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Abstract

This work investigates the application of a measure of surprisal to modeling a grammatical varia-
tion phenomenon between near-synonymous constructions. We investigate a particular variation
phenomenon, word order variation in Dutch two-verb clusters, where it has been established that
word order choice is affected by processing cost. Several multifactorial corpus studies of Dutch
verb clusters have used other measures of processing complexity to show that this factor affects
word order choice. This previous work allows us to compare the surprisal measure, which is
based on constraint satisfaction theories of language modeling, to those previously used mea-
sures, which are more directly linked to empirical observations of processing complexity. Our
results show that surprisal does not predict the word order choice by itself, but is a significant
predictor when used in a measure of uniform information density (UID). This lends support to
the view that human language processing is facilitated not so much by predictable sequences of
words but more by sequences of words in which information is spread evenly.

1 Introduction

According to functionalist theories of language, the way humans process language has shaped the gram-
mars of natural languages (Hawkins, 2014). While it is not always clear whether a particular grammatical
rule or construction can be viewed as a consequence of general language processing mechanisms, there
is certainly evidence suggesting that processing efficiency plays a role — speakers may choose to use
different constructions in more complex contexts. This is particularly clear in contexts where grammat-
ical variation is possible. Sometimes a speaker can choose between different constructions to express a
similar meaning. A well-known example of two such near-synonymous constructions in English is the
dative alternation: [SUBJ gave DO to IO] or [SUBJ gave IO DO]. When a ditransitive verb is used, a
speaker can almost always choose between those two constructions. For this particular alternation, and
others like it, many studies have shown that a wide range of factors affect the choice (Gries, 2001; Bres-
nan et al., 2007; Colleman, 2009; Wasow et al., 2011), including factors related to language processing,
and that the choice is not random.

These near-synonymous constructions are a particularly interesting case for the study of language
processing, because other factors that may affect linguistic form, such as (most aspects of) meaning and
grammaticality, are the same across both constructions. Nevertheless, usage differences can be observed
between the two alternatives, even when produced by the same speaker. What remains to explain these
differences is other factors such as information structure, other pragmatic factors or (relative) processing
complexity. To be able to take such factors into account, near-synonymous constructions are often studied
using (large) text corpora and multifactorial statistical models. A range of variables that are considered
to be empirical operationalizations of relevant factors (e.g. a factor such as DEFINITENESS, which can
be related to information structure or processing complexity) are measured for each instance of the
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construction in the corpus, and modeled statistically. The model can then show how much each of
those variables contributes to explaining the variation. This approach was first taken by Gries (2001) for
English optional particle movement, studying the alternation between constructions where the particle
‘up’ is placed before or after the noun phrase:

(1) John picked up the book.

(2) John picked the book up.

The dative alternation was also studied using this method, by Bresnan et al. (2007). The variables that
are found to be significant predictors in these multifactorial corpus studies are often related to language
processing. Finding that construction (1) is preferred in contexts that are more difficult to process, Gries
(2001) proposed the Processing Hypothesis for particle movement:

The multitude of variables (most of which are concerned with the direct object NP) that seems
to be related to Particle Movement can all be related to the processing effort of the utterance.
(Gries, 2001)

However, the definition of processing effort or processing complexity used in these studies is generally
quite broad. A wide variety of measures and features that can be linked to processing complexity are
used, as well as theoretical notions applying to various domains of language. While the results of this
approach are interesting, it is difficult to generalize over the factors discussed in such studies when so
many different things constitute processing complexity. There are also more specific theories of language
processing that are internally consistent and that have been used to account for a range of phenomena.
While they may not cover all domains of linguistic complexity, they help to make the notion of processing
effort more directly quantifiable. This means that they can be used as a single measure, that they can
therefore be tested on large corpora.

In this work, we test such a specific theory. We test a basic implementation of constraint satisfaction
models of language processing by applying an n-gram language model to a case of grammatical variation
between near-synonymous constructions. We use this n-gram model as a measure of surprisal, which,
according to constraint satisfaction models of language processing, is a measure of processing complex-
ity. This particular case of variation, Dutch verb clusters, has previously been studied using the type
of multifactorial statistical model just described, and significant effects of processing complexity were
found in these studies (De Sutter, 2007; Bloem et al., in press). By comparing our results to the results
of these studies, our study can serve as a test of n-gram language models as a measure of processing
complexity, and perhaps even of the surprisal theory it is based on.

We will start by introducing our case study of Dutch verb clusters in section 2. Section 3 will address
models of language processing and how language processing has been argued to affect grammatical
variation in previous work. Section 4 describes our data, in section 5 we describe our language model,
and in section 6 we present our results. The results are discussed in section 7.

2 The case of Dutch two-verb clusters

Just like other Germanic languages, Dutch expresses properties such as tense and aspect by means of
auxiliary verbs. As Dutch is (mostly) verb-final, these verbs end up clustered together at the end of the
sentence. But unlike in other Germanic languages, these verb clusters allow a high degree of word order
variation. Even in two-verb clusters, both logical word orders are possible in almost all cases:

(3) Zij
She

zei
said

dat
that

ze
she

het
it

gelezen
read

had
had

‘She said that she has read it.’
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(4) Zij
She

zei
said

dat
that

ze
she

het
it

had
had

gelezen
read

‘She said that she has read it.’

The difference in word order is generally assumed not to correspond to a meaning difference, so we
can consider these constructions to be near-synonymous. As in other instances of near-synonymous con-
structions, a wide variety of factors has been shown to correlate with this alternation (De Sutter et al.,
2007) and several generalizations over these factors have been proposed: sentence rhythm (De Schutter,
1996), information weight (De Sutter et al., 2007) and also minimizing processing complexity (De Sut-
ter, 2005; Bloem et al., in press). Bloem et al. argue that the order in example (4), called the ascending
order, is easier to process than the alternative order (3), called the descending order, because it correlates
with features that are considered to be more difficult to process. This is similar to how Gries (2001)
argued that the construction in example (1) is easier to process. Additional evidence comes from the
claim that the ascending order is also acquired earlier by children (Meyer and Weerman, 2016).

In Bloem et al.’s (in press) study, factors that are expected to correlate with the verb cluster word order
variation are tested using a multifactorial model, and it is argued that those factors relate to process-
ing complexity (besides the ones that mark different constructions). As an example, a factor relates to
processing complexity when some psycholinguistic study has measured that a particular factor is more
difficult to process. A set of such factors can be viewed as an a measure of processing complexity.
However, another approach to measuring processing complexity is also possible and has been used in
other corpus studies of grammatical variation phenomena: to implement a theoretical model of language
processing, and test that on instances of the constructions of interest extracted from a corpus. The next
section will elaborate upon these two methods of measuring processing complexity, and discuss studies
that used them.

3 Processing complexity

Processing complexity, from a human subjects perspective, refers to the amount of cognitive effort re-
quired to produce or comprehend an utterance. Speakers prefer to minimize their use of cognitive re-
sources, formulating sentences in a way that minimizes processing complexity when multiple ways to
express something are available. Listeners seem to process complex sentences more slowly and make
more comprehension errors (Jaeger and Tily, 2011). This human subjects definition of complexity has
also been called ‘relative complexity’, in constrast to ‘absolute complexity’ which is the formal com-
plexity of the linguistic system (i.e. grammar) being used. Generally, only relative complexity is invoked
in studies of grammatical variation.

There are at least two ways in which the notion of processing complexity can be invoked to account
for grammatical variation in a corpus. Firstly, one can take a theoretical model of language processing,
and apply it to instances the constructions under study from a corpus. The model might predict that one
construction is more difficult to process than the other, or perhaps only in certain contexts. Secondly,
one can use empirical measures of processing complexity, based on psycholinguistic experiments. If
experiments have shown that people exhibit slower reading times or make more errors in sentences with
feature A than with feature B, this can be taken to mean that feature A is more difficult to process. One
can then test in a corpus whether the constructions under study occur more with the ‘easy’ feature or the
‘complex’ feature. This section will discuss these two approaches.

3.1 Theoretical models

Among theoretical models of language processing, two main approaches can be identified: constraint-
satisfaction models, and resource-limitation (or memory-based) models (Levy, 2008).

Resource-limitation models focus on the idea that there is some limited cognitive resource, such as
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memory, that limits people’s capacity to process and produce language. Gibson’s (1998) Dependency
Locality Theory is a prominent example of this approach. In this theory, among other constraints, longer-
distance dependencies are dispreferred because they require more memory, and are therefore considered
more difficult to process. Another such model, which is frequently referred to in linguistics, is formed
by the efficiency principles of Hawkins (2004; 2014). The first principle in his theory is Minimize
Domains, which states that dependency relations in the smallest possible domains are the most efficient.
These principles are argued to play an important role in shaping what is grammatical, though they can
be applied to the study of grammatical variation as well. Wiechmann and Lohmann (2013) applied this
theoretical model in their multifactorial corpus study of prepositional phrase ordering, an alternation in
English where the order of a verb’s two PP arguments (an adjunct and a complement) is free:

(5) The astronomer gazed [into the sky] [through his telescope].

(6) The astronomer gazed [through his telescope] [into the sky].

One factor they derive from the theory is that a shorter PP argument might prefer the first position, fol-
lowing the principle of Minimize Domains (the phrasal combination domain would be shorter with that
ordering). Their model did not have a very high predictive accuracy over the corpus data. This is a com-
mon finding in these studies, as not every factor can be included in the model — factors such as prosody
and information structure are difficult to test using a standard annotated corpus. Nevertheless, they found
that the constraints theorized by Hawkins (2004) held for the corpus data they studied. However, they do
not compare the effect of these constraints to other factors that often affect variation, such as empirical
measures of processing complexity. Only the additional factor ‘information status’ is discussed.

Furthermore, these principles cannot easily be applied to every case of grammatical variation. The
Wiechmann and Lohmann study discusses a case of interconstituent alternations, involving the ordering
of constituents. However, in our case study of Dutch two-verb clusters, the alternation takes place within
the verb phrase domain, and is therefore an intraconstituent alternation. As noted by De Sutter (2009, p.
226–227), principles like Minimize Domains do not necessarily apply here. So, we will look to the other
main approach to modeling language processing.

The other approach, constraint satisfaction models, uses information from various domains of lan-
guage (i.e. lexical, pragmatic) to consider various parallel alternative interpretations or parses of a sen-
tence during processing. Furthermore, they relate processing difficulty to expectation, which is often
grounded in probability theory (Jurafsky, 2003) or relatedly, measures of surprisal (Hale, 2001; Levy,
2008). Therefore, this has also been called the Surprisal framework. In Hale’s surprisal theory, log-
probability is considered a measure of the difficulty of a word. More surprising sequences of words or
structures (that have lower probability) are considered to be more difficult to process and therefore more
complex. These measures have been used to make various predictions about processing complexity that
were verified using empirical data from psycholinguistic experiments. The concept of minimizing sur-
prisal has also been called uniform information density (UID). This term is frequently used in linguistic
studies, for example by Levy and Jaeger (2007). This UID measure measures the same thing as the
perplexity measure, which is often used by computational linguists to evaluate language models. Levy
and Jaeger (2007) studied it in the context of syntactic reduction, namely the possible omission of ‘that’
as a relativizer, which can also be considered a form of grammatical variation. In their study, an n-gram
language model is a significant predictor of relativizer omission, as well as more syntactic features that
are considered to have predictive power. This n-gram model was trained on a version of the Switchboard
corpus in which all optional relativizers were omitted. However, no comparison with empirical measures
of processing complexity is made. The UID measure has also been found to predict variation in other
domains of language, such as discourse connective omission (Asr and Demberg, 2015). Therefore, this
approach links probabilistic models of language that are typically used in natural language processing,
to processing complexity.
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3.2 Empirical measures

We have just seen some examples of corpus studies of grammatical variation in which a particular the-
oretical model of processing complexity is used as the basis of the analysis, but usually, processing
complexity is defined more broadly. An example of such a definition of processing complexity can be
found in the first multifactorial corpus study of grammatical variation, where Gries (2001) states: “My
idea of the notion of processing effort is a fairly broad one: it encompasses not only purely syntactic
determinants, but also factors from other linguistic levels”. He lists phonologically indicated process-
ing cost, morphosyntactically determined processing cost, semantically conditioned processing cost, and
discourse-functionally determined processing cost.

In De Sutter’s (2007) variational corpus study of verb clusters, he interprets five factors that have
previously been linked to verb cluster order variation in terms of cognitive cost. For example, the factor
‘frequency’ is interpreted as an indicator of cognitive cost, since psycholinguistic studies (i.e. reaction
time studies) have shown that lower-frequency words are processed more slowly. In a subsequent corpus
study, Bloem et al. (in press) provide an overview of nine such factors that correlate with the word order
variation in a large corpus. Just as other corpus studies of variation, this study is operationalized as a
logistic regression model predicting which of the two orders is likely to be used, given the factors as
predictors or independent variables. These factors are shown in Table 1. In this table, they are ranked
by their information gain as measured in the stepwise regression procedure performed by Bloem et al.
(in press). In this procedure, one starts with an empty model, and adds the most informative factor each
time, measuring the information gain. This measure is expressed as an Akaike Information Criterion
(AIC) value, which measures information loss. A higher AIC means that more information is lost by the
model, compared to the original data set. Therefore, the highest-ranked factors account for the largest
amount of variation.

Rank Factor AIC Decrease
0 (none) 463279 —
1 Type of auxiliary 382538 80741
2 Priming 378185 4353
3 ‘te’-infinitive 374378 3807
4 Extraposition 371413 2965
5 Length of middle field 369817 1596
6 Frequency of the main verb 368744 1073
7 Information value 367806 938
8 Morphological structure of the main verb 366870 936
9 Multi-word units 366162 708
10 Structural depth 365674 488
11 Definiteness 365461 213

Table 1: List of factors in the Bloem et al. (in press) model of verb cluster order variation, ranked by
information gain.

Factors 1 and 3 are control variables. Using a different auxiliary verb changes the meaning of a verb
cluster construction and different auxiliary verbs have different word order preferences, so this factor
obviously predicts word order in this kind of model, even though it is not a processing complexity factor.
For the other factors, Bloem et al. discuss how they can be linked to results from psycholinguistic
studies in which the factors, or similar ones, are measured, as well as to verb cluster order variation.
Several of these factors are the ones that De Sutter (2007) also discussed. FREQUENCY is also included
here (6th in the table), as well as syntactic PRIMING (2nd), which is argued to ease processing on the
basis of priming studies. The LENGTH OF THE MIDDLE FIELD of the sentence (5th) is also discussed,
where a longer middle field is argued to be more difficult to process due to longer dependencies. The
factor EXTRAPOSITION (4th) indicates whether a prepositional phrase was extraposed and positioned
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after the verb cluster, which has been argued to ease processing, and the factor INFORMATION VALUE

(7th) measures the information value of the word before the verb cluster (i.e. whether it is a function
word or content word). The factor MORPHOLOGICAL STRUCTURE OF THE MAIN VERB (8th) refers to
seperable verbs, such as afwassen ‘wash up’ — such verbs appear to have a strong preference for the
ascending order. The MULTIWORD UNIT factor (9th) indicates whether the verb cluster is (part of) a fixed
expression, and STRUCTURAL DEPTH (10th) refers to the depth of the verb cluster in the syntactic tree of
the sentence. Lastly, as for the factor DEFINITENESS of the last word before the verb (11th), definiteness
is argued to be more difficult to process on the basis of a study with language-impaired children, among
other work. More detailed descriptions of the factors, their link to the notion of processing complexity
and their effect on word order are provided by Bloem et al. (in press).

All of the factors listed in Table 1 are statistically significant predictors of verb cluster word order, and
they are all linked to processing complexity. In the present study, we will use this study as a basis of
comparison for our probabilistic language model based on the constraint-satisfaction theory of language
processing. Outside of the world of multifactorial corpus studies, processing complexity is also often
defined in terms of empirical psycholinguistic measures, as evidenced by Bach et al.’s (1986) study on
the processing complexity of larger verb clusters, where processing complexity is measured in terms of
error rate and comprehensibility judgements.

4 Data

For reasons of comparison, we use the same corpus that was used by Bloem et al. (in press), which
is the Wikipedia section of the Lassy Large corpus (van Noord, 2009). This corpus consists of a 145
million word dump of the Dutch-language Wikipedia in August 2011, and among these words, we can
find 827.709 two-verb verbal clusters in total. The corpus has been automatically annotated with full
syntactic dependency trees by the Alpino parser for Dutch (van Noord et al., 2006). While we do not need
the annotation to train our language model, we do need it to automatically find and extract verb cluster
constructions — extracting any sequence of two verbs is not sufficient. Furthermore, the annotation was
used to extract the empirical measures of processing complexity used by Bloem et al. (in press), used as
factors in their model. The corpus was split into a training set (90%) and test set (10%), and from each
set, the verb clusters and the factors were extracted. We also extracted plaintext, but tokenized, versions
of the training and test sets for creating the language model.

5 Language model

To model the surprisal or predictability of a verb cluster, we trained a trigram language model on the
plaintext corpus. We used Colibri Core (van Gompel and van den Bosch, 2016) to implement the
language model efficiently. Colibri Core’s compression and counting algorithms enabled the modeling
of this fairly large corpus without requiring excessive amounts of memory. The model was trained
by having Colibri count n-grams and storing them as an unindexed pattern model. We used 3 as the
maximum construction length (n = 3) and no minimum length (to get trigrams, bigrams and unigrams),
and no skipgrams. The construction threshold was set to 2, i.e. n-grams that only occur once are not
included in the language model. Because we use an automatically annotated corpus, including such
hapax legomena would be likely to result in the inclusion of many tokenization errors at the cost of more
memory.

A Colibri unindexed pattern model stores frequencies, but not probabilities. We perform maximum
likelihood estimation (MLE) on the model over the training data to obtain probabilities during the test
procedure. When testing, we iterate through all verb clusters extracted from the test set portion of the
corpus, and estimate their probability and perplexity using frequency counts from the Colibri pattern
model. For each of the two verbs in a cluster, we use linear interpolation to include trigram, bigram and
unigram construction counts in the estimate. Furthermore, we use generalized additive smoothing, over
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the unigram constructions only, to account for out of vocabulary words in the test set. Therefore, our
maximum likelihood estimation for a single verb is performed as follows:

P̂ (wn|wn−1wn−2) =λ1P (wn|wn−1wn−2)
+ λ2P (wn|wn−1)
+ λ3P (wn) where P (wn) =

δ + c(wn)
δ|V |+ c(N)

(1)

λ1, λ2 and λ3 refer to the interpolation weights of trigram, bigram and (smoothed) unigram probabilities
respectively. δ is the smoothing parameter. V refers to the vocabulary size (or, the number of types in the
language model), N to all tokens, and c() refers to counts. We can now use perplexity per word (PPW)
as a measure of surprisal for individual verbs or verb types. Perplexity is a measure of predictability or
surprisal and it is generally used to compute how well a language model predicts a word in a sequence,
or a sequence of words. We compute PPW as follows:

PP(W ) = 2−log2(P (V1 )P (V2 )) (2)

p(V 1) and p(V 2) are the estimated probabilities of the two verbs in the cluster (as estimated in Equa-
tion 1).

However, we would also like to have a measure of the predictability of the verb cluster as a whole. To
this end, we also compute the perplexity per word over both words in the verb cluster:

PP(C) = 2−
1
2
log2(P (V1 )P (V2 )) (3)

The log probabilities of P (V 1) and P (V 2) are multiplied by 1/2 because the verb cluster can be regarded
as a sequence of length 2.

As noted, this measure is similar to Uniform Information Density as defined in previous work. We did
not evaluate our language model in detail, because the goal of this study is not to have an optimal model
for natural language processing. Rather, it is an attempt to see whether a basic form of a constraint-
satisfaction model of language processing can account for verb cluster order variation, so we aim to
make as few assumptions about the nature of the language model as possible.

6 Results

We ran the testing procedure to obtain perplexity values for each verb cluster with a range of parameter
settings. We decided on a set of parameters to use based on two criteria. Firstly, regarding the con-
struction length, we wanted the linear interpolation weights to be somewhat balanced between unigram,
bigram and trigram probabilities in order to have a representative trigram model that does not rely too
much on unigram or bigram probabilities. Longer construction lengths seem more cognitively plausible.
Secondly, even though we do not consider a well-performing language model to be essential for this
study, we chose parameter settings that resulted in a low overall perplexity per word, computed over
all verbs within the clusters. This resulted in a model with the interpolation weights set at λ1 = 0.3,
λ2 = 0.45, λ3 = 0.25, and a smoothing parameter of δ = 0.5. We take perplexity to be an indicator
of complexity following (Hale, 2001) who took log-probability as an indicator of complexity, as well as
subsequent work in constraint-based models of language processing.

As a reminder, we repeat examples (3) and (4), showing the two possible word orders. Example (7) is
in the descending order, where the main verb comes first and the auxiliary verb, in this case hebben ‘to
have’, comes last. Example (8) is in the ascending order, which is the opposite:

(7) Zij
She

zei
said

dat
that

ze
she

het
it

gelezen
read

had
had

‘She said that she has read it.’
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(8) Zij
She

zei
said

dat
that

ze
she

het
it

had
had

gelezen
read

‘She said that she has read it.’

Word order Perplexity
Ascending order clusters 1681.2
Descending order clusters 1675.8
Overall PPW 1679.8

Table 2: Perplexity per word (PPW) results for the two word orders, over all test-set clusters.

Table 2 shows that the perplexity per word of clusters in the ascending order, which is the more
frequent order, is slightly higher than that of clusters in the descending order. At first sight, this seems
to confirm the processing hypothesis of Bloem et al. (in press) — the ascending order occurs in contexts
of higher surprisal, and therefore lower predictability. This would confirm their idea that the ascending
order is easier to process — to minimize surprisal and maintain uniform information density, one would
use the less complex construction in the more complex context.

The difference seems small though, only 5.4 units of perplexity. We can test the predictive power of
this measure for predicting word order by defining a logistic regression model over this data. In this
model, word order is the dependent variable, a binary outcome variable that can be either ‘ascending’
or ‘descending’, and verb cluster perplexity (as defined in Equation 3) is the predictor variable. In this
model, the perplexity factor is significant (p < 0.05), with a z-score of 2.2. As for the effect size,
according to the model, for a one unit increase in perplexity, the log odds of the cluster being in the
ascending order increases by 0.00000000035 (3.5e−10). In other words, the effect size is tiny. For
confirmation, we also tested the predictive power of the model by computing the concordance index
(c-index). A c-index of 0.5 indicates chance level prediction, while 1 is perfect. This model’s c-index,
based on 100 bootstrap repetitions, is 0.493, while multifactorial models of verb cluster order variation
had c-indexes of 0.803 (De Sutter, 2005) and 0.765 (Bloem et al., 2014). Therefore, we cannot consider
this result to be reliable.

Condition Value Perplexity

Linear position
First verb 2264.9
Second verb 1245.8

Verb type
Auxiliary verb in cluster 714.0
Main verb in cluster 3952.0

Position and type
Auxiliary verb in descending cluster 178.2
Main verb in descending cluster 15763.5
Auxiliary verb in ascending cluster 2445.8
Main verb in ascending cluster 1155.6

- Overall PPW 1679.8

Table 3: Perplexity per word (PPW) results for various conditions, over all test-set clusters.

To analyze this negative result, we can look at the perplexity per word values of individual verbs,
for different verb types and verb positions. These different conditions are listed in table 3. We can
distinguish two conditions here: the position of the verb in the linear order of the sentence (does it come
first or last), and whether the verb is an auxiliary verb or a main verb. These are essentially two features
of the two word orders: in the ascending order, the first verb is the auxiliary verb while the second verb
is the main verb, while the reverse is true for the descending order.

As for the linear position, we can observe that the first verb of a cluster is less predictable than the
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second verb. This seems logical, because in a two-verb cluster, the first verb is always followed by
another verb. As for the verb type, we observe a bigger difference in perplexity between auxiliary verbs
and main verbs — auxiliary verbs are much more predictable than main verbs. This can also be expected,
because there is a limited number of auxiliary verbs (including any verbs that select another verb in a
cluster), while main verbs can be anything and may include unknown words. This shows that linear
position and verb types are both confounding factors in computing verb cluster surprisal. However, these
observations do not control for the fact that the ascending order is more frequent, and therefore main
verbs more often occur in the second position in linear order.

Therefore, it may be more informative to look at perplexity values for both linear position and verb
type, as shown in table 3. This shows that perplexity is distributed quite differently in both orders. In
the descending order, the main verb comes first. The perplexity for this is very high — the descending
main verb is very surprising both because main verbs are more surprising, and because verbs in the first
position are more surprising. Conversely, the auxiliary verb, which comes second, has very low surprisal.
In the ascending orders, the two factors balance each other out — the auxiliary verb (low surprisal factor)
comes first (which is a high surprisal factor). The main verb (high surprisal) comes last (low surprisal).
In other words, instances of the ascending order have a more uniform information density.

Based on this result, we define a measure of verb cluster information density, which is the absolute
difference between the log probabilities of both verbs in the cluster:

UID(C) = |log2(P (V1 ))− log2(P (V2 ))| (4)

Again, P (V1 ) and P (V2 ) are the estimated probabilities of the two verbs in the cluster (as estimated
in Equation 1). Putting this factor in a logistic regression model gives us a c-index of 0.686 according
to the procedure described for the previous model (except that the measure from Equation 4 is used,
instead of that in Equation 3). This is of course a lot better than 0.493, especially for a model with
a single predictor. The effect of the factor is also highly significant. We can now test whether this
UID-effect holds when we also include the nine empirical measures of processing complexity (and the
control variables) from the study of Bloem et al. (in press). This would tell us if our cluster-UID-measure
measures the same thing as the empirical measures from that study.

This can be done by adding the UID measure from Equation 4 to the multifactorial regression model
of Bloem et al. as a predictor variable. To do so, we created a regression model that includes all of
the factors listed in Table 1 as predictors, as well as our UID measure, and that has word order as the
dependent variable. We found that adding UID to the Bloem et al. model significantly improves it. A
global comparison of the original model and the model with the UID factor using the χ2-test shows that
the residual deviance drops from 54880 to 48795, and this is statistically significant (p < 0.001). We also
observe that the UID-measure is highly significant in this model, with an odds ratio is 0.788, indicating
a decrease in the odds of observing an ascending order when the UID-measure is higher (which is when
the density is less uniform). Furthermore, if we perform stepwise regression with this model to measure
information gain, the UID factor is ranked second after the control factor TYPE OF AUXILIARY. In
Table 1, which lists information gain for the Bloem et al. model, it would be listed second. It is therefore
the most informative factor related to processing complexity in the new model. However, the predictive
value of the model does not improve — the original model has a predictive value of c = 0.7897, and
adding our UID-measure gives us c = 0.7896, a negligible difference.

Surprisingly, there is no multicollinearity in this model. The variance inflation factor (VIF) for each
factor is very low (< 1.2, 1.203 for the UID factor). This indicates that the UID-measure does not
correlate with the factors from the Bloem et al. model, but is complentary to them instead.
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7 Discussion

Our results show that perplexity-per-word as a measure of surprisal does not predict word order variation
in two-verb clusters, even though it has been argued that processing complexity predicts word order. The
perplexity values computed on the basis of the probabilities from the n-gram language model that we
used cannot be considered a measure of processing complexity. However, a derived measure of uniform
information density (UID), which measures a difference in surprisal within the verb cluster construction
on the basis of the same language model, does predict the word order variation. We furthermore showed
that this UID measure improves upon a previous model, that was based on empirical measures of pro-
cessing complexity. Therefore, our UID measure can be viewed as complementary to these measures
when accounting for word order variation in two-verb clusters.

This result indicates that part of the variation that the empirical measures account for, is also accounted
for by the UID measure, but not all of it. Furthermore, not all of the variation that the UID measure
accounts for, is accounted for by the empirical measures. More broadly, human subject measures and a
computational measure of complexity were combined, and this combination lead to an improvement in
explanatory power for this grammatical variation. We chose to use a measure in the Surprisal framework,
or constraint satisfaction modeling approach, because Dependency Locality Theory is not so clearly
applicable to verb cluster order variation, which is an intraconstituent alternation.

Our analysis also showed that verb clusters in the ascending order generally have a more uniform
information density than verb clusters in the descending order. This is because both linear position and
the type of verb affect the predictability of a verb, and in the ascending word order, these two factors
balance each other out. Under the assumption made by Levy and Jaeger (2007) that uniform information
density indeed facilitates processing, our findings seem to support the processing hypothesis for Dutch
verb cluster order. However, the direction of the effect is not clear - it can either be argued that the
ascending order is easier to process because it has a more uniform information density, or it can be
argued that the ascending order is more difficult to process, because speakers use it in more predictable
contexts (that are less difficult to process). In future work, this ambiguity could be clarified by studying
the information density of not only the verbs themselves, but also the words before and after the verbs.

While we believe that Dutch verb cluster word order is a typical case of near-synonymous word order
variation, this raises the question of whether these findings would hold for other cases of grammatical
variation. Our result does not necessarily mean that surprisal measures are not representative of pro-
cessing complexity in general. Surprisal has been shown to be informative in other studies of other
phenomena, for example to discover contexts in which a relativizer is preferred (Levy and Jaeger, 2007).
Furthermore, surprisal can be and has been measured in a variety of ways. We implemented it in a very
basic way. Hale (2001) measured surprisal using a probabilistic parser rather than an n-gram language
model. Perhaps a measure of surprisal that takes more structure or syntax into account would be more
predictive of verb cluster order variation or other alternations. The measure can and has been imple-
mented on the basis of other structural elements rather than words, such as constructions, part-of-speech
sequences, topic models, or any other level of structure that one could train a language model over In fu-
ture work, it would be interesting to try computing surprisal in the same way as Hale (2001), to compute
it at a different level of structure, or to use more elaborate language models containing larger chunks or
skipgrams. A delexicalized n-gram model could be used to make the measures we used more sensitive to
structure. For our particular case it would also be interesting to define our prediction task in a different
way — to learn more about the word order variation, it would be interesting to adapt the language model
such that it only predicts the order of the cluster, rather than the specific words in it. This might tell us
more about how predictable the cluster orders are, regardless of the specific lexical items involved.

Nevertheless, our findings do provide evidence that uniform information density may be a better oper-
ationalization of constraint satisfaction models of language processing than plain surprisal, when one is
studying an alternation involving multiple words. Uniform information density should be considered as a
measure of processing complexity, particularly in multifactorial corpus studies of grammatical variation.
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