNLP tasks (shortly MedNLP) [5] which were the first 
and second shared tasks, evaluating technologies that retrieve important information from medical 
reports written in Japanese. These previous tasks include three sub tasks: named entity removal task (de-
identification task), disease name extraction task (complaint and diagnosis), and normalization task 
(ICD coding task). These tasks correspond to elemental technologies for computational systems which 
support diverse medical services.  
Following the success of these MedNLP tasks, we designed the NTCIR-12 MedNLPDoc task to be more 
advanced and practical. In this MedNLPDoc task, we provided a new challenging task where 
participants' systems infer disease names in ICD (International Codes for Diseases) from textual medical 
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records. Due to this practical setting, task participants' systems could directly support an actual daily 
clinical services and clinical studies in various areas.  

2 Task & Corpus 

2.1 ICD Code 

The International Classification of Diseases (ICD) is the standard diagnostic coding system used in 
many countries for epidemiology, health management and clinical purposes. It is used to monitor the 
incidence and prevalence of diseases and other health problems, proving a picture of the general health 
situation of countries and populations. In the latest version of the ICD coding system, ICD-10, each ICD 
code consists of a single alphabet prefix and two digits of numbers. In addition to these three characters 
that represents a major classification, more detailed classification can be represented by several digits 
of additional numbers as suffix, up to six characters in total. Because the major categories are limited to 
21 sections, the major categories include a set of similar diseases. 

2.2 ICD Coding Task 

We provided a training data set of medical records that is taken from “ICD Coding Training, Second 
Edition”, written in Japanese for training Health Information Managers (HIMs). We organized the 
phenotyping task, in which the participants are required to assign ICD-10 code(s) to a given medical 
record.  

 
Figure 1: coding task: The participants will assign 
ICD-10 codes from texts. This example should be as-
signed as C169, which means Gastric cancer. In this 
case, only one ICD-10 code was assigned, but in gen-
eral, one or more codes should be assigned. 

Table 1: Number of Code Assigned. 
 # (valiance) Min. Max. 
SURE 2.8 (±1.6) 0 8 
MAJOR 5.2 (±2.0) 1 11 
POSSIBLE 9.4 (±3.8) 2 19 

 
 

2.3 Corpus 

We created a medical record corpus for this task which includes 278 individual medical records (200 
were used for training, and the other 78 used for test). The average number of sentences per record is 
7.82. The average number of codes per record is 3.86 (total 1073 codes and 552 variants). In test set, 
three professional human coders (more than one-year experience) individually added ICD-10 codes. We 
defined three different code sets as follows.  

l SURE (S): sure code set consists of codes that all coders (three persons) utilized. 
l MAJOR (M): major code set consists of codes that two or three coders utilized. 
l POSSIBLE (P): possible code set consists of codes that at least one coder utilized. 
We derived three types of gold standard data for each code set above. Note that there is a relationship 

of S∈M∈P (SURE is a subset of MAJOR, MAJOR is a subset of POSSIBLE). The inter annotation 
ratio (IAA) between three humans (Human-A, Human-B, and Human-C) is defined by the following 
formula: 

IAA = Σd∈D |Ad∩Bd∩Cd| \ |Ad∪Bd∪Cd| / |D|. 
where D is the set of all records. |D| is the number of records. |Ad∩Bd∩Cd| is the number of SURE 
codes in the record d. |Ad∪Bd∪Cd| is the number of POSSIBLE codes in the record d. 
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2.4 Evaluation  

Performance of the coding task was assessed using the F-score (β=1), precision, and recall. Precision is 
the percentage of correct codes found by a participant's system. Recall is the percentage of codes pre-
sented in the corpus that were found by the system. F-score is the harmonic mean of precision and recall.   

The three human coders were also evaluated by this measure. The average results are as follows: Av. 
Sure Precision=0.168, Av. Sure Recall=0.388, and Av. Sure F-measure=0.235. 

3 Result 

The participating systems are shown in Table 2. Roughly, the systems are classified into three types: (1) 
machine learning approach (team A, B, E, and G), (2) rule based approach (team C. D and H), and (3) 
their combination (team C).  

3.1 Machine Learning V.S. Rule-based  

The performance is shown in Figure 2. Among all systems, the highest performance system is provided 
by the SYSTEM-C in the SURE metrics. The system is based on heuristic rules, indicating that rule-
based approaches still have its advantage. Considering machine learning approaches have been outper-
forming rule based approaches in most of the other NLP fields, this result is remarkable for future system 
designing in the medical domain. 

In the other metrics (MAJOR and POSSIBLE), the system-G3 and the system E achieved better 
performance than the SYSTEM-C. Not like the SYSTEM-C, the SYSTEM-G3 fully implemented by 
the multiple machine learning methods. Also, the SYSTEM E system partly utilized machine learning, 
but it also employs rule-based features that represent coding heuristics. 

In summary, the overall result indicates the advantages of traditional rule based approach. These 
results were caused by two reasons: (1) the corpus size of this task is relatively small than the other 
tasks, and (2) the classification space (the number of code) is huge. This result revealed that current 
machine learning techniques still suffer from such conditions. 

3.2 Contribution of Extra Resources  

Another viewpoint of this task is the contribution of extra resources. Almost all participants used the 
MEDIS Standard Masters (MDS) and some used other language resources. While this implies that a 
medical dictionary is the most useful tool to this task. The SYSTEM-D calculated similarity scores 
between medical vocabulary n-grams and word n-grams in EMR. The SYSTEM-H calculated edit-dis-
tances and used their scores as features of CRF. The SYSTEM-A used three dictionaries in addition to 
MDS. They used Kuromoji morphological analyzer with their customized dictionary. In summary, most 
of the teams have relied on the existing language resources, and its quality and quantity varies the team 
performance. 

3.3 Strategy  

The strategies of the systems are characterized by two parameters; (1) the average number of codes and 
(2) the variance of codes. Table 3 presents the average number of codes assigned by the high perfor-
mance three systems (SYSTEM C, E, and G3). The SYSTEM-G3 assigns more codes rather than the 
others (high recall-oriented). In contrast, the SYSTEM-C ascend only 2.0 codes in average (high preci-
sion-oriented).    

     Another parameter is the distribution of codes. Figure 3 shows the distribution of codes of these 
systems. The SYSTEM-C handles a narrow coding spaces, in which the most of codes are assigned in 
Z**, R** or C**. This also indicates that the SYSTEM-C aims to obtain the high precision. 

 

 

15



 

Table 2: participant system. 
Team Sources Methods 

A ICD-10(en), 
Wikipedia, 
Google/Yandex 
MT, HUG(fr) 

rule base 

B MDS, ICD-10 machine learning (CRF)/ 
Edit distance (as features) 

C MDS, Wikipedia Rule based 
D MDS, ICD 

training book  
string similarity measure 

E MDS Rule based (as  features), 
machine learning (CRF) 

F MDS, training 
data 

search engine (using 
named entity based 
keywords?) 

G MDS machine learning 
(CRF,LIBLINER (SVM)) 

H MDS NA (Exact Match) 
* MDS indicates the ICD Dictionary, MEDIS Standard 
Masters. 
* CRF indicates the conditional random fields.  
 

Table 3: Number of Code Assigned. 
SYSTEM # of codes Min. Max. 
C 2.0 0 7 
E 3.4 1 8 
G3 6.6 8 14 

 

 

(a)  

(b)  

(c)  

Figure 2: F-measure in SURE (a), MAJOR 
(b), and POSSIBLE (c). 

 
Figure 3: Code Distribution of the best three 
systems. 

4 Conclusion 

This paper describes the NTCIR-12 MedNLPDoc task which is a multi-labeling task, ICD-10 coding, 
to a patient record. This report presents results of the shared task, discusses and illustrates remained 
issues in the medical natural language processing field. Still, rule-based approaches have demonstrated 
the advantage in this task, requiring the future development of machine learning approaches that deal 
with small data. 
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Abstract

Patient notes contain a wealth of information of potentially great interest to medical investigators. However, to
protect patients’ privacy, Protected Health Information (PHI) must be removed from the patient notes before they
can be legally released, a process known as patient note de-identification. The main objective for a de-identification
system is to have the highest possible recall. Recently, the first neural-network-based de-identification system
has been proposed, yielding state-of-the-art results. Unlike other systems, it does not rely on human-engineered
features, which allows it to be quickly deployed, but does not leverage knowledge from human experts or from
electronic health records (EHRs). In this work, we explore a method to incorporate human-engineered features
as well as features derived from EHRs to a neural-network-based de-identification system. Our results show that
the addition of features, especially the EHR-derived features, further improves the state-of-the-art in patient note
de-identification, including for some of the most sensitive PHI types such as patient names. Since in a real-life
setting patient notes typically come with EHRs, we recommend developers of de-identification systems to leverage
the information EHRs contain.

1 Introduction and related work

Medical practitioners increasingly store patient data in Electronic Health Records (EHRs) (Hsiao et al.,
2011), which represents a considerable opportunity for medical investigators to construct novel models
and experiments to improve patient care. Some governments even subsidize the adoption of EHRs, such
as the Centers for Medicare & Medicaid Services in the United States who have spent over $30 billion
in EHR incentive payments to hospitals and medical providers (McCann, 2015).

A legal prerequisite for a patient note to be shared with a medical investigator is that it must be de-
identified. The objective of the de-identification process is to remove all Protected Health Information
(PHI). Not appropriately removing PHI may result in financial penalties (DesRoches et al., 2013; Wright
et al., 2013). In the United States, the Health Insurance Portability and Accountability Act (HIPAA) (Of-
fice for Civil Rights, 2002) defines PHI types that must be removed, ranging from phone numbers to
patient names. Failure to accurately de-identify a patient note would jeopardize the patient’s privacy: the
performance of a de-identification system is therefore critical.

A naive approach to de-identification is to manually identify PHI. However, this is costly (Douglass
et al., 2005; Douglas et al., 2004) and unreliable (Neamatullah et al., 2008). Consequently, there has
been much work developing automated de-identification systems. These systems are either based on
rules or machine-learning models. Rule-based systems typically rely on patterns, expressed as regular
expressions and gazetteers, defined and tuned by humans (Berman, 2003; Beckwith et al., 2006; Fielstein
et al., 2004; Friedlin and McDonald, 2008; Gupta et al., 2004; Morrison et al., 2009; Neamatullah et al.,
2008; Ruch et al., 2000; Sweeney, 1996; Thomas et al., 2002).

Machine-learning-based systems train a classifier to label each token as PHI or not PHI. Some systems
are more fine-grained by detecting which PHI type a token belongs to. Different statistical methods have
been explored for patient note de-identification, including decision trees (Szarvas et al., 2006), log-linear
models, support vector machines (SVMs) (Guo et al., 2006; Uzuner et al., 2008; Hara, 2006), and
conditional random field (CRFs) (Aberdeen et al., 2010). A thorough review of existing systems can be
found in (Meystre et al., 2010; Stubbs et al., 2015).

This work is licenced under a Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/
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A more recent system has introduced the use of artificial neural networks (ANNs) for de-
identification (Dernoncourt et al., 2016), and obtained state-of-the-art results. The system does not use
any manually-curated features. Instead, it solely relies on character and token embeddings. While this
allows the system to be developed and deployed faster, it fails to give users the possibility to add fea-
tures engineered by human experts. Additionally, in practical settings of de-identification, patient notes
typically come from a hospital EHR database, which contains metadata such as which patient each note
pertains to, and other information such as the names of all doctors who work at the hospital where the
patient was treated. The features derived from EHR databases may be useful for boosting the perfor-
mance of de-identification systems. In this work, we present a method to incorporate features to this
ANN-based system, and show that it further improves the state-of-the-art.

2 Method

The first model based on ANNs for patient note de-identification was introduced in (Dernoncourt et
al., 2016): we extend upon their model. They utilized both token and character embeddings to learn
effective features from data by fine-tuning the parameters. The main components of the ANN model are
Long Short Term Memories (LSTMs) (Hochreiter and Schmidhuber, 1997), which are a type of recurrent
neural networks (RNNs).

The model is composed of three layers: a character-enhanced token embedding layer, a label predic-
tion layer, and a label sequence optimization layer. The character-enhanced token embedding layer maps
each token into a vector representation. The sequence of vector representations corresponding to a se-
quence of tokens are input to the label prediction layer, which outputs the sequence of vectors containing
the probability of each label for each corresponding token. Lastly, the sequence optimization layer out-
puts the most likely sequence of predicted labels based on the sequence of probability vectors from the
previous layer. All layers are learned jointly. For more details on the basic ANN model, see (Dernoncourt
et al., 2016).

We augment this ANN model by adding features that are human-engineered or derived from EHR
database, as presented in Table 1. The majority of human-engineered features are taken from (Filan-
nino and Nenadic, 2015), a few more features come from (Yang and Garibaldi, 2015), and additional
gazetteers are collected using online resources. All features are binary and computed for each token.
The binary feature vector comprising all features for a given token is fed into a feedforward neural net-
work, the output vector of which is concatenated to the corresponding token embeddings, at the output
of the character-enhanced token embedding layer, as Figure 1 illustrates.

bi-LSTM
Pre-trained token 

embeddings

Features

Characters

Character embeddings

concatanate

011 00 …
Token

Feedforward 
neural network

Feature-augmented token embeddings

…

…

…

Figure 1: Feature-augmented token embeddings. Each token is mapped to a token embedding that is the
concatenation of three elements: the output of a feedforward neural network that takes the features as
input, a pre-trained token embedding, and the output of a bidirectional-LSTM (bi-LSTM) that takes the
character embeddings as input.
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Feature types Features
Note metadata
Hospital data

Patient’s first name, patient’s last name
Doctor’s first names, doctor’s last names

}
EHR features

Morphological Ends with s, is the first letter capitalized, contains a digit, is numeric, is alphabetic, is alphanu-
meric, is title case, is all lower case, is all upper case, is a stop word

Semantic/Wordnet Hypernyms, senses, lemma names
Temporal Seasons, months, weekdays, times of the day, years, years followed by apostrophe, festivity

dates, holidays, cardinal numbers, decades, fuzzy quantifier (e.g., “approximately”, “few”),
future trigger (e.g., “next”, “tomorrow”)

Gazetteers Honorifics for doctors, honorifics, medical specialists, medical specialties, first names, last
names, last name prefixes, street suffixes, US cities, US states (including abbreviations), coun-
tries, nationalities, organizations, professions

Regular expressions Email, age, date, phone, zip code, id number, medical record number

Table 1: Feature list. Note metadata and hospital data are derived from the EHR database. Morphologi-
cal, semantic/wordnet, and temporal features are commonly used features for NLP tasks. Gazetteers and
regular expressions are specifically engineered for the task.

3 Experiments

We evaluate our model on the de-identification dataset introduced in (Dernoncourt et al., 2016), which
is a subset of the MIMIC-III dataset (Goldberger et al., 2000; Saeed et al., 2011; Johnson et al., 2016),
using the same train/validation/test split (70%/10%/20%). We chose this dataset as each note comes
with metadata, such as the patient’s name, and it is the largest de-identification dataset available to us. It
contains 1,635 discharge summaries, 2,945,228 tokens, 69,525 unique tokens, and 78,633 PHI tokens.

The model is trained using stochastic gradient descent, updating all parameters, i.e., token embed-
dings, character embeddings, parameters of bidirectional LSTMs, and transition probabilities, at each
gradient step. For regularization, dropout is applied to the character-enhanced token embeddings before
the label prediction layer. We set the character embedding dimension to 25, the character-based token
embedding LSTM dimension to 25, the token embedding dimension to 100, the label prediction LSTM
dimension to 100, the dropout probability to 0.5, and we use GloVe embeddings (Pennington et al., 2014)
trained on Wikipedia and Gigaword 5 (Parker et al., 2011) articles as pre-trained token embeddings. The
hyperparameters were optimized based on the performance on the validation set.

4 Results

Table 2 presents the main results. The epochs for which the results are reported are optimized based on
either the highest F1-score or the highest recall on the validation set. As expected, choosing the epoch
based on the recall improves the recall on the test set, while lowering the precision. Overall, adding
features consistently improves the results.

Table 3 details the results for each PHI type. The system using only the EHR features yields the
highest recall for 6 out of 12 PHI types. Most importantly, the recall for patient and doctor names are
higher when using features than when using no feature: this is expected as the patient name of the note
and the doctor names are used as features. In fact, the two remaining false negatives for patient names
are annotation errors. For example, in the sentence “The patient responded well to Natrecor in the past,
but the improvement disappeared soon”, the drug name Natrecor was incorrectly marked as a patient
name by the human annotator. This result is highly remarkable as patient names are the most sensitive
information in a patient note (South et al., 2014).

Adding all features often lowers the recall compared to using EHR features only, although the F1-
score remains virtually unchanged. This is somewhat surprising, as we had expected that the features
would help, as using the same feature set with a CRF to perform de-identification yields state-of-the-
art results next to the ANN models (Dernoncourt et al., 2016). This could be explained as follows.
Human-engineered features tend to have higher precision than recall, as it is often hard to design regular
expressions or gazetteers that can detect all possible instances or variations of the desired entities. We
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Binary HIPAA (optimized by F1-score) Binary HIPAA (optimized by recall)
Precision Recall F1-score Precision Recall F1-score

No feature 99.103 99.197 99.150 98.557 99.376 98.965
EHR features 99.100 99.304 99.202 98.771 99.441 99.105
All features 99.213 99.306 99.259 98.880 99.420 99.149

Table 2: Binary HIPAA token-based results (%) for the ANN model, averaged over 5 runs. The metric
refers to the detection of PHI tokens versus non-PHI tokens, amongst PHI types that are defined by
HIPAA. “No feature” is the model utilizing only character and word embeddings, without any feature.
“EHR features” uses only 4 features derived from EHR database: patient first name, patient last name,
doctor first name, and doctor last name. “All features” makes use of all features, including the EHR
features as well as other engineered features listed in Table 1. “Optimized by F1-score” and “optimized
by recall” means that the epochs for which the results are reported are optimized based on the highest
F1-score or the highest recall on the validation set, respectively.

No feature EHR features All features
P R F1 P R F1 P R F1 Support

Zip 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 24
Date 98.90 99.77 99.33 98.95 99.79 99.36 98.99 99.69 99.34 20627
Phone 98.31 99.58 98.94 98.98 99.46 99.22 99.42 99.32 99.37 1438
Patient 96.89 98.34 97.61 98.62 99.14 98.88 99.21 99.27 99.24 302
ID 99.57 98.24 98.90 99.31 98.82 99.07 99.77 97.97 98.86 612
Doctor1 97.47 98.17 97.82 97.27 98.48 97.87 97.56 98.20 97.88 3676
Location 96.02 95.71 95.86 96.41 96.49 96.45 96.65 96.32 96.46 462
Age ≥ 90 75.12 94.29 83.60 77.04 95.72 85.35 78.93 93.57 84.80 28
Hospital1 94.78 95.39 95.08 94.77 95.52 95.14 95.53 95.50 95.51 1259
State1 99.36 94.33 96.76 99.68 94.03 96.73 99.39 91.94 95.49 67
Street 96.77 85.25 90.54 97.63 85.25 90.96 93.91 86.56 89.81 61
Country1 87.51 85.00 86.11 89.29 82.50 85.67 86.87 95.00 90.56 16
Binary 98.41 99.19 98.80 98.48 99.27 98.87 98.61 99.15 98.88 28572

Table 3: Binary token-based results (%). The reported results are optimized by recall, and averaged over
5 runs. The symbol 1 indicates that the PHI type is not required by HIPAA. The PHI type “location”
designates any location that is not a street name, zip code, state or country. P stands for precision, R for
recall, and F1 for F1-score.

conjecture that as the ANN model learn to rely more on such features, it might lose the ability to learn to
pick up tokens that deviate from engineered features, resulting in a lower recall. For example, we notice
that the phone PHI tokens that are not detected by the model using all features but are detected by the
other two models, are ill-formed phone numbers such as “617-554-|2395”, or phone extensions such as
“617-690-4031 ext 6599”. Since the phone regular expressions do not capture these two examples, they
are more likely to be false negatives in the model that uses the phone regular expression features.

5 Conclusion
In this paper we presented an extension of the ANN-based model for patient note de-identification that
can incorporate features. We showed that adding features results in an increase of the recall, in particular
features leveraging information from the associated EHRs, namely patient names and doctor names. Our
results suggest that constructing patient note de-identification systems should be performed using struc-
tured information from the EHRs, the latter being available in a typical, real-life setting. We restricted
our EHR-derived features to patient and doctor names, but it could be extended to the many other struc-
tured fields that EHR contain, such as patients’ addresses, phone numbers, email addresses, professions,
and ages.
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Chapman. 2014. Evaluating the effects of machine pre-annotation and an interactive annotation interface on
manual de-identification of clinical text. Journal of biomedical informatics, 50:162–172.
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Abstract

Semi-supervised clustering is an attractive alternative for traditional (unsupervised) clustering in
targeted applications. By using the information of a small annotated dataset, semi-supervised
clustering can produce clusters that are customized to the application domain. In this paper, we
present a semi-supervised clustering technique based on a multi-objective evolutionary algorithm
(NSGA-II-clus). We apply this technique to the task of clustering medical publications for Evi-
dence Based Medicine (EBM) and observe an improvement of the results against unsupervised
and other semi-supervised clustering techniques.

1 Introduction

Clustering is an unsupervised machine learning method that attempts to find groups (clusters) in a col-
lection of documents (Jain et al., 1999). Clustering is useful for applications where the goal is to find
structure in a collection of documents, and can be applied in a wide range of tasks, such as finding groups
among patients with breast cancer, or identifying groups of shoppers with similar browsing and purchase
histories. A common problem with clustering, however, is that the structure that is found might not reflect
the desired structure that is relevant for a particular application. For example, one might wish to cluster
words in the hope of learning their parts-of-speech, but instead the clusters group words according to
their meanings. In supervised learning, we have labeled information, but the annotation can be costly to
produce (Zhu and Goldberg, 2009). So a trade-off is needed, and a semi-supervised framework provides
this trade-off. In semi-supervised clustering (Zhu and Goldberg, 2009), part of the documents to cluster
are annotated with information about how they cluster, and the task consists of clustering the entire set
of documents. By incorporating the information of the known clusters of a part of the documents, the
final clusters have a better chance to match the desired clusters of the application domain. In this paper
we focus on clustering the documents that are relevant to a clinical query for the practice of Evidence
Based Medicine (EBM) (Shash and Molla, 2013). Here, each cluster is expected to group the documents
that describe a particular aspect of the answer to the clinical question. Let us take an example of the
disease Asperger’s syndrome. There are five policies for the treatment of this disease, namely ‘special
education’, ‘behavior modification’, ‘speech’, ‘physical and occupational therapy and medication’, and
‘social skill therapies and medications’. Now the documents which are assigned to each of these possible
treatment policies represent a cluster. Table 1 shows an example of such clustering. Moreover, Table 1
shows that some documents may be associated with multiple treatments, and therefore the clustering task
is non-overlapping.

Most of the clustering techniques in existing literature focus on optimizing only one validity index
(Jain et al., 1999; Maulik and Bandyopadhyay, 2002), which measures the goodness of an obtained par-

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Table 1: Asperger’s syndrome and its possible treatments. Each item enclosed in [] indicates a text
document ID.

Which treatments work best for Asperger's syndrome?
Name of the treatment IDs of documents assigned

Special education [1080], [1178]
Behavior modification [8545], [4123], [5523]
Speech, physical or occupational therapy [1080], [8545]
Social skills therapies [5523], [3321], [6434]
Medications [8545], [3321], [6434], [6755]

titioning. However, in order to determine a proper partitioning, optimizing a single cluster validity index
is not always sufficient, especially in the situation when we deal with text documents having clusters
of different shapes and sizes. The concept of multi-objective optimization (MOO) can be brought into
consideration where we need to optimize several objective functions at the same time. The advantage
of MOO is that we can generate clusters by optimizing several cluster validity indices. Inspired by this,
Ekbal et al. (2013) proposed a MOO-based approach for clustering medical documents for EBM by
using the search capability of a simulated annealing based approach, AMOSA (Archived MultiObjec-
tive Simulated Annealing based technique) (Bandyopadhyay et al., 2008). However, it has been shown
that for some benchmark datasets, AMOSA performs slowly compared to a popular genetic algorithm
based MOO technique, NSGA-II (Non-dominated Sorting Genetic Algorithm-II) (Bandyopadhyay et
al., 2008). Therefore, an alternative MOO-based approach is needed in order to verify whether we can
improve the run-time complexity of AMOSA. Moreover, Ekbal et al. (2013) have used some labeled in-
formation to select a single solution from the final set of trade-off solutions. In general semi-supervised
methods perform well compared to unsupervised clustering techniques.

In our present work we propose to develop a semi-supervised clustering technique and apply that
for EBM. The proposed approach uses only 10% labeled information which is easy to obtain. The
proposed technique is novel in a way that it uses the labeled information during the internal steps of
the proposed clustering process. More specifically we can say that the internal steps of NSGA-II based
clustering are modified to take care of this labeled information. The labeled information was used by
Ekbal et al. (2013) to select a single solution from the final Pareto optimal front after the execution
of AMOSA based clustering technique. Moreover, as mentioned by Bandyopadhyay et al. (2008), the
complexity of AMOSA is higher than that of NSGA-II. Thus, the use of NSGA-II as the underlying
optimization technique makes the system less complex and time consuming. In this paper, we propose
the use of NSGA-II (Deb et al., 2013) for semi-supervised clustering of documents. We propose two
different versions of the NSGA-II based semi-supervised clustering technique. In the first approach the
available supervised information in the form of must-link and cannot-link constraints can be used during
the selection phase of clustering. These constraints are taken into account while calculating crowding
distance which is further used to assign ranks to different solutions of the combined population. Thus,
the available supervised information is used in each generation of the proposed technique. In the second
approach, we use a semi-supervised approach to select a single solution from the set of final solutions
produced by the MOO-based approach. In this case, supervised information is used only at the final stage
rather than during the clustering phase. In recent years, several semi-supervised clustering techniques
(Xing et al., 2002; Basu et al., 2004) have been proposed in the literature which are applicable for general
data sets. In this paper we also extend those techniques to solve the problem of EBM. Some of the
promising methods include the ones based on K-means with a distance metric (Xing et al., 2002) and K-
means with a probabilistic framework (Basu et al., 2004). We, thereafter, present a thorough comparative
analysis with our proposed methods and other existing semi-supervised clustering techniques.

2 Background

In this section we describe some concepts related to multi-objective optimization (MOO).
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2.1 MultiObjective Optimization

Simultaneously optimizing several objective functions is known as multi-Objective optimization (MOO)
(Deb, 2001). In general the objective functions used in MOO are conflicting in nature. A real-life ex-
ample could be buying a car where the objectives are : i) minimizing cost and ii) maximizing comfort.
In mathematical terms, a MOO problem can be formally stated as: Finding the vectors of decision vari-
ables x = [x1, x2, x3, ....., xn]T which will satisfy m inequality constraints: gi(x) ≥ 0, i = 1, 2, ....m
and p equality constraints hj(x) = 0, j = 1, 2, ..., p and simultaneously optimize M objective functions
f1(x), f2(x), ...., fM (x).

2.2 Domination

A solution xi =
{
f1(xi), f2(xi), . . . , fM (xi)

}
is said to dominate a solution xj ={

f1(xj), f2(xj), . . . , fM (xj)
}

denoted as xi ≺ xj iff fm(xi) < fm(xj), ∃m ∈ {1, 2, . . . ,M}, and
fm(xi) ≤ fm(xj), ∀m ∈ {1, 2, . . . ,M}

Two solutions xi and xj are said to be non-dominated with each other if and only if neither xi ≺ xj

nor xj ≺ xi.
A solution x ∈ P is called Pareto Optimal with respect to P if there is no solution x′ ∈ P such that x

is dominated by x′. The set of Pareto Optimal solutions is known as Pareto set.
Non Dominated Sorting is to divide the population P in K(1 ≤ K ≤ N) fronts. Let F =
{F1, F2, . . . , FK} be the set of these K fronts in decreasing order of their dominance. The division of the
solutions is such that i) Each solution in a front is non-dominated with each other, and ii) each solution
in a front Fk is dominated by at least one solution in its preceding front Fk′ , k′ < k

∧
1 ≤ k, k′ ≤ K.

2.3 NSGA-II in the Light of MOO

Solving a problem consisting of multiple objectives in general produces more than one solution and
these obtained solutions are termed as Pareto Optimal solutions. If no external condition is specified, it
becomes really difficult to distinguish between these sets of solutions in terms of their performance. In
the current state-of-art, we have always observed a tendency to convert the MOO problem into a single
objective optimization (SOO) problem in order to produce single Pareto optimal solution at a time.
In this regard, a number of multiObjective-based evolutionary algorithms (MOEA) have been proposed
(Deb, 2001; Fonseca and Fleming, 1993), where the algorithm deals with a number of competing objec-
tives simultaneously. NSGA (Tanaka et al., 1995) is one of such members in the league of suggested EA
(Evolutionary Algorithms) methods. NSGA-II (Deb et al., 2013) is an improvement over the existing
NSGA algorithm, where a diverse set of solutions is found and it is observed that the algorithm tends to
converge near the true Pareto optimal set. Among all such existing EAs, NSGA-II performs better than
the rest and hence it is a promising algorithm for EA based MOO.

3 NSGA-II-Based Clustering Algorithm

In this section we describe the basic framework of NSGA-II-based clustering approach. The proposed
clustering technique can detect the number of clusters automatically.

3.1 Problem Encoding

In this algorithm, cluster medoids are encoded in the form of a chromosome. We therefore assume that
the medoid is the most representative point of a given cluster. The number of clusters is varied over a
range, 2 to Kmax where Kmax is the maximum possible number of clusters. So for a given chromosome,
first a random number is generated in the range of 2 to Kmax. Let this be Ki. The Ki centers are encoded
in that particular chromosome and those centers are randomly chosen from the set of all documents. Each
document is assigned a positive integer value at the beginning. A point in the chromosome represents any
such document. But all the values within the chromosome must be unique, that is there should not be any
repetition while assigning values i.e., document IDs in the chromosome should be unique. At first the
population is initialized randomly. If the length of the population is p, we will generate p chromosomes
at the beginning. For example, suppose we have 9 documents having IDs from 0 to 9 and the Ki value
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is 4. Let us assume that the initial selection of documents for the medoids have IDs 2, 6, 7 and 9. The
chromosome becomes (2 6 7 9).

3.2 Assignment of Documents to Different Clusters

In our experiments we have used cosine and Euclidean distance as separate parameters to assign the
documents in respective clusters. For each document we determine any of the available distance measures
with respect to all the cluster medoids (encoded in a particular chromosome). Finally the document is
assigned to that cluster medoid (mi) with respect to which it is having the minimum distance. Once
the assignment has been done for all the documents, the new cluster medoids are calculated based on
the new clusters formed. These new medoids replace the existing medoids represented in that particular
chromosome.
j = arg minK

j=1 d(x, mj).
Here, x represents a document and mj denotes the jth cluster-medoid. The function d(x, mj) represents
any distance measure between document x and cluster medoid mj . The document x would be finally
assigned to cluster j. Once the assignment has been done for all the documents, the new cluster medoids
are calculated based on the new clusters formed. These new medoids replace the existing medoids
represented in that particular chromosome.

3.3 Objective Functions Used

Several cluster validity indices exist in the literature like: Davies-Bouldin (DB) index (Davies and
Bouldin, 1979), Dunns index (Dunn, 1973), Calinski Harabasz index (Caliński and Harabasz, 1974),
Xie-Beni (XB) index (Xie and Beni, 1991), I-index (Maulik and Bandyopadhyay, 2002). These indices
can measure the goodness of an obtained partitioning. It is established by Maulik and Bandyopadhyay
(2002) that I-index performs better than the existing cluster validity indices in terms of finding the ap-
propriate number of clusters. Hence, in order to measure the goodness of the partitioning represented
in a particular chromosome, two cluster validity indices are used, I-index (Maulik and Bandyopadhyay,
2002) and XB index (Xie and Beni, 1991).

3.4 Genetic Operators

We use classical mutation and crossover operators as proposed in NSGA-II (Deb et al., 2013) to bring
diversity in our population. Suppose there is a chromosome (2 4 5 7 8 9) representing a parent chromo-
some. In a mutation two documents are selected and exchanged.
(2 4 5 7 8 9) => (2 9 5 7 8 4)
In the case of crossover operation the bits are exchanged between parent chromosomes to produce off-
springs. Once a crossover point is selected, the permutation till this point is copied from the first parent,
then the second parent is scanned and, if the number is not yet in the offspring, it is added. For example,
suppose the parent chromosomes are represented by (1 2 3 4 5 6 7 8 9) and (4 5 3 6 8 9 7 2 1) and the
crossover point is 5. The offspring becomes :
(1 2 3 4 5 6 7 8 9) + (4 5 3 6 8 9 7 2 1) => (1 2 3 4 5 6 8 9 7)
Thereafter the selection operation of NSGA-II is applied. As described in (Deb et al., 2013), first the old
population and the new population obtained after the application of mutation and crossover are merged.
Now the non-dominated sorting procedure of NSGA-II is applied to divide the merged population (if
the population size is N , then the size of the merged population is 2 × N ) into a set of non-dominated
fronts. The selection operation is illustrated in Fig 2. Solutions belonging to the best non-dominated
set F1 are among the best solutions in the combined population. If the size of F1 is smaller than N , all
members of the set are selected for the new population. The remaining members of the population are
chosen from subsequent non-dominated fronts in the order of their ranking. If for a particular front Fi,
‖Fi‖ > (N −∑i−1

j=1 ‖Fj‖), then all the solutions of the Fi front cannot be accommodated in the new
population. In that case, in order to select the required number of solutions, the concept of crowding dis-
tance is used. In order to ensure diversity, the solutions which are far away lying in some non-crowded
region are given special attention. Those are given higher priority while being selected.
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Figure 1: Concepts of must-link and cannot-link constriants

Until the limit is reached, iterations are performed and the steps of mutation, crossover and selection
are repeated. Finally, a set of non-dominated solutions on the final Pareto front is obtained.

4 Application of Semi-supervision on NSGA-II Algorithm

As mentioned earlier we have used two different methods to induce the flavor of semi-supervision in
NSGA-II algorithm. These methods are described below:

4.0.1 Internal-NSGA-II-clus
Here we perform some modifications in the selection step of NSGA-II to take care of the available
supervised information in terms of must-link and cannot-link constraints. The computation of non-
dominated fronts depends not only on the objective functions (XB and I indices) but on the available
constraints (must-link, cannot-link) also. Here, the number of constraints violated by each solution also
contributes in determining the rank of that solution during selection operation.

A must-link constraint ensures that two instances should remain in the same cluster as shown in Fig 1,
whereas a cannot-link constraint ensures that two instances should be in two different clusters. From the
initial labeled information the must-link and cannot-link constraints are chosen. It is assumed that the
documents lying in the same cluster obey must-link and the documents lying in different clusters obey
cannot-link.

Along with XB and I indices, 10% of the labeled information in the form of must-link and cannot link
constraints is also used in crowded distance computation.

4.1 Computation of Crowding Distance
If n is the number of solutions in a given front F , F (dj) is the crowding distance of jth solution at a
given front F , and I(d1) and I(dn) are boundary values for crowding distance in F , then the procedure
through which the crowding distance is calculated is described in Algorithm 1, where I(k).m is the mth

Algorithm 1 Computation of crowding distance
1: for each front F do
2: F (dj) = 0
3: for each objective function m do
4: sort the individuals in F based on m, such that
5: I = sort(F,m)
6: F (d1) =∞ and F (dn) =∞.
7: for k = 2 to (n− 1) do
8: F (dk) = F (dk) + I(k+1).m−I(k−1).m

fmax
m −fmin

m

9: end for
10: end for
11: end for

objective function of the kth individual in I , fmax
m is the maximum value of m th objective function, and

fmin
m is the minimum value of mth objective function.
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Figure 2: Selection operation of NSGA-II

4.2 Modified Crowding Distance
Along with the available objective functions, we also consider the available must-link and cannot-link
constraints while computing the crowding distance. For a given solution (S), its must-score (wm) and
cannot-score (wc) are calculated. If S obeys a must-link constraint then its must-score is increased by 1
whereas if it obeys a cannot-link constraint then its cannot-score is increased by 1.

The overall must-score wm of an individual solution (S) is calculated as follows: wm =
∑M

i=1 If i
M

If i
M

= 1 , if S satisfies the ith must-link (1)

= 0 , otherwise (2)

Here M : total number of must-links, f i
M represents ith must-link constraint. Similarly, cannot-score wc

of an individual solution is calculated as follows: wc =
∑C

i=1 If i
C

If i
C

= 1 , if S satisfies the ith cannot-link (3)

= 0 , otherwise (4)

Here C: total number of cannot-links, f i
C represents ith cannot-link constraint.

The modified crowding distance of kth solution is computed as follows.
F (dnewk) = F (dk) + wm

M + wc
C

where F (dk) is the original crowding distance of kth solution computed using the procedure mentioned
in Section 4.1. And wm and wc are the total must-score and cannot-score of kth solution, respectively.

Selection After the computation of crowding distance the selection process is carried out using the
crowded-comparison operator (≺n) (Deb et al., 2013). Let us assume that F (dnewj) corresponds to the
new crowding distance for the jth individual in non-dominated front F and p and q are the pth and qth

individuals of a particular non dominated front F . After the application of the non-dominated sorting
procedure, suppose solutions p and q are assigned ranks of prank and qrank, respectively. Then the
crowded-comparison operator is defined as follows in Algorithm 2.

Algorithm 2 Computation of crowded comparison operator
p ≺n q (q dominates p) if
i) prank < qrank or ii) if prank = qrank, i.e. p and q ∈ F then F (dnewp) > F (dnewq) i.e., the crowding
distance should be greater.

4.3 External-NSGA-II-clus
In this method, at first the unsupervised clustering technique NSGA-II-clus (as described in Section 3) is
executed on the given set of documents to obtain different partitionings on the final Pareto front. Here no
modification is done in the internal steps of NSGA-II-clus, the available supervised information is used
to select a single best solution from the final non-dominated set of solutions. 10% information in the
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form of must-link and cannot-link constraints is used to rank each of the non-dominated set of solutions.
Basically each solution on the final Pareto front represents a partitioning. Experiments are performed to
check which partitioning obeys the available must-link and cannot-link information. The solution with
the maximum match is selected as the final solution from the Pareto Optimal front. For each solution
on the final Pareto front, we follow some scoring mechanism. For must-links, if two points present in
the link lie in the same cluster present in that solution, then we increase the score of the solution by 1.
Similarly, for cannot-links, if two points present in the link lie in two different clusters, we increase the
score of the non-dominated solution by 1. Thus we calculate the scores of all non-dominated solutions.
The solution with the highest score is selected as the final solution.

5 Datasets and Experimental Results

We use the dataset made available by Mollá and Santiago-Martinez (2011), from which we randomly
extract 276 clinical questions. Each question is associated with an average of 5.89 documents, and can be
seen as an independent clustering task. The proposed NSGA-II-clus (internal and external) and AMOSA-
clus (Ekbal et al., 2013) clustering techniques are therefore applied on each question individually. The
average entropy value of all the questions is then calculated. For both internal and external NSGA-II
clus algorithm, we first select 10% of the must-link and cannot-link constraints. For Internal-NSGA-
II-clus, this supervised information is used in providing ranking of all the solutions during selection
phase of each generation. In case of External-NSGA-II-clus this available supervised information is
used in assigning a score to each of the solutions on the final Pareto front. Based on the highest score
we select a single solution and compute the entropy values accordingly. The parameters for the proposed
NSGA-II-clus (internal and external) semi-supervised approach are as follows: population size = 20,
number of generations = 20, mutation probability = 0.2 and crossover probability = 0.6. These values
were determined after performing a thorough sensitivity study. The parameters of AMOSA-clus are kept
similar to those reported by Ekbal et al. (2013).The proposed NSGA-II-clus (internal and external) and
AMOSA-clus approaches along with two semi-supervised approaches, namely K-Means with Distance
Metric (Xing et al., 2002) and K-Means with probabilistic framework (Basu et al., 2004) are applied on
the same datasets.

The K-Means+ Distance Metric (Xing et al., 2002) algorithm in its simplest sense is a variation of K-
means. In the usual K-means, Euclidean or cosine distance is used as a measure of distance or separation
between any two points in the space. Suppose an user wants certain points to be regarded as similar,
according to some distance metric. Our task is to learn a distance metric automatically over a set of
points which takes into account this relationship. In this algorithm, however instead of Euclidean or
cosine distance, the concept of Distance Metric is used for our benefit.1

In the case of a probabilistic framework, a set of data points is randomly partitioned into a specific
number of clusters which serve as the unsupervised partitioning initially. Here also supervision is pro-
vided in terms of two constraints i.e., must-link and cannot-link (Basu et al., 2004). A modified version
of Expectation-Maximization algorithm is used here to obtain the final partitioning which also obeys the
available supervised information.

Table 2: Cluster entropies obtained by different approaches. Here KMDM and KMProb denote, respec-
tively, the K-means with distance-metric-based approach and K-means with probabilistic approach

Dist.
AMOSA Internal NSGA-II External NSGA-II

KMDM KMProb

best average best average best average

Euclidean 0.177 0.235 0.025 0.092 0.063 0.117 0.534 0.274
Cosine 0.177 0.230 0.018 0.067 0.070 0.122 — 0.296

1To simplify our terminology, in this paper we use the term “cosine distance” to represent 1 - cosine similarity. The fact that
neither the cosine distance nor the cosine similarity are true distance metrics does not affect the argumentation in this paper.
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Two versions of the proposed NSGA-II-clus (internal and external) and AMOSA-clus algorithms are
executed with the following distance measures: i) (version 1) Euclidean distance as the similarity mea-
sure for the assignment of documents to different clusters and also for the computation of objective
functions; and ii) (version 2) with cosine similarity as the similarity measure for the assignment of doc-
uments to different clusters and also for the computation of objective functions. The average entropy
values attained by these techniques are reported in Table 2. For the best-case computation we select
those solutions from the final Pareto front obtained by internal-NSGA-II-clus and AMOSA-clus which
possess the minimum entropy values. In the case of external-NSGA-II-clus, the best solution is selected
using the steps as discussed in Section 4.3. The corresponding entropy values for those solutions are cal-
culated. For the average case (unsupervised) computation we select all the solutions on the final Pareto
Optimal front and calculate entropy for each of the solutions. Then we take the average entropy of all
the solutions and report those values both for NSGA-II-clus (internal and external) and AMOSA-clus in
Table 2.

Table 2 shows that, using 10% supervised information, the probabilistic framework approach out-
performs the distance metric learning approach in case of Euclidean distance measure. Among all the
algorithms, semi-supervised internal-NSGA-II-clus yields the highest performance in the best case as
well as in the average case. This is also better than the AMOSA-based clustering algorithm, which was
used for EBM by Ekbal et al. (2013). In order to show that our proposed NSGA-II-clus (internal and
external) is also able to predict the correct number of clusters from different questions automatically, we
have reported the error rate as below: error =

∑
i(targeti−predictedi)

2

#ofquestions
Here targeti denotes the actual number of clusters for a particular question and predictedi denotes the
predicted number of clusters by the proposed NSGA-II-clus (internal and external) technique for a par-
ticular question. Here as mentioned earlier in Section 2, for each question, we have varied the number
of clusters in the range 2 to

√
n where n is the number of documents per question. The average num-

ber of clusters identified by the proposed Internal-NSGA-II-clus optimizing XB-index and I-index as
the objective functions for each question are 2.13 and 2.27, respectively, with cosine and Euclidean dis-
tance measurements. The average number of clusters identified by the proposed external-NSGA-II-clus
optimizing XB-index and I-index as the objective functions for each question are 2.45 and 2.32, respec-
tively, with cosine and Euclidean distance measurements. The average number of clusters in the actual
annotated set is 2.38. Moreover we have also computed the error rates of different automatic clustering
techniques. For AMOSA-clus the error rates are 1.90 with cosine similarity and 1.91 with Euclidean dis-
tance. For internal-NSGA-II-clus the error rates are 1.33 with cosine similarity and 1.49 with Euclidean
distance. For External-NSGA-II-clus the error rates are 1.74 with cosine similarity and 1.69 with Eu-
clidean distance. In Ref. (Ekbal et al., 2013) it has already been proved that AMOSA-clus provides the
minimal error rate compared to different existing techniques and heuristics. But the proposed approach
provides minimal error rate compared to AMOSA-clus. This again proves the efficacy of the proposed
semi-supervised approach.

6 Conclusion

In this paper we have used semi-supervised clustering to find clusters of medical publications for the
task of Evidence Based Medicine. We have proposed two different frameworks using the concepts of
MultiObjective Optimization (MOO) for solving the problem of semi-supervised clustering. As the un-
derlying optimization technique we have used a popular evolutionary strategy, NSGA-II. A comparative
study between two MOO-based semi-supervised clustering approaches and two existing semi-supervised
approaches is also provided. Our experiments show the efficacy of the MOO-based semi-supervised ap-
proach on medical publications. The improved results using several objective functions are encouraging.
The comparative study on medical data proves the efficacy of our NSGA-II based approach. In future,
we would like to compare the proposed technique with alternative supervised techniques. We wish to
explore other similarity measures to determine the distance between two given documents. The proposed
technique would also be evaluated on other data sets and non-overlapping clustering techniques.
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Abstract

Rapid growth in Electronic Medical Records (EMR) has emerged to an expansion of data in the
clinical domain. The majority of the available health care information is sealed in the form of
narrative documents which form the rich source of clinical information. Text mining of such
clinical records has gained huge attention in various medical applications like treatment and
decision making. However, medical records enclose patient Private Health Information (PHI)
which can reveal the identities of the patients. In order to retain the privacy of patients, it is
mandatory to remove all the PHI information prior to making it publicly available. The aim is
to de-identify or encrypt the PHI from the patient medical records. In this paper, we propose an
algorithm based on deep learning architecture to solve this problem. We perform de-identification
of seven PHI terms from the clinical records. Experiments on benchmark datasets show that our
proposed approach achieves encouraging performance, which is better than the baseline model
developed with Conditional Random Field.

1 Introduction

With the phenomenal growth in medical interpretation, there have been tremendous increase of Elec-
tronic Medical Records (EMR) (Beck et al., 2012). Clinical documents contain valuable information
(patient disease, medical procedure applied and medication) which have resulted in drawing good at-
tention of researchers to explore and extract relevant information from the clinical text. However, these
medical records consist of patient Private Health Information (PHI) (e.g., Patient name, Age, Doctor
name, ID, Phone number, Address etc.) which can reveal the patient identity during the course of treat-
ment. To avoid disclosing PHI information, it is mandatory according to the Health Insurance Portability
and Accountability Act (HIPAA)1, 1996, that the PHI terms are required to be hidden and protected
prior to making it publicly available. De-identification is, thus, defined as the process of identifying and
hiding PHI from clinical records and maintaining the integrity as much as possible (Stubbs et al., 2015).
While during the course of PHI identification for removal, it is highly necessary for a de-identification
process to retain the medical contents of the records so that this information can help further research and
conserve the value of the record. However, de-identifying the records manually is quite unfeasible and
expensive both in terms of time, efforts and cost. As such there is a huge requirement for an automated
de-identification system.
De-identification task can be, in general, looked up as a traditional Named Entity Recognition (NER)
task. Basically, NER can be thought of as a sequence labeling task with the goal to identify proper out-
put sequences of the entities. Therefore, for every input sequence of words, the best labeled-sequence is
to be obtained. De-identification task can be, in general, looked up as a traditional Named Entity Recog-
nition (NER) task with the goal to identify proper output sequences of the entities. Therefore, for every
input sequence of tokens, the best labeled-sequence is to be obtained. De-identification poses several
challenges (Meystre et al., 2008). The two major hurdles for identifying PHI terms are as follows:

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1http://www.hhs.gov/hipaa
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(1) Inter-PHI ambiguity: The ambiguity problem, where due to the lexical similarity, PHI terms overlap
with the non-PHI terms. Example includes Brown (Doctor name) which is a PHI term vs. brown which
is a non-PHI term.
(2) Intra-PHI ambiguity: This problem appears when one candidate word seems to belong to two differ-
ent PHI terms. For example, the word August which is a Patient name vs. August which also denotes the
possible candidate for date expression.
The problem of patient data de-identification has been addressed very recently in the shared task, Cen-
ter of Informatics for Integrating Biology (i2b2) challenge2. The existing systems of patient data de-
identification can be classified under three categories viz. rule-based, machine learning based and hybrid
technique. Rule-based system follows patterns based on regular expression and gazetteers identified by
the human. In practice, the set of rules corresponding to a system are restricted to a particular domain.
Generally, the system fails when the domain is altered. To overcome this drawback, machine learning
approaches have been proposed and found to be very successful in solving this de-identification prob-
lem. Some of the popular machine learning models proposed include support vector machine (Hara,
2006), (Guo et al., 2006), decision tree (Szarvas et al., 2006), log-linear models and most used condi-
tional random fields (CRFs)(Yang and Garibaldi, 2015; He et al., 2015). Supervised machine learning
and rule-based approach share the following drawbacks: these techniques require the labeled data and
prominent feature set or the rules. This incurs cost and time as the appropriate set of features or rules can
be framed only after analyzing the full records.
The advent of deep learning algorithms has facilitated to introduce a new framework where we do not
require handcrafted features or rules. These models have the abilities to learn automatically the relevant
features by performing composition over the words represented in the form of vectors known as word
embedding. In recent times, deep neural network architecture has shown promise for solving various
NLP tasks such as text classification (Socher et al., 2013; Kim, 2014), language modeling (Mikolov et
al., 2010), question answering (Weston et al., 2015), machine translation (Bahdanau et al., 2014), spoken
language understanding (Mesnil et al., 2013) etc. In this paper, we propose a novel system (DI-RNN)
based on deep learning for patient data de-identification (PDI). We formulate the task as a sequence
labeling problem and develop a technique based on Recurrent Neural Network (RNN) (Mikolov et al.,
2010). RNN, unlike other techniques, does not require features to be explicitly generated for classifier’s
training or testing. Instead it learns features by itself which makes this approach domain adaptable and
scalable. We develop a system for PDI in line with the framework introduced in Center of Informatics
for Integrating Biology and the Bedside (i2b2) challenge3. The goal of the task was to identify all the
PHI terms from the medical records. Firstly, we develop a baseline model based on a supervised ma-
chine learning algorithm, namely conditional random field (CRF) (Lafferty et al., 2001). The classifier
is trained with a set of features automatically extracted from the training documents. We implement and
compare different variants of RNN architectures, such as Elman-type networks (Elman, 1990; Mikolov
et al., 2011) and Jordan-type networks (Jordan, 1997). The main aim of our paper is to study the ef-
fectiveness of deep learning techniques over the traditional supervised approaches for de-identification
task.

2 Patient Data De-identification Task

The problem of patient data de-identification can be thought as a task equivalent to named entity recog-
nition (NER). The main aim of both the tasks is to automatically identify noun phrases or part of noun
phrases from the text. The problem of de-identification can be modeled as a two-step process, where
in the first step all the PHI terms are required to be identified and classified, and in the later stage,
identified PHI terms are encrypted. Here, we provide an example sentence with the corresponding NEs
highlighted. Here, the input is the sequence of words W and the output corresponds to the sequence of
labels L corresponding to the word-sequence and the corresponding de-identified sentence as shown in
Table-1. Traditionally, the task can be visualized as follows: for a given word sequence W , the aim is to

2https://www.i2b2.org/
3https://www.i2b2.org/
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Sentence To follow up with Dr. John D Doe
Named Entity O O O O O B-DOCTOR I-DOCTOR I-DOCTOR

Table 1: Examples of PHI instances represented by ‘BIO’ notation

find the best possible label-sequence that has maximum posterior probability i.e., P (L|W ). The Bayes
rule is applied in the case of generative model framework as

L̂ = argmaxLP (L|W )
= argmaxLP (W |L)P (L)

(1)

For the given sequence of words W , and its corresponding label sequence L, joint probability
P (W |L)P (L) has to be maximized by the objective function of a generative model.
Recently, Conditional Random Field (Lafferty et al., 2001), a discriminative model has become the pop-
ular technique for solving de-identification task (Yang and Garibaldi, 2015). Here, given the word se-
quence WN

1 = w1, ....wN , as input, CRF calculates the conditional probability of labels LN
1 = l1, ....lN ,

as follows:
P (l1,l2,...,lN |W )= 1

Zw

∏
i(Ψi(Li,W )Ψ

′
i(Li,Li−1,W )) (2)

where Ψi and Ψ
′
i are defined as follows:

Ψi(Li,W ) = exp(
∑

k

ηksk(li, w, i)) (3)

Ψ
′
i(Li, Li−1,W ) = exp(

∑
j

λjtj(li, li−1, w, i)) (4)

where tj and sk are transition feature function and state feature function, respectively. The transition
feature function tj depends upon the current label li, previous label li−1 and the observation sequence of
word w at time i. The state feature function is the function of current label li and the observation word
w at time i. Parameters λj and ηk are to be estimated from training data.
Other variants of discriminative models include Support Vector Machines (SVMs) (Cortes and Vapnik,
1995), where local probability functions are used. With these traditional methodologies, classification
algorithm is a black box implementation of linear and log-linear approaches which require good feature
engineering. After conducting thorough literature survey, deep learning architecture is found to be one
of the successful techniques where both classification and feature designing are done during the learning
phase automatically without using any human intervention. Therefore, we propose a technique based on
deep learning architecture of RNN. We discuss below the RNN architecture with respect to our chosen
problems.

3 Proposed Approach for Patient Data De-identification

The RNN models used for de-identification task are described here.

3.1 Word Embedding
A real-valued representation of a word is the input for our RNN architecture. Word embedding pro-
vides an unique property to capture semantics and syntactic information of different words (Mikolov et
al., 2013). The underlying idea is that similar words appear in close vicinity of each other. The vector
corresponding to each input word wi is produced whose dimensionality is set at the time of learning the
neural language model from the given unsupervised corpus. This representation provides the continuous-
space representation for each word. Usually, training of the word embedding is done in an unsupervised
manner using external natural language text like Wikipedia, news article, bio-medical literature etc. The
architecture can be varied by adopting various architectures like shallow neural networks (Schwenk and
Gauvain, 2005), RNN (Mikolov et al., 2010; Mikolov et al., 2011), SENNA (Collobert et al., 2011),
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word2vec (Mikolov et al., 2013) etc. We use three different procedures to learn word embeddings like
random number initialization, RNN’s word embedding and continuous bag-of-words (CBOW). For ran-
dom word embedding we initialize the vector of dimension 100 in the range −0.25 to +0.25. In order
to evaluate the impact of RNN we use the word embedding as provided by RNNLM 4 of dimension
80 which is trained on Broadcast news corpus. In addition to this we also use word embedding model
trained by CBOW technique as proposed in (Mikolov et al., 2013) on news data of dimension 300.

3.2 Word Dependencies captured using a Context Window
In feed forward neural network model we provide input as word embedding of the target word. But, it
can not capture the dependency associated with the current word of interest. Context words can capture
the short-term temporal dependencies in this setting. Let us assume that each word is being represented
by its word embedding vector of length d, the word-context window is the ordered concatenation of word
embedding vectors. For word embedding of dimension d and context word of size m, the word vector
is constructed as the ordered concatenation of 2m + 1 word embedding vectors, i.e. m previous words,
current word and m next words with the following formula

Cm(xi+m
i−m) = vi−m ⊕ . . . vi . . .⊕ vi+m (5)

where ⊕ is a concatenation operator. vi is the word embedding vector of the word xi.
xi+m

i−m = [xi−m . . . , xi, . . . xi+m] represents the concatenation of dependent words in the window sizem.
In order to generate m context window for the beginning and ending words, padding is performed. We
provide an example below to show the generation of context window of size 1 around the word ‘suffers’:

C(t) = [Doe suffers from] (6)

C(t)→ x(t)=[vDoe vsuffers vfrom]

In this example, C(t) is a 1 word context window. vsuffers is the embedding vector of word ‘suffers’ and
d is the dimension of the embedding vector. Similarly, C(t) forms the ordered concatenation of word
embedding vector for the word sequence x(t) at time t.

3.3 Variants of RNN Architecture: Elman and Jordan
In this section, we discuss two different variants of RNN architecture, Elman (Elman, 1990) and the
Jordan models (Jordan, 1997). Figure-1 depicts an architecture for both the models. Feed forward neural
network (NN) (Svozil et al., 1997) is the basic biologically inspired neural network model. In variation
to feed forward architecture, both the RNN models make connection also with the previous layer. In
Elman architecture each state keeps track of its previous hidden layer states by its recurrent connections.
Therefore, the hidden layer h(t) at time instance t keeps track of the previous (t − 1)th hidden layer
i.e., the output of (t − 1)th hidden layer is given as the input to the tth hidden layer h(t) along with the
context window input Cm(xt+m

t−m). Mathematically, for H hidden layer, Elman architecture is described
as shown below:

h(1)(t) = f(W (1)Cm(xt+m
t−m) + V (1)h(1)(t− 1) + b) (7)

h(H)(t) = f(W (H)h(H−1)(t) + V (H)h(H)(t− 1) + b) (8)

In our experiment we have used a non-linear sigmoid function as the activation unit of hidden layer.

f(x) = 1/(1 + e−x) (9)

The superscript represents the hidden layer depth and, W and V denote the weight connections from
input layer to the hidden layer and hidden layer of last state to current hidden layer, respectively. Here,
b is a bias term. The softmax function is later applied to the hidden states to generate the posterior
probabilities of the classifier for different classes as given below:

P (y(t) = i|Cm(xt+m
t−m)) = g(Uh(H)(t) + c) (10)

4http://rnnlm.org/
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(a) Elman Architecture (b) Jordan Architecture

Figure 1: RNN architectures of both the variants

Here, U is weight connection from hidden to output layer, c is a bias term and g is softmax function
defined as follows:

g(zm) =
ezm∑i=k
i=1 e

zk

(11)

Jordan model is the another variation of RNN architecture which is similar to the Elman model except
the input to the recurrent connections are through the output posterior probabilities:

h(t) = f(WCm(xt+m
t−m) + V P (y(t− 1)) + b) (12)

whereW and V denote the weight connection between input to hidden layer and output layer of previous
state to current hidden layer and P (y(t − 1)) is the posterior probability of last word of interest. The
sigmoid function described in Eq-9 is used as non-linear activation function f .

3.4 Datasets
The dataset used to evaluate our proposed architecture is obtained from 2014 I2b2 challenge (Stubbs et
al., 2015). This dataset is obtained from “Research Patient Data Repository of Partners Healthcare”. A
total of 1304 medical records were manually annotated. In order to use this data for our experiment we
split the data set into three parts: training, validation and test. The detailed distribution of different PHI
terms in these three sets are described in Table-2.
Our training data compromises of 11,911 PHI relevant instances, while the test dataset consists of total
1253 PHI instances which we developed from I2B2-2014 training data. To ensure the patient confiden-
tiality as much as possible, the challenge aims to identify HIPAA-PHI categories firstly with the added
subcategories. This dataset is annotated using seven main PHI categories with the twenty-five associ-
ated subcategories. While, our experiments cover the seven main PHI categories, I2b2 challenge covers
almost all HIPAA defined categories and subcategories. The list of categories as well as subcategories
are 1. Name (subtypes: Patient, Doctor, Username), 2. Profession, 3. Location (subtypes: Hospital, De-
partment, Organization, Room, Street, City, State, Country, ZIP), 4. Age, 5. Date, 6. Contact (subtypes:
Phone, Fax, Email, URL, IPAddress), 7. Ids (subtypes: Medical Record Number, Health Plan Number,
Social Security Number, Account Number, Vehicle ID, Device ID, Licence Number, Biometric ID). In
this work, the aim is to identify seven different PHI subtypes; Patient, Doctor, Hospital, Location, Phone,
ID and Date from the above defined categories. In order to evaluate the model performance well known
evaluation metrics such as recall, precision and F-Measure are used.

3.5 RNN Hyper-Parameters and Learning
The RNN hyper-parameters are number of hidden units (H), learning rate (λ), context window size (m),
no. of epochs (en) and dropout probability (p). In order to find optimal hyper-parameter values we
experiment with different parameter settings. The optimal hyper-parameter values for both the RNN
architectures are listed in Table-3. The embedding matrix and the weight matrices are initialized from
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PHI category Train Validation Test
DOCTOR 2262 183 236

HOSPITAL 1342 141 164
DATE 4154 377 498

PATIENT 707 28 59
LOCATION 93 14 19

PHONE 153 12 13
ID 3200 233 264

Total 11911 988 1253

Table 2: Data set statistics: distribution of
different classes for training, test and validation sets.

Parameter’s E-RNN J-RNN
Hidden layer size 100 150

learning rate 0.01 0.01
Dropout probability 0.5 0.5

no. of epochs 25 25
context window size 11 9

Table 3: Optimal values of hyper-parameters
for different RNN architectures

the uniform distribution in the range [-1,1]. In order to train RNN we use stochastic gradient descent. We
consider the whole sentence as a mini-batch and perform one update per sentence, towards minimizing
the negative log-likelihood.

3.6 Regularization
In order to prevent network from over-fitting we use dropout technique (Hinton et al., 2012). Dropout
omits the portion of hidden unit from each training sample before passing it to the final softmax layer.
We set dropout probability p as 0.5 throughout the experiments in both the variations of RNN.

3.7 Impact of Word Embedding Techniques
Table-4 shows the impact of each word embedding techniques with Elman architecture. The word vectors
obtained from the RNNLM performed well on syntactic part. It is obvious because the word vectors in
the RNNLM are directly connected to a non-linear hidden layer. The CBOW architecture works better
than RNNLM for the syntactic tasks, and about the same on the semantic tasks. The CBOW model
follows the distributional hypothesis while training which enables to outperform over the other word
embedding techniques.

Figure 2: Performance comparisons between
RNN and CRF for all identified PHI types

Word Embedding
Techniques

dimension
(d)

Precision Recall F-Measure

Random Number 100 87.19 85.48 86.32
RNNLM 80 88.21 87.32 87.76
CBOW 300 89.35 89.55 89.44

Table 4: Impact of fine-tuned word em-
bedding technique using Elman architec-
ture. Here RNNLM: Word embedding ob-
tained from the RNN language modeling
technique(Mikolov et al., 2010). CBOW:
The CBoW takes the context word as input
and tries to predict the target word.

3.8 Results with Lexical Features
In the literature there are quite a few works of patient data de-identification using lexical features such
as PoS, character n-gram, chunk information etc. In the literature, it has been shown that CRF is a robust
classifier for this task. In addition to the RNN we also perform experiments with some useful hand-
crafted features by considering CRF as the base classifier. The hand-crafted features that we use for CRF
are as follows:
1. Context word feature: We use current word and the words within the context window of length 3 as
features.
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PHI
category

CRF Baseline E-RNN J-RNN
R P F R P F R P F

PATIENT
NAME

60.87 57.14 58.95 86.96 90.91 88.89 91.30 91.30 91.30

DOCTOR
NAME

80.43 77.78 79.08 82.55 83.98 83.26 85.11 86.58 85.84

HOSPITAL
NAME

47.24 83.70 60.39 73.01 83.80 78.03 70.55 83.33 76.41

LOCATION 52.63 58.82 55.56 57.89 40.74 47.83 68.42 56.52 61.90
PHONE 69.23 90.00 78.26 84.62 91.67 88.00 76.92 83.33 80.00

ID 75.86 73.06 74.44 89.27 91.37 90.31 90.80 92.58 91.68
DATE 95.17 94.22 94.69 98.39 95.14 96.74 98.39 95.32 96.83

Overall 79.74 83.11 81.39 88.90 89.55 89.22 89.63 90.73 90.18

Table 5: Detailed performance analysis with different models for PHI identification task. Here R,P and
F denotes Recall, Precision and F-score respectively.

2. Bag-of-word feature: This feature includes uni-grams, bi-grams, tri-grams of the target token. We
use window size of [-2, 2] with respect to the target token. Here, n-gram is referred as the continuous
sequence of n items. An n-gram generated having sizes of 1, 2, 3 are known as an uni-gram, bi-gram and
tri-gram, respectively.
3. Part-of-Speech (PoS) Information: The PoS information of current word, previous two words and
the next two words are used as features. We obtain PoS of words from the Stanford tagger (Toutanova
and Manning, 2000).
4. Chunk Information: The chunk information is an important feature to identify the PHI term-
boundary. We use chunk information obtained from openNLP5.
5. Combined POS-token and Chunk-token Feature: This feature is generated by the combination
of other token features like PoS, Chunk within the context window of [-1, 1]. This is represented as
[w0p−1, w0p0, w0p1] where w0 represents the target word, and p−1, p0 and p1 represent the previous,
current and the next POS or Chunk tags, respectively.
We build our model by incorporating the above features. We use the CRF implementation6 of CRF++

with default parameter settings. Detailed results on PHI identification task using these features with CRF
classifier are shown in Table-5.

3.9 Results with RNN

The Elman architecture that we discussed in Subsection-3.3 has been applied to identify the PHI terms
from medical records. Table-5 shows the detailed results of E-RNN on individual PHI categories as well
as the overall results. The E-RNN performs better than our CRF baseline model. The experiments are
performed with all the types of word embedding techniques discussed in Subsection-3.7. The CBoW
based word embedding, when given as input to E-RNN model, performs well over the other word em-
bedding based techniques as shown in Table 4. Experimental results on Jordan architecture are shown
in Table-5. The performance that we obtain shows better performance over the baseline. We show de-
tailed comparative results in Table-5. Experiments reveal that J-RNN model performs superior compared
E-RNN in identifying 5 PHI categories out of total 7.

4 Error Analysis
We perform detailed error analysis on outputs produced in both the models. We divide the major sources
of errors in three different categories. Following observations can be made:

5https://opennlp.apache.org/
6https://taku910.github.io/crfpp/
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• MISSED ENTITY: This error occurs when the entity is present in the gold-standard data, but the
system fails to identify it as an entity. We calculate a total of 106 and 95 cases in Elman and Jordan
model, respectively, for such cases. The possible causes are:

– Presence of single-word person name: These words are difficult to detect as compared with
full names (consist of more than one words) due to the lack of context and morphology. These
errors are more dominated in case of ‘Doctor’ and ‘Patient’ categories.

– Presence of abbreviated words: These errors are dominated mostly in case of ‘Hospital’ and
‘Doctor’ categories as the system lacks in identifying the short words (e.g., “FIH”, “WA”) due
to the presence of ambiguous non-PHI terms.

– Presence of unseen terms: The words not seen during training contribute to this error. These
cases are mostly found for ‘Location’, and ‘Hospital’ categories.

• WRONG ENTITY: This error is obtained when the entity obtained is correct but belongs to some
other type. In total 223 and 164 instances are mis-classified in case of Elman and Jordan model,
respectively. The major causes of actual errors are as follows:

– Inter-PHI ambiguity: These errors are obtained mostly in case of ‘Doctor’ and ‘Patient’ cate-
gories. As the name-forms are quite similar to each other, these PHI terms are highly ambigu-
ous. This error arises most of the times when the names consist of single words. For example
“Glass”, “Chabechird” etc. These cases are also observed in case of ‘Location’ category.

• FALSE POSITIVES: This error occurs when the system lacks in identifying the proper boundary
of the entity. Either the entity has additional part or the missing part. These errors are mostly seen
in case of ‘Doctor’ and ‘Hospital’ categories. The major cause of this error is:

– Presence of long compounded words: If the entity consists of more than 3 words, the system
fails to identify those correctly. For example “Tawn List Medical Center”.

4.1 Discussions

Two different RNN architectures, E-RNN and J-RNN, perform well over the baseline model based on
machine learning technique. The J-RNN outperforms the E-RNN model in most of the PHI category
detection. The J-RNN model takes the outputs of previous iteration along with the outputs of current
hidden layer to classify the current word. It would be the possible reason behind the better system
performance for strict7 PHI (Patient, Doctor) as compared to the performance of E-RNN for the same. It
should be noted that due to computational limitation, we were not able to use whole dataset as such we
were unable to make any direct comparison with the existing systems. Most of the existing systems are
supervised in nature and makes use of hand-crafted feature set and rules. These techniques require much
feature engineering. The development of quality features are challenging and time-consuming. In our
case, we don’t use any hand-crafted feature set, but still achieves good performance level.

5 Conclusions and Future Works

In this paper we present a deep neural network based approach for patient data de-identification. This
has been designed to identify and classify Protected Health Information (PHI) present in free-text med-
ical records and encrypt these for preserving the privacy of patients. We systematically implement and
compare different variants of RNN architecture, including Elman and Jordan. In order to compare we
also develop a CRF based model with the traditional features. We observe that both the variants of RNN
architecture outperform the baseline built using popular CRF based model. We have observed the perfor-
mance improvement of 7.83% with Elman and 8.79% with Jordan over the baseline model. In future, we
would like to explore more advanced deep learning techniques like Long Short term Memory (LSTM)
using the full dataset and on other domains as well.

7Since it is a kind of multiword NE’s, in which previous label information is vital to identify the current
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Abstract

Paraphrase generation is important in various applications such as search, summarization, and
question answering due to its ability to generate textual alternatives while keeping the overall
meaning intact. Clinical paraphrase generation is especially vital in building patient-centric clin-
ical decision support (CDS) applications where users are able to understand complex clinical
jargons via easily comprehensible alternative paraphrases. This paper presents Neural Clinical
Paraphrase Generation (NCPG), a novel approach that casts the task as a monolingual neu-
ral machine translation (NMT) problem. We propose an end-to-end neural network built on an
attention-based bidirectional Recurrent Neural Network (RNN) architecture with an encoder-
decoder framework to perform the task. Conventional bilingual NMT models mostly rely on
word-level modeling and are often limited by out-of-vocabulary (OOV) issues. In contrast, we
represent the source and target paraphrase pairs as character sequences to address this limitation.
To the best of our knowledge, this is the first work that uses attention-based RNNs for clini-
cal paraphrase generation and also proposes an end-to-end character-level modeling for this task.
Extensive experiments on a large curated clinical paraphrase corpus show that the attention-based
NCPG models achieve improvements of up to 5.2 BLEU points and 0.5 METEOR points over a
non-attention based strong baseline for word-level modeling, whereas further gains of up to 6.1
BLEU points and 1.3 METEOR points are obtained by the character-level NCPG models over
their word-level counterparts. Overall, our models demonstrate comparable performance relative
to the state-of-the-art phrase-based non-neural models.

1 Introduction

Paraphrasing, the act of generating the same semantic content as the source in the same language, can
help gain performance improvements in many NLP applications. Examples include generating query
variants or pattern alternatives for information retrieval, information extraction or question answering
systems, creating reference paraphrases for automatic evaluation of machine translation and document
summarization systems, and generating concise or simplified information for sentence compression or
sentence simplification systems (Madnani and Dorr, 2010; Androutsopoulos and Malakasiotis, 2010). In
particular, paraphrase generation has a significant value in developing patient-centric intelligent clinical
decision support (CDS) applications where users are able to understand complex clinical jargons via
easily comprehensible alternative paraphrases (Elhadad and Sutaria, 2007; Deléger and Zweigenbaum,
2009). For example, the complex clinical term “nocturnal enuresis” can be paraphrased as “nocturnal
incontinence of urine” or “bedwetting” to better clarify a well-known condition associated with children.

Traditional paraphrase generation methods exploit hand-crafted rules (McKeown, 1983) or automati-
cally learned complex paraphrase patterns (Zhao et al., 2009), use thesaurus-based (Hassan et al., 2007)
or semantic analysis driven natural language generation approaches (Kozlowski et al., 2003), or leverage
statistical machine learning theory and principles (Quirk et al., 2004; Wubben et al., 2010). In con-
trast, inspired by the recent success of bilingual neural machine translation (NMT) (Kalchbrenner and

This work is licensed under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/
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Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014b; Bahdanau et al., 2015) that shows promising
performance compared to the traditional statistical machine translation (SMT) approaches, we propose
neural clinical paraphrase generation (NCPG) by casting the task as a monolingual NMT problem. Un-
like bilingual machine translation, monolingual machine translation considers the source language the
same as the target language, which allows for its adaptation as a paraphrase generation task.

SMT systems (Koehn et al., 2003; Koehn, 2010) use a noisy channel model to identify an optimal
target sentence that maximizes its conditional probability given a source sentence. Ideally, this process
uses the Bayes’ rule to distinctly maximize the KL-divergence between a language model and a trans-
lation model from a monolingual and a parallel corpus, respectively. However, NMT models are built
from training a single end-to-end neural network architecture on a large parallel corpus that can directly
optimize the conditional probability of an underlying sentence pair. Such models typically follow an
encoder-decoder approach by building a pair of neural networks, where the first network acts as an en-
coder to generate a fixed-length vector representation of the source sentence, which is in turn decoded by
the second network to form a target sentence (Sutskever et al., 2014; Cho et al., 2014b). Recurrent Neu-
ral Network (RNN) architectures with Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) or Gated Recurrent Units (GRU) (Cho et al., 2014a) are generally utilized to train the end-to-end
state-of-the-art NMT systems. Another effective NMT model has been proposed recently, which follows
an attention-based soft-search approach to improve the performance of the encoder-decoder architec-
tures (Bahdanau et al., 2015). We use an attention-based bidirectional RNN architecture (Schuster and
Paliwal, 1997; Bahdanau et al., 2015) with an encoder-decoder framework to build our NCPG mod-
els. Bidirectional RNNs have been shown to outperform unidirectional RNNs for sequence to sequence
learning tasks (Jean et al., 2015).

NMT models mostly rely on word-level modeling that often causes an out-of-vocabulary (OOV) is-
sue while predicting a target word given an unknown source word (Luong et al., 2015b). To address
this limitation, we represent the source and target paraphrase pairs as character sequences and pro-
pose a character-level encoder-decoder framework for clinical paraphrase generation. To the best of
our knowledge, this work is the first to adapt monolingual NMT for clinical paraphrase generation using
an attention-based mechanism and also propose an end-to-end character-level NCPG model.

Extensive experiments on a large curated clinical paraphrase corpus built on a benchmark parallel
paraphrase database, PPDB 2.0 (Pavlick et al., 2015b), along with a comprehensive medical metathe-
saurus (Lindberg et al., 1993) show that the proposed attention-based NCPG model can outperform an
RNN encoder-decoder based strong baseline for word-level modeling, whereas character-level models
can achieve further improvements over their word-level counterparts. Overall, the proposed models
demonstrate comparable performance relative to the state-of-the-art phrase-based conventional machine
translation models. The main contributions of our paper can be summarized as follows:

• We presented a novel approach for clinical paraphrase generation by casting the task as a monolin-
gual neural machine translation problem. We proposed an end-to-end neural network model built
on an attention-based bidirectional Recurrent Neural Network (RNN) architecture (Bahdanau et al.,
2015) with an encoder-decoder framework to perform the task.

• We also presented a novel character-based neural clinical paraphrase generation approach to over-
come the OOV issues encountered by the word-level models.

• We built a large curated paraphrase corpus using a benchmark parallel paraphrase database, PPDB
2.0 (Pavlick et al., 2015b) along with a comprehensive medical metathesaurus, UMLS (Lindberg et
al., 1993) for our experiments.

• We conducted rigorous automatic and manual evaluations of our models. Results demonstrated
that our proposed attention-based NCPG model can outperform an RNN encoder-decoder based
strong baseline for word-level modeling, whereas character-level models can achieve further im-
provements. Overall, our models showed comparable performance relative to the state-of-the-art
phrase-based non-neural machine translation models.
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2 Related Work

Deep learning has been successfully applied to various NLP tasks in recent years. There are works that
effectively apply recursive autoencoders (Socher et al., 2011) and convolutional neural networks (Yin
and Schütze, 2015) for paraphrase recognition. However, paraphrase generation is a harder task due
to the requirement of constructing semantically similar, grammatically accurate alternatives to a source
sentence, and no prior work has attempted to solve this problem using deep learning.

Prior work that regards paraphrase generation as a monolingual machine translation task typically uses
(non-neural) statistical machine translation (SMT) principles. Quirk et al. (2004) show the effectiveness
of SMT techniques for paraphrase generation given adequate monolingual parallel corpus extracted from
comparable news articles. Wubben et al. (2010) propose a phrase-based SMT framework for sentential
paraphrase generation by using a large aligned monolingual corpus of news headlines. Zhao et al. (2008)
propose a combination of multiple resources to learn phrase-based paraphrase tables and corresponding
feature functions to devise a log-linear SMT model. Other models generate application-specific para-
phrases (Zhao et al., 2009), leverage bilingual parallel corpora (Bannard and Callison-Burch, 2005) or
apply a multi-pivot approach to output candidate paraphrases (Zhao et al., 2010).

Recently proposed NMT systems have shown excellent performance compared to the SMT systems
by using RNN-based end-to-end deep neural network architectures (Sutskever et al., 2014; Cho et al.,
2014b). Previous works that deploy RNNs have shown favorable results to model variable-length se-
quential inputs (Schuster and Paliwal, 1997; Sutskever et al., 2011; Graves, 2013; Kalchbrenner and
Blunsom, 2013; Sperduti, 2015) while attention-based NMT models have shown better performance
than the traditional encoder-decoder frameworks (Bahdanau et al., 2015; Luong et al., 2015a).

State-of-the-art NMT models usually perform word-level computations by limiting the size of the
source and the target vocabulary and hence, suffer from OOV issues due to vocabulary incompatibility.
This phenomenon may arise when a trained model has to deal with a previously unseen word during the
testing phase (Luong et al., 2015b). Jean et al. (2015) use a large target vocabulary to address OOV issues
for word-level NMT models while Luong et al. (2015b) introduce a post-processing step to translate OOV
words using a dictionary. Since these approaches depend heavily on the time- and cost-effective process
of developing or acquiring large volume dictionaries that may not scale across several domains, OOV
issues still limit the accuracy of the word-based models. Based on the recent success of character-level
modeling in resolving the OOV limitation (Bojanowski et al., 2015; Kim et al., 2015; Ling et al., 2015;
Costa-JussÃ and Fonollosa, 2016; Chung et al., 2016), we propose a character-level NCPG model and
perform relative comparisons with the word-level models.

Depending on the level of granularity, there can be different types of paraphrasing such as: lexical (e.g.
<automobile, car>), phrasal (e.g. <carry on, persist in>), and sentential (e.g. <The book was inter-
esting, I enjoyed reading the book>) (Madnani and Dorr, 2010). Earlier work related to clinical-domain
specific paraphrasing uses some unsupervised textual similarity measures to generate/extract lexical and
phrasal paraphrases from monolingual parallel and comparable corpora (Elhadad and Sutaria, 2007;
Deléger and Zweigenbaum, 2009). Prud’hommeaux and Roark (2015) propose a graph-based word
alignment algorithm to examine neurological disorders through analysis of spoken language data. An-
other loosely related recent work adopts a semi-supervised word embedding model for medical synonym
extraction (Wang et al., 2015) that can be regarded as the simplest form of a lexical paraphrase extraction
task. Our work is the first to propose a neural network-based architecture that can model word/character
sequences to essentially address all granularities of paraphrase generation for the clinical domain.

For our experiments, we combine the Paraphrase Database (PPDB) 2.0 (Pavlick et al., 2015b) with
a large medical metathesaurus, known as Unified Medical Language System (UMLS) (Lindberg et al.,
1993) to build a comprehensive monolingual parallel paraphrase corpus such that the proposed NCPG
models can effectively learn discriminatory features related to complex clinical terms. Similar meth-
ods of combining general and domain-specific data have been proven to be useful for domain-focused
paraphrasing tasks in the literature (Pavlick et al., 2015a).
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3 Model Description

3.1 Task Formulation

Our NCPG system is an attention-based bidirectional RNN architecture (Schuster and Paliwal, 1997)
that uses an encoder-decoder framework (Bahdanau et al., 2015). We construct different NCPG models
by representing the source and target paraphrase pairs as word or character-level sequences.

The neural clinical paraphrase generation task can be formulated as follows: given a source sequence
x = x0, . . . , xL, generate a target paraphrase sequence y = y0, . . . , yM , where xi (0 ≤ i ≤ L) and yj

(0 ≤ j ≤ M ) are the individual textual units (word/character), and L,M are the respective lengths of
the source and the target sequences. Ideally, generation of the next target unit yn depends on the source
sequence x and the already generated target units y0, . . . , yn−1. In the following subsections, we present
a description of the generic RNN architecture and the attention-based NCPG model.
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U . . .
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Figure 1: Generic recurrent neural network architecture.

3.2 Recurrent Neural Network (RNN)

RNNs are particularly suitable for modeling sequences and have been shown to perform well to solve
various NLP tasks because of their ability to deal with variable-length input and output (Sutskever et al.,
2011). The RNN network architecture is similar to the standard feedforward neural network with the
exception that hidden unit activation at a particular time t is dependent on that of time t− 1.

Figure 1 shows an unrolled RNN architecture, where xt, yt, ht are the input, output, and hidden state
at time step t, and W,U, V are the parameters of the model corresponding to input, hidden, and output
layer weights (shared across all time steps).

The hidden state ht is essentially the memory of the network as it can capture necessary information
about an input sequence by exploiting the previous hidden state ht−1 and the current input xt as follows:

ht = f(Wxt + Uht−1), (1)

where f is an element-wise nonlinear activation function. The output yt is computed similarly as a
function of the memory at time t: V ht. Although RNN is theoretically a powerful model to encode
sequential information, in practice it often suffers from the vanishing/exploding gradient problems while
learning long-range dependencies (Bengio et al., 1994). LSTM (Hochreiter and Schmidhuber, 1997) and
GRU (Cho et al., 2014a) networks are known to be successful remedies to these problems. We use GRU
as the hidden layer activation unit in our paraphrase generation framework.

GRU is a simplified version of LSTM with less number of parameters per unit, thus the total number
of parameters can be greatly reduced for a large neural network (Cho et al., 2014a). In contrast to LSTM,
GRU does not have an internal memory state and the output gate, rather it introduces two gates termed
update and reset as alternatives to the LSTM components. Specifically, GRU computes the hidden state
ht as follows:
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zt = σ(W zxt + Uzht−1)

rt = σ(W rxt + Urht−1)

kt = tanh(W kxt + Uk(rt � ht−1))

ht = (1− zt)� kt + zt � ht−1, (2)

where zt, rt are the update gate and the reset gate, and kt is the candidate hidden state. Note that, zt, rt
are computed similarly as LSTM (using different weight parameters) where zt determines how much of
the old memory to keep while rt denotes how much new information is needed to be combined with
the old memory. Finally, kt is computed by exploiting rt, and ht is calculated to denote the amount of
information needed to be transmitted to the following layers.

3.3 Neural Clinical Paraphrase Generation (NCPG)
The architectural diagram of our paraphrase generation model is presented in Figure 2. In the encoder-
decoder framework of our NCPG model, the encoder uses a bidirectional RNN architecture (Schuster
and Paliwal, 1997; Bahdanau et al., 2015) where one forward RNN reads the input sequence to generate
a hidden state sequence (

−→
h0, . . . ,

−→
hL) and one backward RNN reads the input sequence in the reverse

order to generate a backward hidden state sequence (
←−
h0, . . . ,

←−
hL) using the GRU framework presented

in Eq. 2.
Then, an annotation vector hi for each textual unit xi is obtained by concatenating the corresponding

forward and backward hidden states as follows:

hi =

[−→
hi←−
hi

]
(3)

Thus, hi encodes all relevant information about the neighboring words or characters of xi that is used
in the decoding phase to compute the context vector of a potential target textual unit.

Input Layer

x0 x1 xL

. . .

. . .

. . .

h0 h1 hL

sM-1 sM

. . . . . .

yMyM-1

Encoder

Decoder

Attention Mechanism

Output Layer

aM,1
aM,2

aM,L

Figure 2: Model architecture for neural clinical paraphrase generation.

The decoder of our model consists of a forward RNN that is built over the generated paraphrase
sequence y = y0, . . . , yM−1 by creating a hidden state sequence (−→s0 , . . . ,−−−→sM−1) where sM−1 essentially
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encodes the context of the currently generated paraphrase units. Ideally, at each time step t, an attention
mechanism in the decoder computes a relevance score ati for each annotation vector hi and sums the
weighted annotation vectors as the context vector ct while generating the next paraphrase word/character
yt. Formally, ct is computed as follows:

ct =

L∑
i=0

atihi (4)

The annotation relevance score ati determines the most relevant source unit to focus on and is com-
puted as:

ati =
exp(eti)∑L

k=0 exp(etk)
(5)

where eti is called the alignment model that determines how closely the source context at position i
matches with the output at position t. eti is calculated with a feedforward neural network f based on the
candidate annotation vector hi and the previous hidden state st−1 as:

eti = f(st−1, hi) (6)

Thus, the hidden state st of the decoder is computed by the forward RNN based on the previous hidden
state st−1, previously generated textual units yt−1, and the most relevant source context ct:

st = g(st−1, yt−1, ct) (7)

where g is the GRU unit as described in Eq. 2. The conditional distribution over the textual units is
computed similarly using a feedforward neural network as follows:

P (yM | y1, . . . , yM−1, x) = f(yM−1, sM , cM ) (8)

Thus, our encoder-decoder based NCPG model is jointly trained to maximize the conditional log-
likelihood of the underlying monolingual parallel paraphrase corpus.

4 Experimental Setup

4.1 Corpus
We combine a publicly available large paraphrase corpus, Paraphrase Database (PPDB) 2.0 (Pavlick et
al., 2015b) with a large clinical database curated from the UMLS metathesaurus (Lindberg et al., 1993) to
build a comprehensive monolingual parallel corpus. PPDB leverages multiple bilingual parallel corpora
to construct millions of general domain paraphrases in different languages. PPDB 2.0 uses a supervised
regression model-based ranking strategy to generate six database categories based on size. In this work,
we use the English S-size pack1 database with lexical and phrasal paraphrases.

We extract a subset of 1.2M paraphrases from PPDB with 3.3M words that contain only alphabetic
characters. In addition, we consider all unique fully specified terms along with corresponding description
terms from SNOMED CT (Cornet and de Keizer, 2008) as source and target paraphrases (total 140K).
The SNOMED CT terms are selected based on UMLS concept unique identifiers (CUI). For example, the
fully specified term “sensorineural hearing loss” is set as the source and the corresponding description
terms such as “perceptive hearing loss”, “perceptive deafness”, “sensorineural deafness”, and “neu-
rosensory deafness” are set as the target paraphrases. Three-fifth of the combined corpus is used as
the training set while the rest is equally divided into two parts to produce validation and test sets. We
use a randomly selected subset of 5000 paraphrases from the test set to evaluate the performance of the
proposed models.

We perform normalization with respect to case and standard tokenization to pre-process the dataset.
For word-level models, a list of 30K most frequent words in each of the source and the target para-
phrase set is used for training, while any out-of-vocabulary word is treated as a special UNK token. For
char-level models, we tokenize text sequences into white-space delimited characters and use a special
character (#) to preserve word boundaries.

1The S-size database pack is used since it contains only the highest scoring paraphrase pairs.
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4.2 Models
For comparison, two types of models are trained. The first model (NCPG-1) is our baseline, which is
built on a non-attention based RNN encoder-decoder framework (Cho et al., 2014b; Cho et al., 2014a;
Sutskever et al., 2014), where an encoder (RNN) generates a fixed-length vector representation of the
input sequence and a decoder (another RNN) is used to form a output sequence from this representa-
tion. The second model (NCPG-2) is our proposed attention-based bidirectional RNN encoder-decoder
framework. Both models are trained with word-level and character-level sequences (for source-target
paraphrase pairs) resulting in four neural clinical paraphrase generation models.

We use a one-hot vector approach to represent the textual units (words/chars) in all models. Each
RNN is built with 1000 hidden units (i.e. GRU as discussed in Section 3.2). Models are trained with a
stochastic gradient descent (SGD) algorithm with update direction computed using a mini batch of 32
paraphrase pairs. Due to the large size of recurrent networks, the batch-size was limited to 32. We train
the models for approximately 150 hours using multiple GPU machines (Tesla K20m, and Tesla K80).

We use Theano (Bergstra et al., 2011) for all our experiments. We use RNN templates provided by
the GroundHog library2. For training, we use the Adadelta learning scheme (Zeiler, 2012) with ρ as 0.95
and eps as 1e-6. We use early stopping to prevent overfitting.

We use a beam search algorithm to generate optimal paraphrases by exploiting the trained models in
the testing phase (Sutskever et al., 2014). We also create a SMT model to compare the performance of
the proposed models. We use the Moses package (Koehn et al., 2007) for this purpose, which uses a
phrase-based approach by combining a translation model and a language model to generate paraphrases.
We use the default settings to create the SMT model.

4.3 Evaluation and Analysis
4.3.1 Automatic Evaluation
To quantitatively evaluate the performance of our paraphrase generation models, we use two well-known
automatic metrics for machine translation evaluation: BLEU (Papineni et al., 2002) and METEOR (Lavie
and Agarwal, 2007). Previous work has shown that these metrics can perform well for the paraphrase
recognition task (Madnani et al., 2012) and correlate well with human judgments in evaluating generated
paraphrases (Wubben et al., 2010). BLEU considers exact matching between target paraphrases and
system generated paraphrases by considering n-gram overlaps. Meanwhile, METEOR improves upon
this measure via stemming and synonymy using WordNet. We compute BLEU scores with jBLEU
V0.1.1 (an exact reimplementation of NIST’s mteval-v13.pl without tokenization) and METEOR scores
using METEOR V1.4 with all default settings (Clark et al., 2011).

Table 1 shows the average BLEU and METEOR scores for the NCPG models considering the source
and the target paraphrases as references to the system generated paraphrases. The input/prediction level
for all models are denoted in parenthesis. Moses is the word-level statistical paraphrase generation model
trained using the Moses package. Source-Target refers to the scores computed between the source and
the target paraphrase pairs of the test set, because the source text is also a paraphrase of the target text.
This can essentially serve as an upper bound of the paraphrasing scores (Wubben et al., 2010).

Our results show that all NCPG models perform relatively better than Source-Target in terms of BLEU
scores. Similar trend is also seen for METEOR scores. We also observe that Moses obtains the highest
scores, which is expected because Moses uses an additional monolingual training corpus of 418M words
that was not used to train our NCPG models. Moreover, as BLEU and METEOR scores consider the
number of word/synonym overlaps between the source and target paraphrase pairs, our qualitative eval-
uation (reported in the next subsection) reveals that Moses often repeats the source text as the generated
target paraphrases and achieves higher scores for exact matching. This phenomenon is also evident from
the Source-Target scores, which denote that models can achieve lower BLEU/METEOR scores even
though they generate better quality paraphrases.

The results also reveal that the attention-based NCPG models mostly outperform the RNN encoder-
decoder models, and char-level NCPG models perform considerably better than their word-level coun-
terparts. Qualitative analysis revealed that word-level NCPG models largely suffered from OOV issues

2https://github.com/lisa-groundhog/GroundHog
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while char-level models could efficiently deal with this problem. This is a noteworthy achievement be-
cause our character-level models do not require language-dependent grammatical pre-processing and
they learn from efficient encoding of character sequences while being tolerant to spelling errors, a very
common occurrence in clinical documents. We hypothesize that the results of the char-level models
would further improve if pre-trained character embeddings based on a large background clinical corpus
(e.g. biomedical literature corpus such as PubMed Central3) can be used during training.

Model BLEU METEOR

NCPG-1 (Word) 18.8 30.5
NCPG-1 (Char) 31.3 32.1
NCPG-2 (Word) 24.0 31.0
NCPG-2 (Char) 30.1 32.3

Moses 50.2 47.0
Source-Target 14.6 26.2

Table 1: Automatic evaluation scores for all models.

4.3.2 Human Evaluation
Automatic evaluation of paraphrasing is difficult as BLEU and METEOR can capture the textual simi-
larity while disregarding the novelty of the generated paraphrases (Callison-Burch et al., 2008). Hence,
we conduct human evaluation to qualitatively evaluate the performance of our NCPG models. We use a
methodology derived from Wubben et al. (2010) for this purpose. Five judges (familiar with the clinical
domain) evaluated the quality of a randomly selected subset (2%) of the paraphrases from the test set
using three criteria: 1) semantic relatedness: whether the overall meaning is preserved in the paraphrase,
2) novelty4: if the paraphrase is considerably different from the source text, and 3) grammaticality: if the
paraphrase is syntactically correct and fluent. The judges were presented with the source and the target
text along with the system generated paraphrases. Note that, the target text is considered as one of many
candidate paraphrases of the source text. For each of the criteria, the judges assigned an integer score
between 1 (very poor) and 5 (very good) to each paraphrase. System settings and model identities were
not disclosed to the judges during evaluation.

Table 2 shows the average quality scores for all models. These results demonstrate that on average, our
attention-based models (NCPG-2) outperform the NCPG-1 models, and char-level models perform better
than word-level models in terms of semantic relatedness and grammaticality while underperforming in
terms of novelty. Furthermore, our word-level NCPG models perform better than Moses in terms of
novelty (up to 22% improvement) as Moses often generates the same paraphrase as the source sequence.
These results show that on average, our proposed models perform on par with Moses and Source-Target.

Model Meaning Novelty Grammaticality Average

NCPG-1 (Word) 3.23 2.65 3.78 3.22
NCPG-1 (Char) 3.28 2.23 4.02 3.18
NCPG-2 (Word) 3.18 2.90 3.84 3.31
NCPG-2 (Char) 3.36 2.30 3.95 3.20

Moses 3.83 2.38 4.06 3.42
Source-Target 3.47 2.90 4.16 3.51

Table 2: Human evaluation scores for all models.

3http://www.ncbi.nlm.nih.gov/pmc/
4Novelty is inherently dependent on semantic relatedness because new words that do not preserve the overall meaning of

the source text are undesirable.
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4.3.3 Example Paraphrases
Table 3 presents some example source and target texts with corresponding system generated paraphrases
from our models. These examples suggest that the word-level NCPG models generate better quality
clinical paraphrases similar to Moses5. Also, char-level NCPG models perform well in generating com-
parable paraphrase texts. This confirms the effectiveness of the proposed NCPG models. Note that
our curated corpus is mostly built on lexical and phrasal paraphrases. In future, we plan to construct
a sentence-level parallel clinical paraphrase corpus to test the performance of our NCPG models for
sentential paraphrasing.

Source: Target:
contagious diseases communicable diseases
Model Paraphrase
NCPG-1 (Word) habitat
NCPG-1 (Char) contact diseases
NCPG-2 (Word) an infectious disease
NCPG-2 (Char) the diseases
Moses infectious diseases
Source: Target:
secondary malignant neoplasm of spleen secondary malignant deposit to spleen
Model Paraphrase
NCPG-1 (Word) secondary cancer of spleen
NCPG-1 (Char) separation of spleen
NCPG-2 (Word) secondary malignant neoplasm of spleen
NCPG-2 (Char) secondary malignant neoplasm
Moses metastatic ca spleen
Source: Target:
abdominal lymph node structure intraabdominal lymph node
Model Paraphrase
NCPG-1 (Word) abdominal lymph node
NCPG-1 (Char) abdominal lymph nodes
NCPG-2 (Word) abdominal lymph nodes
NCPG-2 (Char) abdominal lymph
Moses retroperitoneal node sructure

Table 3: Paraphrase examples.

5 Conclusion and Future Work

In this paper, we proposed a novel approach called neural clinical paraphrase generation by using the
monolingual NMT principles. We used an attention-based bidirectional RNN encoder-decoder frame-
work to build an end-to-end architecture to accomplish the task by considering both word-level and
char-level computations. To the best of our knowledge, this work is the first that uses attention-based
RNNs for clinical paraphrase generation and also proposes an end-to-end character-level modeling for
this task. Extensive automatic and human evaluation on a large curated parallel corpus demonstrated
that the proposed NCPG models can outperform an RNN encoder-decoder based strong baseline while
performing on par with the traditional SMT models. We also showed that character-based NCPG models
can often outperform word-level models to remedy the OOV issues while generating paraphrases. In
future, we will experiment with alternative structures for character-level RNN-based (Bojanowski et al.,
2015) neural paraphrase generation architectures, and exploit a larger monolingual clinical paraphrase
corpus to enhance the performance of our models.
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L. Deléger and P. Zweigenbaum. 2009. Extracting Lay Paraphrases of Specialized Expressions from Monolin-
gual Comparable Medical Corpora. In Proceedings of the 2nd Workshop on Building and Using Comparable
Corpora: From Parallel to Non-parallel Corpora, pages 2–10.

N. Elhadad and K. Sutaria. 2007. Mining a Lexicon of Technical Terms and Lay Equivalents. In Proceedings of
the Workshop on BioNLP, pages 49–56.

A. Graves. 2013. Generating Sequences With Recurrent Neural Networks. In arXiv:1308.0850 [cs.NE].

S. Hassan, A. Csomai, C. Banea, R. Sinha, and R. Mihalcea. 2007. UNT: SubFinder: Combining Knowledge
Sources for Automatic Lexical Substitution. In Proceedings of SemEval, pages 410–413.

S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Computation, 9(8):1735–1780.

S. Jean, K. Cho, R. Memisevic, and Y. Bengio. 2015. On Using Very Large Target Vocabulary for Neural Machine
Translation. In Proceedings of ACL, pages 1–10.

N. Kalchbrenner and P. Blunsom. 2013. Recurrent Continuous Translation Models. In Proceedings of EMNLP,
pages 1700–1709.

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. 2015. Character-Aware Neural Language Models. In
arXiv:1508.06615 [cs.CL].

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical Phrase-based Translation. In Proceedings of NAACL-HLT,
pages 48–54.

51



P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran,
R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. 2007. Moses: Open Source Toolkit for Statistical
Machine Translation. In Proceedings of ACL Interactive Poster and Demo. Sessions, pages 177–180.

P. Koehn. 2010. Statistical Machine Translation. Cambridge University Press, New York, NY, USA.

R. Kozlowski, K. F. McCoy, and K. Vijay-Shanker. 2003. Generation of Single-sentence Paraphrases from Predi-
cate/Argument Structure Using Lexico-grammatical Resources. In Proceedings of the 2nd International Work-
shop on Paraphrasing, pages 1–8.

A. Lavie and A. Agarwal. 2007. METEOR: An Automatic Metric for MT Evaluation with High Levels of
Correlation with Human Judgments. In Proceedings of the Second Workshop on Statistical Machine Translation,
pages 228–231.

D. Lindberg, B. Humphreys, and A. McCray. 1993. The Unified Medical Language System. Methods of Informa-
tion in Medicine, 32(4):281–291.

W. Ling, I. Trancoso, C. Dyer, and A. W. Black. 2015. Character-based Neural Machine Translation. In
arXiv:1511.04586 [cs.CL].

T. Luong, H. Pham, and C. D. Manning. 2015a. Effective Approaches to Attention-based Neural Machine Trans-
lation. In Proceedings of EMNLP, pages 1412–1421.

T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and W. Zaremba. 2015b. Addressing the Rare Word Problem in
Neural Machine Translation. In Proceedings of ACL-IJCNLP, pages 11–19.

N. Madnani and B. J. Dorr. 2010. Generating Phrasal and Sentential Paraphrases: A Survey of Data-driven
Methods. Computational Linguistics, 36(3):341–387.

N. Madnani, J. Tetreault, and M. Chodorow. 2012. Re-examining Machine Translation Metrics for Paraphrase
Identification. In Proceedings of NAACL-HLT, pages 182–190.

K. R. McKeown. 1983. Paraphrasing Questions Using Given and New Information. Computational Linguistics,
9(1):1–10.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002. BLEU: a Method for Automatic Evaluation of Machine
Translation. In Proceedings of ACL, pages 311–318.

E. Pavlick, J. Ganitkevitch, T. P. Chan, X. Yao, B. Van Durme, and C. Callison-Burch. 2015a. Domain-specific
paraphrase extraction. In Proceedings of ACL-IJCNLP, pages 57–62, Beijing, China.

E. Pavlick, P. Rastogi, J. Ganitkevitch, B. Van Durme, and C. Callison-Burch. 2015b. PPDB 2.0: Better paraphrase
ranking, fine-grained entailment relations, word embeddings, and style classification. In Proceedings of ACL-
IJCNLP), pages 425–430.

E. Prud’hommeaux and B. Roark. 2015. Graph-Based Word Alignment for Clinical Language Evaluation. Com-
putational Linguistics, 41(4):549–578.

C. Quirk, C. Brockett, and W. Dolan. 2004. Monolingual Machine Translation for Paraphrase Generation. In
Proceedings of EMNLP, pages 142–149.

M. Schuster and K.K. Paliwal. 1997. Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal
Processing, 45(11):2673–2681.

R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning. 2011. Dynamic Pooling and Unfolding
Recursive Autoencoders for Paraphrase Detection. In Advances in Neural Information Processing Systems,
pages 1–9.

A. Sperduti. 2015. Equivalence Results between Feedforward and Recurrent Neural Networks for Sequences. In
Proceedings of IJCAI, pages 3827–3833.

I. Sutskever, J. Martens, and G. E. Hinton. 2011. Generating Text with Recurrent Neural Networks. In Proceed-
ings of ICML, pages 1017–1024.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to Sequence Learning with Neural Networks. In Annual
Conference on Neural Information Processing Systems, pages 3104–3112.

52



C. Wang, L. Cao, and B. Zhou. 2015. Medical Synonym Extraction with Concept Space Models. In Proceedings
of IJCAI, pages 989–995.

S. Wubben, A. van den Bosch, and E. Krahmer. 2010. Paraphrase Generation As Monolingual Translation: Data
and Evaluation. In Proceedings of INLG, pages 203–207.

W. Yin and H. Schütze. 2015. Convolutional Neural Network for Paraphrase Identification. In Proceedings of
NAACL-HLT, pages 901–911.

M. D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate Method. In arXiv:1212.5701 [cs.LG].

S. Zhao, C. Niu, M. Zhou, T. Liu, and S. Li. 2008. Combining Multiple Resources to Improve SMT-based
Paraphrasing Model. In Proceedings of ACL-HLT, pages 1021–1029.

S. Zhao, X. Lan, T. Liu, and S. Li. 2009. Application-driven Statistical Paraphrase Generation. In Proceedings of
ACL-IJCNLP, pages 834–842.

S. Zhao, H. Wang, X. Lan, and T. Liu. 2010. Leveraging Multiple MT Engines for Paraphrase Generation. In
Proceedings of COLING, pages 1326–1334.

53



Proceedings of the Clinical Natural Language Processing Workshop,
pages 54–63, Osaka, Japan, December 11-17 2016.

Assessing the Corpus Size vs. Similarity Trade-off
for Word Embeddings in Clinical NLP

Kirk Roberts
School of Biomedical Informatics

University of Texas Health Science Center at Houston
Houston, TX, USA

kirk.roberts@uth.tmc.edu

Abstract

The proliferation of deep learning methods in natural language processing (NLP) and the large
amounts of data they often require stands in stark contrast to the relatively data-poor clinical NLP
domain. In particular, large text corpora are necessary to build high-quality word embeddings,
yet often large corpora that are suitably representative of the target clinical data are unavailable.
This forces a choice between building embeddings from small clinical corpora and less repre-
sentative, larger corpora. This paper explores this trade-off, as well as intermediate compromise
solutions. Two standard clinical NLP tasks (the i2b2 2010 concept and assertion tasks) are eval-
uated with commonly used deep learning models (recurrent neural networks and convolutional
neural networks) using a set of six corpora ranging from the target i2b2 data to large open-domain
datasets. While combinations of corpora are generally found to work best, the single-best corpus
is generally task-dependent.

1 Introduction

The use of vector representations in natural language processing (NLP) has a solid foundation (Turian et
al., 2010; Collobert et al., 2011). These enable dense representations that often encode semantic proper-
ties and are particularly useful for machine learning tasks as an alternative to extremely sparse, “one-hot”
vocabulary-length vector representations. Many ways of building these vectors exist, including random
indexing (Sahlgren, 2006), clustering (Brown et al., 1992), regression (Pennington et al., 2014), and
neural (Mikolov et al., 2013) methods. This paper focuses on the last such type of vector representation,
often referred to as embeddings, and exemplified by the popular method word2vec (Mikolov et al.,
2013).

Embeddings are particularly useful in neural network architectures, which due to their heavy use
of matrix multiplication typically favor low-dimensional, dense representation. In particular, neural net-
work models that utilize multiple layers of operations to find abstractions in the data (collectively referred
to as deep learning models) are a natural fit for these dense semantic representations.

In what is typically a semi-supervised process, word embeddings are generated from a large, repre-
sentative sample of data. Then, a smaller manually annotated sample is used to train the deep learning
models. However, this results in a common problem for clinical NLP: large representative corpora (at
least comparable to those used in much open-domain NLP research) are not often available for building
these embeddings. This is due to the significant restrictions on the use of electronic health record (EHR)
data, especially narrative notes, for research purposes. Clinical NLP researchers and practitioners are of-
ten then left with a trade-off: using a small-but-representative corpus versus a large-but-unrepresentative
corpus. The former may not be large enough to properly capture the necessary semantics, while the latter
might not be representative enough to capture the semantics of some of the most important words in the
corpus. For instance, a large open-domain corpus might associate the abbreviation ms with millisecond
(or Mississippi) rather than multiple sclerosis (or mitral stenosis).

In theory, one could simply experiment with multiple corpora to see what works best for a given task.
But in practice this may be overly burdensome, especially in the context of deep learning models that
have many, many other important parameters and architectural choices to consider, in addition to their
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long training times. What would be useful, then, is some intuitive notion or rule-of-thumb on what
corpora to use for building word embeddings for clinical NLP. From a practical point-of-view, one can
see two ideal scenarios:

1. A small target corpus (several hundred or a few thousand documents) that is highly representative
of the annotated notes in the clinical NLP task (possibly including the annotated notes themselves).

2. A large corpus (millions of documents) that is completely general-purpose (likely not containing
clinical note text at all).

If the first scenario were to result in optimal system performance, this would be quite easy for the
clinical NLP practitioner: for each NLP task, generate a set of embeddings specific to the corpus. The
second scenario is even easier: simply use an “off-the-shelf” set of word embeddings. However, there are
many possible compromise solutions between these two extremes. For example, a medium-size corpus
of clinical notes from a different corpus, or a large corpus of scientific articles, or even a combination of
two or more of these. The goal of this paper is to explore this size vs. similarity trade-off, specifically
for clinical NLP purposes. A handful of corpora ranging from a small target corpus to a large general-
purpose corpus are used to build embeddings. Experiments using two common deep learning models in
combination with two standard clinical NLP datasets are used to evaluate this trade-off.

The remainder of this paper is organized as follows. Section 2 describes related work with word
embeddings, including its use in clinical NLP. Section 3 describes the tasks used to evaluate the em-
beddings. Section 4 describes the datasets used to generate the embeddings. Section 5 describes the
experimental setup, including the parameters for generating the word embeddings as well as the param-
eters for the deep learning models. Section 6 shows the results of the experiments. Section 7 discusses
the implications, with some practical considerations.

2 Related Work

As mentioned above, there are various types of word vector representations for use in NLP (Brown et
al., 1992; Sahlgren, 2006; Mikolov et al., 2013; Pennington et al., 2014). By themselves, these are well-
known to be easily integrateable into common NLP tasks (Turian et al., 2010; Collobert et al., 2011).
Generally, the best types of representations have semantic properties, notably that synonyms are nearby
in vector space, and certain types of vector operations (addition and subtraction) roughly correspond to
semantic operations. This largely holds for neural word embeddings, which allow for the induction of
additional semantic properties, such as hypernymy relations (Fu et al., 2014). As embeddings become
more and more important in NLP, work continues on analyzing their usefulness, such as how to interpret
specific vector dimensions (Luo et al., 2015), but most work focuses on applying embeddings to well-
defined NLP tasks.

Further, the increased importance of deep learning methods in NLP has resulted in a significant num-
ber of uses of embeddings to represent words. Wang and Manning (2013) help clarify the relationship
between embeddings and deep learning models: these models excel with low-dimensional, continuous
representations, but offer no benefit over more traditional models like conditional random fields (CRF)
(Lafferty et al., 2001) when used with high-dimensional, discrete representations. Embeddings for NLP
are commonly used in sequence classification tasks such as part-of-speech tagging and chunking (Huang
et al., 2015), named entity recognition (Chiu and Nichols, 2016; Lample et al., 2016), and semantic
role labeling (Zhou and Xu, 2015). Typically, these sequence models are based on recurrent neural net-
works (RNN). Classification models, on the other hand, are often based on convolutional neural networks
(CNN). These models are more adept at picking out a relevant piece of information in a relatively long
span of text, and so are often used for sentence classification (Kim, 2014; Zhang and Wallace, 2016),
or sentiment and topic prediction (Zhang et al., 2015). Note that many other deep learning methods are
possible with embeddings, such as sentiment classification with recursive autoencoders (Socher et al.,
2011), but this paper focuses on the use of RNNs and CNNs specifically for clinical NLP.

While less explored than the open domain, research exists on the uses of word embeddings for clinical
NLP (though less so in the context of a deep learning model). Several non-neural vector representations
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3. Echocardiogram on **DATE[Nov 6 2007] , showed ejection fraction of 55% , mild mitral
insufficiency , and 1+ tricuspid insufficiency with mild pulmonary hypertension .
DERMOPLAST TOPICAL TP Q12H PRN Pain DOCUSATE SODIUM 100 MG PO BID PRN
Constipation IBUPROFEN 400-600 MG PO Q6H PRN Pain
The patient is struggling to breathe at this time , and she is tachypneic , and she might have to be
intubated right now but ; however , the patient ’s family did not wish the patient to be intubated
even after I explained to them that she could potentially die if she was not on a breathing machine ;
but however , the patient ’s family stressed to me again and wished that they do not want her
mother to be on a breathing machine .
The patient had headache that was relieved only with oxycodone . A CT scan of the head showed
microvascular ischemic changes . A followup MRI which also showed similar changes . This was
most likely due to her multiple myeloma with hyperviscosity .

Table 1: Examples of concepts (Problem, Treatment, and Test) from the i2b2 2010 corpus.

have been used for named entity recognition style tasks, notably random indexing (Jonnalagadda et al.,
2012; Henriksson et al., 2014). Most uses of neural embeddings have likewise been through non-deep
learning models. Wu et al. (2015) explored different feature representations for embeddings, showing
that for CRFs both binarized and distributed prototype embeddings (Guo et al., 2014) out-performed
the raw embeddings. Related, but outside of clinical NLP, Tang et al. (2014) study the use of word
representations, including embeddings, for gene/protein NER, also within the context of CRF features.

Finally, there has been some study on the use of multiple word embeddings in the context of deep
learning models. Luo et al. (2014) learn new task-specific embeddings from multiple pre-trained embed-
dings for the purpose of search ranking and text similarity. Yin and Schütze (2015) treat multiple word
embeddings as different channels in a CNN. This achieves great performance, but requires all the embed-
dings be of the same dimension. In contrast, the method in this paper uses simple concatenation, which
does not require equal dimensions, but Yin and Schütze (2015) may still have some desirable semantic
properties. Finally, Zhang et al. (2016) proposes a multi-group norm constraint CNN (MGNC-CNN) that
separates the convolutional layers for different sets of embeddings. This model also has a lot of promise,
but it beyond the scope of this work. Additionally, all of these multi-embedding models have focused on
CNNs, while it is not clear whether Yin and Schütze (2015) or Zhang et al. (2016) could be successfully
applied to RNNs. However, the focus in this paper is on devising an intuition behind choosing the right
sets of embeddings (or ideally, only one set of embeddings).

3 Tasks

Two common clinical NLP tasks are considered: sequence classification and multi-class text classifica-
tion. While sequence classification is often a type of multi-class text classification (if there is more than
one type of phrase to be recognized), it nonetheless is often treated differently in regards to the “default”
machine learning algorithm (i.e., SVM vs. CRF). For each type of task, a specific task from the i2b2 2010
Shared Task (Uzuner et al., 2011b) is selected for the experiments. While the deep learning-based models
used for each task are mentioned here, Section 5 contains more details on the actual implementations.

3.1 Sequence Classification

Word embeddings for sequence classification are evaluated using the i2b2 2010 concept recognition task.
A medical concept in this task is a problem (e.g., disease or symptom), treatment (e.g., drug or therapeutic
procedure), or test (e.g., diagnostic procedure). This is an especially difficult problem in clinical NLP
due to the compact nature of text in EHR notes. Table 1 shows examples of different concept types from
the i2b2 2010 corpus, while Table 2 shows their distributions in the train and test sets.

To model concept recognition, a bi-directional recurrent neural network (RNN) using long short-term
memory (LSTM) units (Hochreiter and Schmidhuber, 1997) is used. LSTM-RNNs are heavily used in
named entity recognition and other sequence-based NLP tasks (Hammerton, 2003; Huang et al., 2015;
Zhou and Xu, 2015; Chiu and Nichols, 2016; Lample et al., 2016).
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Train Set Test Set Total
Documents 349 477 826
Concepts 27,831 45,009 72,840

Problems 11,967 18,550 30,517
Treatments 8,496 13,560 22,056
Tests 7,368 12,899 20,267

Table 2: Frequencies of concept types in the i2b2 2010 corpus.

Present ... a short - term temporary measure , and after her pneumonia gets better ...
... demonstrating a low fibrinogen , positive D-dimer , and ...
... admitted with vomiting and fever and found to have urinary tract infection ...

Absent ... patient ’s left back pain was evaluated and ruled out for MI and the back pain ...
His neck was supple with no jugular venous distention or thyromegaly .
He denied any fevers , chills , or night sweats .

Hypothetical The patient was instructed to report any new or increased shortness of breath ...
The patient is to expect some blood in his urine for the first couple of days .
... her steroid inhalers and PO prednisone for COPD exacerbation .

Possible ... who came to the hospital with what appears to be acute coronary syndrome .
... multiple bilateral pulmonary nodules compatible with inflammatory disease .
The patient did not have any EKG changes consistent with hyperkalemia .

Conditional ... chest tightness ( pressure ) approximately every three months with stress .
He reports severe dyspnea on exertion .
... pt slightly lightheaded and with increased HR when getting up out of bed .

Associated with She has no family history of gallbladder or pancreatic disease .
Someone Else His mother and father both died secondary to myocardial infarction .

The patient’s sister has a history of cervical cancer .

Table 3: Examples of assertions types for Problems from the i2b2 2010 corpus.

3.2 Multi-class Text Classification

Word embeddings for multi-class text classification are evaluated using the i2b2 2010 assertion task. An
assertion is a belief state about a medical problem (present, absent, hypothetical, etc.). This is especially
important in clinical NLP as diagnoses are often ruled out or speculated about during the diagnostic
process. Table 3 shows examples of different assertion types from the i2b2 2010 corpus, while Table 4
shows their distributions in the train and test sets.

To model assertion classification, a 2-layer convolutional neural network (CNN) with a max-pooling
layer and softmax classifier is used. While more noteworthy for imaging tasks, CNNs have been heavily
utilized in text classification as well (Collobert et al., 2011; Kim, 2014; Zhang et al., 2015; Zhang and
Wallace, 2016).

4 Data

Six datasets are utilized for generating word vectors (see Table 5):

i2b2 is the “target” dataset. This is a combination of multiple years worth of i2b2 shared tasks: 2010
(Uzuner et al., 2011b), 2011 (Uzuner et al., 2011a), and 2012 (Uzuner et al., 2013) tasks. However, the
vast majority come from the same data pull(s) used to build the training and testing data (87%) for the
2010 tasks described in Section 3. This dataset corresponds to the first ideal scenario described above,
since it would be practical if this data alone would be sufficient to generate optimal word embeddings
as additional corpora would never be needed. However, as is often the case in practice, far less data is
available in this dataset compared to what is typically used to generate word embeddings.
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Train Set Test Set Total
Documents 349 477 826
Problems 11,967 18,550 30,517

Present 8,052 13,025 21,077
Absent 2,535 3,609 6,144
Hypothetical 651 883 1,534
Possible 535 717 1,252
Conditional 103 171 274
Associated with Someone Else 92 145 237

Table 4: Frequencies of assertion types in the i2b2 2010 corpus.

MIMIC3 (Johnson et al., 2016) is a freely-accessible database of intensive care unit (ICU) encounters
from a large hospital. It is significantly larger than the i2b2 dataset, and some of the i2b2 data was even
drawn from MIMIC-II. MIMIC-III represents the next-best case scenario to having a large clinical target
dataset: it is both large and fairly similar to the i2b2 data. MIMIC is commonly used to generate word
embeddings for clinical NLP, but its exact utility in comparison to the target dataset is rarely, if ever,
measured.

MEDLINE is a collection of scientific article abstracts maintained by the National Library of
Medicine. While a large dataset, these are not clinical notes and lack many of the peculiarities of clinical
notes (e.g., abbreviations, telegraphic text). Further, while clinical notes are written by clinicians largely
to communicate with other clinicians, MEDLINE abstracts are written by researchers largely to com-
municate with other researchers. However, MEDLINE does discuss almost all the diseases, conditions,
treatments, and techniques that are described in clinical notes.

WebMD Forum is a collection of forum posts on the WebMD Community1. The forum posts are writ-
ten largely by health consumers, who are known to write health-related text quite differently than clin-
icians (Roberts and Demner-Fushman, 2016). This dataset is intended to represent a small-to-medium-
size medically-related corpus that is nonetheless quite different from clinical notes.

Wikipedia is a large, online encyclopedia. Wikipedia has extensive coverage of medical topics, but
also many other topics as well. Wikipedia represents the other best-case scenario for generating word
embeddings: if near-optimal performance could be obtained using such a general corpus, it could be used
in all experiments without the need to generate new word embeddings for each task.

Gigaword is a large newswire corpus (Parker et al., 2009). It has extensive coverage of topics that
typically dominate the news media, including politics and sports, but its coverage of medicine is largely
limited to newsworthy studies and announcements. Gigaword represents a control corpus: it should be
less useful than Wikipedia, but if it were to be beneficial then one could argue that using several arbitrary
corpora simultaneously (like an ensemble) is useful simply to provide multiple views of each word, or
even just more free parameters for the neural network to work with.

Instead of creating word embeddings for each combination of corpora, the embeddings are built for
each individual corpus independently. This has several advantages. First, it prevents the smaller, more
similar corpora from being “drowned out” by the larger, more distant corpora. Second, it dramatically
reduces the time needed to produce the embeddings since only N embeddings are needed. Third, pro-
viding the neural networks with multiple sets of embeddings allows for a kind of domain adaptation to
take place: the networks can learn to take different information from different corpora, which it would
not be able to do with a single, unified embedding vector built from all the data. As mentioned above,
multi-embedding models have been utilized for neural networks before. The implementation here is
intentionally one of the simplest forms of embedding combinations: simple concatenation of the em-

1http://exchanges.webmd.com/
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Corpus # Documents # Sentences # Tokens % diabetes % myocardial % tumor
i2b2 3k 158k 1.7m 2.9e-4% 2.4e-4% 1.3e-4%

MIMIC 876k 17m 366m 1.0e-4% 1.2e-4% 9.1e-5%
MEDLINE 24m 138m 3.7b 2.2e-4% 1.5e-5% 7.9e-4%

WebMD 232k 1.5m 24m 1.3e-4% 4.5e-7% 3.4e-5%
Wikipedia 4.8m 96m 2.1b 7.0e-6% 1.0e-6% 1.1e-5%
Gigaword 8.5m 169m 4.1b 9.3e-6% N/A 7.5e-6%

Table 5: Basic corpus statistics, including the proportion of three important clinical terms (diabetes,
myocardial, tumor) to illustrate how representative each corpus is of clinical text. Note that this excludes
common clinical abbreviations (e.g., dm or dm2 for diabetes). “N/A” indicates the word was not in the
top 100k terms and thus not included in the embeddings.

bedding vectors. Other methods are possible (Zhang et al., 2016), but it is unclear whether these more
specialized methods would produce results as generalizable as simple vector concatenation.

5 Experimental Setup

Both word embeddings and deep learning models have very many possible parameters that can impact
downstream tasks. The following experimental description is by no means likely to be optimal for the
tasks, but was made based on a combination of default parameters, conventional wisdom, and practical
necessity. In some cases experiments were conducted to test parameter impact on the downstream tasks
(mostly with the more crucial deep learning model parameters). See Section 7.1 for a discussion of the
limitations of these experiments.

5.1 Word Vectors
Each corpus was pre-processed with tokenization and sentence segmentation. Case was removed. Num-
bers were altered to just the most significant digit (e.g., 929 becomes 900). Word occurring less than
5 times were changed to UNK. Finally, a maximum vocabulary of 100k word types was applied, keep-
ing only the most frequent words. The numbers in Table 5 reflect these transformations. The gensim
(Řehůřek and Sojka, 2010) version of word2vec was then applied to create 100-dimensional embed-
dings largely using default parameters (CBOW, α=0.025, 5-word window, 50 epochs).

5.2 Recurrent Neural Network
The RNN uses a bi-directional, 3-layer LSTM implemented in TensorFlow (Abadi et al., 2015). Each
LSTM cell uses 256 hidden units. Dropout is set to 0.5. A maximum sequence length of 50 tokens
per sentence is used, which includes 98.4% of the concepts in the test set. Of the 30k sentences in the
training set, 5k are used as a validation set for early stopping, evaluated up to 100 training epochs. The
i2b2 concepts are represented in IOB format.

5.3 Convolutional Neural Network
The CNN uses 2 convolutional layers with a ReLU activation followed by a max-pooling layer and a
softmax classifier, again implemented in TensorFlow. Optimization is performed with the Adam algo-
rithm. Filters of sizes 1, 2, 3, and 4 are used, each replicated 400 times. No dropout is used. A context
window of 3 tokens around the problem’s first token is used for a total input width of 7 tokens. Of the
12k problems in the training set, 1k are used as a validation set for early stopping, evaluated up to 300
training epochs.

6 Results

The results of the experiments are shown in Table 6 and Table 7.
Concept recognition is measured in precision, recall, and micro-averaged F1-measure. The single best

corpus for this task was the MIMIC data, which out-performed the target i2b2 corpus in F1 by 2.7 points.
It also outperformed the more general-purpose Wikipedia and Gigaword corpora in F1 by 4.7 and 7.5
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Corpus P R F1

i2b2 74.47 80.12 77.19
MIMIC 77.99 81.97 79.93
MEDLINE 76.64 82.83 79.61
WebMD 71.95 77.72 74.72
Wikipedia 72.40 78.25 75.21
Gigaword 71.64 76.98 74.22

Corpus combination, starting with i2b2
+ MIMIC 78.30 82.86 80.52
+ MEDLINE 79.65 83.71 81.63
+ WebMD 79.10 83.99 81.47
+ Wikipedia 79.64 83.62 81.58
+ Gigaword 78.78 83.89 81.25

Table 6: Results for RNN-based concept recognition on the i2b2 2010 corpus, measured with precision
(P), recall (R), and F1-measure.

Corpus Accuracy P A H B C O
i2b2 91.29 96.24 95.45 87.14 86.27 81.58 91.84
MIMIC 91.16 96.10 96.15 85.60 85.58 81.63 92.73
MEDLINE 90.98 95.70 95.92 86.59 90.51 85.25 91.59
WebMD 90.22 95.40 95.14 86.65 88.50 83.87 92.59
Wikipedia 90.36 95.71 94.84 86.05 86.37 82.35 96.06
Gigaword 90.33 95.59 95.39 86.11 85.60 78.38 94.44

Corpus combination, starting with i2b2
+ MIMIC 91.26 96.29 95.36 86.44 86.58 86.96 85.48
+ MEDLINE 91.56 96.24 96.29 85.11 88.25 83.78 95.16
+ WebMD 91.39 96.46 95.43 85.76 85.79 86.75 89.33
+ Wikipedia 91.58 96.35 96.79 82.61 88.06 80.00 92.65
+ Gigaword 91.57 96.42 95.85 87.60 86.17 80.52 83.78

Table 7: Results for CNN-based assertion classification on the i2b2 2010 corpus, measured with accu-
racy, along with the F1-measure for present (P), absent (A), hypothetical (H), possible (B), conditional
(C), and associated with someone else (O).

points, respectively. MEDLINE did almost as well as MIMIC, while WebMD did poorly, only slightly
better than Gigaword. Results improve when the corpora are combined. The best overall results are
achieved by combining i2b2, MIMIC, and MEDLINE. Adding in the other corpora hurt performance
slightly, by at most 0.4.

Assertion classification is measured in accuracy, with F1-measures for the individual assertion type
provided in Table 7. Unlike concepts, the single best corpus is the target i2b2 data. All other corpora
performed close, with the worst performance being WebMD with a 1.1 point drop in accuracy. Only
slight gains are seen by adding in other corpora, the best being all corpora except Gigaword for a 0.3
point improvement, but no substantial losses are seen either.

7 Discussion

It would first be useful to compare the results obtained above with the state-of-the-art methods for the
concept and assertion tasks (Uzuner et al., 2011b). In both cases, the results are less than the best
performing scores on the tasks, but they are quite close. The best concept RNN would have placed
6th overall (out of 22) and well above the median (77.78). The best assertion CNN would have done a
bit worse, performing near the median. However, these models were built using not particularly well-
optimized parameters and furthermore they only had access to word information. The many features used
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by participants in the i2b2 tasks (e.g., UMLS (Lindberg et al., 1993), NegEx (Chapman et al., 2001), and
task-specific patterns) could be incorporated into these models for superior performance. The fact that
near state-of-the-art performance is achieved without any medical knowledge or custom features speaks
to the power of these models.

Regarding the ideal scenarios for embeddings discussed in the Introduction (target data only and
general-purpose only embeddings), these turned out to unfortunately not be the best performing condi-
tions. i2b2 was the single best corpus for assertions, but not for concepts. Rather, MIMIC and MEDLINE
greatly outperformed i2b2 for concepts, and were only slightly behind for assertions. This difference is
likely due to the small number of relevant phrases that indicate assertion types compared to the vast vo-
cabulary of medical concepts. The second ideal scenario, using a general-purpose corpus only, performs
quite poor as a single corpus for both tasks. If only one set of embeddings can be used, then, it seems a
compromise corpus such as MIMIC might be best.

The multi-embedding experiments reveal an important point, however. Combining multiple sets of
embeddings can help quite a bit (e.g., i2b2 + MIMIC + MEDLINE did 1.7 points better than MIMIC
alone for concepts), while adding “bad” corpora only will only hurt slightly (adding a single corpus
never brought the score down more than 0.3 points). Therefore, if it is not possible to perform many
experiments with embeddings on the task data (a common case in many applied clinical NLP settings),
using several corpora at once seems relatively safe.

7.1 Limitations
This paper seeks to identify best practices experimentally, so its limitations revolve around reasons why
the results may not be generalizable. In this sense, the possible limitations are vast, including:

• Only two clinical NLP datasets were evaluated, so the results obtained here may vary greatly with
other tasks.

• Only a handful of experiments (just less than a week of computing time) were conducted to optimize
the parameters of the various models: every choice made in Section 5 may be suboptimal. This may
have reduced performance inconsistently, changing the relative performance of the various corpora.

• As an explicit example of the above point, the use of 100-dimension embeddings is less than what is
typically used (often 300). Since embedding combination was an intentional goal of this paper, the
embedding dimensionality was kept small to reduce training time (e.g., 600 vs. 1800 dimensions
for the final experiment).

• It would have been useful to evaluate on more corpora–clinical, medical, and general-purpose–to
measure intra-domain variance.

• Multi-embedding methods (Yin and Schütze, 2015; Zhang et al., 2016) could have improved results
over simple vector concatenation.

Despite the extent to which these limitations may reduce the ability to generalize the experiments,
the results largely do match the intuitions gained elsewhere in NLP. For ensembles, for example, adding
additional weak classifiers is more likely to have a strong positive effect than a strong negative effect,
which is consistent with the above results.

8 Conclusion

This paper presented a series of experiments to evaluate the trade-off between small-but-representative
corpora versus large-but-unrepresentative corpora for building word embeddings for clinical NLP tasks.
Two standard clinical NLP tasks (i2b2 2010 concepts and assertions) were used in combination with two
appropriate deep learning methods (RNNs and CNNs) to evaluate six text corpora of varying size and
similarity to the target corpus. While using only the small target corpus or a large general-purpose corpus
would have been ideal from a practical standpoint, empirically it was found that combining multiple
corpora, especially a corpus like MIMIC, is the safest option for choosing embeddings.
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Özlem Uzuner, Brett South, Shuying Shen, and Scott L. DuVall. 2011b. 2010 i2b2/VA challenge on concepts,
assertions, and relations in clinical text. Journal of the American Medical Informatics Association, 18:552–556.
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Abstract 

Importance of utilizing medical information is getting increased as electronic health records (EHRs) are 

widely used nowadays. We aim to assign international standardized disease codes, ICD-10, to Japanese 

textual information in EHRs for users to reuse the information accurately. In this paper, we propose 

methods to automatically extract diagnosis and to assign ICD codes to Japanese medical records. Due to 

the lack of available training data, we dare employed rule-based methods rather than machine learning. 

We observed characteristics of medical records carefully, writing rules to make effective methods by 

hand. We applied our system to the NTCIR-12 MedNLPDoc shared task data where participants are re-

quired to assign ICD-10 codes of possible diagnosis in given EHRs. In this shared task, our system 

achieved the highest F-measure score among all participants in the most severe evaluation criteria. 

Through comparison with other approaches, we show that our approach could be a useful milestone for 

the future development of Japanese medical record processing. 

1 Introduction 

In these years, more medical institutes adopt EHRs of electronic media replacing paper media. How-

ever, natural language processing (NLP) technologies in medical fields tend to be underdeveloped; 

hospitals and clinics have been extremely reluctant to allow access to clinical data for researchers from 

outside the associated institutions (Chapman et al., 2011).  

In order to develop NLP technologies of medical field, various shared tasks (contests, competitions, 

challenge evaluations, critical assessments) have been organized. One of the well-known medical-

related shared tasks is the Informatics for Integrating Biology and the Bedside (i2b2) by the National 

Institutes of Health (NIH), which started in 2006 (Uzuner, 2008) now brought in SemEval as Clinical 

TempEval 2015 (Bethard et al., 2015) and Clinical TempEval 2016 (Bethard et al., 2016). The Text 

Retrieval Conference (TREC), which addresses more diverse issues, also launched the Medical Re-

ports Track (Voorhees et al., 2012). The first European medical shared task was the ShARe/CLEF 

eHealth Evaluation Lab (Goeuriot et al., 2015; Kelly et al., 2014; Suominen et al., 2013). While they 

are mainly targeted at English, medical reports are written in native languages in most countries. 

Therefore, information retrieval techniques in individual languages are required to be developed. 

As a first step of our research for the development of Japanese medical NLP field, we propose 

methods that automatically extract diagnosis from Japanese EHRs, assigning ICD (International Clas-

sification of Diseases) codes
1
. ICD is made by the World Health Organization (WHO) to record, ana-

lyze, interpret and compare medical data (disease and cause of death) that has been collected all over 

the world. The latest version is ICD-10. An ICD code consists of a single letter prefix and numbers 

(e.g. “I48”). Single letter prefix mostly represents a kind of disease (e.g. “I” stands for ischemic heart 

disease) and numbers represent detailed information of disease (e.g. “I48” stands for “atrial fibrilla-

tion and flutter”). ICD could be used to create machine readable data. 

Even a human expert has difficulty assigning an appropriate ICD code. Only doctors with actual 

clinical experiences could understand real intention of diagnosis. In other words, expert techniques 

                                                 
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 
1
 World Health Organization, International Classification of Diseases (ICD), available from : 

http://www.who.int/classifications/icd/en/ 
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and experiences are required if a non-professional guesses the intention to assign codes without exam-

ining an actual patient. This point makes the automatic ICD coding tasks difficult. 

We describe details of our methods in Section 2. Section 3 describes our experiments and results 

where we applied our system to the shared task data of the NTCIR-12 MedNLPDoc task (Aramaki et 

al., 2016). Our system achieved the best performance regarding the Sure match score of this Med-

NLPDoc task. Section 4 describes future works of our research and concluding this paper. 

2 Method 

We suggest five methods that output appropriate ICD code given a Japanese medical record text. In 

our system, method 2.1 is our base method. We defined methods 2.2-2.4 assuming results of method 

2.1. Method 2.5 and part of method 2.4 are independent of method 2.1. We describe our methods one 

by one below. 

2.1 Decision of target sentence 

We define a “sentence” as a line of text marked off by the Japanese periodical symbol, “。”.  

We suggest that there are two types of sentences in medical records: sentences that include 

diagnosis, and sentences that do not include any diagnosis. The latter type of sentences may include 

disease names which are not related to any diagnosis.  

When a sentence contains diagnosis, and when that sentence contains a name of disease, our system 

output a corresponding ICD code of that disease name. We describe details of our method below.  

We extract sentences that contain a keyphrase to narrow candidate sentences down. For example, 

the previous example sentence with diagnostic result “検査の結果で慢性化膿性中耳炎と診断され、

手術目的に入院となる。(As a result of medical check, diagnosed as chronic suppurative otitis 

media, and hospitalization is needed for an operation.)” has a keyphrase of “と診断され  (be 

diagnosed)” with its diagnosis name of disease before the keyphrase. In addition to the keyphrase “と

診断され”, we listed and used keyphrases of  “の診断 (diagnosis of)” , etc. 30 keyphrases in total. 

We chose these keyphrases by manually verifying medical records written in Toba (2006) and medical 

records of MedNLPDoc training data, which details are described later. If a sentence contains a 

negation, e.g. “認めない (not see)”, this sentence is discarded from the candidate sentences.  

After selecting sentence candidates, morphological analysis is performed by Kuromoji 

morphological analyzer
2
 with a custom dictionary where Wikipedia entry words and disease names are 

registered. Disease names are taken from Japanese Standard Disease-Code Master (Hatano et al., 

2003). We changed the weight of words in the dictionary in order to make disease names of the dic-

tionary appear preferentially. When a disease name is included in the morphological analysis result, 

we assign a corresponding ICD code in the table of Japanese Standard Disease-Code Master. 

2.2 Translation of medical technical words from English to Japanese 

There are many English words used as technical terms in the Japanese medical records, written in al-

phabets. Because these English words are often not registered in our custom dictionary, we cannot 

deal with it directly. We used Life Science Dictionary (Ohtake et al., 2008) to translate English words 

into Japanese words. In this method, we only use dictionary entries which exactly matched with the 

English words in the medical record. 

2.3 Unification of paraphrase words 

There are many inconsistent spelling variations appear in the medical records. We deal with this prob-

lem by our method below. We use the redirection relations of Wikipedia to make such normalizations, 

i.e. redirected words correspond to normalized words. 

2.4 Assigning ICD codes to disease names including various body parts 

In our method described in section 2.1, descriptions like “XX に癌,YY に損傷  (cancer of XX, 

                                                 
2
 http://www. atilika.org/  
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Figure 1. Comparison with other teams in 

 F-measure (Sure), where C indicates our result 

damage to YY)” will only output corresponding ICD codes of damage or cancer, ignoring “XX” and  

“YY”. However, these ignored words could include information required to output appropriate ICD 

codes. We decided to focus on “malignant neoplasm” and “damage” in our method. Our system out-

puts ICD codes from combination of words. 

We define rules to detect ICD codes using combination of words that express various parts of body, 

and the words which represent malignant neoplasm and damage. We manually made a list of body 

parts using the Japanese Standard Disease-Code Master. 

If a sentence contains both a word of the body parts and a word which represents malignant neo-

plasm or damage, our system outputs a corresponding ICD code. 

In case of damage, we only check sentences selected by our method described in section 2.1, while 

we used the whole medical record in case of malignant neoplasm. This is because there are special 

keyphrases used for malignant neoplasm. 

Our system covered almost all ICD codes of “malignant neoplasm” and “damage“, including vari-

ous body parts. We removed words which represent malignant neoplasm or damage from the diction-

ary used in method 2.1, because these words e.g. “癌 (cancer):C80” are sometimes used to refer spe-

cific concepts e.g. “肺癌 (lung cancer):C349” but not for the general meaning.  

2.5 Inferring ICD codes from XML tags 

We suggest another method that outputs ICD codes using information in XML tags of the Med-

NLPDoc task dataset. We focused on tags of anamnesis (既往歴) and family clinical history (家族歴), 

because there are categories of ICD codes directly correspond to these two types. If there is a tag of 

anamnesis or family clinical history, our system outputs an ICD code by extracting clues from words 

inside these tags. Then we apply the same method described in 2.4 to the extracted words. 

3 Experiment and Result 

3.1 Experiment Setting 

We applied our system to the NTCIR-12 MedNLPDoc task. MedNLP is a shared task series for Japa-

nese medical record texts in NTCIR (NII Testbeds and Community for Information access Research). 

Previous tasks include three sub tasks: named entity removal task (de-identification task), disease 

name extraction task (complaint and diagnosis), and normalization task (ICD coding task)(Morita et 

al., 2013). The MedNLPDoc task is more advanced and practical. In this task, participants' systems 

infer disease names in ICD. Due to this practical setting, task participants' systems could directly sup-

port actual daily clinical services and clinical studies in various areas (Aramaki et al., 2016). 

 Task organizers created a medical record corpus as a training dataset for this task which includes 

200 individual medical records. The average number of sentences per record is 7.82. The average 

number of codes per record is 3.86. 552 code types 

appeared in the corpus.  

Test dataset consists of 78 clinical texts, which 

were randomly selected from the past National Ex-

amination for Medical Practitioners
 3

. Question 

sentences and graphics were eliminated from the 

original documents. Then, three professional hu-

man coders (more than one-year experience) indi-

vidually added ICD-10 codes (Aramaki et al., 

2016) to the same documents in parallel.  

The MedNLPDoc task provides three evaluation 

metrics. Sure metric regards ICD codes which all 

of three annotators agreed to annotate, Major met-

ric for more than two annotators, Possible metric 

                                                 
3
 Ministry of Health, Labour and Welfare, Question and the correct answer of the 108th national medical examination,  

available from : http://www.mhlw.go.jp/seisakunitsuite/bunya/kenkou_iryou/iryou/topics/tp140512-01.html 
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for more than a single annotator. Because the inter-annotator discrepancy is quite low in this dataset, 

the Sure metric is considered as most reliable.  

3.2 Result 

We measured our system performance by participating in the MedNLPDoc task. Figure 1 shows re-

sults of all participants in the Sure evaluation metric. Our result is shown as Team C, which is the best 

score in F-measure Sure metric. Team C is rule-based, while others use machine learning methods, 

like CRF (Team B, E),  CRF and SVM (Team G) (Aramaki et al., 2016).  

3.3 Effect Analysis of Methods 

As gold standard annotations of the test dataset are not provided, we conducted another experiment 

using the training data to show effectiveness of each of our methods. Table 1 shows result of this ex-

periment. “perfect match” means the number of codes perfectly matched with the correct ICD codes. 

“3-digits match” means the number of output codes which three digits (first letter and next two num-

bers) are matched. Total number of correct answers was 772. We compared a couple of different com-

binations of our sub-methods, each described in section 2.1, 2.2, 2.3, 2.4, and 2.5, respectively. 

Because the F-measure becomes better when methods 2.2-2.5 are added to 2.1, each individual 

method can be regarded as effective. When the method 2.4 is added, the growth of F-measure is the 

largest. Regarding malignant neoplasms and damage, we can write coding rules easier by hand be-

cause corresponding ICD descriptions explicitly discriminates “[body_part] and damage”, 

“[body_part] and the cancer”, etc. Additionally, malignant neoplasms and damage are frequently ap-

peared in the training data, which made the contribution larger. 

When method 2.3 is added, the growth of F-measure is the smallest. Reasons would be that cover-

age of paraphrases is insufficient with Wikipedia. Another reason is that the training data does not 

contain many paraphrases. 

4 Future work and Conclusion 

There should be two criteria required to achieve the ultimate goal of this ICD codes assignment study. 

The first criterion is whether symptoms are explicitly described or not in medical records. This deci-

sion would have almost been achieved by our approach except for cancers. Regarding cancers, our 

system could not select candidate sentences effectively in some cases because there were no 

keyphrases found as other phrases are used. Extracting such indirect expressions would be required. 

The second criterion is whether we should output ICD codes or not, when we find out symptom or 

name of disease. Let us consider cough for example, which often appears in medical records. In order 

for the code of the cough to be assigned, we need to know how strong an effect of the cough gives to a 

patient’s diagnosis by deriving relationship of the cough and main diagnosis. Then we can recognize 

relationships between symptoms and diagnosis that could contribute to the real clinical works.  

If we could properly define these two criteria, we can output more accurate ICD codes. 

Japanese medical records contain language specific features like inclusion of diagnosis names, par-

aphrases, etc. From such features, we made five rule-based methods consisting our system that output 

ICD codes accurately. Our system performed best among participants in the MedNLPDoc task. How-

ever, it is still difficult to output ICD codes perfectly. In order to make better ICD coding in future, it 

will be required to analyze relationships between a patient’s symptom and his/her disease.  

Combination  

of Methods  

# of system  

output 

# and scores of perfect match # and scores of 3-digits match 

# P R F # P R F 

2.1 424 101 23.82 13.08 16.89 161 37.97 20.85 26.92 

2.1+2.2 450 110 24.44 14.25 18.00 176 39.11 22.80 28.81 

2.1+2.3 479 107 22.34 13.86 17.11 170 35.49 22.02 27.18 

2.1+2.4 494 120 24.29 15.54 18.96 208 42.11 26.94 32.86 

2.1+2.5 446 111 24.89 14.38 18.23 174 39.01 22.54 28.57 

2.1+2.2+2.3+2.4+2.5 597 145 24.29 18.78 21.18 245 41.04 31.74 35.79 

Table 1. Evaluation for combinations of methods in Precision (P), Recall (R) and F-measure (F)  
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Abstract

In this work we present a fine-grained annotation schema to detect named entities in German
clinical data of chronically ill patients with kidney diseases. The annotation schema is driven
by the needs of our clinical partners and the linguistic aspects of German language. In order to
generate annotations within a short period, the work also presents a semi-automatic annotation
which uses additional sources of knowledge such as UMLS, to pre-annotate concepts in advance.
The presented schema will be used to apply novel techniques from natural language processing
and machine learning to support doctors treating their patients by improved information access
from unstructured German texts.

1 Introduction

Long-term treatment and follow-up of chronically ill patients result in complex medical data and patient
records. Although such data is nowadays to a large extent digitalized in various hospital information
systems or clinical databases, information is mostly unstructured and difficult to access. Thus, reliable
methods to access useful information in clinical data would clearly support physicians. An information
extraction system could be applied in the clinical routine to analyze individual patient records for alarm-
ing symptoms, historical events, contraindications or side effects. Furthermore it could help to identify
subgroups of patients with special characteristics, identify patients for clinical studies or correlating
medication and symptoms in historical patient data. Automated information extraction could allow the
development of alert systems, which help the clinicians in their daily routine and thus would increase
patients safety. However, the first step towards any information extraction is the definition of information
of interest, such as diseases, medications or dosing size. This information is then defined within an anno-
tation schema and is used to manually annotate a gold standard corpus to train and evaluate information
extraction methods.

Unfortunately, manual annotation is time consuming (Kim et al., 2008) and expensive (Angeli et al.,
2014). In particular in the medical domain, expert knowledge is often required which makes the anno-
tation process even more difficult and costly. Therefore existing schemata and corpora could be used
in order to save time and effort for the annotation of new data. On the other hand, existing schemata
might not cover the information of interest. Furthermore, most of the existing and assessable clini-
cal data sets are in English language. The existing German-language clinical data sets are not freely
available. Consequently, we aim to create a new gold standard corpus for German data. This work in-
troduces an annotation schema for reports of the nephrology domain which is based on the requirements
of physicians in our project and is motivated by linguistic aspects of German language. The schema
takes into account that current German medical dictionaries (which often support named entity recogni-
tion) are much smaller than the English ones. Hence, we include annotations on a fine-grained level, in
particular in the context of compound words. Moreover, the annotation process includes an automatic
pre-annotation step to decrease the duration of manual annotation and to generally ease the annotation
process (Batista-Navarro et al., 2015; Kwon et al., 2014).

The paper is structured as follows: The next section presents related work. An overview of relevant
data sources is provided in Section 3. The following Section 4 introduces the annotation schema with a
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range of different examples. The semi-automatic annotation process is reported in Section 5. The paper
finishes with results and future work.

2 Related Work

Information extraction from clinical data has become an important research topic in recent years. With
the increasing amount of medical data (such as clinical notes or discharge summaries), the development
of reliable text analytics tools could support physicians to better access patient data. However, annotated
data sets are required for the development and testing of information extraction methods. Most of the
existing annotated clinical data sets are in English language. There are only a few data sets that have
been created for non-English languages, such as for Swedish (Skeppstedt et al., 2014), French (Névéol
et al., 2015) or Polish (Mykowiecka et al., 2009). For German, only a few sources and clinical corpora
exist and will be introduced in the following.

The two most relevant sources for this work are described in Bretschneider et al. (2013) and Toepfer
et al. (2015). Bretschneider et al. (2013) focused on the classification of sentences in radiology reports
as either pathological and non-pathological based on the given findings. Toepfer et al. (2015) addressed
the extraction of fine-grained information from German transthoracic echocardiography reports. The
presented terminology involves three main types: objects, attributes and values. Unfortunately, both data
sets are not publicly available.

Another very interesting corpus is the FraMed corpus which is described in Wermter and Hahn (2004).
The authors present a German-language medical text corpus containing manually supplied sentence
boundary, token segmentation and part-of-speech (POS) tags. Due to the fact that the corpus cannot
be legally accessed by a third party, Faessler et al. (2014) present an freely available tool for segmenta-
tion and POS tagging for German clinical data, based on models trained on the FraMed corpus. Further
relevant sources for German clinical data are for instance the German Specialist Lexicon (Weske-Heck
et al., 2002) or the German MeSH1. A good overview is also provided in the work of Schulz et al. (2013).

3 Utilized Data Sources

This section presents the two data sources used for this work. Firstly, a biomedical knowledge source
is presented which is used to automatically pre-annotate data to reduce annotation time. Secondly, the
textual data which is used for the annotation is introduced and then analyzed by its (linguistic) charac-
teristics.

3.1 UMLS
The Unified Medical Language System2 (UMLS) is a large biomedical knowledge base containing mil-
lions of medical terms and relations between them. The core component, the Metathesaurus, unifies
more than 120 biomedical knowledge vocabularies, such as the Medical Subject Heading (MeSH), the
Medical Dictionary for Regulatory Activities (MedDRA) or the International Classification of Diseases,
Tenth Revision, Clinical Modification (ICD-10-CM).

Medical concepts can be described in different ways with different spellings, different abbreviations
and also in different languages. UMLS unifies those variations using the Concept Unique Identifier
(CUI). Furthermore, UMLS links each CUI against at least one semantic type, such as ‘Finding’, ‘Sign
or Symptom’ for instance. Most of the concepts are defined in English. However, more than 200,000
German entries can be found3 in UMLS.

In this work, UMLS will be used for two different purposes. First of all, German concepts of the
Metathesaurus are used to pre-annotate data by aligning semantic types to concepts of our annotation
schema (see Section 5). Furthermore, unique CUIs should be assigned to annotated concepts in our
corpus (normalization against UMLS) at a later stage. Normalization helps to access data more effi-
ciently. Rather than searching for the string ‘Niereninsuffizienz’ (‘renal insufficiency’) we can use its

1http://www.dimdi.de/static/en/klassi/mesh_umls/mesh/index.htm
2https://www.nlm.nih.gov/research/umls/
3UMLS 2016AA, including all German sources
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UMLS-CUI C1565489 which includes different variations in German, such as ‘Insuffizienz der Niere’,
‘beeinträchtigte Nierenfunktion’ or ‘Nierenfunktionsbeeinträchtigung’.

3.2 Clinical text of the nephrology domain
The annotation task in this paper is conducted within the MACSS4 (Medical Allround-Care Service
Solutions) project, which focuses on improving the safety of patients after kidney transplantation. A
key focus of this project is to improve the communication with the patient via a mobile app and to
facilitate data exchange and bilateral communication between physicians. Another important goal of this
project is the improvement of drug safety by analysis of potentially dangerous drug-drug interactions. In
this context the text annotation aims to generate a corpus for the detection of correlated information in
historical patient data (e.g. by correlating medication and symptoms). In addition, we want to analyze
individual patient records in order to identify alarming symptoms, contraindications or side effects of
medications.

At the current project stage German discharge summaries and clinical notes of a hospital’s kidney
transplant department are annotated. The content of the data set has two peculiar characteristics com-
pared to clinical data of other domains: First, the topic in the documents is related to kidney transplant
patients and second, the patients are under a long-term treatment. Both types of documents (discharge
summaries and clinical notes) are generally written by medical doctors and have significant differences.
The clinical notes are rather short and are written by doctors during or shortly after a visit of a patient.
The currently used documents consider only those sections which are addressed to other physicians out-
side the hospital, such as family doctors or the physician who transferred the patient.

Discharge Summaries Clinical Notes
#documents available 118 1607
#words (total) 89691 68480
#sentences (total) 16068 11871
avg. words per document (std. deviation) 760.09 (208.62) 42.61 (35.74)

Table 1: Comparison of our Clinical Data Sources

Discharge summaries instead are written during a stay at the hospital. The document is more struc-
tured. It contains information about medical history, diagnosis, condition, medication etc. of the patient.
Discharge summaries contain much more text compared to clinical notes and are often written by physi-
cians. Furthermore, discharge summaries often contain longer and more well-formed sentences.

Table 1 provides a brief analysis of both document types. Discharge summaries contain a larger
average number of words per document compared to the clinical notes5. However, the standard deviation
of the avgerage word number per document shows that both document types have a large variation in text
length. Some clinical notes contain only a few words.

3.2.1 Data Characteristics
The clinical data of this project share the same characteristics as other clinical documents across the
world, such as syntactic shortened and reduced semantic complexity. Additionally, the texts contain a
large number of Greek- and Latin-rooted words. Often, only keywords are used, together with a lot of
abbreviations which are not entirely consistently used over the different texts/authors (Kim et al., 2011).
Spelling mistakes and indirect colloquial patient language (‘patient reports that legs were tickling’) might
occur. Besides, texts vary concerning writing style and information density. Due to the nature of German
language the documents are also rich in inflection forms and compounds.

Overall, especially linguistic characteristics are of great interest defining our annotation schema: we
assume that linguistic resources play a major role in the understanding of the structure of medical data.

4http://macss-projekt.de/
5The information is generated by applying a German tokenizer and a sentence splitter. All non alphabetical tokens are

removed.
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The German language tends to have a complex sentence- and word structure. While the former varies
a lot between different texts and is therefore hard to generalize, the latter is worthy to be considered in
more detail.

First of all, characteristics of part-of-speeches (POS) and word formation processes like derivation
and composition seem to be important for a deeper understanding. Beside nouns also adjectives and
verbs support detailed textual information as presented in Example 1. The example shows, that crucial
information can be also expressed by an adjective (1a) or a verb (1b).

(1) a. [Depressive] Episode (‘depressive episode’)
b. Wir übernahmen den Patienten [intubiert] (‘we took over an intubated patient’)

In German the POS of a word can be easily changed by derivation processes (Fleischer, 2012) which
means, that given concepts are not limited to a specific word category. For this reason it is necessary to
not solely rely on the POS distribution and to keep concepts open to various POS. Example 2 illustrates
the described situation. ’Delirant’ and ’im Delirium’, both mean that the patient is in an acute confusional
state (‘delirium’). While the former is grammatically used as (predicative) adjective, the latter is used as
noun.

(2) a. Der Patient war [delirant] (‘the patient was delirous’)
b. Der Patient war im [Delirium] (‘the patient had delirium’)

The same situation applies to changes from noun to verb (or vice versa):

(3) a. Es erfolgte die [Sedierung] (‘sedation was undertaken’)
b. Wir [sedierten] den Patienten (‘we sedated the patient’)

Compounds like those presented in Example 4 are a very typical phenomenon of the German language
and work really productive: They can be built by nearly every POS, yet compounds can be formed by
other compounds. This grammar device is frequently used in our corpus.

(4) a. Niereninsuffizienz (‘Renal insufficiency’)
b. Aortenklappenstenose (‘Aortic valve stenosis’)

‘Niereninsuffizienz’ can be paraphrased as ‘Insuffizienz der Niere’ (literally: ‘insufficiency of the kid-
ney’). The given example shows that a fine-grained examination of lexemes help gaining more informa-
tion than a simple review of the surface does. In Example 4a, a body part in combination with a medical
condition might span a new and more specific medical condition, whereas the body part expresses the
location of the condition.

4 Annotation Schema

For this work information related to the patient, the disease pattern and the treatment are of interest. In
order to answer these superordinate questions, relevant concepts are created that structure the information
supporting entities: therefore, focus is on the elements that express medical conditions, their treatments,
and further diagnostic procedures. Consequently, the concepts ‘Medical Condition’, ‘Treatment’, and
‘Diagnostic/Lab Procedure’ are the most important and the most frequent ones. However, also other
concepts, such as ‘Body Part’ or ‘Medication’ for instance are important information and considered for
the annotation.

Besides further information such as time and location, negations/speculations and some structural
data is of interest. Thus, all those elements often serve as specification of the preceding concepts. The
development of the concepts took place by manually examining example corpora.

Table 2 presents the list of entities we currently annotate. The relevant entities are grouped into
different categories such as time information or person/body. Furthermore the table provides a brief
explanation of each entity. Note, Biomedical Chemistry is currently grouped into the category therapy.
However, depending on the context the concept can also occur in the category Person/Body.
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Category Entity Explanation
Time Information Date Point in time; date

Temporal Course Temporal courses; other temporal information
Person/Body Person Mentions of individuals

Body Part Body parts; organs
Tissue Body’s own tissues
Body Fluids Body’s own fluids

Local specification Anatomical descriptions of position and direction
Process Process Body’s own biological processes
Condition State of Health Positive, wanted finding; contrary to Medical Condition

Medical Condition Symptom, Diagnosis and observation
Diagnostic/Lab Procedure All types of tests used to diagnose a disease or to assess the

patients’ state
Medical Specification Closer definition; describing lexemes, often adjectives
Degree State of degrees, e.g. degree of a tumor disease
Type Closer definition/specification

Therapy Medical Device Medical devices, utilities and material
Medication Drugs, medicine
Biological Chemistry Biochemical substances
Treatment Therapeutic procedures, treatments
Measurement Measurements and the corresponding units

Structure Structure Element Text structuring elements
Truth Modality Positive Explicitly positive lexeme

Modality Negation Negation particle
Modality Vagueness Vagueness expressing elements

Table 2: Relevant concepts

Medical Condition comprises a wide range of entities. In fact, entities describing findings, diseases
and syndromes are all covered by that single concept. Even professionals cannot always distinguish for
certain between a disease and a symptom, for instance in case of hypertension. Hypertension can be
categorized as a disease or as a symptom, e.g. of a chronic renal insufficiency. By normalizing concepts
to UMLS, a distinction can be achieved in later working steps, if required.

As mentioned above, the development of the concepts does not base on the lexeme’s grammatical
structure (e.g. the POS) but on its semantic value. Thus, also other aspects of the surface structure
may vary: the concept temporal course can occur as a word strings (5a), as a scheme for the dosing of
medication (5b), or as an prefix within a lexeme (5c).

(5) a. [Seit drei Tagen] (‘For three days’)
c. Urbason 4 mg [1 - 0 - 0 - 0] (‘Urbason 4 mg 1 - 0 - 0 - 0’)
b. [Post]extubationem (‘after the extubation’)

As illustrated in Section 3.2.1, concepts like Medical Condition are not limited to a certain POS. Con-
versely, there are some exceptions which appear exclusively in adjectival form: Medical Specification
and Local Specification occur only in describing, thus in adjectival position. They do not contain the
main information (the patient’s medical condition and treatments) but serve as further specification. The
concept State of Health is also a special case regarding its POS-structure. Due to its contrary meaning
to Medical Condition it might be assumed, that it occurs within the same position and same context.
However, State of Health is actually only used as adjective. Similar to that, the concept Type occurs
only in one certain position, namely as the first constituent of a compound, see Example 6:

(6) a. [Druck]schmerz (‘tenderness and/or pain on palpation’)

While most of the concepts base on their semantic value, Structure Element is an exception because
its use does not rely on its meaning but on its function. These entities occur as kind of headlines that
structure the texts. Additional information throughout the paragraph can be gained by accentuating these
elements. Further examples are given in Table 3.
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Examples (German; English) Annotation
Sonographie der Leber (Ultrasound examination of the liver) Body part
Ovarialzyste (ovarial cyst) Body part
inhomogenem Nierenparenchym (inhomogeneous renal parenchyma) Tissue
laterales Weichteilrelease (lateral soft tissue release) Local specification
Sonographie der linken Niere (ultrasound examination of the left kidney) Local specification
Reaktion auf Licht (Reaction to light) Process
physiologische Darmgeräusche (physiologic bowel sounds) Process
Haut warm und trocken (skin warm and dry) State of Health
terminale Niereninsuffizienz (terminal renal insufficiency) Medical Condition
EKG vom 24.01.2000 (ECG from 24.01.2000) Diagnostic/Lab Procedure
Röntgen Thorax in zwei Ebenen (chest radiography in two projections) Diagnostic/Lab Procedure
chronische NTx-Glomerulonephritis (Chronic glomerulonephritis of the renal allo-
graft)

Medical Specification

Transplantatversagen nach chronischer NTx-Glomerulonephritis (Renal allograft fail-
ure after chronic glomerulonephritis of the renal allograft)

Medical Device

chronische Niereninsuffizienz Stadium III (Chronic kidney disease stage 3) Degree
Primärimplantation (primary implantation) Type
Transaminasenanstieg (Elevation of transaminases) Biological Chemistry
Wir übernahmen den Patienten sediert, intubiert und beatmet (We took over the se-
dated, intubated and mechanically ventilated patient.)

Treatment

Nephrektomie (Nephrectomy) Treatment
Tumorausdehnung beträgt 4,5 x 3 x 6 cm. (Tumor dimensions are 4,5 x 3 x 6 cm) Measurement
keine Ödeme (no oedemas) Modality Negative

Table 3: Annotation Schema - Concept Examples

4.1 Annotation Process
The annotation process aims at a detailed annotation level. This means, that the annotation attempts
to detect many information in the documents, but also to consider a fine-granularity. The following
example in Figure 1 motivates the granularity. The term ‘terminale Niereninsuffizienz’ (‘terminal renal
insufficiency’) will be annotated on different levels:

Figure 1: Annotation Granularity

First of all the complete term ‘terminale Niereninsuffizienz’ will be annotated as medical condition,
which is closest to the UMLS entry. Besides also ‘Niereninsuffizienz’ and ‘insuffizienz’ will be annotated
as Medical Condition in order to achieve a fine-granularity. Furthermore strings such as ‘terminale’
(‘terminal’) will be annotated as Medical Specification and ‘Niere’ (‘renal/kidney’) as Body Part.

There are different reasons for the detailed annotation level. Firstly, ‘terminale Niereninsuffizienz’ is
the most specific term which includes all other information. Often NER systems target the longest and
most specific match. However, UMLS might not cover necessarily all variants. Even more problematic
is the fact, that medical terms of interest might be not covered by the German subset of UMLS. A fine
granularity might help at a later stage to learn larger constructs (e.g. adjective + compound noun) which
are not in the dictionary.

The fine-granularity can be carried to extremes: Some Local Specifications provide special informa-
tion due to derivation processes, see Example 7:

(7) intrapulmonal (‘intrapulmonary’)
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The first constituent of the lexeme, ‘intra-’ comes from a finite set of Latin-rooted prefixes which name
directional and locational information. ‘Pulmonal’ is also a Latin-rooted element which can be translated
as ‘concerning the lungs’ (‘pulmo’ is Latin for ‘lung’ and the suffix ‘-al’ indicates an adjective). In
combination with the prefix ‘intra’, which means ‘inside sth.’, the lexeme’s meaning is ‘inside the lungs’
what would be annotated as Local Specification. Since UMLS has no entry for the German lexeme, this
fine-grained analysis can provide a deeper understanding.

5 Semi-Automatic Annotation

The annotation is carried out by three students: two linguists, which are familiar with the domain and
one medical expert. The medical student is responsible to annotate data and to support the other two
students. The annotation task is conducted using the Brat6 annotator tool. As seen in (Batista-Navarro
et al., 2015) or (Kwon et al., 2014), an automatic pre-annotation can help to decrease the duration of
manual annotation and to generally ease the annotation process. For this reason an automatic annotation
step will be also included into this annotation. In the following the automatic pre-annotation and the
preliminary manual annotation will be described.

5.1 Pre-Annotation
To decrease the duration of manual annotation and to generally ease the annotation process, the corpus
is pre-annotated automatically7 beforehand. In this way, falsely tagged elements can be easily corrected
and missing annotations included.

The pre-annotation reads in the text documents and applies a tokenization. Currently up to four tokens
are considered and matched to the German and English subset of UMLS. Furthermore also substring
matches are allowed in order to detect the different components of compound words. The pre-annotation
can be divided into three parts: regex, dictionary-lookup and UMLS dictionary lookup. Concepts which
are less likely to be found in UMLS are covered by the first two steps. This information usually describes
descriptive information of main concepts.

The regex annotation covers the concepts Measurement, Date, Temporal Course, and Struc-
ture Element. Whereas the first three concepts include numbers, in combination with some measure-
ments or month, such as ‘mg’, ‘ml’ or ‘January’, the concept Structure Element detects text spans fol-
lowed by a colon (‘:’). These structuring elements usually define the topic of the following text or section
and can be used to build up relations to the concepts found in the follow-up text.

The dictionary lookup considers words which are less likely to be found in UMLS as single con-
cepts. Many of the concepts considered here are used to further specify concepts such as Body Part or
Medical Condition. In German, many of those concepts (in particular Medical Specification and Lo-
cal Specification) occur as adjectives or adverbs. In contrast to our approach, UMLS assigns those spec-
ifications directly into the surrounding concept, such as ‘akute Blutungsanaemie’ (‘acute haemorrhagic
anaemia’) or ‘papilläres Schilddrüsenkarzinom’ (‘papillary thyroid carcinoma’) and not necessarily as a
single concept. This dictionary is manually generated.

word substring
‘Empfehlungen’ (‘suggestions’) ‘Lunge’ (‘lung’)
‘Behandlung’ (‘Treatment’) ‘Hand’ (‘hand’)

Table 4: Substring Matching Errors

The UMLS dictionary lookup searches within a window of 4 tokens for German, stemmed German
and English words in UMLS. In order to avoid additional errors only capitalized words are considered
for English. This pre-annotation component bases on aligning semantic types of UMLS to concepts of
our annotation schema. The mapping schema is presented in Table 5. It means, that if a mention can
be found in UMLS, its semantic type is examined and if the type matches to one of our concepts, the

6http://brat.nlplab.org/
7The tool will be made available here: http://macss.dfki.de
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Concept name STY-Name
Person Human; Patient or Disabled Group
Body Part Body Part, Organ, or Organ Component; Body Location or Region
Tissue Tissue
Body Fluids Body Substance
Local Specification Spatial Concept
Process Biologic Function; Physiologic Function; Organism Function; Mental Process; Organ or Tissue

Function; Cell Function
State of Health Qualitative Concept
Medical Condition Anatomical Abnormality; Congenital Abnormality; Acquired Abnormality; Finding; Sign or

Symptom; Pathologic Function; Disease or Syndrome; Mental or Behavioral Dysfunction; Neo-
plastic Process; Injury or Poisoning

Diagnostic/Lab Procedure Laboratory Procedure; Diagnostic Procedure
Medical Specification Organism Attribute; Clinical Attribute; Qualitative Concept
Medical Device Medical Device
Medication Clinical Drug; Pharmacologic Substance; Antibiotic
Biological Chemistry Biomedical or Dental Material; Biologically Active Substance; Hormone; Enzyme; Vitamin;

Immunologic Factor; Receptor; Organic Chemical; Nucleic Acid, Nucleoside, or Nucleotide;
Amino Acid, Peptide, or Protein; Inorganic Chemical; Element, Ion, or Isotope; Gene or
Genome

Treatment Therapeutic or Preventive Procedure
Measurement Quantitative Concepts

Table 5: Mapping Semantic Types to our Annotation Schema

string will be pre-annotated. Additionally the annotation will be extended by its definitions (if defined in
UMLS) and its source vocabularies.

The substring matcher also relies on the UMLS dictionary lookup and searches for tokens longer than
3 characters in the German sources. The substring matcher produces various errors as seen in Table
4. However, during the annotation process models and exceptions will be updated to improve the pre-
annotation gradually.

Another component of the annotation is an additional synonym dictionary. During the annotation
process newly annotated and frequently occurring concepts should be examined in more detail. In this
case annotators search for synonyms or English translations in order to find a corresponding entry in
UMLS and to extend the German UMLS dictionary.

5.2 Current Annotation Process
At the current stage of the annotation, many files are annotated by at least two different annotators.
Annotation differences are then discussed together in a group in order to find the best solution and to
ensure a mutual understanding of the annotation task. Using the new annotations the pre-annotation can
be successively improved by including new knowledge and addressing frequent errors (such as described
in Table 4).

6 Results and Future Work

In this work we presented a fine-grained annotation schema for German clinical text, used for the domain
of nephrology. The schema is motivated by linguistic aspects and addresses the needs of clinicians and
medical professionals in our project. Furthermore we presented a semi-automatic annotation process in
order to ease the annotation procedure. After finishing the concept annotations, the corpus will be nor-
malized against UMLS and extended by relations. The corpus serves as baseline for further information
access of patient data in a hospitals’ transplant center.
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Abstract 

In recent years, detecting Alzheimer’s disease (AD) in early stages based on natural language 

processing (NLP) has drawn much attention. To date, vocabulary size, grammatical complexi-

ty, and fluency have been studied using NLP metrics. However, the content analysis of AD 

narratives is still unreachable for NLP. This study investigates features of the words that AD 

patients use in their spoken language. After recruiting 18 examinees of 53–90 years old (mean: 

76.89), they were divided into two groups based on Mini Mental State Examination (MMSE) 

scores. The AD group comprised 9 examinees with scores of 21 or lower. The healthy control 

group comprised 9 examinees with scores of 22 or higher. Linguistic Inquiry and Word Count 

(LIWC). The word frequency was found from observation. Significant differences were con-

firmed for the usage of impersonal pronouns in the AD group. This result demonstrated the 

basic feasibility of the proposed NLP-based Alzheimer’s disease detection approach. 

1 Introduction 

The increasing life expectancy has led to severe health and social problems. Among them, the most 

severe problem is the rising frequency of Alzheimer’s disease (AD; Wortmann 2015) among the popu-

lation. Japan is especially faced with a crisis posed by AD. Japan’s Ministry of Health, Labour and 

Welfare reported that more than 1 in 4 control individuals would soon be afflicted with mild cognitive 

impairment (MCI) or AD. If all afflicted people were treated for MCI and AD, then the cost is esti-

mated to be as high as 10 trillion dollars per year. As the number of patients with AD increases, the 

needs of these individuals might eventually exceed the current capacity of the national healthcare sys-

tem, requiring various methods to detect the early stages of AD, prevent further deterioration, and al-

leviate requirements for care. Natural language processing (NLP) has also drawn much attention as a 

novel and simple method to detect AD using language. 

Roark et al. indicated that a spoken narrative recall task can discriminate between healthy control 

people and those with MCI (Roark, Mitchell et al. 2011). Tanaka et al. proposed a computer avatar 

based approach to detect dementia in very early stages (Tanaka et al. 2016). Aramaki et al. also specif-

ically examined  the patients’ narratives during a test (Aramaki et al. 2016). Year by year, MCI and 

AD narratives have been newly analyzed using NLP. 

Although the details of the methods differ among them, they share the same approach, examining 

functional features (such as audio and transcript of narrative recall task by Roark et al. ), spoken dialog 

by Tanaka et al. and transcriptions written and spoken narratives and vocabulary size by Aramaki et 
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al. ) (Aramaki et al. 2016)) to detect and characterize patients with a disease. They did not deal with 

the contents of the narratives. In contrast, this paper presents a new method to detect AD based the 

categories of words patients use in spoken narratives. The word categories are classified by Linguistic 

Inquiry and Word Count (LIWC), a dictionary for text analysis. 

To date, it has generally been pointed out that words from people with AD differ from those of 

healthy control people, including slowed speech, word-finding hesitation, sentences with abnormal 

words, and using words that are mispronounced or incomprehensible
1
. Especially, it is often said that 

AD patients more frequently use pronouns (e.g. it, that) than healthy control people. An example is 

presented in Figure 1. The sample includes much silence, repeating similar utterances, and pronouns. 

Using the LIWC, this study empirically investigates the proportion of word categories between AD 

and healthy control people. Our review of the literature indicates that this report is the first quantitative 

study investigating the word categories associated with AD in Japanese. The statistics is presented in 

Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Speech of a patient with AD in Mini-Mental State Examination (MMSE score) (Translated into 

Japanese). Italic indicates personal impersonal pronouns. 

 

Maximum 1569

Minimum 242

Median 688

Average 788  
Table1:  Word Statistics in Corpus. 

 

Contributions of this study can be summarized as shown below. 

 A LIWC analysis is conducted for narratives uttered by people suspected of having AD. 

 This study also examines a proposed method for LIWC translation. 

2 Related Work 

Recent studies of early detection methods such as blood testing and detailed memory testing have re-

vealed vast improvements in detection capabilities (Mapstone et al. 2014). However, most of these 

methods are physically or mentally invasive, which has led to anticipation of less-invasive or even 

non-invasive detection methods. Dementia symptoms include degenerative cognitive decline, as well 

as behavioral and functional disorders. The disease also results in the deterioration of various execu-

tive functions, reasoning, and language abilities. Among these, language deficits have been shown to 

be more apparent from the early stages of dementia (Snowdon et al. 1996). These deficits include 

naming disorders, auditory and written comprehension impairment, fluent but empty speech, and se-

mantic paraphasia. However, repetition capabilities and articulation are often preserved (Appell et al. 

1982). Reportedly, the impairment of language abilities in dementia patients is often inconsistent be-

cause semantic and pragmatic language abilities are likely to become more impaired, whereas syntax 

and phonology demonstrate better preservation (Schwartz et al. 1979). Semantic errors reportedly are 

                                                 
1
 http://www.businessinsider.com/changes-in-president-reagans-speech-early-sign-of-alzheimers-2015-4 

 

Ummm, ummm, what were those? 

... Oh no. 

Well, they were all food, weren't they? 

A plant? 

A plant... a plant... was it a cherry blossom? 

 

  (Omitted) 

 

What were the other 2? There was a pencil, a watch and what else? ... I cannot remember it. Ah, well, 

a key. And there was, there was a pencil here. And that one. What was the 3rd one here? ...... There 

was a key. ...... There was a key and I cannot remember the next one. ... I don't know. What was it? 

Tell me. 
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the most common and distinct language deficit because dementia patients tend to substitute target 

names with superordinate category names or demonstrate circumlocutory speech with impaired nam-

ing (Emery 2000). Other reports have also described unrelated errors (Moreaud et al. 2001), phonolog-

ical errors (Croot et al. 2000), and visual errors (Croot et al. 2000). However, these are often depend-

ent on the type of picture confrontation naming task, the severity or stage of the disease, or other 

unique patient-level circumstances (Geda 2012). MCI, part of which constitutes a pre-stage of demen-

tia, might indicate a boundary between aging-related non-dementia reduction in cognition and demen-

tia on the spectrum of cognitive function. 

Using the above characteristics, various dementia screening methods have been proposed to date. 
Table 2 shows the summary of previous screening studies. Well-known studies were those conducted 

by Roark et al. (Roark et al. 2007; Roark et al. 2011), which analyzed the lexical features and syntactic 

feature from transcripts of spoken narrative such as neuropsychological approaches (Moriyama et al. 

2015) and automatic speech analysis approaches (König et al. 2015). Some of them used automatic 

speech recognition (Tóth et al. 2015). Aramaki et al. specifically examined vocabulary size in speech 

transcription (Aramaki et al. 2016). Tanaka et al. proposed a novel approach using computer avatars 

(Tanaka et al. 2016). In addition Orimaye et al. (Orimaye et al. 2014) used machine learning algo-

rithms to build diagnostic models using syntactic and lexical features and Jarrold et al. used LIWC for 

aided diagnosis of Dementia (Jarrold et al. 2014). 
Author Method Disease Sample size Year

Aramaki et al. (Aramaki et al. 2016) Analysis of vocabulary size in speech MCI, AD 22 2016

Tanaka et al.  (Tanaka et al. 2016) Spoken dialog with computer avatars MCI 18 2016

König et al. (König et al. 2015) Automatic speech analyse MCI, AD 64 2015

Tóth et al. (Tóth et al. 2015) Acoustic indicator MCI 51 2015

Moriyama et al. (Moriyama et al. 2015) Neuropsychological battery AD 299 2015

Orimaye et al. (Orimaye et al. 2014) Machine learning algorithms AD 556 2014

Jarrold et al. (Jarrold et al. 2014) Analysis of spontaneous speech AD 48 2014

Roark et al. (Roark et al. 2011) Transcript with audio MCI 74 2011

Roark et al.  (Roark et al. 2007) Lexical features and syntactic features MCI 55 2007
 

Table 2: Earlier studies. 

3 Materials 

We have collected narratives of hospital patients to build the corpus. 

3.1 Research field  

Criteria used for the experiment are the following. 

[Inclusion criterion] 

 AD group (AD): Patients with Alzheimer’s disease between light MCI and middle class MCI 

(MMSE below 21 points). 

 Healthy control group (HC): Patients without AD. Healthy control people group members 

are age-matched with AD group members (MMSE over 22 points)
2
. 

[Exclusion criteria] 

 Patients who have some other brain-related diseases 

 Non-native Japanese speakers 

 

We recorded conversations between a patient and a medical staff member using an IC recorder. Then, 

we transcribed the conversations manually. Table 3 presents characteristics of the patients. 

 

                                                 
2
 Healthy control people might actually have diseases (other than AD). 
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Age Sex MMSE Age Sex MMSE

72 Woman 4 77 Man 22

71 Woman 14 81 Woman 22

90 Woman 17 72 Woman 22

80 Man 18 87 Man 25

73 Woman 19 53 Man 25

78 Woman 19 87 Woman 26

81 Woman 20 82 Woman 26

73 Man 21 79 Man 28

77 Woman 21 71 Woman 30  
(a) AD                                                                  (b) HD 

Table 3: Participant attributes. 

3.2 Ethics Statement 

The experiment is explained to patients (or their family). If they cannot understand the explanation, 

then we exclude them. We do not reward the patients. The use of these data for research purposes was 

approved by the ethics committee of Kyoto University (approval NO. E2525). 

3.3 MMSE – based Patient Classification 

The goal of this study is to detect important features that can classify AD and others by analyzing their 

spoken narratives. Thus, we determine a person is AD or not (MCI and normal) based on Mini Mental 

State Examination (MMSE). The MMSE is a simple inspection method for a subject suspected as AD. 

In this test, a patient is asked 11 questions; their answers are judged by the score (max 30; min 0). The 

MMSE scores between 30 and 27 points are normal; those between 26 and 22 points might be MCI; 

and those below 21 points might be AD. 

4 Language Resource LIWC 

4.1 What is LIWC 

We use Linguistic Inquiry and Word Count (LIWC) as a language resource for classifying words into 

corresponding categories. LIWC has been developed by researchers who are interested in social, clini-

cal, health, and cognitive psychology. We can classify people’s social and psychological states using 

LIWC. However because LIWC is only for English, it is difficult to apply to Japanese texts. Our re-

view of literature indicates that no resource for Japanese is comparable with LIWC. 

Therefore, we make Japanese LIWC by translating English LIWC. We arrange categories for Japa-

nese LIWC by considering a gap depending on the language differences. Table 4 shows 64 categories 

in English LIWC. Then we extract 22 categories related to diseases by the judgment of the authors, as 

shown in Table 5. We remove categories that are not related to our target disease (e.g. <Body>). We 

also remove categories that are not translatable to Japanese. (e.g. <Article>).  

<Funct> <Ipron> <Sad> <Incl> <Adverbs> <Family> <Body> <Work>

<Pronoun> <Article> <CogMech> <Excl> <Prep> <Friends> <Health> <Achiev>

<Ppron> <Verbs> <Insight> <Percept> <Conj> <Humans> <Sexual> <Leisure>

 <I> <AuxVb> <Cause> <See> <Negate> <Affect> <Ingest> <Home>

<We> <Past> <Discrep> <Hear> <Quant> <Posemo> <Relativ> <Money>

<You> <Present> <Tentat> <Feel> <Numbers> <Negemo> <Motion> <Relig>

<SheHe> <Future> <Certain> <Bio> <Swear> <Anx> <Space> <Death>

<They> <Filler> <Inhib> <Nonflu> <Social> <Anger> <Time> <Assent>  
Table 4: English LIWC categories. (64 categories) 

 
<Time> <Posemo> <Ipron> <Sad> <Family> <Negemo> <Present> <Humans>

<Future> <Space> <Anger> <Negate> <SheHe> <I> <Friends>

<Social> <Past> <Verbs> <We> <Anx> <They> <You>  
Table 5: Disease - related categories. (22 categories) 
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4.2 LIWC Translation Procedure 

We translate LIWC into Japanese to produce Japanese LIWC as shown below. 

 Step 1: All words in English LIWC were translated using EDICT (an electric dictionary produced 

by EDP and JimBreen
3
). 

 Step 2: One worker searched mistakenly translated words by sight and deleted them. As a result, 

5,534 words out of 6,211 words remained. 

 Step 3: If a duplicated pairs of a Japanese word and its category are found, then we put them to-

gether such that 4,769 words out of 5,534 words remained. 

 Step 4: When conducting morphological analysis for Japanese, we ignore words in the category 

<Past>. Then the words of verbs belonging to the category <Present> is changed to 

<Verbs>. We remove three categories <We>, <SheHe>, and <They> and words belonging to 

these because it was determined that these categories have no correlation with disease. 

 Therefore, the number of categories are reduced from 22 to 19. 

 Step 5: Words in multiple categories are assigned to the most appropriate category by one worker. 

In Japanese, it is difficult to distinguish between words related to <Time> and those related to 

<Space>. Therefore, we define a new category called <TimeSpace>. The number of catego-

ries becomes 20. We apply these steps to 2,700 words. 

5 Experiments 

5.1 Procedure 

We analyze the corpus as explained below. 

 Step 1: Texts are analyzed morphologically and stemmed using a Japanese morphological ana-

lyzer (Kurohashi and Nagao 2003). 

 Step 2: The results are consulted by Japanese LIWC. We then count the LIWC word in the corpus. 

 Step 3: We investigate the ratio of LIWC word frequency for each category. 

5.2 Results 

The results of t-test are presented in Table 6. In order to the examine the difference between speech of 

AD group and HC group in a statistical manner. Note that we investigated the difference of the aver-

age values in AD and HC group. As shown in Table 6, no significant difference was found between 

AD and HC in any categories, except for four: <Social>, impersonal pronoun <Ipron>, anxiety 

<Anx>, <Verbs>, and <Present>. As for <Anx>, HC’s value is 0. Figure 2 presents results of the 

category frequency of AD and HC.  

 
Category AD (avg.) HC (avg.) p-value Difference

<Ipron> 0.0385 0.0268 0.0187 0.0117

<Anx> 0.0008 0 0.0192 0.0008

<Verbs> 0.0524 0.043 0.0219 0.0094

<Present> 0.0171 0.0103 0.0226 0.0068

<Social> 0.0063 0.0116 0.0229 -0.0053

<I> 0.004 0.0019 0.0591 0.0021

<Space> 0.017 0.0231 0.0893 -0.0061

<Posemo> 0.006 0.0076 0.1245 -0.0016

<Time> 0.0364 0.0418 0.1433 -0.0054

<Sad> 0 0.0002 0.1733 -0.0002

<You> 0.0003 0.0002 0.2687 0.0001

<Family> 0.0015 0.0021 0.3135 -0.0006

<Negate> 0.0397 0.0464 0.3264 -0.0067

<Negemo> 0.0006 0.0009 0.3294 -0.0003

<Anger> 0.0004 0.0006 0.3392 -0.0002

<Humans> 0.0068 0.0077 0.3432 -0.0009

<Friends> 0.0008 0.0006 0.4019 0.0002

<Past> 0.0003 0.0003 0.4909 0

<Future> 0 0 - 0

<TimeSpace> 0 0 - 0  
Table 6: Values that has significant differences between AD and HC (p-value < 0.05) are under lined. 

                                                 
3
 http://www.edrdg.org/jmdict/edict.html 
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Figure 2: Category frequency of AD (green) and HC (red). Significant differences were found for 

<Ipron>, <Anx>, <Verbs>, <Present>, and <Social>. 

6 Discussion 

First, we discuss the findings based on quantitative evidence obtained from a previous study (Sec. 6.1). 

Then we examine the results by using machine learning (Sec. 6.2). 

6.1 Findings: Quantitative Evidence of Previous Study 

We discuss categories for which significant differences between AD and HC are observed. The values 

of <Social> in AD group were significantly lower than those in HC group. Generally, it is said that 

participating in social activities is effective to prevent AD progression. In other words, a person with 

little social contact tends to develop AD. Consequently, this result corresponds with AD features. The 

values of <Ipron> in AD group were significantly higher than those in HC group. AD patients be-

come forgetful. Therefore, they use many impersonal pronouns (Almor et al. 1999). Viewed from a 

grammatical perspective, ellipses of a subject or objects of a verb are not allowed. They often appear 

as a pronoun in English, but the ellipsis of them is allowed in the Japanese language. Considering this 

feature, it is possible that the use of impersonal pronouns becomes more frequent in the condition of 

AD, particularly for Japanese speakers. Similarly, it corresponds with general AD features. The values 

of <Verbs> and <Present> in AD group were also significantly larger than those in HC group. 

However, it is difficult to understand why these results were obtained. Therefore, in future work, it 

will be necessary to investigate the words in these categories in detail. 

Consequently, some observed results supported the previous findings on AD. Although most of the 

previous studies have been based on subjective observations, our findings provide quantitative evi-

dence for their claims, demonstrating the effectiveness of our approach. 
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6.2 Decision Tree 

In order to the most important clue to classify patients into AD and HC, a decision tree is constructed 

as shown in Figure 3. It has feature values representing probabilities to be classified into AD or HC in 

categories.  
<Ipron> <= 0.0298

n = 18

AD: 9 HC: 9

<Space> <= 0.0285

n = 11

AD: 8 HC: 3

n = 1

AD: 1 HC: 0

<Posemo> <= 0.0046
n = 7

AD: 1 HC: 6

n = 6

AD: 0 HC: 6

n = 2

AD: 0 HC: 2

<Posemo> <= 0.0025

n = 9

AD: 8 HC: 1

n = 8

AD: 8 HC: 0

n = 1

AD: 0 HC: 1

Yes No

 
Figure 3: Decision tree results for AD screening. 

 

Figure 3 shows that there are two cases for a person to be diagnosed as AD. The first case is that of 

using words in <Ipron> below 0.0298 and the value using words in <Posemo> below 0.0046. The 

probability is 100% to be classified into AD. The other case is that the percentage of impersonal pro-

nouns <Ipron> is higher than 0.0298, the percentage of Space <Space> is less than 0.0285 and the 

percentage of Positive emotion <Posemo> is higher than 0.0025. The probability is also 100% for 

classification into AD. Results demonstrate that the values of appearance of words of <Ipron>, 

<Space> and <Posemo> in conversation are important for AD screening. 

7 Conclusion 

This study investigated features of the words that AD patients used in their utterances. 18 examinees 

of 53–90 years old (mean: 76.89) were recruited and divided into two groups based on their MMSE 

scores. Linguistic Inquiry and Word Count (LIWC) classified words were used to categorize the words 

that the examinees used. Then their frequency was ascertained. This report is the first of a quantitative 

study that investigated the word categories of AD. Significant differences were found for the AD 

group in the usage of several LIWC categories, including impersonal pronouns, which suggests that 

this simple method can be used for dementia screening. 
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Abstract

The number of unstructured medical records kept in hospital information systems is increasing.
The conditions of patients are formulated as outcomes in clinical pathway. A variance of an
outcome describes deviations from standards of care like a patient’s bad condition. The present
paper applied text mining to extract feature words and phrases of the variance from admission
records. We report the cases the variances of “pain control” and “no neuropathy worsening” in
cerebral infarction.

1 Introduction

1.1 background
Many medical institutes have been accumulating large amounts of medical data. Medical data include
structured numerical data and unstructured text data. Unstructured text data is a wide variety of expres-
sions. However, those data are essential, since those free texts are written by medical staff who actually
take care of the patients. Therefore, analyzing medical text is expected to improve medical process and
the clinical decision support (Meystre, 2008; Zhua, 2013).

There is previous text mining research on medical records. (Mowery, 2012) applied SVM (Support
Vector Machine) to partition the emergency reports into SOAP (Weed, 1969) segments. The prediction of
the disease or a cancer classification to the discharge summaries was studied in (Suzuki, 2008; Nguyen,
2010). (Coden, 2009) construct the model that automatically populates pertinent parts of a structured
cancer representation from text pathology reports. These are mainly classification and performance
evaluation. On the other hand, there are not many contents to which specific sentence and word appeared
the symptom and the condition are provided.

1.2 Clinical pathway
A clinical pathway determines standard medical procedures for an inpatient with respect to each disease
and to each medical treatment. This is also expected to improve medical management by advancing
standardization. The Japanese Society for Clinical Pathway1 promotes the construction of a standard
electronic clinical pathway aiming at the standardization of medical treatment and improvement in med-
ical processes.

”All variance outcome oriented clinical pathway” is a series of medical treatment units which consist
of three layers of (a) outcome, (b) assessment and (c) task (Figure 1). Doctors or nurses in medical
practice keep records of their tasks and assessments of patients’conditions. The variance is recorded in
an outcome layer when a patient’s condition doesn ’t achieve the criteria of an assessment layer. Thus,
we can grasp abnormal condition of the patient and the change of medical intervention plan (Nakashima,
2007).

The present paper applied text mining and machine learning to admission records to extract the words
that represent outcome variance (patient condition) and evaluated the prediction performance. Further-
more, we considered the patient condition related to the outcome variance from extracted feature words
and sentences.

1http://www.jscp.gr.jp
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Figure 1: The 3-layer structure of Clinical Pathways

2 Data and Method

2.1 Admission Text Records

In this paper, we analyzed the admission records of 1,222 patients to whom clinical pathway of cerebral
infarction was applied in Kumamoto-Saiseikai Hospital in April 2014 – January 2016.

The clinical pathway of cerebral infarction has set 14 outcomes (Table 1). “no paralysis” and “no
depressed level of consciousness” cover the large part of variances. However, we focus in the present
paper on “pain control” and “no neuropathy worsening”, since they are considered clinically important.
In order to analyze the 1,222 admission records, we constructed a search engine of the textual records.
We used GETA2 system available at NII GETA project. Using this search engine, we tried extraction of
the words that may serve as a determinant of outcome variance.

Outcome Variance count
no Paralysis 1026
no depressed level of Consciousness 734
Dietary intake 522
Vital stable 513
Pain control * 456
no Neuropathy worsening * 356
Circulatory dynamics stable 157
no Urination disorder 133
Respiratory status stable 122
no Chest Infection symptom 14
no Side effect symptom 12
keep Rest 6
no Dyscoria symptom 4
no Imbalance syndrome symptom 1

Table 1: Outcome in clinical pathway of Cerebral Infarction (*: target in this study)

2.2 Classification by Support Vector Machine and Feature Selection

We applied SVM to predict if an admission record is in the outcome variance. The specific procedure is
as follows. All admission records are vectorized after morphological analysis using medical dictionary

2http://geta.ex.nii.ac.jp/geta.html
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(about 80,000 words). If a patient’s record contains the outcome, it is labeled as positive example.
In contrast, the cases which have no mark are used as negative data. Then the classification model is
constructed using SVM (SVM-light (Joachims, 1999)).

we applied the model to the imaginary sentence that consists of a single word wi. We used the predicted
score of the sentence as the score(wi) of the word.

The score(wi) denotes the SVM score of a word wi obtained by applying the model to the imaginary
document that contains only the word. In (Sakai, 2012), the score(wi) was used for the feature selection.
In the present paper, we propose another two measures to evaluate the importance of each word. The first
measure score(wi) ∗ df(wi) is obtained as the product of the document frequency df(wi) of the word.
The second measure log(score(wi) ∗ df(wi)) is product of the log of the document frequency of the
word and the score. Those measures are defined as “w.o, d.o, l.o”. Furthermore, the measure for which
the absolute value was used “w.a, d.a, l.a” was established and 6 measures were used because there was
also score of negative in SVM.

Then, we applied the model to all sentences to evaluate the score of each sentences. The top scored
sentences were chosen as typical sentences of the outcome variance. We highlighted the feature words
in those sentences to help interpreting the meaning of the sentence with focused feature words.

3 Result

3.1 Feature Words and Feature Sentences

Table 2 lists the top 30 positive words as feature words for the outcomes of ”pain” and ”neuropathy
worsening”. Table 2 shows feature sentences that contain such feature words. There are many sen-
tences of “pain” that contain “dizzy”, “headache”, “nausea”, “fibroid” and “aneurysm”. The sentences
of “neuropathy worsening” often shows “paralysis”, “right face” and “difficulty talking”.

Outcome Feature words Feature setences
Pain dizzy(132), hypalgesia(14),

aneurysm(181)*, headache(81)*,
nifedipine(67), nausea(61), fi-
broid(27), right angular(53),
calcification(68), pravastatin(23),
hemianopsia(94)

dizzy when body move, severe nausea.
Feeling badness, a headache and dizziness appear
suddenly.
found aneurysm in cavernous sinus.
anamnesis: fibroid, gallstone(postoperation), high
blood pressure, irregular pulse.

Neuropathy
worsening

paralysis(205), right face(106),
renal failure(60), right knee(10),
hypalgesia(14), sick sinus syn-
drome(15), Right facial paral-
ysis(88), difficulty talking(165),
flexion(65)*

When getting up, the paralysis of a right hand finger
appeared and was also felt by the right face again.
With the paralysis senses in mandibular nerve area
of right face.
The paralysis sense of the right face, the right fore-
arm and the right thigh back side.
Difficulty talking appeared.
Forgetfulness and slow talking appeared.

Table 2: Feature words and sentences by SVM (* possibility or impossibility, presence or absence)

3.2 Feature Selection

The top N of positive words and negative words (or the top 2N of the absolute value) were selected to
construct a model, and then we evaluated the prediction performance. We varied the number of words
N (N=1,2,…,10,20,…, 100,200,…). We used 5-fold cross validation in the evaluation experiment. The
prediction performance was evaluated by Accuracy and F-measure.

The baseline Accuracy of “pain” that uses all words is 0.58. The Accuracy is obtained 0.64 at N=9
(l.o, l.a), and then the best of Accuracy is attained 0.77 at N=700 (w.o, w.a) as shown in Figure 2. The
baseline F-measure of “pain” that uses all words is 0.39. The F-measure is obtained 0.55 at N=30, and is
attained 0.65 at N=100 (w.o, w.a) and 0.81 at N=700 (w.o, w.a) as shown in Figure 3.
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The baseline Accuracy of “neuropathy worsening” that uses all words is 0.61. The Accuracy obtained
0.70 at N=3 (d.o, d.a) and around 0.75 at N=100 (6 measures), and then is attained 0.85 at N=700 (w.o,
w.a) as shown in Figure 4. The baseline F-measure of “neuropathy worsening” that uses all words is
0.33. The best of F-measure is attained 0.60 at N=100 (w.o) and 0.75 at N=700 (w.o, w.a) as shown in
Figure 5. The measure of Score and Score*Df made high performance.

Figure 2: Accuracy(Pain) Figure 3: F-measure(Pain)

Figure 4: Accuracy(Neuropathy worsening) Figure 5: F-measure(Neuropathy worsening)

4 Conclusion

This present paper reported the extraction of feature words and typical sentences that describe the pa-
tient condition from the free texts. “dizzy”, “headache” and “nausea” are extracted as feature words of
“pain”. “paralysis”, “difficulty talking” and “right face” are extracted as feature words of “neuropathy
worsening”. These words make sense from a clinical viewpoint. Furthermore, the Accuracy with less
than 10 words was better for the prediction performance than F-measure with it by feature selection in
both the cases.

In the present paper, we considered feature sentences that contain those feature word and then inter-
preted context of the sentence. As the result, we succeeded in extracting the part of the patient’s site
and the typical condition of the patient from feature words and feature sentences. Then, it will enable
early care to critical indicator. We plan to analyze other outcomes and other cases. We aim to estab-
lish a method of medical text mining that can perform clinical evaluation for the improvement medical
processes.
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Abstract

Clinical narratives in electronic health record systems are a rich resource of patient-based in-
formation. They constitute an ongoing challenge for natural language processing, due to their
high compactness and abundance of short forms. German medical texts exhibit numerous ad-hoc
abbreviations that terminate with a period character. The disambiguation of period characters
is therefore an important task for sentence and abbreviation detection. This task is addressed
by a combination of co-occurrence information of word types with trailing period characters, a
large domain dictionary, and a simple rule engine, thus merging statistical and dictionary-based
disambiguation strategies. An F-measure of 0.95 could be reached by using the unsupervised ap-
proach presented in this paper. The results are promising for a domain-independent abbreviation
detection strategy, because our approach avoids retraining of models or use case specific feature
engineering efforts required for supervised machine learning approaches.

1 Introduction

Free text narratives are a main carrier of unstructured patient-based information in clinical information
systems. Clinical texts differ significantly from, e.g., newspaper or scientific articles. The following
snippet demonstrates the high degree of compactness, which is typical for clinical narratives1:

3. St.p. TE eines exulz. sek.knot.SSM (C43.5) li Lab.
majus. Level IV, 2,42 mm Tumordurchm.

As much as such highly condensed text is understandable by specialists, it poses severe problems to
natural language processing (NLP) and subsequent semantic interpretation (Meystre et al., 2008), due to
idiosyncrasies of telegram style language like word and term-level ambiguities, acronyms, abbreviations,
single-word compounds, derivations, spelling variants and misspellings. In addition, the broad range of
clinical specialties with different vocabularies and recording traditions account for a high variation of
sub-language characteristics (Patterson et al., 2010).

This paper deals with the disambiguation of the period character (“.”) in clinical narratives. In many
Western languages like German, periods are used as abbreviation markers. Therefore, in a first tokeniza-
tion step it is not recommended to consider trailing period characters as token delimiters, in order to
identify tokens that end with a period. Three cases can be distinguished: (i) The period character marks
an abbreviation and does not act as sentence delimiter. (ii) The period character marks an abbreviation
and also delimits the sentence. (iii) The period does not belong to the token and therefore delimits the
sentence.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1English translation: “3. History of total excision of an exulcerated secondarily nodular superficially spreading melanoma
(C43.5) of the outer left labia. Level 4, tumor diameter 2.42mm”.
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Our approach is purely data-driven, which distinguishes it from recently published work (Wu et al.,
2016; Griffis et al., 2016; Vo et al., 2016), predominantly based on supervised machine learning. In
contrast, we avoid extensive manual annotations of training data as well as classification task triggered
feature engineering, even though good results were obtained in a previous study (Kreuzthaler and Schulz,
2015). Another requirement is that the method should be easily adaptable to other clinical sub-language
domains without model retraining or exhaustive dictionary or terminology management, and that classi-
fication results should be understandable in detail and traced back to core decision rules.

2 Materials and Methods

2.1 Data
Corpus: A sample of 1,696 de-identified German-language clinical in and outpatient discharge letters

was obtained from the dermatology department of an Austrian university hospital. The documents were
randomly assigned to a training and a test corpus, with 848 documents each.

Gold standard: From both corpora a list of word types followed by a period character was extracted
by applying the following two regular expression sequentially:
(i) \b\p{Graph}+\.(?=(\p{Punct}|\s|$)) matches any word type character sequence ending
with a period character, and (ii) ([a-z]+\.|[A-Z][a-z]*\.) filters the resulting types from step
one by word characters without digits. About 2,300 word types ending with a period finally constitute
the training and test set. Their content was manually annotated on whether the period character belongs
to the word type or not. The inter-annotator agreement was very high, with a Cohen’s kappa of 0.98
(Di Eugenio and Glass, 2004; Hripcsak and Heitjan, 2002).

Dictionary: An abbreviation-free medical dictionary (~1.45 million unique word types) was built
using (i) a free contemporary German dictionary2, (ii) a German medical dictionary (Pschyrembel, 1997),
and (iii) texts from a consumer health Web portal3. All tokens ending with a period character were
excluded from this resource, as a highly sensitive approach to keep it free of abbreviations. In addition,
German abbreviations harvested from Web resources4,5 (~5,800 acronym and abbreviation tokens) were
excluded from the overall dictionary to make the final resource as abbreviation-free as possible, also
accounting for potential punctuation errors in the three dictionaries such as missing abbreviation period
markers. The resulting resource was used in our abbreviation detection strategy, as described in the
following section.

2.2 Methods
Statistical approach: For the statistical classification approach we built a fourfold observed co-

occurrence table O(knm) for every word type ending with a period character:

Schema Example A Example B

Type ¬Type “Pat” ¬“Pat” “auf” ¬“auf”

• k11 k12 300 17,970 8 18,262
¬• k21 k22 78 66,718 1,322 65,474

Table 1: Two examples of observed corpus based frequency counts, viz. the two word types “Pat” and
“auf”, with and without a period as rightmost character (symbolized by •).

With the observed frequency counts O(knm) we calculate the log-likelihood ratio (LLR) (Dunning,
1993)6,7 of a word type and its ending period character by use of Shannon’s Entropy (Shannon, 1948):

2http://sourceforge.net/projects/germandict/
3http://www.netdoktor.at/
4http://de.wikipedia.org/wiki/Medizinische Abkuerzungen
5https://de.wiktionary.org/wiki/Kategorie:Abkuerzung (Deutsch)
6The Apache Mahout library was used for LLR calculation.
7http://tdunning.blogspot.co.at/2008/03/surprise-and-coincidence.html
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H = −
n∑

i=1

pi(logbpi) (1)

LLR = 2 ·N · (Hmatrix −Hrows −Hcols) (2)

For the cases mentioned in Table 1, LLR values amount to 579.11 for Example A and 571.56 for
Example B. This has the advantage that per co-occurrence their relevance can be asserted assuming a χ2

distribution (with one degree of freedom) for different significance levels. Example A and Example B
have a very highLLR, which allows the conclusion that the occurrence of the word type left of the ending
period character has a significant influence on the presence or absence of the final period character. In
order to determine whether there is significant evidence for the presence or for the absence of the final
period character we calculate, in a next step, the expected values E(knm) of the fourfold Table 1 via:

kExp
11 = (k11 + k12) · (k11 + k21)/(k11 + k12 + k21 + k22) (3)

kExp
12 = (k12 + k11) · (k12 + k22)/(k11 + k12 + k21 + k22) (4)

kExp
21 = (k21 + k11) · (k21 + k22)/(k11 + k12 + k21 + k22) (5)

kExp
22 = (k22 + k12) · (k22 + k21)/(k11 + k12 + k21 + k22) (6)

These equations lead to the following fourfold expected co-occurrence table E(knm):

Schema Example A Example B

Type ¬Type “Pat” ¬“Pat” “auf” ¬“auf”

• kExp
11 kExp

12 81 18,189 286 17,984
¬• kExp

21 kExp
22 297 66,499 1,044 65,752

Table 2: Two examples of expected corpus based frequency counts, again with the word types “Pat” and
“auf”, with and without a period as rightmost character (symbolized by •).

The final decision function is now straightforward, reconsidering the fact that the expected values
E(knm) can be interpreted as the distribution within the table if there were no divergence from random-
ness: If O(k11)− E(k11) > 0 the period character belongs to the word type and marks an abbreviation,
if O(k11) − E(k11) ≤ 0 the period marker does not belong to it and can be interpreted as sentence de-
limiter. We apply this decision function regardless of the LLR-level of the token-period co-occurrences,
but its influence is inspected in the Combined approach described below.

Dictionary approach
The dictionary-based approach for period character classification is done via a simple dictionary look-

up of the token under inspection8. If the token (without trailing period) is found in the dictionary,
we decide that it is not an abbreviation, otherwise the period character is considered as belonging to
the token, which is therefore classified as an abbreviation. This strategy requires an abbreviation-free
dictionary, as described in Section 2.1.

Combined approach
Our decision function in the combined approach is motivated by the fact that the tokens ending with

a period have a distribution pattern as depicted in Figure 1. This has a fundamental influence on our
decision function: (i) For a certain proportion of the token-period co-occurrences the statistical approach
will have enough frequency information to give valid classification results, (ii) but there is a relevant long

8Due to the large number of about 1.45 million dictionary entries, we used an Apache Lucene index, cf.
https://lucene.apache.org/core/

93



 0

 100

 200

 300

 400

 500

 0  500  1000  1500  2000
Fr

e
q

u
e
n
cy

Rank

Figure 1: Ranked frequency count of tokens that end with a period.

tail of co-occurrences where the statistical method is not stable any more. We therefore addressed these
cases by the dictionary-based approach and to prioritize it in the decision function: wherever the left
context of the period is in the dictionary we decide in favor of a non-abbreviation, otherwise we take the
decision of the statistical approach taking into account different significance levels (LLR1 > 10.83, p <
0.001; LLR2 > 3.84, p < 0.05; LLR3 > 0, p-value not considered).

if token ∃ dictionary then
→ abbr=false;

else if LLR > significance level then
if O(k11)− E(k11) > 0 then
→ abbr=true;

else
→ abbr=false;

end
else
→abbr=true

end

Algorithm 1: Combined decision algorithm.

3 Results and Discussion

The evaluation results show that the Statistical approach on its own tends to find all abbreviations
but lacks precision. The Dictionary approach returns an F-measure of 0.94, and the top performance
result of F1 = 0.95 is obtained with the combined approach. The evaluation results of the Combined
approach also reflect the fact that the LLR information can be neglected in that case and the outcome of
O(k11)− E(k11) should always be used regardless of the impact of the significance of the token-period
co-occurrence. The investigation of false positives shows, e.g., a noticeable amount of token-period co-
occurrences like “Lymphknotenstatus.” (in English “lymph node status.”) which very commonly appear
at the end of a sentence, but which are not in our dictionary (search term: “Lymphknotenstatus”), and
have a O(k11) − E(k11) > 0. False negative results typically appear with abbreviated tokens, such as
“morph.” (abbreviation for ”morphologisch”, in English ”morphological”), which are erroneously found
in our dictionary (search term: “morph”) and are therefore classified as non-abbreviations.

Kiss and Strunk (2002a), tried to reduce the amount of false positives and false negatives by applying
different scaling factors to the resulting LLR. A final threshold was manually chosen, with F-measures
of 0.92 and higher on newspaper corpora. Kiss and Strunk (2002b) performed an intermediate evaluation
of their idea of re-scaling the LLR also for sentence boundary detection. Here, they obtained a minimum
F-measure of 0.91. Both preliminary approaches finally led to the Punkt system (Kiss and Strunk, 2006),
a multilingual unsupervised approach rigorously tested and evaluated. Kreuzthaler and Schulz (2014)
applied an extended version of the Kiss and Strunk (2002a) method in an initial experiment with clinical
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Training Test

Method Precision Recall F1 Precision Recall F1

Statistical
Token 0.47 1.00 0.64 0.44 1.00 0.61
Type 0.36 0.97 0.53 0.35 0.97 0.51

Dictionary
Token 0.90 0.98 0.94 0.88 0.97 0.93
Type 0.57 0.81 0.67 0.54 0.80 0.65

CombinedLLR1

Token 0.91 0.98 0.94 0.89 0.97 0.93
Type 0.57 0.81 0.67 0.56 0.80 0.66

CombinedLLR2

Token 0.92 0.97 0.94 0.90 0.97 0.94
Type 0.58 0.80 0.67 0.56 0.79 0.66

CombinedLLR3

Token 0.94 0.97 0.95 0.92 0.97 0.94
Type 0.61 0.78 0.69 0.59 0.78 0.67

Table 3: Evaluation results.

texts and achieved an accuracy of 0.93 for abbreviation and sentence detection based on the interpretation
of the period character. A supervised machine learning approach using a support vector machine with
a linear kernel and thorough feature engineering led to an F-measure of 0.95 for abbreviation detection
and an F-measure 0.94 for sentence delineation (Kreuzthaler and Schulz, 2015).

Studies have also focused on the detection, normalization, and context-dependent mapping of abbrevi-
ations/acronyms to long forms (Xu et al., 2012). This is also part of works such as CLEF 2013 (Suominen
et al., 2013), which included a task for acronym/abbreviation normalization, using the UMLS9 as target
terminology. An F-measure of 0.89 was reported by Patrick et al. (2013). Four different methods for
abbreviation detection were tested by Xu et al. (2007). A decision tree classifier, which additionally used
features from knowledge resources, performed best with a precision of 0.91 and a recall of 0.80. Wu et
al. (2011) compared machine learning methods for abbreviation detection. Word formation, vowel com-
binations, related content from knowledge bases, word frequency in the overall corpus, and local context
were used as features. A random forest classifier performed best with an F-measure of 0.95 and an en-
semble of classifiers achieved the highest F-measure of 0.96. Wu et al. (2012) compared different clinical
natural language processing systems for abbreviation handling in clinical narratives: MedLEE (Friedman
et al., 1995b; Friedman et al., 1995a) performed best with an F-Measure of 0.60. A prototypical system,
meeting real-time constraints, is described in Wu et al. (2013). Wu’s journey finally ended in the CARD
system (Wu et al., 2016) achieving an F-measure of 0.76 for finding and disambiguating abbreviations
in clinical narratives. Very recently Vo et al. (2016) got very high results with a minimum F-measure of
0.94 on abbreviation detection on clinical notes applying supervised machine learning methods which a
rich feature engineering process.

The main difference between the work we presented and the unsupervised approach of Kiss and Strunk
is the fact that we refrained from re-scaling the LLR and avoided to set an experimental threshold for
the abbreviation classification task. The statistical decision function we employed proved to be solid
and robust even in cases where k21 > k11 (e.g. “Meta.” with k11 = 28, k21 = 82, but nevertheless
correctly classified as abbreviation), which had also been one type of motivation for introducing scaling
factors by Kiss and Strunk (2006). In contrast to much of the related work, our approach is unsupervised

9http://www.nlm.nih.gov/research/umls/
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and does not require the training of a machine learning model or a rich feature engineering effort (Vo
et al., 2016; Wu et al., 2016; Kreuzthaler and Schulz, 2015). Therefore we hypothesize that our ap-
proach is especially suited to be deployed to other clinical domains, which was a main driver of our
investigations. Table 3 shows that with the dictionary approach alone we got F-measure values greater
than 0.93, whereas the performance by word types was much lower. For the time being, we consider
this acceptable because we concentrate on high token-based evaluation measurements and do not want to
misclassify frequently occurring abbreviations. The statistical approach is not applicable in isolation, be-
cause we have found many cases where a word type followed by a period occurs only once or twice in the
corpus (see Figure 1). In such cases the statistical approach is not robust any longer, so we have to rely
on dictionaries. The combined approach was satisfactory as both training and test yielded token-based
F-measure values for period character disambiguation greater than 0.94.

4 Conclusion and Outlook

In this paper we presented an unsupervised approach for period character disambiguation in German
clinical narratives, which we evaluated for the task of abbreviation detection. We motivated and intro-
duced both a data-driven statistical approach and a dictionary-based method. Based on the analysis of
the frequency distribution of token-period character co-occurrences we also presented a hybrid method-
ology. This hybrid approach put emphasis on the dictionary-based method, which was then supported by
a statistical decision rule. A dermatology corpus was used for initial evaluation. For the training and test
set, we obtained F-measures of 0.95 and 0.94, respectively. This supports the hypothesis that unsuper-
vised approaches are well suited for abbreviation and sentence boundary detection in clinical narratives,
which are known to abound with ad-hoc abbreviations. Furthermore, the system presented here needs no
adjustment to the sublanguage, which makes it easy to reuse for other text genres and subject-matters.
This consideration together with the ability to trace back decision results to their core classification logic
and the avoidance of manual training data annotations were major drivers for this investigation.

We mention the following limitations: (i) Periods after digits are currently not considered despite
their importance as markers of ordinals in many languages, as well as their importance in many data
formats. Kreuzthaler and Schulz (2015) took this into account in a supervised rich feature engineering
approach using support vector machines; (ii) The methodology presented in this paper cannot resolve
cases where periods play a double role, viz. as both abbreviation markers and sentence delimiters. This
can be addressed by including in-depth context information regarding the period character under in-
vestigation; (iii) We applied this method to only one kind of text, viz. medical discharge summaries
of melanoma patients. Therefore, we plan to demonstrate domain independence by applying the same
approach to cardiology reports; (iv) We only used German texts, so that we can say little about the
generalizability to other languages. Although we have found that ad hoc abbreviation is a very common
phenomenon also in other languages and text genres, it cannot always be taken for granted that the period
character is used as a marker. Future investigations will address these problems. Our goal is to create
a specific UIMA component for abbreviation detection and resolution with an unsupervised core, which
could be integrated in a clinical NLP pipeline like cTAKES (Savova et al., 2010), The Leo framework -
The VINCI-developed NLP infrastructure (Meystre et al., 2008; Patterson et al., 2014) or MedKATp.
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Abstract

The issue of privacy has always been a concern when clinical texts are used for research pur-
poses. Personal health information (PHI) (such as name and identification number) needs to be
removed so that patients cannot be identified. Manual anonymization is not feasible due to the
large number of clinical texts to be anonymized. In this paper, we tackle the task of anonymizing
clinical texts written in sentence fragments and which frequently contain symbols, abbreviations,
and misspelled words. Our clinical texts therefore differ from those in the i2b2 shared tasks
which are in prose form with complete sentences. Our clinical texts are also part of a structured
database which contains patient name and identification number in structured fields. As such,
we formulate our anonymization task as spelling variant detection, exploiting patients’ personal
information in the structured fields to detect their spelling variants in clinical texts. We success-
fully anonymized clinical texts consisting of more than 200 million words, using minimum edit
distance and regular expression patterns.

1 Introduction

Clinical discharge summaries are an essential source of information to facilitate medical research. How-
ever, they contain patients’ personal health information (PHI) which, if disclosed, would compromise
patients’ privacy. Various techniques have been applied to create de-identification systems and they
have performed well (Uzuner et al., 2007). These de-identifier systems utilize either machine learning
approaches such as support vector machines (Uzuner et al., 2008), conditional random fields (Wellner
et al., 2007), and decision trees (Szarvas et al., 2007), or rule-based approaches with pattern matching
(Douglass et al., 2004).

In this paper, we tackle the task of anonymizing clinical discharge summaries written in English from
the National University Hospital in Singapore. Our work is novel in the following aspects: (1) Our
clinical discharge summaries are written in sentence fragments and they frequently contain symbols, ab-
breviations, and misspelled words, unlike the clinical texts in the i2b2 shared tasks which are in prose
form with complete sentences. (2) We treat anonymization as a spelling variant detection task, by ex-
ploiting patient health information stored in structured fields. (3) We have applied our anonymization
algorithm on actual hospital discharge summaries containing more than 200 million words. Manual
evaluation on a sample test set shows that our algorithm achieves very high recall.

2 Task Description

The corpus of hospital discharge summaries used in this paper is obtained from the National University
Hospital, spanning a period of ten years. The patients in these discharge summaries came from a variety
of countries with varied names from different races and cultures. In all, there are about 570,000 discharge
summaries with a total size of more than 700MB. Each discharge summary has an average of 400 word
tokens. Given a discharge summary, the anonymization task is to remove patients’ PHI which includes
the following items: names of patients; identification numbers; telephone, fax, and pager numbers;

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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geographical locations; dates; and names of doctors and hospitals. It is highly improbable that a patient
can be identified without the personal information listed above. Any PHI detected will be replaced by
an appropriate surrogate, e.g., a patient name will be replaced by PNAME, a patient identification number
will be replaced by PID, etc.

As mentioned earlier, our discharge summaries are written in sentence fragments and organized in
bullet points. They frequently contain symbols, abbreviations, and misspelled words. As such, our
discharge summaries are significantly different from those in the i2b2 shared tasks in 2006 (Uzuner et
al., 2007) and 2014 (Stubbs et al., 2015), which are in prose form with complete sentences. Samples of
discharge summaries from our corpus and from the i2b2 shared task in 2006 are given below.

This 68 year old female had rheumatic
fever in the past , and has had
chronic atrial fibrillation .

She has had progressive heart failure
and an evaluation demonstrated
worsening mitral stenosis with
severe pulmonary hypertension .

Because of her deteriorating status ,
she underwent prior cardiac
catheterization , which confirmed
severe mitral stenosis with
secondary tricuspid valve
regurgitation due to pulmonary
hypertension .

She was referred for valve surgery .
She had undergone a previous nasal

arterial embolization for treatment
of recurrent epistaxis .

She had a partial gastrectomy in 1972 .
Her MEDICATIONS ON ADMISSION included

Coumadin , digoxin , 0.125 , qD ,
Lasix , 40 , q.i.d. , and Vanceril
inhaler .

A sample discharge summary snippet from the
i2b2 de-identification challenge in 2006.

33/Chinese/M
PMHX:
- anemia
- previously on iron supplement
- nil OGD done

Currently c/o:
epigastric pain 1500H
nil nasuea / vomiting
nil fever noted
nil dysuria / hematuria
no changes in bowel movement
no LOW/LOA
no chest pain or SOB

O/E on admission:
Pt alert, attentive
CVS: PR 78/min, Bp 120/70 S1S2 no

murmurs, TWC 14 UC10 - nad
soft abdo, normoactivew BS. direct and

rebound tenderness RIF. nil guarding
. nil rebound

Imperssion: Acute appendicitis
Pt was sent for op

A sample discharge summary snippet from our
hospital.

In our discharge summary snippet above, the words nasuea and Imperssion are misspelled words.
Pt, PMHX, LOW, and LOA are abbreviations for patient, past medical history, loss of weight, and loss of
appetite respectively. As such, our discharge summaries pose additional challenges to anonymization
and to subsequent processing by downstream natural language processing modules like part-of-speech
tagging, coreference resolution, etc.

In addition, our hospital discharge summaries are part of a structured database which contains patients’
PHI such as names, identification numbers, phone numbers, etc. in structured fields. As such, we
exploit the meta-data in these structured fields and formulate our anonymization task as spelling variant
detection. That is, the objective of our anonymization task is to find spelling variants of patient names
and other PHI items and replace them with appropriate anonymized surrogates. This is in contrast to the
i2b2 shared tasks, where external structured information is not utilized. Since hospitals are required to
keep track of patients’ PHI in addition to their discharge summaries, admission notes, etc, one can expect
structured PHI items of a patient to be available in a real-world setting when processing the discharge
summary of a patient. As such, the anonymization task that we address is a more realistic one.

3 Anonymization Algorithm

Our anonymization algorithm uses regular expression matching and the minimum edit distance algorithm
to identify spelling variants, assuming that patients’ PHI stored in the structured database is correct.
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3.1 Patient Name

Patient name is the most important personal information present in a discharge summary. Even a mis-
spelled patient name may be used to trace and identify a patient. A patient’s full name associated with
a discharge summary is first taken from the structured field in the database. The full name is first split
into individual name tokens. Each word in a discharge summary is compared against each name token
of the patient. The minimum edit distance algorithm (Wagner and Fischer, 1974) is used to compute the
minimum edit distance between a name token n from the structured field and a candidate word w in the
discharge summary. We set the insertion, deletion, and replacement cost to 1. The edit distance ratio R
is computed as d

min(|n|,|w|) , where d is the minimum edit distance of n and w. Since a longer name has a
higher probability of being misspelled than a shorter one, we use R to take into account the length of a
string. If R is less than a specified threshold, the current candidate word w will be taken as the patient’s
name, and will be anonymized and replaced by a surrogate. We set the threshold to be 0.33.

A person’s name is often preceded by an honorific (a title prefixing a person’s name). As such, we
replace the word after an honorific by a surrogate. The list of honorifics used in our anonymization
algorithm is as follows: mr, mrs, miss, ms, madam, mdm, lady, sir, col, dr,
doctor, a/prof, e/prof, professor, prof, general, gen, senator, sen.
By detecting the honorifics, our anonymization algorithm is able to detect names that might otherwise
be missed by the minimum edit distance algorithm.

3.2 Identification Number and Contact Number

To detect a patient’s identification number and contact numbers, we make use of regular expressions
that capture the generic formats of patients’ identification numbers and contact numbers. The format of
patient identification numbers in our hospital consists of fixed numbers of letters and digits arranged in
a fixed order, which can be readily detected by a regular expression. Similarly, the format of contact
numbers consists of digits interspersed with space or dash (“-”) characters, which again can be readily
detected by a regular expression.

3.3 Date

Anonymization of dates is challenging because there are many possible date formats. Days can be written
in single or double-digit. Months can be written in single-digit, double-digit, short name (e.g., Jan), or
long name (e.g., January). Years can be written in double-digit or four-digit. The delimiters allowed
between day, month, and year include dash (-), comma (,), slash (/), colon (:), and white space (space
and tab). Therefore we have created regular expressions for all possible combinations of the date format
to cover all possibilities: day/month/year, month/day/year, year/day/month, year/month/day, day/month,
month/day, year/month, and month/year.

3.4 Doctor’s Name, Hospital’s Name, and Geographical Location

Most doctors’ names are handled by patient name anonymization above due to the common occurrences
of “dr” or “prof” preceding a doctor’s name. In addition, we obtain a list of names of doctors, hospitals,
and geographical locations in Singapore. For each entry in the list, we check if it is present in a discharge
summary and replace it by a surrogate if found.

4 Evaluation

One key advantage of our anonymization algorithm that relies on regular expression matching and the
minimum edit distance algorithm is that manual annotation of training data is not required, unlike in a
machine learning approach. To evaluate the performance of our anonymization algorithm, 100 discharge
summaries were randomly selected as the test set. The accuracy of our anonymization algorithm is
reported in Table 1.

1Patients’ identification numbers and contact numbers
2Names of doctors, hospitals, and geographical locations
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Patient name ID num1 Date Other names2 Overall
Recall 100 100 100 93.14 97.35
Precision 85.94 100 66.03 76.71 72.67
F1-score 92.44 100 79.50 84.13 83.22
PHI count 110 29 418 350 907

Table 1: Token-level evaluation of our anonymization algorithm (in %).

Our anonymization algorithm has achieved good performance. In particular, it achieves 100% recall
on anonymizing patients’ names, identification numbers, and contact numbers. We favor recall over
precision, since it is highly critical that personal information of patients be completely anonymized, at
the cost of some false positives. The anonymization algorithm fails to detect some other names, such
as doctors’ names which are not present in the given list of doctors’ names. Most of the false positives
are contributed by some common names of doctors, and how time duration is written in the discharge
summaries. To illustrate, consider the following sentence fragment: vomiting 2/7, LOW 1/12.
2/7 is falsely detected as a date (meaning 2 days). 1/12 is falsely detected as a date (meaning 1 month).
LOW is falsely detected as a doctor’s name, because LOW is a common family name in Singapore.

Our anonymization algorithm runs efficiently. It anonymizes 7 discharge summaries per second, and
takes 21.7 hours to anonymize the whole corpus of discharge summaries consisting of more than 200
million words on a PC with 3.4 GHz processor in a single thread.

We have also attempted to use a machine learning approach, in particular a maximum entropy classi-
fier, to carry out anonymization. The classifier uses the edit distance ratio as the main feature, and other
additional features such as part-of-speech tags, named entity tags, binary features about the presence of a
preceding honorific and whether the current word is an English word. However, preliminary experiments
indicate that the maximum entropy classifier does not outperform our current anonymization algorithm
of regular expression matching and the minimum edit distance algorithm. As such, we adopt our current
algorithm which is simpler and requires no annotated training data.

There were several prior systems which focused on the detection or removal of certain types of PHI
such as patient names (Taira et al., 2002), or both patient and doctor names (Thomas et al., 2002).
However, they did not exploit knowledge of external structured information like patient names or other
PHI to be removed. There were also several studies that used patients’ structured fields to perform
de-identification using regular expressions and lexical look-up tables (Neamatullah et al., 2008), string
similarity algorithm to detect typographical errors (Friedlin and McDonald, 2008), and a combination of
rule-based and machine learning approaches for de-identification (Ferrández et al., 2013). However, the
performance of these systems cannot be directly compared to ours because of different test data.

5 Conclusion

In this paper, we tackle the task of anonymizing discharge summaries written in sentence fragments and
which frequently contain symbols, abbreviations, and misspelled words. Our discharge summaries are
therefore substantially different from the discharge summaries dealt with in the i2b2 shared tasks. We
also exploit PHI of patients present in structured database fields and present a novel approach that treats
anonymization as spelling variant detection. Our anonymization algorithm effectively and efficiently
anonymizes more than 200 million words of actual hospital discharge summaries, achieving a very high
recall.
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